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Preface

This thesis is written as a required part of the Candidatus Scientiarum (Mas-
ter of Science) degree in informatics at the Department of Informatics, Uni-
versity of Oslo, Norway. The work was started in September 1994 and fin-
ished in May 1996.

This thesis is a theoretical approach to analyze problems arising in the
design of ultrasound transducer arrays. It combines the fields of array sig-
nal processing and mathematical optimization. Some background theory is
included, but it is assumed that the reader has a fundamental background
from digital signal processing. It is also assumed that the reader is familiar
with linear algebra and matrix notation.

The background theory is included both to motivate and to introduce
the notation required in the proposed methods. It will hopefully give a wider
understanding of both the methods and which conditions they apply to.
Some theoretical details must necessarily be elaborated, but this presentation
is in the interest of simplicity rather than intricate details.

Two optimization methods are proposed to optimize the response from
ultrasound array transducers by weighting. One performs only weighting and
the other performs simultaneous thinning and weighting. These methods are
implemented and computer simulations on several arrays have been carried
out.

Some effort has also been made in keeping a consistent notation through-
out this thesis. Boldface letters have for instance been reserved for matrices.
For example, A and b typically denotes a matrix and a column vector, re-
spectively. Physical vectors are denoted with arrows as �x.

Finally, I would like to thank my supervisor, Professor Sverre Holm, for
his encouragement and assistance through this work. Also thanks to Dr.
Geir Dahl for his contribution of ideas to the optimization methods.

Oslo, May 1996

Bjørnar Elgetun
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Chapter 1

Introduction

1.1 Medical ultrasound

Ultrasound was introduced to medical diagnosis in the 1970’s and is now
available at many hospitals for obtaining images of internal tissues in the
human body. Ultrasound imaging is mainly used in locating the position of
the fetus during pregnancy and in cardiology. As ultrasound imaging is non-
invasive and non-radiating, it is considered as a harmless anatomical imaging
method. Thus, it provides an alternative to X-rays in medicine for certain
applications.

The rapid advances in computer technology and the improvements in
transducer 1 design has drawn the attention to three-dimensional (3D) ultra-
sound imaging. This is sometimes referred to as volumetric imaging and is
at present offered by the first generation 3D imaging systems. An example
of a 3D image compared to the conventional 2D image is given in figure 1.1.

The 3D imaging mode’s significance in medicine to make more reliable
diagnosis is obvious. Further benefits from 3D imaging will certainly evolve.
It has already turned out to be a valuable tool for instance in communication
between cardiologists and surgeons.

Real-time 3D imaging has probably always been the ultimate goal in
diagnostic ultrasound imaging. In contrast, the first generation 3D imaging
systems are highly non-real-time. The state-of-the-art systems require time of
the order of 15 minutes or more for data acquisition and image reconstruction.
This impedes clinical efficiency, applicability and patient throughput.

1An ultrasonic transducer is a device that produces and receives ultrasound.
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Figure 1.1: To the left, an example of a 3D cardiology image of the mitral
valve and the open aorta is shown. It is obtained with a first generation 3D
non-real time imaging system. A conventional 2D ultrasound image of the
heart is shown to the right.

The first generation 3D imaging systems are based on 1D phased arrays
which allow electronic steering only in one plane of a 3D segment. To obtain
full 3D steering, the array is moved mechanically in different scan-planes.
The mechanical steering is a time consuming factor, and it requires a com-
paratively large equipment setup.

Thus, the ideal transducer for 3D imaging is the 2D phased array [3]. Each
of the transducer elements are delayed or phased individually, which allows
electronically steering and focusing in all directions of a 3D segment. This
will eliminate the mechanical moving parts present in the first generation 3D
imaging systems. Both the equipment and the scanning operation will be
simplified with the 2D phased array.

The major problem with the 2D phased array is a large number of chan-
nels to handle. As the present linear phased array transducers use 64 − 128
elements, the 2D array should use from 64×64 = 4096 to 128×128 = 16384
elements. This represents a significant problem in cable connection and elec-
tronics, and it requires a large amount of computer resources.
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1.2 Objective of this thesis

The size and complexity of the 2D phased array still makes 3D real-time
imaging futuristic − But could it be that a 2D phased array would operate
satisfactory with a severe reduction in the number of array elements? This
is the underlying question of this thesis.

Some techniques have been suggested to reduce the number of the ele-
ments of 2D arrays. Both random thinning [29, 43] and thinning due to a
mathematical optimization criterion [24, 25, 30] are considered.

To compensate for the reduction of array elements, the effect of element
weighting2 is investigated. By combining theory from array signal processing
and mathematical optimization, an optimization problem is established. For
the element weighting problem, a linear program is set up and solved utiliz-
ing the well-known Simplex method from mathematical programming. The
response from several randomly thinned arrays have been simulated using
this implementation.

There are probably more clever ways to reduce the number of array ele-
ments than picking them by random. This leads to a mathematical formula-
tion that optimizes both the thinning and weighting simultaneously. In this
thesis the problem is established and solved by a mixed integer programming
approach using the branch-and-bound method. The gain of optimal element
placing in contrast to random thinning is examined.

Some array signal processing and mathematical optimization theory is
also included. This will hopefully give a wider understanding of the methods
used and which conditions they apply to.

2Element weighting is termed as shading or tapering as well. This means that each
element signal is individually amplified in addition to the delay required for electronically
steering.
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Chapter 2

Ultrasound imaging

This chapter is intended as a primer for the succeeding chapters. It reveals
the main principles in ultrasound imaging. The different technological parts
of an ultrasound imaging system will be described briefly, with emphasis on
the ultrasound transducer. Ultrasound imaging in respect of the 3D imaging
mode is also elaborated in this chapter. Both the new possible applications
evolving as well as the technical aspect of 3D imaging is discussed.

2.1 The ultrasound imaging system

Ultrasound is a term used to describe soundlike waves whose frequency is
above the range of normal human hearing, which extend from about 30 to
20, 000 Hz. In medical ultrasound imaging, such waves are passed through
the body and the echoes are registered. By processing the backscattered
signals, an ultrasound image is constructed.

The ultrasound wave signals are generated and received by a transducer
or a probe, which is the basic device in an ultrasound imaging system. The
transducer is controlled by a RF-unit, which is responsible for focusing and
steering of the ultrasound waves, often called beams. The RF-unit, equipped
with both analog and digital electronics, is thus a beamformer operating on
signals in both space and time.

The scanline processor extracts the data acquired by the RF-unit. Im-
age data for each scanline as well as data for color and spectral Doppler is
extracted by time domain signal processing. The scanline data is sent to the
image processor, which performs image construction and filtering. Finally,
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Figure 2.1: A block diagram of an ultrasound imaging system.

the image data is sent to the display, as shown in figure 2.1.

2.1.1 The ultrasound transducer

Today’s ultrasound transducers are based on the effect of piezoelectricity ,
which was discovered in 1880 by Pierre and Jacques Curie. This discov-
ery made it possible to transform electricity into pressure waves and vice
versa. Utilizing this effect, the ultrasound transducer transforms electricity
into high-frequency ultrasound. Medical ultrasound imaging usually apply
frequencies ranging from 2− 10 MHz [2]. The principle of piezoelectricity is
illustrated in figure 2.2.

The modern ultrasound transducers are made of specially cut crystals of
materials such as quartz or ceramics such as barium titanate and lead zir-
conate. An alternating electrical voltage is applied across the opposite faces

9



Figure 2.2: A transducer element utilizing the effect of piezoelectricity. Ap-
plying an electrical voltage makes the plate vibrating and vice versa.

of a plate made of such a material. This produces an alternating expansion
and contraction of the plate at the impressed frequency. This phenomenon
is called piezoelectricity.

Similar effects are observed in ceramics. Ceramic objects have the added
advantage of being able to be cast in the form of plates, rings, cylinders,
and other special shapes that are convenient for engineering applications.
In addition, some materials, such as cadmium sulfide, can be deposited in
thin films on a solid medium. Such material can then serve as a transducer.
Still other ultrasonic transducers are produced in ferromagnetic materials by
varying the magnetic-field intensity in the material [41].

2.1.2 Different transducer types

There are numerous transducers available for different applications. There
are transducers for external as well as internal use in the human body. Obvi-
ously, the transducers designed for insertion into the body have both shape
and size constraints. Another example is the size of the transducer intended
for cardiology, which is limited by the distance of about 2 cm between the
ribs.

The simplest ultrasound transducer is an unfocused piston transducer
which consists of one piezoelectric disc. The surface of this simple transducer
may be slightly curved to focus the ultrasound energy at a spatial point.
This is the same principle utilized in optical lenses. These transducers have
a continuous aperture1 consisting of one element.

To achieve better control, array transducers are preferred in medical imag-

1The aperture is the size of the ultrasound transducer, usually given as the diameter.
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ing. These consists of two or more transducer elements which may be con-
trolled individually. The most common transducers in medical ultrasound
are the annular array and the phased array transducers which are shown in
figure 2.3.

Annular
array

Linear
phased
array

2D phased arr ays

Figure 2.3: Different types of array transducers for medical imaging. The
annular array is conceptually different from the phased arrays.

By individually delaying each ring of the annular array, it allows dynamic
focussing of the ultrasound energy, but the beam must still be steered me-
chanically. The phased array transducers are thus the most flexible, since
they allow both dynamic focussing and electronically steering. The drawback
with the latter is the considerably large number of elements required.

2.2 3D imaging

With the recent introduction of 3D imaging, a new era of ultrasound imaging
is established. 3D imaging is still at the research stadium, even though
the first generation imaging systems are already available. The 3D imaging
systems still suffer from high production costs, complex equipment setup and
a long image generation time. But it has already been stated that there is
an enormous potential for 3D ultrasound imaging systems.
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2.2.1 Applications

The main reason for the potential of 3D imaging is simply the fact that we are
interested in imaging 3D objects. With the conventional ultrasound images,
an imaging expert such as a cardiologist has to interpret the speckled 2D
images. He has to form an idea of the characteristics of the object, which
then has to be explained to the medical staff prior to the diagnosis or surgery.
If the 3D model instead is obtained directly with the ultrasound imaging
system, it will obviously lead to more certain diagnosis.

When the 3D model of the actual object is created, it can be viewed and
analyzed from different angles and observation planes. The whole model may
also be stored on a disc for later analysis. In combination with data assisted
construction, a silicone model of the object may be created. This model
could be examined by the surgeon prior to a complicated surgery. Combined
with a virtual reality helmet, the surgeon might prepare for the operation
having an inside-heart-walk.

2.2.2 Technical considerations

The ideal transducer for 3D imaging is a 2D phased array [3], which allows
electronically steering in all directions of a 3D segment. For the futuristic
real time 3D imaging, an electronically steered array is preferred to maintain
the frame rate and image quality. In contrast, the present first generation
3D imaging systems are based on a comparatively slower mechanic rotation,
tilting or translation of a 1D transducer in one of the directions, which clearly
restricts the frame rate.

As already stated, a 2D phased array transducer will necessarily need a
large number of elements, which leads to severe fabrication difficulties in elec-
trical connection. The total costs is also related to the number of elements.
Another drawback with these transducers is the extremely low transducer
signal to noise ratio (SNR). Unfortunately, the poor SNR of 2D arrays may
not allow the advantages of element weighting [37].

Today’s largest 2D phased arrays consists of about 500 elements, which is
significantly less than the theoretically requirement of at least 64×64 = 4096
elements for 2D arrays. With the introduction of optoelectronic transmitters
together with fiber-optic cables allowing considerable size reduction, this gap
may be reduced. Another possible way to circumvent the problem, is to
reduce the large number of array elements while maintaining aperture by
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element thinning, which is elaborated later in this thesis.
The problem with the low SNR in 2D arrays may be overcome with the

application of multilayer ceramic elements. It is just a matter of time until
the 2D phased arrays will be accepted as viable replacements for the linear
arrays of today [37].
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Chapter 3

Ultrasound wave propagation

Ultrasound waves produced by transducers are physical signals governed by
laws for wave propagation, in particular the wave equation. During prop-
agation, the ultrasound waves are affected by tissue structures inside the
body and physical phenomena like dispersion, attenuation, refraction and
diffraction.

In this chapter, the necessary mathematical notation describing propa-
gating waves and wavefields will be given. This involves functions of both
space and time. Trying to characterize the wavefield by array transducers,
the concept of spatial sampling is introduced. A spatial sampling theorem
will be established, which resemble the Nyquist sampling theorem in digital
signal processing.

3.1 Ultrasound waves

Ultrasound waves are caused by oscillations of the molecules in a material.
The molecules are oscillating back and forth about their equilibrium points,
which produces longitudal pressure waves. These waves propagate in a direc-
tion parallel to the molecule’s oscillating motion.

From Huygens’ principle [2, 14], the ultrasound wavefront is formed by
the interference between spherical waves from each point on the transducer
surface. As the partial waves spread spherically in space, the curvature of
the circular wave contours decrease. When far enough from the source, the
wave contours appear to have insignificant curvature and the wavefront is
approximately a plane wave.

14
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spherical wave contours
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Figure 3.1: An ultrasound wave emitted by a point source. The different
wave characteristics in the near and far-field is illustrated.

Consequently, the characteristics of the waves depend on distance from
the source. In the near-field we have to assume spherical waves, while in the
far-field we may assume plane waves. Defining the borderline between the
near-field and the far-field is application dependent. In [2] for instance, the
near-field of a circular ultrasound transducer extends from the transducer
surface to D2/2λ, where D is the diameter and λ is the actual wavelength.

3.1.1 Wave parameters

As waves propagate through space, they are characterized both by temporal
and spatial parameters. At a spatial point, ultrasound waves passing produce
oscillating pressure variations with a temporal frequency denoted f . The
normalized temporal angular frequency is conveniently given as ω = 2π ·
f . The spatial distance λ between two pressure maxima of the wave is
the wavelength and is related to the propagation speed c and the temporal
frequency through

λ =
c

f
= c ·

2π

ω
(3.1)

The wavenumber vector is a quantity used to describe the spatial con-
tent of a propagating wave. As shown in figure 3.1, the direction of the
wavenumber vector �k is parallel to the propagation direction of the wave.
The magnitude of the wavenumber vector is related to the wavelength as
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∣∣∣�k∣∣∣ = 2π

λ
=

ω

c
(3.2)

which also may be interpreted as the spatial frequency of the propagating
wave.

The slowness vector is conveniently introduced to simplify notation. It
is defined as �α = ω�k which points in the same direction as the wavenumber
vector. The magnitude of the slowness vector is inversely related to the wave
propagation speed c and given as

|�α| =
1

c
(3.3)

3.2 The wave equation

The propagating ultrasound waves are governed by the wave equation, which
is the equation in array signal processing. It is based on Maxwell’s equations,
a set of partial differential equations that describe the evolution in space and
time of the electromagnetic field.

Unlike electromagnetic waves, ultrasound waves can not exist in a vac-
uum, but still they share the same wave properties. Deriving the wave equa-
tion for ultrasound waves is more complicated, since no single unified set of
equations governs acoustics. See for instance [9] for a detailed derivation.

Anyway, the acoustic and electromagnetic wave equations take the same
form

∂2s

∂x2
+

∂2s

∂y2
+

∂2s

∂z2
=

1

c2
∂2s

∂t2
(3.4)

where s (x, y, z, t) represents the sound pressure in space and time in the
acoustic case. The only parameter c in the wave equation may be interpreted
as the propagation speed of the travelling wave. In biological tissue, the
ultrasound waves propagate at a speed of c ≈ 1540 m/s.

3.2.1 Solutions to the wave equation

The wave equation in (3.4) have numerous solutions, including both spherical
and plane propagating waves. The following derivation shows that a propa-
gating plane wave is a solution. Using the linearity of the wave equation and
the superposition of weighted plane waves, the conclusion is that any signal
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satisfies the wave equation, and the shape of the wave is perfectly preserved
as it propagates.

Assume first that the sound pressure s (x, y, z, t) of an ultrasound wave
may be modeled as a monochromatic1 propagating plane wave having the
complex exponential form

s (x, y, z, t) = A exp{j (ω t− kx x− ky y − kz z)} (3.5)

where A is a complex constant, ω is the angular frequency with ω ≥ 0
and �k = (kx, ky, kz) is the wavenumber vector. Note that the sound pressure
function s (x, y, z, t) may be calculated for all space and time. As the complex
exponential is periodic both in space and time, it is indeed a propagating
wave.

Substituting (3.5) into the wave equation (3.4) and cancelling s (x, y, z, t)
gives us an equation constraining wavenumber and frequency

∣∣∣�k∣∣∣2 = k2x + k2y + k2z =
ω2

c2
(3.6)

As long as this constraint is satisfied, a plane wave with the complex expo-
nential form in (3.5) is a solution to the wave equation.

By Introducing vector notation for the spatial location �x = (x, y, z) and

substituting the wavenumber vector �k with the slowness vector �α from (3.3)
we can rewrite the spatiotemporal plane wave in (3.5) as

s (�x, t) = A exp {j ω (t− �α · �x)}

When A and ω are fixed, we may write the sound pressure function s (�x, t)
of the plane wave as a function of one argument as s (�x, t) = s (t− �α · �x).

Furthermore, a weighted linear combination of such propagating plane
waves

s (t− �α · �x) =
∞∑
−∞

Sn exp {j ω (t− �α · �x)} (3.7)

is also a solution to the wave equation. Due to the linearity property of the
integral [9], an integral of weighted propagating plane waves

s (t− �α · �x) =
1

2π

∞∫
−∞

S (ω) exp {j ω (t− �α · �x)} dω (3.8)

1The term monochromatic means one color and origins from optics. Here it refers to
a wave with one temporal frequency ω.
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is too a solution to the wave equation. From Fourier theory, this integral can
form any arbitrary wave signal whose frequency content is expressed with
S (ω).

The linearity of the wave equation also implies that many plane waves
propagating in different directions can exist simultaneously in the wavefield.
The waves pass through each other unperturbed. A similar derivation applies
to spherical waves by expressing the wave equation in spherical coordinates.

3.3 Physical implications

The wave equation in (3.4) demands homogeneous, linear and lossless media.
Unfortunately, the human body is not such an ideal medium. Ultrasound
waves propagating in the human body are affected by physical phenomena
like dispersion, attenuation, refraction and diffraction which deviate from
the demands of the wave equation.

In dispersive media, the wavenumber-frequency relation in (3.6) is non-
linear, as the propagation speed is a frequency dependent function c (ω). The
wave equation in (3.4) does not yield a dispersive solution, but this may be
overcome by bandlimiting the signals or augmenting the wave equation for
dispersion.

Waves propagating in an attenuating medium looses energy as they pass
through the medium. Attenuation may be modeled by augmenting a damping
term to the wave equation. Although dispersion and attenuation are two
different phenomena, most realistic lossy media also demands dispersion. In
ultrasound imaging, this is seen as the higher frequency ultrasound waves
are more attenuated.

Refraction occurs when propagating ultrasound waves meet boundaries
between structures with different propagation speeds. As a wave encounters
such a discontinuity in the medium, it generally splits into a reflected wave
and a transmitted wave2. This may be expressed as �ki · �x = �kr · �x = �kt · �x
where �ki, �kr and �kt are the wavenumber vectors for the incident, reflected and
transmitted waves, respectively, and �x is a point on the boundary. This may
also be interpreted as a version of the well known Snell’s law from optics.

As sound waves bend around corners, ultrasound waves do. This phenom-
ena is called diffraction and occurs when the waves meet structures whose

2Ultrasound imaging is based on measuring the waves reflected from different structures
inside the body.
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size is comparable to the wavelength. In medical ultrasound this extends
from about 0.15−0.75 mm. The straight line propagation assumption in the
wave equation is not fulfilled in this case.

3.4 Spatial sampling

Let f (�x, t) be the value of the wavefield in space and time. To reconstruct the
wave signals, the array transducer samples the wavefield both in space and
time at each sensor. From digital signal processing, we know that sampling
in time may introduce ambiguities as aliasing. This is also true for spatial
sampling.

According to the Nyquist sampling theorem found in most signal pro-
cessing textbooks, we can reconstruct any signal bandlimited to frequencies
below ω0 = 2π

T0
as long as the sampling period T is such that

T ≤
π

ω0
=

T0

2
(3.9)

where we need at least two samples a period of the signal. If the sampling
period T is such that T > T0

2
, which violates (3.9), the signal is undersampled.

High-frequency signals may then appear as low-frequency signals, which is
aliasing.

From (3.2) the magnitude of the wavenumber vector may be interpreted
as the spatial frequency of a signal. The Nyquist sampling theorem also
applies here. If the wave signals are bandlimited to wavenumber magnitudes
below

∣∣∣�k0∣∣∣ = 2π
λ0

= ω0
c
, then they can be periodically sampled without loss of

information as long as the spatial sampling period d is such that

d ≤
π∣∣∣�k0∣∣∣ = c ·

π

ω0
=

λ0
2

(3.10)

The array elements should then have an interelement spacing of λ/2 or less to
avoid spatial undersampling, where λ is the center frequency of the generated
ultrasound waves.
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Chapter 4

Beamforming

In ultrasound imaging, the array transducers may send and receive beams
of energy applying both a temporal delay and an amplitude weight to each
array element. The term beamforming is used on a wide variety of algorithms
that spatially points the array in fixed directions by adjusting each delay and
weight. Note that this is an algorithmic concept and beamforming algorithms
act like spatial filters.

In digital signal processing, a filter is characterized from it’s frequency
response. The array pattern similarly characterizes a spatial filter in array
signal processing. According to this, the array pattern is deduced from the
delay-and-sum beamforming algorithm in this chapter. The resemblance
between the array pattern and the Fourier transform of familiar window
functions in digital signal processing [1, 13] is also elaborated.

The array pattern is thoroughly analyzed, with emphasis on the angular
array pattern. The ambiguities with the spherical mapping due to the angular
array pattern will hopefully clarify through this chapter. The beampattern,
which is defined through the array pattern is also introduced. Finally, a
discussion on how the array pattern affects image quality is included.

4.1 The delay-and-sum beamformer

Delay-and-sum beamforming, the oldest and simplest array signal processing
algorithm remains a powerful approach today. By delaying and summing
each of the array element outputs, propagating waves in different directions
may be characterized. The algorithm also increases the signal to noise ratio
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as derived in [21].
Let the wavefield f(�x, t) be sampled at the spatial location �xm ∈ R3 by

the m-th sensor. The measured waveform at this sensor is then ym(t) =
f(�xm, t). The delay-and-sum beamformer combines each of these M sensor
outputs applying a fixed temporal delay ∆m ∈ R and an amplitude weight
wm ∈ R. The output signal z(t) from the delay-and-sum beamformer is then
defined as

z(t) =
M∑
m=1

wmym (t−∆m) (4.1)

where the delays ∆m are adjusted to focus the array in different spatial
directions, which is also called phase-steering. The weights wm influences the
beam and noise characteristics.

4.2 The array pattern

To characterize the delay-and-sum beamformer’s directivity, the array pat-
tern is examined. The array pattern is simply the delay-and-sum beam-
former’s response to a monochromatic plane wave1 impinging on the array
from different directions. As a superposition of plane waves expresses an
arbitrary wavefield, the plane wave response determines the beamformer’s
output for the general case.

Assume that the wavefield f(�x, t) consists of a monochromatic wave with
temporal frequency ω0 propagating with direction and spatial frequency given
by the slowness vector �α0 ∈ R3. The wavefield is then

f(�x, t) = exp
{
jω0
(
t− �α0 · �x

)}

The wavefield measured at the m-th sensor ym(t) is

ym(t) = f(�xm, t) = exp
{
jω0
(
t− �α0 · �xm

)}

Let the beamformer be steered to look for plane waves with slowness
vector �α ∈ R3. This is attained by choosing the set of delays ∆m as

1With the plane wave assumption, the model is only valid in the far-field. Thus it is
often called the far-field array pattern. The near-field array pattern may also be derived
[21].
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∆m = −�α · �xm (4.2)

Substituting this into (4.1) we can write the delay-and-sum beamformer’s
output z(t) ∈ C to the monochromatic wave

z(t) =
M∑
m=1

wm exp
{
jω0
(
t +
(
�α− �α0

)
· �xm

)}

The temporal content exp {jω0t} may be extracted from this equation

z(t) =

[
M∑
m=1

wm exp
{
jω0
(
�α − �α0

)
· �xm

}]
exp
{
jω0t

}

By introducing the wavenumber vector �k0 = ω0�α0 ∈ R3 for the propagat-
ing wave, we finally get the delay-and-sum beamformer’s output z(t) in the
monochromatic case

z(t) = W
(
ω0�α− �k0

)
exp
{
jω0t

}
(4.3)

where W (·) denotes the Fourier transform of the sensor weights

W
(
�k
)
=

M∑
m=1

wm exp
{
j�k · �xm

}
(4.4)

which is also the array pattern determined for the wavenumber vector �k ∈ R3.
Note the resemblance with the frequency response used in digital signal

processing. The frequency response H
(
ejωT

)
characterizes a linear time-

invariant system by examining it’s output to sinusoidal inputs. The array
pattern is used in a similar way in array signal processing. Through the
quantity W

(
ω0�α− �k0

)
in (4.3), it determines the amplitude and phase of the

beamformed monochromatic plane wave signal impinging on the array form
different directions expressed in �α. Thus the array pattern (4.4) determines
the array’s directivity characteristics.

The resemblance between the wavenumber array pattern in (4.4) and the
window functions in digital signal processing should also be emphasized. The
array element weights wm are equal to a window’s filter taps. If the array
transducer elements are placed regularly, we may use the familiar window
function analysis directly to characterize the array’s directivity. Familiar
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Figure 4.1: The wavenumber array pattern for a 9 element regularly λ/2-
spaced linear array. The array response is plotted against the wavenumber
component kx.

windows such as the Rectangular, Hamming or Dolph-Chebychev windows
may thus be suggested as reasonable array element weightings.

A typical array pattern is shown in figure 4.1. The magnitude of the
absolute array pattern

∣∣∣W (
�k
)∣∣∣ is plotted against the wavenumber component

kx. According to the spatial sampling theorem (3.10) the spatial distance d

between the array elements is d = λ/2.

4.3 The angular array pattern

In our application, the angular array pattern represents a more practical
definition than the previously defined wavenumber array pattern given in
(4.4). It gives the array’s response to waves from different spherical directions
explicitly expressed with the angles φ and θ. The geometric interpretation
of the angular array pattern is evident in figure 4.2, where a plane wave soon
will impinge on the array.

To deduce the angular array pattern, it is convenient to introduce the
unit direction vector in spherical coordinates �sφ,θ ∈ R3 as
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Figure 4.2: A planar 2D array transducer in a rectangular coordinate system
is shown. The wavefront is described by the wavenumber vector �k. The
array looks in the direction given by the unit direction vector �sφ,θ in spherical
coordinates.

�sφ,θ = −
�k∣∣∣�k ∣∣∣ (4.5)

where the length of the wavenumber vector is taken to
∣∣∣�k ∣∣∣ = 2π

λ
for a fixed

wavelength λ. The unit direction vector �sφ,θ may be interpreted as the di-

rection in which the array looks2. Substituting this for �k in (4.4) we obtain
the general angular array pattern W (φ, θ) ∈ C as

W (φ, θ) =
M∑
m=1

wm exp
{
−j

2π

λ
�sφ,θ · �xm

}
(4.6)

The unit direction vector �sφ,θ may be expressed in rectangular coordinates
as �sφ,θ = (sinφ cos θ, sinφ sin θ, cosφ). Let the m-th array element be located
at �xm = (xm, ym, zm) in space. The dot product �sφ,θ · �xm is then

�sφ,θ · �xm = (sinφ cos θ) xm + (sin φ sin θ) ym + (cosφ) zm (4.7)

2Note the difference between the steering and looking direction. Steering is used when
the delays are adjusted to give maximum response in a fixed direction. On the other hand,
the looking direction is any possible direction within the array’s response field.
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which is valid for any array configuration including curved 2D arrays3.
For simplicity, the angular array pattern (4.6) may also be written in

matrix notation. We can write it as the matrix inner product

W (φ, θ) = wT v (φ, θ) = v (φ, θ)T w (4.8)

where w =
[
w1 · · · wM

]T
are the element weights and the kernel vector

is v (φ, θ) =
[

exp
{
−j 2π

λ
�sφ,θ · �x1

}
· · · exp

{
−j 2π

λ
�sφ,θ · �xM

} ]T
.

4.3.1 Spherical mapping to the φθ-plane

When introducing the angular array pattern, the direction of the wavenumber
vector �k is mapped to the φθ-plane through the unit direction vector �sφ,θ. It is
important to understand the underlying geometry of this nonlinear mapping,
especially in the angular array pattern analysis.

The rectangular components of the wavenumber vector �k is written as
�k = (kx, ky,kz). Using the identity in (4.5) we can write the rectangular
coordinate components as

�k = −2π
λ
�sφ,θ

⇓
(kx, ky,kz) = −2π

λ
(sinφ cos θ, sinφ sin θ, cosφ)

(4.9)

The last equality in (4.9) is the key in understanding the difference be-
tween the wavenumber and the angular array pattern. The unit direction
vector �sφ,θ introduces a nonlinear argument to the complex exponential in the
angular array pattern calculation. As a consequence of this, the wavenumber
array pattern for a regularly spaced array has regular distance between the
peaks, but the angular array pattern has not.

The spherical mapping to the φθ-plane is shown in figure 4.3. The nonlin-
earity becomes evident in the shape of each patch. The rectangular shaped
patches in the φθ-plane corresponds to slightly curved patches on the sphere.
This ambiguity is important to be aware of in the φθ-plane analysis of the
angular array pattern. Equidistant gridpoints in the φθ-plane are for instance
not equidistant when mapped to the sphere.

Another ambiguity with the φθ-plane mapping is the possible introduction
of an invisible region as described in [21]. With a linear array, this occurs

3A curved 2D array may also be classified as a 3D array.
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Figure 4.3: The nonlinear spherical mapping from a point on the unit sphere
into the φθ-plane is shown. Each point on the sphere corresponds to a direc-
tion in which the array looks.

when the interelement spacing is d > λ/2. Due to the spatial sampling
theorem (3.10) the array is undersampled and the array pattern may be
calculated for kx > 2π/λ. From (4.9) this does not correspond to a real
direction, or equally a point in the φθ-plane, since |sinφ cos θ| ≤ 1⇒ |kx| ≤
2π/λ. Although the beamformer assumes energy in this region, it is invisible
in the angular array pattern.

4.3.2 The mainlobe

According to the array pattern in figure 4.1, the highest peak is the mainlobe
while the smaller peaks are sidelobes. The array pattern may be interpreted
as the spatial filter response of an array. Thus the mainlobe is similar to
the passband in a spatial bandpass filter, which only passes signals in these
directions.4

The location of the passband as spherical directions and the φθ-plane
mapping of the mainlobe is shown in figure 4.4.

4In filter design, a bandpass filter’s frequency response is often divided into pass, tran-
sition and a stopbands. In our case, the mainlobe peak would correspond to the passband
while the rest of the mainlobe would be the transition band. To simlify notation, the
passband will here include the transition band.
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Figure 4.4: The passband of the spatial filter is the shaded region of the unit
sphere. Thus the mainlobe in the angular array pattern corresponds to the
shaded area in the φθ-plane.

Based on the analogy of flashlight, the cone located at the origin envelop-
ing the shaded passband area on the unit sphere, is sometimes called a beam.
Similar to filter design in classical digital signal processing, we would like the
beam to approach the delta pulse or equally an infinitely thin beam. But
from array signal processing theory, this is impossible using an array with
finite spatial extension.

The location of the mainlobe peak tells in which direction we get maxi-
mum response with the array. Generally, the location of the mainlobe peak
of the angular array pattern W (φ, θ) may be found as

max
φ,θ
|W (φ, θ)| = max

φ,θ

∣∣∣∣∣
M∑
m=1

wm exp
{
−j

2π

λ
�sφ,θ · �xm

}∣∣∣∣∣
Another measure used to characterize the mainlobe is the mainlobe width

or equally the beamwidth. Here we define it to be the full width of the main-
lobe at 6 dB below the mainlobe peak on the array pattern. This corresponds
to the conventional FWHM (full width at half maximum) measure in digital
signal processing [13].

From the angular array pattern, we can measure at which angle φ∗ the
mainlobe has dropped 6 dB. The beamwidth is then 2φ∗ for consistency and
usually measured in degrees.
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4.3.3 Sidelobes

The sidelobes in the array pattern is equal to the stopband in a bandpass
filter. As is well know from window filter design, the sidelobes can not be
completely rejected using a finite aperture. But the sidelobes can be sup-
pressed to a certain degree by adjusting the amplitude weights and element
positions cleverly.

x
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z

1

1

1

-

0

Figure 4.5: The stopband of the spatial filter is the shaded region of the unit
sphere. The sidelobes are consequently located to the shaded area in the
φθ-plane.

The sidelobe region or equally the stopband, is conveniently defined as
the area in the φθ-plane outside the first zero crossing of the mainlobe. This
is shown in figure 4.5. The sidelobe level is used as a measure on the height
of the highest sidelobe peak in the sidelobe region and usually given in dB.

4.3.4 Energy

For practical applications, the energy present in the array pattern is a valu-
able measure, since it has a physical interpretation. The energy is calculated
from the squared angular array pattern as

E =
∫∫
R

|W (φ, θ)|2 dφ dθ

where R is the actual region in the φθ-plane.
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The total array pattern energy Et is calculated by integrating over the
region R in the φθ-plane corresponding to the half-sphere of actual directions.
The sidelobe energy Es and the mainlobe energy Em may also be calculated
separately. As the mainlobe region and the sidelobe region together spans
all directions on the half-sphere, we have in general Et = Em + Es.

The angular array pattern W (φ, θ) is in general a complex number. In-
troducing the matrix notation of the angular array pattern in (4.8) the energy
may be written as5

E =
∫∫
R

W (φ, θ) W (φ, θ)∗ dφ dθ

=
∫∫
R

wT v (φ, θ)
[
v (φ, θ)T w

]∗
dφ dθ

= wT


∫∫
R

v (φ, θ) v (φ, θ)′ dφ dθ


 w

= wT QRw

(4.10)

where w are the real amplitude weights and v (φ, θ) is the angular array pat-
tern kernel. The quadratic M ×M matrix QR =

∫∫
R v (φ, θ) v (φ, θ)′ dφ dθ.

By evaluating the matrix outer product, we can write

QR =
∫∫
R




1 ej
2π
λ
�sφ,θ ·(�x2−�x1) · · · ej

2π
λ
�sφ,θ ·(�xM−�x1)

ej
2π
λ
�sφ,θ ·(�x1−�x2) 1 · · · ej

2π
λ
�sφ,θ ·(�xM−�x2)

...
...

. . .
...

ej
2π
λ
�sφ,θ ·(�x1−�xM ) ej

2π
λ
�sφ,θ ·(�x2−�xM ) · · · 1


 dφ dθ

which may be calculated by evaluating the matrix integral for each matrix
entry. The ij-th element of QR is then

QR (i, j) =
∫∫
R

exp
{
j
2π

λ
�sφ,θ · (�xj − �xi)

}
dφ dθ

Since W (φ, θ) is the Fourier transform of the weights, we might use the
Parseval relation [35] directly for the energy calculation. But this would
restrict us to regularly λ/2-spaced arrays. Anyway, equation (4.10) may be

5A∗ is the conjugate of A while A′ is the conjugate transpose. This notation will be
used throughout the thesis.
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interpreted as a scaled version of the Parseval relation where the scaling
factor is the quadratic QR matrix.

Another alternative to calculating the QR matrix, is to approximate the
energy in the actual region R in the φθ-plane by numerical integration. As
|W (φ, θ)|2 is a surface defined on the φθ-plane, we may calculate the energy
by approximating the volume under this surface.

4.3.5 Symmetric linear and planar arrays

Consider now the special case with symmetric linear and planar arrays. In
addition to ensure a real array pattern, the calculation of the array pattern is
simplified. This is useful when later optimizing and simulating the response
from considerably large arrays.

A linear 1D array has its elements �xn located on the x-axis, while the
elements are located in the xy-plane for the 2D planar array. Let the number
of elements M be even with M = 2N . If we constrain the elements to appear
in symmetric pairs such that

�xN+n = −�xn
wN+n = wn

}
n = 1, · · · , N (4.11)

we are ensured to have a real array pattern6. Using the trigonometric identity
2 cos(x) = ejx + e−jx and combining (4.11) with (4.6), we get the angular
array pattern

W (φ, θ) = 2
N∑
n=1

wn cos
(
2π

λ
�sφ,θ · �xn

)
(4.12)

which indeed is real for real weights wn ∈ RN . The dot product �sφ,θ · �xn in
(4.7) also simplifies in this case, since the z-component of each array element
location is zero, and we have

�sφ,θ · �xn = sinφ (xn cos θ + yn sin θ) (4.13)

Note that this simplification is restricted to hold for linear and planar
arrays. A concave or convex 2D curved array will for instance violate the
element location symmetry in (4.11).

6An array with an odd number of elements may be represented with the center element
as two distinct co-located elements.
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4.4 The beampattern

When calculating and analyzing the array pattern, the influence of the ele-
ment delays ∆m is neglected. To analyze the total result of applying both
amplitude weighting and temporal delaying to each element, the beampattern
may be examined. It gives the array response to signals from different direc-
tions when the array is phase-steered in a direction opposite of the slowness
vector �α. The required delays ∆m for steering are given in (4.2).

The beampattern is calculated through the wavenumber array pattern
(4.4) and is written as

W
(
ω0�α − �k0

)
=

M∑
m=1

wm exp
{
j
(
ω0�α− �k0

)
· �xm

}

where �α is fixed and expresses the steered direction. The wavenumber vector
�k0 = ω0�α0 ∈ R3 describes the wavefield acting on the array.

Note that mathematically, the beampattern is just a scaled and translated
version of the wavenumber array pattern. This illustrates that the array
pattern becomes the primary quantity used to evaluate array and algorithm
designs.

4.5 Image quality

The ability to make high quality images depends on how accurate we can
measure the field. The accuracy is closely related to the beamwidth of the
array pattern, which gives the lateral image resolution. The resolution is
taken to be the inverse of the beamwidth and tells how precise an array can
localize a given source.

We would like to have as good resolution as possible, which is obtained
with the smallest possible beamwidth. But as previously pointed out there
is a trade-off between the beamwidth and the sidelobe level. When the
beamwidth is decreased by element weighting, the sidelobe level is increased
and vice versa.

The sidelobe level and especially the sidelobe energy in the array pattern
affect the contrast in the image [1]. A high amount of sidelobe energy de-
scribes significant leakage of energy from bright into dark areas. To increase
the contrast in the image, the sidelobe energy should be suppressed.
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There are also other factors influencing the image quality such as aperture
size, f-number7 and the central frequency of the beam as well as the frame
rate for real-time imaging. But these are already set for certain applications
and thus beyond the scope of element weighting and delaying.

7The ratio between the focal length and the aperture diameter.
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Chapter 5

Optimization

Mathematical optimization is an area of mathematics which studies ways
of finding the extremal values of a function subject to stated constraints.
Today, optimization problems arise in all sorts of areas where there are several
possible, or feasible, solutions to a problem. Mathematical optimization,
or mathematical programming, introduces a mathematical formalism to the
problem. Naturally, we seek an optimal of all the feasible solution due to a
mathematical criterion.

Mathematical programming is a fast growing branch of mathematics, with
most of its development dated to the second half of this century. The rapid
growth in mathematical programming is mainly caused by faster computers,
efficient algorithms and a large amount of applications. Today, mathemat-
ical optimization may be divided in several fields, as linear programming,
nonlinear programming, discrete optimization and stochastic optimization.

This chapter introduces linear programming and integer linear program-
ming. Methods to solve such programs include the Simplex and the Branch-
and-bound method. Quadratic programming is also considered. The main
principles of the methods are introduced together with the necessary mathe-
matical notation. Some theory of linear systems and polyhedra will be given
as well.

The intention of this chapter, is to establish a framework to fit optimiza-
tion problems which arise in beamforming. It is not meant to go very deep
into the mathematical theory, but more to clarify the ideas. Only the most
important results are included. A more thorough investigation of mathemat-
ical optimization is left to the many textbooks on the subject, as for instance
[5, 6, 31, 32]
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5.1 Mathematical programming

A mathematical program is an optimization problem formulated with math-
ematical functions. The problem is to maximize or minimize a specific quan-
tity, mathematically formulated in the objective function, which depends on
a finite number of variables. The variables may be independent of each other,
or they may be related through one or more constraints. In mathematical
programming, the constraints can be either equality constraints or inequality
constraints. Especially the inequality constraints provide great flexibility in
establishing mathematical models.

Let x ∈ RN be a column vector consisting of n real variables involved in
the optimization problem. Hence, a mathematical program has the following
general form

Optimize z = f (x)
Subject to

g1(x)
g2(x)

...
gM (x)



≥
=
≤




b1
b2
...

ḃM

(5.1)

where f is the objective function and g1, g2, . . . , gM represents the constraints
on the variable vector x. In addition, any of the variables may be constrained
to take on integer values.

A method to solve the general mathematical program in (5.1), strongly
depends on the functions involved. The functions may be any combination
of linear/nonlinear, continuous/discrete and deterministic/stochastic. Ob-
viously, the large variety of function classes demand different optimization
methods.

5.2 Linear systems

All the mathematical programs considered in this text have linear constraints.
The constraints may be equality as well as inequality constraints. Together,
they form a linear system. A linear system written in matrix notation may
have the following general form

Ax ≤ b (5.2)
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where x ∈ RN are the real variables. The constraints on the variables are
given by the M ×N constraint matrix A ∈ RM,N and the real column vector
b ∈ RM . Note that any linear equality aTx = b may be written as two linear
inequalities aTx ≤ b and aTx ≥ b, where aT may be any row in A with b
as the corresponding element in b. Consequently, the linear system in (5.2)
is indeed a general form, as it includes both linear equality and inequality
constraints.

5.2.1 Transformations

Linear systems may be represented in many different ways. The represen-
tation in (5.2) is only one. Another convenient representation of a general
linear system is

Ax = b
x ≥ 0

(5.3)

They are both equal in the sense that any linear system represented in one
way may also be represented the other way by suitable transformations, as
long as the solution set remains the same.

As already mentioned, an equation may be replaced by two inequalities.
There are also other transformation techniques. We may for instance trans-
form inequality constraints to equality constraints. Any linear inequality
constraint in (5.2) with the original form aTx ≤ b may be transformed to the
form in (5.3) by adding a slack variable s− ≥ 0 such that aTx+ s− = b.

Similarly, a surplus variable s+ ≥ 0 transforms constraints with the orig-
inal form aTx ≥ b to equalities with the form aTx− s+ = b. Since both the
slack and surplus variables are positive, they may be directly augmented to
the variable space in the linear system in (5.3).

Note that all the variables in (5.2) are free while the variables in (5.3) are
bounded. A free real variable, x ∈ R, may be represented as two nonnegative
bounded variables x1, x2 ∈ R+ as x = x1 − x2.

5.2.2 Polyhedra

The solution set of such a linear system is of special interest, since its points
correspond to the feasible solutions of the mathematical program. The so-
lution set also define objects called polyhedra. A polyhedron P ⊆ R

N is
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given as P =
{
x ∈ RN |Ax ≤ b

}
, which is the solution set to the lin-

ear system Ax ≤ b. Furthermore, the solution set of each single inequal-
ity in the linear system is called a half-space, and given as H≤ (am,bm) ={
x ∈ RN

∣∣∣aTmx ≤ bm
}
, where aTm is the m-th row in A and bm is the m-th

element in b. The polyhedron, which is the solution set of the entire linear
system, is thus the intersection of all the half-spaces P = ∩H≤ (am,bm).

Consider now a linear system with only two variables x ∈ R2. The vari-
able vector x may then be represented as points in R2. An example of a
polyhedron and its half-spaces is shown graphically in figure 5.1. In this
case, the polyhedron is generated by a linear system with 4 inequalities, rep-
resented with a1, a2, a3 and a4. The vector am in each inequality may be
interpreted as the normal vector to the corresponding half-space.

x2

x1

1

4

3

4, 4

3, 3

2, 2

1, 1

2

unbounded direction

Figure 5.1: A graphical representation of a polyhedron P as a solution set of
a linear system Ax ≤ b in R2.

A polyhedron P =
{
x ∈ RN |Ax ≤ b

}
has some important properties,

which affect the optimal solutions of mathematical programs with linear con-
straints.

1. Each polyhedron is a closed convex set . That is, if two points belong
to the polyhedron, then each point on a line segment between the two
points belongs to the polyhedron too. Furthermore, an extreme point
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of a closed convex set cannot be expressed as a convex combination1 of
two other points in the set. Thus, the extreme points of the polyhedron
P , called vertices, are point sets on the boundary of P .

2. A polyhedron is generated by a finite number of inequalities, each cor-
responding to a half-space H≤ ∈ RN . Some of the inequalities in the
linear system may be redundant, that is, the solution set is not altered
by removing them. By removing the redundant inequalities, the re-
maining inequalities are supporting. Hence, any vertex of P may be
obtained by setting one or more of the supporting inequality constraints
to equality.

3. The point sets on the boundary of P are also called the faces of P . A
nonempty set F is a face of P if and only if F = {x ∈ P |Asx = bs}
where Asx ≤ bs is a subsystem of Ax ≤ b. Furthermore, if As has n
linearly independent rows, then the face F is a vertex. A vertex is also
called a minimal face of P . As the polyhedron is finitely generated, P
has a finite number of faces. Each face is too a polyhedron as convex
sets intersect in convex sets.

4. Any polyhedron may be either bounded or unbounded. Figure 5.1 shows
an unbounded polyhedron.

5.3 Linear Programming

Linear programming (LP) arise in many contexts. It is also one of the most
common optimization methods. It provides an effective way to maximize or
minimize a linear function of several variables subject to linear constraints
on those variables.

Much of the popularity of LP is due to the simplex algorithm, which
effectively solves linear programs numerically. The simplex method, which
origins from some papers by the physicist Joseph Fourier about 1820, was
fully developed into an efficient algorithm by George Dantzig about 1940.
Efficient implementations of the Simplex algorithm are still among the fastest
LP codes available.

1A point x ∈ RN is a convex combination ofM points x1,x2, . . . ,xM ∈ RN if there exist
constants α1, α2, . . . , αM ≥ 0 with

∑
αm = 1 such that x = α1x1 + α2x2 + · · ·+ αMxM .
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5.3.1 A linear program

Let c ∈ RN be column vector with real constants and let x ∈ RN denote
the variables in the optimization problem. Furthermore, let A ∈ RM,N and
b ∈ RM represent the linear system with M constraints in N variables. Any
linear program can then be written in the matrix standard form

Minimize z = cTx
Subject to

Ax = b
x ≥ 0

(5.4)

by convenient transformations. The function z = cTx is called the objective
or the cost function. Note that a maximization problem may be obtained by
minimizing −z.

5.3.2 The simplex method

Based on the simplex method, linear programs in the standard form (5.4) are
solved conveniently. In this text, the main principles of the simplex method
will be presented with emphasis on the underlying geometry. With the theory
of polyhedra in mind, this will hopefully contribute to the understanding of
the simplex method as well as the numerical simplex algorithm.

An optimal solution

Recall the polyhedral theory for a moment. Assume that the constraints in
(5.4) correspond to a bounded polyhedron P ∈ RN . Furthermore, the objec-

tive function in (5.4) defines a hyperplane H= (c,z) =
{
x ∈ RN

∣∣∣ cTx = z
}
.

A hyperplane is also a polyhedron, where c may be interpreted as the normal
vector to the plane and z determines its location in RN . From LP theory,
there is always an optimal vertex solution to such a linear program. Put
another way, the optimal value z∗ of (5.4) is attained when the hyperplane
H= (c,z) intersects the polyhedron P in a vertex. This situation is illustrated
in figure 5.2, where the hyperplane defines a line in R2.

From the geometry in figure 5.2, there may obviously exist more than
one optimal solution to a linear program, depending on the direction of the
hyperplane H= (c,z). If a number of equally optimal solutions exist, any one
will do.
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Figure 5.2: The optimal value z∗ of the linear program, is attained as the
hyperplane H= (c,z) intersects P in a vertex.

If the polyhedron P defined by the constraints in (5.4) is unbounded, we
are not assured to get a finite optimal solution to the linear program, as the
hyperplane H= (c,z) may disappear in the unbounded direction.

The geometric idea

It is now stated that the optimal solution to a linear program coincides with
a vertex of the polyhedron P , defined by the constraints. Based on this, the
simplex method solves a linear program in two stages. The geometric idea
may be given as

1. Find an initial vertex of P corresponding to the feasible solutions of
the problem2.

2. Starting from this initial vertex, the vertex corresponding to the opti-
mal solution z∗ is found by examining adjacent vertices of P .

The process of examining adjacent vertices of P is precisely the underlying
geometric idea of the numerical simplex algorithm.

2If the polyhedron has no vertices, the linear program is either infeasible or the optimal
value is unbounded.
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5.3.3 The simplex algorithm

The principle of the numerical simplex algorithm, is to maintain two sets of
the constraints in (5.4). The set of active constraints, corresponding to a

vertex of the polyhedron P =
{
x ∈ RN |Ax = b, x ≥ 0

}
is denoted B and

called a basis index set. Thus, B contains N column indices of A. All the
other constraints are contained in the set N , called a nonbasis index set. To
move from one vertex to an adjacent vertex of P , is algebraically attained
by replacing one constraint in B with one constraint from the set N .

A basic feasible solution

A basic feasible solution of the linear program in (5.4) is the algebraic coun-
terpart to an initial vertex of the polyhedron P . An algebraic method to
find a basic feasible solution will now be given.

Note that any linear M × N system in matrix notation, Ax = b, may
be rewritten as x1a1+x2a2+ · · ·+xNaN = b where a1, a2, . . . , aN ∈ RM are
the column vectors in A ∈RM,N . Assume that A has full row rank3 which
implies that M ≤ N . Hence, at least one collection of M column vectors in
A are linearly independent.

Now, rearrange the columns in A using the index sets. Let AB ∈ RM,M

be a matrix containing M linearly independent column vectors in A from
the basis index set B and let AN ∈ RM,N−M contain the remaining column
vectors. Furthermore, the variables corresponding to the indices B are called
basic variables and denoted xB while the remaining variables xN are called
nonbasic variables. With this rearrangement, the constraints in (5.4) may be
replaced by the equal linear system

[
AB AN

] [ xB
xN

]
= b ,

[
xB
xN

]
≥ 0 (5.5)

Since the columns in AB are linearly independent by the construction
above, AB is invertible and the linear system ABxB = b has precisely one
solution, xB = A−1B b. Whenever xB ≥ 0, we may obtain a basic feasible
solution to (5.4) by setting the nonbasic variables to zero, xN = 0. The point

3A M ×N matrix A ∈ RM,N has full row rank if the M row vectors a1, a2, . . . , aM ∈
RMare linearly indepenent. That is, the only solution to α1a1 + α2a2 + · · ·+ αMaM = 0
is α1 = 0, α2 = 0, . . . , αM = 0.
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x ∈ RN given by xB = A−1B b and xN = 0 then solves the linear constraints
in (5.4) as much as it corresponds to an initial vertex of the polyhedron.

Duality

The simplex algorithm also takes advantage of duality. That is, every linear
program has an associated linear program, called the dual program. The
original linear program is in this context called the primal program. As an
example, the dual to the linear program in (5.4) is written as

Maximize z = bTy
Subject to

ATy ≤ c

(5.6)

where A ∈ RM,N , b ∈ RM and c ∈ RN are identic in both programs. Note
that the dual is a maximization problem while the primal is a minimization
problem. The dual variables y ∈ RM are sometimes called shadow costs.

The form of the dual problem depends on the way the primal problem is
presented. Still, the duality theorem is valid to any primal/dual pair of linear
programs.

Theorem 1 (Duality theorem) If a feasible solution exists to either the
primal or the dual linear program, then the other program also has an optimal
solution and the optimal values of the two linear programs coincide.

Consider a feasible solution of the linear system in (5.5) which is also a
basic feasible solution to the linear program in (5.4). The duality theorem
effectively states whether this solution is optimal or not.

In accordance with the linear system in (5.5), rearrange the vector c
such that the value of the primal problem z = cTx = cTBxB + cTNxN . If
the basic feasible solution with xB = A−1B b and xN = 0 is optimal, then
the objective value in the primal and the dual program coincides. That is,
cTx = bTy⇒ cTBA

−1
B b = bTyB where yB is called a dual basic solution. We

may also write yTB = cTBA
−1
B since bTyB = yTBb.

Furthermore, yB is a dual basic feasible solution if and only if it satisfies
the dual constraints ATyB ≤ c. By rearranging A, we can write the dual
constraints in the transpose form as yTB

[
AB AN

]
≤ cT . Substituting
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yTB = cTBA
−1
B , we can write the dual constraints as[

cTB yTBAN
]
≤
[
cTB cTN

]
�

yTBAN ≤ cTN

(5.7)

and yB is a dual basic feasible solution if and only if it satisfies the last
constraint. Then xB and yB are both optimal solutions to the primal and
the dual linear program, respectively.

The two basic solutions xB and yB are called complementary, since they
satisfy the complementary slackness condition

(
yTBA− cT

) [ xB
xN

]
= 0 (5.8)

Let both the dual and the primal problem have optimal solutions. Then, if
the m-th constraint of one system holds, the m-th component of the optimal
solution of its dual is zero.

Using (5.7), duality is an effective way to check if the current basic feasible
solution is an optimal solution. Furthermore, since the primal and the dual
linear program have the same optimal value, the dual may sometimes be
solved more effectively than the primal. The primal optimal solution can
then be calculated from the dual optimal solution.

The algorithm

Given a basic feasible solution, the simplex algorithm then solves the primal
linear program in (5.4) numerically. It moves from a vertex to an adjacent
vertex of the underlying polyhedron P as long as the objective function may
be improved. The duality condition in (5.7) serves as a stopping criterion.

A vertex of P is a point x ∈ RN given by the basic variables xB ≥ 0 and
the nonbasic variables xN = 0, where B and N are the basic and nonbasic
index sets, respectively. Any element n in the exclusive basic index sets
n ∈ B ∪ N corresponds to a column in the constraint matrix A ∈RM,N .
To move to an adjacent vertex of P is accomplished by replacing one index
element in B with one index element from N . More precisely, the algorithm
may take the following form

1. Initialization: Find a basic feasible solution of the primal linear pro-
gram with xB = A−1B b ≥ 0 and xN = 0. Calculate the corresponding
dual basic solution yTB = cTBA

−1
B of the dual program in (5.6)
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2. Optimality check: Calculate ĉTN = cTN − yTBAN , which is called
the reduced cost vector. If all the vector components in ĉTN ≤ 0 then
terminate, since the current basic feasible solution is optimal by (5.7).
Else, choose an element n ∈ N corresponding to a nonnegative element
in the reduced cost vector, ĉTn > 0. The nonbasic variable xn is the new
variable to enter the basis as n enters the basis index set B.

3. Pivoting: Determine which element b ∈ B to leave the basis in-
dex set by increasing the new basic variable xn. Let b̂ = A−1B b and
ân = A−1B anN where anN is the n-th column in AN∈RM,N−M . If ân ≤ 0
in all components, then terminate since the linear program is un-

bounded. Else, increase xn such that xn = minn

{
b̂b
ân
b
|b ∈ B, ânb > 0

}
where b̂b and ânb are the b-th element in b̂ and ân, respectively. This
b corresponds to the most restrictive constraint. If the minimization
criterion is fulfilled for more than one b, select one.

4. Updating: Update the basis index sets, B = (B \ b) ∪ n and N =
(N \ n) ∪ b. Calculate the new basic feasible solution xB = A−1B b and
the dual basic solution yTB = cTBA

−1
B . By construction, xn ≥ 0 and

xb = 0. Return to step 2.

This algorithm does not obviously lead to a termination, since consec-
utive pivots with different bases may correspond to the same vertex of the
polyhedron. This is called degeneracy . But, following Bland’s rule for select-
ing the entering and leaving variables, the algorithm will terminate. Bland’s
rule states that whenever we have more than one entering or leaving variable,
always choose the one with lowest index.

Much of the success of the simplex algorithm is due to the fact that
very little computational effort is required in calculating a new basic feasible
solution and checking optimality. Another reason is that linear programming
is also shown to have polynomial order4 using the ellipsoid method.

5.4 Integer programming

Integer programming (IP) is an extension of linear programming. An integer
program is simply a linear program with the additional constraint that the

4A method with k instances is a polynomial method if it is of order O (kp) for a fixed
p.
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variables are integers. When only some of the variables are integers, the
mathematical program is often called a mixed integer program (MIP).

The geometric concept of integral polyhedra is introduced, as the vertices
of the integral polyhedron corresponds to solutions of the integer program.
The principle of the branch-and-bound method to solve such problems is also
explained.

5.4.1 An integer program

Similar to the linear program in (5.4), let c ∈ RN be a column vector with real
constants and let x ∈ RN denote the variables in the optimization problem.
Furthermore, let the M × N system of constraints be represented by A ∈
R
M,N and b ∈ RM . An integer program in matrix form is then given as

Minimize z = cTx
Subject to

Ax = b
x ≥ 0

x ∈ Z
N

(5.9)

where ZN is the set of integral numbers in RN .
Let P =

{
x ∈ RN |Ax = b, x ≥ 0

}
be the polyhedron corresponding to

the feasible region of the constraints in (5.9) ignoring the integer condition.
Note that only the integral points in P are feasible solutions to the linear
program in (5.9). Define the convex hull C of a set S ⊆ R

N such that
C = conv (S) is the intersection of all convex sets containing S. Furthermore,

let PI denote the integral polyhedron PI = conv
(
P ∩ ZN

)
. An example of

such a polyhedron is shown in figure 5.3. See also page 36 on polyhedra.
The basic feasible solutions of the integer program corresponds to the

vertices of PI . Similar to a linear program, the optimal solution of the integer
program occurs at a vertex of PI . But, to completely describe PI is in most
cases extremely difficult. For some special problems, P and PI coincide, but
this is more the exception than the rule.

One approach to solve an integer program, may be to first solve the
problem in (5.9) ignoring the integral condition. Then, if the optimal solution
is integral we are fine since the optimal vertex of P happens to be integral.
Else, we may iteratively add inequality and/or equality constraints to the
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Figure 5.3: A polyhedron P and its integer polyhedron PI = conv (P ∩ Zn).

original program in (5.9) which crops the nonintegral vertices of P . This
concept is termed as cut-plane methods.

5.4.2 The branch-and-bound method

The branch-and-bound method is another method to solve integer programs
as well as mixed integer programs. Similar to the cut-plane method, a first
approach is to solve the program in (5.9) ignoring the integral condition.
If this optimal solution x∗(1) ∈ R

N is nonintegral, we may start a branching
process on any of its noninteger components.

Let x∗n be a noninteger component in x∗(1). Then b1 < x∗n < b2 where b1
and b2 are consecutive integers. By augmenting the integer program in (5.9)
with either xn > b1 or xn < b2, two new integer programs may be solved
yielding the optimal solutions x∗(2) and x∗(3). If they still yield nonintegral
solutions, the branching process may be continued.

Now, let each solved program correspond to a node in a branch-and-bound
tree, with x∗(1) as the root node. An example of such a tree is shown in figure
5.4. Note that the branching process preserves all possible integral solutions
of the original problem.

Subsequent branching continues until the first integral solution5. As

5If branching does not yield any integer solution, then the polyhedron P has no integral

45



2

51

3

4

(3,1.4)

(1.2,2)

(2,2)

(1,2.2)
x

2 1

x
1 1

x2
2

x1
2

Infeasible

z* = 10

z* = 11.2

z* = 12

z* = 12

Figure 5.4: An example of a branch-and-bound tree of an integer minimization
problem. Each node corresponds to a solved integer linear program where
the integral constraints are ignored.

shown in figure 5.4, the 4-th node yields an integral solution. The value
of the objective function z∗ in this node becomes an upper bound. That is,
any node that has an objective value greater or equal to this node is dis-
carded, since it can not yield an integral solution with lower objective value.
Furthermore, the 5-th node is discarded since its optimal value is equal to
the upper bound obtained in the 4-th node. This problem has optimal value
z∗ = 12 with integral solution x∗(4) = (2, 2). This is also the optimal value
of the original program, since there does not exist any node with smaller
objective value to branch from. If a new integral solution is obtained later
with a smaller objective value, this becomes the new upper bound.

The integer program in (5.9) is a minimization problem. When solving
a maximization problem, the first integral solution yields a lower bound on
the objective. Thus, nodes with objective value less or equal to this are
discarded.

Unlike the simplex algorithm used in each node, the branch-and-bound
method is not a polynomial algorithm. The number of nodes in the branch-
and-bound tree may grow very rapidly, depending on the integer problem.

points. Consequently, the integer program (5.9) is infeasible.
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5.5 Quadratic programming

Quadratic programming (QP) is not a major part of this thesis. It is still
introduced, since it applies in beamforming when we are supposed to optimize
the energy in a signal, where the energy function involves a quadratic form.
A method to solve such problems will not be given.

Similar to a linear program, a quadratic program has linear constraints
and the feasible region describes a polyhedron P . But since the objective
function is nonlinear, the optimal solution to such a problem is seldom at-
tained at a vertex of P . Consequently, an algorithm to solve a quadratic
program can not be based on searching for an optimal solution at the ver-
tices of P like the simplex method. An optimal solution is still attained at
the boundary of P .

5.5.1 A quadratic program

The objective function of a quadratic program involves a quadratic form.
This can be written with a real symmetric negative semi-definite N × N

matrix C ∈ RN,N and a column vector d ∈ RN . As usual, the variables are
given as the column vector x ∈ RN . The M ×N system of linear constraints
is represented with A ∈ RM,N and b ∈ RM . A general quadratic program is
then written in the matrix form

Maximize z = xTCx+ dTx
Subject to

Ax ≤ b
x ≥ 0

(5.10)

where a minimization problem may be obtained by maximizing −z.
An optimal solution to (5.10) must satisfy the Kuhn-Tucker conditions

and it may be solved with the method of Frank and Wolfe, which applies an
extended version of the simplex algorithm [5].
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Chapter 6

Optimization of weighting

This chapter proposes a general method to optimize the element weighting
of ultrasound transducer arrays subject to array pattern constraints. More
precisely, the maximum angular array pattern height will be minimized in
the sidelobe region. To fit the optimization problem to a linear program, the
method is restricted to symmetric linear and planar arrays which fulfills the
constraint (4.11) and (4.12) on page 30. Still, the method is general, since it
applies to non-equally as well as equally spaced arrays.

The optimization problem is written as a linear program using block ma-
trices, and may be solved with the simplex algorithm. The necessary theory
background of both beamforming and mathematical optimization should al-
ready be established through the previous chapters.

6.1 The objective

As previously stated in the discussion on image quality, there is always a
trade-off between the mainlobe width and the sidelobe height of the array
pattern. The objective of the proposed method is to minimize the Chebyshev
norm, or equally the maximum height, of the angular array pattern in the
sidelobe region. The mainlobe width is implicitly restricted to the boundary
between the mainlobe and the sidelobe region.

In FIR filter design in classical digital signal processing, there exist several
methods to optimize the filter taps. These methods apply directly to the
weighting of linear arrays having equal λ/2 interelement spacing. Similar
to the proposed method, the conventional Remez algorithm minimizes the
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maximum sidelobe height of the FIR filter frequency response, yielding the
common Dolph-Chebyshev weighting.

In [11], a generalized Remez algorithm was also proposed to solve the
problem for sparse and non-equally spaced arrays. This method failed, as it
only managed to control a fixed number of sidelobes. Actually, the number
of sidelobes is quite variable with non-equally spaced arrays. Thus, a gen-
eral method to optimize the weights of such arrays, demands a more flexible
way of controlling the sidelobes. This motivates for the linear programming
approach, since a linear program allows any finite number of inequality con-
straints, which may be used to control any finite number of sidelobes.

6.2 Problem formulation

The optimization problem is based on the symmetric angular array pattern
function W (φ, θ) derived on page 30. This function may also be written in
matrix form as

W (φ, θ) = v (φ, θ)T w (6.1)

where v (φ, θ) ∈ RN is the kernel vector with v (φ, θ)n = 2cos
{
2π
λ
�sφ,θ · �xn

}
as the n-th entry and w ∈ RN are half the 2N symmetric element weights.
For fixed linear and planar arrays, the dot product simplifies to �sφ,θ · �xn =
sinφ (xn cos θ + yn sin θ).

The idea is to minimize the sidelobe level of the array pattern in a contin-
uous region R of the φθ-plane, corresponding to the sidelobe region given in
figure 4.5. Note that the half sphere of actual directions may also be covered
with φ and θ in the intervals φ ∈

[
−π
2
, π
2

]
and θ ∈

[
−π
2
, π
2

]
. Also observe

that v (φ, θ)n = v (−φ, θ)n which implies that W (φ, θ) = W (−φ, θ) and the
array pattern is symmetric about the θ-axis1. Hence, it is only necessary to
optimize the array pattern in the right half-plane. We are thus left with the
optimization region R shown in figure 6.1.

To control the array pattern function in the continuous region R, we
choose to discretisize R in M gridpoints R =

{
(φ1, θ1) · · · (φM , θM)

}
.

The sidelobe level, denoted δs, is then defined on the discrete set R as

δs = max
(φm,θm)∈R

|W (φm, θm)| (6.2)

1In fact, we have even more symmetry. Because of the periodicity of the sine functions,
we also have W (φ, θ) =W (φ± nπ, θ± nπ) for any integer n ∈ Z.
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Figure 6.1: The continuous optimizaton region R in the φθ-plane.

We also demand a normalized mainlobe in the array pattern. Since the
mainlobe peak coincides with the θ-axis, we get the following normalization
constraint

W (0, θ) = 2TN w = 1 (6.3)

where 2N is the N element column vector with each element equal to 2, since
we have v (0, θ)n = 2.

The optimization problem may now be stated loosely as

Minimize Sidelobe level
Subject to Normalized mainlobe

(6.4)

With (6.2) and (6.3), it may be written more formally as

Minimize z = δs
Subject to

W (0, θ) = 1
|W (φm, θm)| ≤ δs ∀ (φm, θm) ∈ R

(6.5)

where δs on the right side of the inequality is used to force the sidelobe
level down in the M gridpoints in R. Observe that the equality and the M
absolute values may be written as two inequalities each. The optimization
problem can then be transformed to one of the linear programming matrix
forms
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Minimize z = cTx
Subject to

Ax ≤ b

(6.6)

where the variable vector x consists of both the N element weights w ∈ RN

and the sidelobe level indicator δs. The block matrices c ∈ RN+1, A ∈
R
2+2M,N+1 and b ∈ R2+2M have the indicated dimension and is explicitly

written as

Minimize z =
[
0TN 1

] [ w
δs

]

Subject to 


2TN
−2TN

0
0

vT (φ1, θ1)
−vT (φ1, θ1)

...
vT (φM , θM)
−vT (φM , θM)

−1
−1
...
−1
−1




[
w
δs

]
≤




1
−1

0
0
...
0
0




(6.7)

where 0N and 2N are column vectors with all the N elements equal to 0
and 2, respectively. The kernel vector v (φm, θm) ∈ RN is given in (6.1) and
determined for all the M gridpoints (φm, θm) on R.

6.2.1 The dual problem

Sometimes it is more efficient to solve the dual than the primal program.
Here, the A matrix in the primal program (6.7) has 2M +2 rows and N +1
columns, where M is the number of discrete points on R and N are half
the 2N element weights by symmetry. For most purposes M > N . With 2D
arrays, we even have M � N . With this kind of problem, it is more efficient
to solve the dual problem [6], which is

Maximize z = bTy
Subject to

ATy = c
y ≤ 0

(6.8)
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where c,x,A and b are identic in the two problems.
From the duality theorem on page 41, we have that the optimal value z∗

in the primal and the dual program coincides. Let y∗ ∈ R2M+2 be an optimal
solution to (6.8). Note that each element in y∗ corresponds to a column in
AT , or equally a row in A. Let y∗B contain the N + 1 nonzero elements in
y∗ and let AB ∈ RN+1,N+1 contain the corresponding rows in A. Also let
bB ∈ RN+1 correspond to these rows. Hence, an optimal solution x∗ ∈ RN+1

of the primal program (6.7) may be established as

x∗ = A−1B bB

where x∗ ∈ RN+1 is a vertex, defined by AB and bB , of the underlying
polyhedron.

6.3 Implementation

The weight optimization program was implemented in Ultrasim which is
a Matlab toolbox for simulating ultrasound waves from different array
transducers. The large matrices in (6.7) are conveniently set up inMatlab.
The optimal weights are obtained as a solution to the dual problem (6.8).
This problem is solved with the simplex algorithm in Cplex, which is used
as an optimization engine. A C-program was written to transfer the large
amount of data betweenMatlab and Cplex.
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Chapter 7

Optimization of thinning and
weighting

When producing array transducers, the large number of elements obviously
adds complexity to the design. This becomes a significant problem, especially
with 2D arrays. The total costs are also related to the number of array
elements.

Thus, an interesting approach to the array design problem is to minimize
the number of array elements with constraints on the array pattern. In this
chapter, such a method is proposed. In addition, it simultaneously optimizes
the element weighting, keeping a fixed sidelobe level δS. The problem is
formulated as a mixed integer program using block matrices, which may be
solved with the branch-and-bound method.

Similar to the weight optimization in the previous chapter, the method is
restricted to symmetric linear and planar arrays which fulfills the constraint
(4.11) and (4.12) on page 30. Consequently, the thinning will reduce the
total number of elements in pairs, ensuring a real array pattern.

7.1 Objective

From the previous chapter, a method to optimize the weighting of general
symmetric planar and linear arrays is established. But it requires an array
with fixed element positions. The weight optimization method yields the
lowest sidelobe level with a particular element configuration. But is this the
optimal configuration?
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In 2D array transducer design, element weighting is probably not that sig-
nificant, compared to element placement. One reason is the desire for sparse
arrays, which demands a way to perform thinning. The element placement
or thinning problem is probably more significant in this case.

The element placement problem is elaborated in many articles, in addi-
tion to the proposed method in this thesis. For instance, in [24] a dynamic
programming method is proposed, while a simulated annealing inspired al-
gorithm is given in [30]. In [43] a genetic thinning algorithm is suggested. A
similar problem also arise in the design of maximally sparse antennas, which
may be formulated as a nonlinear mathematical program [25].

All methods applied to optimize the thinning are affected by the combi-
natorial nature of the element placement problem. This necessarily results
in a rapid growth in calculation time for large arrays. Such methods are thus
naturally restricted to smaller arrays.

Still, the proposed method may hopefully be used to determine the gain
of optimized thinning compared to random thinning, which is an alternative
in the design of large sparse arrays. Solutions to this problem may also reveal
some fundamental questions about the possible reduction of array elements.

7.2 Problem formulation

The proposed simultaneous weighting and thinning method is a natural ex-
tension of the element weighting method in the previous chapter. The sym-
metric angular array pattern function W (φ, θ) will be the basis for this
method too. It is written as

W (φ, θ) = v (φ, θ)T w (7.1)

and restricted to the symmetric linear and planar arrays on page 30. The ker-
nel vector is v (φ, θ) ∈ RN with the n-th entry v (φ, θ)n = 2cos

{
2π
λ
�sφ,θ · �xn

}
and w ∈ RN are half the 2N symmetric element weights. With the restriction
above, the dot product simplifies to �sφ,θ · �xn = sinφ (xn cos θ + yn sin θ).

Since the objective is to minimize the number of array elements, we may
introduce a binary variable yn ∈ {0, 1} corresponding to each element �xn.
This variable is intended as a counter variable with yn = 1 indicating that
the element is present and yn = 0 when the element is removed by thinning.
Such a variable may be written in an integer programming form as
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0 ≤ yn ≤ 1

yn ∈ Z
(7.2)

where Z is the set of integral numbers.
In this problem, we will also introduce upper and lower bounds on the

weights ∈ RN . For simplicity, we assume equal bounds on each weight wn.
In addition, the weight value will be bounded by the binary counter variable
yn ∈ {0, 1} as

α · yn ≤ wn ≤ β · yn (7.3)

where α is the lower and β is the upper bound. This is sometimes referred
to as the dynamic weight range.

The array pattern will be controlled in a continuous region R of the φθ-
plane, the sidelobe region. Similar to the weighting problem, we only need to
consider the optimization region R shown in figure 6.1, since the array pat-
tern is symmetric about the θ-axis. The continuous region R is discretisized
in M gridpoints R =

{
(φ1, θ1) · · · (φM , θM)

}
and the sidelobe level δs is

defined on this set as

δs = max
(φm,θm)∈R

|W (φm, θm)| (7.4)

Note that the objective is here to minimize the number of array elements,
rather than minimizing the sidelobe level δs. The sidelobe level will conse-
quently be a fixed parameter in this problem.

Furthermore, the mainlobe in the array pattern may be normalized by
the constraint

W (0, θ) = 2TN w = 1 (7.5)

where 2N is the N element column vector with each element equal to 2, since
we have v (0, θ)n = 2.
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The optimization problem may now be stated loosely as

Minimize Number of elements
Subject to

Weight bounds
Normalized mainlobe
Fixed sidelobe level

(7.6)

and with the constraints in (7.2), (7.3), (7.4) and (7.5), it may be written
more formally as

Minimize
∑
n
yn

Subject to
wn ∈ [α · yn, β · yn] ∀ n

W (0, θ) = 1
|W (φm, θm)| ≤ δs ∀ (φm, θm) ∈ R

yn ∈ {0, 1} ∀ n

(7.7)

where W (φm, θm) is the symmetric angular array pattern determined by the
N element weights wn and the associated counter variables yn. The interval
[α · yn, β · yn] is the dynamic weight range and δs is the fixed sidelobe level.
Note that yn is a binary variable.

By writing the equality and the M absolute values as two inequalities
each, the optimization problem can be transformed to a mixed integer pro-
gramming form

Minimize z = cTx
Subject to

Ax ≤ b

xs ∈ Z

(7.8)

where the variable vector x consists of both the element weights w ∈ RN

and the associated counter variables y ∈ RN . The variable vector xs ⊆ x
only includes the integer variables, which in this particular problem are the
counter variables y ∈ RN . The block matrices c ∈ R2N , A ∈ R2N+2+2M+2N,2N

and b ∈ R2N+2+2M+2N have the indicated dimension and is explicitly written
as
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Minimize z =
[
0TN 1TN

] [ w
y

]

Subject to 


−IN×N
IN×N

α IN×N
−β IN×N

2TN
−2TN

0TN
0TN

vT (φ1, θ1)
−vT (φ1, θ1)

...
vT (φM , θM)
−vT (φM , θM)

0TN
0TN
...
0TN
0TN

0N×N
0N×N

−IN×N
IN×N




[
w
y

]
≤




0N
0N

1
−1

δs
δs
...
δs
δs

0N
1N




y ∈ Z

(7.9)
where 0N , 1N and 2N are column vectors with all the N elements equal to
0, 1 and 2, respectively. The N × N identity matrix is denoted IN×N while
0N×N is the N ×N element zero matrix. The kernel vector v (φm, θm) ∈ RN

is given in (7.1) and determined for all the M gridpoints (φm, θm) on R.
The constraint matrix has 2M + 4N + 2 rows and 2N columns, which

is a considerable size. This size and the nature of the problem restricts this
method to only smaller arrays.

7.3 Implementation

The simultaneous weighting and thinning optimization program was imple-
mented as an additional part to Ultrasim. The large matrices in (7.9) are
conveniently set up in Matlab. The optimal array thinning and weighting
is obtained by solving the block matrix system in (7.9) with the branch-and-
bound method in Cplex, which is used as an optimization engine. Actually,
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Cplex allows binary variables in the mixed integer programming form. Con-
sequently, the last block with the constraints on the counter variables y ∈ RN

is not necessary in this special implementation. A C-program was also writ-
ten to keep track of the data transfer between Matlab and Cplex.
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Chapter 8

Computer simulations

This chapter is intended to verify that the proposed methods may be used to
both optimize the weighting and the simultaneous thinning and weighting of
general symmetric linear and planar arrays. Both methods are demonstrated
on different array types. Some interesting results obtained from several com-
puter simulations are also reported in this chapter. These results will help
supporting the conclusion in the next chapter.

8.1 Weighting

The weight optimization method has been tested on many arrays, including
1D linear as well as 2D planar arrays. The proposed method also applies to
general sparse arrays with irregular array patterns. A drawback with this
method is the large matrices required for optimizing the largest transducer
arrays. Still, an optimal solution is obtained within reasonable time thanks
to the efficiency of the simplex algorithm.

Some examples will now be shown. The parameters describing the side-
lobe region is given together with the optimization time. The latter refers to
this particular implementation and the equipment described in appendix A.
It will hopefully give an idea of the complexity of the problems at hand.

In each example, the element weight amplitudes are shown. The resulting
array patterns are also given, with the array pattern of the unweighted array
transducer included as a reference.
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8.1.1 Full linear array

The weighting program was first applied to a 64 element regular linear
array with λ/2 interelement spacing. The sidelobe region was chosen to
φ ∈ [2.5◦, 90◦] and the weights were obtained after 2.6 sec with M = 256
control points. The resulting weight amplitudes are shown together with the
array pattern in figure 8.1.

Linear array with 64 active elements
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Figure 8.1: Weighting of a 64 element regular linear array. The weights
(upper) resemble the well-known Dolph-Chebyshev window function. The
array pattern of the uniform weighted array (middle) has falling sidelobes,
while the array pattern of the optimally weighted array (lower) has sidelobes
with equal height.
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8.1.2 Randomly thinned linear array

The 64 element regular linear array was then thinned 25% randomly. A
new weighting was performed. Again, the sidelobe region was initially set to
φ ∈ [2.5◦, 90◦] with M = 256 control points. The optimal weight amplitudes
and the array pattern are shown figure 8.2. The weights were obtained after
1.6 sec.

Linear array with 48 active elements
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Figure 8.2: Weighting of a 25% thinned 64 element regular linear array. The
weights (upper) are more varying than in the previous example. The array
pattern of the uniform weighted array (middle) has a higher sidelobe level
than the array pattern of the optimally weighted array (lower).
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8.1.3 Full 2D planar array

The weighting program was then applied to a 2D planar array. The array was
rectangular with 24×24 elements inscribed in a circle, a total number of 448
elements. The interelement spacing was λ/2 in both the x and y direction.
The sidelobe region was chosen to φ ∈ [6◦, 90◦] and the weights were obtained
after about 5 minutes with M = 2352 control points. The resulting weights
and array pattern is shown in figure 8.3.
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Figure 8.3: Weighting of a 24 × 24 element circle inscribed planar regular
array. The weights (upper) are seen to have the highest amplitudes near the
array centre, dropping off at the ends. Both positive and negative weight
values are observed. The array pattern of the uniform weighted array (mid-
dle) has falling sidelobes, while the array pattern of the optimally weighted
array (lower) has sidelobes with nearly equal height.
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8.1.4 Randomly thinned 2D planar array

The previous 24 × 24 element circle inscribed array was then thinned 75%
randomly, resulting in 112 remaining elements. The sidelobe region was again
chosen to φ ∈ [6◦, 90◦] and the optimal weights were obtained after 9.1 sec
with M = 2352 control points. The weighting and array pattern is shown in
figure 8.4.
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Figure 8.4: Weighting of a 75% randomly thinned 24 × 24 element circle
inscribed array. The weights (upper) are both positive and negative. The
array pattern of the uniform unweighted array (middle) is more varying than
the array pattern of the optimally weighted array (lower).
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8.2 Thinning and weighting

The simultaneous thinning and weighting program has been tested on both
linear and planar arrays. With this program, the computation time rather
than the size of the matrices limits its applicability. Consequently, only
smaller arrays have been optimized. Two examples of simultaneously thinned
and weighted arrays are given.

Similar to the previous examples, both the element weight amplitudes and
the resulting array patterns are given. The array pattern of the unweighted
array is also included as a reference.

8.2.1 Linear array

The simultaneous thinning and weighting program was first applied to a
64 element regular linear array with λ/2 interelement spacing. The sidelobe
region was chosen to φ ∈ [2.5◦, 90◦] and the sidelobe level was upper bounded
to δs = −20 dB. The optimal thinning and weighting was obtained after 47
minutes! The number of control points was set to M = 256. With these
initial parameters, the optimization resulted in a 31% reduction of array
elements. The resulting weighting and thinning is shown together with the
array pattern in figure 8.5.

8.2.2 2D planar array

The simultaneous thinning and weighting program was then applied to a 2D
planar array. The array was rectangular with 12 × 12 elements inscribed
in a circle, a total number of 112 array elements. The interelement spacing
was λ/2 in both the x and y direction. The sidelobe region was set to
φ ∈ [12.5◦, 90◦] and the sidelobe level was upper bounded to δs = −20 dB.
With M = 600 control points, an optimal thinning and weighting was first
obtained after more than 2 hours! But it resulted in an element reduction
of 45%. The weighting and thinning is shown with the corresponding array
pattern in figure 8.6.
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8.3 Beamwidth versus sidelobe level

The resulting weight amplitudes and array pattern characteristics depend
strongly on the initial parameters in the optimization program. By deciding
the start of the sidelobe region p0, the −6 dB beamwidth can be closely
predicted. This is just a consequence, since p0 bounds the beamwidth at
the sidelobe level. Deciding p0 also affects the minimum sidelobe level δs
obtained with the weight optimization program. This is a result of the trade-
off between the beamwidth and sidelobe level which is explained with Fourier
theory. From the discussion on image quality, an array pattern with both a
narrow beamwidth and a low sidelobe level is preferred. But which one to
prefer is application dependent.

By varying the sidelobe region and optimizing the weights of one partic-
ular array several times, the relationship between the beamwidth and the
sidelobe level may be revealed for this particular array. Such a relationship
has been explored for several arrays. The trends are clear. With regular
λ/2 interelement spaced arrays, the sidelobe level decreases smoothly as p0
is increased. But, this is not true with sparse arrays obtained either with
random or optimized thinning. For these arrays, the sidelobe level decreases
smoothly just to a certain level as p0 is increased. Dependent on the thin-
ning, these arrays seem to have a lower bound on the sidelobe level. This
characteristic seem to be more extreme with 1D linear arrays than with 2D
planar arrays. The following examples show such relations.

8.3.1 Linear arrays

The relationship between the beamwidth and the sidelobe level has been
explored for both a 64 and a 48 element linear regularly λ/2 spaced array.
In figure 8.7, these are compared with four 25% randomly thinned 64 ele-
ment arrays, each with 48 elements. These curves reveal the difference in
characteristics between regularly spaced and thinned arrays.

In this figure, arrays with curves to the lower left are preferred, since
they have both a narrow beamwidth and a low sidelobe level. The 25%
sparse arrays are obviously limited to the left by the full 64 element array.
When the curves of the 25% sparse arrays lie between the solid curves, there
is a gain with these arrays. The sparse array curves are characteristic as
they often follow the full array curve closely to a certain level where they are
separated.
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8.3.2 2D planar arrays

The beamwidth versus sidelobe level has also been explored for both a 24×24
and a 12×12 element circle inscribed rectangular planar array, with 448 and
112 elements, respectively. These are compared with 75% randomly thinned
24×24 circle inscribed arrays and the beamwidth versus sidelobe level curves
are shown in figure 8.8.

Similar to the previous example, the 75% sparse array curves are obviously
limited to the left by the full 24 × 24 element circle inscribed array. The
beamwidth versus sidelobe level curves for 2D planar sparse arrays seem to
share the same characteristics as the curves for linear arrays, but not that
extreme.

8.3.3 Optimally thinned arrays

The relationship between the beamwidth and the sidelobe level has finally
been explored for the optimally thinned planar array in figure 8.6 with 62
elements. This is compared with two randomly thinned 62 element planar
arrays obtained from the same initial array. The beamwidth versus sidelobe
level curves for these arrays are plotted in figure 8.9.

This figure shows that the optimally thinned array is significantly better
than the randomly thinned arrays with respect to a narrow beamwidth and
a low sidelobe level.
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Figure 8.5: Simultaneous thinning and weighting of a 64 element regular
linear array. The weights remaining after the optimized thinning (upper)
have variying amplitudes. The array pattern of the optimally thinned, but
uniform weighted array (middle) has a slightly higher sidelobe level than the
array pattern of the simultaneously thinned and weighted array (lower).
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Figure 8.6: Simultaneous thinning and weighting of a 12× 12 element circle
inscribed planar regular array. The optimally thinned weights (upper) have
slightly varying amplitudes. The array pattern of the optimally thinned, but
uniform weighted array (middle) has almost the same sidelobe level as the
array pattern of the simultaneously thinned and weighted array (lower).
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Figure 8.7: The beamwidth versus sidelobe level of the 64 and 48 element
regularly spaced linear arrays are shown as solid curves. These are compared
to 25% random thinnings of the 64 element array. The 25% sparse arrays
are plotted with dotted curves.
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Figure 8.8: The beamwidth versus sidelobe level of both the 24 × 24 and
12× 12 element circle inscribed rectangular planar arrays are shown as solid
curves, to the left and right, respectively. These are compared with 75%
random thinnings of the 24 × 24 element circle inscribed array. The 75%
sparse arrays are plotted with dotted curves.
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Figure 8.9: The beamwidth versus sidelobe level of a full 12 × 12 circle
inscribed rectangular planar array is shown as the solid curve to the left.
This array has been optimally thinned, resulting in a 62 element sparse array.
The beamwidth versus sidelobe level curve of this array is plotted as a dash-
dotted curve in the middle. This curve is significantly better than the dotted
curves corresponding to randomly thinned 62 element arrays.
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Chapter 9

Summary

This thesis started with some observations concerning the design of ultra-
sound array transducers for medical use. The development of 3D ultrasound
seems to require 2D phased array transducers, allowing electronic steering in
each direction of a volume. To maintain good resolution and contrast in the
images, these arrays should use from 64 × 64 = 4096 to 128 × 128 = 16384
elements, which complicates the design and implementation.

With this in mind, the work in this thesis has been concentrated on
analyzing sparse arrays, obtained from regular arrays by either random or
optimal thinning. Optimal ways to perform the weighting or simultaneously
thinning and weighting have been presented and implemented. The brief
introduction of both ultrasound wave theory and optimization theory has
hopefully given the necessary background to evaluate the optimization meth-
ods. In the previous chapter, these methods were demonstrated on different
arrays.

After simulating several arrays, the relationship between the beamwidth
and sidelobe level has been analyzed. This relation appears to have different
characteristics whether a sparse array or a full regular array is concerned.
Consequently, the applicability of weighted sparse arrays may be limited,
since they seem to have a lower bound on the sidelobe level. Weighted full
regular arrays are more flexible in respect of weighting, as they do not show
such a lower bound.

A further discussion on weighting and optimal thinning is given in this
chapter. An answer to the underlying question of the applicability of sparse
arrays is given as a conclusion. A section of proposed further work is also
included.
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9.1 Weighting considerations

The computer simulations of full regular arrays have revealed that an ar-
bitrary sidelobe level may be obtained by adjusting the beamwidth, which
is implicitly bounded by the sidelobe region. Unfortunately, this flexibility
seems to be limited to full regular arrays. The sparse arrays show the same
flexibility just to a certain sidelobe level, which is probably related to the
degree of thinning.

For full regularly spaced linear arrays, the proposed element weighting
method yields the well-known Dolph-Chebyshev weights shown in figure 8.1.
This weighting is characterized with its large weight amplitudes at the end
elements. This is undesirable for many applications. However, such spikes
were rarely observed with sparse and planar arrays.

As previously mentioned, a major problem with element weighting of 2D
phased arrays is the low SNR (signal to noise ration). For sparse arrays with
a reduced number of elements, this problem may be even more significant.
The element weighting also leads to additional costs and complexity, since
each element channel necessarily requires an amplifier.

With sparse arrays, the weighting appeared to smooth the array pattern
in the sidelobe region. But the significance of the element weighting seemed
to depend on the previously performed element thinning. Some thinnings
yielded a few high sidelobes which were conveniently damped with the weight
optimization method. Still other thinnings seemed to be less affected by the
optimal weighting. An example of the latter is the optimally thinned arrays
in figure 8.5 and figure 8.6.

9.2 Optimal thinning

An optimal thinning necessarily yields a better array pattern than a random
thinning. Unfortunately, the complexity of the simultaneous thinning and
weighting program restricts it to smaller arrays. The interesting question is
still how much can be gained with an optimal thinning.

After several simulations of randomly thinned arrays, the thinning was
clearly observed to influence the array pattern. In figure 8.9 an optimally
thinned array is compared to randomly thinned arrays. This figure shows
that there is a significant gain with the optimal thinning. This hypothesis is
not statistically verified, but it is supported by the results obtained from the
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many computer simulations.
Yet another important observation with the simultaneously thinned and

weighted arrays can be made from the examples in figure 8.5 and figure 8.6.
The array patterns of the uniformly weighted but optimally thinned arrays
behave surprisingly well in the sidelobe regions.

9.3 Conclusion

The conclusion of this work may now be stated. First of all, the proposed
optimization programs solved the given optimization problems, but the si-
multaneous thinning and weighting program is restricted to smaller arrays.
The programs also handle sparse arrays with irregular array patterns.

An answer to the underlying question of whether a 2D sparse array may
work satisfactory depends on both the degree of thinning and the thinning
method. In respect to a narrow beamwidth and a low sidelobe level, the
answer may be found in the figures 8.5 − 8.9. If a sparse array is compared
to a regular array, each having the same number of elements, there may
clearly be a gain with the sparse array. It should be noted that sparse arrays
seem to have a lower bound on the sidelobe level. But if a higher sidelobe
level is acceptable, a sparse array may be almost as good as a full array having
significantly more elements, at least in respect to a narrow beamwidth and
a low sidelobe level.

If the problem with element weighting of 2D phased arrays is taken into
account, optimally thinned but uniformly weighted sparse arrays may even be
suggested. This is based on the array patterns of the optimally thinned but
unweighted arrays in figure 8.5 and figure 8.6. These show a lower sidelobe
level than the full unweighted arrays and nearly the same beamwidth.

A final conclusion based on the computer simulations and the weighting
considerations may be that the array thinning problem is more important
than the elementweighting problem in the design of 2D arrays for 3D medical
ultrasound.

9.4 Further work

The methods presented in this work are restricted to symmetric planar arrays
and the optimization criterion was chosen to minimize the maximum sidelobe
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level. The optimization problems were then conveniently fit into a linear
programming and a mixed integer programming formulation, respectively.
This allowed the problems to be solved effectivelywith the simplex algorithm.
Still, the simultaneous thinning and weighting method only applies to smaller
arrays.

The restriction to symmetric arrays is certainly a drawback with the
given methods. The simultaneous thinning and weighting program might
yield a better thinning without this restriction. The methods would even
apply to any array including 3D arrays. But to control the sidelobe level or
the sidelobe energy with asymmetric arrays requires quadratic constraints.
This suggests other methods than the linear constraint methods given in this
thesis.

The optimization criterion chosen probably not yields the best compro-
mise between the resolution and contrast in the image. A better optimization
criterion would be to minimize the energy in the sidelobe region rather than
minimizing the sidelobe level [1]. But this would lead to a quadratic weight-
ing program on the form in (5.10) with the energy given in (4.10). Although
it is an interesting approach, it would require even larger matrices and a
higher computation time.

As stated in the conclusion, the thinning problem is probably the most
important for 2D ultrasound array transducer design. The effort should thus
be concentrated on further development of optimal thinning methods. A
problem with such methods is the restriction to only smaller arrays.

One attempt to optimize the thinning of larger arrays may be to extend
the simultaneous thinning and weighting method proposed in this thesis.
By finding mathematical relations between the array elements, a number of
equations may be augmented to the model, hopefully reducing the computa-
tion time dramatically. This is termed as a cut plane method. The problem
is then to find such relations without loosing the freedom of the thinning.
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Appendix A

Equipment

This appendix presents the software and hardware used to implement, solve
and visualize the results from the optimization problems.

A.1 Software

The software packages used includesMatlab, Cplex and Ultrasim which
is a local Matlab toolbox.

A.1.1 Matlab

Matlab is a technical computing environment for numeric computation and
visualization. It integrates numerical analysis, matrix computation, signal
processing, and graphics. The name Matlab stands for matrix laboratory,
as it was originally written to provide easy access to matrix software de-
veloped by the Linpack and Eispack projects, which together represent the
state-of-the-art in software for matrix computation.
Matlab is used for research and to solve practical engineering and math-

ematical problems. Typical uses include general purpose numeric computa-
tion, algorithm prototyping, and special purpose problem solving with ma-
trix formulations that arise in disciplines such as automatic control theory,
statistics, and digital signal processing.
Matlab also features a family of application-specific solutions, called

toolboxes. Toolboxes are collections of Matlab functions that extend the
Matlab environment in order to solve particular classes of problems. Areas
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in which toolboxes are available include signal processing, control systems
design, dynamic systems simulation, systems identification, neural networks,
and others.

A.1.2 Cplex

Cplex is a collection of large-scale mathematical programming software,
which features linear, mixed-integer and quadratic programming solvers. It
is particularly intended to solve large or difficult problems.

The Cplex Base System is a linear programming environment which
includes fast optimization algorithms as well as a full set of utilities to sup-
port solving linear programming problems. The state-of-the-art algorithms
include problem reduction algorithms, a modified primal simplex and dual
simplex optimizer. In addition a fast network optimizer is included.
Cplex features an interactive environment as well as external access to

the optimization routines through the C programming language.

A.1.3 Ultrasim

Ultrasim is a local Matlab toolbox for ultrasound wave simulation. Ul-
trasim serves as a standard platform for simulation programs concerning
ultrasonic imaging systems. It provides a flexible tool for transducer design
− now including optimized thinning and weighting. It features different types
of wave simulation with facilities as electronic focussing, continuous/pulsed
waves and arbitrary frequency. It also provides wave simulation in a homoge-
nous media, as well as a layered media with smooth surfaces.

A.2 Hardware

The optimization programs were compiled and solved on a 64-bit SGI Pow-
erChallenge, using the IRIX Release 6.1 operating system.
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Appendix B

User guide to optimization
programs

This appendix will explain how to set the initial parameters of the imple-
mented optimization programs. Two guided examples will be given, one from
the weighting and the other from the simultaneous thinning and weighting
program.

Note that in both programs, the default values (in brackets) are con-
ventionally obtained by hitting enter. Prior to starting the optimization
programs, an appropriate transducer must be set up.

B.1 Weighting

This example is performed on a 16×16 element rectangular array transducer
inscribed in a circle. The weighting program is started from the configu-
ration → transducer → weighting (lp) submenu in the Ultrasim
configuration window. It automatically determines the transducer type.

Method : Minimize Sidelobe Level

Transducer : 2D - symmetric planar array

The symmetric cosine-response sidelobe level is optimized

for (phi, theta) in the area

phi : from p0 to p1 [degrees]

theta : from -90 to 90 [degrees]
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-> Enter p0 [10] : 12

-> Enter p1 [90] :

-> Do you accept the area [n] ? y

The first parameters to be chosen are p0 and p1 which describes the side-
lobe region given as φ ∈ [p0, p1]. This also defines the mainlobe width implic-
itly. A reasonable value for p0 is chosen close to the φ-value of the first zero
crossing of the unweighted array pattern. This value may be found by exam-
ining the plot obtained from the calculations → far-field response

submenu in the Ultrasim configuration window. The value of p1 is
normally chosen to 90◦.

Totally 32 x 33 [phi x theta] = 1056 control points

-> Do you accept the controlpoints [y] ?

This is the discretisizing of the continuous sidelobe region R, shown in
figure 6.1, termed as control points. These values may be increased in either
direction for a better sidelobe peak control, or decreased, which speeds up
the optimization particularly for large 2D array transducers.

Setting up problem ..

Solves problem with cplex ..

-> Do you want to presolve [y] ?

A fast presolving routine is implemented which finds a linearly inde-
pendent start basis to the LP problem by a simplified Gauss-elimination
procedure. This normally speeds up the optimization.

Loading problem ..

Presolving ..

Basis with 105 linearly independent rows found

after checking 224 of totally 2114 rows.

Basis added ..
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The large LP problem matrices are then transferred from Matlab to
Cplex, which immediately starts the optimization. The start basis is auto-
matically added to Cplex if chosen.

Optimizing ..

Totally 3466 simplex iterations.

Solution successful.

The solution is then returned to Matlab and Ultrasim, which shows
the optimization statistics

---------------------------------------------------------

Optimization statistics:

Elapsed LP flops: Not available

Elapsed LP time: 19.7 [sec]

Weight variation: -7.52e-01 (min)

1.09e-03 (absmin)

1.00e+00 (max)

Weight dynamic range: 59.25 [dB]

SQRW (normalized): 0.1030

Sidelobe level: -37.11 [dB]

---------------------------------------------------------

Only half the 2N symmetric weights are optimized. The min, absmin and
max weight values correspond to minn (wn), minn |wn| and maxn (wn), respec-
tively, and the weight range is given by 20 log10 (maxn |wn| /minn |wn|). The
weight statistics are given for amplitude normalized weights, maxn (wn) = 1.
The squared weight value is

∑2N
n=1 w

2
n where the weights are sum normalized

to
∑2N
n=1 wn = 1. The sidelobe level is given as the highest sidelobe peak in

the sidelobe region.
Finally, the plot parameters are set and both the weighting and the array

pattern is plotted. The scroll-bars may be used to change the 3D view for
2D arrays.
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B.2 Thinning and weighting

This example shows a 8× 8 element rectangular array transducer inscribed
in a circle with 52 remaining elements. The simultaneous thinning and
weighting program is started from the configuration → transducer →
weight and thin (cplex) submenu in the Ultrasim configuration
window.

Method : Minimize number of elements (ILP).

Transducer : 2D - symmetric planar array

The symmetric cosine-response sidelobe level is controlled

for (phi, theta) in the area

phi : from p0 to p1 [degrees]

theta : from -90 to 90 [degrees]

-> Enter p0 [10] : 20

-> Enter p1 [90] :

Similar to the weighting program, the first parameters to be chosen are p0
and p1 describing the sidelobe region given as φ ∈ [p0, p1]. This also defines
the mainlobe width implicitly. A reasonable value for p0 is chosen close to the
φ-value of the first zero crossing of the unweighted array pattern. This value
may be found by examining the plot obtained from the calculations →
far-field response submenu in the Ultrasim configuration window.
The value of p1 is normally chosen to 90◦.

-> Enter max sidelobe level in dB [-20] :

The sidelobe level δs is a fixed parameter in this program while it is a
variable in the previous weighting program. A reasonable δs may be found by
first performing a weighting with the sidelobe region φw ∈ [pw0 , p

w
1 ] yielding

the minimum sidelobe level δws . Then, to add freedom to the thinning, we
should either choose δs > δws or p0 > pw0 .

-> Enter weight LOWER bound (sum w=1/2) [0] :

-> Enter weight UPPER bound (sum w=1/2) [0.03846] :
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The weights may be bounded by the interval wn ∈ [lower,upper] where
the scaling factor is given as 2

∑N
n=1 wn = 1.

-> Enter cutoff LOWER bound [0] :

-> Enter cutoff UPPER bound [26] :

-> Do you accept the given values [n] ? y

Cutoff is explained as bounding in the branch-and-bound method. Re-
ducing the cutoff upper bound may reduce optimization time. But care must
be taken − as it may lead to an infeasible problem.

Totally 16 x 17 [phi x theta] = 272 control points

-> Do you accept the controlpoints [y] ?

This is the discretisizing of the continuous sidelobe region R, shown in
figure 6.1, termed as control points. These values may be increased in either
direction for a better sidelobe peak control, or decreased, which speeds up
the optimization particularly for large 2D transducers.

Setting up problem ..

Problem written to ..

/home/byleist/a/bjornar/matlab/ultrasim/results/wntprob.mat

-> Do you want to solve it now [y] ?

Since this problem class may be very time consuming, the problem can
be set up and stored on a file. The problem may for instance be solved as a
background process later.

Loading problem ..

Lower cutoff set to 0.00.

Upper cutoff set to 26.00.

Optimizing ..

Totally 208700 iterations.

Solution successful.
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The large LP problem matrices are then transferred from Matlab to
Cplex, which immediately starts solving the problem. The solution is then
returned toMatlab and Ultrasim, which shows the optimization statistics

---------------------------------------------------------

Optimization statistics:

Elapsed optimization time: 738.9 [sec]

Last cutoff value: 17.0

Upper cutoff value: 26.0

Lower cutoff value: 0.0

Number of MIP nodes: 12778

Number of unexplored nodes: 0

Elements thinned: 16

Weight variation: 2.54e-01 (min)

2.54e-01 (absmin)

1.00e+00 (max)

Weight dynamic range: 11.89 [dB]

SQRW (normalized): 0.0302

Max sidelobe level (opt): -20.00 [dB]

---------------------------------------------------------

The last cutoff value is the last upper bound used in the branch-and-
bound tree. The number of MIP nodes corresponds to the number of LP
subproblems created. It grows very rapidly with the number of array ele-
ments.

The number of elements thinned corresponds to the 2N number of initial
elements. The min, absmin and max weight values correspond to minn (wn),
minn |wn| and maxn (wn), respectively, and the weight range is given by
20 log10 (maxn |wn| /minn |wn|). The weight statistics are given for amplitude
normalized weights, maxn (wn) = 1. The squared weight value is

∑2N
n=1w

2
n

where the weights are sum normalized to
∑2N
n=1wn = 1. The sidelobe level is

given as the highest sidelobe peak in the sidelobe region.
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Finally, the plot parameters are set and both the weighting and the array
pattern is plotted.
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