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Abstract

This work explores the possibilities of BaSi2 as a two-dimensional structure utilizing density
functional theory. To fully describe the properties of the two-dimensional structure, the bulk
structure of BaSi2 and BaGe2 was studied first, where different approximations to the exchange
correlation functional was used. From the results of the structural properties of the bulk structures,
it was decided that the rev-vdW-DF2 functional was to be used for the further study of the
bulk structures and the functional of choice regarding the investigation of the two-dimensional
structure of BaSi2. The results of the two-dimensional structure of BaSi2 showed that the single
layer of the 2D-layered system was unstable due to reconstruction. Thereafter, 2D-structures of
BaSi2 that consisted of multiple layers were explored, where the results showed no indication of
reconstruction for such systems. Moreover, the results for the multilayered 2D systems showed
that as the number of layers increased in the 2D-structure, it’s properties became more and more
similar to the properties of the bulk. BaSi2 also possess a fundamental band gap energy that
can be tuned from 1.41 eV (L3) to 1.30 eV (L5). The optical results of the 2D layered systems
showed a weak anisotropic behaviour of the dielectric function and absorption coefficient. The
2D layered structures also seemed to have a broad range of absorption and a large absorption
coefficient, where the highest absorption was calculated to be around ∼ 106 cm−1. These results
makes the two dimensional structures of BaSi2 an interesting candidate for applications in thin
film applications, and recommended for experimental exploration.
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Chapter 1

Introduction

Energy is essential for all life to exist and function properly. That is even more so true considering
our modern society today, which is truly dependent on electricity, and as our global population
increases by the minute, so will the energy demand of the world. According to the International
Energy Agency (IEA), non-renewable energy resources was the highest contributing factor for
generating electricity in the world in 2018 [1]. Continuing in this direction, where we mostly use
non-renewable energy resources to generate electricity, will lead to higher emissions of greenhouse
gases to the atmosphere, which in turn leads to increased global warming. Climate change is not
something that is happening in the distant future, we are already experiencing some of the effects,
such as more frequent extreme weather events like bush-fires, cyclones, droughts, floods, rising
sea levels, more acidified oceans and increasing temperatures. In the future we will observe even
more devastating effects of global warming, such as challenges in food production and supply
of fresh water. The primary way to solve global warming is to eliminate the role of fossil fuels
in modern society wherever possible. This means transitioning to renewable and carbon-free
energy resources [2]. A renewable energy resource that has the possibility to solve all the energy
problems we face today is the sun. In fact, the sun delivers more energy to Earth in one hour
than humanity consumes over the course of a year [3].

Humanity’s way of harnessing the energy of the sun is through the use of solar cells which
converts sunlight into electricity. There exists many different types of solar cells, and one of them
are thin-film solar cells, especially thin film solar cells made from cadmium telluride (CdTe) or
copper indium gallium selenide (CIGS), have gained popularity. Unfortunately, these materials
raises some issues, such as cost, supply and environmental, which adds on the difficulty level of
developing solar cells for the future [4].

Therefore, the need for new materials are essential in the development of better solar cells. The
search for new materials has led many to look towards two-dimensional (2D) materials, which
refers to a material where one of the dimensions is nano-sized, and the shape of the material
resembles a thin piece of paper. The reason why 2D materials have come into play are because
they can lead to thinner, lighter and more flexible solar cells [5]. The popularity of 2D-materials
have also risen, due to the fact that the dimensionality of a material have an effect on it’s
properties, similar to how the size of a material can affect it’s properties. Graphene which was
discovered in 2004, is a perfect example of where the dimensionality of a material had an affect on
the materials behaviour, and it is often called the first 2D material. Since then, many other 2D
materials have been discovered, such as transition metal dichalcogenides (TMDCs), where they
have a layered structure with strong in-plane bonds and weak van der Waals (vdW) forces acting
between the layers [6]. These materials have shown great potential to be used in solar cell appli-
cations, due to their excellent electron-transport properties and extremely high carrier mobility [5].
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The search for new materials to be used in solar cell applications have not ceased, and many
new candidates have been found in recent years. An example of such a candidate is BaSi2,
which contain abundant and inexpensive elements, and various experimental investigations have
found the material BaSi2 to possess promising material characteristics for thin-film technology.
Nonetheless, to the author’s best knowledge, there doesn’t seem to have been any studies looking
at the material as a possible 2D material, where we know from experience that materials tend to
change their behaviour when the dimensions and sizes are varied.

Thus, the focus of this work will primarily be on the electronic structure and optical properties of
2D BaSi2, and the potential use in thin film solar cells applications. First-principle calculations
will be utilised to study these phenomenons, mainly density functional theory (DFT). Which is a
computational quantum mechanical modelling method used in physics, chemistry and material
science to investigate the electronic structure of many-body systems. This method uses a few
different approximation, which will be discussed in the later chapters, to solve quantum mechanical
systems far too complicated to be evaluated analytically. With this approach we are able to
investigate properties of theoretically proposed or experimentally realised materials.

The thesis is structured as follows: First a brief review of material science, followed by some
background information about the material BaSi2. In Chapter 3, central theory of DFT is
explained, to get an understanding of the computational methods used in this work. Chapter 4
deals with the practical aspects of DFT, such as the computational methods used as well as the
approximations in those methods. Chapter 5 illustrates how the methods have been practically
implemented. The numerical results are presented and discussed in Chapter 6. The work is
concluded in Chapter 7, where it includes how the material can be investigated further.
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Chapter 2

Background

2.1 Material Science

The scope of this section is to give a brief introduction to the fundamentals of material science.
It is not intended to give a complete explanation of the theories, but merely give a short overview
for the reader with no previous knowledge of material science.

2.1.1 Bonds
All materials are built up by an unimaginable number of atoms clustered together and they are
held together by bonds between the atoms and/or molecules. There exists two types of bonds,
interatomic and intermolecular bonds.

The interatomic bonds are bonds between atoms and involves the valence electrons of the atoms.
There exists three types of interatomic bonds;

• Ionic bonding
An ionic bond is formed when valence electrons are transferred from one atom to the other
to complete the outer electron shell.

• Covalent bonding
A covalent bond is formed when the valence electrons from one atom are shared between
two or more particular atoms.

• Metallic bonding
A metallic bond is formed when the valence electrons are not associated with a particular
atom or ion, but exist as a "cloud" of electrons around the ion centers [7].

The intermolecular bonding is defined as bonding between one molecule and a neighbouring
molecule. Intermolecular forces are much weaker than the interatomic forces, but they are
important because they determine the physical properties of materials, like their boiling point,
melting point, density, and enthalpies of fusion and vaporization. There also exists different types
of intermolecular bondings, one such is van der Waals (vdW) forces, which is driven by induced
electrical interactions between two or more atoms or molecules that are very close to each other
[8].
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2.1.2 Crystalline Structure
The atomic ordering of materials decides if the material is either crystalline or amorphous. If
the material is crystalline it means that it has a long-range periodicity, and if it is amorphous it
means having local ordering of the constituent atoms, but no long-range periodicity.

A crystal structure is composed of atoms, ions, or molecules arranged in a pattern that is repetitive
in three-dimensions. The crystal is represented as a lattice, that is, a three-dimensional array of
points (lattice points), each which has identical surroundings. The crystal lattice is defined by
three translation vectors a1, a2 and a3, also called the lattice vectors. The displacements from
one lattice point to another may be written as

R = c1a1 + c2a2 + c3a3 (2.1)

where c1, c2, c3 are integers. Also, the length of the lattice vectors are called the unit cell parame-
ters, where a unit cell is defined as the smallest repeatable entity that can be used to completely
represent the crystal structure. In other words, it is the building block of the crystal structure.
Moreover, each crystal lattice is defined by a crystal system, and the collection of them are called
Bravais lattices [7].

2.1.3 Reciprocal Space
All that we have discussed so far deals with structures in the real space. However, in material
science, it is sometimes more advantageous to work in the reciprocal space, which is defined as
the Fourier transform of the real space. The reciprocal space is also called the k-space or the
momentum space. Just as we defined positions in real space in terms of the lattice vectors a1, a2
and a3, it is also possible to do the same thing in the reciprocal space. These vectors are called
the reciprocal lattice vectors, b1, b2 and b3 and are defined as

b1 = 2π
a2 × a3

a1 · (a2 × a3)

b2 = 2π
a1 × a3

a1 · (a2 × a3)

b3 = 2π
a1 × a2

a1 · (a2 × a3)

Similar to the lattice vector in the real space, the displacement from one lattice point to another
in reciprocal space can be defined as

G = hb1 + kb2 + lb3 (2.2)

where h, k, l are integers, and is referred as the vector coordinates (h, k, l) of the reciprocal space
described by Miller indices. Furthermore, as we described a primitive cell in the real space,
that can also be done in the reciprocal space and because that primitive cell has many special
properties, it is given a name, it is called the Brillouin zone (BZ) [9].
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2.1.4 Band Structure
According to quantum mechanics, particles have discrete energy levels, unlike in classical mechanics
where the energy levels for particles are continuous. This means that particles in quantum systems
can only have certain energy states, however, a crystalline material consists of many atoms, which
contains many electrons, which means that the energy states interact and blend together. They
form what is known as energy bands or band structure, which characterises the regions of energies
allowed for electrons in the system [10]. Figure 2.1 illustrates energy bands forming for when
many electrons come together.

Figure 2.1: Orbitals are represented by the black horizontal lines, and they are being filled with
an increasing number of electrons as their amount increases. Eventually, as more orbitals are
added, the space in between them decreases to hardly anything, and as a result, a band is formed
where the orbitals have been filled [10].

The band structure are determined by which atoms form the material, more exactly their orbitals.
Therefore, the band structure can be different depending on the material, such as a metal,
semiconductor and insulator. To explain the differences between them it is beneficial to introduce
two terms that are important when discussing the band structure of materials. The terms are the
conduction and valence band, known as the lowest unoccupied band and the highest occupied
band, respectively [10]. Sometimes the valence band and the conduction band are separated
by an energy difference denoted as Eg, and is called the band gap energy. Metals for example,
have no band gap between their valence and conduction bands, since they overlap. Both the
semiconductor and insulator on the other hand has a band gap, where the only difference between
them is the size of the band gap.
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Another distinct feature with the band structure of a material concerns whether the band gap, if
it even has one, is direct or indirect.

Direct Indirect

Momentum

Conduction Band

Valence Band

Figure 2.2: A schematic presentation of a direct and indirect band gap. The energy bands are
plotted as lines in this plot of energy versus the momentum.

Figure 2.2 illustrates a direct and indirect band gap. A direct band gap means that the top of the
valence band and the bottom of the conduction band of the material occur at the same k-point.
Compared to an indirect band gap, where the maximum energy of the valence band occurs at
a different k-point to the minimum in the conduction band energy. In the case for the direct
band gap, the electrons only needs a change in energy to move from the valence band maximum
(VBM) to the conduction band minimum (CBM), whereas for the indirect band gap, a change in
both the energy and momentum is needed.
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2.2 BaSi2

Barium disilicide (BaSi2) is a compound consisting of the group 2 element Barium (Ba) and the
group 4 element Silicon (Si). In bulk, BaSi2 has three possible structures, orthorhombic, cubic
and trigonal. However, in this study we will be focusing on the orthorombic structure, which has
the space group D16

2h − Pnma (no. 62). The unit cell of Barium silicide is shown below.

Figure 2.3: The atomic structure of BaSi2. The green spheres represent barium atoms and the
blue spheres represents the silicon atoms. This figure is produced using the software VESTA [11].

As illustrated above, one can observe that the silicon atoms are bonded together in a cluster of
4 atoms, where the binding in between those atoms are covalent, but the binding between the
Ba-atoms and the Si-clusters are ionic.

The material BaSi2 is not so unknown, the material have been gaining popularity lately, as it has
showed interesting electronic and optical properties, which has led it to be studied for solar cell
applications, both experimentally and computationally. For example, a previous DFT study using
hybrid functional has shown that BaSi2 possess an indirect bandgap of ∼ 1.25 eV and a maximum
absorption coefficient at 1.5 × 106 cm−1 [12]. Another example is an experimental study where
it was reported a solar cell efficiency of approximately 10%, for a p-type BaSi2/n-type Si with a
film thickness of 40 nm [13]. One group that also studied the solar cells applications of BaSi2
reported that a n- and p-type doping of BaSi2 was possible, and that the hole concentration can
be controlled in the wide range of 1016− 1019 cm−3 by Bor doping [14, 15].
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Chapter 3

Theory

In the twentieth century, a physicist by the name of Erwin Schrödinger devised an equation
that was able to describe systems that were at atomic levels, just as Newtons laws were able to
describe systems at macroscopic levels. Thus, in order to analyze a material theoretically, one
has to solve the quantum-mechanical Schrödinger equation for that material. Over the years,
there have been devised numerous methods that aims to solve the Schrödinger equation, one such
method is density functional theory and in this chapter, the basics of DFT will be described. To
fully explain the theory behind DFT, some fundamental elements of quantum physics will also be
described, such as the many-particle Schrödinger equation and the approximations surrounding
it.

3.1 The Single-Electron Schrödinger Equation

In order to utilize the many-particle Schrödinger equation, it may be beneficiary to first study
the single-electron case and build us up from there on.

The time-dependent Schrödinger equation for a single electron is written as [16]

ih̄
∂

∂t
Ψ(r, t) = ĤΨ(r, t), (3.1)

where Ψ(r, t) is the electron wave function and Ĥ is the Hamiltonian, which contains the kinetic
energy operator T̂ , and potential energy operator Û

Ĥ = T̂ + Û = − h̄
2∇2

2me
+ V (r, t), (3.2)

where me is the electron mass and h̄ is planck’s constant.

In the cases where the potential is independent of time, V (r, t) = V (r), the Schrödinger equation
can be solved by the method of separation of variables. That means the wavefunction can be
expressed in the following manner:

Ψ(r, t) = ψ(r)φ(t), (3.3)

where ψ(r) is purely a function of position and φ(t) is purely a function of time.

By plugging these expressions above, the Schrödinger equation now reads

ih̄ψ(r)
∂φ(t)

∂t
= Ĥψ(r)φ(t) (3.4)

ih̄ψ(r)
∂φ(t)

∂t
=
(
− h̄2∇2

2me
+ V (r)

)
ψ(r)φ(t) (3.5)
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Dividing both sides of the equation by ψ(r)φ(t), we now get

ih̄
1

φ(t)

∂φ(t)

∂t
= − h̄2

2me

1

ψ(r)

∂2ψ(r)

∂x2
+ V (r). (3.6)

Now, the left hand side is a function of t alone, and the right hand side is a function of x alone.
The only way this can possibly be true is if both sides are in fact constant, and it can be proven
that the constant is equal to the total energy of the particle, which is denoted as E.

ih̄
1

φ(t)

∂φ(t)

∂t
= E → ∂φ(t)

∂t
=

1

ih̄
Eφ(t)

− h̄2

2me

1

ψ(r)

∂2ψ(r)

∂x2
+ V (r) = E → − h̄2

2me

∂2ψ(r)

∂x2
+ V (r)ψ(r) = Eψ(r)

The equation dependent on time is a small matter to solve, the only thing needed to solve it is to
multiply by ∂t and integrate the equation on both sides and the expression we are left with is

φ(t) = e
Et
ih̄ . (3.7)

The equation which is dependent on position is often referred to as the time-independent
Schrödinger equation, and it is not solvable until the potential V (r) is known. The rest of this
chapter and thesis will focus on this equation, and every time we are referring to the Schrödinger
equation, we mean the time-independent Schrödinger equation [16].

3.2 The Many-Particle Schrödinger Equation

Materials consist of electrons and nuclei, and to fully understand it’s properties, the knowledge of
it’s electronic structure is needed. To describe a materials electronic structure, and determine
their properties, one has to solve the many-particle Schrödinger equation for that system, which
is defined as

HΨ(r1, r2, . . . , rN,R1,R2, . . . ,RM) = EΨ(r1, r2, . . . , rN,R1,R2, . . . ,RM) (3.8)

where Ψ(r1, r2, . . . , rN,R1,R2, . . . ,RM) is the total wavefunction of the material that contains
all the information that can be known about the system, and where ri describe the coordinates
of the i-th electron and Rj describes the coordinates of the j-th nucleus [17]. Furthermore, E is
the energy of the system described by Ψ and H is the Hamiltonian of the interacting system,
which is illustrated in Figure 3.1.
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Kinetic energy of electrons

Kinetic energy of nuclei

Repulsive electron-electron interactions

Repulsive nucleus-nucleus interactions

Attractive electron-nucleus interactions

Figure 3.1: The terms of the many-particle Hamiltonian. The summation over i < i′ is to avoid
double counting electron interactions, and to avoid self-interactions.

The analytical solution for the many-particle Schrödinger equation is limited to only simple
systems, for example the hydrogen atom, because of the complicated expressions that describes
the interactions between the electrons and nuclei. To make the equation more applicable, such
that it is possible to study systems where there exists a large number of particles, approximations
have to made.

3.3 The Born-Oppenheimer Approximation

One such an approximation was introduced in 1927, by Max Born and J. Robert Oppenheimer,
which had the brilliant idea of separating the many-particle Schrödinger equation into an electron
part and a nuclei part. Their reasoning was that since the nuclei is much heavier than the
electrons, it was reasonable to assume that the nuclei could be treated as point charges. That is,
if the nuclei moves, the electrons respond instantaneously. This argument made it possible to
justify that one could do a variable separation on the many-particle Schrödinger equation, as
shown below

Ψ(r,R) ≈ ψ(r,R)φ(R), (3.9)

where Ψ(r,R) is the total wave function, and ψ(r,R) is the electronic wavefunction and has a
dependency on the nuclei positions since when they move so does the electrons. Furthermore,
φ(R) is the wave function of the nuclei.

By utilizing this approximation on the many-particle Schrödinger equation illustrated above in
Equation 3.8, it can be shown that the equation can be separated into an electronic and a nuclear
eigenvalue equation

[Te + Uee + Uen]ψ(r,R) = Ee(R)ψ(r,R) Electronic Schrödinger equation
[Tn + Unn + Ee(R)]φ(R) = Etot(R)Θ(R) Nuclear Schrödinger equation.

These two equations are coupled via the electronic energy eigenvalue Ee(R), which also depends
on the nucleus positions through the wavefunction. Moreover, the kinetic energy of the nuclei, Tn
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is often set to zero, since the nuclei is thought of as point charges. This means that the remaining
terms one the left side of the nuclear Schrödinger equation is shortened down to [Unn + Ee(R)],
and is denoted as the potential energy surface (PES), Ep(R) [17].

3.4 The Hartree & Hartree-Fock Approximations

Another approximation was introduced in 1948, by a physicist named Hartree, which had an idea
of how to express the many-electron wavefunction. The Hartree approximation starts by invoking
an initial ansatz that the multi-electron wave function

Ψ(r1, r2, . . . , rN ) (3.10)

can be expanded as a product of single-electron wave functions

Ψ(r1, r2, . . . , rN ) ≈ ψ1(r1)ψ2(r2) . . . ψN (rN ), (3.11)

which assumes that all the electrons are independent of each other, and that they only interact
via the Coulomb potential. That means that the all the electrons can be described of the
single-electron wavefunctions.

Such a many-electron wave function is termed a Hartree product, with electron-one being described
by wavefunction ψ1, electron-two being described by wavefunction ψ2 and so on. The problem
with this approximation is that the Hartree wavefunction is not anti-symmetric with respect
to the particle coordinates. That is, the particles are distinguishable, and do not obey the
Pauli exclusion principle for fermions. However, in 1950 a physicist named Fock modified the
Hartree approximation to overcome this issue. This was done by constructing an anti-symmetric
wavefunction which makes the electrons indistinguishable, which is illustrated below

Ψ(r1, r2, . . . , rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(r1) ψ2(r1) . . . ψN (r1)
ψ1(r2) ψ2(r2) . . . ψN (r2)

...
...

. . .
...

ψ1(rN ) ψ2(rN ) . . . ψN (rN )

∣∣∣∣∣∣∣∣∣ . (3.12)

The 1√
N !

is there to normalize the wavefunction, and the determinant is called the Slater
determinant. If the particles are interchanged here, the sign changes. In addition, if the electrons
are in identical states, the wavefunction becomes zero. This approximation is denoted as a
Hartee-Fock (HF) approximation, and since the HF method follows the Pauli exclusion principle,
it is able to describe something called the exchange energy, which the Hartree method is not
able to do. However, it is important to understand that neither the Hartree nor HF method are
able to fully describe the many electron interaction problem. In the case of HF, it is not able to
describe the correlation energy between the electrons [17].

3.5 The Variational Principle

In physics and chemistry one is mostly concerned with the ground state energy of the system one
is studying. This can be accomplished by utilizing the variational principle, which states that for
a given trial wave function ΨT , the expectation value of the Hamiltonian, Ĥ will be an upper
bound to the ground state energy, E0 of the system

E0 ≤ E =

∫
Ψ∗T ĤΨT dr∫
Ψ∗TΨT dr

. (3.13)

In other words, to find the optimum trial wave function ΨT the total energy E is minimized
by varying the trial wave function, and the wave function that minimizes the energy the most
is the optimum trial wave function. Moreover, the variational principle tells us that only the
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true ground state wave function will give the lowest total energy of the system, so the trial wave
function that minimizes the energy the most will never get a energy lower than the true ground
state wave function, but only slightly higher or equal to it.

In addition, the energy is often minimized with some constraints to make sure that the trial wave
function not lose the desired functionalities, such as being normalized and/or that the functions
that make up the trial wave function are orthogonal. This is accomplished by implementing the
Langrange multiplier method [17].

3.6 Density Functional Theory

The density functional theory is a method which tries to solve the many-electron Schrödinger
equation by reformulating the systems wave function, which is a function of 3N variables, in
terms of the electron density n(r), which is a function of three variables:

n(r) = |Ψ(r1, r2, . . . , rN )|2, (3.14)

where Ψ(r1, r2, . . . , rN ) is the total wave function of the system.

The theory also states that all ground-state physical properties of the many-electron system are
functionals of the ground-state electron density. Which means, that by knowing the ground-state
density n0(r) = |Ψ0(r)|2, it should be possible to determine the total energy, magnetic moment,
etc, of the system [17].

3.6.1 Hohenberg-Kohn Theorems
The basis for density functional theory stems from two fundamental mathematical theorems
proved by P. Hohenberg and W. Kohn [18].

Theorem I:
For any system of interacting particles in an external potential Vext(r), the potential Vext(r) is
determined uniquely (except for a constant) by the ground state density n0(r).

The first theorem presented above states that if one knows the electronic ground state density, one
can determine the external potential uniquely. By knowing the external potential, the full Hamil-
tonian can be found, which in turn makes it possible to solve the Schrödinger equation to get the
wave function, and this makes it possible to determine all the ground state properties of the system.

Theorem II:
A universal functional for the energy E[n] can be defined in terms of the electron density. The
exact ground state is the global minimum value of this functional.

The second theorem states that the ground state density n0(r) has the lowest energy, also known
as the ground state energy E0. The ground state density can be found by minimizing the energy
as a functional of the density, E[n], and this is accomplished by utilizing the variational principle
explained earlier.

Proofs for both theorems can be found in Appendix A.1.

3.6.2 The Kohn-Sham Equation
The Hohenberg-Kohn theorems prove that there exists a unique functional E[n(r)] for any elec-
tronic system, which is minimized for the unique ground-state density n0(r). However, there is
no theorem on how to construct such a functional. A year after the Hohenberg-Kohn theorems
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were published, a paper by Kohn and Sham [19] devised the Kohn-Sham equation which made
DFT feasible.

The Kohn-Sham equation is based on the ansatz that the exact ground state density can be
written as the ground state density of a fictitious system of noninteracting particles. Simply
put, first one starts off with "artificial" or incorrect wavefunctions, to calculate the density. For
example, one could use the Hartree wavefunctions.

Ψ(r1, r2, r3, · · ·, rN ) = ψ1(r1)ψ2(r2)ψ3(r3) · · · ψn(rN )

and assumes that this gives the exact density

n(r) =
∑
i

|ψi(r)|2.

Since the density is exact, according to DFT, it is then possible to express the total energy as a
functional of the density

E[n] = T [n] + Uee[n] + Uen[n] = F [n] + Uen[n] (3.15)

where F [n] = T [n] + Uee[n] is called the Hohenberg-Kohn functional and is referred to as the
universal functional. Unfortunately, we are not able to calculate F [n] because the functional
is unknown. However, by adding and subtracting, T̂s[n] and V̂s[n] which are the kinetic and
interaction energy of the auxiliary wave functions, the expression can be rewritten as

E[n] = T [n] + Uee[n] + Uen[n] + Ts[n]− Ts[n] + Us[n]− Us[n]

= Ts[n] + Us[n] + Uen[n] +
(
T [n]− Ts[n]

)
+
(
Uee[n]− Us[n]

)
.

These first three terms may be calculated with relative ease. The remaining terms are known as
the exchange-correlation (XC) energy

Exc[n] =
(
T [n]− Ts[n]

)
+
(
Uee[n]− Us[n]

)
(3.16)

and they include everything that is not described by Ts[n], Us[n] and Uen[n], i.e., the complex
many-electron effects [17]. The DFT still holds, and guarantees that the expression is exact so long
as Exc[n] is exact. For a non-interacting system the XC energy is zero, but for a realistic system it
is probably tremendously complex since it should be able to describe very intricate many-particle
effects for any physical system, like for instance metals, insulators and molecules [17]. For this
reason, the exact form of the XC functional is unknown, and we must settle for approximations
(to be discussed in the next chapter). The exact total energy may now be expressed as

E[n] = Ts[N ] + Us[n] + Uen[n] + Exc[n]. (3.17)

The next step is utilizing the variational principle introduced earlier, and it is used to find the
ground-state total energy, and to obtain many single-electron equations from the many-electron
problem. The total energy is minimized by using the Lagrange multiplier method, with the
constraint that the wave functions should be orthonormalized. The full derivation can be found
in Appendix A.2, and this results in the Kohn-Sham single electron equations

(−h̄2∇2
j

2me
+ Veff (r)

)
ψsj (rj) = εsjψ

s
j (rj), (3.18)

where εsj is the eigenvalue of the equation and is often called the KS-eigenvalue and Veff is the
effective potential of the system, defined as
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Veff (r) = Ven(r) + Vxc(r) + VH(r), (3.19)

where Vxc = ∂Exc[n(r)]
∂n(r) , VH is describes the electron-electron interaction and is called the Hartree

potential, and Ven is the external potential, often referred to the nuclear-electron interaction.

By utilizing the equations above, it can be shown that the total energy can be expressed as

E[n] =
∑
j

εsj −
q2

2

∫ ∫
n(r)n(r′)

|r− r′| drdr
′ −
∫
Vxc(r)n(r)dr + Exc[n], (3.20)

where the derivation of this equation can found in Appendix A.2. The missing piece, namely the
XC energy as a functional of electron density, will be discussed in the next chapter.
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Chapter 4

Practical aspects of DFT

In the previous chapter, we laid down the fundamental basics of DFT. In this chapter, the
practical aspects and numerical implementations of DFT will be discussed.

4.1 Approximations to the exchange-correlation energy

As mentioned earlier, the exchange-correlation functional is not precisely known and therefore
needs to be approximated. Even so, there have been developed many methods for that purpose,
but in this study we will focus on the most popular approximations, that are relevant, and they
will be discussed in the following subsections.

4.1.1 The Local Density Approximation
The simplest method for approximating the exchange-correlation energy, is the local density
approximation, also known as LDA. It assumes that the exchange-correlation energy, Exc[n(r)],
can approximated by the exchange-correlation energy of an electron in an homogeneous electron
gas of the same density n(r).

Exc[n(r)] =

∫
n(r)εxc[n(r)]dr (4.1)

where εxc is the exchange-correlation energy per electron of a homogeneous electron gas of density
n(r) [20].

As it is the simplest exchange-correlation functional, it accordingly has a few drawbacks. One of
them is the incomplete cancellation of the self-interaction term, which leads to a repulsion that
may cause artifical repulsion between electrons, and hence increased electron delocalization [21].
In addition, LDA has proven challenging to use when studying atoms and molecules because of
their rapidly varying electron densities, however, the LDA is seen as succesful for bulk materials
because of the slowly varying electron density [9]. Still, the LDA works surprisingly well for many
systems with relatively low computational cost, which makes the LDA an overall good estimation
for the exchange-correlation functional.

4.1.2 The Generalized-Gradient Approximation
Another method for approximating the exchange-correlation energy, is the generalized gradient
approximation, often shortened down to GGA. The physical idea behind GGA is simple; real
electron densities are not uniform, so including information of the gradient of the electron density
can create a functional with greater flexibility to describe real materials. In GGA, the exchange-
correlation energy, Exc, is expressed using both the local electron density and the gradient of the
electron density [9]:
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Exc[n(r)] =

∫
f(n(r),∇n(r))dr (4.2)

However, as opposed to LDA, the GGA scheme is not unique. Thus, there is a vast number of
possibilities as to which form of the function f(n(r),∇n(r)) could take. Two widely used GGA
functionals are PW91 (Perdew-Wang [22, 23]) and PBE (Perdew-Burke-Ernzerhof [24, 25]). In
this project we will utilize PBE as the GGA method.

4.1.3 Van der Waals interactions
Dispersion interactions, also known as van der Waal interactions play an incredibly important role
in our everyday lives, especially at the moelcular level. Unfortunately, the approximations to the
XC energy we have discussed so far (LDA, GGA) are not able to describe long range non-covalent
interactions. Therefore, functionals that can take this into account have been developed, such
as vdW functionals. However, there exist several different methods for how to add the vdW
corrections into the current DFT approximations. One such method is the DFT-D method where
the idea is simply to add a dispersion-like contribution to the total energy

ETotal = EDFT − S
∑
i 6=j

Cij
r6ij

fdamp(rij) (4.3)

where EDFT is the bare Kohn-Sham energy, rij is the distance between atoms i and j, Cij is
a dispersion coefficient for atom i and j, fdamp(rij) is a damping function to avoid unphysical
behavior of the dispersion term for small distances [9]. The vdW functionals we will explore in
this work are DFT-D3, rev-vdW-DF2 and vdW-opt88.

4.1.4 Hybrid Functionals
To increase the accuracy of DFT, a new type of XC-energy was developed to tackle this issue. The
idea was to intermix exact HF exchange with the Exc functionals from LDA or GGA, therefore
these kind of functionals were named hybrid functionals. There exists many combinations of LDA
or GGA and HF which are different and give rise to different hybrid functionals.

One such hybrid functional was developed by Heyd et al. [26] called HSE, and is expressed as

EHSExc = αEHF,SRx (ω) + (1− α)EPBE,SRx (ω) + EPBE,LRx (ω) + EPBEc ,

where α is the mixing parameter, and ω is an adjustable parameter controlling the short-
rangeness of the interaction. EHF,SRx (ω) is the short-range Hartree-Fock exact exchange functional,
EPBE,SRx (ω) and EPBE,LRx (ω) are the short- and long-range components of the PBE exchange
functional, and EPBEc is the PBE correlation functional [26]. Standard values of α and ω are
1
4 and 0.2, respectively. This gives rise to the functional HSE06, and it has been shown to give
good results for most systems. Hybrid functionals are known to produce better results than
conventional DFT functionals, but the disadvantage of using hybrid functionals are that they
possess a much higher computational cost than the standard DFT functionals.
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4.2 Modeling of Materials

A DFT-calculation involves solving the Kohn-Sham single-electron equation, shown in Equation
3.18. This set of equations can be solved self-consistently with an iterative method, which will be
explained in the next section. However, to accomplish this, the single-electron wave functions in
Equation 3.18 are needed. There exists many methods that try to construct the single-electron
wave functions, and in the case of crystalline materials, the Bloch function is a popular way of
describing such systems, since it takes into account both the periodicity of a crystal and its finite
size. The single-electron wave function using Bloch functions can be written as

ψk(r) = eikruk(r), (4.4)

where eikr is called a plane wave, unk(r) is known as a Bloch wave and k is the wave vector. The
Bloch wave can be expressed

uk(r) =
∑
G

uk+Ge
iGr (4.5)

which is a sum of plane waves with wave vector G, where G is a reciprocal lattice vector.
Combining the two equations above, one can rewrite the wave function to

ψk(r) =
∑
G

uk+Ge
i(k+G)r, (4.6)

where the equation is linked with the reciprocal space. Therefore, the Kohn-Sham equation is
usually solved in the reciprocal space.

However, the Bloch wave expressed through the plane waves have it’s drawbacks. The plane
waves are most suited to describe free electrons, so the electrons found in the area far away from
the nuclei, such as the valence electrons are described very well. Unlike the electrons found in the
areas close to the nuclei, such as the core electrons, which behave differently. This does not mean
that the plane waves cannot describe the core electrons, but to be able to do it a large number of
plane waves are required, which in turn increases the computational cost of the calculation.

Fortunately there are methods that deal with this problem, and one such method is to use
pseudopotentials, which is a effective external potential that treats the inner electrons as frozen,
and only focuses on the valence electrons. This method is supported by the fact that the properties
of materials are largely dominated by the valence electrons of the atoms and the states of core
electrons and the nucleus typically remain unchanged upon going from the isolated atom to the
solid. This helps with keeping the computational cost lower, since the number of electrons in a
crystal quickly reach very large values as the size of the crystal grows, and by focusing only on
the valence electrons, the calculations become much easier to handle [9].

Another method for treating core electrons is the linear augmented plane wave (LAPW) method.
The main idea is to divide the space into two regions, where in the region of the valence electrons,
plane waves are used to describe them, and in the region of the core electrons another method is
used to describe them properly. A method that attempts to take advantage of both the methods
mentioned earlier, is the projected augmented wave method (PAW), introduced by Blöchl [27],
where it combines features from both the pseudopotential method and the LAPW method.
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4.3 The Self-Consistent Field Method

Up until now regarding DFT, we have only discussed the theory behind it and elements that are
important for how it is implemented. However, we have not talked about how a calculation is
actually performed, and that is what this part will try to explain.

Input: Atomic structure,
potentials and settings

Initial guess of

Use to calculate effective potential:

Solve Kohn-Sham equation:

Calculate new density :

Self consistent?

Output: energies, forces
etc. for this atomic structure

Forces converged?

Output: energies, forces etc.

NO

NO

YES

YES

R
el

ax
 d

en
si

ty

R
elax ions

Figure 4.1: Flow chart of the self-consistent field calculation. Illustration adapted from [17].
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Firstly, to solve the single-electron equations we need the effective potential Veff of the system,
however, the effective potential is depended on the density n(r) of the system, which in turn
depends on the wave functions that again depends on the effective potential. The solution
to this issue is to use an iterative method, where an initial guess on the density is guessed
as illustrated in Figure 4.1. After the initial trial density is suggested, the next step is to
calculate the effective potential using the trial density. Afterwards, the single-electron wave
functions can be calculated from the Kohn-Sham equation using the effective potential found
earlier. Then, using the newly calculated single-electron wave functions, a new density can
be formed. Now the newest density is used as a trial density and the procedure is repeated
until the minimum energy is obtained and converged. The energy is converged when the last
two iterations give the same energy, or in numerical terms, only differ by a set convergence criteria.

After the total energy for the electrons have converged, the focus is shifted towards calculating the
positions of the atoms in the structure. This is accomplished by calculating the forces between
all the atoms in the structure, and find when the forces acting on the atoms are close to zero,
because when that happens, the atoms are in their minimum energy position. To find the energy
minimum for the ions in the structure, a numerical method that deals with finding minimums of
functions are utilized. There exists many such methods, but two that are widely used are the
conjugate gradient method and quasi-Newton method.

4.4 Convergence

Solving the Kohn-Sham equations is computationally heavy, and to do it more efficiently, conver-
gence tests are performed to find the limits that is sufficient to get accurate results, and by doing
this, the computational load is reduced.

4.4.1 Energy Cutoff
If we study Equation 4.6 more closely, we observe that determining the wave function for each
k vector involves an infinite sum over the reciprocal lattice vectors G, which in a numerical
perspective is not feasible. To combat this issue, the infinite sum is truncated, with respect to
the kinetic energy of the plane waves, defined as

E =
h̄2

2me
|k + G|2, (4.7)

where the plane waves with higher energies are considered less significant than the plane waves
with lower ones. This means that the infinite sum in Equation 4.6 is truncated to only include
plane waves with kinetic energies less than some value known as the energy cutoff

Ecutoff =
h̄2

2me
G2

cutoff, (4.8)

where the infinite sum is reduced into

ψk(r) =
∑

|k+G|<Gcutoff

uk+G(r)ei(k+G)r. (4.9)

To find the energy cutoff that is sufficiently high enough for the system one is studying, convergence
tests are performed, where the energy of the system is calculated as a function of the energy
cutoff [9].
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4.4.2 k-points
In a practical DFT calculation, a great deal of work goes into solving integrals over the Brillouin
zone. To efficiently evaluate these types of integrals, a method developed by Monkhorst and Pack
[28], deals with this problem by choosing and weighting the k-points from a given mesh by using
the symmetry of the system. The mesh is an evenly spaced grid of k-points along the reciprocal
lattice vectors of the structure, and is denoted M1 ×M2 ×M3, and by taking advantage of the
symmetry of the system, the integrals do not need to be evaluated in the entire BZ, but only
in a reduced region called the Irreducible Brillouin Zone (IBZ). This means that the number of
k-points is greatly reduced, which leads to the numerical effort also being significantly lessen. This
is all valid when working on bulk structures, but when determining the k-points for 2D-structures,
the spaced grid of k-points can be further simplified into only using one k-point in the direction
with no surface, due to the electron density tailing off to zero a short distance from the surface.
Another thing that should be mentioned is that the integrals solved over the Brillouin zone may
sometimes be discontinuous, but there exists methods which deals with these kind of problems,
and two common methods are known as the tetrahedron method and the smearing method [9].

To find a sufficient number of k-points to use for the system one is working on, convergence
tests are performed, where the energy of the system is calculated as a function of the number of
k-points used in the mesh.
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Chapter 5

Computational Details

This chapter contains all the computational details necessary to reproduce the results. The
chapter starts with information about the simulation package, choice of XC functional and various
settings. Then, convergence tests are presented so that the reader can assess the accuracy of
the calculations. Finally, the calculation for the electronic structure and optical properties are
discussed, for both the bulk structure and two-dimensional structures.

5.1 Vienna Ab Initio Simulation Package

The Vienna Ab initio Simulation Package often shortened down to VASP (Kresse and Hafner
[29, 30], Kresse and Furthmüller [31], Kresse and Furthmüller [32]) is used to perform the
calculations in the present work. In this section a brief insight into how calculations are performed
with VASP is given, and the settings used in this thesis.

5.1.1 Input Files
Running a simulation in VASP requires four main input files;

• INCAR:
This file contains all the input parameters, that determines how the calculation is initialized,
convergence criteria and ultimately how it is executed.

• POSCAR:
This file defines the crystal structure (atomic positions and unit cell parameters) of your
structure.

• KPOINTS:
Contains specifications for the k-point mesh projected onto the Brillouin zone. In this file
one also specifies where the mesh should be centered within the BZ.

• POTCAR:
Contains information about the pseudopotential used. VASP provides a catalogue containing
already calculated pseudopotentials for a large list of elements in the periodic table. Different
pseudopotentials can also be chosen for each element.

All VASP files used in this thesis can be found on https://github.com/Moejay10/DFT.

5.1.2 Settings and Functionals
All calculations were performed using the Projector Augmented Wave method [27, 33] as imple-
mented in VASP. The break condition for the electronic SCF-loop was set to 10−6 eV, and the
Gaussian smearing method was used with a width of 1 meV.

21

https://github.com/Moejay10/DFT


The functionals used in this work was LDA [20], PBE-GGA [34, 35] and variants of vdW functionals
such as DFT-D3 [36], vdW-opt88 [37, 38] and rev-vdW-DF2 [39]. In addition, the HSE06 [40]
functional was also used in some cases to calculate the bandgap of the different structures.

5.2 Bulk

5.2.1 Convergence Tests
Convergence tests of the total energy with respect to the energy cutoff and the k-point density
were performed and are reported for the PBE functional in Table 5.1 and 5.2. The primitive bulk
BaSi2 unit cell was used for all the tests. The energy cutoff was varied from 300 to 650 eV, and
the results are shown in Table 5.1. At 500 eV, the total energy changes by less than 2 meV, and
so the energy cutoff was set to 500 eV for all calculations where the bulk structure was used.

Ecut Etot[eV] ∆Etot[meV]

300 -110.609
350 -110.638 29
400 -110.647 9
450 -110.649 2

500 -110.650 1

550 -110.652 2
600 -110.654 2
650 -110.655 1

Table 5.1: Convergence test of the total energy per unit cell of BaSi2 with respect to the energy
cutoff.

The total energy was also calculated as a function of the k-point density, which in each direction
is defined as the number of k-points per unit reciprocal length ( 2π

Å ), rounded up to the closest
integer. The k-point density was varied from 2 to 5, as shown in Table 5.2. The change in total
energy is less than 2 meV for the 4x5x3 mesh, and so a k-point density of 5 was used for all
calculations where the bulk structure was used.

Nk mesh Etot[eV] ∆Etot[meV]

2 (2x2x2) -110.702
3 (3x3x2) -110.810 108
4 (3x4x3) -110.808 3

5 (4x5x3) -110.808 1

Table 5.2: Convergence test of the total energy per unit cell of BaSi2 with respect to the k-point
density.
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5.2.2 Electronic Structure
The electronic structure of a material can be described and analyzed through the materials band
structure and density of states. From Section 2.1.4, we know that bands are formed when many
atoms come together and form larger structures. The calculation of the electronic band structure
involves the total energy of the system being plotted as a function of the wave vector k, which
is done in the Brillouin zone. The Brillouin zone of our orthorombic lattice is illustrated in the
Figure 5.1.

Figure 5.1: Brillouin zone of the orthorombic lattice [41].

Ideally, one would like to know the electron energies in the entire Brillouin zone, but it is compu-
tationally heavy, therefore it is more practical to pick out special points and directions in the
Brillouin zone, which one can see in Figure 5.1. For our calculations, the high symmetry points
chosen was Γ, Y, T, Z, and X.

To help us understand the band structure and more of the materials electronic structure, the
density of states is also often calculated. It provides information about the number of electronic
states in a given energy interval.

The VASP calculations of the band structure and density of states, involves a two-step process,
where the structure has already been relaxed.

• Firstly, a self-consistent calculation is performed.
• In the second calculation step, which is a non-SCF calculation, the calculated density from

the previous step is used to calculate the band structure/density of states.

5.2.3 Optical Properties
To study the optical properties of a material, the complex dielectric function is needed. The
dielectric function, ε(E), is described as a three-dimensional rank 2 tensor (with components α
and β), and defined as

ε(E) = ε1(E) + iε2(E), (5.1)

where ε1(E) is the real part and iε2(E) is the imaginary part of the complex dielectric function.
The imaginary part of the complex dielectric function ε2(E) can be determined using the following
equation

εαβ2 (E) = lim
q→0

4π2e2

Ωq2

∑
c,v,k

2wkδ(Ec(k)− Ev(k)− E)× 〈uc(k + eαq|uv(k)〉 〈uc(k + eβq)|uv(k)〉∗ ,

(5.2)

where q is the wave number, uc(k) and uv(k) are the cell periodic parts of the eigenfunctions for
the conduction and valence band with energies Ec(k) and Ev(k), respectively. Ω is the primitive
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cell volume, e is the electron charge, wk is the weight of the k-points, and eα and eβ are the unit
vectors for the three Cartesian directions x, y, and z.

The corresponding real part ε1(E) of the dielectric function is obtained via the Kramers–Kronig
transformation relation

εαβ1 (E) = 1 +
2

π
P

∫ ∞
0

εαβ2 (E′)E′

E′2 − E2 + iη
dE′ (5.3)

where P is the principal value and η is a sufficiently small number.

The absorption coefficient is determined directly from the complex dielectric function through
the relation

ααβ(E) =

√
2E

h̄c

√√√√√εαβ1 (E)2 + εαβ2 (E)2 − εαβ1 (E)

2
, (5.4)

where c is the speed of light [42].

The VASP calculations of the dielectric function were performed in two steps.

• Firstly, a self-consistent calculation is performed.
• In the second calculation step, which is a non-SCF calculation, we used the outputs from the
previous SCF calculation and computed the dielectric function, by using the independent
particle approximation.

5.3 2D-Layers

5.3.1 Creation of Layers
The construction of a 2D system is done by starting off with the bulk, shown in Figure 5.2,
and then insert a vacuum in one of the directions, in this case we have chosen the a-direction,
illustrated in Figure 5.3.

Figure 5.2: The bulk structure of BaSi2. The green spheres represent barium atoms and the
blue spheres represents the silicon atoms. This figure is produced using the software VESTA [11].

Figure 5.3 shows a two layer (L2) 2D-structure of BaSi2, where each layer consists of 12 atoms
with four Ba-atoms and eight Si-atoms. By adding or removing such layers can we create n-layers,
where n = 1, 2, 3, . . . . However, when modelling 2D-materials, one must find how much of a
vacuum is needed to simulate the 2D-system. The easy thing one can do is to insert a very large
vacuum, but that will be computationally expensive. So in order to find the lowest amount of
vacuum needed to simulate the 2D-system, convergence tests are required.
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Figure 5.3: The bulk structure with added vacuum in the a-direction, Observed from down the
b-direction. This figure is produced using the software VESTA [11].

5.3.2 Convergence Tests
In the case of the 2D-structures, one firstly has to determine the vacuum thickness of the structure,
before doing convergence test of the total energy with respect to the energy cutoff and the k-point
density. The two layered BaSi2 unit cell was used for all the tests, using the PBE functional. The
vacuum thickness was varied from 2 to 20 Å, and the result are shown below in Table 5.3. At 14
Å, the total energy changes by less than 15 meV, but to be on the safe side, the vacuum thickness
was set to 15 Å for all calculations regarding the layered structures.

Vacuum [Å] Etot[eV] ∆Etot[meV]

0.0 -81.127
2.0 -72.414 8713
4.0 -75.326 2912
6.0 -73.155 2171
8.0 -72.622 533

10.0 -72.481 141
12.0 -72.440 41

14.0 -72.426 14

16.0 -72.420 6
18.0 -72.417 3
20.0 -72.415 2

Table 5.3: Convergence test of the vacuum thickness of L2 BaSi2 with respect to the energy
difference.
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After that was decided, the convergence tests of the total energy with respect to the energy cutoff
and the k-point density were calculated. Table 5.4 shows the energy cutoff was varied from 300
to 650 eV, and at 500 eV, the total energy changes by less than 3 meV, and so the energy cutoff
was set to 500 eV for all calculations regarding the layered structures.

Ecut Etot[eV] ∆Etot[meV]

300.0 -72.382
350.0 -72.409 26
400.0 -72.418 9
450.0 -72.425 7

500.0 -72.426 2

550.0 -72.421 5
600.0 -72.419 2
650.0 -72.418 1

Table 5.4: Convergence test of the total energy of L2 BaSi2 with respect to the energy cutoff.

Table 5.5 shows how the k-point density was varied from 3 to 6. The change in total energy is
less than 1 meV for the 1x6x4 mesh, and so a k-point density of 6 was used for all calculations
where the layered structure was used.

Nk mesh Etot[eV] ∆Etot[meV]

3 (1x3x2) -72.428
4 (1x4x3) -72.415 13
5 (1x5x3) -72.418 3

6 (1x6x4) -72.418 0

Table 5.5: Convergence test of the total energy of L2 BaSi2 with respect to the k-point density.

5.3.3 Electronic Structure
The VASP calculations regarding the electronic structure for the 2D-layered structures are mostly
the same as for the bulk. However, the electronic band structure calculation differs a little
for 2D-materials than the bulk structure. The electronic band structure for 2D-materials are
calculated along the points that are in the plane of the 2D-material. In our case we have the
vacuum along the a-direction, and so the symmetry point X is neglected for the electronic band
structure calculation, and the band structure is calculated along the symmetry points Γ, Y, T, Z.

5.3.4 Optical Properties
The optical calculations for a two-dimensional structure was completed in the same manner as
for the bulk described before, where the complex dielectric function and absorption coefficient
were determined. However, the calculations for the two-dimensional structure will need to take
the vacuum into account, and this subsection will explain how that was done.

Firstly, we have the imaginary part and real part of the dielectric functions obtained from the
VASP code, just as in the bulk, and we denote them here as ε̂2(E) and ε̂1(E), where they have
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not taken the vacuum in to account. Our assumption is that the dielectric function is zero in the
vacuum region, and by splitting up the imaginary dielectric function in a vacuum region and a
non vacuum region, we end up with the expression

ε̂2(E) = ε2(E) · VL
V

+ εvac2 (E) · (V − VL)

V
, (5.5)

where V is the total volume of the 2D structure and VL is the volume of the layers, ε2(E) is the
imaginary part of the dielectric function in the non vacuum region and εvac2 (E) is the imaginary
part of the dielectric function in the vacuum region. This is illustrated in Figure 5.4.

Vacuum

Thickness of layers

: Volume of the layers

: Volume of the total structure

Figure 5.4: Schematic representation of the two layered structure, divided into a vacuum region
and non-vacuum region.

We are interested in the imaginary part of the dielectric function which is in the non vacuum
region, and since we assumed that the dielectric function is zero in the vacuum, we get that
εvac2 (E) = 0, which modifies the expression above to

ε̂2(E) = ε2(E) · VL
V

=⇒ ε2(E) = ε̂2(E) · V
VL
.

Now we have an expression for the imaginary part of the dielectric function where we have taken
the vacuum into account. Furthermore, the total volume of the structure is just the lattice
parameters multiplied with each other, V = a · b · c, but VL = b · c · t, where t is the thickness
of the 2D-structure. That means that the expression for the imaginary part of the dielectric
function can be simplified further into

ε2(E) = ε̂2(E) · a
t
. (5.6)
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With this, we can now find the real part of the dielectric function using the Kramers-Kronig
transformation as before

ε1 = 1 +
2

π
P

∫ ∞
0

ε2(E′)E′

E′2 − E2 + iη
dE′ and ε̂1 = 1 +

2

π
P

∫ ∞
0

ε̂2(E′)E′

E′2 − E2 + iη
dE′ (5.7)

ε1 = 1 +
2

π
P

∫ ∞
0

V

VL

ε̂2(E′)E′

E′2 − E2 + iη
dE′ (5.8)

ε1 = 1 +
V

VL

(
ε̂1(E)− 1

)
(5.9)

where ε̂1(E) is the real part of the dielectric function we calculate using VASP and the vacuum
has not been taken into account, while ε1(E) is the real part of the dielectric function, with the
vacuum considered. Now we can calculate the absorption coefficient for the 2D structures by
using the same expression shown earlier in Equation 5.4, using the real and imaginary part of the
dielectric functions where the vacuum has been taken into account.

28



Chapter 6

Results and Discussion

6.1 Bulk Properties

To be able to understand the results of BaSi2 at the 2D level, it is important to also understand
it’s properties and behaviour as a bulk structure. Therefore, the respective bulk material BaSi2
have been investigated computationally. Furthermore, to determine which functional to be used
when investigating the two dimensional structures, many different functionals have been chosen
and compared with each other and available results from the literature, with respect to their
structural, electronic and optical properties. To be certain about the selection of the functional,
other bulk materials such as BaGe2, which has the same crystalline structure as BaSi2, have also
been investigated computationally, to verify the results obtained from bulk BaSi2. The vdW
functionals have been included in this study as well, due to the fact that we will be looking at
2D-layered structure afterwards, where van der Waals interactions occur in such systems.

6.1.1 Structural Properties
The relaxed lattice parameters of BaSi2 and BaGe2 are found in Table 6.1. In addition, there are
also listed experimental data for some of the materials, regarding BaSi2 and BaGe2.

BaGe2 BaSi2

Functional a [Å] b [Å] c [Å] a [Å] b [Å] c [Å]

DFT-D3 9.137 6.828 11.632 8.948 6.709 11.492
LDA 8.907 6.700 11.379 8.759 6.604 11.284
PBE 9.273 6.882 11.740 9.055 6.764 11.588

rev-vdW-DF2 9.092 6.832 11.630 8.906 6.726 11.505
vdW-opt88 9.171 6.873 11.698 8.968 6.761 11.577
HSE06 [12] 9.111 6.854 11.696 8.930 6.752 11.530

Experimental [43] 9.05 6.83 11.65
Experimental [44] 9.063 6.803 11.63
Experimental [45] 8.942 6.733 11.555
Experimental [46] 8.92 6.80 11.58

Table 6.1: Lattice parameters of the relaxed unit cell of BaGe2 and BaSi2 obtained from DFT
using the DFT-D3, LDA, PBE, rev-vdW-DF2 and vdW-opt88 functionals. The experimental
values of BaGe2 (Betz et al. [43], Imai [44]) and BaSi2 (Evers [45], Schäfer et al. [46]), as well as
other DFT calculated results using the HSE06 functional (Kumar et al. [12]) are included for
comparison.
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From table 6.1 we observe that the calculated lattice parameters for both materials are similar
to the experimental reported values and to those obtained from hybrid functional calculations.
However, when closely studying the performance of each functional individually, we see some
clear differences between them. Firstly, let us discuss the performance of the LDA functional.
The present work confirms the well-known trend that LDA underestimates lattice constants, and
this is observed for both BaSi2 and BaGe2, when compared to the experimental reported values.
In the case of the PBE functional, it is well known that GGA-functionals overestimates the
lattice constants. This is clearly evident for the material BaGe2, where all the lattice constants
are too large compared to the experimental reported values. For BaSi2, this only occurs for
the lattice constant a, when we compare the PBE-functional with the experimental reported values.

The lattice parameters obtained from the vdW-functionals (DFT-D3, rev-vdW-DF2 and vdW-
opt88), are in good agreement with the experimental reported values, regarding both BaSi2
and BaGe2. In the matter of BaGe2, the vdW-functionals and the hybrid functional performed
much better than the conventional DFT functionals PBE and LDA. Moreover, it seems that the
hybrid functional obtained from Kumar et al. [12], and the vdW-opt88 functional all have larger
values for the lattice parameters for BaGe2, when compared to the experimental values. The
lattice parameter values from functional rev-vdW-DF2 and DFT-D3 seems to be closer to the
experimental values than vdW-opt88 and hybrid functional. We observe something similar for
BaSi2, which is that the lattice parameters calculated by rev-vdW-DF2 functional is lower than
the hybrid functional and vdW-opt88 functional.

Overall, when looking at the results of all the functionals for both materials, it seems that the
rev-vdW-DF2, vdW-opt88 and HSE06 are in closest agreement with the experimental reported
values. Between the rev-vdW-DF2 and vdW-opt88 functional, there is no clear indication from
the results which of them performed the best, at least for BaSi2 and this could be due to the
larger deviation in the experimental results. Whereas in the case of BaGe2 the rev-vdW-DF2
functional seems to be closer to the experimental results, where the deviation in the experimental
results are smaller than for BaSi2.

Since we will be studying 2D-layered structures, a functional that can describe the vdW forces
should be chosen, and as we have seen from the results from Table 6.1, vdW forces seems to also
be affecting the bulk structures. Therefore, we will primarily consider the vdW functionals for
the further study in this thesis. To help us determine which vdW functional we were going to
use, we looked at the more thoroughly researched study completed by Tran et al. [47], where
they looked into numerous different functionals, including many varieties of vdW functionals.
They tested the functionals on countless different types of materials, such as weakly bound solids,
namely rare gases, layered systems such as graphite, and molecular solids, but also strongly bound
solids. Their findings showed that among the tested functionals, the rev-vdW-DF2 functional
was very accurate for weakly bound solids, but also quite reliable for strongly bound solids. In
addition, they also mentioned in the paper that rev-vdW-DF2 seemed to produce good results
for layered systems such as graphite, which could indicate that it could also work well for other
similar structures. From their findings, it seems that rev-vdW-DF2 might be the vdW-functional
of choice, and therefore we will use this functional throughout this thesis, to examine the bulk
structures and 2D-structures further.
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6.1.2 Electronic Structure
Here, we analyze the electronic properties of BaSi2 and BaGe2 by calculating both the electronic
band structure and the atomic resolved DOS, and it was calculated from the relaxed unit
cell produced by the functional rev-vdW-DF2. The band structure was plotted along the lines
connecting the high-symmetry points in reciprocal space Γ−Y −T −Z−Γ−X, which corresponds
to the points Γ = (0, 0, 0), Y = (0, 1/2, 0), T = (0, 1/2, 1/2), Y = (0, 0, 1/2), X = (1/2, 0, 0), and
the results are shown in Figure 6.1.
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Figure 6.1: Electronic band structure of a) BaGe2 and b) BaSi2 along high symmetry directions,
calculated by the rev-vdW-DF2 functional. The VBM and CBM are presented in figure as the
green and red point, respectively.
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From Figure 6.1, it is easy to observe that both compounds have a similar band structure. Both
compounds seems to possess an indirect band gap, since the VBM and CBM is located at different
points, where VBM is located along the line between the Γ-point and Y -point, and the CBM
is found at the T -point. These findings are in good agreement with the earlier published result
from Kumar et al. [12], where they studied both compounds, but instead they used the hybrid
functional. However, unlike the small difference of the lattice parameters for the two functionals
(rev-vdW-DF2 and HSE06), the difference in the band gap energy is quite significant. Table 6.2
shows the calculated band gap energies, where they are also compared to experimental data.

Table 6.2: Fundamental band gap (Eg) and lowest direct band gap (Edirg ) in the unit eV,
together with the available experimental data. Energies were estimated using the rev-vdW-DF2
functional and the HSE06 functional (in parenthesis).

Eg Edirg Eg (Exp)

BaGe2 0.38 (0.74) 0.56 (0.93) 0.97-1.0 1

BaSi2 0.67 (1.12) 0.82 (1.28) 1.1-1.3 2

1 References [48, 49]
2 References [50, 51, 52, 53, 54, 55]

The hybrid functional seems to be in better agreement with the experimental data for both
compounds, than the rev-vdW-DF2 functional, which underestimates the band gap energy by a
large margin. These results agree with the literature found in DFT, where conventional DFT
functionals suffers from delocalization error, which is responsible for underestimation of band
gap energies for materials. The reason hybrid functionals are known to improve the band gap
energies of materials, comes from the mixed Hartree-Fock exchange which rectifies some of the
issues found in conventional DFT. However, this improved accuracy comes at a price, which
is that hybrid calculations are progressively more resource demanding than conventional DFT
calculations. The smallest direct band gap Edirg , which is located near the VBM, is only ∼ 0.2 eV
higher than the fundamental band gap. It is also often referred to as the optical band gap, and
it is important when working on the optical properties. We will discuss it more in the section
dealing with the optical properties. The band gaps of both compounds makes them applicable in
solar cells, where it is desirable for materials in solar cells to have a band gap energy between 1.0
and 1.5 eV, according to Shockley and Queisser [56].

To understand the contribution of different orbitals to the electronic states in BaSi2 and BaGe2,
the atomically resolved density of states were calculated and presented in Figure 6.2. Both
compounds seems to exhibit the same properties in the valence band area, where it is dominated
by the Si/Ge -p states in BaSi2 and BaGe2, respectively. Furthermore, the contribution from the
Ba-p states are also visible in the valence band region, concerning both materials. In the lower
energy region of the valence band, we also observe a big contribution from the Si/Ge sp-states
at approximately 6 eV below the VBM, with a small contribution from the Ba p-states. This is
also what the Kumar et al. [12] found in their study of the materials when utilizing the hybrid
functional. However, in the conduction band, the result for BaGe2 obtained by rev-vdW-DF2
and the hybrid functional by Kumar et al. [12] are different. The results from the rev-vdW-DF2
functional tells us that both the Ba-d state and Ge-p state contribute the most in that region,
but the results published by Kumar et al. [12] shows that the Ba-d states contributed the most,
and then followed by Ge-p states. In the case of BaSi2, the rev-vdW-DF2 seems to be in good
agreement with the results found in the paper by Kumar et al. [12], regarding the conduction
band area, where Ba-d state contributes the most with a smaller contribution from Si-sp states.
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Figure 6.2: Atomically resolved DOS of a) BaGe2 and b) BaSi2. The zero of the absolute energy
is set to the VBM.
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6.1.3 Optical Properties
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Figure 6.3: The components of the real and imaginary dielectric function, plotted against the
photon energy across the xx, yy, and zz tensors, for BaGe2 and BaSi2. The left-hand panels show
the real part ε1 and the right-hand panels show the imaginary part ε2 of the dielectric function.

Figure 6.3 displays the real (left figure) and imaginary parts (right figure) of the dielectric function,
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and it shows that the two compounds exhibit weak anisotropy in both the real and imaginary
parts of the components εxx(E), εyy(E), and εzz(E). BaGe2 and BaSi2 also seems to have similar
dielectric response spectra, which could be due to the fact that both materials share a similar
electronic structure and that the dielectric function depends on the electronic structure of the
material. These results are in good agreement with the findings of [12]. Furthermore, if we
observe ε2 a little closer, we see that it is zero up until a certain energy, and that energy is the
optical band gap energy, which was presented in Table 6.2.
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Figure 6.4: The averaged absorption coefficient of BaSi2 and BaGe2 are plotted against the
photon energy, where a) shows the onset absorption region and b) shows the absorption over a
broader energy region.

The average polarization-independent absorption coefficient, defined as α(ω) = (αxx(E)+αyy(E)+
αzz(E))/3, is seen plotted against the photon energy in Figure 6.4. As explained in the previous
chapter, the absorption coefficient is directly obtained from the dielectric function, so the ani-
trosopy we observed for the dielectric function, was also observed for the absorption coefficient.
Another thing that is similar between the absorption coefficient and the dielectric function is the
onset of energy for α(E) and ε2(E), where the onset depends on the optical band gap. This is
easily observed in Figure 6.4, especially for BaGe2 that has an onset absorption around 0.5 eV
and the optical band gap energy was 0.56 eV. Figure 6.4 also shows that both compounds have a
similar absorption coefficient, and the only difference is the onset absorption, which is due to
the materials having different optical band gap energies. Kumar et al. [12] had the same result,
but the onset of absorption between rev-vdW-DF2 and that of HSE06 was different, and that is
because the calculation of the optical band gap energy was not the same for both functionals.
We observe from Figure 6.4 that both materials seem to have a peak absorption at 4-6 eV, while
the results by Kumar et al. [12] reported having a peak absorption at 6-8 eV.
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Furthermore, the absorption coefficient of BaSi2 was measured experimentally and reported to
be approximately > 104cm−1 [57, 58, 59, 60], which is confirmed by our results and the study
conducted by [12].

6.2 Monolayer

6.2.1 Stability

L1 - Structures b [Å] c [Å] Etot[eV ] Ef/atom[meV]

Unrelaxed 6.778 11.602 -41.277 620.0
R1 6.423 11.284 -42.373 529.0
R2 5.717 11.649 -43.088 469.0

Table 6.3: Lattice parameters, total energy and the exfolation energy for the monolayer is
presented, where three different possible structures of the monolayer is compared. One is unrelaxed,
while the two other monolayer structures R1 and R2 have been relaxed using their respective
methods, quasi-Newton and conjugate gradient.

Table 6.3 shows the lattice parameters, the total energies and the exfoliation energies for different
monolayer structures, where we have included the results for the unrelaxed structure of the
monolayer, as well as two different methods of relaxations of the monolayer. The difference
between R1 and R2 comes from how the calculation was performed, where in the case for R1 the
results was obtained using the quasi-Newton method, whereas the results for R2 was obtained
using the conjugate gradient method. These two methods are used to relax the ions into their
groundstate. Looking at the total energy, it is clearly evident that the relaxation done by using
the conjugate gradient method gives a lower energy, which means that that the quasi-Newton
method found a local minima, which we could think of as a metastable system. This is not
a surprise, since the conjugate gradient method usually is better at finding global minimums
than the quasi-Newton method, which works best for systems that has a good initial positions.
However, when we look at the structural data from the two relaxations, which is illustrated in
Figure 6.5, something interesting can be observed.

(a) (b)

Figure 6.5: The structural model of BaSi2-monolayer, where we are looking down on from
the b-axis. The result for quasi-Newton is shown in a) and the conjugate gradient method is
illustrated in b).
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The system that was relaxed by using the conjugate gradient method seems to have been re-
constructed, where several of the barium atoms have shifted their positions by a large margin
compared to the unrelaxed system. This does not occur in the system relaxed by using the
quasi-Newton method. The result of the relaxation by using the conjugate method seems to
suggest that the monolayer of BaSi2 is not a stable structure, but could this have been known in
advance?

It turns out that it could have, according to the paper by Choudhary [61], where they studied 2D
materials, and suggested a method to identify possible 2D materials that are vdW bonded from
their bulk counterparts. Their method used the lattice constants from the PBE calculated results
for the bulk in non-cubic crystal systems and compared them with available experimental data.
The formula they used was

δ =
|lPBE − lICSD|

lICSD
,

where δ is the relative difference between ICSD (experimental data) and PBE (DFT calculations
using the PBE functional), and l is the lattice constants. By utilizing this method they were able
to identify many possible 2D materials. They suggested that a δ greater than or equal to 5% as
the screening criterion, however they discussed the possibility that even δ as low as 3.5% can be
used as the screening criteria.

By implementing their method on our material BaSi2, we end up with the values presented below.

δa δb δc

Experimental [45] 1.3% 0.5% 0.3%
Experimental [46] 1.5% 0.5% 0.1%

Table 6.4: The relative difference between the lattice parameters calculated using the PBE-
functional for the bulk system of BaSi2 and the experimental values by Evers [45], Schäfer et al.
[46].

Table 6.4 showcases the relative difference between the experimental data for BaSi2 and the DFT
calculated results using the PBE-functional which was presented earlier in Table 6.1. We observe
that the relative difference, δ, is nowhere near 3.5% and even further away from 5%, which does
suggest that BaSi2 may not be an ideal 2D-structure, at least not as a monolayer.

What if we instead use the metastable system calculated by the quasi-Newton method, maybe
that has a possibility as a 2D-structure? The paper by Choudhary [61] also had another way
of studying the stability of a 2D material, and that was through the exfoliation energy. They
defined the exfoliation energy for 2D materials as

Ef =
E1L

N1L
− Ebulk
Nbulk

(6.1)

where E1L and Ebulk are the energies of the single layer and 3D bulk material, respectively.
Whereas N1L and Nbulk are the number of atoms in the single layer and bulk system. The
criterion to predict the feasibility of a 2D material using the exfoliation energy was set at 200
meV/atom, and the exfoliation energy of the different monolayers, which can be seen in Table
6.3, had all higher exfoliation energy than the criteria of 200 meV/atom. These results seems to
suggest that the BaSi2 might not be a material that is suitable as a 2D material, at least not as a
monolayer according to the findings by Choudhary [61].
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6.3 Multilayer

6.3.1 Structural Properties

Structure b [Å] c [Å]

L2 6.540 11.248
L3 6.617 11.344
L4 6.644 11.388
L5 6.660 11.409
L6 6.671 11.425
L7 6.677 11.436
L8 6.685 11.446
L9 6.687 11.452
L10 6.691 11.456
L11 6.694 11.461
L12 6.696 11.464
L13 6.698 11.466
L14 6.700 11.469
L15 6.701 11.474
L16 6.702 11.475
L17 6.703 11.476
L18 6.705 11.478
L19 6.705 11.479
L20 6.706 11.479
Bulk 6.726 11.505

Table 6.5: The lattice parameters for the 2D layered structures of BaSi2, for the two layered
system up to the twenty layered system. For the sake of comparison, the bulk values are also
presented. Vacuum is along a-direction and is therefore not included.

Table 6.5 shows the lattice parameters for the different multilayered structures of BaSi2. The
2D multilayered structures did not have the same problem of reconstruction as the monolayer.
Figure 6.6 illustrates the 2D multilayered systems for the two layered, three layered, four layered
and fifth layered struture.
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(a) L2 (b) L3

(c) L4 (d) L5

Figure 6.6: The structural model of 2D-layered BaSi2, where we are looking down on from
the b-direction for the a) two layered system (L2), b) three layered system (L3), c) four layered
system (L4) and d) fifth layered system (L5).

39



To visualize the result of Table 6.5, the values have been plotted and shown in Figure 6.7, where
it is easy to see that when the number of layers increase in the system, the lattice parameters b
and c increases, and they seem to almost converge to the bulk’s lattice parameters.
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Figure 6.7: The lattice parameters for the 2D layered structures of BaSi2, for the two layered
system up to the twenty layered system, which was plotted against the number of layers. The
dashed line is the bulk’s lattice parameters, shown for comparison.

To understand more of the 2D layered structure, we calculated the total energy of the system per
atom, decomposition energy, cohesive energy and exfoliation energy of the 2D layered structures,
and the results are shown in Figure 6.8. They are also compared to the bulk’s values.
The decomposition energy and cohesive energy are two new terms we have just introduced. The
cohesive energy represents a measure of the bonding strength in a structure, where it is the energy
required to separate an atom from the structure. Since our structure consists of both barium
and silicon atoms, the cohesive energy will instead be the energy required to separate both a
single barium and silicon atom from the structure. The cohesive energy Ecoh is calculated by
using following equation:

Ecoh = Etot(BaSi2)− µ(Ba)− 2µ(Si).

Here, Etot(BaSi2) is the total energy of the layered or bulk structure, µ(Ba) and µ(Si) represent
the energy of the sole atoms, which was also calculated by using the rev-vdW-DF2 functional.
The decomposition energy is somewhat similar to the cohesive energy, the only difference is that
instead of µ(Ba) and µ(Si) being the energy of the sole atoms, they are the energy of the solid
structure of Ba and Si. This was also calculated by using the rev-vdW-DF2 functional.
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Figure 6.8: Different energy calculations for the 2D layered structures of BaSi2, for the two
layered structure up to the twenty layered structure. The dashed line is the bulk’s values, shown
for comparison.

From the figures above we see a clear trend where the energies of the layers seem to converge
against the bulk energy values, and this is observed regarding all energies. This is the same trend
we observed for the lattice parameters. Also, in the paper of Kumar et al. [12], they determined
BaSi2 to be thermodynamically stable, and since the 2D layered structures become more and
more similar to the bulk as the layers increase in the 2D structure, it seems reasonable to assume
that the 2D layered structures become more thermodynamically stable as the number of layers
increases in the structure. This assumption fits well with the results concerning the decomposition
energy and the cohesive energy, where as the number of layer increases in the 2D structure, it
becomes more similar to the bulk, and the energy needed for the 2D layered structure to break
down increases.

41



6.3.2 Electronic Structure
Here, the electronic properties of the layered system of BaSi2 will be discussed, where the electronic
band structure and the atomic resolved DOS is presented.
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Figure 6.9: Electronic band structure of a) L2, b) L3, c) L4 and d) L5 along high symmetry
directions, calculated by the rev-vdW-DF2 functional. The VBM and CBM are presented in
figure as the green and red point, respectively.

Figure 6.9 shows the electronic band structure for the 2, 3, 4 and 5 layered 2D system. The result
for the band structure were plotted along lines connecting high-symmetry points in reciprocal
space Γ-Y-T-Z-Γ. The first thing to notice is that the layered structures also possess an indirect
band gap, just as we saw for the bulk. However, the location of the VBM and CBM seems
to change depending on the layer thickness. The location of the VBM and CBM in the L5
system seems to be the same as for the bulk, where the VBM was located along the between
the Γ-point and Y -point, whereas the CBM was located at the T -point. This was also observed
in the electronic band structure for the thicker layers. Another interesting result regarding the
electronic structure is the band gap energy of the 2D layered structures, where Figure 6.10 shows
the band gap energy for each layer plotted against the number of layers of the 2D structure.
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Figure 6.10: The fundamental band gap energy for the two layered structure structure up to
the twenty layered structure, extracted from the electronic band structure. The bulk’s band gap
energy has been added as a comparison.

We observe from Figure 6.10 that the fundamental band gap energy seems to converge towards
the bulk’s value when the number of layer that build up the layered system is increased. There
does seem to be a bit of fluctuations of the fundamental band gap energy for the layered systems,
but the trend is that it is converging towards the bulk. This seems to suggest that the layered
system upon addition of consecutive layers, is converging to the bulk’s electronic band structure.
The same phenomenon was also observed when we looked at the lattice parameters and the energy
calculations. From the earlier discussion we had about the band gap energy for the bulk, we
know that the the rev-vdW-DF2 functional underestimates the band gap energy, and that hybrid
functionals are more suited for these kind of calculations. Therefore, we have also calculated
the band gap energy using the HSE06 functional on the layered structures. However, due to the
calculations being much more computationally demanding, only layered structures from L2-L5
was calculated. The result of this is shown in Table 6.6
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Table 6.6: Fundamental band gap (Eg) and lowest direct band gap (Edirg ) in the unit eV for
the two layered structure up to the five layered structure. The bulk’s band gap energy has been
added as a comparison. Energies were estimated using the rev-vdW-DF2 functional and the
HSE06 functional (in parenthesis).

Eg Edirg

L2 0.868 (1.319) 1.30 (1.76)
L3 0.926 (1.406) 1.17 (1.66)
L4 0.887 (1.352) 1.04 (1.51)
L5 0.839 (1.301) 0.95 (1.43)
Bulk 0.67 (1.12) 0.82 (1.28)

Table 6.6 shows that the band gap energies for the layered structures from both the rev-vdW-DF2
and HSE06 functional shares the trend of the band gap energy decreasing after the L3 structure.
This means that even though the rev-vdW-DF2 does not calculate the correct band gap energy,
it can tell us the trend of it, and what we have observed is the fact that the band gap energy is
dependent on the thickness of the layered structures. A similar trend was reported in the paper
by David K. Sang [62], where they looked into the two-dimensional structure of Te. Moreover,
the band gap energies for the 2D layered systems L2-L5 seems to be in the suitable band gap
range of 1.0-1.5 eV as per Shockley-Queisser criterion [56], and the fact that the band gap energy
can be changed depending on the thickness of the 2D-structure, makes the 2D layered structures
interesting in applications within solar cells. In the case of Edir

g , which was located near the VBM,
it is only ∼ 0.2 eV higher than the fundamental band gap energy, but that only applies for the
L3-L5 structures, and not the L2 structure, where the difference is around ∼ 0.4 eV. It will be
discussed more in the section of optical properties.

To further understand the contribution of the different orbitals to the electronic band structure
in the layered structures of BaSi2, the atomically resolved density of states have been calculated
based on the rev-vdW-DF2 functional and is presented in Figure 6.11. Only the density of states
for L2-L5 is shown. The DOS of the L2 to L5 structures are similar to the DOS of the bulk,
shown in Figure 6.11, where in the valence band area, the Si-p states is contributing the most,
followed by the Ba-d and Si-s states. They are also similar in the lower energy region of the
valence band at approximately 6 eV below the VBM, where the area is dominated by the Si-sp
orbitals. We observe the same for the DOS in the conduction band area, where the Ba-d orbitals
are dominating, and Si-p orbitals comes in second. Similar results were observed for all the thicker
layers, and the only difference was the number of states involved in the DOS, which is due to the
difference in atoms in the structures.
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Figure 6.11: Atomically resolved DOS of a) L2, b) L3, c) L4 and d) L5. The zero of the absolute
energy is set to the VBM.
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6.3.3 Optical Properties
As we mentioned earlier, to study the optical properties of 2D materials, we have to compensate for
the vacuum, and to do that we need the thickness of the layered structures. It turns out that the
thickness of the monolayer can be estimated by using the interlayer spacing of the material, which
was discussed in the paper of Hess [63], where they studied the thickness of different 2D structures.
Graphite is the perfect example of this, where it has an interlayer spacing of 3.41 Å, and the
thickness of a single graphene layer was found to be 3.4 Å. Therefore, by calculating the interlayer
distance of BaSi2, we can estimate the thickness of a single 2D-layer, and utilize this to estimate
the thickness of the multilayer system as the thickness of the monolayer times the number of layers.

To make sure that the calculation of the interlayer distance of BaSi2 is correct, a verification was
needed. Therefore, we have calculated the interlayer spacing of graphite using the rev-vdW-DF2
functional, which is shown in Figure 6.12.
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Figure 6.12: Interlayer spacing of graphite, where the total energy of the system is plotted as a
function of the interlayer distance.

The interlayer distance was calculated to be 3.325 Å, which is relative close to the experimentally
measured value of 3.4 Å of the thickness of graphene. After verifying that the rev-vdW-DF2
functional is somewhat able to calculate the interlayer distance correctly for graphite, we cal-
culated the interlayer distance of BaSi2, and the result is shown in Figure 6.13. The interlayer
distance for BaSi2 was calculated to be 4.45 Å, which means our estimate for the thickness of
the monolayer is 4.45 Å. With the thickness of the layers known, we could finally calculate the
dielectric functions and absorption coefficient of the 2D-layers.
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Figure 6.13: Interlayer spacing of BaSi2, where the total energy of the system is plotted as a
function of the interlayer distance.

The real and imaginary dielectric functions was only calculated for layers from L2 up to L5. The
results are found in Figure 6.14. As observed for the bulk, we observe that both the real and
imaginary dielectric function exhibits anisotropic behaviour, and that the dielectric response
spectra seems to be similar to the bulk. However, there are some differences between the dielectric
spectra between the layered structures. The imaginary part ε2 of L2 seems to have sharper peaks
than the other layered structures, but the peaks seems to damped when the number of layers
increase in the 2D structures.
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Figure 6.14: The components of the real and imaginary dielectric function, plotted against the
photon energy across the xx, yy, and zz tensors, for different 2D layered structure of BaSi2. The
left-hand panels show the real part ε1 and the right-hand panels show the imaginary part ε2 of
the dielectric function.
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From the dielectric functions, we calculated the absorption coefficient in the same manner as we
did for the bulk. The average absorption coefficient was calculated, and is shown in Figure 6.15.
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Figure 6.15: The aborption coefficient α(ω) of 2D-layers from L2-L5 and the bulk, plotted
against the photon energies, where a) shows the onset absorption region and b) shows the
absorption over a broader region.

From Figure 6.15 a) we observe that the onset of the absorption is different for each 2D-layer,
which is due to the difference in the optical band gap energy for the structures. The bulk which
was measured to have the lowest optical band gap energy among the structures, have its onset
first, while L2 and L3 structures have the onset at the highest photon energies. When we look at
the absorption spectra over a broader region in 6.15 b), we see that all of the layered structures
have an absorption spectra similar to the bulk, but the L3 structure does stand out from the
rest of the layered structures, where the shape of it’s absorption spectra is a little different.
However, all of the structures have an absorption in the range of 1-10 eV, and both the visible
and ultraviolet light lies in this energy level, which might make the 2D-layered structure of BaSi2
a possible candidate in photo-detection and solar cell applications. The layered structures also
seem to have a large absorption coefficient, similar to the bulk at ∼ 106 cm−1, which only makes
the 2D layered structures more applicable within solar cells.

However, the optical calculations for the layered systems were obtained using the approximation
we discussed earlier, with using the thickness of the layers. This estimation does introduce an
uncertainty and possibly errors, which is difficult to quantisize. Therefore, the results discussed
here in this subsection needs to be carefully considered, and needs to be compared with other
similar results.
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Chapter 7

Conclusion

In this chapter, the findings of this work will be summarized and further work to get an even
deeper understanding of the two-dimensional structure of BaSi2 is suggested.

7.1 Summary

In this work the structural, electronic and optical properties of the two-dimensional structure
of BaSi2 was studied, using DFT. To fully understand the two-dimensional structure of BaSi2,
calculations for the bulk structure of BaSi2 and BaGe2 were carried out to ensure the right choice
of functional for the two-dimensional study was done.

The structural calculations for the bulk structures showed that the rev-vdW-DF2, vdW-opt88
and HSE06 functional were the best performing functionals when compared to the experimental
results. Focusing on the rev-vdW-DF2 and vdW-opt88 functionals, there was no clear indication
of which functional performed the best. Therefore, we followed the discussion found in Tran et al.
[47], where they did an extensive study of different vdW-functionals, and concluded that the
rev-vdW-DF2 functional was the best choice.

The calculations regarding the electronic properties for the bulk structures showed that the
rev-vdW-DF2 functional was able to capture the features of the band structure and atomically
resolved density of states. For example, it did show both BaSi2 and BaGe2 are semiconductors
with an indirect band gap, and also the contributions from the atomic orbitals were similar to
results by Kumar et al. [12]. However, the rev-vdW-DF2 functional was not able to fully capture
all the electronic properties, such as the band gap energy. In particular, it underestimated the
fundamental band gap energy and optical band gap energy by a large margin, compared to the
HSE06 functional which was much closer to the experimental values.

The optical calculations obtained by the rev-vdW-DF2 functional showed the dielectric func-
tion and absorption coefficient to be anistropic, and the values for the dielectric function and
absorption coefficient were similar to results published by Kumar et al. [12], but there was a
difference in the onset of absorption between our results and Kumar et al. [12], which was due
to the underestimation of the optical band gap. Furthermore, the rev-vdW-DF2 was also able
to confirm the experimental results of [57, 58, 59, 60], regarding the absorption coefficient being
larger than 104 cm−1 for BaSi2.

In the case of the single layer 2D-material of BaSi2, things were not as simple. The monolayer
was relaxed using two different methods, namely quasi-Newton and conjugate gradient. The two
methods gave different results, were in the case of the conjugate gradient method, the monolayer
was reconstructured, whereas the quasi-Newton method was able to relax the system with no
reconstruction. Even though the conjugate gradient method reconstructured the monolayer, it did
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have the lowest energy compared with the structure of the quasi-Newton method, which means
that the quasi-Newton method found a local minima when relaxing the structure and obtained a
metastable structure. The conjugate gradient method does suggest that the monolayer of BaSi2
is unstable, which was confirmed by the findings in Choudhary [61], and the same study also
indicated that the metastable monolayer was unstable due to the high exfoliation energy of the
structure.

Next we looked in to the multilayered 2D structure of BaSi2. First the structural properties and
energies of the mulit-layered 2D structures were calculated using the rev-vdW-DF2 functional
and compared with the bulk’s values. The results showed a clear trend, where the increase in the
thickness of the layered 2D structures caused the properties of the 2D system to converge towards
the bulk’s properties. The energy calculations showed that the multilayered 2D structures become
more stabile as the number of layers in the structure increased.

Then the electronic properties of the 2D multilayered structures was studied. It was found that all
the layered structures were semiconducting materials with an indirect band gap, just as the bulk
structure. However, there was a difference, and that occurred for the layered structures L2-L4,
where the location of the VBM and/or CBM was different from the bulk, but after a certain layer
thickness (L5), the location of the VBM and CBM became the same as the bulk. Another inter-
esting thing about the electronic properties was the band gap energy of the 2D layered structures.
All of the layered structures had a higher band gap energy than the bulk, but as the number of
layers increased in the structure, the band gap energy seemed to converge towards the bulk’s value,
which is the same trend observed of the structural properties. Unfortunately, the rev-vdW-DF2
functional underestimates the band gap energies, and therefore the band gap energies for L2-L5
was also calculated using the hybrid functional. The results showed the same trend of the band
gap energy as the calculation done by rev-vdW-DF2 functional, where the band gap energy was
dependent on the layer thickness. Moreover, the band gap energies for L2-L5 was in the range
of 1.0−1.5 eV, which is a suitable band gap range according to the Shockley-Queisser criterion [56].

The optical calculations for the multilayered were next investigated, but due to the vacuum
introduced to the 2D-structures an approximation was made to take this into account. The
approximation utilized the thickness of the layers, which was determined through the interlayer
distance of the bulk. The thickness of the monolayer was found to be 4.45 Å, and to calculate
the thickness of the multilayered systems, the thickness of the monolayer was multiplied with
the number of layers found in the 2D-layered system. After finding the thickness of the layered
structures, the dielectric function and absorption coefficient of L2-L5 was shown. The dielectric
function was observed to be anisotropic similar to the bulk, and as the thickness of the layers
increased, the dielectric function looked more similar to the bulk. The absorption coefficient
for the 2D layered structures also exhibited anisotropic behaviour, similar to the bulk. The
absorption coefficient for all the 2D-layered structures possessed a large absorption coefficient
(∼ 106 cm−1), which makes the structures more interesting as possible candidates for solar cell
materials.
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7.2 Future Work

The work presented in this thesis has revealed new insights into the two-dimensional capabil-
ities of BaSi2. Although several questions have been answered, additional investigations and
improvements would enhance our understanding further. In particular the stability issue for the
2D-monolayer of BaSi2, which could be studied further using phonon calculations to verify the
results of unstability. The electronic properties of the 2D layered systems could also have been
studied further, where a spin orbit coupling calculation could have brought new characteristics
of the material to the open. In addition, the band gap energy of the thicker 2D-layers of BaSi2
could also be calculated using the hybrid functional, to obtain better estimates for the band gap
energies. To get a better description of the optical properties of the 2D layered structures, the
static dielectric function could be calculated. Also, when it comes to the optical calculations for
the 2D layered systems, other methods that takes the vacuum into account should be tested, to
verify the results of our calculations.
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Appendix A

Density Functional Theory

A.1 Hohenberg-Kohn Theorems

A.1.1 The Hohenberg-Kohn theorem 1
Proof:
Assume that there exists two potentials V (1)

ext (r) and V (2)
ext (r) differing by more than a constant

and giving rise to the same ground state density, n(r). Obviously, V (1)
ext (r) and V (2)

ext (r) belong
to distinct Hamiltonian’s Ĥ(1)

ext(r) and Ĥ(2)
ext(r), which give rise to distinct wavefunctions Ψ

(1)
ext(r)

and Ψ
(2)
ext(r). Because of the variational principle, no wavefunction can give an energy that is less

than the energy of Ψ
(1)
ext(r) for Ĥ(1)

ext(r). That is:

E(1) = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉
E(2) = 〈Ψ(2)|Ĥ(2)|Ψ(2)〉 < 〈Ψ(1)|Ĥ(2)|Ψ(1)〉

Assuming that the ground state is not degenerate, the inequality strictly holds. Because we have
identical ground state densities for the two Hamiltonian’s, we can rewrite the expectation value
written above as:

E(1) = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 = 〈Ψ(1)|T + Uee + U
(1)
ext|Ψ(1)〉

= 〈Ψ(1)|T + Uee|Ψ(1)〉+

∫
Ψ∗(1)(r)V

(1)
extΨ

(1)(r)dr

= 〈Ψ(1)|T + Uee|Ψ(1)〉+

∫
V

(1)
extn(r)dr

< 〈Ψ(2)|Ĥ(1)|Ψ(2)〉 = 〈Ψ(2)|T + Uee + U
(1)
ext|Ψ(2)〉

= 〈Ψ(2)|T + Uee + U
(1)
ext + U

(2)
ext − U (2)

ext|Ψ(2)〉

= 〈Ψ(2)|T + Uee + U
(2)
ext|Ψ(2)〉+

∫ (
V

(1)
ext − V (2)

ext

)
n(r)dr

= E(2) +

∫ (
V

(1)
ext − V (2)

ext

)
n(r)dr

Thus,

E(1) < E(2) +

∫ (
V

(1)
ext − V (2)

ext

)
n(r)dr

And similarly can be done for E(2):
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E(2) < E(1) +

∫ (
V

(2)
ext − V (1)

ext

)
n(r)dr

And by adding the two equations we get:

E(1) + E(2) < E(2) + E(1) +

∫ (
V

(1)
ext − V (2)

ext

)
n(r)dr +

∫ (
V

(2)
ext − V (1)

ext

)
n(r)dr

E(1) + E(2) < E(2) + E(1)

This is a contradiction. Thus, the two external potentials cannot have the same ground-state
density, and Vext(r) is a determined uniquely (except for a constant) by n(r) [17].

A.1.2 The Hohenberg-Kohn theorem 2
Proof:
Since the external potential is uniquely determined by the density and since the potential in
turn uniquely (except in degenerate situations) determines the ground state wavefunction, all the
other observables of the system such as kinetic energy are uniquely determined. Then one may
write the energy as a functional of the density.

E[n(r)] = T [n(r)] + Uee[n(r)] + Uext[n(r)]

Uext[n(r)] =

∫
Vextn(r)dr

F [n(r)] = T [n(r)] + Uee[n(r)]

E[n(r)] = F [n(r)] +

∫
Vextn(r)dr

where F [n] (is called the Hohenberg-Kohn functional) is a universal functional because the
treatment of the kinetic and internal potential energies are the same for all systems. In the
ground state, the energy is defined by the unique ground state density, n0(r)

E0 = E[n0(r)] = 〈Ψ0|H|Ψ0〉

From the variational principle, a different density n(r) will necessarily give a higher energy.

E0 = E[n0(r)] = 〈Ψ0|H|Ψ0〉 < 〈Ψ|H|Ψ〉 = E[n(r)]

It follows that minimizing with respect to n(r) the total energy of the system written as a
functional of n(r), one finds the total energy of the ground state. The correct density that
minimizes the energy is then the ground state density [17].
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A.2 Derivation of the Kohn-Sham Equation

We start of with total energy as a functional of the density:

n(r) =
∑
j

|ψj(r)|2

E[n] = T [n] + Uee[n] + Uext[n] = F [n] +

∫
Vextn(r)dr

T [n] is the kinetic energy of the many-electron system, and Uee[n] is the many-electron interaction
energy. These functionals are unique, but unknown to date. Thus, even if we have the exact
density we are not capable to calculate the exact energy.

Now we rewrite the equation above to:

E[n] = T [n] + Uee[n] + Uext[n] + Ts[n]− Ts[n] + Us[n]− Us[n]

= Ts[n] + Us[n] + Uext[n] +
(
T [n]− Ts[n]

)
+
(
Uee[n]− Us[n]

)
Where T̂s[n] and V̂s[n] are the kinetic energy and interaction energy which we can calculate.
The remaining part will be defined as the exchange-correlation energy:

Exc[n] = ∆T + ∆U =
(
T [n]− Ts[n]

)
+
(
Uee[n]− Us[n]

)
This exchange-correlation energy contains the complex many-electron interaction, but it also
contains a kinetic energy part (this fact is often forgotten when discussing the corrections).
We have transformed the many-electron problem into an unknown exchange-correlation energy.
Exc[n] is zero for a non-interacting system, but for a general system the energy has most likely
very complicated expression. Our aim is to find a good approximation to this term.
The exchange-correlation energy can be regarded as the “left-over energy” that includes everything
that we do not describe with Ts, Us and Uext.

The total energy is:

E[n] = Ts[n] + Us[n] + Uext[n] + Exs[n]

Where

Ts[n] =
∑
j

∫
ψsj
∗−h̄2∇2

2m
ψsjdr : kinetic energy in the Hartree approximation

Us[n] =
1

2

∫ ∫
q2
n(r)n(r′)

|r− r′| drdr
′ −
∑
j=1,2

q2nj(r)nj′(r
′)

|r− r′| drdr′, : electron interaction energy in the Hartree approx

Uext[n] =

∫
Vext(r)n(r)dr : external potential (ex: electron-nucleus interaction energy)

Exc[n] =
(
T [n]− Ts[n]

)
+
(
Uee[n]− Us[n]

)
: exchange-correlation energy (unknown)

Note that one can use other approximations for Ts[n] and Us[n] than Hartree. And the better
approximations one uses the lower Exc[n] will get, since Ts[n] and Us[n] will get closer and closer
to the correct values.

The next step is to use the variational principle to find the ground-state energy, and to transform
the many-electron system into many single-particle equations, just like Hartree approximation.
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First one minimises the total energy with respect to each of the wave-functions with the constraint
that the wave-functions shall be orthonormalized.

∂

∂ψsj
∗(r)

E[n] =
∑
i,j

λij

∫
ψsi
∗(ri)ψ

s
j (rj)dridrj

∂

∂ψsj
∗(r)

(
Ts[n] + Us[n] + Uext[n] + Exs[n]

)
= λjψ

s
j (rj)

It is convenient to derivate the kinetic energy with respect to the wavefunction, whereas the two
remaining functionals are easiest to derivate with respect to the density, utilizing the chain rules
for functional derivatives:

∂

∂ψsj
∗(r)

Ts[n] +
∂

∂n(r)

∂n(r)

∂ψsj
∗(r)

(
Us[n] + Uext[n] + Exs[n]

)
= λjψ

s
j (rj)

∂n(r)

∂ψsj
∗(r)

=
∂

∂ψsj
∗(r)

∑
j

ψsj
∗(r)ψsj (r) = ψsj (r)

∂

∂ψsj
∗(r)

Ts[n] +
∂

∂n(r)

(
Us[n] + Uext[n] + Exs[n]

)
ψsj (r) = λjψ

s
j (rj)

Where the derivatives are:

∂

∂ψsj
∗(r)

Ts[n] =
∂

∂ψsj
∗(r)

∑
j

∫
ψsj
∗−h̄2∇2

2m
ψsjdr =

−h̄2∇2
j

2m
ψsj

∂

∂n(r)
Us[n] =

∂

∂n(r)

1

2

∫ ∫
q2
n(r)n(r′)

|r− r′| drdr
′ −
∑
j=1,2

q2nj(r)nj′(r
′)

|r− r′| drdr′ =

∫ ∑
i

ψsi
∗(r′)

q2

|r− r′|ψ
s
i (r
′)dr′

∂

∂n(r)
Uext[n] =

∂

∂n(r)

∫
Vext(r)n(r)dr = Vext(r)

∂

∂n(r)
Exc[n] = Vxc(r) Just defining the exchange-correlation potential as the derivative of Exc[n]

Now we just need to plug all the derivatives back in the equation:

∂

∂ψsj
∗(r)

Ts[n] +
∂

∂n(r)

(
Us[n] + Uext[n] + Exs[n]

)
ψsj (r) = λjψ

s
j (rj)

−h̄2∇2
j

2m
ψj

∫ ∑
i

ψsi
∗(r′)

q2

|r− r′|ψ
s
i (r
′)dr′ + Vext(r) + Vxc(r)

)
ψsj (rj) = εsjψ

s
j (rj)

(−h̄2∇2
j

2m
+

∫ ∑
i

ψsi
∗(r′)

q2

|r− r′|ψ
s
i (r
′)dr′ + Vext(r) + Vxc(r)

)
ψsj (rj) = εsjψ

s
j (rj)

This is the Kohn-Sham single-electron equation. In practice, for condensed matter one solves this
equation in the reciprocal space.

To simplify this expression, we will include the self interaction. This is of course an approximation,
but it simplifies the calculations considerably:
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(−h̄2∇2
j

2m
+

∫ ∑
i

ψsi
∗(r′)

q2

|r− r′|ψ
s
i (r
′)dr′ + Vext(r) + Vxc(r)

)
ψsj (rj) = εsjψ

s
j (rj)

(−h̄2∇2
j

2m
+

∫
q2

n(r′)

|r− r′|dr
′ + Vext(r) + Vxc(r)

)
ψsj (rj) = εsjψ

s
j (rj)(−h̄2∇2

j

2m
+ VH(r) + Vext(r) + Vxc(r)

)
ψsj (rj) = εsjψ

s
j (rj), VH(r) =

∫
q2

n(r′)

|r− r′|dr
′

(−h̄2∇2
j

2m
+ Veff (r)

)
ψsj (rj) = εsjψ

s
j (rj), Veff (r) = VH(r) + Vext(r) + Vxc(r)

This is the KS equation (with self-interaction error).

The equation above does not give us the total energy. We need an additional expression for that.
Just like for the Hartree equation, we derive an expression for the total energy that does not
contain wavefunctions. Thus, we shall eliminate the kinetic energy. This is done by:

∫ ∑
j

ψsj
∗(r)dr ×

(−h̄2∇2
j

2m
+ VH(r) + Vext(r) + Vxc(r)

)
ψsj (rj) = εsjψ

s
j (rj)×

∫ ∑
j

ψsj
∗(r)dr

Ts[n] +

∫ ∑
j

ψsj
∗(r)dr

(∫
q2

n(r′)

|r− r′|dr
′ + Vext(r) + Vxc(r)

)
ψsj (rj) =

∑
j

εsj

Ts[n] +

∫ ∫
q2
n(r)n(r′)

|r− r′| drdr
′ +

∫
Vext(r)n(r)dr +

∫
Vxc(r)n(r)dr =

∑
j

εsj

Ts[n] +

∫ ∫
q2
n(r)n(r′)

|r− r′| drdr
′ + Uext[n] +

∫
Vxc(r)n(r)dr =

∑
j

εsj

Ts[n] =
∑
j

εsj −
∫ ∫

q2
n(r)n(r′)

|r− r′| drdr
′ − Uext[n]−

∫
Vxc(r)n(r)dr

Now if we use this definition of Ts[n] and plug it into the total energy, we get:

E[n] = Ts[n] + Us[n] + Uext[n] + Exc[n]

E[n] =
∑
j

εsj − q2
∫ ∫

n(r)n(r′)

|r− r′| drdr
′ − Uext[n]−

∫
Vxc(r)n(r)dr + Us[n] + Uext[n] + Exc[n]

E[n] =
∑
j

εsj −
q2

2

∫ ∫
n(r)n(r′)

|r− r′| drdr
′ −
∫
Vxc(r)n(r)dr + Exc[n]

There is an important difference between the Hartree approximation and the KS equation: the
KS equation includes the correct exchange and correlation energies Exc[n]. The Hartree can never
become exact (since it using incorrect wavefunction, though correct Hamiltonian), whereas the KS
equation is exact if the exchange-correlation energy is exact (although incorrect wavefunction).
Therefore, the “only” thing we have to do now is to find exact Exc[n] as functional of the density
n(r). With such expression, we can derive with respect to density to generate Vxc(r) = ∂Exc[n]

∂n .
Since we have not the exact expression of Exc[n], we need an approximation to it [17].
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