
University of Oslo
Department of Informatics

Post-processing of
segmented
volumetric image
datasets

Johan Simon Seland

Cand Scient Thesis

April 2003

Acknowledgements

The process of writing this thesis has been a long time in coming, and naturally
many people deserve acknowledgments. First and foremost I wish to thank my
parents, Anne Kå. Seland and Leif Nilsen for allowing me to pursue my own
interests both academic and recreational.

Secondly Kristoffer Gleditsch who has been my “partner in crime” for the entire
project. WE DID IT!

Thirdly, great thanks to the free software community, which has created almost all
the tools used in the Dr. Jekyll project. I hope I have been able to give something
back by releasing this project under the GPL.

The Interventional Centre at Rikshospitalet University Hospital, Oslo, Norway
deserves mention for hospitality and for providing such a great working environ-
ment.

Merci beacoup to Daniela Becker, Thierry Gérraud, Didier Verna, Olivier Ricou
and Akim Demaille (in no particular order) at EPITA Research and Development
Laboratory (LRDE), Paris, France for letting us spend the spring in Paris and
teaching me more about the C++ template mechanism that I ever wanted to know.

Thanks Morten Eriksen and Espen Rideng from Systems in Motion, Oslo/Trond-
heim, Norway for giving me early access to their volume rendering library. Keep
up the good work!

Great thanks Michael Floater and Øyvind Hjelle at SINTEF Applied Mathematics,
Oslo, Norway for giving pointers to information about triangles and surfaces.

Thanks to the always enthusiastic Hans Petter Langtangen at Simula Research
Laboratory, Fornebu, Norway for resources about scripting languages, as well as
for motivation.

Our internal advisor Knut Mørken from the Department of Informatics at the Uni-
versity of Oslo has been helpful in keeping us on track for the entire project, giving
good advice when needed.

The biggest thanks however goes to our supervisor Lars Aurdal for starting of this
project in the first place, and also for always believing in us.

Abstract

Description: This work concerns the problem of post-processing segmented
volumetric images. Such images can arise in fields as diverse as medical imaging,
material science, geology and other fields. An application in which to experiment
with different post-processing methods has been written, named Dr. Jekyll. The
input images to this application is assumed to be segmented before it is invoked.

A survey is given of the design goals of the application, as well as an overview of
why the C++ language and a selection of libraries were chosen for the implement-
ation.

Special focus is given to the design and implementation of algorithms in Dr. Je-
kyll. Effort was made to make the implementation as generic as possible, without
sacrificing runtime speed. It is demonstrated how it is possible to use the template
mechanism of C++ to achieve this goal.

Classical imaging algorithms, such a connected components analysis and math-
ematical morphology, is traditionally applied to binary or gray level images. This
work formulates a version of these algorithms for segmented images.

Both the application and the algorithms implemented are generic in the sense that
they are not tied to a particular field or imaging modality.

Furthermore the application is designed to be extendable, and to provide generic
mechanism to implement other image processing tools. To further encourage such
extendability the application is licensed under an open source license.

Keywords: Manual post-processing, segmented images, software.

Contents

1 Introduction 1

1.1 Overview of the thesis . 1

1.2 Introduction to the problem . 2

1.3 Manual postprocessing . 5

1.4 Terminology . 6

2 Overview of Dr. Jekyll 15

2.1 Technical goals . 15

2.2 Language and libraries . 23

2.3 Licensing . 31

2.4 Concluding remarks . 32

3 Algorithms for postprocessing 33

3.1 A note about image sizes, bitdepths and caching 33

3.2 A note a about segmented versus binary images 36

3.3 Connected components analysis 37

3.4 Mathematical morphology . 44

3.5 Component based relabeling . 55

3.6 Visualization . 59

3.7 Conclusion . 68

4 Results and discussion 69

4.1 The algorithms . 69

4.2 The application . 70

4.3 Using Dr. Jekyll for manual post-processing 73

5 Conclusions and further work 75

5.1 At a computational threshold? 75

5.2 Did we accomplish the technical design goals? 76

5.3 How wise was the selection of languages and libraries? 77

5.4 Further work . 80

5.5 Further work in Dr. Jekyll . 82

A Benchmarks 87

A.1 Traversal direction for connected components analysis 87

A.2 Object allocation inside tight loops 88

Chapter 1

Introduction

The human visual system is the most important system through which our brain
gathers information about our surroundings. While using our vision may seem
like an intuitive process, complex mechanisms are involved in “decoding” the
light hitting our retina into a meaningful model of the world. Humans are able to
do this “decoding” whether they see the real world (light reflected of objects), or
if they see a 2-dimensional image.

Programming a computer to do the same “decoding” automatically seems to be a
very ambitious goal, which we are currently very far from reaching. The comput-
ing power of a modern microprocessor is however immense, and the work detailed
in this thesis is to make a system where a computer and a human operator interacts
to make an optimal “decoding.”

1.1 Overview of the thesis

This chapter serves as an introduction to the problem of post-processing segmen-
ted images. Furthermore, since the work detailed in this thesis is at the junction
between several distinct disciplines within computer science, some terminology
used throughout the thesis is explained at the end of this chapter.

The second chapter is an overview to the Dr. Jekyll application. Dr. Jekyll is the
application which was developed as part of this thesis project. The chapter surveys
the design goals, the high-level design, and the design patterns used. Chapter two
concludes with a discussion of the languages and libraries which were used for
implementing the application.

Chapter three details the various algorithms implemented, including their theor-
etical background and their extension to handle segmented images. Furthermore
the concrete implementation and usage of the algorithms within Dr. Jekyll is ex-

2 Introduction

Figure 1.1: The image analysis process in an ideal world. An image is acquired, and the
computer processes the image automatically.

plained. A summary of various visualization techniques for segmented images
concludes the chapter.

Chapter four discusses the findings related to implementing and using these al-
gorithms for interactive post-processing. These findings include some pitfalls
which should be avoided when implementing algorithms.

Chapter five concludes the thesis, and discusses how well suited the language and
libraries chosen were for the task at hand. Some possible directions for future
work, both regarding the Dr. Jekyll application itself, as well as other fields, con-
clude the thesis.

Appendix A includes data from some benchmarks which were run.

The source code to the Dr. Jekyll application is not included in an appendix. The
source code totals at around 15000 lines of C++ code, in addition about 5000 lines
is generated by preprocessors. It would thus take several hundred pages to list
it all. Interested readers can find it at http://drjekyll.sourceforge.
net.

1.2 Introduction to the problem

With a fully automated system, image data would be acquired and read into the
computer. Once this step has completed, a program will run unaided, and present
us with a “perfect” model of the given data. Figure 1.1 illustrates these steps. This
model, which can take many forms, can then be used to decide upon a further
course of action.

A major problem occurs even in the early stages of the automated interpretation
process, namely at the segmentation step. In this phase the various intensity levels
of an image are assigned to distinct labels, hopefully sharing some physical or
statistical property. This is illustrated in figure 1.2. This CT-slice of the abdomen
has been segmented using a Markov field based segmentation algorithm[3]. We
can see that the kidney (blue) has been assigned the same label as the soft tissue
interior of the spinal column (off-white). Also the outside of the CT-gantry has
been assigned the bone label. While the liver (yellow) is fairly well segmented, a
lot of other regions have also received the liver label, making a direct visualization
of the liver almost impossible.

1.2 Introduction to the problem 3

Using this segmentation solely as the basis of a physical interpretation of the im-
age data is apparently not sufficient. As a foundation for the calculation of sizes
and placement of organs, it would lead to erroneous results.

This problem arises because segmentation algorithms are based on the assumption
that enough information is included in the actual image to establish a valid model
of the world. A human would use his conceptual knowledge of the data in addition
to the information in the image to arrive at a reasonable image classification. To
achieve this on a computer we must somehow add a-priori information to the
image data. Several methods has been proposed to add this information:

➥ Better segmentation algorithms

An active field of research is model based segmentation. Here one is not
only focusing on the spectral properties of the pixels in the actual image,
but also on previous knowledge about the shape and form of the dataset.
This makes most model based segmentation algorithms highly specialized.
Also, these algorithms can be fooled by images deviating from the expected.
Nature shows great diversity, and often it is the not so common cases that
are most interesting. An algorithm based on the “normal” shape could fail
with such a dataset.

While certain advances have been made in model based segmentation, gen-
eric segmentation systems able to analyze a broad range of data can not be
expected in the near future. [54]

➥ Manual and semi-automatic segmentation

During manual segmentation, pixels are grouped directly on the image us-
ing an image-editing program like Adobe Photoshop or Gimp or other more
specialized programs. Manual segmentation is very labor intensive and time
consuming, and becomes infeasible as the datasets grow larger. These pro-
grams are inherently 2D-based, and manually segmenting a volumetric data-
set is an infeasible task.

One possibility is to use semi-automatic methods, were the the computer
is used at what it is good at, like contour detection, while at the same time
having manual control.

Research also shows that manual segmentation produces poor reproducibil-
ity; for MR images, studies show that there can be up to 15% difference in
manual segmentations generated by different experts[3].

➥ Manual postprocessing

Another approach is to manually postprocess the (incorrectly) segmented
images in an image-editing program. Many of the same problems with

4 Introduction

(a) Raw slice from CT-scanner. (12-bit greyscale)

(b) Segmented slice using a Markov-field based segmentation
algorithm.

Figure 1.2: Raw and segmented image of a CT-slice of the abdominal. The goal of the seg-
mentation was to extract the liver component. As image b) illustrates, many other organs
were assigned to the liver label, and the interior of the spinal column was assigned to the
same label as the kidney. The circular shaped disk around the images is called the CT-gantry.
(Images courtesy of IVS, RH)

1.3 Manual postprocessing 5

Figure 1.3: The workflow of the manual postprocessing task. After an automatic segmenta-
tion, the user invokes the Dr. Jekyll application. If the user is experienced in the field of the
data, the end result may be a classification, where the labels have been assigned a physically
meaningful interpretation. If the user have is not knowledgeable in the field of study, he
might yet refine the segmentation by removing noise.

manual segmentation also arises here; it is still a time consuming and er-
ror prone task.

While the holy grail of image analysis is generic and correct fully automated seg-
mentation algorithms, this is not an available solution today. A short term solution
to classifying large datasets could be to implement better tools for manual post-
processing, utilizing the computing and visualization power available on a modern
workstation. This thesis outlines the design and algorithms for such an approach.

1.3 Manual postprocessing

Exploration of the manual postprocessing approach is the aim of this thesis. The
design and development of such a program, called Dr. Jekyll, was undertaken as
part of the Cand. Scient. work by the author and fellow student Kristoffer Gled-
itsch. His thesis titled Interactive manipulation of three dimensional images [17]
delves much deeper into details about the design and concrete implementation of
Dr. Jekyll as an application. It also details how the application can be used as a an
application framework for writing new “plugins”,

The Dr. Jekyll application is the result of a team effort by two developers: Kris-
toffer Gleditsch and the author. Both have put a lot of effort into the development
of Dr. Jekyll, but with different focus: Gleditsch[17] has been working with the
overall design of the application and the plugin interface. The author has been
responsible for the post-processing tools and their underlying algorithms, and has

6 Introduction

made most of the plugins.

The result is one program but two different theses. They are separate works, but
closely related and sometimes overlapping. Where the views and opinions of the
authors differ, the theses will reflect this.

The name Dr. Jekyll arises naturally, since the segmentation tool written by Lars
Aurdal as part of [3] was named Mr. Hyde. This program generates output which
can be used as input for our Dr. Jekyll application. Mr. Hyde was originally written
to process MRI images from the human brain and thus explores the duality of the
human mind, the theme of the classic novel The Strange Case of Dr. Jekyll and
Mr. Hyde by Robert Louis Stevenson.

Figure 1.3 illustrates the various steps in manual postprocessing. First the images
are segmented using one of several segmentation algorithms. Thereafter post-
processing takes place. If the user performing the post-processing is informed
in the field the image arises from, the end-result of the post-processing can be
a fully classified image. On the other hand, a non-informed user may refine the
segmentation, by removing noise etc.

This thesis details the implementation and usage of the image processing al-
gorithms implemented as part of Dr. Jekyll.

The problem with both manual segmentation and manual postprocessing seems
to be a lack of effective programs, particularly for volumetric datasets. While
segmentation algorithms do produce incorrect results (as in figure 1.2), they still
provide a better starting point than the raw images. This is because segmentation
algorithms are good at separating background from foreground, however pixels
may wrongly grouped.

The algorithms needed for the two approaches also differ greatly. Segmentation
algorithms must consider a wide variety of spectral intensities, while a postpro-
cessing algorithm typically work on just a reduced set of labels.

However, programs for both approaches would also share some properties. The
data is fundamentally stored as a vector field, and visualization front ends could
work on both types of data sets. Dr. Jekyll has been designed to be flexible, and it
could probably be extended to a manual segmentation tool as well. This extension
is beyond the scope of this thesis.

1.4 Terminology

As mentioned above, this thesis combines techniques from several distinct fields
within computer science. Consequently some of the terminology may be unknown
to the reader, or the reader might be used to seeing them in a slightly different

1.4 Terminology 7

context. The following section serves as an overview of this terminology, and
tries to be consistent with other literature in the field. Most of the definitions in
section 1.4.2 are from [47].

1.4.1 Programming terminology

For implementing the application C++ was used (see section 2.2.1 for a discussion
of why C++ was chosen.) C++ supports many different styles of programming,
and touts itself as a “multi-paradigm” language [50, 49, 48].

The following terminology presents how these concepts are used in the literature,
although the reader should be aware that different programming languages have
different names for some of these techniques.

Also some most programming languages has different forms of “syntactic sugar”
which greyes out the boundaries of these concepts somewhat.

Object and class

A class is a collection of data and methods for accessing those data. Unlike tra-
ditional functional programming where data and functions are loosely coupled, a
class symbolizes a tight coupling.

An advantage of tight coupling is that he user of a class need not know how the
class is implemented internally. The internals of a class might change without
affecting other parts of the program.

An object is an instance of a class, objects of the same class can be instantiated
and accessed independently of each other, just like standard datatypes like integers
and floats.

Method, function and functor

A function is a standalone piece of code which accepts a series of input arguments
and returns a value based solely on the input values. A well-behaved function is
not supposed to change any other part of the program. 1

Unlike a function a method is tied to an object (instance of a class). Like a function
it can accept a series of input arguments, and return a value, but it may also change
the state of the object. Methods usually act upon a concrete instance of a class,
and either queries or change certain aspects of the instance.

1However most computer languages allows for so called static variables in functions which
are preserved throughout the program, thus a function might return a different value for the same
parameter list.

8 Introduction

A functor (for function object) is an object which can be called as if it is a function.
The advantage of functors is that they can be passed as arguments to other func-
tions (or methods, or functors). This can also be accomplished by C-style function
pointers, but functors provide a type safe mechanism. In C++, a functor typically
implements the operator() method, an example of operator overloading (see
below).

Subclassing, inheritance and polymorphism

In addition to providing a convenient modularization of data and methods for ac-
cessing these data, a major part of the object oriented paradigm is the notion of
inheritance. A class can be a subclass of another class. When a class is a subclass
it inherits all the public properties of the original class, but it may also extend the
functionality of the superclass (the parent class).

Subclassing therefore usually signalizes an IS-A relationship between classes. If a
class B is a subclass of a class A then a B object can be used everywhere an object
of the class A can be used, but not the other way around. This is also called the
Liskov Substitution Principle [30].

Subclasses can of course be subclassed further, which leads to an inheritance hier-
archy.

C++ also has other kinds of subclassing (private and protected inheritance) as well.
These do not signalize an IS-A relationship, but as an implementation detail. In
this thesis, subclassing always means a strict IS-A relationship.

Pointer and reference

A pointer is a variable holding a memory address, The type of the pointer is the
type of data found at the memory address which the pointer is holding.

A reference is an alias (alternate name) for an object.

Both pointers and references can be thought of as a handle to data, a mechanism
which lets the programmer “point” to data at a memory location.

Handles are used to avoid copying datastructures between methods and functions,
thus avoiding copying the data which is being passed and letting the receiving
method or function alter the data directly instead of a copy.

This method of parameter passing is typically used for large datastructures, where
there can be considerable run time cost associated with copying the data.

Such passing of data is usually called pass by reference in contrast to pass by value
where the data is copied and the original data is not altered in the called function.

It should be noted the C++ makes a distinction between pointers and references,

1.4 Terminology 9

void swap(int& x, int& y)
{

int tmp = x;
x = y;
y = tmp;

}
int a = 5, b = 10;
swap(a, b);

template<class T>
void swap(T& x, T& y)
{

T tmp = x;
x = y;
y = tmp;

}
int a = 5, b = 10;
double e = 2.71828, pi = 3.1415;
swap(a, b);
swap(e, pi); // Legal C++, though not in mathematics.
swap(a, pi); // Not legal C++, incompatible types.

Figure 1.4: C++ code examples illustrating the difference between a traditional type-based
function and a template based version. The type-based version has to be written for all
datatypes which we would want to swap. The template based version can be written once
and the compiler will expand it for all types. (The types must however support assignment
semantics.)

but in the end they are (mostly) just different syntax for achieving the same end
effect.

Templates and generic programming

Templates are a way of parameterizing the datatypes a function or class can use.
They are in short a form of automated code generation where a family of classes
or functions which look the same can be written once for all datatypes. Figure 1.4
gives an example of how a generic function swapping the contents of two variables
can be written. Such an approach to programming is called generic programming.
Templates is a feature not found in very many languages, but both Ada[22] and
C++ provides variations of the mechanism and support the generic programming
paradigm.

A very attractive use of templates is to write generic containers, and algorithms
which can work over these containers. The C++ Standard Template Library is one

10 Introduction

example of such a library, and it is detailed in greater depth in section 2.2.1.

In order to avoid compromising the type-safety of the language or incurring a
runtime overhead, templates are expanded, type checked and optimized for all
types which call the template methods at compile time. Therefore template in-
troduces no runtime penalty, but compilation times tend to be longer, since the
compiler has to figure out all possible types a template function can be called
with. The end result is that the same source code need to be compiled multiple
times.

Operator overloading

Almost every programming language support a set of operators for its built in
types. A typical example of such an operator is the “+” operator used for adding
numeric types together. However, when it becomes possible to have user defined
types (often implemented as a class), some languages (including C++) allow for
redefining the meaning of the basic operators. Such redefining is called operator
overloading.

In C++, the functions which implement operator overloading is called operator@,
where @ designates the operator to be overloaded.

Like any language feature, operator overloading has its uses and its misuses. An
example of proper use of operator overloading is to implement arithmetic for com-
plex numbers. When writing generic algorithms, operator overloading becomes a
necessity, since it is the operators a class support, and not its type which decides
if the generic algorithm can work on the type.

An objection to operator overloading, is that when reading source code, it is no
longer obvious when a user defined function is called, making it harder to mentally
visualize program flow.

1.4.2 Image processing terminology

Image

Definition 1 An image f is a mapping from a rectangular subset Df of Zn into a
bounded finite set of integers, N0. By convention these integers are nonnegative,

f : Df ⊂ Zn −→ N0. (1.1)

Using this definition we avoid the distinction between grey tone images and binary
images. A binary image is simply an image where N0 = {0, 1} (or any other set

1.4 Terminology 11

of two distinct integers). In practice, n is almost always one of 2, 3 or 4. A 4-
dimensional image is a video of a 3-dimensional image. Color and multispectral
images are simply arrays of images sharing a common definition domain.

Pixel and voxel

Each of the single discrete elements that together constitute an image are called
pixels (from picture element). Unlike points from Euclidean geometry, pixels do
not have infinitesimally small surface area, since they typically represent the mean
luminance value of a continuous sampling area on a discrete regular grid.

Pixel is a term that is used in many different contexts, a formal definition accom-
modating all uses of the word pixel does not exist. The resolution of an image is
typically given in pixels, but when displaying the image on a computer monitor,
the image might be scaled or stretched so there might not be a direct correspond-
ence between screen pixels and image pixels, even if they both represent the same
image.

Using our definition of an image, a pixel is a unique position in the definition
domain and a value from the value domain of the image.

When dealing with volumes, the discrete element is a voxel (volume element). A
voxel is nothing but a pixel in Z3. In this thesis we will use the term voxel only
when specifically dealing with 3-dimensional images, and pixel in the generic
case.

Segmentation and classification

Segmentation and classification are two terms with different meanings for differ-
ent contexts. For image analysis, these definitions are often used:

Definition 2 Segmentation is an image to image transformation taking as inputs
images defined over the definition domain Df and generating as output images
over the same definition domain with values in the interval {0, . . . , lmax} (where
lmax is typically a relatively small number). Values in the segmented image are
assigned so as to indicate the membership of pixels in the original image to groups
of pixels sharing some kind of (spectral or statistical) property.

Notice that the values in the segmented image have no correspondence to the
luminosities of the original image. Nor do values close to each other indicate that
pixels with those values share any properties. The values are simply unique labels
for pixels sharing one or more properties.

12 Introduction

Figure 1.5: A pixel (in blue) and its neighbors in 4-connectivity (in gray).

Definition 3 Classification is to assign each pixel in the input data to one of a
finite number of known categories or classes. Each such class has a physical (or
other semantically meaningful) interpretation.

Segmentation is not the same as classification. Pixels in a segmented image share
some spectral property, but no physical interpretation has been given to the dif-
ferent segments. An image that has been classified however, is given a physical
interpretation, based on information not necessarily contained in the original im-
age.

Notice that for volume rendering the term classification designates the process of
assigning opacity to a voxel[29].

Graph, neighbor, path and connectivity

Several algorithms involve computing some neighborhood relationships between
pixels. In order to define such relationships the notion of a graph if necessary.

Definition 4 A non-oriented graph G is a pair (V,E) of vertices V and edges E
where

V = (v1, v2, . . . , vn) is a nonempty set of vertices,

E = (e1, e2, . . . , em) is a set of unordered pairs (vi, vj) of vertices.

1.4 Terminology 13

A graph is said to be simple if it does not contain any loops and if there exists no
more than one vertex linking any given pair of vertices.

All graphs used in the processing of images are simple, and they are usually
sampled on a regular grid, called a digitization network. An image pixel is then
the same as a vertex.

Graphs have been the subject of much study during the last century, and many
interesting properties have been derived.

Definition 5 The neighbors of a pixel v in a graph G = (V,E) are denotedNG(v),

NG = {v′ ∈ V | (v, v′) ∈ E}.

Two pixels are neighbors if they share a common edge.

Definition 6 A sequence (v0, v1, . . . , vl) of distinct vertices of a graph G is a path
of length l if vi and vi+1 are neighbors for all i in (0, 1 . . . , l − 1).

Definition 7 A subset of an image is called connected if for any two pixels p and q
of the subset there exists a sequence of points p = p0, p1, . . . , pn = q of the subset
such that pi is a neighbor of pi−1, 1 ≤ i ≤ n.

The most frequently used connectivities in image analysis are 4- or 8-connected
graphs for 2-dimensional images, and 6- or 26-connectivity for 3-dimensional
volumes. An illustration of a pixel an its 4-connectivity is given in figure 1.5.

1.4.3 Visualization

For a computer an image is simply a series of numbers, for a human however, it
is necessary to “translate” the image into visual stimuli in order to comprehend it.
This process is called visualization, and during the last years it has emerged both
as a field of its own, as well as a helpful tool for many different disciplines.

For a 2-dimensional image it is possible to make a one-to-one correspondence
between data coordinates and screen coordinates. 3-dimensional images must
either be considered slice by slice, or by using some form of projection of the
3-dimensional image onto the inherently 2-dimensional computer monitor. Such
projections always result in distortions of the image. Various visualization tech-
niques are explored further in chapter 3.6.

14 Introduction

Chapter 2

Overview of Dr. Jekyll

Dr. Jekyll is the application implemented as part of this project.

This chapter gives an overview of the design of Dr. Jekyll. It starts with design
goals, then goes on to the high level design. The last part of this chapter discusses
the concrete language and libraries selected for the implementation. That section
also includes a short summary of other competing technologies that could have
been used.

A discussion of how well suited the languages and libraries were for the given
task at hand is delayed to section 5.3.2.

2.1 Technical goals

At the start of the project, several technical goals were defined:

➥ Interactivity. Dr. Jekyll is designed for interactive use, and the user-experience
is important. Manual post-processing is an iterative process, and the user
must be able to experiment with various algorithms in an interactive envir-
onment to see if the desired result is achieved.

➥ No hard-wired limitations on the size of datasets (except the hard limit im-
posed by the amount of RAM). Typical datasets are large today, and expec-
ted to grow in the future.

➥ Scalability and portability. To be able to utilize advances in hardware tech-
nology, it is crucial to write code that is not tied to a particular hardware plat-
form or operating system. Incorporating new hardware technology should
only be a matter of recompiling the source code.

16 Overview of Dr. Jekyll

This is particularly important with the advent of 64-bit computers. On 32-bit
computers it is not possible to address more than 4GB of memory. Datasets
of this size are not uncommon today, applications written for 32-bit archi-
tectures using very large datasets therefore only holds a subset of the dataset
in memory at a given time[60]. Section 3.1 ahead discusses image sizes to
a larger degree.

With 64-bit computers the limitation is increased to 18 Exabytes (18·109GB).

➥ Extendability and modularity. It should be possible to extend Dr. Jekyll with
new algorithms and functionality, without affecting the other parts of the
program. Writing such an extension should be possible without knowledge
of the internals of the program. New image processing tools are a typical
example of such plugins.

➥ Don’t reinvent the wheel. There are many high quality libraries available to
solve a variety of tasks. There is no reason to duplicate functionality that
already exists in a library.

While this might seem like a lot of buzzwords, each of them has a purpose and
has greatly influenced the design of Dr. Jekyll.

Another equally important design goal, which is not technical but nevertheless
has great influence on the techniques chosen was to make the application freely
available.

In order to allow for multiple developers and extendability, the modular design
illustrated in figure 2.1 was agreed upon. Each module communicates with each
other through clearly defined interfaces, and has distinct responsibilities.

The various modules are summarized below:

➥ Kernel

The main responsibility of the kernel is to initialize the other modules, and
set up message passing between them. Another important part of the kernel
is the loading and storing of the actual image data.

In order to support an extendable design, it should be possible to write a new
plugin without altering any old code, in effect the kernel doesn’t know about
any concrete plugins, only their common interface. One way to achieve this
is to have object factories[15]. A plugin registers itself with the factory at
runtime, and the kernel holds a list of all available plugins. Object factories
are further detailed in section 2.1.2.

2.1 Technical goals 17

Figure 2.1: A high level overview of Dr. Jekyll, showing what libraries are used in each
part of the program. This figure has no direct correspondence to the actual classes of the
application.

➥ Image data

The image data module stores the actual values of the input data. Since
several visualizations and plugins may access the data at the same time, it is
necessary to have some sort of locking mechanism on the data. The purpose
of the locking mechanism is twofold. Only one plugin may alter the data at
any given time, and visualizations must be told when the data has changed
so they can update themselves.

Another important feature of the image data modules is efficiency regarding
memory usage. Since data may have various bitdepths, it should be possible
to store data with the right bitdepth.

➥ Visualization

Since the purpose of Dr. Jekyll is image manipulation, effective visualiza-
tion tools are vital. Many of the image processing algorithms are interactive
by nature and need to get data coordinates from the user. The visualizations
should be able to provide these.

18 Overview of Dr. Jekyll

In order to generate (near) optimal segmentations, it is necessary to see both
the original raw data and the segmentation which is being processed at the
same time.

For 3-dimensional data, different visualizations may reveal different struc-
tures in the images. There is not a single visualization which will always
yield the best result.

➥ User Interface

The user interface must allow for intuitive access to the various modules. It
must be easy to find the desired functionality, and no task should be repetit-
ive.

➥ Image processing

The actual alteration and analysis of the image data are the purpose of the
program. The image processing tools communicate with both the visual-
ization and image data module in data coordinates. The kernel and visu-
alization programs should not know about the different image processing
tools.

Actual processing tools are explored in detail in chapter 3.

2.1.1 Modular and object oriented design

A modular design like the one outlined above lends itself naturally to object ori-
ented programming (OOP). The common parts of for example an image pro-
cessing or visualization tool, can be expressed as an abstract base class. For an
overview of object oriented terminology, see [49].

Scientific programs, where the developers often have a background from phys-
ics or mathematics, in contrast to computer science, have often been written in
procedural languages like Fortran. Using the procedural approach is an intuitive
implementation technique, and at the abstraction level is quite close to mathem-
atical notation. The problem is that procedural programming involves too many
visible details, and small changes to one part of the code could lead to substan-
tial modification of existing code. With this comes the danger of introducing new
bugs in old code.

Studies show that object oriented programming is far superior to the procedural
approach, even for scientific programs [27]. One reason for the slow acceptance of
object oriented programming in the scientific community is that OOP techniques
have been to slow for numerical calculations. Advances in compiler technology

2.1 Technical goals 19

are closing the gap, and today the benefits of OOP outweighs the disadvantages
[7].

The usage of the generic programming paradigm, has also been proven to decrease
runtime speeds for some tasks, since it allows for more aggressive inlining of
function calls than traditional programming[36].

2.1.2 Design patterns

Design patterns are proved solutions to common problems that arise during soft-
ware design and implementation. The concept of design patterns in programming
sprang out of the object-oriented community in the early nineties, so it is a relat-
ively new topic in computer science. Fundamental to any discipline is a common
vocabulary for expressing concepts, and a language for relating them together.
One of the goals of design patterns, is to create such a vocabulry, to help software
engineers solve recurring problems throughout all of software development.

It is important to notice that to be designated a design pattern, the pattern must
have been applied successfully in more than one system. Patterns thus aim to
be an example of “best-practice” for a concrete problem. Those patterns that are
proved not to work in practice, are therefore called an anti-pattern, and they can
be seen as a lesson learned.

A pattern has four essential elements;

1. A name we can use to describe the pattern and to increase our design vocab-
ulary.

2. A problem which describes when to apply the pattern, including its context.

3. A solution describes the elements that make up the design. The solution
is not a concrete design or implementation, but an abstract description of a
design and a general arrangement of elements.

4. A list of consequences, which are the results and trade-offs of applying the
pattern.

In order to be useful, authoritative documentation of many different patterns are
necessary. The classical catalog of such patters is the book Design Patterns by
Gamma et al (often called the Gang of Four) [15]. The following summary of
patterns used in Dr. Jekyll uses the names from that book.

A tenet within the pattern community is that it is impossible to represent patterns
in code. However recent work by Andrei Alexandrescu shows that it is possible to

20 Overview of Dr. Jekyll

Figure 2.2: The observer pattern; three different modules listens for changes to the image
data, the image data does not know anything about the observers or their number.

automate the task of pattern implementations (but not the pattern itself) using gen-
eric programming [2, 61, 62]. The implementation of the factory pattern within
Dr. Jekyll is based on such an approach.

Below is a summary of the patterns used in Dr. Jekyll. A brief introduction to
what the pattern does is included, as is a description of where it is applied within
Dr. Jekyll. However for an indepth description, see Design Patterns [15].

➥ Observer

The observer pattern defines a one-to-many relationship dependency between
classes, so when one object changes state, all it’s dependents are notified and
updated automatically.

This pattern is used by the image data module to tell the various visualiz-
ations and image processing tools to update themselves when the data has
changed. Figure 2.2 demonstrates how three observers are notified when a
3-dimensional image is updated.

➥ Mediator

Mediator encapsulates how a set of objects interact. It promotes loose coup-
ling of objects, by keeping them from referring to each other directly.

2.1 Technical goals 21

Mediator is used for all communications between the various GUI components[8].
Also the message-passing between the visualizations and image processing
tools employ this pattern.

➥ Factory

A factory provides an interface for creating families of related objects without
specifying their concrete classes.

Dr. Jekyll uses factories to allow for different image processing tools to
“register” themselves with the factory at runtime. The kernel then generates
a list of the available tools by querying the factory. The user may then
instantiate any of the available plugins from the user interface.

The nice thing about using a factory, is that all code, including the “regis-
tering” (telling the program that the plugin is available) of the plugin can be
done in the source files were the plugin belongs. When implementing new
plugins, no other files need to be changed, making it easier for a third party
to extend the program.

➥ Singleton

The singleton pattern ensures that a class has only one instance, and provides
global access to it.

The factory responsible for generating the image processing tools is realized
as a singleton.

➥ Iterator

Iterator hides the implementation of aggregate/container objects from their
implementation. This allows for altering underlying data structures without
altering code that refers to the data structure. E.g. a linked list could be con-
verted to a binary tree without altering any other code. Figure 2.3 illustrates
how the iterator pattern can be realized while using the STL.

Most containers used in Dr. Jekyll are designed to be traversed by iterators.
However iterators rely upon the notion that the data are organized in a strict
ordering, something which does not make sense for 2-dimensional and 3-
dimensional images.

All STL-containers are designed to be traversed by iterators. But so is also
the Structural elements class (see section 3.4.3, which is provided by Dr.
Jekyll and used by several of the algorithms.

➥ Chain of responsibility Avoids coupling the sender of a request to its re-
ceiver by giving more than one object a chance to handle the request. Chain

22 Overview of Dr. Jekyll

int [array_size] A;
// Fill A.
for (int i = 0; i < array_size; ++ i) {

do_something(A[i]);
}

typedef std::vector<int> mycont;
mycont A;
// Fill A.
for (mycont:: iterator i = A.begin();

i != A.end(); ++i) {
do_something(∗i); // ∗ i gets what i points to .

}

Figure 2.3: These two code examples illustrates the difference between classical “C-style”
array traversal (left), and modern “Iterator-based” traversal (right). Notice how the loop in
the iterator based version is not tied to the size of A. Also note how access to the data-element
is completely independent of the container type. Changing the container type of A is as easy
as altering the typedef of mycont, not other code should be affected. However the syntax
of the iterator based traversal is more obscure and requires the programmer to know about
the iterator pattern.

the receiving object and pass the request along the chain until an object
handles it.

The Qt GUI library which is used throughout Dr. Jekyll (see section 2.2.2)
uses this pattern for communication between the widgets.

For instance the widget which displays the visualization of an image may
pick up a mouseclick, but it do not know how to handle it. It then emits
a signal, which is caught and remitted several times until finally a plugin
which was waiting for a pixel position gets it and is able to do an action
based upon the mouseclick.

One notable exception to using patterns is the implementation of the “undo” func-
tionality. The undo-pattern (described as part of the command pattern in Gamma
[15]) prescribes that each plugin shall be able to rollback the changes it makes to a
dataset. Since many algorithms completely changes the shape and connectivity of
a dataset, and are algorithmically non-reversible, the only option is for the plugins
is to store the complete dataset. In order to avoid duplicating this functionality,
the undo functionality was implemented as a persistent plugin attached to each
dataset. The undo plugin stores a complete copy of the entire dataset each time
the data is changed.

2.2 Language and libraries 23

2.2 Language and libraries

2.2.1 C++ and the Standard Template Library (STL)

The programming language of choice in Dr. Jekyll is C++. It is a compiled, type-
safe, cross-platform, standardized language originally designed by Bjarne Strous-
trup [49]. C++ became an official ISO standard in 1998 [23] and it is supported
on nearly every computer platform. This ensures cross-platform portability.

C++ has some distinct key features, in contrast to other languages, that made it
compelling to use it in Dr. Jekyll. C++ compiles to the target platform, and it
supports templates. The following is a discussion of how these two features sets
C++ apart from is two major competitors, namely Sun’s Java and Microsoft’s C#
(C-sharp)[13].

1. Compiles to target platform

Both Java and C# compiles to a virtual machine, ensuring that the same
binary will run on multiple hardware platforms, as long as these platforms
have a suitable virtual machine. In theory, applications running on a virtual
machine can be as fast as an application compiled directly to native machine
code (in the end everything ends up as assembler code). But, due to their
runtime environments, there is usually a speed tradeoff. Depending on the
application, native C++ is from a few percent to several orders of magnitude
faster than Java. Pure C is a compiled language, but it lacks C++’s object
oriented abstraction, type safety and template library which Dr. Jekyll relies
upon.

2. Templates

A unique feature of C++ compared to Java and C# is the support for tem-
plates. (Though a similar mechanism is slated for the new Java 1.5 standard
(called generics) [69], and C# may also get templates in a new revision.)
Templates are an abstraction where the type of the parameters to a meth-
od/function is determined at compile-time (and not at code-time). In short,
templates are a form of automated code generation. They are particularly
well suited for containers, where they allow complex data structures to be
modeled in a generic way, without knowing what kind of objects they will
hold. Template based containers allows a data structure to be large enough,
but not larger than necessary. Typical datasets for Dr. Jekyll are quite large,
and reducing memory usage is important to increase speed.

In addition to the features mentioned above, C++ also has some other strengths
that makes it a good programming languages for a project like Dr. Jekyll.

24 Overview of Dr. Jekyll

A large part of the C++ standard details the STL (Standard Template Library).
The STL includes common data structures (called containers) and algorithms from
computer science in a highly optimized, generic framework. Much of the STL is
based on the use of the iterator pattern, a way to access the underlying elements
of a container, without knowing details of its implementation.

The STL is documented in [24] and [36]. Using the STL and the iterator pattern
it is very easy to experiment with different datastructures. Figure 2.3 shows how
this can be realized. Programming with the STL typically produces much more
robust and compact code than implementing everything from scratch. Both Java
and C# include comparable standard libraries.

Since C++ has been in widespread use for many years, almost every operating
system has several working C++ compilers. Traditionally, there have been small,
but subtle, differences between compilers from different vendors., making cross-
platform C++ development troublesome. With the arrival of the C++ standard in
1998, this has greatly improved, and Dr. Jekyll has been compiled on both Linux
and SGI IRIX. (Licensing, not technical issues, makes it troublesome to compile
on Windows.)

Because of its widespread use and compatibility with C, there is a lot of high qual-
ity libraries available. There is also a wide variety of mature compilers, debuggers
and tools available from numerous vendors.

While C++ has a lot of advantages, programming Dr. Jekyll has also exposed
many of the disadvantages of C++. The syntax is often highly complex, espe-
cially when using templates, and the language contains many subtleties. C++
gives complete control to the programmer, and trusts the programmer to know
what he is doing, including leaking memory. When using templates the error mes-
sages produced by the compiler can get extremely long and hard to understand. A
further discussion of these issues are delegated to section 5.3.1.

Several books were essential to gain deeper understanding of C++, both for eleg-
ance and efficiency, these books were [53, 52, 34, 35].

Alternatives

Java and C# has been debated in the preceding section, and they have many of
the same strengths and weaknesses, with C++ probably being the fastest of them.
Also, C++ is not tied to a particular vendor.

A totally different approach would be to implement Dr. Jekyll in a scripting lan-
guage like Perl or Python. Scripting languages are from 3-10 times slower than
a compiled language. However the development time is often 3-10 times less as
well. [42]

2.2 Language and libraries 25

Scripting languages are also not as strictly typed as C++, the type of a variable is
deduced at run time. This technique is called dynamic typing. This can be both a
blessing and a curse since there is no “safety net” (in form of a compiler) when
you try to assign incompatible types to each other, however strict type checking
requires effort on behalf of the programmer to provide type information. Fur-
thermore dynamic typing allows for conversion between types (like integers to
strings) without the need for explicitly calling conversion functions. On the other
hand strict typing usually results in a faster program since no type-checking takes
place at runtime.

There has been very few empirical studies on the cost and benefits of type strict
type checking. It is one of these ideas that more or less are taken for granted,
however one study by Prechlet et al[40] concludes that strict type checking (in the
form of compiler messages) increase programmer productivity and reduces bugs.

An emerging approach is however to combine the best of both worlds, writing
C++, C or Fortran code for the speed-critical parts, and using a scripting language
to “glue” together the various parts[28]. In hindsight is it not obvious that it would
not have been better to write Dr. Jekyll using this paradigm.

However high-quality third party libraries are not as widely available as they are
for C++, and they require “bindings” which are written by a fourth party as well,
often of various quality and lacking documentation.

While calling traditional C, C++ or Fortran functions from scripting languages
is quite easy, it is not obvious how to call template parametrized C++ functions.
This is because the parameter and return types of a template function is first known
at compile time, when the compiler deduces all possible types from the program.
Thus the functions can not (today) be stored in a library like traditional functions.

2.2.2 GUI and message passing: Qt

One of the major obstacles in writing cross-platform applications has been the
portability of the graphical user interface. Traditionally the GUI has been tightly
coupled to the operating system. The Norwegian company Trolltech [81] pro-
duces a platform-independent GUI toolkit named Qt [77]. It is a commercial
product, but since Dr. Jekyll is licensed under the GPL[68] (see section 2.3) it was
possible to obtain a freely available version of the library at no cost.

In addition to providing widgets of all kinds, like toolbars and sliders, Qt provides
an inter-object communication facility called signals and slots. Signals and slots
allow for truly anonymous object communication. An object is designed with
signals it can emit, these signals are connected to slots in other objects, but neither
the object emitting the signal, nor the receiving object need to know about each

26 Overview of Dr. Jekyll

other. Of course some object in the middle must know of both objects and set up
the communication, a variant of the mediator pattern[8].

In Dr. Jekyll this mechanism is used for communication between most of the
modules depicted in figure 2.1. The exception to this is access to the data. There
is a small overhead introduced with each signal, and it would be prohibitively
expensive to use it for access to the actual image data. Image data are therefore
accessed directly by passing a handle to the image data container.

In addition to being a GUI library, Qt comes with predefined classes for mutexes
and semaphores. These are used for locking of the image data, to avoid multiple
plugins trying to modify the data at the same time.

While developing Dr. Jekyll, one of Qt’s limitations has been a constant source of
irritation. The signals and slots mechanism (which introduces two new keywords
to C++) relies upon the use of a preprocessor to integrate these keywords into the
language. This preprocessor, called the Moc (Meta Object Compiler), does only
process a subset of the C++ language, it can not process classes which use tem-
plates [58]. Fortunately it is almost always possible to work around this limitation
by letting the template parts of a class be a subclass of a non-template class which
can be preprocessed. The non-template superclass can then provide virtual func-
tions which the template subclass can redeclare. However, this leads to unnatural
class hierarchies, and forces a class to be split among multiple source files, when
they conceptually are one class.

Alternatives

There are a few other cross platform GUI libraries available which can be used
to write a cross-platform GUI-application. Java provides actually two different
GUI libraries; AWT (The Abstract Windowing Toolkit) and Swing. While both
of these are functional, they are notoriously slow and one is tied to using Java as
a programming language.

One of the goals of Microsoft’s “.NET initiative” is a promising approach for
standardizing a cross-platform and cross-language development framework. It is
still too early to tell if the promises come true, but if they do, it would be a very
attractive alternative. It also seems that all .NET applications must be run on a
virtual machine, and thus will often be slower than a native application.

An interesting alternative is WxWindows[83], which is a compatibility layer on
top of a platform’s native API. This is both a blessing and a curse, since it ef-
fectively reduces the API to the least common denominator of the native libraries.
Originally started at the University of Edinburgh, it is today being developed and
maintained by volunteers.

2.2 Language and libraries 27

For the signals and slots mechanism there exists other alternatives as well. Libsig++[74]
and Boost.Signals[72] both provide template based signals and slots mechanisms
under a freely available license. Both of these avoid the use of preprocessors
which Qt uses. However, they both rely on features of C++ which are in the
standard, but which not all compilers support yet. Therefore, since it nevertheless
was necessary to use Qt’s signals and slots mechanism for the GUI, it was also
chosen to use them for communications between different parts of the application
(see however section 5.3.1 for some thought on this).

2.2.3 Portable graphics: OpenGL and Open Inventor

The only standardized cross-platform library for high performance graphics is
OpenGL. A descendant of SGI’s IRIS GL, it was originally released to the public
in 1992, and quickly became the dominant market standard. The OpenGL stand-
ard is controlled by the OpenGL Architecture Revival Board (OpenGL ARB), the
standard is detailed in [66] and [25].

A unique feature of OpenGL is that is allows for hardware acceleration of both
2D and 3D graphics when available. Traditionally the domain of high-end (and
high cost) workstations, dedicated graphics processors are today commonplace on
PC’s thanks to the gaming industry. Exploiting such accelerators boost graphics
performance tremendously and make 3D visualizations possible on a standard
desktop computer.

OpenGL operates at very low level, working with single pixels and vertexes. Open
Inventor is a library built on top of OpenGL to allow for a higher abstraction
level[63]. It is based on a hierarchical object model; graphical objects are stored
in a scene graph, and operations can be applied to just one branch of the graph.
These operations can include texturing, animation, scaling etc. The underlying
library executes the necessary OpenGL calls.

Open Inventor was originally developed by SGI, but they have now ceased de-
velopment. While not a formally defined standard, the last released version is
throughly documented and two companies sell source level compatible versions
of Open Inventor. These companies are the French TGS [80] and the Norwegian
Systems In Motion [79]. The version released by Systems In Motion is called
Coin[73] and is freely available under the GPL license (see section 2.3), it was
used for developing Dr. Jekyll. Systems in Motion also provides bindings to Qt
via the SoQt library (also under the GPL).

At the time of this writing Systems In Motion was developing volume rendering
extensions for Coin, called SimVoleon. These extensions were made available to
us, but as of yet they have not been released to the public, and the license has yet

28 Overview of Dr. Jekyll

to be determined.

Alternatives

Using OpenGL and Open Inventor is a typical “scientific programming” approach
to computer graphics. The gaming industry, which is not overly concerned with
cross-platform portability, primarily uses Microsoft’s own DirectX for 3D graphics[76].
Because of the lack of cross-platform tools, it was not evaluated for use in Dr. Je-
kyll.

A very popular library for scientific visualization is a library called VTK (The
Visualization Toolkit). As the name implies, it is more tilted towards doing visu-
alizations of datasets than for interactively manipulating them. VTK is described
in [44] and is released under an open source license. It is available from [82].
Open Inventor was chosen over VTK because the former provides better integra-
tion with Qt than VTK. However a possible extension of Dr. Jekyll is to integrate
VTK as well. (See section 3.6.3 for a discussion of this.)

SGI has more or less abandoned Open Inventor as their high-performance API for
interactive graphics, and they are focusing on a technology called OpenGL Per-
former (previously IRIS Performer). Performer is commercially available on SGI,
Linux and Windows workstations, however no free version is available. While
Performer and Open Inventor can be extended into each others domain, they each
have their own niche. Inventor is made for easy-of-programming and integration
with the user interface, while Performer is designed to extract the highest level of
performance. Specially from high-end, dedicated hardware from SGI.

A short overview of Performer is given in an SGI white paper[46], the program-
mers manual is also available online[12].

2.2.4 Data storage: Blitz++

Efficient storage is perhaps the most crucial step in an application. For applic-
ations like Dr. Jekyll which deals with potentially large amounts of data, it is
paramount to be able to efficiently lookup, alter and copy data,

For discrete image data there is basically two different approaches to storing the
data:

1. The first is the “traditional” method where every pixel is stored in memory
at a unique position, mapping directly to the pixels position in the image.
The amount of memory used by this method isO(n) where n is the number
of pixels in the image. However, the lookup of a pixel value when the

2.2 Language and libraries 29

Figure 2.4: OCtree example. The cube is subdivided into 8 subcubes. One of the subcubes is
subdivided further.

position is known is an O(1) operation. For such containers, accessing a
unique pixel position is an O(1) operation.

2. Another way of organizing voxel data is to use an OCTree. In an OCTree the
image space is subdivided into octants. Each octant may be full, partially
full or empty. A partially full octant is then subdivided into suboctants until
they are either full or empty. Figure 2.4 illustrates spatial subdivision. (For
a 2-dimensional image the analog of an OCTree is a quadtree. The planar
image is subdivided into quadrants.)

For segmented data OCtrees can conserve memory usage. Calculations in-
volving tree traversals are involved when looking up a single voxels’s value,
and altering a voxel’s value can be an expensive operation since it can force
recalculation of large parts of the tree. Visualization of an OCTree also
requires specialized algorithms.

While a segmented image can benefit from OCTrees, raw data images with many
different pixel values grouped closely together can not. In order to be as flexible

30 Overview of Dr. Jekyll

as possible, at the cost of memory usage, the “traditional” approach was chosen.
Even such a well proven technique as storing every pixel in memory has many
challenges. Preferably it should be memory efficient, as well as providing possib-
ilities for generating subvolumes and slices.

The Blitz++ library [71], written by Todd Veldhuizen, is a C++ library which tries
to match the speed of Fortran for calculations, while preserving the high level
abstractions of C++. Recent benchmarks show that it has succeeded [59]. Blitz++
allows for n-dimensional, resizeable matrices. These matrices are template based
and can hold data of any type. It is also possible to generate slices and submatrices
with a convenient syntax.

Alternatives

There are many available libraries for doing linear algebra, and they do include
their own containers for multidimensional data. For generic multidimensional
containers the selection is not as broad. However one package deserves mention,
namely Boost.MultiArray.

As a generic multidimensional storage container, Boost.MultiArray[16] holds great
promise. Boost.MultiArray was inspired by Blitz++ in the design, and the author
of Blitz++, Todd Veldhuizen provided comments on the design and implementa-
tion. Boost.MultiArray is specially interesting, since it could be proposed as part
of a future revision of the C++ standard. It was however not available when the
Dr. Jekyll project was started. While changing from Blitz++ to Boost.MultiArray
would require the updating of a lot of files, it is not an impossible task. Before
Boost.Multiarray is standarized however, there are no sound reasons to do so,
since they technically provide the same functionality. It should also be noted that
Boost.MultiArray was not published at the start of the Dr. Jekyll project.

2.2.5 Image data I/O: Magick++

The last library which Dr. Jekyll depends upon is Magick++ [75]. Typical data
sources will generate input data as slices of 2D images. There are many different
file formats for storing images, and Magick++ supports the import of most of them
through a common C++ interface.

Alternatives

Qt itself includes much of the same functionality as Magick++ through a class
called QImage. Obviously it would be better to avoid throwing yet another lib-

2.3 Licensing 31

STL With C++ compiler
Qt GPL or Qt Professional License 1 (GPL version is

UNIX only.)
Coin (Open Inventor) GPL or Coin Professional License (version 1 is

LGPL.)
SoQt GPL or Coin Professional License
SimVoleon Not yet publicly released, license undecided
Blitz++ GPL or Blitz Artistic
Magick++ ImageMagick license
OpenGL With OS/Graphics Hardware (The freely available

Mesa implementation is released under the MIT li-
cense.)

Table 2.1: Summary of the licenses for the various libraries used in Dr. Jekyll

rary in the mix. QImage however lacks one important feature which was deemed
necessary for the application, namely the support for 16-bit grey scale images.

It could be argued that neither the human eye, nor most computer screens can
distinguish between more than 256 levels of grey for a given lightning condition.
So the use of if 16-bit grey scale is rather limited when the image is to be shown
directly on a computer screen. However photographic equipment like MR and CT
scanners do produce gray scale images with a larger bitdepth than 8-bit. Down-
scaling the images to 8-bits (as QImage do) in effect removes information from
the image, and algorithms on the images can use this information.

Another option instead of Magick++ is the NetPBM utilities. They are primar-
ily a collection of command line utilities for image processing (and supporting
hundreds of different image formats) it also has a library for calling the functions
from within an application. This library is only a C library and lacks some of the
features of Magick++.

2.3 Licensing

There is a vast collection of libraries available on the Internet for free download.
While downloading the library might be free, the usage terms of each library might
be different and for an application like Dr. Jekyll it is quite complicated

All of the libraries Dr. Jekyll depends upon are released as Open Source. The
definition of Open Source is given in [55], in short it allows for free modification,
use and redistribution of the libraries. However there exists many different Open
Source licenses, and the exact nature of what one is allowed to do or not to do

32 Overview of Dr. Jekyll

varies between them.

Since Dr. Jekyll is based on a large number of “freely” available libraries, it was
necessary to check the license for all of them to see if they could be used together.
As table 2.1 summaries there are many different licenses to take into account, and
each license has its own subtleties. Detailing the various differences are beyond
the scope of this document, they can all be found at the Open Source Initiatives
website[56].

Because the version of Coin and SoQt used are released under the GPL, it dic-
tates that Dr. Jekyll has to be released under the GPL as well. This is not entirely
unproblematic, since Dr. Jekyll can use the (as of this writing unreleased) Sim-
Voleon library for volume rendering. In order to allow for this, we (the copyright
holders) must extend the license of Dr. Jekyll to allow for this linking. This can
not be done without the permission of Systems in Motion however.

In practice, by giving us permission use SimVoleon and combine it with Coin and
SoQt, System in Motion changed the license we use Coin and SoQt under to say
that linking to the non-free SimVoleon library is acceptable.

It was therefore chosen to release Dr. Jekyll under the GPL license, making the
source code freely available to the rest of the world. This had added side effect the
we could host the project on Sourceforge [78], a website providing open source
projects access to homepages, version control, bug and feature trackers, mailing
lists etc.

2.4 Concluding remarks

The above discussion has summarized choices made during fall 2001, chapter 5.3.2
discusses how the choices worked in practice for developing Dr. Jekyll. In hind-
sight many of the choices still seem sound, both for the overall design, and for the
technical merits of the language and libraries chosen.

The use of design patterns is helpful in describing the implementation of the al-
gorithm to others, but it is also valuable as a tool for making the right abstractions.

When choosing libraries, not only the technical merits of each library must be
considered, but also the licensing issues pertaining to each of them plays a role.
The libraries chosen dictates the final licensing of the entire Dr. Jekyll application.

All of the libraries chosen has their specific purpose, and with the exception of
Qt, which is used as the “glue” which holds the application together, most of the
libraries are used only in a few classes. Changing anyone of the other libraries,
should therefore not require extensive reengineering of large parts of the applica-
tion.

Chapter 3

Algorithms for postprocessing

This chapter begins with a summary of some of the issues which arises when
implementing algorithms for large datasets. Thereafter the algorithms used for
postprocessing in Dr. Jekyll are discussed. Emphasis it given to detailing how
the algorithms are implemented since this has been a main part of the work, but
also the theoretical background is included. The chapter ends with a discussion
on how to visualize volumetric images, when interactive feedback is paramount.

3.1 A note about image sizes, bitdepths and caching

Since the main goal of the application is to be an interactive, the running time of
algorithms are crucial. Efficient algorithms are arguably the most important factor
contributing to the running, but as image sizes increase, using memory efficiently
greatly affects the running time as well. This section serves as a short introduction
to issues regarding large image sizes.

As a basis for discussion consider figure 3.1. It contains a plot of the raw storage
requirements of a 3-dimensional image with equal length in each dimension. As
can be seen from the function storage requirements grows exponentially as the
image size increases, but also note that the number of bits used for each pixel
plays a significant role when determining the storage requirements. (Naturally
using 8 bits pr. pixel has half the storage requirements of 16 bits, which again
have half the storage requirements of 32 bits.)

A related problem to the memory requirement is that the maximum amount of
addressable memory is limited to 4GB on 32-bit computers. For practical reas-
ons, operating systems like MS Windows and Linux running on processors which
implements the Intel IA-32 instruction set only has 2GB of data available to each

34 Algorithms for postprocessing

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 200 400 600 800 1000

M
eg

aB
yt

es

Length

Size of dataset as a function of the dimensions for quadratic 3D-images

32-bit
16-bit

8-bit

Figure 3.1: Plots of the function f(l)b = l3 · b, l ∈ (0, 1024), b = (8, 16, 32). The function
show how the storage requirements increase exponentially with the image size.

process. Limiting the possible image size even further.1 (The IA-32 instruction
set is being used by the Intel Pentiums (I-IV) and clones. For an overview of the
IA-32 architecture and memory management see the IA-32 Software Development
Manual published by Intel Corp.[21].)

Since datasets can be (much) larger than the physical amount and addressability
of the processor, many techniques exists for overcoming these limitations. The
survey by Vitter[60] gives a good overview of such methods. Due to their com-
plexity Dr. Jekyll does not use such techniques, and assumes a flat address space
where the whole image can be kept in memory at all times. The maximum size of
datasets which Dr. Jekyll can process is thus limited by the addressability of the
processor and operation system. Thanks to the heavy use of templates, Dr. Jekyll
should however scale to future 64-bits processors (and beyond) just by recom-
piling the program. (This does not however solve the problem of the data being
swapped to disk, only more memory on the computer can remedy this situation.)

Reducing the storage requirements does not only allow for larger images sizes, it

1To complicate matters even further, many 32-bit computers (including some IA-32 pro-
cessors), allow for 36-bit of addressing, raising the addressable limitation to 64GB – however
the per process limitation still exists.

3.1 A note about image sizes, bitdepths and caching 35

can also reduce the running time of an algorithm in the following two ways:

1. If a dataset is larger than the amount of physical memory in the computer,
some of the data has to be swapped to disk. Reading and writing of swapped
data is many orders of magnitude slower than accessing the data if they were
in main memory.

By using as few bits as possible for each pixel, the memory requirements
are reduced accordingly.

2. Another aspect where the number of bits used for representing each pixel
affects the datatype is with respect to the cache hierarchy.

A caching hierarchy is implemented because the speed of a modern pro-
cessor is roughly an order of magnitude faster than the speed of the main
memory. Without caching the processor must wait a long time every time
it reads from memory. With caching, used data are stored in the much
faster cache-memory. However, not only data already read are cached, most
caches implements a “read-ahead” (also called prefetching) strategy where
data “close” to the accessed data are also stored into cache memory. The
details of what is “close” varies with the processor model. During image
traversals it is important to try to access memory such that memory already
in the cache is accessed.

Since the size of the cache is fixed (typically at 128Kb or 512Kb for the
second level cache on PC class hardware), a small type for pixel data, allow
for more pixels in the cache, and thus faster running time.

For a discussion on the widening gap between processor speed and memory
speed, see [67], details of various caching strategies (and computer archi-
tecture in general) is given in [20].

For effective implementations, a vital question is how to use the memory effi-
ciently, both with regards to memory limitations and caching.

The template mechanism of C++ (see section 1.4.1) is a partial solution to limiting
image sizes. The bitdepth of both input and output images can be deduced at
compile time, and can be as small as necessary.

Another option to reduce the memory usage of images is to keep the images com-
pressed in memory, and run algorithms on the compressed image. Bajaj et al[4]
demonstrates such a technique for 3-dimensional RGB images by using wave-
lets. For segmented images even simple run-length-encoding is probably effect-
ive, since many pixels share the same value as their neighbor. See section 5.4.3
for some more notes about this.

36 Algorithms for postprocessing

To utilize the processor caches it is paramount to exploit the “read-ahead” strategy.
It should be known that a multidimensional image can be stored as a continuous
vector in memory, and a number of helper variables called strides are used to map
from image-positions (like I(x, y, z)) to memory positions. By traversing images
consecutively (in the direction where the stride is one, the next data element is
usually already stored in the cache. In Dr. Jekyll the image containers (which are
based on the Blitz++ library) are stored depth-column-row, and all array traversals
are made to utilize this. Technically, this is ensured by using C++’s macro facility
to generate the loops, instead of handwriting them each time an image is traversed.

Much research is currently put into understanding how to better utilize caches.
The TUNE project at University of North Carolina[37] tries to get a better theor-
etical understanding on how caching affects the formal running time of algorithms
[45]. The ATLAS Project[70] aims to write a linear-algebra library which auto-
matically tunes its algorithms and storage containers for a specific CPU. This
tuning is done by executing empirical tests on the actual CPU before the library is
built. The techniques applied by the ATLAS project is explained in [65].

3.2 A note a about segmented versus binary images

When implementing algorithms for segmented images it is not obvious if they
shall be seen as gray scale images or as a stack of binary images.

Usually gray scale images can be seen as a sampling of a continuous field, where
the pixel value designates the luminosity of a pixel. Pixel values which are close
to each other (for example expressed in L1-norm |pi−pj|) designates pixel which
have almost the same luminosity. Thus pixels with a small difference in value have
more in common than two pixels with a larger gap in value.

This does not hold true for a segmented image. Only if the difference between
two pixel values are zero do they have anything more in common than two pixel
values with a large distance between them.

Algorithms are typically defined differently for gray scale and binary images. The
binary version of an algorithm is typically the one most suited for post-processing,
since it already makes a clear distinction between two labels, namely foreground
and background. However for our purposes, the algorithms must be extended to
handle more than two distinct labels, with the traditional background label being
just one of several other labels, and not a special case of its own. The details of
these extensions are summarized in the following text.

3.3 Connected components analysis 37

(a) Segmented image (b) Components of segmented image

Figure 3.2: An segmented CT slice and its connected components. Notice that the connected
components are calculated in 3D using 26-connectivity so connections between some of the
components are via other slices than the one shown here. (Images courtsey of IVS, RH.)

3.3 Connected components analysis

An important concept, both for relabeling, analysis and visualization are the connected-
components of the image. Pixels sharing the same value, and constituting a path
in the image are said to belong a unique component. Figure 3.2 illustrates the
components of a CT slice calculated using the presented algorithm.

The connected components of an image can be seen as the dual to the graph prob-
lem of finding all nodes which there is a path between.

3.3.1 Theoretical background and algorithm overview

The first known algorithm for calculating the connected-components of a binary
image were originally proposed by Rosenfeld and Pfaltz in their 1966 paper Se-
quential Operations on Digital Picture Processing [39].

An optimized version was published in [57]. The latter version is the basis for the
algorithm implemented in Dr. Jekyll. For Dr. Jekyll the algorithm was extended
to handle segmented images as well as binary images by ensuring that the only
probed neighbors of a pixel are those with the same label as the pixel in question.

The algorithm is clearly divided into three different steps, the first and third step
are given formally as algorithm 1, while the second step is given as algorithm 2.

38 Algorithms for postprocessing

Figure 3.3: To the left is an example showing equivalence between different labels of a com-
ponent. The next item is the resulting equivalence table, and the tree represented by by the
table. To the right is the lookup table after the propagation step. Notice how the tree has
been flattened, and value 8 in the table points directly to component 3. Only a part of the
image is shown, containing one component. The other entries in the table is supposed to be
found outside the image part to the left.

Sequential labeling algorithm

The algorithm is an image-to-image transform, taking as input an image, I =
{p1, p2, . . . , pN} and generating as output a new image I ′ = {p′1, p′2, . . . , p′N}.
Both I and I ′ are used during processing.

Each pixel p is processed in order, and values of the neighbors in I are probed,
those of the neighbors in I which have the same label as p are probed in the out-
put image I ′ and their values are looked up in the translation table. The pixel p′

is then assigned the minima of the values of the neighbors (with the same label)
from the lookup table. Notice that there is no distinction between background and
foreground pixels. It should be noted that it is only necessary to probe “back-
wards” in the image, only those pixels which already has a component contributes
to the component of the current pixel. The first pixel in the image will therefore
automatically be assigned a new component.

The lookup table is also updated, each of the neighbors that was found in I ′ is
updated with the minima that was found, in this way regions which were thought
to be different components but were later found to be different regions of the same
component can merged in a second pass through the image.

If p has no neighbors with the same label, it is assigned a new region number i,
and the new region number is stored in the translation table so that T [i] = i.

3.3 Connected components analysis 39

Algorithm 1 Calculating connected components
Require: An input image of labels, I = {p1, p2, . . . , pN}
Require: An output image of components, I ′ = {p′1, p′2, . . . , p′N}
Require: A lookup table T , initialized so that T [i] = i

for all p ∈ I do
if p 6= all neighbors in I then
p′ ← new unique label

else if p = one or more neighbors in I then
m←∞
for all n ∈ I ′ {n is neighbors with same label} do
m← min(m, T [n])

end for
p′ ←m
for all n ∈ I ′ {n is neighbors with same label} do
T [n] = m

end for
end if

end for
propagate T to root-nodes.
for all p ∈ I do
p′ ← T [p′]

end for

The resulting translation table can be seen as a tree storing the equivalence re-
lationship between regions which are found to be merged after they have been
initially processed. An illustration of such a tree and its representation in the
translation table can be seen in figure 3.3.

A special step, called the propagation step is made through the lookup table, and
ensures that regions of the same component which originally were given different
value can be merged. In other words, the tree represented by the translation table
is flattened, and each node is assigned to it’s root. The propagation step is given
in algorithm 2.

Finally a second pass through the image is executed, during this pass a pixels
final value is determined from the lookup table, based on the value the pixel was
assigned during the first pass.

Propagation step

The goal of the propagation step is to merge all the different regions of the same

40 Algorithms for postprocessing

Algorithm 2 Propagation step of the connected components algorithm
Require: A lookup_table, T
Require: A stack, S

for i = Tend downtoTbegin do
c← T [i]
if T [c] 6= c then

while T [c] 6= c do
S.push(c)
c← T [c]

end while
while ¬S.empty do
T [S.pop]← c

end while
T [i] = c

end if
end for

component. The regions were originally thought to be different components but
were later found to be part of the same, this is reflected in the lookup table gen-
erated in the labeling step. Figure 3.3 demonstrates the contents of a lookup table
before and after the propagation step. The output of the GUI dialog for creating
the rule thus returns just on BPFC functor, which is an Angroup or an Orgroup.
This group then includes all the other rules.

The merging is achieved by iterating over the lookup in reverse order, starting
from the end. If the value at an index is different from the index value (it is then
always lower than the index value), the value is used as index for a new lookup.
This is repeated until the value at an index is the index itself. Ie. T [i] = i, this is
called a terminal node for the rest of this section.

For complex images the translation table can be several levels deep, like in fig-
ure 3.3. In order to avoid traversing the same path several times (like the 8-6-3
path in the figure), a stack is utilized to remember which nodes have been visited.
When a node is found not to be a terminal node, it is pushed on the stack before
traversing further down the tree. (Returning to figure 3.3 the resulting stack will
be 8 when the terminal node is found.)

After a terminal node is found, the stack is popped and each entry popped is
assigned to the current terminal node, ensuring the same path up the tree will only
be traversed once.

3.3 Connected components analysis 41

template<class Label, class Component>
class Thurfjell {
public:

\\ Constructors, destructor
blitz :: Array<Component, 3>
operator()(const blitz :: Array<Label, 3> input);
void attachstructel (Structural_element e);

}

Figure 3.4: Signature for the connected components algorithm. The operator() method
returns an image of the type Component, but the input image is of the type Label. The al-
gorithm is realized as a class (or more correctly, a functor), and not as a function, since it can
later be queried for information about the connected-components image. This information
includes sizes and boundingboxes of the components.

3.3.2 Implementation

In order to have a generic implementation of the algorithm, which was not tied to
a particular bitdepth, and which can support multispectral images the algorithm
was realized as a template class taking two template parameters. The first template
parameter is the type of the dataelements in the input image, the second element
it the type of the dataelements in the output image. This distinction between the
input type and the output type was found to be necessary since the number of
components in a large image can be several orders of magnitudes larger than the
number of distinct labels in the input image.

As a worst case scenario for the return type, consider a volumetric image were
every pixel is a separate component. The maximum number of components (and
hence the resolution) of such an image is linear with the number of bits used for
storage. For a cube shaped volumetric image with equal length in all dimensions,
the resolution along each axis is given by the function f(b) =

3
√

2b, were b desig-
nates the bitdepth of the (unsigned) return type.

For a return type which is 32-bit wide this results in a maximum image size of
16253. While still a large image to handle interactively on PC-style hardware
today, it is not completely out of the league for todays 32-bit computers.

Increasing the return type to 64-bits gives an image size of (2.64 · 106)3, while
128 bits yields (6.98 · 1012)3. 64-bit ought to be enough for any sequential al-
gorithm, larger datasets would probably benefit from parallel algorithms running
on a cluster of computers, and few computers will be equipped with anything close
to this amount of memory, so disk swapping will be a real bottleneck.

It should be noted that the worst case scenario is extremely unlikely to arise in
any real application when the images presented to the algorithm are segmented!

42 Algorithms for postprocessing

All interesting segmented images have at least some structure spanning multiple
pixels, if not the segmentation algorithm has failed completely.

By decoupling the return type of the image from the implementation, the user can
choose what return type is best suited for the problem at hand, while at the same
time not introducing any runtime penalty.

There are multiple advantages to letting the input type of the algorithm be a tem-
plate parameter as well. Primarily the algorithm is not tied to a particular bitdepth
for input images, but the algorithm can also support multispectral image were the
data elements are not a basic datatype (like an integer or a float), but can be any
object implementing the equality (operator==) and assignment (operator=)
operators.

3.3.3 Usage in Dr. Jekyll

The connected components of a segmented images constitutes view of the data at
a lower level than the segmented image, since we are able to differentiate between
different components which still share the same label. To be able to modify dif-
ferent components efficiently is the key to efficient postprocessing.

The image generated by this algorithm is an extremely versatile image which can
be used for many different tasks during post-processing. Indeed it forms the basis
of all further postprocessing which is based on a selection of components, and not
acting globally on the whole image or directly manipulating pixels.

A summary of the uses of the algorithm within Dr. Jekyll is given below:

➥ Component selection

For interactive postprocessing based on components, being able to select a
number of components and apply algorithms to the selection. Figure 3.5
shows how the interface of Dr. Jekyll highlights a selection of components.

➥ Number of pixels and volumes

The number of pixels in each component can be used further by other al-
gorithms. The rule based relabeling algorithm is highly dependent on this
information.

Determining the volumes of components can also be the end product of the
entire post-processing. For example, in medical analysis determining the
volumes of organs are crucial both for diagnosis and surgical planning and
it can be an end result itself of the entire post-processing process.

➥ Bounding boxes

3.3 Connected components analysis 43

Figure 3.5: An illustration of how a selection of components is highlighted in Dr. Jekyll. Fur-
ther operations can be applied to only the selection. The connected components algorithm
described in this section was used for calculating the components.

While not an end in itself, algorithms which are to be applied to a selection
of components can get a speed increase by knowing the bounding boxes of
each of the component. The bounding boxes effectively reduces the image
which must be search to find the selected components.

➥ Adjacency graph

44 Algorithms for postprocessing

During the calculation of the components it is possible to build an adjacency-
graph for each component, storing what labels each component has a border
to. This graph is the also used extensively by the rule based relabeling al-
gorithm (section 3.5).

➥ Visualization

For 3-dimensional visualization, each component designates an unique ob-
ject which has to be rendered. If surfaces are to be calculated for 3D visu-
alization, each component designates a unique surface (section 3.6.2).

For 2-dimensional slices, highlighting the contours of a selected component
allows for identifying the spatial structures of an image, since connections in
other slices than the one present can be shown by highlighting the contours
of the “active” component.

3.3.4 Alternative algorithms

Labeling algorithms for images have been an intense field of study since the ori-
ginal Rosenfeld and Pfaltz paper [39]. Much effort has been devoted to parallel-
izing the algorithm, an overview of such algorithms can be found in [19].

While dual and quad CPU machines are becoming more common, and technology
like Intels HyperThreading (which lets one CPU appear as multiple CPU’s) [32]
are emerging, most desktop computers will continue to be single CPU-based for
the foreseeable future. Such algorithms were therefore not evaluated for use in
Dr. Jekyll.

The Achilles heel of the sequential algorithm (from [39]) is the updating of the
lookup table which has to be done for every pixel. The solution presented above
demonstrates one way to reduce the running time of the original algorithm, an-
other solution based on a divide and conquer approach is presented by Park et al
[38], however it works only for regularly shaped structuring elements, and it is
presented only for 2D images, but the extension to 3D images is possible.

3.4 Mathematical morphology

Mathematical morphology can be defined as a theory for analyzing spatial struc-
tures. It is called morphology because it deals with the analysis of shapes and
forms using a mathematical foundation. The origin of mathematical morphology
comes from the study of the geometry of porous media in France in the mid-
sixties, the classical text outlining the theory is Elèments pour une thèorie des

3.4 Mathematical morphology 45

milieux poreux by G. Matheron [33]. A modern introduction is given in Morpolo-
gical Image Analysis by P. Soille[47].

Mathematical morphology has become an im-

Figure 3.6: A structuring element
both “hits” and “misses” the under-
lying image. The origin is the single
red pixel in the center of the blue SE.
The value of the origin pixel in the
output image after being probed by
the SE is dependent on the operator.
(Note that this is a very large circular
SE, made for illustration purposes.)

portant subfield of image analysis, and it is
used in fields as diverse as geosciences, ma-
terials science and inspection systems, as well
as in medical imaging.

The following is an concise introduction to mor-
phological operators. The field of mathem-
atical morphology is wide and exciting, and
many interesting properties can be derived. This
text gives only enough information for a dis-
cussion of the uses and implementation of the
operators. Mathematical morphology is foun-
ded on classical set theory. For the following
discussion a basic understanding of set theory
is assumed.

Morphological operators are operators that aim
at extracting relevant structures of an image,
considered through its subgraph representation.
This is achieved by probing an image with an-

other small image called the structuring element (hereafter called SE). Depending
on the application, various SE’s can be utilized. The SE is a small image, with
a pixel defined as the origin of the element. The notion of an origin allows us to
place the SE over a unique pixel in the input image. For each pixel in an image
we can probe with the SE and assign a new pixel value to the same position in a
new image. Figure 3.6 illustrates how a structuring element is placed on a single
pixel, and allows for probing a unique subset of all the pixels in the image for
every pixel. Morphological operators are thus image-to-image transforms.

3.4.1 Morphological operators on binary images

The following text summarizes the four basic morphological operators for a binary
image. All the definitions are from Morphological Image Analysis[47]. Figure
3.7 illustrates the effect of the various morphological operators on the same input
image, using the same SE.

➥ Erosion

When probing an image with a SE, a basic question is does the structuring
element fit the set?. If the pixel, and all the other pixels which the SE “hits”
are foreground, then the pixel is foreground in the output image, else it is

46 Algorithms for postprocessing

(a) Erosion (b) Dilation

(c) Opening (d) Closing

Figure 3.7: The effect of the various morphological on the same input image. The black
stippled lines indicate the original image. In the bottom row, the red stipples indicate the
input for the dilation and erosion step of opening and closing. Notice the image consist of
both the star-shaped structure with a box on to the top-right and a circular structure with
a box-shaped hole. Notice how the erosion (and thus the opening) preserves the hole in the
circle, but removes the star shape. The dilation (and therefore the closing) on the other hand
preserves the star shape, but removes the hole.

assigned background.

Definition 8 Erosion

εB(X) = {x |Bx ⊆ X}

Thus an erosion will make elements of the picture smaller, and increase the
number of background pixels in an image.

➥ Dilation

Another basic question when probing is, does the structural element hit the
set? If a pixel within the SE’s “hits” (not necessarily at the origin), then the
probed pixel will be assigned foreground in the new image.

3.4 Mathematical morphology 47

Definition 9 Dilation

δB(X) = {x |Bx ∩X 6= ∅}

A dilation will make subgraphs/elements thicker, the number of background
pixels will decrease.

➥ Opening

The combination of an erosion followed by a dilation with the transposed
SE. (The transposition of a set B corresponds to its symmetric set with
respect to the origin: B̌ = {−b | b ∈ B} Symmetric SE’s are their own
transposed).

Definition 10 Opening

γB(X) = δB̌[εB(X)]

The goal of morphological opening is to recover as much as possible of an
eroded image. Small structures are removed, but large structures retain their
size and their outline are smoothed.

Opening can be viewed as a “rolling-ball” moving around the inside of the
shape, and filling any gap on the outside it touches.

➥ Closing

The dual of opening is closing. An image is first dilated and then eroded
with the transposed SE. The end result are structures which keep their initial
shape.

Definition 11 Closing

φB(X) = εB̌[δB(X)]

Closing can be thought of as a “rolling-ball” on the outside of the shape,
and gap it fails to fill into is filled.

Notice that the definitions of morphological operators are dimensionless, so ex-
tending them to arbitrary spatial dimensions are trivial. However these definitions
do not tell us how to apply them to gray scale and segmented images.

For gray scale images the normal case is to let an erosion assign to the pixel
being probed the value of the minima of the image overlapped by the SE (see

48 Algorithms for postprocessing

figure 3.6), for a dilation the maxima of the pixels within the SE are used. This
approach works for gray scale images where the gray levels are continuous.

This approach does not however work for segmented images, where there is no
ordering of the labels. However, if the value of foreground and background are la-
bel not hardcoded into the operators, but instead given as parameters the operator,
the result is an operator which can be used in labeled images.

Another question which arises is what to do when part of the SE is outside of the
definition domain of the picture? One possibility is to let the outside be defined as
background, effectively adding a background border around the image. Another
possibility, which is the one implemented for the morphological operators in Dr.
Jekyll is to only consider the part of the SE which is inside the definition domain.

3.4.2 Algorithms for mathematical morphology

For an image on a discrete and regular grid, algorithm 3 and 4 summarizes how
erosion and dilation can be implemented. Opening and closing can be be realized
by letting the output of an erosion be the input of a dilation (and visa-versa).

The formal running time of a simple, image traversal based morphological oper-
ator is O(N(s − 1)) where N is the number of pixels in the image, and s is the
number of pixels in the structural element[47].

Algorithm 3 Erosion
Require: An input image I = {p1, p2, . . . , pN}
Require: An output image I ′ = {p′1, p′2, . . . , p′N}, initially set to a copy of the

input image.
Require: A Structural, S = {s1, s2, . . . , sn}
Require: A function f which calculates the position of a pixel in the input image

based on an origin pixel and an delta point from the SE.
for all p ∈ I do

for all s ∈ S do
if f(p, s) 6= label then
p′ = background
break

end if
end for

end for

If erosion and dilation is implemented as a sequential algorithm, like algorithm 3
and 4 suggests, it is not always necessary to probe all the pixels within the SE in
order to determine the final value of the origin pixel. For erosion it is enough to

3.4 Mathematical morphology 49

Algorithm 4 Dilation
Require: An input image I = {p1, p2, . . . , pN}
Require: An output image I ′ = {p′1, p′2, . . . , p′N}, initially set to a copy of the

input image.
Require: A Structural, S = {s1, s2, . . . , sn}
Require: A function f which calculates the position of a pixel in the input image

based on an origin pixel and an delta point from the SE.
for all p ∈ I do

for all s ∈ S do
if f(p, s) = label then
p′ = label
break

end if
end for

end for

find one pixel where the SE “misses” the set. If it misses, the loop can be exited
and the pixel set to the background label. We can then move on to processing
the next pixel. Dilation allows for a dual technique. It is enough to find one
pixel where the SE “hits” the set. Then we know that the pixel shall be set to the
foreground label and can move on. Notice that if this strategy is to be used, the
output image must initally be set to a copy of the input image.

Alternative algorithms

The formal running time of the morphological operators (O(N(s − 1))), can be
reduced dramatically on some occasions. Unfortunately these techniques put con-
straints on either the dimension of the input image or on the shape of the structural
element, and are therfore not as general as the algoritms above.

One possible technique is the “Moving histogram technique” where an histogram
is updated for the pixels leaving and entering the structural element. This al-
gorithm was presented in [11] and claims to have lower complexity and higher
efficiency than comparable methods. However, thich approach is mainly effective
when operating on gray scale images when using large SE. The algorithm is also
only presented for 2-dimensional images, an extension to 3D should be possible
however.

Experiments show that the classical loop based algorithms described above are
fast enough for interactive usage, even on large volumes.

Algorithms3 and 4 is both simple to understand, and requires few lines of code to

50 Algorithms for postprocessing

template<typename VT>
blitz :: Array<VT, 3>
dilation (const blitz :: Array<VT, 3>& old, const Structel& element,

const VT& fromlabel, const VT& tolabel)
{

blitz :: Array<VT, 3> img;
Structel :: const_iterator it ;
// Add a border, initialize img to old etc.
FOR_EACH(img) { // macro which brings x, y and z into scope.

it = element.begin();
while (it != element.end ()) {

if (old (x+it−>x(), y+ it−>y(), z+ it−>z()) == fromlabel) {
img(x,y,z) = tolabel ;
break; }

++it ;
}

}
return img;

}

struct Dilation {
template<typename VT>
blitz :: Array<VT, 3>
operator()(const blitz :: Array<VT, 3>& old, const Structel& element,

const VT& fromlabel, const VT& tolabel) const {
return dilation (old , element, fromlabel , tolabel);

}
}

Figure 3.8: The signature for the dilation operator, and it’s corresponding functor object
(notice the difference in casing). By use of the template parameter VT (for voxel type) the
algorithm is completely independent of the type of data stored in the Blitz++ containers.
The functor object is necessary to be able to utilize the algorithm in the strategy pattern.

implement, thus less is the chance of an error in the implementation.

3.4.3 Implementation of morphological operators

In order to describe how the morphological operators were implemented, a quick
summary of some if the goals of the Dr. Jekyll application is in order. The goal
is to have both a useful interactive application, as well as to provide an extendible
framework for new algorithms.

Such a framework consists of both working algorithms which can be called for

3.4 Mathematical morphology 51

other purposes than their original intention, as well as reusable components to
implement new algorithms, or to create a graphical user interface for controlling
them.

In order to be as generic as possible, all the morphological operators were imple-
mented with the same function signature. Namely returning an new image, and
taking as input the image which will be calculated on, and SE, as well as the label
the operation will be going from and to. Figure 3.8 includes almost the entire
body of the dilation operator which is used in Dr. Jekyll.

By returning an image object, it is possible to implement “chaining” of operators.
This allows for easy implementation of opening and closing, as well as other mor-
phological operators like the half-edge gradient. Returning the resulting image
object directly, could introduce a lot of memory overhead, since all return values
are passed by value in C++. The Blitz++ object returned is however only an
encapsulated pointer to the actual image data. The overhead of returning by value
is thus negligible, thanks to this feature of the Blitz++ library.

The Structural Element

In order to write generic algorithms which can support specialized SE’s, the SE
was separated from the algorithms and implemented as it’s own class. The only
thing that is stored in this class is an array containing point objects. These points
store the offset from the origin of the structural element, and can be added to the
current position to give a point within the SE.

The SE class is implemented as a subclass of the STL vector-container. The usage
of the SE class is illustrated in figure 3.8; an iterator is created which iterates over
the SE (independent of its shape and size) and these points are added to the current
point and processed, to give the position of pixel to read.

This mechanism of storing delta points in a container is also used when calcu-
lationg a neigborhood for the connected components algorithm. This technique
demonstrates how generalizing a concept as it’s own class increases flexibility
and encourages code reuse.

Graphical user interface

The morphological operators, combined with the connected components of an im-
age allows for highly flexible interactive post-processing. However a good graph-
ical user interface (GUI) to the algorithms is necessary to fully exploit this.

Since the technique outlined above allows for a large number of the algorithms,
with the same signature, it should be possible to write a generic GUI control,

52 Algorithms for postprocessing

template<typename VT, typename STRATEGY>
class Selection : public Plugin {

// Constructors (which build the GUI) and destructor.
void apply () { // Activated when the Apply button is clicked .

STRATEGY S; // Instantiate a concrete algorithm
// Generate image from selection.
blitz :: Array<VT, 3> out = S(image , ...); // Call the concrete algorithm.
// Map out into the original image.

}
}
// Different Selection objects can be made like this :
Selection<uint8_t , Dilation > Dilationplugin ;
Selection<uint16_t , Opening> Openingplugin;

Figure 3.9: Code example of how templates can be used to implement the strategy design pat-
tern, promoting loose coupling between the algorithms and the user interface class. Notice
that the objects created at the end uses the uppercase version of the algorithm name, which
is the functor object encapsulating the actual algorithm. The first template parameter is for
different voxel types.

which can be use for all algorithms with the same parameter list.

The implementation of the dialogs for morphology in Dr. Jekyll uses type para-
meterization to achieve this goal. Figure 3.9 illustrates how this can be done. The
Selection class, which has methods to the generate the GUI, and for applying
an operation only to the selected components, takes two template parameters. The
first one is for the data type of the underlying image, the second can take any ob-
ject matching the return value and parameter types where the object is used in the

Figure 3.10: The dialog for the selection based erosion operator. Several labels can be eroded
into the tolabel, and a variety of structural elements are available.

3.4 Mathematical morphology 53

apply() method.

In order to be able to instantiate the Selection class with different algorithms,
the algorithm must be available as a type and not only as a callable function. The
functor dilation object figure 3.8 is an example of how such types can be made.

Such encapsulation of the inner workings of an algorithm is an example of the
strategy design pattern[15]. It is not a variant of the decorator pattern, even
if the trick of passing a “decorating” object as a template parameter has been
demonstrated[61, 62]. In the decorator pattern, it is not required to decorate all
instances of the class, the dialog above however cannot work without a functor
type being passed.

It should be noted that this example could alternatively be realized by using sub-
classing, as illustrated in figure 3.11. The Selection class has a pure virtual
function (a function which all subclasses must implement). For every algorithm
which is to be called a new subclass has to be derived, the subclass implement
the pure virtual function and forward the function call to the actual algorithm. As
can be seen from figures 3.9 and 3.11, the example using subclassing is longer
and introduces a virtual function call (which has a slight runtime overhead). The
main disadvantage of using subclassing instead of static typing is the tighter coup-
ling between the inheritance hierarchy and algorithms. If the algorithms change
parameter list, every subclass acting as a forwarding function has to be updated
to reflect this, by using static typing, the actual call to the algorithm is isolated to
only one line of code.

A third option, embodying the actual algorithm in a subclass of Selection,
also deserves mention. To achieve any code reuse at all, it would have to be
implemented in form of a virtual function call like figure 3.11. However, it would
be impossible to call the algorithms without instantiating a complete graphical
dialog as well, making implementation of opening and closing much troublesome
than they need to, since calling the code for opening and dilation would also call
all the code for the dialog.

Finally, an illustration of the GUI for a selection based erosion is shown in fig-
ure 3.10. This dialog-algorithm combination was made using the technique ex-
plained in this section. However the actual inheritance hierarchy for the dialog
shown is more complex than this example suggest. This was done partly to over-
come Qt’s limitation with regards to templates (see section 2.2.2), and also to add
different help texts for the the different morphological operators.

Alternative implementations At the time Dr. Jekyll was started, no generic
library for doing mathematical morphology on volumetric datasets were avail-
able. However in spring 2002 the Olena library was announced by the LRDE

54 Algorithms for postprocessing

template<class VT>
class Selection : public Plugin {

// Constructors, destructors etc.
// Pure virtual forwarding function :
virtual void blitz :: Array<VT, 3> algo(image , ...) = 0;
void apply () { // Activated when the Apply button is clicked .

// Generate image from selection etc.
blitz :: Array<VT, 3> out = algo(image , ...); // Call to virtual function
// Map out into the original image.

}
}

template<class VT>
class OpeningSelection : public Selection<VT> {

void blitz :: Array<VT, 3> algo(image , ...) {
return opening(image , ...);

}
}

template<class VT>
class ErosionSelection : public Selection<VT> {

void blitz :: Array<VT, 3> algo(image , ...) {
return erosion(image , ...);

}
}

// Concrete instances can be made like this:
ErosionSelection<uint8_t> Erosionplugin;
OpeningSelection<uint16_t> Openingplugin;

Figure 3.11: An alternative way figure 3.9 could have been implemnted. This example uses
subclassing and virtual functions instead static typing to achieve the same effect. The net
result is more code lines, and tighter coupling between code, since all subclasses acting as
forwarding functions has to be altered if the parameter list of the morphological operators
change.

Lab at EPITA (École pour L’Informatique et les Techniques Avancées) in Paris,
France[9]. This library provides a complete framework for doing mathematical
morphology in C++ and it is available under an open source license. While the
OLENA is more polished than Dr. Jekyll for doing mathematical morphology,
they share many design philosophies, like the use of templates to support various
bitdepths of images. As well as heavy use iterators to support arbitrary SE’s, and
the chaining of operators.

3.5 Component based relabeling 55

3.4.4 Applications of morphological operators

For doing interactive postprocessing of segmented images, the morphological op-
erators provide a unifying theory for altering the shape and form of either the
entire image, or a subset of it (based on the connected components analysis).

The morphological operators are highly adapted for manipulating shapes. By
providing an interactive GUI they allow for complex, non-linear filtering of im-
ages or components of images..

Furthermore, two other uses of morphology deserves special mention:

1. Surface extraction can be done by the half-edge gradient (also called the
internal gradient). If all labels are eroded, and the eroded image is sub-
tracted (pixel by pixel) from the original image, only the contours of each
component are left;

ρ−B = I − εB. (3.1)

Here I denotes the original image.

For a segmented image, where a change in pixel value defines a component
boundary this is a faster way of extracting the surface pixel than the march-
ing cubes algorithm, since the aim of the later it to extract isosurfaces.

This techniques is used by the three dimensional visualization technique to
highlight comoponent selection (see section 3.6.3).

2. While not implemented in Dr. Jekyll the watershed transformation for im-
age segmentation is based on mathematical morphology. If Dr. Jekyll is
to be extened to be an segmentation tool as well, the watershed transform
is a prime candidate for the segmentation algorithm, and it can utilize the
framework already in place for doing morphology.

3.5 Component based relabeling

The most important task during postprocessing is to relabel pixels. Morphological
operators are one way to achieve relabeling based on local neighborhood opera-
tions, by nature the morphological operators operate on single pixels in order.
However another approach is possible, namely relabeling based on components.
These components arise from the connected components algorithm described in
section 3.3.

This tool do not use any sophisticated algorithms, but nevertheless the implement-
ation requires some trickery to get right in order to be flexible, so an overview of
how it was implemented is in order.

56 Algorithms for postprocessing

3.5.1 Interactive Component based relabeling

A very simple way to reclassify a component is to manually select the component
(which is highlighted in green by the Dr. Jekyll GUI), and then select the label the
selection will be converted to.

The actual relabeling is also trivial. Every pixel in the selected components bound-
ing box is traversed, and if they belong to the component, the label is updated
accordingly in the pixel data for the underlying image.

3.5.2 Rule based

Rule based relabeling is a much more interesting and complex task. The connec-
ted components analysis calculate information which can be used for rule based
relabeling:

➥ Size of component

➥ Neighbors of component

While not itself an impressive list, the logical rules that can be built from this in-
formation can create complex transforms of the image. An example of such a rule
could be reclassify components (with size less than 250 pixels AND connection to
the liver label) OR size greater than 500 pixel OR connection to the border to the
background label.

Doing such a reclassification by hand would be almost impossible, however the
connected components analysis provides exactly the information needed to find
the components which shall be reclassified. A screenshot of the GUI for creating
such rules are presented in figure 3.12.

3.5.3 Implementation of the rulechains

The programming of such “chains” of rules of arbitrary length and depth requires
some trickery to get it right, but it was made easier by one of C++ generic pro-
gramming mechanisms, namely functors. Since the implementation is highly tied
to the STL and the C++-way of doing things, some vocabulary must be defined:

➥ A functor (function object) is simply an object which can be called as if
it is a function (with the f(...) syntax). Any class which implements
the operator() method is thus a functor. Like any other class a functor
object preserves states throughout the lifetime of the object.

3.5 Component based relabeling 57

Figure 3.12: The GUI for creating arbitrary chains of rules for relabeling of components.

➥ A predicate class is a functor returning either true or false for its operator().
A predicate taking as input exactly one parameter is called an unary predic-
ate. (If it takes two inputs it is called a binary predicate etc.)

➥ An adaptable functor is a functor which provides typedefs for its return and
parameter type(s). Adaptable functors may be used by functor adapters,
functors that transform or manipulate other functors. The STL provides pre-
declared base classes (called unary_function and binary_function)
to simplify the declaration of adaptable functors.

The goal of the implementation is to create a boolean functor which can be queried
for each component in the in the image. The result value of the functor decides
if the actual component is to be relabeled. The functors corresponds to either
an actual rule (is the size of component x larger than n pixels), or they can be a
logical group. For a group of logical “ANDs”, all the members of the group has
to return true for the group to return true.

The bottom row of figure 3.13 shows the concrete rules which are included in Dr.
Jekyll. However the inheritance hierarchy for the rules are quite complicated, due

58 Algorithms for postprocessing

Figure 3.13: Inheritance hierarchy for the implementation of the rule chains used in the
rule-based relabeling algorithm. The red line indicates a pointer, the black lines indicate in-
heritance. The functor class BPFC (Big Polymorphic Functor Class) is in reality a very small
monomorphic class, but it holds a pointer to its implementation part, called BPFCImpl.

to a limitation of the STL; functors must designed so that they can be passed by
value (and not by reference). This constrains the functors to be monomorphic (that
is not polymorphic), ie. they must not contain virtual functions. To overcome this
limitation, and allow for code reuse between the rules, a proxy class, called BPFC
(Big Polymorphic Functor Class) was created. This class has no virtual functions,
but it holds a pointer to an implementation class (BPFCImpl), which has the
“real” implementation. A call to operator() of a BPFC instance, is forwarded
to the BPFCImpl’s operator() method. This is illustrated in figure 3.14. (It
should be noted that the implementation in Dr. Jekyll is a bit more complicated
than this, since it uses smart pointers to avoid memory leaks when the last instance
of a BPFC goes out of scope.)

The class hierarchy above is inspired by Meyers solution to overcoming the mono-
morphic functor limitation if [36]. The technique of hiding the implementation of
a class behind a pointer is called the “Bridge Pattern” by Gamma in Design Pat-
terns [15], and the “Pimpl Idiom” by Sutter in Exceptional C++ [52].

3.6 Visualization 59

template<class T>
class BPFC
{
private:

T∗ pImpl;
public:

BPFC(T∗ impl) : pImpl(impl) {};

bool operator ()(...) const
{

return pImpl−>operator ()(...);
}

};

template<class T>
class BPFCimpl
{

friend class BPFC<T>;
public:

virtual ~BPFCimpl() {};
protected:

// = 0 at end means pure virtual.
// It has to be reimplemented in subclasses.
virtual bool operator ()(...) const = 0;

};

Figure 3.14: The implementation of the Pimpl idiom or bridge pattern. A small mono-
morphic (without virtual functions) delegates the call to operator() to an implementation
class, which can have virtual functions. (Notice that the implementation sketched here is
prone to memory-leaks, since functors can be copied, and there is no mechanism to delete
the pointer when the last BFPC instance goes out of scope.)

3.6 Visualization

The preceding sections has given an overview of the algorithms implemented in
Dr. Jekyll. For an interactive application, and for deciding what algorithms to ap-
ply (and to what parts of the image) it is necessary to have efficient visualizations
of the image as well.

This section discuses the benefits and disadvantages of various established visual-
ization techniques, and does not aim to give a detailed account of the techniques
themselves. However to form a basis for discussion, a short summary of the vari-
ous techniques work are given.

The reader will notice that none of the algorithms described in this section was
actually implemented in Dr. Jekyll by us, but were found in libraries. Implement-

60 Algorithms for postprocessing

Figure 3.15: Hierarchical overview of the different visualization techniques discussed.

ing high-quality visualization algorithms from scratch is a very time consuming
process, and were beyond the scope of the Dr. Jekyll project.

The classic text Computer Graphics: Principles and Practice by Foley, Van Dam
et Al[14] gives a detailed introduction to the field of computer graphics, but it is
becoming a dated. Still it includes a good overview lightning and shading mod-
els, polygonal representations etc. An up to date, modern text, specially dealing
with how to utilize modern graphics hardware to achieve interactive framerates
for 3-dimensional models is Real-Time Rendering by Akenine-Moller/Haines[1].
It scope is a bit narrower than [14] though.

For visualizing volumetric 3-dimensional images on a 2-dimensional computer
screen, two different approaches can be taken. Namely sliced based 2-dimensional
visualization or 3-dimensional visualization. Figure 3.15 contains a hierarchical
overview of the different visualization techniques which were evaluated for use in
Dr. Jekyll, and which are discussed below.

3.6.1 Slice based 2-dimensional visualization

A simple, but yet very effective way to visualize a volumetric dataset is to extract
slices from the volume. For a dataset on a regular grid, it is possible to extract
slices along perpendicular axes, allowing for multiple views of the same data.
Images arising from CT and MRI scanners has traditionally been diagnosed this
way, by printing out the slices on film, and using backlight whiteboards to see each
slice. Radiologist and doctors are therefore used to seeing 3-dimensional images

3.6 Visualization 61

Figure 3.16: This screenshot of shows both kinds of visualization techniques which Dr. Jekyll
provide. Slice based 2D visualization is available along perpendicular axes in the datasets
(to the left). A volume visualization provides a 3D overview of the entire image. A move-
able cross is synchronized between the different visualizations, allowing for easy navigation
throughout the volume. A selection (based on the connected component analysis) is high-
lighted in green.

this way. The left part of figure 3.16 shows a CT image being visualized along
two perpendicular axes, with a cross highlighting the same pixel in both views.

There are other advantages to utilizing 2-dimensional slice based visualizations
as well. Primarily, it is the only visualization technique which allows for a direct
correspondence between image pixels and screen pixels. No perspective is calcu-
lated, and thus pixels which are neighbors on the screen are really neighbors in
the underlying image dataset as well.

Furthermore, since only a small subset of the image is be visualized, it can be very
fast. This is partly because very few calculations has to be made to visualize the
slice. But also, the number of pixels which has to be considered is much less than
the entire image, effectively reducing the running time.

In theory it is also possible to extract slices along axes which are not perpendicular
to the dataset. This approach would lose all the benefits stated above, since in is
no longer possible to extract “exact” slices of the data. This removes to one-
to-one correspondence between image and screen pixels, as well as introducing

62 Algorithms for postprocessing

more complex calculations for the visualization. Arbitrary slices is therefore not
supported in Dr. Jekyll. This functionality would probably be better to provide as
cutplanes through the 3-dimensional visualization.

3.6.2 3-dimensional visualization

As humans we are accustomed to living in a world with three spatial dimensions,
and our vision systems reflects this. The human eye is remarkable in its ability to
“see” depth in the real world. Much of this information is gained by looking at the
shadows and reflections of the objects we are looking at. Even if a computer has
a representation of a 3-dimension world in it’s memory, it can not directly output
this data to a 2-dimensional computer screen. Projection, lightning and shading
has to be calculated in order to give a human observer looking at a computer
screen the illusion that he is looking into a 3-dimensional world.

Such calculations involve floating point operations, and can be very processor in-
tensive, so dedicated graphics chips were developed in the late 1980’s. Initially
such dedicated graphics hardware were the domain of high-end and high-cost
hardware, specially from SGI (previously Silicon Graphics). However in the late
1990’s dedicated hardware for 3-dimensional acceleration started to become com-
mon on desktop computers, thanks to the gaming industry. Today almost every
computer sold, including laptops, is equipped with dedicated graphics hardware.
Such hardware is often called 3D- accelerators or GPU’s (Graphical Processing
Units). The speed and complexity of a modern 3D-accelerator is quite amazing,
and the latest incarnation of the graphic chips from Nvidia and ATI includes more
transistors than top of the line processors from Intel2

While commodity GPU’s are primarily designed for games, they can also be used
for scientific visualization, making high performance and large dataset visualiza-
tion affordable on commodity hardware.

3D-accelerators work by implementing very effective, brute force algorithms in
hardware. These algorithms include algorithms for geometry (like transforma-
tion, scaling and rotation), lightning and shading as well as the final projection
on the computer monitor. Thus allowing for interactive framerates of even highly
complex models.

Even if a computer is equipped with a GPU, it is a non-trivial task to convert
a 3-dimensional image into a model which can be rendered by the GPU. One
possibility is the generate a surface of the various objects in the image (if such
exists), another is to try to take every pixel into account when visualizing the

2ATI’s R300 chip contains 110 million transistors, while the Intel Pentium IV contains 55
million. However the R300 has eight parallel pipelines, greatly increasing the transistor count.

3.6 Visualization 63

image on the screen. These techniques are called surface and volume rendering
respectively, and are explored below:

Surface visualization

Most GPUs are traditionally very well suited to rendering surfaces, since they
are primarily designed for rendering models where a geometric representation
already exists. However, how to generate the geometric model, and what form the
geometric representation shall take, is not obvious.

The geometric representation can basically take two forms:

1. Parametric surfaces

A parametric surface, is typically a mapping from a rectangular domain Ω
into space: f : Ω ∈ R2 → R3.

The mapping f can take several forms, including Bezier patches and tensor
product spline surfaces. The exact definition of f can vary, but for the sake
of the discussion it is enough to know that there exists several ways to gener-
ate f from the surface points of an object, and that the level of mathematical
continuity can be as high as necessary. (But usually C2 or C3.)

The advantage of surfaces is that relatively few points (often called control
points) has to be stored for a complex geometric model, as well they guar-
antee (mathematical) continuity, simplifying lighting calculations. Further-
more, by moving these points interactively it is possible to alter the shape of
an object, making parametric surfaces a good tool for modeling. An imple-
mentation using Catmull-Rom splines for editing medical volume images is
demonstrated in [10].

It should however be emphasized that a parametric surface seldom repres-
ents the object exactly, but represents an arbitrary close approximation to
the surface.

The disadvantage of parametric surfaces is that there is no generic way to
parameterize an arbitrary collection of surface points. To generate a correct
model, more information has to be known about the object being repres-
ented, including it’s genus (number of holes) and if it is an open or closed
surface.

Another way to generate a parametric, continuous approximation of a sur-
face, is to first generate a representation of the surface using triangles, and
thereafter calculate a parametric surface over the resulting triangulation.
This is of course even more computationally expensive, requiring both a
triangulation step and thereafter a “surface” step.

64 Algorithms for postprocessing

When rendering parametric surfaces, it is usual to convert the parametric
surface to polygons (see below). Algorithms for doing this is computation-
ally and conceptually simple, and allows for utilizing the direct hardware
support for rendering polygons, while at the same time keeping an accurate,
continuous representation.

2. Polygons

When raw rendering speed is crucial, the fastest way to describe the surface
is by polygons, and very often the triangle is the preferred polygon. Since,
by definition, the three point spanning a triangle is planar. In addition to
storing the vertexes, also the normals for each polygon has to be stored, in
order to generate correct lighting.

The disadvantages of the polygonal representation is that interactive editing
becomes an almost impossible task, since the number of triangles is very
high. Furthermore, a polygonal representation is also an approximation to
the underlying data, and if several objects close to each are visualized, they
could have overlapping representations.

For volumes consisting of a scalar field, the standard algorithm for gener-
ating a surface based on triangles is the marching cubes algorithm[31]. It
is designed to extract ISO-surfaces of a volume, and is therefore not the
best algorithm when the object boundaries are clearly defined as in a seg-
mented image. The marching cubes algorithm is also patented, restricting
its use in a commercial setting, thus making the legality of an open source
implementation dubious.

For segmented images, where a connected components analysis already ex-
ists, it should not be necessary to go via the “marching” step. However, as of
yet there exists no standard, well proven technique to avoid the “marching”
step. Though it is a field of active research.

The main disadvantage of surface visualization is the high cost associated with
calculating the surface. The running time of calculating the surface is acceptable
if they were only to be run at program startup. However since the algorithms of
Dr. Jekyll may change the shape and form of the dataset, in can be necessary to
recalculate the surface many time throughout the programs lifetime.

Another cost associated with generating a geometric model, is that one has in
effect to store two representations of the image. Both the raw image data, and a
geometric model (and possibly even the normals of the geometric model as well).

However on possible end-product of postprocessing, and thus of Dr. Jekyll itself
is to have a refined dataset which is suitable for surface extraction. As a way to

3.6 Visualization 65

Figure 3.17: The basic principle of volume rendering. A “ray” is cast from each pixel (per-
pendicular to the screen) through the volume data. Each pixel the ray touches accumulates
to the final pixel value.

visualize the images while they are being processed, generating the model is to
computationally expensive.

Direct volume rendering

Direct volume rendering is conceptually very different from surface rendering.
Instead of extracting and representing surfaces of a volume, each pixel (or data
point) is taken into consideration when generating the final image, this is done by
a technique known as ray-casting.

Figure 3.17 illustrates how a ray is cast perpendicular to the screen from each
screen pixel throughout the data volume. The final intensity value of each pixel is
given by the volume rendering integral:

66 Algorithms for postprocessing

I(a, b) =

∫ b

a

g(s)e
∫ s
a
τ(x) dx dx (3.2)

Here g(s) describes the lighting model used in the ray casting. It can be a very
simple lighting model, or a more sophisticated lighting model like the Phong
model. The other function, τ(x) defines the transparency of each voxel.

On modern GPUs this calculation can be done in hardware, by loading the pixels
into the memory of the GPU, but CPU based techniques also exists. Both methods
rely on using numerical integration to calculate the volume rendering integral.

Using GPUs to do the volume rendering however has one serious limit. In order
to do the calculations the pixel data has to be loaded into the GPUs, and like a the
main processor the GPU has also has a limited amount of memory.

Volume rendering is still a young field, and both techniques and applications is a
subject of rapid research. An overview of techniques and applications on general
hardware is given in [43]. The mathematical foundations and early techniques
is given in [29], though it is becoming a bit dated and was written before GPUs
became mainstream on commodity hardware.

3.6.3 Implementing the visualizations

As stated above, implementing effective visualization algorithms, to take advant-
age of dedicated graphic hardware, is not an easy task. Therefore libraries were
used to generate the 3-dimensional visualizations.

Segmented volumes should be very well suited for surface visualizations, since
object boundaries can be generated directly, and the connected components ana-
lysis group pixels into a unique object to which they belong. Furthermore the
half-edge gradient (see equation (3.1)) can be used to extract the surface.

Since Open Inventor was chosen as the library for developing the visualizations, it
was experimented with using an implementation of the marching cubes algorithm[31]
written by Josh Grant[18] for Open Inventor.

While this implementation provided satisfactory visual results, the running time
for generating the visualization was to slow for interactive usage. If this pro-
cessing only was necessary to do when loading a new dataset, the delay would
have been acceptable. However since the various tools provided by Dr. Jekyll
alters the shape and form (and thus the object boundaries) of the dataset. It is
required to recalculate the visualization each time the data is updated, rendering
the application to slow for interactive usage.

Since the marching cubes algorithm is patented, the legality of distributing an
implementation of it is dubious. Licensing issues regarding the implementation

3.6 Visualization 67

provided Josh Grant was also clouded by this. Even reimplementing the algorithm
from scratch will have these limitations, since it can not be published under an
Open Source license and thus not legally linked with the Qt and Coin libraries of
Dr. Jekyll.

Volume rendering has the benefit that all the processing can be done in hardware,
provided the GPU has a copy of the image data. If the image data is stored con-
tiguously in memory (like Dr. Jekyll do), it is an extremely fast operation to load
the image data into memory, resulting in near realtime feedback for algorithms
which alter the objects.

A change of the shape and connectivity of the dataset, still requires the image
data to be reread into the GPU and recalculated, but this happens in a fraction of
a second on a modern workstation, in contrast to surface based methods which
takes several seconds.

Systems in Motion[79], developers of a freely available Open Inventor clone named
Coin, kindly provided us with a prerelease version of their volume rendering ex-
tensions to Coin, called SimVoleon. Using this library, volume visualization of
images in Dr. Jekyll could easily be developed, and was as easy as giving a pointer
to the image data to the right function. This is so since the library plugs easily into
the scene-graph based architecture of the Coin library.

Highlighting a selection

It has previously (see 3.3 been emphasized how the connected components ana-
lysis is a valuable tool for image navigation in 3-dimensional images, since it al-
lows for visualizing spatial structures with connections in all parts of the volume.

The volume visualization of Dr. Jekyll uses the half-edge gradient by erosion (see
equation (3.1)), using a 3-dimensional structural element to calculate the surface
of a selection. The selection is therefore the 3-dimensional contour of each com-
ponent. The surface is visualized as points, allowing the color from the objects
inside of the selection to be seen through the highlighting. The right window in
figure 3.16 shows a volume rendering with a component highlighted using this
technique.

3.6.4 Conclusion for visualizations

High-quality and high-speed visualization for arbitrary images is a field of its own,
and could easily constitute the focus of entire research projects. The timeframe
of the Dr. Jekyll project has not allowed for finding optimal visualizations for the
image data, even if we have relied on libraries and not implemented the algorithms

68 Algorithms for postprocessing

ourselves.

The volume rendering approach which is the only 3-dimensional visualization
which has been completely implemented, has the advantage of not requiring extra
storage space, nor calculations of the image data. However a volume rendering is
not a good base for developing three-dimensional editing tools.

The present state of Dr. Jekyll which combines 2D slices and volume rendering
seems to be a good compromise for visualizing volumetric images, since the raw
data is visualized, the interactive feedback on the result of algorithms is quite
good.

However, there is no one-size-fits-all solution to visualizing volumetric images,
and it would be a nice addition to Dr. Jekyll to provide more visualization front
ends.

3.7 Conclusion

This chapter has provided an overview of the central algorithms which forms the
computational base of the Dr. Jekyll application. Though none of the algorithms
are novel, the image processing algorithms have had to be extended from an
algorithm operating on binary images to an algorithm which can be applied to
labeled, segmented images.

Furthermore is has been demonstrated how the algorithms are realized in modern
C++, with the aim of being generic and supporting different structural elements
without sacrificing running time.

Chapter 4

Results and discussion

The most important result of this work is the Dr. Jekyll application itself. It
compiles and runs, and is available to everyone who wishes to use it or extend
it under an open source license. The following chapter summarizes the project
from bottom to top, starting with the algorithms implemented, continuing with a
description of the user interface and all the plugins implemented, and ending with
its usefulness for manual post-processing.

4.1 The algorithms

Early in the process of writing Dr. Jekyll, the algorithms detailed in chapter 3
were identified as potentially useful algorithms for volumetric post-processing.
Whether it was possible to achieve interactive performance of these algorithms
for large images, however, was an open question. if the licenses are legally com-
patible is just as important to verify as if they are technically compatible. A lot of
effort was put into finding an effective algorithm for connected components ana-
lysis, and the Thurfjell[57] algorithm implemented is much faster than the original
algorithm by Rosenfeld and Pfaltz[39]. The difference in running time between
these two algorithms is crucial to the interactivity of the application.

Implementing the morphological operators was much easier than implementing
the connected components analysis. The algorithms are much simpler and the
straightforward implementation is fast enough for interactive performance, even
for large images.

Finding effective visualization techniques for 3D images proved to be more chal-
lenging than originally assumed. Calculating geometry for each component is too
costly since they have to be updated so often. The best results were achieved by
techniques which could visualize the image directly without costly calculations,

70 Results and discussion

utilizing modern graphics hardware to ease the burden of the CPU.

4.1.1 Algorithm optimizations

Donald Knuth is quoted as saying Early optimization is the root of all evils[26].
However, this does not mean that one should never optimize the implementation
of an algorithm. One should wait until the algorithm is correct and stable before
optimizations take place. Furthermore blindly optimizing an algorithm is not a
good option, since modern compilers do a lot of optimizing on their own. Many
optimizations are better let off to the compiler than to the programmer.

However, the two points presentif the licenses are legally compatible is just as im-
portant to verify as if they are technically compatible.ed below show that manual
optimizations also has a great effect on the running time. Actual timings for the
benchmarks are included in appendix A.

1. Avoid cache misses:

The importance of traversing images the way they are stored in memory
has previously (section 3.1) been discussed. Benchmarks on the connec-
ted components analysis shows a performance penalty of between 20% and
60% on different CPU’s when traversing in the wrong direction.

2. Avoid object allocation in tight loops:

The Thurfjell algorithm uses two STL vectors to merge different parts of
a component found to belong to the same component. By allocating these
vectors before the tight loop and resetting them inside it (as illustrated in
figure 4.1), instead of allocating them for every iteration, the running time
was reduced by nearly an order of magnitude on the Intel Pentium IV CPU!
This is by no means a new finding, several texts, including [52, 35, 2] doc-
uments how expensive object allocation can be. However since the results
are dramatic, and it is quite an easy error to make, it is worth emphasizing.
Specially since modern CPUs probably wiif the licenses are legally com-
patible is just as important to verify as if they are technically compatible.ll
be more prone to such issues.

4.2 The application

The previous chapter has shown several screenshots of the Dr. Jekyll application
in action, with special focus on the connected components analysis. Here follows

4.2 The application 71

for_each_pixel(image) {
std :: vector V; // Creates a new object.
// inner loop , which uses V.

}

std :: vector V; // Creates new object.
for_each_pixel(image) {

V.clear (); // Resets old object.
// inner loop , which uses V.

}

Figure 4.1: Two code examples which illustrates how unnecessary object allocation inside
tight loops can be avoided, if the object supports resetting. For the Thurfjell connected-
components algorithm this technique reduced the running time by an order of magnitude.

Figure 4.2: The main controller dialog of the Dr. Jekyll application. The top level menu bar
can be used to open, close and save cubes. Thereafter follows a list of all opened images.
The buttons at the bottom are divided into three different groups: The first one controls
the different visualizations, the one in the middle has tools for synchronizing visualizations
between different images. The last button group contains a button for each plugin, doing the
actual image modification.

72 Results and discussion

a description of the capabilities of the application, with special focus on what the
different plugins do.

An image of the top-level menu widget of the application is given in figure 4.2.
The top level menu bar can be used to open, close and save cubes. Next follows
a list of all images which is opened by the application. Thereafter follows three
groups of buttons.

1. The first group of buttons can be used for opening different visualizations
of the images, both slice based and the volume rendering.

2. The next group contains buttons for connecting and disconnecting cubes.
Cubes that are connected will have their visualizations “follow” each other.
This is useful for data exploration, both raw and segmented images can
be studied, and one can see what a point in the original image has been
segmented to.

There is also a button for resetting the current ‘region of interest”.

3. The last group contains all the plugins. These described separately below:

➥ Copy label: Is used to copy all components of a label into a new cube.
The new cube will be a binary image, consisting only of background
and the extracted component.

➥ Copy selection: Is used for copying a selection of components into a
new cube. Multiple components may be selected, and they can can
belong to different labels.

➥ Dummy: This is simply a plugin doing nothing, it displays all signals
it receives and is useful for testing purposes. Furthermore since it is
not cluttered by any functionality, its source code should be easy to
read by new aspiring plugin writers.

➥ Label based closing, dilation, erosion and opening: These plugins al-
lows for applying a morphological operator to all pixels of the given
label.

➥ Labelview: Displays all labels present in the current image and what
value they are assigned to. It can also be used to introduce new labels
into an image. Components may later be relabeled to the new label.

➥ Reclassify selection: This plugin is used to reclassify the selected
components into a new label.

4.3 Using Dr. Jekyll for manual post-processing 73

➥ Rule based reclassify: Allows the user to generate complicated quer-
ies based on information generated by the connected components ana-
lysis. All components for which the query is true can be relabeled to
another component.

➥ Selection based closing, dilation, erosion and opening: Like their label
based cousins above, these let the user specify a number of compon-
ents to apply a morphologic operator to.

➥ Voxel painter (raw and segmented): These let the user directly manip-
ulate voxels in the image, by freehand drawing in the 2D slice visu-
alizations. The label and shape of brush to draw with can be selected
from a dialog.

Together these plugins provide for large possibilities for post-processing. How-
ever, it takes some time get an intuitive feeling for how they work, since everything
is processed in 3D.

4.3 Using Dr. Jekyll for manual post-processing

We have not, due to limited resources, conducted any empirical studies to assess
if the Dr. Jekyll application allows for better and faster post-processing of seg-
mented volumes. However, based on user feedback and our own experiences,
the applications fulfills it goals, and it is possible to effectively post-process and
classify segmented images using it.

Figure 4.3 shows a typical input image to Dr. Jekyll. The “input” image is very
chaotic, and everything is connected to everything else. After a few minutes of
massaging in Dr. Jekyll, the liver component shown in the bottom image was
extracted. Doing the same in a 2D image manipulating tool like Gimp or Adobe
Photoshop would take considerably longer.

The interactivity of the application is acceptable, but performance drops dramat-
ically if the computer running the program has too little memory.

74 Results and discussion

(a) Original segmented dataset. The highlighting shows the very large
liver component.

(b) The extracted liver component

Figure 4.3: The upper image show a typical “input” image to Dr. Jekyll. It is very chaotic
and more or less everything is connected to everything else. The bottom image shows the
extracted liver component, it was made by applying several morphological operators to a
selection of components, and manually relabeling those. The entire processing took less than
five minutes in Dr. Jekyll.

Chapter 5

Conclusions and further work

We have spent one and a half year designing and developing the Dr. Jekyll ap-
plication, and it is a useful tool for manual post-processing of volumetric images.
Until “perfect” automatic segmentation algorithms arise, it will be necessary to
refine segmentations, and manual post-processing is one way to accomplish this.

The time we have spent developing Dr. Jekyll has given us intimate knowledge
about the tools we have used. It is time to evaluate if the chosen selection of
languages and libraries were sound.

Thanks to its open source license it is possible for others to follow where we have
left off. There is certainly more work to do within all the fields of computer sci-
ence we have touched upon during this project and we hope to be able to contribute
to some of them. Possible directions for future work will end this report.

5.1 At a computational threshold?

From the advent of computer hardware and until today, the speed and efficiency
has been increasing at a tremendous rate. An application like Dr. Jekyll, dealing
interactively with large 3D images would not have been possible just a few years
ago, even on expensive “big-iron” machines.

Specially cheap 3D visualizations on commodity hardware opens up new and ex-
citing possibilities, but the processing power and memory capability which just
recently has become cheaply available allows for manipulating real-world data-
sets in new ways.

A clear indicator of this is the number of applications and projects doing related
work to our own which have turned up during the period we worked on Dr. Jekyll.
(See [17] for a list of some of these.)

76 Conclusions and further work

Datasets will continue to increase, but so will processor and graphics performance,
it will be very interesting to see what is possible just a few years from now.

However, better hardware also opens up new possibilities besides running old al-
gorithms “larger” and “faster”. New programming paradigms may arise, some
might aim to hide complexity, like using scripting languages to avoid the code-
compile-test cycle, others might expose more of it, as CPU’s becomes more vul-
nerable to pipeline stalls and cache misses.

When implementing speed critical code, it will always be necessary to operate at
several abstraction levels. Understanding how the effects of each abstraction layer
(from choosing the best algorithm to the compiler optimization setting) affect the
end product will always be important. However, running time is not everything.
The time spent developing must weighted up at the importance of running speed
of application and the cost of maintaining the software.

5.2 Did we accomplish the technical design goals?

A summary of how well we succeed in reaching the technical design goals defined
in section 2.1 is given below:

➥ The interactive performance of the application is acceptable, even for large
images, however, as images grow larger, calculating the connected compon-
ents analysis requires several seconds, giving the illusion that the applica-
tion has frozen. Computers running the application definitively needs large
amounts of memory.

➥ We have succeeded in avoiding to hard code limitations on the size of the
datasets. We have extensively used templates to avoid hard coding the types
of data into the algorithms of the application. However, to overcome Qt’s
limitation with templates, is has been necessary to cast between types for
communications via the signals-and-slots mechanism.

➥ We have not had access to any 64-bit computers, so we have not been able to
test if the application can utilize a 64-bit CPU. Neither have we had access
to the MS Windows version of Qt, so the portability of Dr. Jekyll to MS
Windows is unknown. We do not however know of any reason that is should
not fulfill these goals either.

➥ All the existing plugins of Dr. Jekyll uses the same interface for communic-
ating with the rest of the application. New plugins should not need to alter
any other parts of the program, and we believe the present interface to be
sound.

5.3 How wise was the selection of languages and libraries? 77

However, no person outside our team has written any plugins, so if it is
possible to write plugins without internal knowledge of the program is un-
known.

➥ We have successfully combined several libraries into the application, provid-
ing us with a lot of functionality which we could not have produced ourselves.
Combining libraries has not posed any technical problems, but a careful
study of the licenses of each library was necessary to finalize the license of
the application

5.3 How wise was the selection of languages and lib-
raries?

Section 2.2 contained an overview of why the different libraries, and the C++
language was chosen as the tools for implementing Dr. Jekyll.

This section discusses the strengths and weaknesses that was found when using
them extensively for more than a year. Each library is given a “verdict” which,
which basically answers the question, would we use the same library again for a
new project?

The following text focuses on how well suited the libraries were for implementing
the algorithms. Not every library is covered here, but the companion work by
Gleditsch[17] contains discussion of those left out.

5.3.1 Language

The choice of using C++ as the only implementation language has been a subject
of debate throughout the entire implementation process. C++ is a very complex
language, something which is both a blessing and a curse. Its a blessing since it is
possible to implement nearly every programming paradigm in the language. Its a
curse, since as the level of knowledge about C++ increases, you constantly want
to rewrite old code to take advantage of newer and more elegant methods. How-
ever, advanced C++ might be unreadable by other developers, since they don’t
understand the mechanisms involved.

Bjarne Stroustrup claims that becoming comfortable with all the major features of
C++ takes from one to two years[51]. This estimates assumes basic programming
skills from beforehand, but not detailed knowledge about the intrinsics of C++.
This claim coincides with our experience from writing Dr. Jekyll.

The template mechanism of C++ has been used quite extensively. Basically inten-

78 Conclusions and further work

ded to primarily allow for type independent containers, many new uses has been
found for it, and the C++ community does not yet understands its full power.

It very easy to be fascinated by the possibilities of writing truly generic algorithms.
If however generic programming provides any real world benefits, like shorter de-
velopment times or less bugs is dubious. Advocates of the Extreme Programming
methodology of programming[5] which has gained popularity recently, calls for
the simplest design that gets the job done, and to do not try to solve tomorrows
problems. (However it can be argued that extreme programming does not apply
to project as small as Dr. Jekyll.)

Our experience is that the classes which were designed with genericity in mind
could more easily met new unexpected requirements. This coincides with the
claim from [41] where empirical studies show that a generic solution is easier to
maintain in the long run.

It has previously (section 2.2.1) been hinted at the possibility of using a scripting
language to develop the GUI, and just use C++ or even classical C or Fortran for
the speed critical algorithms.

For realistically sized datasets, writing the entire application in a scripting lan-
guage is not an option, since both memory usage and algorithm running time
would be considerably higher than for a compiled language.

If starting anew with the project, such a “dual-language” approach would have
evaluated to a larger degree before committing to the solution. That said, C++ has
a proven track record for large projects, has mature compilers and tools and it is
very well documented. We do not rule out the option that we would end up using
C++ again for a similar project.

5.3.2 Mixing libraries

It is solely thanks to the number of high-quality and freely available on the Internet
it has been possible to write an application as complex as Dr. Jekyll. Even if all
the libraries we have used were mature, and well thought out, they are designed
with different philosophies in mind.

While different philosophies in the libraries makes the resulting source code less
aesthetically pleasing than it could have been, it has not been a problem in prac-
tice. Using several libraries results in more time poking through documentation,
but it is still a lot faster than implementing the same functionality from scratch.
In the future we would certainly like to continue using libraries, if the licenses are
compatible. However, verifying if the licenses are compatible is just as important
as verifying if the libraries are technically compatible.

5.3 How wise was the selection of languages and libraries? 79

5.3.3 Qt

The choice of using Qt for GUI and message passing (see section 2.2.2) turned out
to be more problematic than was originally foreseen. The problem is the usage of
a the moc preprocessor to support the signals and slots mechanism, but as stated
earlier, a class which has signals and slots can not be a template class.

To a certain degree this can be worked around by having a non-template base
class with signals and slots, and let the template class inherit those, something
which leads to unnatural and poorly designed class hierarchies. However this
strategy can only be used once in each inheritance hierarchy since all subclasses
of a template class must also be template classes.

Another annoyance with Qt it the use of to broad datatypes in some classes. Meth-
ods typically return singed datatypes, when the unsigned variant is enough. (Ie.
for the height and width of widgets, the number of children for a node in a tree
etc.) A study by Prechelt[40] concludes that libraries should strive to use as strict
type checking as possible the reduce the number of possible bugs.

As experience was gained using the template mechanism of C++ it became appar-
ent that templates are a powerful mechanism, and it would be very interesting to
have templated signals and slots as well as templated classes.

However as a library for writing GUI components Qt is as good as they get. The
documentation is excellent, and there is a good selection widgets available. More
than enough for the relatively simple dialogs which are present in Dr. Jekyll.

When developing a cross platform application, it is the only library promising
source code compatibility between various platforms.

Before using Qt again for a new project, we would evaluate if cross-platform com-
patibility between MS Windows, MacOS X and UNIX platforms is an objective.
If it important, Qt is really the only way, even though Qt also has it shortcomings.

We would however hesitate to use the signal-and-slots mechanism for inter pro-
cess communications, since it lacks support for templates. The ideas of signals and
slots is excellent, but a library like GNU libsigc++[74] manages to provide
this functionality, without restricting its users to use a subset of the language.

5.3.4 Blitz++

The Blitz++ library which was used to store the image data, has been a very
pleasant library to work with. Is has been very stable, and the documentation is
excellent. We have also received helpful support on the Blitz mailing lists from
time to time. We have also submitted a small patch back to the Blitz project,

A feature we would like to highlight, is its excellent support for generating slices

80 Conclusions and further work

and subvolumes of the data in the container. It is very easy to extract a region
of interest from the data, a nice feature was that is was possible to decide if the
subvolume should keep the coordinate system of the original volume or if it should
have its own. This made it very easy to map a boundingbox out of an image,
process it and map it back into main image.

For a new project we would not hesitate to use Blitz++ again, at least until a
comparable container becomes a part of the official C++ standard.

5.3.5 OpenGL and Open Inventor

For the visualizations, we ended up using mostly raw OpenGL. OpenGL delivers
fast performance on different hardware. Being a de facto industry standard, docu-
mentation was excellent, both in the official texts[66, 25] and on various Internet
sites.

However the abstraction level when writing OpenGL code is very low, directly
dealing with the lowermost geometric primitives. When programming OpenGL
one must keep in mind that one is programming a state machine, which is not
directly tied to ones applications program flow.

Open Inventor ended up only being used for the volume rendering, but thanks to
its intuitive scene-graph model it was extremely easy to create the wanted func-
tionality. The entire volume rendering functionality was written in a few hours,
demonstrating how powerful the scene-graph paradigm is.

Again the documentation, both in form of the official documents[63, 64] and the
online documentation available from Coin’s homepage[73] was excellent. So was
the support on the Coin mailing list.

We would definitely use both OpenGL and Open Inventor again in a new project.
Possibly relying even more on Open Inventors scene graph, and only resort to
low-level OpenGL if the performance of using Open Inventor is not good enough.

5.4 Further work

This work has touched upon several different fields within computer science. Pos-
sible directions for future work are therefore numerous. The application itself, is
of course never completely finished, and if time permits it would be very interest-
ing to extend it further. This section aims to summarize directions the author finds
the most interesting.

5.4 Further work 81

5.4.1 Empirical studies to assess the benefits of manual post-
processing

While this work has been very technical, the goal has been to provide an applic-
ation which makes it easier to refine segmentations of volumes. It would be very
interesting to assess the real world benefits of Dr. Jekyll. Both the time used, and
the quality of the resulting classification should be measured.

Such a study would have to decide what the target group of the program is. Is it
technicians, who are used to using different software, or is it professionals in the
field of study where the images arise?

5.4.2 Applications of mathematical morphology in geometric
modelling

Mathematical morphology is a relatively unknown field, yet it provides intuitive
operators for manipulating shapes. Assessing it usefulness in combinations with
other fields would be interesting.

A candidate for such work could be to see if erosion and opening can be used for
decimating (optimizing) the surface representations of geometric objects. Con-
versely, closing can have its uses in subdivision (smoothing) algorithms.

As a method for extracting the surface of objects they also show promise. Using
morphology for gray scale images, they could possible provide an alternative to
using “marching” for extracting iso surfaces as well. If the neighborhood inform-
ation calculated by the morphologic operator could be used to directly extract a
triangle representation of the surface, they would be a very attractive tool on some
settings.

5.4.3 Other datastructures and representations

Due to their size, images requires a lot of memory. It would be interesting to ex-
periment with other image representations that reduce the memory requirements.

One possibility is to keep the image compressed in memory, but still keep the
representation as being based on pixels. Such a container has been prototyped as
part of the Dr. Jekyll project, based on simple run length encoding. However its
running time O(log n) for both lookups and alterations, something which was to
slow for interactive usage.

Using other representation methods, possibly based on OCTrees would be inter-
esting as well.

82 Conclusions and further work

5.4.4 Patterns for algorithms

Implementing algorithms in Dr. Jekyll has demonstrated how different language
constructs can results to wildly varying running times for algorithms.

A complete survey on how different language construct, with the same formal
running time affect the running time of an implementation of an algorithm. Such
a survey is complicated by the fact that various compilers might optimize the
code in various ways; constructs which are fast on on compiler, might not be fast
on others. Also different memory technologies and caching strategies must be
considered.

Such an effort would probably benefit from the findings of the Atlas[70, 65] and
Tune[37] projects, for finding cache efficient implementations of algorithms for
linear algebra. However, caching is not the only factor which must be considered,
how to best utilize the long pipelines and semi-parallelism in a modern CPU must
also be explored.

One possible way for such an effort could be to identify common building blocks
which are common to different algorithms. A kind of “patterns” for algorithms.
These patterns could be implemented generically, and possibly optimized empir-
ically for different compilers and computer architectures.

5.5 Further work in Dr. Jekyll

An application the size of Dr. Jekyll will always have potential for improvements,
and is in that sense never finished. If possibilities arise to do more work on it, the
following lists some good starting points for further work. Some of them are good
candidates for other project work by students, other are more of an “engineering”
exercise.

➥ Threading: The largest problem of Dr. Jekyll as it stands today, is that the
application apparently freezes when the connected components analysis is
calculated on large datasets. Making the application threaded would make
the user experience much better. Qt provides cross platform classes for
threading, and locking of the image data is already implemented, so this
should not be an enormous task. However multi-threaded applications are
harder to debug than single threaded ones, and nasty deadlock situations
might occur.

➥ 3D editing tools: To be able to edit the surface of the components within
an image interactively would be a great plus. The most intuitive way to
do the actual editing would probably be to have a parametric representation

5.5 Further work in Dr. Jekyll 83

of the surface and modify the control points. However calculating such a
representation for objects of arbitrary shape and topology is very difficult.

An interesting approach to generate such a parametric representation, would
be to first generate a triangle representation of the component surface, and
then simplify the triangulation as much as possible[6]. Thereafter splines
could be calculated over the simplified triangulation, and these splines could
be interactively edited by hand.

➥ More visualizations: The current implementation is lacking a good surface
visualization of the images. One possibility, which would make it relatively
easy to add new visualizations is to use the algorithms already present in
the VTK[44, 82] library. VTK itself does not provide any mechanism for
integrating the rendering with Qt. The geometry which VTK outputs can
however be used by Coin, and Coin provides excellent incorporation with
Qt.

This functionality has already been prototyped, however it is not included
in Dr. Jekyll today.

➥ Editor for structural elements: Since the structural element is decoupled
from the algorithms which uses them, it would be nice to provide a GUI
editor for adding more SE’s. Implementing such an editor is not an enorm-
ous task, and would make the morphological operators more useful, since
custom SE’s could be created for datasets which special peculiarities.

➥ Compress undo information: It has been stressed that the images which Dr.
Jekyll process are potentially very large, and uses large amount of memory.
While it probably would incur a to high runtime penalty to use any com-
pression of the image dataset which is worked on. The application also
stores undo information in a uncompressed format. These undo data are a
prime candidate for the usage of compression. Implementing such function-
ality should be local to just one class of the program, and should therefore
be quite easy to incorporate. One must however find a good compression
algorithm, which doesn’t use to much time to uncompress.

➥ Port to MS Windows: One of the main design goals of Dr. Jekyll has been
to write portable, cross platform and standards compliant C++. However,
since the Qt library is not available under the GPL license on MS Windows,
it has not been possible for us to test it there. With the Windows version
of Qt (and a recent compiler) it should in theory compile out of the box.
Realistically, there has been small glitches in the implementation, so some
updates of the code is necessary. Yet, it should not be more than a days
work to get it up and running on MS Windows.

84 Conclusions and further work

➥ Connection to Olena: The Olena[9] library provides many image processing
algorithms written in the same spirit as the morphological operators in Dr.
Jekyll. Incorporating them should be relatively easy, and it would add seg-
mentation functionality to Dr. Jekyll.

Annexes

Appendix A

Benchmarks

A few benchmarks were run to test various language constructs. They are sum-
marized here. All the timings are in seconds, and were gathered using the standard
Unix clock() function. The numbers in the tables below are averaged running
times for 10 consecutive calls to the connected components algorithm.

All the benchmarks were run with the GCC C++ compiler, version 3.2 (this is the
stock compiler on RedHat 8). The compiler was set to use aggressive optimiza-
tions (-O3), as well as using all extensions the target platform supports.

The timings were run on two different machines, using different CPU architec-
tures, running at different speeds.

➥ Bardou is a dual 1.2GHz AMD Athlon MP processor. Each CPU is equipped
with 256KB of cache memory. It has a front side bus speed at 266MHz. The
code for Bardou was compiled with the following compiler settings: -O3
-march=athlon-mp -mfpmath=sse -mmmx -msse -m3dnow

➥ Belves is a 2.54 GHz Intel Pentium IV. The CPU is equipped with 512KB
of cache memory. It has a front side bus speed of 533MHz. For Belves, the
compiler settings were: -O3 -march=pentium4 -mfpmath=sse -mmmx
-msse -msse2

A.1 Traversal direction for connected components
analysis

The ordering of the loops in the Connected Components algorithm were run for
bothX-major andZ-major on two machines. The memory is stored consecutively
along the Z-axis, which is reflected in the measurements in table A.1. Bardou has

88 Benchmarks

Dataset size Bardou
X−Y −Z

Bardou
Z−Y −X

Belves
X−Y −Z

Belves
Z−Y −X

5122 · 59 16.255 21.108 8.87 14.21
643 0.295 0.324 0.15 0.184

Table A.1: Timings (in seconds) for the connected components algorithm when
changing the order of traversal. Using the Z direction in the innermost loop tra-
verses the memory consecutively, leading to faster execution times.

a difference of only 29% for the large dataset, while Belves has a staggering 60%
difference. This is not so surprising, since the Intel computer has a larger cache,
and will have more cache hits in the “normal” situation. For the small dataset, the
difference is not that large.

A.2 Object allocation inside tight loops

This test is based on the code illustrated in figure 4.1. The “New object” row (in
table A.2) shows the timings when a new STL vector is allocated for each iteration
of the loop. The “Object resetting” row is when the vector is reseted by a call to
clear(). The algorithm is again the connected components algorithm, using
the large dataset also used above.

Belves uses 8.75 times longer when the object has to be allocated for each itera-
tion. Bardou on the other hand uses only 4.19 times. However, such factors alone
show the importance of knowing what language constructs are expensive to use.
Even though both object resetting and allocation is an O(1) operation theoretic-
ally.

It is interesting to notice that Belves uses longer time than Bardou when the object
is allocated inside the loop, even if the CPU runs at more than a GHz more. The
reason for this is not fully understood, but a educated guess is that the Pentium
IV’s extremely long pipeline must be flushed each time new memory is allocated
(since object allocation requires the operating system to intervent). The Athlons

Dataset size Bardou Belves
New object 68.251 77.623
Object resetting 16.255 8.87

Table A.2: Timings for the connected components algorithm when the two helper
vectors are allocated anew for each iteration, vs. the case where they are only
reseted.

A.2 Object allocation inside tight loops 89

pipeline is not that long, so the cost of a pipeline flush is not that extreme. The
recently announced AMD Opteron CPU, which is a hybrid 32 and 64 bit processor
has a longer pipeline, and is probably suspect to the same weakness as the Pentium
IV.

90 Benchmarks

Bibliography

[1] Tomas Akenine-Möller and Eric Haines. Real-Time Rendering. A. K. Peters,
second edition edition, 2002.

[2] Andrei Alexandrescu. Modern C++ Design. C++ In-Depth Series. Addison-
Wesley, 2001.

[3] L. Aurdal. Analysis of Multi-Image Magnetic Resonance Acquisitions for
Segmentation and Quantification of Cerebral Pathologies. PhD thesis, Ecole
Nationale Supérieure des Télécommunications, March 1997. ENST 97 E
034.

[4] Chandrajit Bajaj, Insung Ihm, and Sanghun Park. 3d rgb image compres-
sion for interactive applications. ACM Transactions on Graphics (TOG),
20(1):10–38, 2001.

[5] John Brewer. Extreme programming FAQ. http://www.jera.com/
techinfo/xpfaq.html, 2001.

[6] Swen Campagna, Leif Kobbelt, and Hans-Peter Seidel. Efficient decimation
fo complex triangle meshes. Technical Report 3/98, Computer Graphics
Group at University Erlangen-Nurnberg, 1998.

[7] John R. Cary, Svetlana G. Shasharina, Julian C. Cummings, John V. W.
Reynders, and Paul J. Hinker. Comparison of C++ and Fortran 90 for
object-oriented scientific programming. Computer Physics Communica-
tions, 10(5):458–494, 1997.

[8] Matthias Kalle Dalheimer. Design patterns in Qt. The O’Reilly Network,
October 2002. http://www.onlamp.com/pub/a/onlamp/2002/
01/10/designqt.html.

[9] Jèrôme Darbon, Thierry Gèraud, and Alexadnre Duret-Lutz. Generic im-
plementation of morphological image operators. In Proceedings of the 7th
International Symposium on Mathematical Morphology, 2002.

92 BIBLIOGRAPHY

[10] R. Deklerck, A. Salomie, and J. Cornelis. An editor for 3d medical volume
images. In TASK-Quarterly, volume 1, pages 155–162, October 1997.

[11] M. Van Droogenbroeck and H. Talbot. Fast computation of morphological
operations with arbitrary structuring elements. Pattern Recognition Letters,
17(14):1451–1560, 1996.

[12] George Eckel and Ken Jones. OpenGL Performer Programmers Guide. Sgi,
002 edition, November 2000.

[13] ECMA. ECMA-334 C# Language Specification, 2001.

[14] James Foley, Andries van Dam, Steven Feiner, and John Hughes. Com-
puter graphics: principles and practice. The Systems Programming Series.
Addison-Wesley Publishing Company, 2nd. edition, 1996.

[15] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley, October 1994.

[16] Ronald Garcia. The boost multidimensional array library. http://www.
boost.org/libs/multi_array/doc/index.html.

[17] Kristoffer Gleditsch. Interactive manipulation of three-dimensional images.
Cand. scient. thesis, Department of informatics, University of Oslo, Norway,
May 2003.

[18] Josh Grant. Projects – marching cubes. http://www.wheatchex.com/,
November 2001.

[19] John Greiner. A comparison of data-parallel algorithms for connected com-
ponents. In Proceedings Symposium on Parallel Algorithms and Architec-
tures, pages 16–25, Cape May, NJ, June 1994.

[20] John L. Hennesy, David Goldberg, and David A. Patterson. Computer Ar-
chitecture: A Quantitative Approach. Morgan Kaufmann Publishers, 1996.

[21] Intel Corporation. IA-32 Intel Architechture Software Developer’s Manual.

[22] ISO/IEC. ISO/IEC 8652:1995 Programming Languages – Ada 95, 1995.

[23] ISO/IEC. ISO/IEC 14882:1998 Programming Languages – C++, 1998.

[24] Nicolai M. Josuttis. The C++ Standard Library: A Tutorial and Reference.
Addison-Wesley, 1999.

BIBLIOGRAPHY 93

[25] Renate Kempf and Chris Frazier, editors. OpenGL Reference Manual.
Addison-Wesley, second edition, 1996.

[26] Donald E. Knuth. The art of computer programming, volume 1 (3rd ed.):
fundamental algorithms. Addison Wesley Longman Publishing Co., Inc.,
1997.

[27] Hans Petter Langtangen. Computational Partial Differential Equations.
Lecture Notes in Computational Science and Engineering. Springer-Verlag,
1999.

[28] Hans Petter Langtangen. Scripting Tools for Scientific Computing. Textbook
in Computational Science and Engineering. Springer-Verlag. In preparation.

[29] Barthold Lictenbelt, Randy Crane, and Shaz Naqvi. Introduction to Volume
Rendering. Hewlett-Packard professional books. Prentice Hall, 1998.

[30] Barbara Liskov. Keynote address - data abstraction and hierarchy. In Ad-
dendum to the proceedings on Object-oriented programming systems, lan-
guages and applications (Addendum), pages 17–34. ACM Press, 1987.

[31] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resol-
ution 3d surface construction algorithm. In Proceedings of the 14th annual
conference on Computer graphics and interactive techniques, pages 163–
169. ACM Press, 1987.

[32] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller, and M. Upton.
Hyper-threading technology architecture and microarchitecture: A hypertext
history. Intel Technology Journal, 6(1), February 2002.

[33] G. Matheron. Elèments pour une thèorie des milieux poreux. Masson, 1967.

[34] Scott Meyers. More Effective C++. Addison-Wesley Professional Comput-
ing Series. Addison-Wesley, 1996.

[35] Scott Meyers. Effective C++. Addison-Wesley Professional Computing
Series. Addison-Wesley, second edition, 1997.

[36] Scott Meyers. Effective STL. Addison-Wesley Professional Computing
Series. Addison-Wesley, 2001.

[37] Univerisity of North Carolina. Tune – mathematical models, transform-
ations, and system support for memory-friendly programming. http:
//www.cs.unc.edu/Research/TUNE/.

94 BIBLIOGRAPHY

[38] Jung-Me Park, Carl G. Looney, and Hui-Chan Chen. Fast connected com-
ponent labeling algorithm using a divide and conquer techniqu. In Proceed-
ings of the ISCA 15th International Conference on Computers and their Ap-
plications, 2000.

[39] John L. Pfaltz. Sequential operations in digital picture processing. Journal
of the ACM (JACM), 13(4):471–494, 1966.

[40] Lutz Prechelt and Walter F. Tichy. A controlled experiment to asses the be-
nefits of procedure argument type checking. IEEE Transactions on Software
Engineering, 24(4), April 1998.

[41] Lutz Prechelt, Barbara Unger, Walter F. Tichy, Peter Brössler, and
Lawrence G. Votta. A controlled experiment in maintainance comparing
design patterns to simpler solutions. IEEE Transactions on Software Engin-
eering, 21(12), December 2001.

[42] Lutz Prechelt. An empirical comparison of seven programming languages.
IEEE Computer, 33(10):23–29, October 2000.

[43] C Rezk-Salama. Volume Rendering Techniques for General Purpose Graph-
ics Hardware. PhD thesis, University of Erlangen-Nurnberg, 2002.

[44] Will Schroeder, Ken Martin, and Bill Lorensen, editors. The Visualization
Toolkit. Prentice Hall, 2nd. edition, 1997.

[45] Sandeep Sen and Siddhartha Chaterjee. Towards a theory of cache-efficient
algorithms. Available at ftp://ftp.cs.unc.edu/pub/users/sc/
papers/soda00.pdf.

[46] Sgi. Sgi white paper – opengl performer. http://www.sgi.com/
software/performer/whitepapers.html.

[47] Pierre Soille. Morphological Image Analysis. Springer-Verlag, 1998.

[48] Bjarne Stroustrup. Why C++ isn’t just an object-oriented programming lan-
guage. In OOPS Messenger, volume Addendum to OOPSLA’95 Proceed-
ings, October 1995.

[49] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
third edition, 1997.

[50] Bjarne Stroustrup. An overview of the C++ programming language. In Saba
Zamir, editor, Handbook of Object Oriented Technology. CRC Press, 1999.

BIBLIOGRAPHY 95

[51] Bjarne Stroustrup. Bjarne Stroustrup’s FAQ. http://www.research.
att.com/~bs/bs_faq.html.

[52] Herb Sutter. Exceptional C++. C++ In-Depth Series. Addison-Wesley,
1999.

[53] Herb Sutter. More Exceptional C++. C++ In-Depth Series. Addison-Wesley,
2002.

[54] G. Székely and G. Gerig. Model-based segmentation of radiological images.
Künstliche Intelligenz, (3):18–23, 2000.

[55] The Open Source Initiative. The open source definition. http://www.
opensource.org/docs/definition.php.

[56] The Open Source Initiative. The open source initiatives homepage. http:
//www.opensource.org/.

[57] Lennart Thurfjell, Ewert Bengtsson, and Bo Nordin. A new three-
dimensional connected components labeling algorithm with simultaneous
object feature extraction capability. CVGIP: Graphical Models and Image
Processing, 54(4):357–364, 1992.

[58] Trolltech. Using the meta object compiler. http://doc.trolltech.
com/3.1/moc.html.

[59] Todd L. Veldhuizen. Scientific computing: C++ versus Fortran: C++ has
more than caught up. Dr. Dobb’s Journal of Software Tools, 22(11):34, 36–
38, 91, November 1997.

[60] Jeffrey Scott Vitter. External memory algorithms and data structures: dealing
with massive data. ACM Computing Surveys (CSUR), 33(2):209–271, 2001.

[61] John Vlissides and Andrei Alexandrescu. To code or not to code, part i. C++
Report, March 2000.

[62] John Vlissides and Andrei Alexandrescu. To code or not to code, part ii.
C++ Report, June 2000.

[63] Josie Wernecke. The Inventor Mentor – Programming Object-Oriented 3D
Graphics with Open Inventor, Release 2. Addison-Wesley, 1994.

[64] Josie Wernecke. The Inventor Toolmaker – Extending Open Inventor, Re-
lease 2. Addison-Wesley, 1994.

96 BIBLIOGRAPHY

[65] R. C. Whaley, A. Petitet, and J. Dongarra. Automated empirical optim-
ization of software and the atlas project. Technical report, Netlib Repos-
itory, http://www.netlib.org/lapack/lawns/lawn147.ps,
September 2000.

[66] Mason Woo, Jackie Neider, Tom Davis, and Dace Shreiner. OpenGL Pro-
gramming Guide. Addison-Wesley, third edition, 1997.

[67] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications
of the obvious. Computer Architecture News, 23(1):20–24, 1995.

[68] GNU General Public License. http://www.gnu.org/licenses/
gpl.html, June 1991.

[69] Java specification request 14 – add generic types to the java programming
language. http://jcp.org/en/jsr/detail?id=14, May 1999.
Slated for inclusion in the 1.5 specification of Java, which has not yet been
released.

[70] Atlas homepage. http://math-atlas.sourceforge.net/.

[71] The Blitz++ library. http://www.oonumerics.org/blitz/.

[72] The Boost C++ libraries. http://www.boost.org/.

[73] Coin 3d homepage. http://www.coin3d.org/.

[74] Libsigc++ homepage. http://libsigc.sourceforge.net/.

[75] Magick++. http://www.imagemagick.org/www/Magick++/.

[76] Microsoft DirectX homepage. http://www.microsoft.com/
windows/directx/.

[77] Qt whitepaper. http://www.trolltech.com/products/qt/
whitepaper.html.

[78] Sourceforge.net. http://www.sourceforge.net/.

[79] Systems in motion homepage. http://www.sim.no/.

[80] TGS homepage. http:///www.tgs.fr/.

[81] Trolltech. http://www.trolltech.com/.

[82] The visualization toolkit (vtk) homepage. http://www.vtk.org/.

BIBLIOGRAPHY 97

[83] The wxWindows graphical user interface toolkit. http://www.
wxwindows.org/.

