Institutt for Informatikk
Universitetet 1 Oslo

Preface

This is our thesis for the degree Candidatus Scientarium at the Univer-
sity of Oslo, Department of Informatics.

Our advisors to this thesis have been Ernst H. Kristiansen, Oddvar
Sgraasen and Yngvar Lundh. Oddvar Sgraasen and Yngvar Lundh are
employed at the Department of Informatics. Ernst H. Kristiansen was
previously working at Dolphin Server Technology. Currently he is em-
ployed at SINTEF, Oslo. We would like to thank them all for their help
and guidance.

The following at the Department of Informatics gave us some valu-
able advice: Stein Gjessing, @ystein Gran Larsen, and Sverre Johansen.

Thanks to NTNF for covering our traveling expenses to the Open Bus
Systems 92 conference in Paris.

A special thanks to all our friends at the Institute, and also to all
our friends in the “Realistforeningen” and the “Cybernetisk Selskab”.
Thanks to them all our years at the university had one important ele-
ment: fun ©0!

University of Oslo, February 9, 1993

John W. Bothner Trond Ivar Hulaas

Set in 11pt NewCentury Schoolbook using IATEX.
Drawings made with idraw and graphs with the spread-sheet Wingz.

Contents

Preface i
Glossary x
Introduction 1
A Brief introduction to parallel processing 3
2.1 vonNeuman 3
2.2 Goal: Faster computers 4
2.3 The basics of parallel processing 5
231 Flynnsstreams 7
232 Coupling 8
2.3.3 The organization of memory 9
2.3.4 The cache coherence problem 11
Interconnection Networks 16
3.1 Static and dynamic topologies 18
3.1.1 Static 18
3.1.2 Dynamic, 20
32 Deadlock 23
3.3 Switching techniques 23
3.4 Relationship with software 24
The k-ary n-cube interconnection network 27
4.1 Propertiesof k-aryn-cubes 30
4.1.1 Wiredelays. 30
4.1.2 Unloadedlatency 31
4.1.3 Throughput 33
4.1.4 Reducing the maximum distance in the k-ary n-cube 34
The Scalable Coherent Interface 35
51 SCIbasics i 36
5.2 PhysicalPart. 39
53 Protocols 40
5.3.1 Input synchronization and elastic buffers 40
5.3.2 Flag coding of incomingdata 41
5.3.3 Switching techniques 41
5.3.4 Transactions 42
5.3.5 Packetformats 45
5.3.6 Bandwidth Allocation. 47
5.4 Cachecoherence 49
5.5 Other SCI-related projects 51

111

6 Swipp & SCI

6.1 Presentationof SWIPP
6.2 Comparative study of SWIPPand SCI
6.3 k-ary n-cubes implemented in SWIPP & SCI

7 Topologies using SCI
7.1 Synthesizing k-ary n-cubes with SCl-rings

9

7.1.1
7.1.2
7.1.3
7.1.4

Surfaces
Edges
Bidirectionaledges
Using larger switches

7.2 Othertopologies

Construction of the simulator
8.1 Classesand functions

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.1.7
8.1.8
8.1.9

Thenodes
The switches,
The SCI_interface
The Application
The transmitter
The stripper i i
Theclass fifo.
The class delay_ line
Packets

8.1.10 Symbols L

8.1.11 Theclass Address
8.2 Various development problems
83 Priority
8.4 Bandwidth arbitrationon therings
85 Routing
8.6 Variation in the networkload
8.7 Gathering statistics L.
8.8 Constructingnetworks

8.8.1

k-arymn-cubes.

8.9 Xll-animation o v v i
8.10 Randomization

Results

9.1 Simulationofasinglering
9.2 Statistical distributions L.
9.3 Placement of the activenodes
94 k-aryn-cubes

94.1
9.4.2
94.3
944
9.4.5
9.4.6

Comparing the model with results of [JohnGood] . .
Variationof &,
Variationofn
Varying the amount of active nodes(a)
Connecting about 50 nodes
Connecting about 250 nodes

iv

9.5 Difference in various switch strategies
9.5.1 Store & forward versus virtual cut-through
9.5.2 Varying the amount of buffering in the switches. . .

9.6 Variouslevels oflocality

9.7 Summary

10 Conclusions

o a w o »

Literature
Index
Appendix
Bus standards
Tools

Articles

Use and modifications of program

D.1 Portingprograms
D2 Options
D.3 Definedconstants
D.4 Making topologies
D.5 Compiling the programs

List of Figures

2.1 Traditional computer architecture. 3
2.2 The estimate of the speedup of a system of » processors. . 7
2.3 Loosely coupled architecture. 8
2.4 Tightly coupled architecture. 9
2.5 A taxonomy of cache-coherency schemes. 12
2.6 A chain with only a singlecache. 15
2.7 A new cache has inserted itself into the chain. 15
3.1 A selection of static topologies. 18
3.2 The mesh connection of the Illiac-IV. 19
3.3 Anexample of a crossbar network. 20
3.4 Example of a singlestage network. 21
3.5 General multistage network containing » stages. 22
3.6 Exampleofadeadlock. 23
3.7 Various switching techniques. 25
3.8 Software-hardware relationship. 26
4.1 A small selection of k-ary n-cubes. 29
4.2 Ways of implementing the links in a k-ary n-cube. 30
4.3 Folding to shorten and even the wire lengths. 31
5.1 SCI system topology in general. 36
5.2 Symbolsonthelink. 37
5.3 Node logical structure. 40
5.4 Elastic buffermodels. 42
5.5 Flag-signalcoding. 43
5.6 Example of a typical transaction. 44
5.7 Example of a typical remote transaction. 44
5.8 Bandwidth Partitioning. 48
5.9 Using go-bits with the fair bandwidth allocation protocol. . 49
5.10 Distributed cache-line list. 50
6.1 The SWIPPconcept. 53
6.2 The switchusedin SWIPP.. 54
6.3 SClandSWIPP 56
6.4 k-ary n-cubes implemented with SWIPP. 59
6.5 k-ary n-cubes implemented with SCI. 60
6.6 Latency for SWIPPand SCI 62
6.7 Latency for SWIPPand SCI 63
7.1 2-portswitches 67
7.2 Corner-rings:surface 68
7.3 Corner-rings:edge 69

vi

74 Ad-ary2-cube. 70

7.5 Placing active nodesinavertex. 71
76 Latency 72
7.7 Throughput 73
7.8 Bidirectionallinks 74
7.9 4d-portswitches, . 75
8.1 The objects making up the program. 77
8.2 Roughoverviewofanode. 78
8.3 Roughoverviewofaswitch., 79
8.4 The objects that make up an SCI_interface. 80
8.5 The objects that a switch is constructedof. 81
8.6 State diagram of transmitter. 84
8.7 State diagram of stripper.o 85
8.8 Afifoinstate EMPTY. 87
89 Afifoinstate HALF FULL. 87
8.10 A simple packet of 4 symbols. 88
8.11 Bandwidth Arbitration. 93
8.12 Connecting the nodes-objects together. 100
8.13 Switches: connecting 2rings. 100
8.14 Avertexina k-aryn-cube. 101
8.15 Connecting vertices in a k-ary n-cube together. 102
8.16 Avertexina k-aryn-cube. 103
9.1 Characteristicsof rings. 107
9.2 Throughput and latency forrings 107
9.3 Distribution:Ringof4nodes 109
9.4 Distribution:Ringof 10nodes 109
9.5 Distribution:(7,2,3) 110
9.6 Distribution: (2,4,3) 110
9.7 Placement of the activenodes 112
9.8 Scheme of [JohnGood]. 114
9.9 Variationofk:2n3a 116
9.10 Variationof k:2nba 116
9.11 Variation of k:Separate simulations 117
9.12 Variation of k:numberofnodes 118
9.13 Variationofn:2k3a 120
9.14 Variationofn:2kba 120
9.15 Variationof n:Num 121
9.16 Variationofa:dk2n 122
9.17 Variationof a:4k3n 122
9.18 Variationof a:Num 123
9.19 Performance of cubes with 40-64 nodes. 124
9.20 Theoretical and simulated with 40-64 nodes 124
9.21 Performance of cubes with 240-260 nodes. 125
9.22 Theoretical and simulated with 240-260 nodes 125
9.23 Store & forward and virtual-cut-through 127
9.24 Store & forward and virtual-cut-through 127

9.25 Amount of buffering in switches 128

9.26 Amount of buffering in switches 129
9.27 Locality for (2,3,5) 130
9.28 Locality for (4,2,6) 130
A.1 Relationship between various standard organizations. . . . 144

viil

List of Tables

X

Glossary

agent A switch or bridge between the requester and the responder.
During normal operation the agent’s intervention is transparent
to the requester and responder.

busies A “busy” is the term for a negative acknowledgement in SCI. If
the input-buffers of an SCI-interface is occupied, it sends a “busy”
to the node wishing to access the input-buffers.

coherence Multiple copies of data are coherent if they are logically con-
sistent.

diameter The diameter of a network is the maximum distance between
two points in a network. Sometimes called the maximum number
of hops.

flit is the smallest unit of information that a queue or channel can ac-
cept during one clockcycle. A “symbol” in the parallel version of
SClI is a flit.

latency is the time for a packet to traverse a network from the sender
to the receiver.

node has unfortunately three different meanings, depending on the
context:

1. [IEEE-SCI] use the word to mean “something” that has an
SCl-interface. This “something” is either a switch (agent), or
a unit including for example a processor and a SCl-interface.

2. In various articles, eg. [JohnGood, Agarwal,Dally90] the word
“node” is used to mean an intersection in a k-ary n-cube, which
typically has a switch with a processor attached to it. We use
instead the word “vertex”.

3. In our simulation program, a node is an entity containing a
processor and a SCl-interface. We will try to use the term
“active node” to stress the fact that we speak of a node that
takes the initiative to send requests and responses.

requester The node that initiates a transaction. This is done by initi-
ating a request subaction.

responder The node that completes the transaction. This is done by
initiating the response subaction.

xi

ringlet The closed path formed by the connection that provides feed-
back from the output link of a node to its input link. This connec-
tion may include other nodes and/or switch elements.

scalable A conceptis efficient in a system independently of the system’s
size.

symbol See flit.

transaction An information exchange between two nodes. A transac-
tion consists of request subaction and a response subaction. The
request subaction transfers commands (and sometimes data) be-
tween a requester and a responder. The response subaction re-
turns status(and sometimes data) from the responder to the re-
quester.

throughput The amount of traffic in a network per unit of time. Usu-
ally measured in bytes per second.

vertex (plural: vertices) Webster: “the termination or intersection of
lines or curves”. In this thesis it refers to the intersections in a
k-ary n-cube. Examples: a square has 4 vertices, a 3-cube has 8
vertices, and a 3-ary 2-cube has 9. See chapter 4 for further expla-
nation.

xii

Introduction

High-performance computers with hundreds of processors are increas-
ingly needed for applications like weather-forecasting, simulations and
expert systems. To achieve an overall high performance in a computer
system, every part of the system has to deliver a performance which
equals the other parts of the system. In a system with a large number
of processors working together, the interconnection system is of great
importance to the performance. How the interconnection is made up is
the main focus in this thesis.

We will study various interconnection networks for multiprocessors.
Of special interest is the class of interconnection networks called k-ary n-
cubes. To evaluate the various interconnects, we have made a simulator
that simulates various aspects of k-ary n-cubes. Aspects to be studied
are first of all the latency and throughput of k-ary n-cubes. These k-ary
n-cubes run protocols as specified by SCI'.

SCI is an IEEE multiprocessor standard approved in march 1992.
Work on SCI began in late 1987 when several members of the IEEE
Futurebus project felt that buses would not meet the demands of future
multiprocessors due to mainly the following factors: the one-broadcast-
at-a-time property, clock rates limitations, and poor scalability [Gustav].
A study group soon concluded that a solution could involve the use of
packet-based signaling over multiple point-to-point links, thus avoiding
the physical limitations of buses.

The most active participants in the evolution of SCI are the following:
Apple Computers, CERN, Dolphin Server Technology, Hewlett-Packard,
Stanford Linear Accelerator Center, the University of Wisconsin, and
the University of Oslo.

We make an informal comparison of SCI and SWIPP?. SWIPP is a
multi-computer-study at the University of Oslo. The main idea of the
SWIPP concept is to connect heterogeneous nodes by using fiber-optics
and switches. Each node has an extra device which performs the net-
working/communication tasks on behalf of the node.

1SCI : The Scalable Coherent Interface IEEE 1596-1992
2SWIPP : Switched Interconnection for Parallel Processors

2 1 Introduction

Several students are writing their thesis as part of the SWIPP-proj-
ect. A prototype SWIPP-network has been made, which is currently un-
der testing [NerSmaTor]. Contact has been made with CERN with the
aim of using SWIPP in data-acquisition.

This thesis is organized in the following manner:

Chapter 2 In this chapter the field of parallel processing is pre-
sented. First the basic architecture of a traditional computer is pre-
sented. Then we explain essential terms such as streams, coupling,
shared memory, message passing, multiprocessors, multicomputers and
cache coherency.

Chapter 3 The basics of interconnection networks are explained in
this chapter: wires, switches and switching-techniques. The difference
between static and dynamic topologies is explained. Meshes and cubes
are presented, along with single-stage and multi-stage networks.

Chapter 4 In our simulation we use the interconnection network
called k-ary n-cubes. In this chapter the more theoretical aspects of k-
ary n-cubes are discussed.

Chapter 5 The Scalable Coherent Interface (SCI) standard forms
the basis of our study of k-ary n-cubes. In this chapter SCI is introduced.

Chapter 6 In this chapter we present SWIPP. An informal discus-
sion of SWIPP and SCI is then made.

Chapter 7 presents several ways of constructing topologies using
rings.

Chapter 8 In this chapter we present our simulator. Objects and
algorithms that represent the nodes and protocols, are presented.

Chapter 9 We here show the results of our simulations.

Appendix A In this appendix we take a brief look at previous and
existing standards for computer-buses.

Appendix B Here we explain briefly the simulation tools we con-
sidered using.

Appendix C This appendix contains two articles. The first article
a reprint of the article “Various interconnects for SCI-based systems”,
published in the proceedings of Open Bus Systems "91.

The second article was published in the proceedings of CAMAC 92. It
is entitled “Behavior of Scalable Coherent Interface in larger systems”,
and is based to a large extent on the findings presented in this thesis. It
also serves as a rough summary to this thesis.

Appendix D This appendix explains how others may use our sim-
ulator.

2

A Brief introduction to
parallel processing

This chapter presents the background material for this thesis. First a
brief overview on how most current computers work is presented. Then
a general introduction to parallel processing and some of the important
terms used are explained.

2.1 von Neuman

Since the 1940’s and up to the present, computers have had the same
basic architecture. It has been made up of three basic elements: a pro-
cessor, a memory, and some form of input/output [Tanen90]. A bus has
then been used to connect these elements together, as shown in figure
2.1. This is often referred to as the von Neuman architecture. Closely

Processor Memory /0

Figure 2.1: Traditional computer architecture.
associated with this architecture is the following, very sequential proce-
dure carried out by the processor (the instruction cycle).

1. Fetch the next instruction from the memory over the bus.

2. Update the “program counter” in the processor. A program counter
is a reference (placed in a register) to the next instruction to exe-
cute.

4 2 A Briefintroduction to parallel processing

3. Decode the instruction (in other words: find out which instruction
it is).
4. Fetch if necessary operand(s) from the memory over the bus.

5. Execute the instruction.

6. Put the result somewhere, either in a register in the processor, or
send it to the memory over the bus.

7. Go to step 1.

This procedure and the architecture that goes with it has remained basi-
cally unchanged during the last 40 years. Nevertheless the performance
of computers has improved dramatically. This is due to to the following
(mainly from a hardware-perspective):

'd The invention of the transistor

1 Virtual memory

1 Use of caching

1 VLSI — Very Large Scale Integration
'd Pipelining

The present trend is that processors are getting faster and memories
larger. The bus connecting them has not improved within the same or-
der of magnitude (the von-Neuman bottleneck) [Tanen90]. The bus is
a shared resource (one user at a time) that tends to become saturated.
As the wish to put more devices (e.g. more processors and memories)
on the bus becomes more pronounced, this saturation becomes a greater
problem.

2.2 Goal: Faster computers

The demand for more processing power will continue to increase. There
are 2 ways to satisfy this demand.

1. Improve technology. This can be done by increasing the level of
integration or increase the switching speed of the chip. Increasing
the level of integration implies more logic gates per unit area on the
chip. A speed increase means that the chip will use more power,
which will put a restrain on the scale of integration (mainly due to
heat development). The quest for higher performance then leads
to more research on new chip technologies, resulting in for exam-
ple new chip materials (eg. GaAs), lower signal switching levels
etc. The limits of these approaches are the speed of light and the
unavoidable capacitances in the materials used.

2. Make the computer do tasks in parallel. For that multiple proces-
sors and memories are needed. This in turn demands an improved
interconnect. This is the topic of this thesis.

2.3 The basics of parallel processing 5

2.3 The basics of parallel processing

Whatis parallel processing? It is basically to subdivide a task into multi-
ple parts, each which can be executed on independent pieces of hardware
simultaneously. This division is most likely carried out by software (typ-
ically the operating system). The net result should be a reduction in the
overall execution-time.

A more formal definition has been given by [HwaBri]: !

“Parallel processing is an efficient form of information pro-
cessing which emphasizes the exploitation of concurrent events
in the computing process. Concurrency implies parallelism,
simultaneity, and pipelining. Parallel events may occur in
multiple resources during the same time interval; simultane-
ous events may occur at the same time instant; and pipelined
events may occur in overlapped time spans. ...”

Note especially the keywords concurrent events and multiple resources:
events are happening concurrently on multiple pieces of hardware (pro-
Cessors).

There are three main points to consider when analyzing or synthe-
sizing a parallel computer [Tanen90]:

1. The nature of the processing elements themselves. Their size and
speed, and whether there is a single processing element on a chip,
or several.

2. The nature of the memory modules. Memories are often physically
split up into multiple modules.

3. The nature of the network connecting the processing elements and
the memory modules together. This is the main topic of this thesis.
This is discussed further in chapter 3.

A computer with n processors should ideally be n times faster than
a computer with a single processor (assuming processors are identical).
That is not the case in practice, for a number of reasons:

1. Communication is not instantaneous.
2. A processor has to wait for data from a memory-node.
3. A processor has to wait for data from another processor.

4. Parts of the code has to be sequential because of the nature of the
application.

5. A processor has to wait for available bandwidth, it cannot yet ac-
cess the interconnection network.

1On page 6.

6 2 A Briefintroduction to parallel processing

6. Inefficient algorithms that do not exploit the available hardware
are used. In other words: unnecessary sequentialism.

7. Sharing of writable data — the cache coherence problem.

For the future: little can be done about 1-4, but with 5-7 progress can
definitely be made.

The estimated speed of a parallel computer relative to using a single
equivalent processor is often referred to as speedup. We here formally
define speedup as [Seitz]:

time on 1 node

S(n) = (2.1)

~ time on n nodes

As explained above , it is impossible for the speedup to be n. The pes-
simists say speedup is log»n (Minsky’s conjecture). A more optimistic
view is that the speedup is n/In n. See figure 2.2.

Amdahl points to the fact that the speedup is dependent on the per-
centage of sequential code f in a given program [Quinn]:

1
Samdani () < = (22)
If we assume that 10% of the code is sequential, then
10
Samdani(n) < 7 ¥e (2.3)

The speedup can then never be more than 10 (according to Amdahl).
This is shown in figure 2.2.
If f approaches zero (naive) then S4,,4,1 approaches the ideal case:

lim, Samdani(n) < 1 (2.4)

Most commercial multiprocessors today typically have 2-4 proces-
sors. Using Minsky’s conjecture a system containing for example 4 pro-
cessors, only work twice as fast as a single processor. If one leans toward
n/Inn then it works roughly three times as fast as a single processor.
Also Amdahl’s law points to the latter (for f = 10%).

A commonly used term specifying the amount of parallelism used
is the grain-size of the system. For example, a time-sharing system
with multiple users demands relatively little communication between
independent pieces of software. This is typical of coarse-grained paral-
lelism. The opposite is fine-grained parallelism. An example of the lat-
ter is vector-processing, where multiple processors are working closely
together on the same problem.

It is a probable trend that the grain size of parallel computers will
decrease. This results in messages being sent more often and fewer in-
structions are then executed in response to each message. Thus commu-
nication latency becomes an increasingly important factor [Dally90].

2.3 The basics of parallel processing 7

Speedup (S)
512.00

207 ideal case (S=n)

128.00 —
64.00
] nfin(n)

3200

16.00
1 S_Amdahl

ssnssarzpnsasmeressss

8.00

400

log2(n)

200

100 — 7T T[T T T
2.00 4.00 8.00 16.00 32.00 64.00 12800 25600 512.00
Number of processors (n)

Figure 2.2: The estimate of the speedup S of a system of n processors. Adapted
from [HwaBri].

2.3.1 Flynn’s streams

The most classic classification of computer-architectures is probably that
done by Flynn. To Flynn the main task of a computer is the execution of
instructions on a set of data. An instruction stream is the set of instruc-
tions executed by processor(s) on one or multiple sets of data. A data
stream is the set or sets of data the instruction stream operates on. He
divided architectures into 4 basic categories [HwaBri]:

SISD Single instruction stream, single data stream. This is the same as
the traditional von Neuman-configuration with a single processor
and a single memory. Most computers today fall into this category.

SIMD Single instruction stream, multiple data streams. In this cate-
gory a single instruction is performed simultaneously on multiple
operands at the same time (synchronously). This is also known as
vector-processors, or array-processors. Examples are the Illiac IV,
the Connection Machine and Crays.

A variation of SIMD-machines is M-SIMD: multiple SIMDs. In
contrast to a SIMD-machine, it has multiple control units, each
operating on a subset of the processors.

MISD Multiple instruction streams, single data stream. Various in-
structions are simultaneously performed on the same operand. No
real implementation of this class has been constructed.

8 2 A Briefintroduction to parallel processing

MIMD Multiple instruction streams, multiple data streams. In this
category multiple operations are performed simultaneously on in-
dependent operands. A program must be broken into several in-
dependent pieces which execute independently (asynchronously).
This category is better known as multiprocessors or multicomput-
ers, depending on how memory is organized. See section 2.3.3.
Well-known MIMD-machines include the BBN Butterfly, the Intel
iPSC, and some implementations using the Inmos Transputer.

2.3.2 Coupling

Another important classification scheme is that of coupling. A parallel
architecture is said to be either tightly or loosely coupled [HwaBri]:

Loose The architecture consists of relatively independent entities, each
with its own processor, memory, and perhaps its own I/O channels.
The network latency is usually not so critical. This is also known
as a multicomputer. See figure 2.3.

Tight The architecture consists of a set of processors that share a com-
mon main memory and is controlled by an operating system that
provides for interaction between processors and their programs.
The processors may have their own private memory. See figure
2.4. With a tight configuration the network latency becomes a crit-
ical parameter, because more memory-fetches have to be done via
the interconnection network.

Module ; Module, Module ,

| Processor| | Processor| | Processor|

INTERCONNECTION-NETWORK
contains links and switching nodes

Figure 2.3: Loosely coupled architecture.

2.3 The basics of parallel processing 9

Processor, Processor, Processor,

INTERCONNECTION-NETWORK
contains links and switching nodes

Figure 2.4: Tightly coupled architecture. Note that the processors may have some
private memory. The memory modules are together a shared memory.

2.3.3 The organization of memory

There are 2 major ways to organize memory: by using a shared mem-
ory or by using message passing [Tanen90]. With shared memory
there is one common address-space for all the processors. This simplifies
the sharing of code and data-structures among the processors. Ifinstead
the processors only have their own private memory, they share data by
sending messages. The latter, called “message passing” is often referred
to as a multicomputer (loosely coupled).

A computer with shared memory is often called a multiprocessor * .
There are various ways to organize shared memory. One way could be to
have a single, large memory module. That is the conservative approach.
A better way could be to divide them into multiple memory-modules,
maybe with interleaved (low-ordered) addressing.

It is important to distinguish between physical sharing and logical
sharing. With physical sharing there is one single shared address-space.
A value written to a word with one processor can be read by another
processor. If such physical sharing does not exist, data must be sent.

Logical sharingis used if the software (and the programmer) assumes
it is accessing a shared memory, when it is not. Instead an abstract
single memory-space is accessed by the programmer that hides the fact
that message-passing is used.

The two concepts physical and logical sharing can both appear at the
same time, giving a total of four combinations. If the software and the
hardware both “see” only private unshared memory, message passing
must be used to share data. If the software and the hardware “see”

?Multiprocessors and multicomputers are terms used relatively unformally in the
literature. Therefore some might disagree with the stated definitions.

10 2 A Brief introduction to parallel processing

the same address-space we have a “straightforward” shared memory. A
less common alternative is to simulate message passing and a logically
unshared memory on top of a physically shared memory.

The most interesting combination consists of simulating a logical
shared memory “on top of” a physically disjoint memory. It is easier for
programmers to relate to shared memory instead of message passing.
The Linda programming model [Carrier] is an example of an implemen-
tation of logical shared memory. In Linda processes access an abstract
“tuple space” (the logical shared memory). This “tuple space” could be
distributed to independent workstations. In table 2.1 the various com-
binations of physically and logically shared memory are shown.

Shared memory versus Message passing What are the pros and
cons of using a shared memory or a message-passing architecture? We
here present some of them, largely based on our own impressions:

1 Shared memory: “Easier to use, but more difficult to construct.”

+ This is the “traditional” programming environment. Shared
memory is presented to the programmer as one large, uniform
address-space. This is familiar to all programmers. Thus
more programmers can be persuaded to program a shared
memory computer. If this is the case more programs will be
available for shared memory computers.

+/~ There is less copying of data by the nodes. Messages often con-
tain only references to the data in question and the operation
to perform on the data.

+/- Latency is more critical. This is because requests are sent
more often, and these requests are often for small amounts of
data. Thus it is reasonable to assume that the grain-size of a
shared memory computeris likely to be smaller. Since packets
tend to be smaller, the relative overhead due to headers is
larger.

— Prefetching is somewhat more difficult. Prefetch is the abil-
ity to guess in advance the next block of data desired by the
processor, and thus fetch it over the network in advance.

According to [Bell] the trend the last few years has been leaning
toward shared memory computers.

'd Message passing: “Easier to construct, but more difficult to use.”

+ Prefetching is easier.

+/- Latency is not so critical and grain-size is larger. Header over-
head is smaller, but in message-passing there is a “data-over-
head”: more data than necessary are often sent.

- A drawback with message passing is that the programming
environment is more complex than on a traditional one-mem-
ory-space computer. This is a major obstacle if someone is

2.3 The basics of parallel processing 11

to program a message-passing computer. It can be overcome
by having an abstract shared memory “on top of” message-
passing which the programmer uses (a logically shared mem-
ory).

— Messages contain the operation and the data itself, not just
a reference to the data. This could result in more copying of
data by the nodes. More memory-space is then needed in the
nodes.

Both message passing and shared memory have their strength and weak-
nesses. Message passing is probably best for problems of larger grain-
size, while shared memory is maybe more optimal for problems of smaller
grain-size.

Physically | Logically

Multicomputer.

Unshared Unshared }
Uses message passing.

Distributed virtual memory.

Unshared | Shared E.g. the Linda paradigm

Message-passing by

Shared Unshared shared buffers possible.

“Straightforward” shared
memory multiprocessor

Shared Shared

Table 2.1: Various combinations of shared memory in software (logically) and in
hardware (physically). Adapted from [Tanen90].

Organization of memory versus coupling We have here chosen to
separate the concept of coupling from the concept of the organization of
memory. In reality there is a close relationship, as can be seen in figure
2.3 and 2.4. In the loose architecture shown in figure 2.3 it is natural
to assume the modules communicate by using message passing. The
tight architecture in figure 2.4 is a typical shared memory architecture.
[Dally87]® and others do not distinguish between the two concepts.

2.3.4 The cache coherence problem

A problem with designing shared memory multiprocessor-systems is the
contention for memory-access that arise, and also the contention for the
interconnect itself. These problems contribute to increase memory ac-
cess time. This in turn results in the processors having to slow down.
Thus the processors are often idle, while waiting for data from memory.
The use of caches in each processor reduces this problem, but then the
problem of data consistency in the caches arises. This is often referred to

®On pages 8-10.

12 2 A Brief introduction to parallel processing

as “the cache coherence problem” [Stenstréom,Chaik et al, Goor,PatHen].
It gives rise to the following problems:

Sharing of writable data : Multiple copies of the same data result
in problems if the data is writable. Data incoherency might arise
in two forms: between multiple caches and between a cache and
memory. An example of the former: cache C; and cache C; both
has a copy of line X from memory. C; then modifies X. C; must
then somehow be made aware of the change.

Process migration : Sometimes there is a wish to move a process from
a processor F; to a processor P;. A reason could be to achieve load
balancing. A problem may occur when P, modifies line X in its
cache before the process migrates to P, and before X is updated in
memory. P; will then read the old X value in memory.

I/0 : There is also the risk of incoherent data being written to disk. A
block from main memory could be written to the disk before a line
X is modified by a cache. Thus main memory had an old value of
X, resulting in the wrong data being written to disk.

There are many schemes proposed to solve the cache coherence prob-
lem. Some solve it by using an interconnect with broadcast properties
(usually a bus). This is referred to as “snooping”: the cache-controller
keeps constantly a close watch on the interconnect. Another way is to
somehow keep a list of the cached blocks (directory-based schemes). It
is also possible to solve the cache coherence problem in software.

Figure 2.5 shows a taxonomy of various coherency-schemes.

Snooping Dirctory- Software-
based technique

|
. _ | |
Write- Write-
invalidate update

Chained Limited Full-map

Single-linked Double-linked Tree-structure

Figure 2.5: A taxonomy of cache-coherency schemes, somewhat hardware-
biased.

2.34.1 Snooping

The coherency scheme called snooping is probably the most popular to-
day. Itis relatively easy to implement, most commercial multiprocessors
available today use this scheme.

2.3 The basics of parallel processing 13

This technique is closely tied to the use of a broadcast-type inter-
connect — a bus. The cache controllers keep a close “watch” on what is
transmitted on the bus. If they “hear” that “someone else” is modifying a
block that they have in their own cache they take the appropriate action
to maintain cache coherency.

There are two types of snooping protocols. They differ in the way
they handle writes. They are called write invalidate and write update.
The latter is also known as write broadcast.

Write invalidate works the following way: the writing processor in-
validate the copies of the block in other caches. This is often done by
a special invalidation signal on the bus. When this is done the writing
processor is free to modify the block. If one of the other caches or the
memory later wants to read the block, the cache which last modified it,
supplies the block.

With write update, the writing processor broadcasts the new data on
the bus. The other cache controllers then see if they have the block in
their caches. If that is the case, they all update their caches simultane-
ously with the new data.

The drawback of snooping is its dependence on a broadcast-type in-
terconnect. Broadcasts are difficult to route efficiently through switches
[James et al], thus snooping is constricted to bus-type interconnects.
That limits the scalability of snooping.

2.3.4.2 Directory-based schemes

The problem with snooping protocols is that they depend on the use of
buses. Buses represent a bottleneck with respect to bandwidth (satura-
tion).

If one is to avoid the use of broadcasts then the location of the cached
copies of the block must be stored somehow. This list of the copies’ lo-
cation is commonly called a directory. It can be centralized (e. g. in
the memory) or distributed among the caches. There are three types of
directory-based schemes: full-map, limited or chained. Directory based
schemes are suited to various interconnection networks.

Full-map scheme: In the full-map scheme the directory is associ-
ated with memory. For each block in memory there is a vector contain-
ing several bits (as many bits as there are caches). Each bit is associated
with a specific cache in the system. The bit is set if the block is in the
respective cache.

Associated with each block is also an additional dirty bit, which is
set when the cache is modifying the block. For a cache to do so it must
have “valid” data and write permission.

The full-map protocol is relatively straight-forward, but it has lim-
ited scalability with respect to overhead in memory.

Limited directory scheme: The limited scheme is an alternative
to reduce the overhead of the full-map scheme. Here we restrict the
number of cache-pointers in the directory entry to less than the total

14 2 A Brief introduction to parallel processing

number of caches. The difficulty is to handle the case when more cache-
pointers are requested. There are two alternatives, either to disallow
more copies of the block or somehow broadcast that more copies exist.

Chained directory: In the chained directory scheme the directory
is physically spread out among the caches. Starting at the cache line in
question there is a chain of pointers “connecting” the caches together.
The memory-overhead is made up of a clean/dirty -bit and a pointer to
the first cache in the chain. The advantage with this scheme is that it
is scalable with respect to the directory-size. If another cache wishes to
enter the sharing list, the directory is increased by one. The location of
one cache is put in another cache.

In figure 2.6 and 2.7 the general idea is shown. In figure 2.6 cache, is
the only cache having a copy of cache line . The memory has a pointer
to the first cache in the chain, presently cache;. If more caches were
sharing the cache line, cache; might have a pointer to the next cache
sharing the cache line. Presently only cache; is in the sharing list, so
cache; only has a “chain-termination”(CT) pointer. If cache, also wants
to access cache line z, it puts itself as the new head in the chain. This
is illustrated in figure 2.7. Cache, requests cache line = from memory.
The memory sends a copy to cache,, along with a pointer to cache,. The
memory then deletes its pointer to cache, and points to cache, instead.
Cache, keeps its pointer to cache,, which remains at the end of the chain.

For a processor to write to the cache line it must become the head
of the chain. The rest of the chain must then be purged, along with the
copies of the cache line.

The difficulty with these chains arises when a cache in the middle of
the chain has to be removed. This could happen when a cache line in
a cache was purged because of a cache miss. Since the cache does not
have a reference to the previous cache in the chain, there has to be a
sequential search along the chain. The time for this search increases
linearly with the length of the chain.

The best solution to this problem is probably to have a two-way chain,
so that a cache also has a reference to the previous cache in the chain.
The drawback is that the overhead of the cache tags increases, although
the overhead remains independent of the length of the list. SCI uses
this scheme (see section 5.4).

Not everybody thinks scalable cache coherency is a major issue for
large systems. [Matloff] argues that scalable cache coherency is ineffi-
cient for large systems. He proposes instead to have multiple domains
of “local coherency”. Only the processors within such a domain should
share variables.

2.3.4.3 Software techniques

It is possible to let software take care of the cache coherence problem,
instead of the hardware. One conservative solution could for instance be
to forbid shared writable data to be cachable. Another possible approach

2.3 The basics of parallel processing 15

MEMORY

Cache line 1

CACHE CACHE CACHE
o0 0
Line x: Line x: Line x:

Figure 2.6: A chain with only a single cache. Adapted from [Chaik et al].

MEMORY
CACHE ¢ CAQHE CACHE,
LN]
Line x: Line x: | Data Line x:

Figure 2.7: A new cache has inserted itself into the chain. Adapted from [Chaik et
al].

could be to let the compiler analyze the program to see when it is safe
to cache a shared variable [Stenstrom]. There are other possibilities but
this is somewhat beyond the scope of this thesis.

3

Interconnection Networks

The previous chapter gives a rough overview of aspects of parallel pro-
cessing. But what about the interconnection network? In figure 2.3 and
2.4 it was only shown as a vague cloud! In this chapter we are going to
study aspects of interconnection networks in some more detail.

To tie modules in a multiprocessor together an interconnection net-
work is needed. The interconnection network is a very important part of
a multiprocessor. It consists of wires and switches. Wires are relatively
cheap, in contrast to switches.

Wires: The most important property of wires is its delay.
The delay of wires depends on its length /. For “short” wires the delay
tshort 18 dominated by the charging of the capacitance of the wire:

tshort(l) = Tinvertelog, K1 (3'1)

where K is some constant and 7. 1s the unit time to switch the state
of the wire [Dally90]. Thus for short wires the delay increases loga-
rithmically with the length. For longer wires, transmission line effects
dominate [Dally87], thus the delay is limited by the speed of light ¢:
[\/2,
tongl) = (3.2

C

and increases linearly with wire length. The crossover between a ca-
pacitive wire (short) and transmission line (long) wire are dependent
on technology. An analysis is given in [Dally87] !: with a 0.5u technol-
ogy the crossover is about 10mm, which is equivalent to the length of a
chip. Thus wire-delay between switches in an interconnection network
increases linearly with the length of the wire, as in formula 3.2.

Switches: It is important to design the switches carefully with re-
spect to the following issues:

1 What should the size of the buffers in the switches be? Should
they be able to contain a complete packet? The choice might put
constraints on the packet size.

1On page 141.

16

17

1 How many buffers should the switches have ?

d Tt is desirable that the time to transfer packets from an input chan-
nel to an output channel be as short as possible.

A The routing algorithm should ideally be simple and fast.

1 How many channels and how many pins should the switch have?
This issue is related to the number of switches in the network. If
the switches has “many” input and output channels (“many” di-
mensions) then the pinout on the chip grows, but the number of
switches in the network decreases (holding the number of nodes
constant). Simply put: large, expensive switches imply fewer swi-
tches (we’re here presuming the switch would be put on a single
chip, that is not necessarily the case).

There are four main characteristics of interconnection networks
[HwaBri, Feng]: the mode of operation, the strategy for controlling the
routing, the form of switching, and the nature of the topology.

The mode of operation: There are three major methods of estab-
lishing communication paths: synchronous, asynchronous and source-
synchronous communication.

With synchronous communication the system has a common global
clock. It is therefore clearly defined what constitutes “data” on the links
in the network. All time is divided into discrete intervals, e.g. bus cycles.
The drawback is that time is sometimes wasted while waiting for the
start of a new interval.

In asynchronous mode time is not divided in such a manner. Instead
“data” must somehow be encoded, or protocols must be used, e.g. “hand-
shaking” in asynchronous buses. Asynchronous communication is used
when it is desirable to issue communication requests dynamically.

A third method is to have a source-synchronous sender. The method
is interesting mostly when using point-to-point links. The sender-part
of a node determines the clock on the links between two nodes. SCI
(see chapter 5), and also parts of Futurebus+ (see appendix A) uses this
scheme.

Control of routing: A typical network contains switches and links.
These switches can have various settings, depending on the control strat-
egy. This control strategy can be done centrally, or by the individual
switching elements. The first is called centralized control, the latter dis-
tributed control.

Type of switching: There are two major switching methods: cir-
cuit switching and packet switching.

In circuit switching an actual physical path is established between
a sender and a receiver. Generally circuit switching is more suited to
transmit large bulks of data.

In packet switching data is encapsulated in packets, containing the
data and some information necessary for the transportation of the data.

18 3 Interconnection Networks

The packets are routed through the interconnection network without es-
tablishing a physical path. Packet switching is more suited to smaller
bursts of data. Circuit switching reflects how the telephone system
works while packet switching reflects how computers work. In section
3.3 we divide packet switching into 3 switching techniques: store & for-
ward, wormhole and virtual cut-through.

The network topology: Interconnection networks can be divided
into two rough categories: static networks and dynamic networks.

A static topology implies a network with unique paths (routing) be-
tween any 2 given nodes, like a ring or a star network. A dynamic to-
pology routes packets through a network of switches. The routing is not
fixed; packets between 2 given nodes may take various paths. This is
discussed further in section 3.1.1 and 3.1.2.

When discussing interconnection networks further we will concentrate
on the topology of the network.

3.1 Static and dynamic topologies

3.1.1 Static

In a static network the links between the modules are passive and can-
not be reconfigured in any way. Typical examples are: a linear array
(typically a bus), a ring, star, tree, mesh, a completely connected net-
work, a cube, or a cube-connected cycle.

s (5 26 ()

Linear

array Mesh 3-cube Star Ring

Figure 3.1: A selection of static topologies. Adapted from [Feng]. Note that the
circles represent modules (processors and memories), and not switches. The lines
represent links.

3.1.1.1 The Mesh

An important and popular interconnection network is the mesh. The
mesh is a structure of nodes spread out in 2 dimensions. A classical
example is the interconnection network of the Illiac-IV array processor
[Siegel]. It consists of N = 64 processors connected together in a 8x8

3.1 Static and dynamic topologies 19

Figure 3.2: The mesh connection of the llliac-1V, somewhat simplified. |dentical
letters are connected together. Adapted from [Siegel].

matrix. For simplicity a reduced 3x3 version is shown in figure 3.2. Each
processor is allowed to communicate directly with any of its 4 neighbors.
This is formally characterized by the following routing equations:

right neighbor: llliac,1(P) = (P+4+1)mod N
left neighbor: Illiac_+(P) (P —1)mod N (3.3)
below neighbor: llliacy.(P) = (P+4+r)mod N
above neighbor: Illiac_,(P) = (P—r)mod N

where » = /N and P is the address of the processor wishing to send.
The processors are interrupted in their work when they receive a packet
which must be routed on to another processor (static topology). It is
therefore best suited to problems where the processors only communi-
cate with their nearest neighbors.

3.1.1.2 The nCube

The cube is also a well-described interconnection network [Siegel, Feng].
It is a cube of N nodes stretching into n = log, N dimensions. Each
processor is connected to n other processors. To address a neighbor in
the 7’th dimension the ’th address-bit is complemented. The n routing
functions is formally described by the following equation:

Cubei(Pn—l"']Dz’"'PO):Pn—l"'?i"'PO (3_4)

where i =< 0,n — 1 > and P,_; --- P;--- P, is the n address bits of the
processor addresses.
For n = 3, shown in figure 3.1, this results in the following 3 routing
functions:
“dimension 0 - neighbor”: Cubey(P, P, Py) = PP, P,
“dimension 1 - neighbor”: Cube,(P, P, P)) = P,P. P, (3.5)
“dimension 2 - neighbor”: Cube,(P, P, P)) = P,P P,

20 3 Interconnection Networks

This static cube topology can also be mapped onto a dynamic multistage
network. [Siegel] proposes such a “multistage cube/shuffle-exchange”
network, where dimension i of the ncube is mapped to stage ¢ of a multi-
stage network of n stages. The switches perform the exchange function
(see equation 3.7) and the connection pattern between the switches use
the shuffle function (see equation 3.6). Figure 3.5 shows a general mul-
tistage network.

Like the mesh, the ncube is better suited to problems where the pro-
cessors only communicate with their nearest neighbors.

Please note that when n = 2 the ncube is equivalent to 2 * 2 mesh.

3.1.2 Dynamic

Unlike static networks, dynamic networks contain switching elements.
They can reconfigure the links in the network. Thus there are alterna-
tive routes between two given modules. This is a desirable property in
case a part of the network becomes faulty for some reason.

[Feng] divides dynamic networks into 3 groups: crossbar networks,
single-stage networks and multi-stage networks.

Crossbar: m memory-modules are connected to p processors throu-
gh an interconnection network containing m * p switches. Processor, is
connected to memory-module,, through switch,,, The advantage with
a crossbar network is that all processors has then a path to a memory-
module whenever it so desires (non-blocking). The drawback is that this
is achieved at a great cost in the number of switches.

Memory-modules m
DD NN DN MDA
A ZEA Y ZERN VAN VAN VAN VERN ZaaN
O DD O-DD OPEN
S-D-DDPDDD
ANZERN ZEN VAN RN P AN »SAN VAN
Processor- DD NN D DD N r)
modules U VY U VY v v U\
DD DD DODD D D
A\ >4 A > AN 2N
p ADNAND DD M a))
ANPZERN "R N AN PARaN FARAN P4 N VAN
D-D-DDDPDDDP
ANPZERN "R N AN PAEaN PN P4 N VAN
A D NANMD D DN O
A\ A AL WAL WAL W AL e a v
CONNECTED

Figure 3.3: An example of a crossbar network. At each crosspoint a switch is
placed. These switches are in one of two states: either it connects a horizontal
line with a vertical one (CONNECTED) or there is no connection between the two
(OPEN).

Singlestage: A single-stage network is made up of one stage of
switches cascaded to a connection pattern of links. An example is the

3.1 Static and dynamic topologies 21

shuffle-exchange network shown in figure 3.4. Generally, the shuffle
routing function is performed by the cyclic shuffling of the address bits
a,_1 -+ a0, in the following way:

Shufﬂe(an_l ---alao) = dp_2-**A10gdp_1 (36)
The exchange routing function the switches may perform is:
exchange(a,_1 ---a1ag) = ay_1 -+ - a1y (3.7)

Complementing the least significant bit means that modules with adja-
cent addresses exchange data. In figure 3.4 The interconnection pattern
performs the function:

Shufﬂe(azalao) = d1dgls (38)
The switches can perform the exchange function:
exchange(asaiag) = araiay (3.9)

depending on the control-signal to the switches.

11 000
Link _
connection
pattern

.11 n1o 101 100 011 1010 001 1000
Switches

Outputs

Figure 3.4: Example of a singlestage network: a shuffle-exchange network.
Adapted from [Feng].

Singlestage networks are also called a recirculating network because
dataitems may have to circulate through the network multiple times be-
fore reaching a destination. Conceive that the outputs of the switches
are connected back into the network, so that the network has a cylindri-
cal form.

Multistage: A multistage network (called by some an indirect net-
work, and by others yet, a butterfly network) consists generally of n
stages with N = £” input and output lines. Each stage is constructed of
k * k crossbar switches. k is usually 2. The delay in the network is pro-
portional to number of stages. The network forces all requests through

22 3 Interconnection Networks

all n stages to its destination. Thus multistage networks cannot take
advantage of locality.

An important characteristic is the interconnection-pattern between
the stages, which could for example be the shuffle function. How are the
switches controlled? With common stage control, the same control signal
sets all the switches in the same stage. Thus all switches in the same
stage are set to the same state. An alternative is to set the switches
individually. This requires n*/2 control signals.

Well-known examples in the literature of multistage networks in-
clude Clos network [Feng], Benes network [Feng| and the Omega net-
work [HwaBri] (the latter uses the shuffle-exchange interconnection pat-
tern).

| 1 H= - 0
n u
p - - = t
u — Inter- — Inter- o — Inter- p
H connec- H connec- H H connec-
t tion tion H H tion u
s pattern pattern . : pattern t
5 S
] N/2 N/2 ..] N/2
Stage n-1 Stage n-2 Stage 0

Figure 3.5: General multistage network containing » stages used to connect
together 2™ inputs and 2™ outputs. k is here 2.

Multistage networks are often classified as a blocking or non-block-
ing network. In blocking networks conflicts often arise over the simulta-
neous use of network communication links. An interconnection network
capable of handling all possible connections without blocking is a non-
blocking network. Clos network [Feng] is an example of a non-blocking
network.

Please note: When Feng and others refer to e.g. a 3-cube as being
static, they conceive that the vertices in the cube as containing proces-
sors. If the vertices in a cube instead only contain switches, then obvi-
ously the 3-cube is not at all static. It is then best described as a dynamic
network. We find this point to be ignored in the literature.

As time goes on the distinction between static and dynamic topologies
may fade. The difference is really only where the logic doing the routing
is placed.

3.3 Switching techniques 23

3.2 Deadlock

An important problem with networks is the possibility that it may block.
It is essential that packets arrive at their destination in a reasonable
amount of time and that a packet does not block parts, or all, of the
network. Deadlock is a property of the routing algorithm and the topol-
ogy of the network. An example of deadlock is shown in figure 3.6. If
the four nodes attempt to send a packet to the opposite corner at the
same time, and the routing algorithm routes the packet in a clockwise
direction, a deadlock situation arises. Here a packet buffer in each node
would remove the deadlock.

(o—bo>

@)

Figure 3.6: Example of a deadlock. The arrows reflect the situation that all nodes
wishes to send to the “opposite” node. 'a’ wish to send to ’c’, ’b’ to ’d’, and so on.
Adapted from [ShMayTho].

3.3 Switching techniques

One of the basic problems when designing an interconnection network
is to choose a switching method. A selection of methods are: circuit
switching, store & forward switching, wormhole routing, and virtual cut-
through.

Circuit switching originates from the time computer networks
were based on the existing telephone network. With circuit switching a
complete path of communication links must be established before two
nodes can communicate. Once a path has been set up, no more ad-
dressing information is necessary. The path implicitly provides the ad-
dressing information. To set up this path some signal must first be sent
(shaded box in figure 3.7a). The path set up remains during the entire
session. Since data is often sent in bursts it is not ideal for interconnec-
tion networks. The path is similarly closed by a signal when the session
is over.

24 3 Interconnection Networks

Store & forward switching In store & forward switching a pack-
et is buffered in an intermediate node before it is passed on to the next
node. See figure 3.7b. Thus the packet is effectively removed from the
network while the node determines where it should send the packet
(when it can). This buffering effectively limits the size of the packets.
Each node must be able to store one or more packets.

Wormbhole routing This switching technique is called wormhole
routing, despite the fact that strictly speaking it is not a routing algo-
rithm.

In wormhole routing the first flits of a packet are transmitted before
the complete packet has been received. An intermediate node does not
have buffer-space for a complete packet. Thus, if the header (essentially
the target address) can be kept short, the delay through an intermediate
node can be minimalized. See figure 3.7c.

Virtual cut-through is a hybrid of store & forward switching and
wormhole routing. If the desired output channel of a node is busy the
packet is buffered (see figure 3.7d). Otherwise the node sends the packet
and does not buffer it (see figure 3.7¢). Like store & forward, virtual
cut-through puts restrictions on the size of the packets. In figure 3.7f
the desired output channel from the sender is vacant so the packet is
sent. The intermediate nodes’ output channel is not vacant, so there the
packet is buffered until it becomes available [KerKlein].

3.4 Relationship with software

So far much has been said about the hardware properties of parallel pro-
cessing. But what about the relationship between the hardware and the
programs it is expected to execute? In figure 3.8 an attempt is made
to show the relation between the interconnection network and a pro-
gram. On the highest level of abstraction is a user program. Below a
compiler or interpreter partitions the program into multiple processes.
These multiple processes are assigned to various processors through the
network. Communication between the processes is carried out by the
network.

3.4 Relationship with software 25

a) Circut switching

Sender
Intermediate node}.
Destination

Sender
Intermediate node
Destination

Sender
Intermediate node|._.
Destination

Sender
Intermediate node
Destination

Sender
Intermediate node}.
Destination

Sender
Intermediate nodd..
Destination

Network delay

Figure 3.7: Various switching techniques. Shown is an example packet of 5 flits.
Adapted from [Dally90] and [KerKlein].

26 3 Interconnection Networks

Users
Program
(parallel
language)

Task
partition
and
assignment

Interprocess Interprocess
communication communication
(virtual) (virtual)

Interconnection Network

@ @ @

Figure 3.8: Relationship between an interconnection network and an executing
program. Partly adapted from [Feng].

4

The k-ary n-cube
interconnection network

As mentioned previously the goal of this thesis is to study various inter-
connection networks for large SCI-systems. We have considered several
kinds of topologies:

1 A single ring. The advantage of using just a single ring is its sim-
plicity. It is easy to connect. Practically no routing is needed. The
main drawback is the limitations in bandwidth and latency as the
size of the ring grows. It is in practice useless for a large system,
as shown in chapter 9 and [HulBot|.

1 Crossbar-networks. Their advantage is that they are non-blocking.
The drawback is the large number of switches as the network-size
increases. It is thus too costly and not scalable.

1 Singlestage/multistage. Possible to scale, but the latency grows
with the increase of the number of stages. This in itself is not so
bad, but the distance between nodes in the network is constant
irrespective of which two nodes are communicating (when no con-
tention). Thus no form of optimalization (locality) is possible, if de-
sired. Another drawback is that some multistage networks have
the possibility of deadlock, while others are difficult to prove dead-
lock-free [ScottGood].

1 k-ary n-cubes. They are regular, independently of size. They are
thus scalable !. It is easy to vary the size by changing the parame-
ters (k and n) and thus see how the performance is affected by the
change of the parameters. The routing algorithm can be made sim-
ple. See section 8.5. If desired fault-tolerant network can also be
implemented. k-ary n-cubes can be made deadlock-free, as proved
in [ScottGood].

1At least in theory. The scalability-issue is of course implementation-dependent.

27

28 4 The k-ary n-cube interconnection network

Of the interconnection described in the literature we have chosen to
use the k-ary n-cubes as the topology to investigate in this thesis. The
reasons mentioned above are the most important for the choice. The rest
of this chapter is an in-depth presentation of k-ary n-cubes.

The k-ary n-cubes topology has been used successfully in machines
such as the Connection Machine and the Cosmic Cube [Seitz]. It is con-
structed of cubes with dimension n, and % vertices in each dimension.
The relation between dimension (n), radix (k) and total number of ver-
tices (IV) are as follows?:

N = k", (k= VN,n =log,N) (4.1)

To address these N vertices, n fields of length log .k (rounded up to
nearest integer) bits are needed, giving a maximum of log . N address
bits.

Most parallel computer topologies are of the k-ary n-cubes -category,
or can in some way be mapped to it. Examples of k-ary n-cubes are
meshes, cubes and omega-networks [Feng|. Networks that can be mapp-
ed to it are rings, trees, multistage, butterfly, and others.

The maximum number of links between 2 nodes farthest away from
each other is often called the diameter of the network. The diameter of
a k-ary n-cube is:

D=n(k-1) (4.2)

In figure 4.1 we show some of the smaller, less complex variations of k-
ary n-cubes. Each point in the cubes are switching nodes. Some special
cases of interest:

1 When n = 1 the cube is a linear array.

d When £ = 2 the cube is better known as a hypercube (called by
some a binary n-cube).

1 When n = 2 the cube is strictly not a cube at all, but a mesh.

A set of links in a dimension can either be unidirectional or bidirec-
tional. In addition a set can be torus-connected at the “sides”. Thus there
are four possibilities, as shown in figure 4.2. (Note that this is a charac-
teristic of networks in general, and not specially for k-ary n-cubes.)

The vertex in a k-ary n-cube is connected to n other vertices through
2n links (inputs and outputs). A torus-connected unidirectional k-ary
n-cube is then assumed.

From now on, unless otherwise stated, torus-connected unidirection-
al k-ary n-cubes are assumed.

How does k-ary n-cubes fit into the scope of the previous chapter? Is a
k-ary n-cube a static or a dynamic network? k-ary n-cubes are certainly
dynamicin the sense that the vertices contain active elements (switches)

2This is the most important equation in this thesis. Please make note of it ®

29

Increasing n

2-ary 4-cube

[et
cJ# d\) d‘* f‘f
T2
) C;,Ljf'_?L

2-ary 3-cube 3-ary 3-cube 4-ary 3-cube

O

N
\
3
<
\.&

J

O AN J

@ € G
D O > O

2-ary 2-cube 3-ary 2-cube 4-ary 2-cube

O

o0—o0 o—o0—0 o—O0—0——o0
2-ary 1-cube 3-ary 1-cube 4-ary 1-cube
Increasing k

Figure 4.1: A small selection of k-ary n-cubes. As k, and especially n grows, it
becomes too complicated to draw.

30 4 The k-ary n-cube interconnection network
nop N
o dA-db-
0—0 §=0=0 = %(‘i)f T Q%
L e P LD
O-—0 O=0=0 == TF=o—
Uni-directional Bi-directional Uni-directional Bi-directional
torus-connected torus-connected

Figure 4.2: Different connection schemes in point-to-point networks. The figure
shows various ways of implementing the links in a k-ary n-cube. The examples
shown here are for 2-ary— and 3-ary— 2-cubes. Note that some of these methods
are very redundant for so small examples.

capable of routing the packet in various directions (dimensions). But
within the scope of a single dimension k-ary n-cubes could be viewed as
static. One dimension would probably be implemented as a ring or a
linear array.

4.1 Properties of i-ary n-cubes

One of the important properties of k-ary n-cubes is the the unloaded
latency, which is also possible to discuss without a simulation or compli-
cated mathematical modell. This presented in depth in section 4.1.2. We
will also say some words about wire delay (section 4.1.1) and throughput
(section 4.1.3).

4.1.1 Wire delays

The length of wires is an important parameter in k-ary n-cubes, as in all
networks. In [Agarwal] it is suggested that advances in technology will
make ever-faster switches possible. Wire speeds will remain roughly
constant, and will thus dominate switch delays.

The length of the wires is not necessarily equal for all the links
[ScottGood]. The network must obviously physically be constructed in
3 dimensions. If the network contains more than 3 logical dimensions,
modules must be placed somehow unevenly in three physical dimen-
sions. Each physical dimension must then contain »/3 logical dimen-
sions. Thus the delay of the longest wire is:

Twiremax = k571 - Twire(n = 3) n>3 (4-3)
where Tyire(n = 3) is the delay of the wire in a uniform network with 3
dimensions.

4.1 Properties of k-ary n-cubes 31

In a synchronous network the clock must accommodate this longest
link. Thus the wire delay is determined by the maximum wire length.
In a pipelined, source-synchronous network, like SCI, the mean wire
delay is determined by the mean wire length. In [ScottGood] the mean
wire delay, Tire qve, 18 found to be approximately equal to the mean wire
length, or:

K -1 3

Twire ave = E—1 E n>3 (4-4)

Folding If atorus-connectionis used, the long end-around link will
be much longer (see figure 4.2¢). In [Dally90] a folded torus-connection is
proposed to reduce the length of the longest link. Then the longest wire
is approximately the mean wire-length. This reduces the maximum wire
length. Thus the clock frequency can be increased if using synchronous
clocking. See figure 4.3.

Dimensionl

Cff\pg_)
_?
—?

@ : Switch Dimension O

Figure 4.3: Folding a 4-ary 2-cube to shorten and even the wire lengths. Adapted
from [Dally90].

4.1.2 Unloaded latency

One of the most important metric for an interconnection network is the
transmission time for a packet through the network, when the network
is not loaded. This is often referred to as the unloaded latency. Let us
assume the following:

d A packet has I bits.

1 Channels are W bits wide.

d A packet contains L/W flits.

32 4 The k-ary n-cube interconnection network

Q If two random switching nodes are selected, then there is on aver-
age Dgpe number of hops between them where:
k-1
2

(4.5)

Dope = n

(equation 4.2 divided by 2)

A The k-ary n-cube has unidirectional channels and end-around to-
rus connections.

[

'd The switching technique is “wormhole routing” or “virtual cut-

through” [KerKlein].

1 The bisection width of a network is the minimum number of wires
cut when the network is divided into two equal halves [Dally90].
The bisection width of a bidirectional k-ary n-cubes is:

_2WN

B=——= 2W k! (4.6)

We will here in this section discuss the unloaded latency as pre-
sented in [Dally90,Agarwal,ScottGood]. [Dally90,Agarwal] both assume
the use of synchronous clocking, and thus the latency is dependent on
the maximum wire length. [ScottGood] assumes the use of pipelined
(source-synchronous, see chapter 3) networks, dependent on the mean
wire length. [ScottGood] also goes more into detail with respect to the
speed of switches.

Ignoring the switching delay, [Dally90] defines the latency as the
time on wires plus time to send a packet /W flits long:

Latency [Dally90] — Tcycle(Dave + L/W) (4-7)

where T, is the cycle time on the channel. In [Dally90] k-ary n-cubes
are studied under the constant bisection width constraint. The conclu-
sion was that 2-dimensional and 3-dimensional networks were optimal
as system size N increased, instead favoring an increase in the value of
the radix k. This conclusion was motivated by the 2-dimensional nature
of VLSI and of the use of synchronous clocking.

In [Agarwal] the unloaded latency is the product of the time through
one switching node, the sum of the nodes passed and the message length.
[Agarwal] includes the switching delay Ty, through the switching
nodes:

Latency[Agarwal] = (Twire + Tswitch)(Dave + L/W) (4-8)

[Agarwal] studied k-ary n-cubes under the constant bisection width and
under the constant wire density. The conclusion was that moderate high
dimension is optimal.

Both in [Dally90] and in [Agarwal] it is assumed that synchronous
clocking is employed. Thus 7, in equation 4.7 and T in equation
4.8 18 Tyire.max (€quation 4.3) and thus dependent on n.

4.1 Properties of k-ary n-cubes 33

In [ScottGood] it is assumed that bits are pipelined: source-synchro-
nous clocking is used ® and the wire delay is as in equation 4.4. Also,
[ScottGood] makes a difference between the time for the message to
switch dimensions, T}, quizcn, and the time to continue along the the same
dimension, Tpess. It is assumed that the switching node uses 7jecode €¥-
cles to decode the message-address:

log , A
Tdecode = %; (4 9)

where A is the number of address-bits, placed in the first flit of the
packet.

A message travels a mean of £/2 hops in one dimension. It continues
in the present dimension with a probability of (¥ — 2)/2 (-2 because of
the local sender and the local receiver of the packet). It enters the n
dimensions with a probability of ’“;—1 The unloaded latency, in cycles, is
then:

Latency (scottGood] =
nk;_l [%(Twire_ave + Tdecode) + k;_szass + Tin_switch]
+L/W -1
(4.10)

In [ScottGood] pipelined and synchronous k-ary n-cubes are studied un-
der the constant link width W constraint, the constant node size 2nW
constraint, and the constant bisection width B constraint. The conclu-
sion of [ScottGood] is that in all 3 cases, pipelining argues for higher di-
mensionality as system size increases, while the radix & should be kept
constant.

4.1.3 Throughput

Throughput is the amount of data the network can handle per unit of
time.

A network must be expected to carry traffic. Latency must be stud-
ied together with the throughput X of the net. To do so requires either
a queueing model or simulation. The former is beyond the scope of this
thesis, though it is basis of the discussion in [Dally90, Agarwal, Scott-
Good]. The latter is discussed in chapter 8 and 9.

A definition of the maximum throughput for a k-ary n-cube , some-
times also called the network capacity, is the following (adapted from
[Dally90]):

Xy N
Dave

X, is the maximum bandwidth out of a vertex. It is the number of
outgoing links (n) multiplied by the link-bandwidth (X;).

The maximum throughput for a k-ary n-cube is thus:
Xy-N _ nX;N N

=2X,
Dave Dave lk_l

*The analysis in [ScottGood] has been made with SCI in mind.

Xmax =

Xmax =

(4.11)

34 4 The k-ary n-cube interconnection network

If X; is in bytes per second, X4, will be likewise. Note that equation
4.11 is for the complete k-ary n-cube.

4.14 Reducing the maximum distance in the t-ary n-cube

The maximum distance in a k-ary n-cube is n(k — 1). Several schemes
have been proposed to reduce the distance. In [Dally91, EIAmSha] the
use of additional links is discussed. In [ElAmSha] it is proposed that
each switching node has n + 1 outgoing links, the last link being con-
nected to the most distant node. The maximum distance is thus halved.

5

The Scalable Coherent
Interface

In the late 1980’s several people working on bus standardization!, ini-
tiated a study on how to increase the performance of buses. They soon
realized that no bus could satisfy the needs of the next generation of mul-
tiprocessors. Satisfying these needs would demand connecting together
a large number of processors, providing a speed of communication to live
up to the rapidly increasing speeds of the processors. The interconnect
should scale well with increasing size of the topology, as well as offering
a coherent memory system.

Buses don’t fit into such a scheme due to their inherent behavior.
They allow only one transmission at any time. The clock rate on a bus is
limited by the physics of transmission lines with a variable load. Scal-
ing is largely restricted by the propagation delays involved with hand-
shaking and the general arbitration on the bus. This adds up to a system
not very applicable to supply the necessary communication needed in a
large multiprocessor system.

So, if the performance of computer communication was to increase
more than just marginally, a different scheme had to be chosen. The
conclusion was to use packet-based communication over independent
point-to-point links. This solution implies a reduction in the problem
of non-ideal transmission lines. There will never be any problem with
contention on the transmission medium.

The loss of a bus generates a new problem, though: It is no longer pos-
sible to use snooping (see section 2.3.4.1) to maintain a coherent mem-
ory system. Instead a directory-based cache coherence protocol was de-
signed (see section 2.3.4.2).

The project was adopted within IEEE and named the “Scalable Co-
herent Interface” (SCI). A working group within IEEE has worked for 2.5
years defining all aspects of the now approved standard: IEEE std.1596—
1992.

In the following sections a closer overview of the different aspects of
SCI is presented.

1See appendix A for an overview of bus-standards.

35

36 5 The Scalable Coherent Interface

The Goal of SCI The goal of the SCI-project was to define some in-
terconnection scheme connecting together processors and memories in a
multiprocessor system. The following section describes the most impor-
tant properties which were taken into consideration during the develop-
ment:

To get the use of SCI more widespread, the interconnect should be
able to support a high performance multi-computer system, at a low cost.
It should be possible to build a high-end multi-processor at a reasonable
price, as well as making it cost effective to build small systems.

To achieve this goal the protocols had to be fairly simple. The pin
count on the chips had to be as small as possible, allowing connection
of processor, memory, I/O and bus adaptor cards from multiple vendors.
On the other hand the high-performance and the scalability behavior
should not be sacrificed.

Each link connection should offer a speed of 1 GigaBytes/sec. The ad-
dressing scheme should be able to address as much as 64k nodes. And to
provide a more user friendly system the cache-coherence problem should
be solved.

5.1 SCI basics

T

NODE NOD

E w ’NODE‘ ’NODE‘

F——— l—

SCI

Interconnection

Interconnection network/Switch
nettwork.
NODE NODE ’NODE‘ ’NODE
oo ‘
a) General abstract b) SCl-system with a ¢) SCI-system with

SCl-system. single ring. active switches.

Figure 5.1: SCI system topology in general.

This is meant to be a brief introduction to SCI. For a full and more
detailed description see the SCI standard 2.

In a computer system using SCI all communication between nodes in
the system uses uni-directional point-to-point links. A general system
topology using SCI is shown in figure 5.1. This figure shows that every
node has one input and one output link. The links consist of 18 parallel

2Most of the figures in this chapter are adapted from [IEEE-SCI].

5.1 SCI basics 37

lines. Of these lines, 16 are used for data and the remaining 2 for control
purposes®. A view of the node including the links is shown in figure 5.2.

NODE
16 bits of data Input link Output link 16 bits of data
/;—I I—I— ~N
—— \ : : /—/—>
clock clock
flag signal flag signal

Figure 5.2: Symbols on the link.

On these links nodes transmit/receive the symbols (flits). The sym-
bols are the smallest entity of information in SCI, they consist of one
word (16 bits, omitting the control lines) transmitted in parallel on the
links.

Some of the symbols are used to form packets * and others are used
to carry information used by the protocol to control arbitration, synchro-
nization, etc. Packets are formed by consecutive symbols. Between each
packet there has to be at least one idle-symbol. The idle symbols carry
information concerning the bandwidth allocation. Itis used by the nodes
to control the flow on the output link. This means that the node is depen-
dent of the incoming symbols to control the behavior on the output link.
In other words the arbitration protocol depends on the circulation of'idle-
symbols in the system. The bandwidth allocation protocol implements
a concept of partial fairness using priorities and a round-robin protocol.
See section 5.3.5.5 and 5.3.6 for an explanation on idle-symbols.

The dependency of incoming idles for a correct flow behavior is the
reason why the basic configuration of a SCI system always has to be a
ring. The small rings of which the whole system are build up of is often
called ringlets. On every ringlet there is one node with the dedicated
task of performing the ring maintenance (initialization, time-out etc).
This node is called the scrubber. Other configurations of topologies us-
ing SCI-system are not defined. This work is left to the implementor
depending on the task which the system is intended to solve. See figure
5.1.

Each node in a SCI based system will be a combination of processors,
SCI-memories, I/0, bridges and switches. Based on the contents of a
node it will have either requester or responder capabilities. Nodes with
active elements (e.g. processors and bridges) will typically have request
capabilities. They request (demand) some resource from a node with

A serial link is also defined [See section 5.2], but every link reference in this thesis
is to the parallel link.
*Examples in section 5.3.5

38 5 The Scalable Coherent Interface

responder capability. The respond capable node (memory, I/O etc) then
provides the resource.

The cache-coherence problem is solved using a distributed-directory
concept. This is described in section 5.4 and section 2.3.4.2.

The throughput and latency are the most common measure on the
performance of computer-system. Thus a short discussion on theoretical
throughput and latency on a ring, is presented. The discussion below
covers rings only, since this is the basic building element in any topology
using SCI. See also section 9.1 and [HulBot] for our simulation results
on single rings.

Throughput A node theoretically outputs ¢ Gigabytes per second. A
ring with # nodes should theoretically result in throughput of = x ¢ Giga-
bytes per second, but only if packets are addressed to the senders down-
stream neighbor. This is not so realistic. Let us instead assume that
packets are addressed randomly. Then the traffic is roughly symmetric.
On average, packets will traverse half-way around the ring. Then the
average number of segments traversed by each packet is half the total
number of segments (7):

Ring bandwidth=¢- - =2-¢ (5.1)

wls| 8

Thus the ring bandwidth is independent of the ring-size.

Some of this bandwidth is used by echo-packets (containing ¢ = 4
symbols) and packet-headers (containing 4 symbols). Echo packets is
described in section 5.3.4. In addition, there is at least one idle-symbol
between packets . If we assume “move64”-packets (section 5.3.5.1) of 40
symbols, with &~ = 8 we must multiply the previous equation with:

40— h 32
1 =— = — =71 2
Fraction of real data 0Terl- 1 1% (5.2)

If larger packets are used, this fraction will improve.
¢1s 1 Gigabytes per second. Thus the maximum effective throughput
of an SCI-ring (independently of size) is:

2
Effective throughput = i—5 -2-g~14 G bytes/second (5.3)

Latency Itis difficult to say much off-hand about latency under loaded
conditions. That requires a thorough analysis (queueing theory) or sim-
ulation (see chapter 9). Here we will only present the average latency
on an unloaded ring.

The same argument as for throughput goes for latency. Thus we as-
sume a random distribution of addresses, each packet travels half way
around a ring on average. This makes the latency the sum of the ele-
ments it passes on its way, pluss the packet length. In equation 5.4 =

5.3 Protocols 39

represents the size of the ring, {54 is the time taken to pass through a
node and ¢, the time used in wires.

Minimum average latency = = - (tpass + twire) + 7 (5.4)

v
2
r is the packet-length in nanoseconds.

5.2 Physical Part

The physical part of SCI defines the electrical, the thermal and the me-
chanical environment for a SCI system. SCI defines three types of phys-
ical links. These links offer a reliable packet transmission to the logical
protocols. There is one parallel electrical link for use over short dis-
tances (meters). Then there are two serial implementations, one using
electrical signal (tens of meters) and one using fiber optics (kilometers).
The mechanical module and rack used in SCI is defined using the IEEE
1301 and IEEE 1301.1 standards.

In a SCI system the links continually transmit symbols, whether
there are any data to send or not. The symbols are made up of 16 bit
data, 1 bit packet delimiter and 1 bit clock information. The clock infor-
mation is used by the receiver to physically be able to extract the data
from the incoming signals. The defined links, to carry the signals in SCI
are:

Type 18 - DE - 500 (DE = Differential ECL)
Type 1 - SE - 1250 (SE = Single Ended)
Type 1 -FO -1250 (FO= Fiber Optics)

The notation for the links are defined as follows:

Type <number_of signals>—<kind_of signal>—
<bit_rate_per_signal in Megabits/sec>.

Type 18 - DE - 500 This link is intended for applications within a back-
plane and distances up to a few meters. It uses differential sig-
nalling on the lines. The links and node-link interface are imple-
mented in ECL-technology. The symbols are sent in bit parallel.
The use of differential signalling demands the use of two wires per
signal-line. Using differential ECL signalling has some rather nice
properties: The signal levels are relatively small (gives greater
speed), it gives a high transmission impedance and the lines be-
come less sensitive to noise. All this makes the link able to operate
at a rate of 1 GByte/sec.

Type 1 - FO/SE - 1250 This is the serial link. It is thought that it
should be used for longer distances where the cost of wires would
be rather expensive using bit parallel transmission of the symbols.
The transmission medium can either be coax or fiber-optics. For
shorter distances low-cost LED’s or coax should offer the best al-
ternative. To communicate over longer distances one would need
high-cost lasers.

40 5 The Scalable Coherent Interface

5.3 Protocols

Logic function SCI-nodes have to be able to receive data on its in-
coming link at the same time as it transmits symbols on the outgoing
link. To deal with this a node needs FIFOs to store symbols interme-
diately. The input-output intermediate store (INPUT-OUTPUT fifos)
is necessary to interface between the higher speed on the link and the
lower speed of the rest of the node. The BYPASS-fifo is used for storing
symbols passing through to other nodes, while the node is sending one
of its own packets. The INPUT-fifos receive symbols (packets) destined
for this node. There is usually at least one INPUT-fifo for requests and
one INPUT-fifo for responses. The size of the fifos should be at least the
size of the largest packet-size allowed in the system, with the exception
of the BYPASS-fifo who is a little bit larger. The BYPASS-fifo should
be able to store an echo-packet ° in addition to the largest packet. The
internal logical structure of a node is shown in figure 5.3

responder

requester

(timeout) =™ out

3| @ 2 @
Output g 3 g 8 [Input
fifos gl & 2| z|fifos
ol € ol €
~—_
my_echo\
<)
of . . | elastic
IS é BypassFifo SUIp | yuffer IN
0
out % £ = (CRC)
savedldle
(CRC)
Transmitter reciever

Figure 5.3: Node logical structure.

5.3.1 Input synchronization and elastic buffers

All SCI nodes are synchronous. This goes for both their internal logic
and the data transmission. The data transmission is what one would
call source-synchronous (see chapter 3). The synchronous nature of SCI

®See section 5.3.5 and 5.3.4 respectively for use and definition.

5.3 Protocols 41

very much simplifies the logic in the nodes. So the receiving part of
the node is fairly simple. It consists mainly of a receiver containing an
elastic buffer. See figure 5.3 for the actual placement in a node. The
elastic buffer has the task of compensating for the drift in phase over
time between the incoming data clock and the local receiving clock. The
other means of phase compensation, is the information contained in the
sync packets. This helps to correct for phase drift between the individual
bits (skew between the lines).

One of the reasons for having idle-symbols (see section 5.3.5.5) be-
tween every packet is to make the elastic buffer model work. The way
the elastic buffer works is that it introduces a short delay (a buffer) of
2 symbols . Choosing symbols correctly from this buffer allows the elas-
tic buffer to delete and insert idles from the ring to make the necessary
phase corrections. The symbols used for this purpose are called elastic-
ity symbols. They can be both idle and sync packets. It is very important
that there always are enough of them to make the whole system work
as supposed to. To understand how the elasticity buffer works with in-
sertion and deletion see figure 5.4. When the receiving clock is faster
than the internal clock idle-symbols have to be deleted (see figure 5.4 b).
When the receiving clock is slower than the internal clock idle-symbols
have to be inserted (see figure 5.4 a).

5.3.2 Flag coding of incoming data

For the node to be able to recognize the various packet types arriving on
the link it makes use of the flag signal. The flag signal has a bit-pattern
(transitions) which is exclusive for each kind of packet. Thus the in-
terface can by decoding the flag-signal distinguish between the packet
types and also their duration. The concept is graphically presented in
figure 5.5 to make it easier to understand. The transitions of the flag
signal are specified as follows:

0—1 This is the start of a packet.
1 — 000--- The number of trailing zeroes identifies the packet type.

Coding-decoding specification for the different types of packets:

Send packets: At least the 4 first bits high with 4 trailing zeroes
Sync packets: First bit high with 7 trailing zeroes
Echo packets: 3 bits high with 1 trailing zero

5.3.3 Switching techniques

How well does SCI fit into the switching techniques described in section
3.3 ? On a ringlet packets are buffered in the bypass-fifo if the output-
channel of the interface is busy. Otherwise the symbols (flits) are passed
on immediately. Thus, on a ringlet, cut-through switching is used.

42 5 The Scalable Coherent Interface

tc())usfgr%jt 2 symbol delay = {ftmm—
P l=—— Idle = . Input
~=—T| MUX [~ to node

The elastic buffer.

Closeup of the MUX during the different phases of deletion and insertion:

a) Insertion:
|———— ———— | ————
< —— - — <
\ —— |l ———— l————
1) Before insertion 2) During insertion 3) After insertion
(delay =0) (delay + 1)
b) Deletion:
| — | —
\
save-go-hits j
1) Before deletion of idle 2) After deletion of idle
(delay > 1.25) (delay - 1)

Figure 5.4: Elastic buffer models.

The switching technique between rings is not defined in SCI. It is up
to the network-designer to decide. In our simulation of SCI (see chapter
8 and 9) we have studied both the effects of store & forward switching
and virtual cut-through switching in the switches.

5.3.4 Transactions

All the communication in SCI is defined by transactions. Transactions
are initiated by a requester and completed by a responder. Every node
in the system can have both responder and/or requester capabilities. In
other words memory and I/O nodes typically need only to be able to
respond to requests from others, while the processor nodes almost al-
ways needs to execute both requests and response transactions. Trans-
actions consist of one or two sub-actions dependent on the type of trans-
action. The sub-actions are then of cause called response- and request-
sub-action. Each sub-action involves two packet transmissions. One
sent on the output link and one received on the input link. Thus a typical
transaction is made up of four packets being transmitted in the network.
This is illustrated in figure 5.6.

5.3 Protocols 43

The flag signal

4 1 13 1|1|7

D AT Asignal

Send packet i |i | Echopacket [Sync packet

i = idle symbol

Figure 5.5: Flag-signal coding.

If the responder in a transaction does not have available buffer space
to receive the incoming packet, it generates an echo with the busy flag
set (echo busy). This tells the requester that the responder could not
process the packet (the packet has been busied), because of the lack of
queueing space. The requester then either has to resend the packet un-
til it is received successfully or give up. When a responder has to send
an echo-busy it must make a space reservation. This is done to increase
the possibility for acceptance of the resent packet. The protocol to im-
plement this is a simple A/B aging scheme. This allows a node to in a
simple way choose between B, resent packets, and A, not busied (not
acknowledged) send packets.

When a transaction takes place between nodes on different ringlets
it is called a remote transaction. This involves the use of an agent. The
agent could be a switch or bridge. A switch is used to internally route
between the ringlets in a SCI-system. A bridge is used to interface be-
tween SCI and another system. This could for example be a VME-bus.

The agent is used to remove packets from one ring and to insert it into
another ring. When doing this the agent takes responsibility of further
forwarding of the packet. It sends a local echo (acknowledgment) on the
ring which it received the packet from. See figure 5.7.

There are four main types of transactions:

Name | Request Response
readxx | Header | 0,16,64,256 |
writexx | | Header | 0,16,64,256 | | | Header |
movexx | | Header | 0,16,64,256 |
locksb | | Header | 0,16 | | Header | 0,16 |

xx indicate one of the legal data block sizes, indicated by the
corresponding numbers in the response and request columns.

44 5 The Scalable Coherent Interface

(1) request—send
Requester Responder
Request
Subaction
Requester Responder
(2) request—echo
Responder
processing Requester Responder
Requester Responder
Response (3) response—send
Subaction (4) response—echo
Requester Responder
Requester Requester Responder
processing

Figure 5.6: Example of a typical transaction.

(1) request-send (3) request-send

Requester |oem————————— Agent ™| Responder
(2) request-echo (4) request-echo
(8) response-echo (6) response-echo

Requester |e——————— Agent >| Responder

(7) response-send (5) response-send

Figure 5.7: Example of a typical remote transaction.

readxx: Copy data from responder to requester. With response sub-
action.

writexx: Copy data from requester to responder. With response sub-
action.

movexx: Copy data from requester to responder. Without response sub-
action.

locksb: Selected byte-lock. Copy data from requester to responder. The
responder updates the address to lock, according to the command-
field in the packet, and returns the previous address contents to
the requester. This is a non-coherent transaction, used to imple-
ment indivisible operations (also known as “atomic operations”).
See [IEEE-SCI].

5.3 Protocols 45

5.3.5 Packet formats

SCI has many types of packets. Explained here are only the types used
in our simulator. The request packets, the response packets and the
echo-packets are explained below. The request packets are those origi-
nating from the initiator of a transaction and response packets are sent
back in response to the initiator’s request. Echo-packets are acknowl-
edgements of received packets.

5.3.5.1 Request-Send Packet Format

—— 16bits —
targetld
command

sourceld

control
addressOffset 00. . .15
addressOffset 16...37
addressOffset 38...47
ext (0 or 16 Bytes)
data
(0, 16, 64 or 256 bytes)
CRC

Description of the various fields in the packet.

1. targetld is the id of the node for which the packet are destined. L.e.
the destination address.

2. The command field gives the type of packet and flow control infor-
mation.

3. sourceld is the id of the node which sends the packet.

4. addressOffset is the internal address in the requester node. It may
be addresses or registers.

5. ext. A portion of the extended header.
6. Data. 0, 16, 64, 256 bytes of data.

7. CRC Cyclic Redundancy Check. 16 bit CCITT CRC.

46

5 The Scalable Coherent Interface

5.3.5.2 Request-Echo Packet

——16 bits —
targetld
command

sourceld
CRC

Description of the various fields in the packet.

1.
2.

3.
4.

targetld As for the Request-Send packet.

command Contains part of both the command and control symbol
from the send packet. See description below.

sourceld As for the Request-Send packet.
CRC Cyclic Redundancy Check.

5.3.5.3 Response-Send Packet Format

—— 16 bits —
targetld
command

sourceld

control

status
forwld
backld
ext (0 or 16 Bytes)
data
(0, 16, 64 or 256 bytes)
CRC

Description of the various fields in the packet.

1.

targetld is the id of the node which the packet is destined for. Used
to route from the responder to the requester.

. The command field gives the type of packet and flow control infor-

mation.

. sourceld is the id of the node which sends the packet.

. status gives the status of the transaction. Used to indicate trans-

action status including cache-coherence information.

. forwld and backld are used by the cache-coherence protocol to

maintain the distributed directory list.

5.3 Protocols 47

6. ext. A portion of the extended header.
7. CRC Cyclic Redundancy Check. 16 bit CCITT CRC.

5.3.5.4 Response-Echo Packet

«——16 bits —
targetld
command

sourceld
CRC

Description of the various fields in the packet.
1. targetld As for the Response-Send packet.

2. command Contains part of both the command and control symbol
from the send packet.

3. sourceld As for the Response-Send packet.
4. CRC Cyclic Redundancy Check.

5.3.5.5 Idle symbols

Idle symbols fill the part(s) of the ring that is idle. They are also used
for synchronization. There is always an idle symbol between packets.

‘ ——8 bits — ‘ «——8 bits —

Various error
bit-fields correction

Of the “various fields”, the go-bits are the most important. They con-
trol the bandwidth (see section 5.3.6). The “ error correction” is just the
inverted of “various fields”.

5.3.6 Bandwidth Allocation

For allocation of bandwidth on the ringlets SCI implements a concept
of partial fairness. This involves a fair allocation of bandwidth among
nodes with equal priority. Unfair partitioning of bandwidth is used be-
tween the different priority levels. This means that the nodes with the
current highest priority on the ringlet get the most of the bandwidth.
The remaining bandwidth is fairly allocated among the rest of the nodes.
This is illustrated in figure 5.8 with the four priority levels that SCI de-
fines: it ranges from PO (lowest priority) to P3 (highest priority). The
highest priority in use in this example is P2. This means that nodes
with priority P2 get the most of the bandwidth. The remaining band-
width is shared equally between nodes with priorities P1 and PO.

Having the allocation protocols organized in such a manner gives
some benefits on the following:

48 5 The Scalable Coherent Interface

Fraction of
Priority Bandwidth
-+ [—
p2| highest SIS 1-f
P1
PO fair f

Figure 5.8: Bandwidth Partitioning.

1 Guarantee forward progress on the ringlet. Allowing temporarily
blocking of high priority packets without any deadlocks.

'd Deterministic upper limit for time-outs, ie. the worst case trans-
action time-out values can be calculated.

1 Queue-Allocation protocols. Using partial fairness gives an upper
bound for time to retry busies. This makes the queue-allocation
protocols simpler.

Fair Bandwidth Allocation Fair bandwidth allocation means that
nodes with the same priority get the same amount of bandwidth. To
accomplish this a round-robin protocol is used. The protocol makes use
of the go bits in the idle symbols to decide which nodes get to transmit
and which ones doesn’t.

In every idle-symbol there are two go-bits. One for the highest pri-
ority level and one for the lowest. We will make no distinction between
them for the rest of the explanation, because they have the same func-
tionality in each priority group (highest/lowest).

By setting the go-bit on/off you indicate a go- or no-go-idle. Packets
can only be sent after an idle-symbol with a set go-bit. By controlling
the amount of go- and no-go-idles on the ringlet the bandwidth can be
partitioned between nodes according to the protocol.

There are two conditions that have to be satisfied for a node to be
able to send a packet. The bypass-fifo must be empty and there must be
a go-idle present, to send in front of the packet. See figure 5.9 part (1).

When the transmission starts the node enters state BLOCKED. In
this state further forwarding of go-bits is delayed. The incoming go-bits
are saved and merged into a save-go-queue. The bypass-fifo will increase
in size. This is illustrated in figure 5.9 part (2).

It stays in state BLOCKED after the transmission of the send-packet
is ended. Figure 5.9 part (3). After ending the transmission the node still
stays in state BLOCKED until the bypass-fifo is empty. Then it releases
the save-go-queue and leaves state BLOCKED. Figure 5.9 part (4).

5.4 Cache coherence 49

Node wantsto send.

(1) OUTPUT —~== — INPUT

Node sends the packet.
Goesinto state BLOCKED.
Consumesidles (those who ar e consumable) ‘ ‘

and fills up the Bypass-fifo.]
Go-bits are saved and merged. I Save Go_hit

(2) OUTPUT «@— INPUT

Emptiesthe Bypass—fifo.
Still saving go—bits.
State BLOCKED.

Save _Go_bit

(3 OUTPUT —~== — INPUT

Empty Bypass—fifo.

Out of state BLOCKED.
Releases the saved go-bits. Save Go bit
(Extending the go—bits) ve_=o bl

(4) OUTPUT ~= INPUT

Figure 5.9: Using go-bits with the fair bandwidth allocation protocol.

5.4 Cache coherence

Almost every processor developed today makes use of caches to reduce
the latency involved in memory access. A cache is a small high speed
local memory in which the processor stores data temporarily. In a mul-
tiprocessor system, like SCI, this leads to some problems. The essence
of the problem is that several processors often share the same line of
memory in their cache. What should be done to keep the consistency of
the data when independent processors do writes and reads on their local
copies? This is called the cache coherence problem. This is discussed in
section 2.3.4. SCI has defined a protocol to handle cache coherence. This
protocol also allows both the use of non-coherent and coherent cache op-
erations. It is based on a concept called “distributed directories”. This is
the same as “chained directory” explained in section 2.3.4.2.

The concept of “chained directory” fits nicely into the policy of SCI,
which demands a high scalability. In theory one has no upper limit to

50 5 The Scalable Coherent Interface

the number of nodes in the list. The directory does not have to allocate
space which in most cases will be useless. Another point is that by using
a list with pointers one doesn’t have to relay on broadcasts. All cache-
information can be directed only to the nodes involved. The labor by
updating the list is also shared between the processors , not only left to
the memory management unit.

The list in SCI is a doubly-linked chain of pointers, connecting every
sharing node. By making it doubly-linked, the operations on the list are
very much simplified. An example of such a list is shown in figure 5.10.

Nodes:
Head Mid Mid Tail
CPU_A CPU_G CPU_F CPUE |=— cpu
N 0 =] = [* O | ™ Cache
forwld back!ld
Memory cState
control
mState forwld " data (64byte)
| B
/ [0 Non-coherent cacheline
RAM
data (64bytes)
I Coherent cacheline

Figure 5.10: Distributed cache-line list.

The placement of the nodes in the figure does not reflect anything about
the physical connections and orientation of the nodes.

The figure show that every cache has two pointers, pointing to next
and previous one in the list. In addition to pointers, each cache has a
7-bit tag field; cstate. This introduces an overhead of approximately 7%.
In the memory there are one pointer, to the head of the list, and a 4-bit
mstate field. The memory overhead is approximately 4% .

Every node in the list can read data from the cache. It is only the
first node in the list that has write access. The node executing a write
is responsible for purging data stored in the other caches. There are
transactions for operations on the list available. For a closer description
see [IEEE-SCI].

The cache-line size in SCI is fixed to 64 bytes. Having a fixed length
gives some nice properties:

Small Tag Overhead. Tags do only occupy a very small part of total
space.

5.5 Other SCI-related projects 51

Reasonable Efficient. The 64-byte transaction in SCI is efficient. It
uses almost two thirds of the bandwidth for data.

Uniformity. Some other buses use the same cache-line size.

When the number of processors in the sharing list gets very large this
scheme is too slow. IEEE P1596.2 is an extension of the cache coherence
scheme with this in mind (see section 5.5).

5.5 Other SCI-related projects

There are several projects going on with SCI related topics [Gustavson].
A brief list of these IEEE projects:

P1596.1 SCI/VME Bridge. A specification of a bridge allowing con-
nection between a SCI-system and a VME-bus.

P1596.2 Cache Optimization for Large number of SCI proces-
sors. Cache optimization scheme that uses a tree-structure to repre-
sent the cache-list and request-combining to further increase efficiency.
Useful when the number of processors is very large (1000 or more).

P1596.3 Low-Voltage Differential Interface for The Scalable Co-

herent Interface. Specifies the use of low voltage swings in signals
used to implement the SCI-chips. Making low-cost CMOS chips to be
used in workstations and PCs at speeds of at least 200 MBytes/sec.

P1596.4 High Bandwidth Memory Interface. This projectiscalled
the RAMLINK and tries to utilize the SCI technology to provide a high-
bandwidth interface to memory chips.

P1596.5 Data Transfer Formats Optimized for SCI. Specification

of data types and formats that will work efficiently on SCI for transfer-
ring data among heterogenous nodes in a SCI multi-processor system.
The work is now finished.

P1596.6 SCI Real Time Applications. Specifications made to satisfy
the needs of real-time applications for SCI.

6

Swipp & SCI

In this chapter we present the SWIPP-concept and make a comparison
of SWIPP! and SCI. We will also make some suggestions on how the
switching network in SWIPP might be organized.

6.1 Presentation of SWIPP

SWIPP is a multicomputer study under development at Department of
Informatics, University of Oslo.

SWIPP is a multicomputer system for heterogeneous computing nod-
es. It offers fast communication channels between the computing nodes.
High bandwidth and flexibility are obtained by employing custom-de-
signed VLSI-switches, together with point-to-point links. Special mod-
ules (protocol engines) between the computing nodes (compute engines)
and the network are used to off-load communication tasks from the com-
pute engines. There is no physically shared memory, instead a logically
shared memory (distributed in the compute engines) might be employed.
To achieve this “shared data-space” message passing is employed. Pre-
sently a number of master-of-science students are writing their thesis
as a part of the SWIPP-project: [Lundh, La et al, @stby, BlekHag, Baltz,
Karlsen, Roseth, Larsen, EsvSchrg, NerSmaTor].

SWIPP is composed of the following components:

Compute engines are independent hosts with their own processor and
memory. They may have different architectures (heterogeneous).
They are henceforth called CE’s. The CE’s are connected together
through a communication system of switches.

Protocol engine is the module between the CE and the network. Its
main task is to carry out communication duties for the CE, thus
increasing the total performance of the CE. The protocol engines
(henceforth called PE’s) receive data from the CE’s. This data is
put into packets by the PE and then sent out on the network to
another CE.

ISWIPP = Switched Interconnection for Parallel Processors

52

6.1 Presentation of SWIPP 53

Switches The switches contain a crossbar-matrix with s input chan-
nels and s output channels (s = 4 in figure 6.1 and 6.2). Each
channel is internally a 9 -bit bus (8 for data, 1 for control). Each
input channel includes a buffer (a first in first out buffer) called the
input port. At the output is the output port. s is planned to be 16.

Links There are two schemes for the links connecting the switches and
the PE’s.

1. Optical. The links are made up of two fibers (one for each
direction). An advantage in using optical fibers is that high
bandwidth is achieved, independently of distance. In addi-
tion, the fibers are not sensitive to electrical noise. See figure
6.2. An optomodule (see item below) is then needed at both
ends of the fiber.

2. Electrical. The links are made up of 9 parallel wires in each
direction . Electrical links are for shorter distances.

Optomodule The optomodule connects the optical links to the switch or
PE. It transforms parallel electrical signals from the PE or switch
to a serial optical signal (and vice versa). Henceforth called OM.

Same
interface .-+

bogererer] ——& o\ J— 4~ ==\ = el ==}

Network of

switches .
Compute engine [Optomodule
Protocol engine —— Fiber pair, or 9-bit buses

(bidirectional link)

'Q' Switch

Figure 6.1: The SWIPP concept. OM omitted if fiber links are not used.

Routing in the network SWIPP uses source-routing. The PE’s have
a routing table. Before sending a packet, the PE’s prepend it with a

54 6 Swipp & SCI

list of addresses, giving the route through the network. The advantages
with this scheme:

1 It reduces the work of the switches. There is no need to have tables
in the switches. The complexity is put in the PE’s instead. Less
logic is needed to handle an incoming packet.

[d The time to make a connection in the switches is reduced.

1 It eases upgrading of a switch to use optical technology when that
becomes available.

it
X

C
a Crossbar
-~ <a—| OP |- Interconn- («=—J[ip ~—[ou| =
—— M —=[F]— ection —>OP—>2—>
2 5 pattern | 2

A
!

O |
=]

Figure 6.2: The switch used in SWIPP. In this example the switch has 4 channels
(s = 4) Each channel has aninput port (IP), an output port (OP), and an optomodule
(OM) (if fiber-links are used). The numbers suggest roughly the number of
clockcycles a flit needs to traverse the switch from’a’ to °c’.

6.2 Comparative study of SWIPP and SCI

Both SCI and SWIPP have much of the same basic functionality at a
low level. They both offer a module allowing the connecting of several

6.2 Comparative study of SWIPP and SCI 55

processors and memories together forming an interconnection system.
But the ideas leading towards the final result were quite different.

SCI had its origin from a group of people working with bus stan-
dards in the late 1980’s. On their search to increase the performance
on buses, they realized that if the performance should have more than
a marginally increase one would have to choose a new scheme for com-
munication. This leads to the development of SCI. In SCI the means of
communication are point to point links instead of the traditional bus. In
addition to communication, a protocol to make SCI capable of handling
the cache coherence problem is offered as a major part of the standard.
When developing SCI as a concept, one had to put much thought in the
problem of what kind of technology and protocols it should depend on.
It should make optimum use of the current available technology as well
as making it possible to take advantage of the coming advances in tech-
nology.

SWIPP on the other hand has its birth in a university environment.
It is based on the idea that if a multi-computer should make the most
out of its resources, the task of communication should be left to a sepa-
rate unit. This unit should take care of the communication and commu-
nication protocols. Developing such a unit should involve the study of
several ways of implementation. It should have in mind predictions on
what technology should offer in the next decade or so. This project has
been going on for quite some time and has resulted in several theses.
This has lead to a rather lengthy process where much of the main lines
of the project were floating back and forth, as each of the theses in the
project had to be time limited and with an academic content.

Some differences between SWIPP and SCI:

The physical difference of the links. Both concepts have possibili-
ties to use both electrical links and fiber-optical links for transmission.
The main focus so far has been with fiber-optics in SWIPP and electri-
cal in SCI. The electrical links are as one would expect in both concepts
parallel and the fiber-optics serial. The difference then between the two
concepts is mainly the width of the communications channels. SWIPP
uses 9 bits in parallel while SCI uses 18 bits. 8 of the bits in SWIPP are
used for data and 1 for controll. In SCI 16 of the bits are used for data
and 2 for control. The other difference is the speed of which to operate
the links. It is much dependent on the technology in which the “final”
implementation is done. This is the current specifications. SCI can send
8G bits per second over its parallel electrical links and 1G bits per sec-
ond on its fiber-link. SWIPP is capable of at least 1G bits per second
over its fiber-link.

Switching technique As mentioned in section 5.3.3 SCI uses virtual
cut-through on the rings. The behavior of the switches is implementa-
tion dependent. In any case the packets must be buffered if a conflict

56 6 Swipp & SCI

Figure 6.3: The figure shows an arbitrary path between two active nodes that a
packet must traverse. We see that both SCI and SWIPP has bidirectional links,
logically.

happens, thus setting an upper limit on the packet-size according to the
fifo-size.

Swipp uses wormhole “routing”. Since the input buffers are much
smaller than the size of the packets, part of the return bandwidth of the
links is reserved for signalling purposes. If a buffer in the switch/PE’s
receiving the packet is nearly full it must somehow pause the sender
of the packet. Thus a signal is sent to the sender (on the return link)
telling it to stop for a while.

The switches. The switches has two tasks to perform. One is to con-
nect the network (the k-ary n-cube-structure) together. The other is to
connect the local nodes to the network (and thus to the k-ary n-cube-
structure).

The former can be done similarly in both SWIPP and in SCI, as shown
in the left parts of figure 6.4 and 6.5, using switches, and for example
rings in a cube. The latter is done with a switch in SWIPP and with a
ring in SCI, as seen in the right parts of figure 6.4 and 6.5, respectively.

Building a switch in either concepts depends on whether one uses the
parallel or serial versions. It is obvious that the parallel versions set a
limit to the number of input and output connections. Thus allowing a
serial implementation to connect more nodes.

Switches in SCI need more logic in each switch to make the routing
decisions. This is due to the fact that each packet has only the target
and source node address contained within it. Thus some sort of address

6.2 Comparative study of SWIPP and SCI 57

table has to be stored and accessed in the switches. The output buffers
also have to be able to store a whole packet. The protocol demands the
sending interface to store the packet until an acknowledgement is re-
ceived.

Transmission-time through the switches In SCI the switches are
not standardized, they are implementation-dependent. If the switching
technique virtual-cut-through is used, a flit (a symbol) should be able to
accomplish roughly 10 clock-cycles through a switch (not presently).

SWIPP uses wormhole, and should accomplish roughly the same
speed as SCIL.

Measuring the speed is more than just comparing the number of
clock-cycles. In SCI the cycle-time is 2-3 nanoseconds. The cycle-time in
SWIPP is uncertain since a real implementation has not been designed
yet.

A point to mention is that one has to balance the speed on the links
and the the time to decode and route the packets in the switches. For the
logic in the switch to handle the high speed one might have to introduce
extra delay (buffer).

It is expected that SCI-switches will have a “favored switch setting”
(page 66). Thus the communication will be faster between pairs of input
and output ports on the switch.

SWIPP does not have this property. The switches have not been con-
structed with this in mind. The usefulness of this property depends on
the topology. It is handy when constructing k-ary n-cubes.

Packets and formats. In SCI packets can be as long as the size of
the packet-buffers. They thus have a fixed header-overhead. See section
5.3.5.1.

In SWIPP packets can be of variable length. Packets can be aslong as
desired, thus effectively becoming circuit-switched. Thus having larger
packets reduce the overhead of the header.

The application layer. A large difference between SCI and SWIPP
is in their respective use. SCI is mainly intended for a shared-memory
multiprocessor. SWIPP has in mind an environment of heterogenous
computers that communicate by sending messages. To permit multiple
processes to interact the “shared data-space” is used [Larsen].

See also page 10 in section 2.3.3 for a discussion of shared memory
versus message passing.

Addressing The addressing scheme used by SCI and SWIPP is differ-
ent. SCI uses an absolute addressing scheme to address up to 64 K (2'°)
nodes. SWIPP uses a relative addressing scheme to address the output
links of the switches. There is no explicit limit to the number of nodes to
address, the addresses can be as long as the largest “hop” in the network
(diameter of the network). 4 address-bits per hop.

58 6 Swipp & SCI

With the SWIPP-addressing scheme it is relatively easy to attach
additional nodes to the system at a later stage. The routing tables in all
the PE’s must then be updated, though.

With the absolute addressing scheme of SCI this becomes more dif-
ficult. Care must be taken when designing a routing algorithm. Oth-
erwise addresses may have to be changed when attaching additional
nodes.

Connecting to other buses/metworks. How much has SWIPP and
SCI thought about interacting with other systems? SWIPP has made a
thorough study on how to connect to ethernet (IEEE 802.3). A bridge
between SWIPP and ethernet is presented in [Roseth].

Within the SCI-community work has so far concentrated on defining
a standard for a bridge between SCI and VME-bus (see section 5.5). In
addition there has been studies on how to connect SCI to Futurebus+,
Turbochannel and HIC, among others.

| | swipp | sCI |
Addressing relative absolute (max 2'6)
Switching wormhole + signaling virtual cut-through
Routing source-routing undefined
message passing shared memory

Memory model .
or message passing

Cache scheme none distributed linked list
Packet length no limit limited by fifo-size

. 2«9 unidir. wires 18 unidir. wires
Links or 2 fibers or serial fiber
Status prototype made standard, chips available
Error correction || CCITT 16-bit CRC CCITT 16-bit CRC

Table 6.1: Summary of comparison of SCI and SWIPP.

6.3 Fk-ary n-cubes implemented in SWIPP & SCI

As shown in the discussion in the previous section the difference is most-
ly in the protocols. Both can use serial and parallel communication in
and out of a node. Each will use whatever is most suitable for a specific
problem. All kinds of topologies can be connected with both schemes.

SCI has thought little about switches and how to connect topologies.
SWIPP has done some more thinking about the switches, but not so
much about topologies.

As a more interesting form of comparison let us discuss the perfor-
mance of k-ary n-cubes as implemented in SWIPP and in SCI. In systems

6.3 k-ary n-cubes implemented in SWIPP & SCI 59

Figure 6.4: k-ary n-cubes implemented with SWIPP. Each vertex has one switch
and p nodes attached to it. The switch has then s = 2n + p channels. Here p = 3
and n = 2. 7 channels for this 3-ary 2-cube.

like SCI most of the traffic generated is triggered by cache operations.
This behavior is more thoroughly discussed in section 8.6. In systems
where the greater part of traffic is caused by cache operations, the la-
tency is the most important parameter to observe. Thus we will concen-
trate on latency in the following comparison.

We assume:

1. Each vertex in the k-ary n-cube has one switch and p active nodes.

2. The switches for the SCI scheme connect » dimensions, plus one
extra link for node(s). That requires n + 1 interfaces in a switch 2.
See figure 6.5.

The switches for the SWIPP scheme connect » dimensions, plus
one extra link per active node. That requires 2n + p channels in
the switches. p for SWIPP is constrained by the size of the switch.
The maximum number of nodes per vertexis then s—2n. See figure
6.4.

3. A k-ary n-cube implemented with SCI has unidirectional links, as
shown in figure 6.5. SWIPP must have bidirectional links (impor-
tant requirement of the protocol), as shown in figure 6.4. We as-
sume both use a torus-connection scheme.

“Note: we will not (for simplicity) use the scheme presented in section 7.1.2 on
connecting k-ary n-cubes for SCI. This comparison between SCI and SWIPP would
then be needlessly complex.

60 6 Swipp & SCI

Figure 6.5: k-ary n-cubes implemented with SCI. Each vertex has one switch and
a ring with p nodes attached to it. The switch has n + 1 SCl-interfaces. 3 SCI-
interfaces for this 3-ary 2-cube.

SCI can also be bidirectional, each link is then functionally a ring.
In this discussion though, we assume SCI is unidirectional. This
is a more efficient allocation of hardware resources in SCI.

4. SCI has a 2 byte wide link. The first implementation of SWIPP is
expected to have a 1 byte wide link.

Unloaded Latency An interesting and straightforward parameter to
compare SWIPP and SCI with is the unloaded latency. We assume k-ary
n-cubes implemented as shown in figure 6.4 and 6.5.
All latency-equations and figures are in the number of clockcycles.
In the following discussion the following parameters are used:

1. ¢, 1s the wire-delay. We assume 2 clockcycles-time both for SCI
and SWIPP.

2. tp, 1s the switch-delay. SCI-switches might use an additional cycle
or two more for address-decoding,® but on the other hand the PEs
in SWIPP need additional time to construct the route of the packet
(lookup into the routing table). Such implementation-dependent
details remain uncertain. We assume for simplicity 10 clockcycles-
time both for SCI and SWIPP.

3. tpp is the bypass-delay for SCI. Its value is here assumed to be
5 clockcycles-time. We differentiate in SCI between the time to
switch dimension (¢,) and the time to continue in the same di-
mension (t5,), due to the “favored switch setting”property of SCIL.

If our coordinate-addressing scheme (section 8.1.11) is used for for SCI, the time to
decode the address bits should be just as fast as the source-routing scheme of SWIPP.

6.3 k-ary n-cubes implemented in SWIPP & SCI 61

4. r is the time, in clockcycles, to transmit an 80 byte packet (both
header and data). r is 80 for SWIPP, and 40 for SCI. The reason
being the 1 byte wide SWIPP-links in contradiction to the 2 bytes
used in SCI.

First we will derive the unloaded latency for SWIPP:
If the k-ary n-cube lacks torus-connection the maximum unloaded
latency is:

Latencymax = n(k — 1)(tpr + tw) + 2ty + tpr + 7 (6.1)
On average the latency then is:
k—1
Latencygpe = % (tor +tw) + 2ty +tor + 7 (6.2)

We will assume the k-ary n-cube has torus-connections. Thus the
maximum latency is:

Latencytorus-max = nk; (tbr + tw) + 2ty + 1ty +

6.3
1 =0, keven (6:3)

1=1,kodd

Our goal is the average unloaded latency using the scheme in figure 6.4,
which has torus-connections. Since it is the goal, it is first presented
more verbally:

Latencytorus-ave

packet length
time to traverse “source-wire” + “source-switch”

time to traverse “target-wire”

+ + +

with a penalty t,, + t,, change dimension

k—1

7 times

on querage n

More formally this is:

k

(tbr + tw) + 2tw ‘I’tbr +r

_ —1
Latencyorusave = n py

6.4
1 =0, keven (64)

1=1,kodd

The average unloaded latency for k-ary n-cubes implemented with
SCI using the scheme of figure 6.5:

Latencyse
= half of source vertex
+ half of target vertex
+ packet length
+ change dimension n — 1 times with probability k — 1/k
+ traverse each of n dimensions

62 6 Swipp & SCI

or, more formally:

Latencyse; = plw +
+ (n—1
[

_I_nk__l

(
)5 tor (6.5)

Latencys; is also dependent on the number of nodes in each vertex p. We
assume in figure 6.6 and 6.7 that p = 3.

The average unloaded latency equation for k-ary n-cubes implement-
ed with SCI is more complex than the SWIPP-equation because SCI
switches are expected to have a “favored switch setting” (page 66), thus
it costs more for the packet to switch dimension rather than continuing
in the same dimension

Latency (# cycles)

Figure 6.6: Unloaded latency, in clockcycles, as a function of the network-size
(given by k and »). Equation 6.4 versus 6.5. The “staircase” -form of the SWIPP-
latency is explained by the odd/even part of equation 6.4.

Let us now compare the mean unloaded latency (in cycles) for SCI
and for SWIPP. We assume k-ary n-cubes as in figure 6.4 and 6.5. We
thus compare equation 6.4 and 6.5. Remember though, that there might
be a difference in the cycle-time in the two concepts (see section 6.2 on
page 57). For simplicity we assume that they are equivalent, but that is
not certain!

We see that in most cases the SCI-latency is lower, but not to a great
extent. There is also indication that SWIPP-latency is smaller for very
large n and k’s. As a rule of thumb: we see that as we increase the

6.3 k-ary n-cubes implemented in SWIPP & SCI 63

Latency (# cycles)
400.00
300.00
200.00
100.00
0.00 k
0.00 5.00 10.00 15.00
No favored switch setting: Assuming same link width:

Figure 6.7: Latency. First we see that SWIPP has a much lower latency if we
assume that SCI has no favored switch setting (t:, = ;). Also, if the link width of
SCIl and SWIPP were the same (2 bytes wide), the latency would be approximately
the same. n is here constant (n = 4).

distance from the origin (the network size increases), the latency for
SWIPP is the same, or lower than the latency for SCI.

Figure 6.7 attempts to explain the differences. The 2 upper lines
show the latency if SCI has no “favored switch setting” (page 66). Thus
tyr = ty,. We see that there is a larger difference as the network size
grows, in SWIPP’s favor. Thus the fact that SCI-switches are expected to
have a “favored switch setting” is important to the latency comparison.
The 2 lower lines in figure 6.7 plot the latency if both SWIPP and SCI
has 2 bytes wide links. We then see there is a negligible difference only.
Thus the lower latency figures for SCI in figure 6.6 are explained by the
larger link width of SCI and the favored switch setting of its switches.

Another matter is that as n grows the question arises of how large
the switches can be.

Loaded performance The unloaded latency does not say much about
the performance under real working conditions. What about conditions
under load? What about throughput?

What happens when contention arises? It is then up to the band-
width allocation protocols to balance the resources between the various
parts of a system. They control an eventual difference in performance

64 6 Swipp & SCI

between the two concepts under load. To study the difference one needs
either an analytical queueing model or a simulation model. Both are
beyond the scope of this comparison. We here informally mention some
of the more interesting points, which may make a difference on the re-
sulting performance.

1 Release of buffers. The SCI-protocol operates on a ring, while
SWIPP operates on a single bidirectional link. SWIPP might there-
fore be able to release buffers faster. Also, since the SWIPP-proto-
col operates on a single link, the unavailability of resources (typi-
cally buffer-space) is discovered more quickly. It is therefore prob-
able that the SWIPP-protocol might generate fewer retransmis-
sions. In fact most of the time SWIPP will not retransmit packet.
It just slows down the sending node. It continues the transmission
when the sender receives a “go-on” signal or the sender times out.
Both these factors should result in a larger throughput. On the
other hand packets which stop because of contention, occupy sev-
eral buffers/switches (wormhole routing). This is because the com-
plete packet cannot be buffered in a single buffer. This will slow
down other packets trying to use the same route. The network, or
parts of it, might become temporarily blocked. This might degrade
the total performance.

1 Forward progress. Forward progress is the ability to ensure the
flow of packets through the network under all conditions. This is a
point where SCI and SWIPP differ. SCI has a working mechanism
to ensure this. This part of SWIPP is not yet complete.

1 Connectivity. With bidirectional links the nodes are on average
closer to one another. The average distance is then reduced. This
should give a shorter latency, and in turn more throughput. There
is more connectivity with bidirectional links together with switch-
es, than with a ring.

The above points indicate that SWIPP might give a higher throughput.
On the other hand, the wider link of SCI might make up for them. This
is difficult to say off-hand.

Cost As a parameter for cost, let us use the nodes/switches — ratio.
As can be seen in figure 6.5, it is relatively simple to add nodes to the
vertices by adding nodes to the “node-ring”. Thus improving the nodes/-
switches — ratio. The change to latency and throughput is negligible.

It is not so simple to add nodes to the vertices in the SWIPP-im-
plementation. One method is to enlarge the switches. A switch could
have more than one channel connected to nodes. That might increase
the cost of the switches. Another method: connect the switch to a new
switch, which one in turn connects several nodes to. This would double
the amount of switches.

6.3 k-ary n-cubes implemented in SWIPP & SCI 65

The SWIPP-protocol is somewhat less complex in comparison to the
SCI-protocol *. This could result in cheaper switches.

Summary of Comparing We have only discussed communication-
aspects in this comparison. Topics like cache coherency and message
passing have been kept out.

In SCI latency is more critical since cache coherency is an important
part. This is not so important in SWIPP, high throughput is a more
important goal.

*This is partly because SClis a standard, thus more people (with conflicting wishes)
are involved.

7
Topologies using SCI

In chapter 5 we presented SCI. In this chapter we show how we suggest
that multiple SCI-rings be connected into a k-ary n-cube. A rough theo-
retical analysis of these k-ary n-cubes is then presented. This analysis
is partly based on theory in chapter 4 (with some simplifications), par-
ticularly equation 7.6 and 7.7. We compare these two equations with the
simulation-results in chapter 9.

Most of the classical topologies (those described in chapter 3, for in-
stance) can be synthesized from a set of rings. The use of rings connected
together with switches presents certain tradeoffs [JohnGood]:

Favored switch settings: A switch can have multiple input and
output links, but each input link will have a preferred output link. In
a ring-based topology it will be faster, by a considerable factor, to route
within the same ring, instead of routing to another ring. For example, in
the switch in figure 7.1 there are two output links. A packet entering the
input link in ring 1 will leave the switch faster if it chooses the output
link in ring 1, rather than the output link in ring 2. This constraint has
nothing to do with rings, it is a property of switches.

Different ring size: The optimal ring size depends on the degree
of favored switch setting. In other words, if the relative penalty for
changing rings is very high, then the optimal ring size increases. The de-
gree of favored switch setting is typically faster with a factor of roughly
3 - 4. This argues for large rings, but there are also arguments for small
rings. One is that the echo-packets must traverse the remaining part of
all the rings visited, thus wasting a part of the bandwidth. Another ar-
gument for small rings is that echo-packets then arrive faster to release
buffers at the destination, thus enabling a new transaction.

Deadlock avoidance: SCI has been defined so as to avoid dead-
lock on a single ring, but special care must be taken to avoid deadlock
within a topology of multiple rings.

7.1 Synthesizing k-ary n-cubes with SCI-rings

We will here take a look at various methods of implementing k-ary n-
cubes. First we must consider a switching element to use.

66

7.1 Synthesizing k-ary n-cubes with SCI-rings 67

The simplest way of connecting two rings is by using a bridge as
shown in figure 7.1. Here 2 SCI-interfaces are connected “back-to-back”.
This is probably the simplest and cheapest SCI-bridge that can be man-
ufactured. It should also be possible in due course to place it on a single
chip. This is the kind of switch we have chosen to use in our simulation
study.

S T -»—//

; SCl-interfaces
(16+2) ’/

B + ____________ ——

Figure 7.1: A switch connecting 2 rings.

With such a bridge multiple rings can be connected together. We
will in the following concentrate on constructing k-ary n-cubes using the
bridges of figure 7.1. A detailed view of this bridge, as we simulate it, is
shown on page 81.

7.1.1 Surfaces

One method is to connect the cube by using “surface-rings”, as shown in
figure 7.2. Each surface-ring is then connected to 4(k — 1) corner-rings
(this is one possible method, anyway). We considered this alternative,
but viewed it as being too complex to connect. In addition the routing is
unnecessary complex.

7.1.2 Edges

In this thesis k-ary n-cubes are mainly constructed of SCI-rings in the
following way: “edge-rings” connect each vertex in the k-ary n-cube.
Each edge-ring has & corner-rings attached to it as shown in figure 7.3b.
They are labeled as x-, y-, and z-rings in figure 7.3a. One advantage
with this method is the relatively simple routing algorithm possible (de-
scribed on page 94). It also has a relatively understandable topology. A
further example of our k-ary n-cubes is shown in figure 7.4. Note the
direction of the arrows, they show the direction the packets go along a
ring. In our simulation the packet is always first routed in the first di-
mension (the “x-ring”). Then the second dimension, and so on. This to
make the routing algorithm simple. A side effect of this is shown in fig-

68 7 Topologies using SCI

"Surface-ring"

. -aternative
corner-

ring" N

Figure 7.2: Connecting a cube by using rings: here the rings follow the surfaces
of the cube. They are connected together with “corner-rings”, as shown in figure
7.3a.

ure 7.4, where the node furthest from the one labeled ’a’ is 'b’ and not ’c’.

7.1.2.1 Placing the active nodes

A question is: where are active nodes placed? In this study we place
these nodes in the vertices. We have studied two possibilities:

Placing the nodes in the corner-ring This is shown in figure
7.5a. It is important that the corner-rings do not become a “bottle-
neck”, there is a limit to the number of nodes and switches connected
to the corner-ring. Thus it is not ideal to place too many nodes on the
corner-ring since its main purpose is to connect dimensions (edge-rings)
together.

With this scheme the number of switches in the network are

Snic = n x k" (7.1)
and the total number of active nodes, P, is
P=pxk" (7.2)

where p is the number of active nodes in each vertex. The subscript “nic”
refers to the fact that the active nodes are in the corner-ring.

Aninteresting parameteris the maximum latency in an idle network.
We will here derive the maximum unloaded latency for k-ary n-cubes as
we have implemented it. First some variables:

7.1 Synthesizing k-ary n-cubes with SCI-rings 69

"edge-ring"

Figure 7.3: Connecting a cube by using rings: here the rings follow the edges of
the cube. The edges are connected together with “corner-rings”, as shown in a.
'S’ denotes the switches in figure 7.1.

Description ‘ name ‘
wire delay (4 ns)! tw
bypass delay (12 ns) top
bridge delay (22 ns) Ly
packet length (80 ns) r
number of processors in vertex P

We assume the switching-technique virtual-cut-through is used. The
max unloaded latency is :

Max latency = the time to leave source vertex
the maximum time to switch dimension n — 1 times

time to enter target vertex

+ + +

time to receive packet of length 40 symbols

(7.3)
more formally:

Tmax-latency-nic = twp+ tbp(p - 1) + tpr

(0= 1)t + 20ar) + 1 [toplk — 2) + = 1)

tpr + twp + (p - 1)tbp

, (7.4)

+ + +

2 [twp + top(p — 1) + tpy] + 7
+ (n— 1)(tw + 2tp) + 0 [typ(k — 2) 4+ ty(k — 1))

!For simplicity we ignore variable wire lengths, as discussed in section 4.1.1.

7

o

7 Topologies using SCI

B switch @ active node

M\l —

=
=
[=
1

Figure 7.4: A 4-ary 2-cube with 2 active nodes in each vertex. The switches are
the switches shown in figure 7.1.

7.1 Synthesizing k-ary n-cubes with SCI-rings 71

b

"dimension=+"—

Figure 7.5: How active nodes are placed in the vertex. In a the nodes are placed
in the “corner-ring”. In b the nodes are placed in an additional ring. ‘N’ denotes the
active nodes.

From equation 7.4 the mean latency can be derived. The packet enters
the n dimensions with probability £ — 1/k. It traverses halfway through
the source and target vertex. r is constant. The minimum mean un-
loaded latency is :

Mean latency

time to traverse half of source vertex, and “source-bridge”

+ time to traverse half of target vertex, and“target-bridge” (7.5)
+ time to receive packet of length 40 symbols '
+ time to switch dimension n — 1 times, with probability k — 1/k
+ time to traverse on average halfway through n dimensions
more formally:
Tmean-latency-nic = lwp+ tbp(p - 1) + 2t + 1
n — 1)5=2(t, + 2t

bt [, +)

Another interesting parameter is the theoretical maximum through-
put. We base an expression for the theoretical maximum throughput on
equation 4.11. Then the maximum theoretical throughput for the k-ary
n-cube with SCI-technology is:

Xmax = 2% 10° % k* s (7.7)

in bytes per second. This for the complete k-ary n-cube.

This bandwidth is achievable if the vertices are sending only to the
neighboring vertices. Except perhaps for a few applications, this is un-
realistic. Saturation of the network will probably effectively block the
network with much less load.

72 7 Topologies using SCI

Latenc ns.
700 SN [ns]

650

600
550 -

500

Figure 7.6: Unloaded latency for k-ary n-cubes as defined by equation 7.6. p = 3.

Placing the nodes in a ring by itself This is shown in figure
7.5b. An advantage with this is that the corner-ring is then reserved
for switches. The size of the corner-ring can thus be restrained. Pack-
ets from other vertices, which are just switching dimensions, and not
addressed to the vertex, do not have to traverse the bypass-fifo‘s of the
active nodes. A drawback, however, is that a packet from the node-ring
will use the additional time to pass through the extra switch connecting
the node-ring to the corner-ring. So then the mean latency is equation
7.6 plus t, + tw. The rough throughput with this scheme is the same as
equation 7.7.

This scheme has its strength if there is a large amount of locality
in the addressing of packets (eg. 50% of packets are addressed to other
nodes on the local node-ring). As we address nodes at random in our
simulation-study, this scheme is not optimal.

This scheme has

Spr=(n+1)x k" (7.8)

switches and the same number of active nodes as in equation 7.2. The
subscript “nr” means the vertex has the extra node-ring.

Preliminary simulation results indicate that method ’a’ gives shorter
latency and better performance than method 'b’ (when there is no opti-
mal addressing). This is mainly due to the extra time needed to traverse
the extra switch and the fact that our addressing scheme implies no lo-
cality.

Alternatives Processor nodes do not have to be placed in the ver-
tices, but we feel it is more optimal. An alternative could be to place the
nodes along the edges, but this has some drawbacks. First of all: rout-

7.1 Synthesizing k-ary n-cubes with SCI-rings 73

Throughput [GigaBytes/sec]
1000000 3

100000 3

10000

Figure 7.7: Throughput for k-ary n-cubes as defined by equation 7.7.

ing is much simpler if packets are addressed to the vertices. Second, the
edge-rings are communication-links. It is important they do not become
saturated.

7.1.3 Bidirectional edges

An alternative to edges is to use switches along the edges of the cube. An
example is shown in figure 7.8 for a 3-ary 2-cube. An advantage with
this scheme is that we effectively have a bidirectional link between the
vertices. Thus the traversal of a long ring is avoided. This advantage is
complicated by the fact that the delay through a switch is longer than the
delay through a bypass-fifo (favored switch setting, see page 66). Thus
this scheme is probably slower than the “edge”- scheme. It uses the same
amount of switches (equation 7.1 if the nodes are in the corner-ring).
We presume this type of topology is best suited for communicating with
the nearest neighbors. If the traffic is directed at random it is probably
inferior.

7.1.4 Using larger switches

All topologies above use a switch with 2 interfaces. It is conceivable
that a large switch with 3 or 4 interfaces could be made. An example is
shown in figure 7.9, with the four interfaces back-to-back, and a form of
crossbar-interconnection pattern between them. An example of topolo-
gies with such switches is shown in [HulBot]. We early considered using
such switches, and did some preliminary simulation studies with them.

74 7 Topologies using SCI

Figure 7.8: Example of a 3-ary 2-cube with bidirectional links between the corner-
rings, effectively. A torus-connection is used (see figure 4.2). Nodes can be
attached to the corner-rings as shown in figure 7.5a and 7.5b. The numbers
indicate which switches are connected to which vertices, to illustrate a torus-
connection.

We did not proceed mainly because we felt 2-port switches are probably
more likely to be constructed in the nearer future 2.

They are therefore more interesting. It is obvious though, that a well
constructed 4-port switch will have much larger connectivity, thus giving
both smaller latency and larger throughput.

7.2 Other topologies

In this section we have only seen how k-ary n-cubes can be implemented
with SCI-rings. Synthesizing networks with SCI-rings are only limited
by the imagination. k-ary n-cubes represent just some of the possibil-
ities. As mentioned previously, most of the classical topologies can be
implemented with SCI-rings. In [JohnGood], for example, there is an
analysis of multistage networks using SCI-rings.

2We may in fact be wrong on this point. There are studies under way at Dolphin
SCI Technology, and at SINTEF-SI, to consider SCI-switches which connect more than
two rings.

7.2 Other topologies

75

Ring 3
SCl-interface
e ! '
2 b
o |] %
5 ! Crossbar o Ri
. 5 1. .] = ing 2
Ring 4 g i interconnection : 2 g
F pattern T
- '] wn
'/ll' B TP
SCl-interface

Figure 7.9: Using larger switches: a switch connecting 4 rings.

8

Construction of the
simulator

In the previous chapter (specially section 7.1.2) we explained how we
could connect multiple SCI-rings to form large networks. In this chapter
we are going to explain the construction of the simulator, and the various
modules and algorithms.

First a presentation of the sections in this chapter. The various
modules of the program are presented in section 8.1. These modules
represent physical parts (nodes and switches) and packets. Figure 8.1
shows most of these modules and their relationship. Section 8.4 - 8.5 ex-
plains important characteristics like bandwidth arbitration and packet-
routing. In section 8.7 the production of statistical output is explained.

Our simulator simulates nodes ! sending packets to each other thr-
ough an interconnection network. Packets are addressed randomly.
These nodes have both requester— and responder— qualities (see chap-
ter 5). They could be processors, memories, or a combination. They pro-
duce requests and response-packets. Response-packets are produced in
reaction to received request-packets. Request-packets are produced at
random intervals. The length of these intervals determines the load put
into the interconnection network. This is explained further in section
8.6. We simulate k-ary n-cube networks that are made up of multiple
rings connected together by switches. Section 8.8 takes up the subject
of how node- and switch-objects are connected together to make these
networks.

Very roughly our simulator works in the following way: it simulates
k-ary n-cubes made up of SCI-rings (as presented in section 7.1.2). It
reads a “topology-file” (see section D.4). This file describes the network.
Thus it tells the simulator how nodes and switches are connected to-
gether. When the network then is constructed the simulation is started,
running for a specified number of clock-cycles. During the simulation
various counters is incremented. When the simulation is complete, it
reads these counters, and from them writes various statistical data to a
“result-file”.

! Most program-names will be written in a “typewriter-font”.

76

8.1 Classes and functions 77

node or switch

SCI _interface

transmitter()
stripper()

Address
delay_line

Figure 8.1: The relationship of major objects and functions making up the program.
node-objects and switch-objects are made up of one or two SCI_interface-
objects plus an instance of the function Application(). A SCI_interface
is in turn made up of £ifo-oObjects and delay_1ine-objects plus an instance of
the functions stripper () and transmitter (). In addition we have Address-
objects and symbol-objects to make packets. Figure 8.2 and 8.3 show example
of their use.

Our simulation program implemented using the programming lan-
guage of C++. C++ is an extension of C with strong use of typing and
object orientation. It has a class and sub-class concept like the one used
in the programming language Simula [Dahl et al].

Object-oriented programming makes it very convenient to program
each of the small logical entities of an SCl-interface as a class. All the
objects of a class have their own private data. Procedures operating on
this data is provided as a user interface to the class. Using these classes
as building blocks simplifies the construction of the larger classes (figure
8.1). This reason is in general the major objective for using an object-
oriented language. This results in a hierarchy of classes on top of each
other. This is explained in detail in section 8.1.

8.1 Classes and functions

In this section we present the major data-structures in our simulator.
Figure 8.1 displays all the major modules of the program.

78 8 Construction of the simulator

H

Figure 8.2: Rough overview of a node.

On the top levels there are the node-class and the switch-class.
Each representing the complete nodes and switches . They are connected
together and thus form the network topology. The node-class uses an in-
stance of the function Application (), to simulate the behavior of the
processor/memory part of a node. In the switch-class the Applica-
tion () function performs the necessary forwarding of packets between
each of the input- and output-ports.

To perform the lower level tasks representing the SCI-protocol, the
node and switch - classes use the SCI_interface-class.

The node and switch - classes uses respectively 1 and 2 instances
of the SCT_interface-class. (see section 8.1.1 and 8.1.2). The receiving
and transmitting parts of an SCI-node are represented as instances of
the functions stripper and transmitter respectively.

Other parts of the SCI-interface are modeled as classes simulating
the physical fifos and delays. The fifo-class implements a general fifo
and contains several functions allowing the most usual fifo-operations to
be carried out. The delay_line-classes are used to simulate the physi-
cal delay of devices and the transmission medium. It is simply an array
of symbols, shifted one step each clock-cycle.

Packets are made up of the symbol-class and the address-class.
The symbol-class represents the symbols being sent between the nodes
on the links and from which the packets are made up of. It does not
contain the flag and clock line (see section 5.3.2) because the simulation
does not take into consideration skew and noise on the physical links.
Instead the symbol-class has internal flags from which a node logically
can differ between the various packet types and idle symbols on the link.
The symbol-class uses internally the address-class to represent the
addresses (those symbols that present the address-fields). This makes

8.1 Classes and functions 79

Application()

. D

SCI_interface 1 SCI_interface 2

Figure 8.3: Rough overview of a switch.

it easier to have dynamic address fields, suiting the various topologies
(this is explained further in section 8.1.11).

8.1.1 The nodes

The nodes are active nodes (e.g. processors) sending packets to each
other. Le. they generate traffic. The node-objects are simply made up
of an SCI_interface-object and an instance of the Application ()-
function. The Application () generates requests and receives respons-
es. Figure 8.2 gives a rough overview over the nodes.

8.1.2 The switches

The switch-objects are made up of two SCI_interface-objects put
back-to-back and an instance of the Application () -function. The Ap-
plication () is responsible for moving packets between the 2 inter-
faces. Figure 8.3 gives a rough overview of a switch. Note that the
SCI_interface in a switch is slightly different from the SCTI_inter-
face in a node. There are no input-fifos. Also, to model the physical
delay that symbols use when passing through a switch we have a switch-
delay, an object of class delay_1ine, between the interfaces. See figure
8.5 for a more detailed drawing of a switch.

4 Switching strategies In reality we have made four simulators, but
most of the code in them is identical. The distinction is the type of bridge
strategy used. We vary the switching technique used in the switches and
whether the switches have an extra buffer or not. The active nodes in
each simulator behave alike.

Store & forward A k-ary n-cube where the switches use store & for-
ward switching (see section 3.3).

80 8 Construction of the simulator

To Application() From Application()

! |

| SCI_interface '

Input-fifo's Output-fifo's

—> — —»
I

T Bypass Delay Bypass-fifo
To
SCI_interface
Link_Delay downstream
t KEY:
Frlom adelay_line object: |I|I[|
SCI_interface afifo object: [——1]
upstream

Figure 8.4: The objects that make up an SCI_interface in a node.

Virtual-cut-through A k-ary n-cube where the switches use virtual-
cut-through switching (see section 3.3).

Store & forward with extra buffer A k-ary n-cube where the switch-
es use store & forward switching and have an extra pair of buffers
per interface. Thus the switches are like in figure 8.5 on page 81,
except that they have an additional pair of output-fifo in each in-
terface. Thus switches may have 2 outstanding packet-requests
and packet-responses. We suspect that such a choice will reduce
conflicts in the input-buffers, thus reducing retransmissions.

Virtual-cut-through with extra buffer A k-ary n-cube where the
switches use virtual-cut-through switching and have an extra pair
of buffers per interface.

8.1 Classes and functions 81

Link_Delay

Bypass-fifo Bypass Delay

h

Switch_Delay

|

-

|

|

Output_fifo's

SCI _interface 1 SCI_interface 2 l

____________ 1

Switch_Delay

mitter

Output_fifo's

T Bypass_Delay Bypass-fifo 1
o KEY:
INk_Deéay adelay_lineobject: [[[[[]

T afifo object: —1]

Figure 8.5: The objects that a switch is constructed of. As in nodes, there are
2 output-fifo’s: one request-output-fifo and one response-output-fifo, but no input-
fifos.

82 8 Construction of the simulator

8.1.3 The SCI _interface

Nodes and switches are as we have seen in figure 8.2 and 8.3 made up
of interfaces. Let us now see how they, in turn, are constructed.

An SCTI_interface receives packets from the Application() to
transmit on the ring and also receives packets that are given to the Ap-
plication (). In addition the SCT_interface must route packets not
addressed to it further on the ring.

An SCI_interface in a node (see figure 8.4 for reference) is made
up of the following objects and functions:

1 Two input-fifos of class fifo. One input-fifo for incoming re-
quest-packets and one for incoming response-packets. The fifo-
class is described in section 8.1.7.

1 Two output-fifos of class fifo. One output-fifo for outgoing
request-packets and one for outgoing response-packets.

J A bypass-fifo of class fifo . It moves symbols not addressed to
itself from the input-link to the output-link.

1 A link_delay ofclass delay_1ine to model the physical delay on
the links. It is made up of a simple array of length LINK_DELAY to
simulate the delay of a wire. Symbols are shifted one step up the
link (array) each clock-cycle. The delay_1ine-class is described
further in section 8.1.8.

The 1ink_delay is referenced by the SCI_interface upstream,
this is how the SCI_interfaces are connected together into rings
(see section 8.8).

1 Abypass_delay of class delay_line to model the physical delay
through the bypass-fifo.

1 An instance of the stripper ()-function. The stripper () -class
is described in section 8.1.6.

[d An instance of the transmitter () -function. The transmitt-
er () -class is described in section 8.1.5.

d In order to have a reference to the node downstream each SCI-
_interface has a pointer to the input-link of the SCI_interface
downstream.

This section describes an SCI_interfaceinanode. AnSCI_inter-
face in a switch is almost identical, only there the input-fifos are re-
moved. In additionan SCT_interfaceinaswitchhasaSwitch Delay
of class delay_1ine to model the physical delay in the switches. See fig-
ure 8.5 for a detailed drawing of a switch.

Note that we have not bothered to add a scrubber-function (see sec-
tion 5.1) in our simulation.

8.1 Classes and functions 83

We assume that one clock-cycle takes 2 nanoseconds. This is the
goal of the SCI-standard [IEEE-SCI]. Dolphin SCI Technology achieves
about 3 nanoseconds for its first node-chips in ECL-technology.

8.1.4 The Application

The Application is a function that communicates with one or sev-
eral SCT_interfaces. It moves packets into the output- fifos and takes
packets from the input-fifos. It behaves in 2 ways depending on if the
SCI_interface beingin a node orin a switch.

8.1.4.1 The Application in a node

If the SCT_interface is in a processor-node the Application is re-
sponsible for the following:

1 Consuming packets. Whenever there is a new packet in one of the
input-fifos, the Application removes it from the fifos.

1 Producing packets. At random intervals the Application puts
packets into the output-fifos. The loading of the interconnection
network is thus varied by changing the next time the output-fifos
will be filled. This is discussed further in section 8.6. These pack-
ets are addressed randomly to any of the other active nodes in the
network.

As the symbols in the packets pass through various parts of the
network, they are referenced by various objects. There is no copy-
ing of symbol-objects, all are only referenced by different parts of
the network.

8.1.4.2 The Application in a switch

In a switch the Application is responsible for moving a packet from
one SCI_interface tothe other SCI_interfaceina switch. It moves
symbols from the switch_delay to the other interface’s output-fifos.
See figure 8.5. Also, here the field echo_return is set to the address of
the destination interface in the switch. Then the receiver on the other
ring knows who to send an echo to.

8.1.5 The transmitter

The main objective of the transmitter () is to send symbols from the
SClI-interface to the SCI-interface downstream. It has to decide whether
to send symbols from one of the following fifos: the req out_fifo, the
resp_out_fifo orthe bypass_fifo. It can only send symbols from the
reqg.out_fifo orthe resp_out_fifo ifthe bypass_fifois empty and
the SCl-interface has an idle-symbol available with the go-bit set. If
both the request-out-buffer and the response-out-buffer have a packet,
they take turns to transmit in a round-robin-fashion.

84 8 Construction of the simulator

The transmitter () is a state-machine with 5 states. Their rela-
tionship is shown in figure 8.6. The states:

IDLE Sending an idle-symbol. It leaves this state if the bypass_fifo
or one of the output-fifos has a packet to send.

REQ OUT Sending a symbol from the req out_fifo

RESP OUT Sending a symbol from the resp_out _fifo.

BYPASS Sending a symbol from the bypass_fifo.

LAST SYMB Sending the last symbol in a packet from the bypass_fifo,
reqout_fifo, or resp.out_fifo. A transitional state, the
transmitter () is never here more than a clock-cycle. This state
is to ensure that there is at least one idle between packets.

REQ_OUT

5

IDLE RESP_OUT [———— |LAST_SYMB

et N —

BYPASS

5

Figure 8.6: State diagram of transmitter.

8.1.6 The stripper

The main objective of the stripper () is to receive symbols from the
link_delay (connected to the transmitter of the SCI-interface upstr-
eam). It has to decode addresses, and route symbols (packets) either to
the regq_in_fifo (for requests) or the resp_in_fifo (for responses) if
the packet is addressed to itself, or to the bypass_fifo if the packet
is for another node further downstream. The stripper () is a state-
machine with the following states:

IDLE In this state the stripper () receives incoming idle-symbols. No
idle-symbols enter the bypass-fifo, in our simulator they are delet-
ed in the stripper (). Before deletion the value of the go-bit is
registered.

8.1 Classes and functions 85

REQ_IN
RESP_IN
REQ_IN_BUSY
—b
RESP_IN_BUSY
=)

——

REQ_IN_ECHO
—D

RESP_IN_ECHO

IDLE

=D

REQ_IN_ECHO_BUSY

—D

RESP_IN_ECHO_BUSY
—b

WWW/M\G\WWW

OTHERS_IN

Figure 8.7: State diagram of stripper.

REQ IN In this state the stripper () receives a symbol and puts it in
the req_in_fifo. Ifitis the last symbol in a packet (and the packet
was received completely) an echo is sent back to the (local) sender.

RESP_IN Just like the previous state, except that the symbol is bound
for the resp_in_fifo.

REQ IN BUSY Similar to the state REQ_IN, except that the req_in_fifo
was busy. An echo is sent back to the (local) sender, informing it
about the failure.

RESP_IN BUSY Just like the previous state, except that the symbol is
bound for the resp_in_fifo.

REQ IN ECHO The incoming symbol is part of an echo-packet, acknowl-
edging the safe arrival of its’ request packet at another node. The
packet in the req_out _fifo is released.

RESP_IN ECHO Just like the previous state, except that a response-pack-
et is acknowledged.

REQ IN ECHO BUSY The incoming symbol is part of an echo-packet in-
forming the node that a request packet sent to another node was

86 8 Construction of the simulator

discarded because of busy buffers. The node must therefore re-
transmit the packet.

RESP_IN ECHO BUSY Just like the previous state, except that it was a
response packet that was lost.

OTHERS_IN The incoming symbol is part of a packet addressed to some
other node on the ring. The symbol is put into the bypass_delay
and then into the bypass_fifo.

Busy input buffers What happens if a packet is sent to an input-
buffer that turns out to be busy? If a buffer is busy this is discovered
as the beginning of packet is entering the interface. The packet contin-
ues to enter, but its contents is ignored/destroyed. When the end of the
packet is received, an echo is constructed. This echo-packet is addressed
to the original packet-sender, and informs it of the failure. This node will
then immediately resend the packet (if bandwidth is available). We have
no limit to the number of retries in our simulators.

8.1.7 The class fifo

An SCI_interface has 3 or 5 fifos. An interface in a switch has gener-
ally 3 fifos, interface in a processor-node has 5. A £1ifo is a first-in-first-
out queue. The first symbol entering the queue is also the first symbol
leaving the queue. One important note should be made. The fifos here
are to be able to model the switching technique virtual-cut-through (see
section 3.3). Thus if the fifo is empty, the symbol is to speed through
the fifo as fast as physically possible. If the fifo is not empty, the sym-
bol to be placed right behind the previous symbol that entered the fifo.
This important property is always used in fifo-objects that are used
as bypass-fifos. This property of virtual-cut-through is also used in the
other fifos that are in an interface, if virtual-cut-through is simulated
between rings. Input and output fifos in active nodes are always filled
up completely before any action is taken.

The class f1ifois simply alinked list —a chain — of symbol-objects. At
the head and tail of the chain are “dummy”-objects. The chain contains
the symbols that are in a fifo. The last symbol entering the fifo is placed
at the end of the chain. The oldest symbol is at the start of the chain.
Each clock cycle a symbol may leave and/or enter the fifo.

The fifo-objects have 3 states: EMPTY,HALF FULL, and FULL. In the
EMPTY state the fifo contains just the head and tail objects, no other sym-
bols. See figure 8.8. In the HALF_FULL state the fifo contains symbols,
but less than max_in_fifo. See figure 8.9. In the FULL state the fifo
contains exactly max_in_fifo objects.

Four functions put and take symbols from the f£ifo-objects:

in symbol () puts a single symbol into a fifo. Typically called by
the stripper () when it wishes to put a symbol into one of the input-
fifos or the bypass-fifo.

8.1 Classes and functions 87

Pointer to next symbol in fifo. ————"

An empty symbol object,
used for fifo—operations

A symbol object

Figure 8.8: A £ifo in state EMPTY.

\ /
O O

These symbols are part These symbols are part
of the packet that has of the packet that are
left the fifo. entering the fifo.

R L }
<& Head % Tail
Pointer to next symbol in packet. —® Pointer to next symbol in fifo, =
! An empty symbol object,
A symbol object Q used for fifo—operations

Figure 8.9: A £ifo in state HALF _FULL.

88 8 Construction of the simulator

out _symbol () moves single symbol out of a fifo. Typically called
by the transmitter () when it wishes to move a symbol out of one of
the output-fifos.

in packet () moves a complete packet into a fifo.

out packet () moves a complete packet out of a fifo.

8.1.8 The class delay line

We are simulating physical devices and physical links. Signals do not
pass through them infinitely fast. The class delay_1ine models physi-
cal delays. It is implemented as an array (a table) of pointers to symbol-
objects. The length of the array depends on the length of the delay to be
modeled. In a delay_line-object the symbol must pass through each
entryin the delay_1ine. An example: adelay_line oflength 3 means
a delay of 3 clock-cycles (6 nano-seconds).

‘Packet—poi nter

Figure 8.10: A simple packet of 4 symbols. Each packet has a pointer to the next
symbol in the packet.

8.1.9 Packets

Packets in SCI are made up of symbol-objects. To make a packet all the
symbols in it are linked together into a chained list, as shown in figure
8.10. To access a packet in the program one simply accesses the first
symbol in the packet.

In our simulator we use the following types of packets:

Request-packets are made up of 40 symbols. 7 symbols are re-
garded as header-data and the last symbol is a CRC-code. Thus the
remaining 32 symbols (= 64 bytes) are real data. This is the “move64”-
packet of SCI (see section 5.3.4).

Response-packets are, for simplicity, like the request-packets.
They are sent in response to incoming request-packets.

Echo-packets are made up of 4 symbols (= 8 bytes). They are
acknowledgments of packets addressed to the node. They are gener-
ated by the stripper () when packets addressed to the node enters. If
the packet is received completely, an ok-acknowledgment is sent. If the

8.1 Classes and functions 89

input-buffer which the packet wishes to enter is busy, an echo informing
the (local) sender of the failure is sent. The sender must then try again.

Idle-symbols are strictly not a packet, just a single symbol. They
have several purposes, most of which are ignored in this simulation. The
one thing about idle-symbols we do not ignore are the go-bits in them.
They are used to regulate the bandwidth on the ring.

8.1.10 Symbols

The 16 bits sent on a link simultaneously constitute a symbol. All pack-
ets are constructed of symbol-objects. Below are listed some of the major
attributes of symbol-objects. Note that most of these attributes are void
when the symbol is not part of a packet, but an idle symbol.

The flag attribute is used to mark what type of packet the symbol
belongs to: a request or a response packet, a request-echo or a
response-echo packet, or a request-echo-busy or a response-echo-
busy packet, or an idle. The flag is also used to mark packet-
boundaries.

The target_address is an object of the class Address. It contains the
coordinates (the position) of the target-node.

The source address Similarly, the source_address is an object of
the class Address. It contains the coordinates of the sender-node.

The echo_return _address is also an object of the class Address.

A node or bridge that receives a packet must know whom to
send an echo to. The echo_return_address-field contains the ad-
dress of the local sender of the packet to send the echo to. The
echo_return_address is a variable field that changes value as
the packet moves from ring to ring.

The next-pointer As shown in figure 8.10 a packet is a linked list of
symbol-objects. The next pointer is a reference to the next symbol
in the packet.

The fifo-next-pointer Is also a reference to the next-symbol in a
packet, but it is only used to handle the symbols when it is in a
fifo.

The go bit This attribute only has meaning for idle-symbols. The go-
bit is used to ensure fair use of bandwidth. See section 8.4.

send time All symbols leaving their sender are stamped with the time
they left the node. This value is later used to calculate the trans-
mission-time.

switches passed Each time a send-packet enters a switch this count-
er is incremented by 1. See section 8.7 for the use of this variable.

bypasses passed Each time a send-packet enters a bypass-fifo this
counter is incremented by 1. See section 8.7 for the use of this
variable.

90 8 Construction of the simulator

8.1.11 The class Address

All SCl-interfaces have an address. Instead of having one absolute ad-
dress, we have divided the address into multiple parts. So, addresses
are not large numbers like “12579”. Instead we have something like “5,
11, 4, 7”. Generally, addresses have the following form:

A07A17A27"'An—17‘4n

Ap to A,_; represents the interface‘s coordinates in a k-ary n-cube and
varies from 0 to & — 1. A, represents the interface‘s local address in the
vertex. An example for a 3-dimensional cube (n = 3):

Ag: . Al

Name of Field:
“x-coord.” . “z-coord.”

Example address: 5 4

When we refer to addresses later in the text, we will usually avoid the
form Aq, Ai,As,---A,_1,A,. Instead we will usually refer to the z-,
y, z-coordinates, and the local part. This is a less general form, but
it hopefully increases readability. In the text we use 2- or 3-dimensional
examples for simplicity. Remember though, that the simulator works
for any dimension we wish to simulate. 2

The advantage with this scheme is that it is relatively simple to route
(section 8.5). Also no tables are needed in the nodes and switches. Each
interface only has to store its own address (16 bits), the stripper only
needs some comparator logic. In addition the switches must have a
“dimension-index”, so that the interface knows which dimension it is
connected to. This requires log .n bits (typically 2-3 bits). This is rel-
atively little information to check each time a packet enters an SCI-
interface.

In a sense this is a form of source-routing. Source-routing usually
implies that the message contains the explicit path which the message
must traverse. This path is often specified as a list the links the message
traverses. In our scheme we instead specify target-planes for the packet.

In the above example the packet must first go to the yz-plane with
x = 5, then the xz-plane with y = 11, and finally the zy-plane with > = 4.

8.2 Various development problems

We had many problems to solve when we constructed the simulator. We
will here only mention some of the major ones:

What kind of simulation-model ? There are several classifica-
tion-schemes for simulation [Shannon]|. We early decided on a simple
discrete time-step model. All nodes and switches in the network exe-
cute the SCI-protocol for one clock-cycle in round-robin order. Then the

2Currently an upper limit of 11 dimensions, but that can be raised, if desirable.

8.2 Various development problems 91

time is increased on cycle and the protocol is again executed in all the
nodes and switches. This continues until the desired number of cycles
has been executed.

At first we used a coroutine-library ® to achieve this. Later we chang-
ed the simulator a bit; instead of using a coroutine-library we managed
with a single program-loop that executes the nodes and switchesin a
round-robin-fashion. This change made the program much more port-
able.

What programming language should we use? And which com-
piler? This decision was in practice related to the above problem. We
decided finally to program in the language C++. We chose the compiler
“g++” from GNU. See appendix B for more details.

Bandwidth-arbitration We decided to implement the fair band-
width arbitration scheme as defined in [IEEE-SCI|. Our interpretation
of it is described in section 8.4. Dolphin SCI Technology has also made
this choice for their first node chip implementation [Alnaes et al].

Large numbers Our simulator was to generate statistics about
networks. To produce these statistics numerous counters are needed.
The values some of these counters reach can be exceptionally large. Or-
dinary types in C++ (and in C) are not large enough. We studied various
available libraries, but decided not to use them.

Fortunately the solution was extremely simple, once we became aw-
are of the type “ long double”. This type was actually defined in our
chosen compiler (and most other standard C and C++ compilers). Vari-
ables declared as “long double” allocates 128 bits, 104 bits for the integer
part, and 24 for the fraction part. This was more than enough for our
purpose.

Acknowledgments All acknowledgments in SCI are done locally.
No echo-packets traverse more than one ring. This is referred to as a
remote transaction in [IEEE-SCI]|, the switch being the agent. See figure
5.7.

But how does a node know whom to send an echo to? If the network
is only a single ring, then the source-address field holds the necessary
information. But if the network has multiple rings it is not so simple.
The problem is when the node wishing to send an echo-packet does not
know the address of the switch (on the local ring) that is to have the
echo-packet. This topic is not discussed in [IEEE-SCI]. We therefore
had to decide on a solution ourselves.

There are 2 possible schemes, as we see it:

'd The send-packet has an extra field containing the address of the
switch that is supposed to have the echo-packet. This field must
then change value each time just before it enters a new ring. The
value is the identity of the interface connected to the new ring.
This is the method we have used in our simulation-model. In SCI

®See appendix B for an explanation on coroutines.

92 8 Construction of the simulator

provisions are made for one or two extra header-fields, if desired.
See the “extended header”, ext in section 5.3.5.1. So it is not un-
reasonable to assume there is an extra field available.

1 Use the source-field of the packet and send the echo-packet in the
direction of the source-node (assuming k-ary n-cubes). That puts
restrictions on the topology and the routing algorithm. Every pack-
et from a node A to a node B must then traverse the same path.
Only then would an echo be sent to the correct switch on the local
ring. Thus alternative paths between two nodes are not permis-
sible. Assuming fixed paths and our coordinate address-scheme
one should be able to construct a routing algorithm, which does
not need extra fields in the packet. When refering to coordinate
address-scheme we mean both the partition of the address-field
and the indexing of the switches (ports) according to the dimen-
sion they belong to.

Variation in the network load How do we vary the loading of
the network? For a long time we were uncertain about the best strategy
for this, before we finally settled on the scheme described in section 8.6.

8.3 Priority

For simplicity, we have chosen not to implement any priority scheme.
This is not unreasonable. Also Dolphin SCI Technology has decided to
ignore implementing priority in their first implementation of the SCI
node chips [Alnaes et al].

8.4 Bandwidth arbitration on the rings

The go-bits in the idle-symbols act like tokens, to ensure fair use of
the links. The nodes on a ring must first send an idle-symbol with a
set go-bit before it can send its own packet. In addition their bypass-fifo
must be empty. These two criteria ensure fair bandwidth arbitration
among the nodes on a ring. Nonetheless, the process of getting permis-
sion to send a packet is somewhat complex. This is to guarantee that
there is always enough go-bits for stable operation. We have chosen to
divide the process into several states (look at figure 8.11 as you read
this):

PASS In this state the node is letting others nodes packets pass through
its bypass-fifo. Information in idle-symbols passes through un-
changed until it wishes to send a packet of its own. Then, if its
bypass-fifois occupied, it starts to set the go-bits in the idle-symbols
to zero.

SEND_OWN When the node receives a set go-bit and has emptied its by-
pass-fifo, it leaves the state PASS and enters state SEND_OWN. Dur-
ing this phase the node sends its packet. Incoming go-bits are

8.4 Bandwidth arbitration on the rings 93

PASS S
Wishesto No
send?
Yes| <
------------------ Wait for ago-bit
Has a set
go-hit?

------------------ Sending no-go's

Stop sending no-go’'s. Clear save_go.
Start "saving" incomming go-bits.

SEND_OWN -

Finished
sending
own packet?

.................. Extend go-bits.

New
incomming packet
boundary?

Figure 8.11: State diagram showing the bandwidth arbitration algorithm in an
interface.

94 8 Construction of the simulator

“saved” (ORed) in the variable save_go for later use in the follow-
ing manner:

save_ go = incoming go || save go;

EMPTYING BYPASS When the node has completed sending its packet, it
leaves the state SEND_OWN and enters state EMPTYING_BYPASS. It
continues to save incoming go-bits as described above.

When leaving this state an idle-symbol will be sent. If save_go
is '1’, the symbol’s go-bit is set to ’1’, otherwise it is set to the value
of the last go-bit that entered the interface. Thus no new no-go bits
are generated. Only when nodes downstream generated a’(0’, is a
’0’ sent on.

EXTEND When the bypass-fifo is emptied the node leaves the state EMP-
TYING_BYPASS and enters the state EXTEND. During this phase so-
called go-bit-extension takes place. Effectively all go-bits leaving
the node are set to one until the next packet boundary. This en-
sures that there is enough go-bits to go around, with value 1. This
guarantees stable operation. Then the node returns to the state
PASS.

8.5 Routing

We use a distributed routing algorithm in our model.

We divide the description of the routing into 2 parts: routing on
a global scale, and routing on a local scale. In the global routing we
describe how packets are routed from one part of the k-ary n-cube to
another part of the k-ary n-cube. In the local routing description we
describe in detail the routing decision done by routing-elements in the
vertices in the k-ary n-cube.

Routing on a global scale The routing of packets in our k-ary n-
cubes is relatively straightforward. It is best shown with an example
(Adapted from [Leighton]). We presume here a 3-cube with z, y, and 2
representing the 3 dimensions. Also recall that in our corner-ring sim-
ulation a torus-connection is used. It might be helpful to look at figure
8.14 and 8.15 as you read this.

1. Route the packet along the sender’s z-ring, until the packet reaches
a switch whose x-value is the same as the xz-value in the packet.
Exit at the other output port of the switch (e. g. interface marked
as '3’ in figure 8.14). The packet is now in the correct yz-plane.

2. Enter the closest y-ring (through interface 4’ and ’7’ in figure 8.14).
Route the packet along the y-ring until it reaches a switch whose
y-value is the same as the y-value in the packet. Exit at the other
output port of the switch (e. g. interface marked as ’4’ in figure
8.14).

8.5 Routing 95

3. Enter the z-ring (through interface ’5’ and ’8’ in figure 8.14). Route
the packet along the z-ring until it reaches a switch whose z-value
is the same as the z-value in the packet. Exit at the other output
port of the switch (e. g. interface marked as ’5’ in figure 8.14). The
packet has now reached the destination-ring.

The packet must pass through 2 switches each time the packet switch-
es dimension (occurs maximum n — 1 times).

Note that when a packet enters a corner-ring just to switch dimen-
sion, the packet traverses only one segment of the ring. Thus the major-
ity of the traffic is not contesting for bandwidth.

A drawback with this scheme is that this routing algorithm is not
“fault tolerant”, it will not adapt to route differently in a faulty network.
There are no multiple paths between two nodes. We sacrificed such a
property for simplicity. Thus there is only one unique path between two
nodes.

Routing on a local scale So far we have only presented routing on a
global scale. What routing decisions are made by the SCI_interfaces
in the switches? A vertex is constructed of multiple SCI_interfaces,
but the routing decisions are not similar in all the SCI_interfaces.
How is routing within a vertex? A vertex in a k-ary n-cube is typically
made like the example shown in figure 8.14. We here describe in detail
the routing decisions made by the various SCI_interfaces in a vertex.
Use figure 8.14 as reference as you read this.
Criteria for removing the packet off the ring:

1. The nodes have a simple job: either the address in the packet is
identical to its own address, otherwise just forward it.

2. The “inner” interfaces in the corner-ring (marked as ’3’, ’4’ and 5,
in figure 8.14): If the “dimension-index” in the packet and interface
are identical, then the packet is not removed from the corner-ring.
Example: if the x—coordinate of the packet arriving in interface
"3’ (figure 8.14) is identical to the x—value of the vertex, then the
packet continues to interface ’4’. Interface 4’ will then check the
y—value of the packet. If the value is different from the vertex’ y—
value, the interface will take the packet off the ring. The packet
will then enter a “y—ring” for further routing.

3. The “outer” interfaces in the corner-ring (marked as ’6’,’7 and ’8’,
in figure 8.14) behave in a similar manner. A packet arriving in
interface 6’ on the “x-ring” will have its x—value checked. If the x—
value is identical to the x—value of the vertex, the packet is removed
from the x—ring and forwarded to the corner-ring.

4. If the scheme of figure 7.5b is used:

The interface in the switch connected to the node-ring (marked
as '1’ in figure 8.16): If a packet arrives here with other address-
coordinates than those of the vertex (different x—, y—, or z—value)

96 8 Construction of the simulator

then obviously the packet is for a processor-node in another ver-
tex. The packet must be taken off the “node-ring” and passed to
the “corner-ring” for further routing.

5. If the scheme of figure 7.5b is used:

The interface in the switch connected to the corner-ring (marked
as '2’ in figure 8.16). If the packet entering the interface has the
correct x—, y—, and z—value, then the packet must be sent to the
node-ring.

Alternatives At first we considered another routing scheme, based
on “interval labeling”. Then each switch-output has an associated in-
terval — a consecutive set of addresses. See [ShMayTho]. But we found
that this scheme is rather inflexible for our purpose, when studying var-
ious topologies. On the other hand, interval labeling could be a good
idea when constructing actual physical networks. This is because such
a scheme will probably use little table-space in the switches.

Bidirectionality In our bidirectional simulation (the scheme of figure
7.8) the routing is somewhat modified from the one above. To fully utilize
the fact that bidirectional links are used, the switches must calculate
which direction is shortest along the current dimension. Shown in the
following pseudo-code:

distance = target index - current switch index ;
if (distance < 0) distance = distance + k ;

If then the distance is less than k/2 (rounded down to closest integer)
it is shorter not to route in the default direction (e.g. not decreasing the
z-value, but increasing it instead).

8.6 Variation in the network load

How do we vary the loading of the network? This loading is determined
by the frequency of the active nodes outputting request-send-packets.
We have in mind a multiprocessor SCI system. We assume then that
it is cache misses that make the nodes generate requests to memory in
another node, thus generating network load.

In [PatHen] a model of cache behavior is presented. The cache be-
havior attributes are divided into three parts. Compulsory, Capacity
and Conflict (“The three C’s”).

d Compulsory. The misses caused by the first access to a block of
memory. In other words a block not not used before is called. This
is called “cold-start misses”.

1 Capacity. These misses are occurring when the cache is to small
to contain all the memory blocks needed by a program at the same
time.

8.6 Variation in the network load 97

1 Conflict. This is related to the block replacement strategy used
in the cache. When using a set associative or direct mapped cache,
several blocks of memory will map into the same place in the cache.
This will result in cache-blocks to be discarded and inserted, when
having a program referring frequently to memory locations with
the same mapping-address.

The model presented is not perfect, but gives a general view of the mem-
ory demands of caches. Then the question arises: How do we represent
this model (of the three C’s) within our simulation model? The most
obvious solution is to try to represent the loading as a statistical distri-
bution. We have chosen to use the normal, negative exponential, and
uniform distributions. It is not clear which of these distributions which
model cache-behavior in the best way. To investigate these phenomena
we have run simulations with each of these distributions, comparing
the results. These results are presented in section 9.2. The conclusion
drawn from the results is that the difference between the various distri-
butions is very small. Therefore we will mostly use the uniform distri-
bution.

Let us describe our implementation of the uniform distribution in
more details:

How often should the nodes send a request? Should the active node
send a new request immediately after a transaction is complete? We
felt that this is unrealistic. Instead we let the active node wait a ran-
dom interval before starting a new transaction. This random waiting
is modeled with the j-parameter. j is the maximum number of cycles
to wait before starting a new transaction. The active node draws a ran-
dom number between j and the minimum value (10 cycles). If j is 15 the
node draws a number between 10 and 15 and waits that many cycles be-
fore starting a new transaction. A small j means that the node starts
a new transaction almost immediately after the previous one was com-
pleted. We simulate with the following j-values: 15, 500, 1000, 2000,
3000, 4000, and 7000. With j= 7000, an active node will on average wait
3500 clockeycles before initiating a new transaction.

Thus, the time from the return of a response until a new request
is sent varies from 30 and up to 14000 nanoseconds, depending on the
selected j-parameter.

How do we justify the selected j-values? We assume the active node
has a 2-level cache with a hit-rate of 95% and 90% in the primary and
secondary cache, respectively. The hit-time for the primary cache is 20
nanoseconds and for the secondary cache 80 nanoseconds. The time for
the network to service a memory-request over the network is roughly
1000 nanoseconds. The average time between two memory-requests
over the network [PatHen, Bugge et al] we then calculate to be 5800
nanoseconds. This corresponds to j = 5800. j = 7000 signifies very light
load, then we measure near optimal transmission-times. j= 15 signifies

98 8 Construction of the simulator

a very high load, perhaps a processor with a very small cache. Thus our
choices of j-values seem reasonable.

These j-values may seem somewhat peculiar to present in the graphs
in chapter 9. There we render the load-variation in what is more com-
mon in the literature: amount of requests per unit of time. In the graphs
in chapter 9 we use the amount of Kilorequests per second when varying
load. The above j-values then corresponds respectively to 40000, 2000,
1000, 500, 340, 250 and 140 Kilorequests/second.

This model of requests per second might seem a bit artificial. The
amount of requests per second is of course limited by the physical re-
sources available. In practice it is limited by the amount of buffer-
ing available in the active nodes. This is what restricts the maximum
amount of un-responded requests (transactions) a node can have at a
given time.

The p-parameter varies the number of outstanding requests (trans-
actions) that an active node can have. We simulate for 1, 2, and 4 out-
standing packet-requests. We expect the first implementation of SCI
will have a single transaction at a time only.

8.7 Gathering statistics

To produce the graphs of chapter 9 the simulator must produce various
parameters. A presentation of the basis for these parameters:

Average throughput on the links is measured by counting all
the symbols (=2 bytes) leaving the transmitter (), exceptidle symbols.
This is done in all the SCI_interfaces. This is then averaged at the
end of the simulation.

The effective total system throughput is calculated in the fol-
lowing way: all received request- and response-packets are counted up
for all the active nodes. Echo-packets are not counted. The overhead
due to packet-headers is subtracted. Lastly the total number of bytes
received is normalized to the length of the simulation. This leaves us
the effective total throughput in bytes per second, for the whole system.

Latency The latency of a packet is measured from the time the
sender puts the packet into its output buffer, until the packet is received
completelyinits destination-buffer. Thisis then averaged for all packets
sent during the simulation.

The mean number of bypass-fifos passed by the packets Each
packet has a counter that is incremented by 1 each time the packet en-
ters a bypass-fifo. When the packet is received at the destination-node,
a global counter is incremented by the packets’ value. Note that this
counter is also incremented if the packet must be resent due to busy
input-buffers. At the end of simulation this global value is then nor-
malized with respect to the total number of packets sent (not counting
echo-packets).

8.8 Constructing networks 99

The mean number of switches passed by the packets Each
packet also has a counter that is incremented by 1 each time the packet
enters a switch. This is similarly then normalized with respect to the
total number of packets sent (not counting echo-packets).

Uncertainties in the results There are several factors that give rise
to statistical uncertainties in the simulation results.

One factor is the length of the simulation-run. Currently we run and
simulate 100 000 clock-cycles, that is 200u seconds. Ideally we should
simulate much longer, but even 200. seconds take a long time to simu-
late. Simulating 200 seconds for a 10-ary 2-cube (with 300 active nodes)
takes roughly 3 hours to simulate on a dec-station 5000.

Another factor is the random addressing of packets. The active nodes
address other active nodes in the system (but not itself) at random. Thus
the traffic pattern varies for each simulation. The addressing is done at
random by the random-number generator in the compiler (at run-time).
It is the randomness of the random-number generator that “steers” the
traffic pattern.

The traffic pattern is also shaped by the random-number generator in
another way: packets are partly emitted on a random basis. See section
8.6 for a full description.

The two latter factors are dependent on the quality of the random-
number generator and the first on computing resources.

8.8 Constructing networks

We have now seen how the nodes and switches are built up using var-
ious modules. But how do we model a network of multiple nodes and
switches? We have already mentioned the downstream-pointer each in-
terface has. It is a reference to the next interface on a ring. By using
this pointer multiple SCI_interfaces can be connected together.

These pointers are set during the startup of the simulation. During
the startup, a topology-file is first read in *. The topology file contains
the information needed by the simulator to connect the nodes in the net-
work: First, all the SCI_interfaces are listed. Its coordinates (the
position in the k-ary n-cube) are given. Also, the address of the down-
stream SCI_interface is given. Then the downstream pointer of the
interface can be set. In addition the topology-files indicate whether the
SCI_interfaceisin anode or switch.

In figure 8.12 and 8.13 we show how nodes are connected using the
downstream-pointer. Figure 8.12 shows how nodes are connected to-
gether in a ring. Figure 8.13 shows how 2 such rings are connected
together with a switch.

*These files are made up by other programs that understand the topology of the
network. See appendix D.

100 8 Construction of the simulator

node

node node

Figure 8.12: Connecting the nodes-objects together: aring of 3 nodes. The arrows
are the sCI_interface-pointers to the downstream SCI_interface.

Ring 1
node //////ESEE\\\\\\
SCI_interface /—\ SCI_interface)
SCI_interface

switch

node node
SCI_interface
SCI_interface SCI_interface

Figure 8.13: Switches: connecting 2 rings.

8.8.1 fk-ary n-cubes

We have now shown how we connect nodes and rings together. How
do we from this go to constructing larger structures like k-ary n-cubes?
In figure 8.14 a possible vertex in a k-ary n-cube is shown. Figure 8.15
shows how N = k" such vertices might be arranged in a 3-ary 2-cube,
using the scheme of figure 7.5.

Unless otherwise stated, all simulated networks use the unidirec-
tional torus-connected scheme (see figure 4.2 on page 30). We have made
this choice for 2 reasons: the routing algorithm is then simpler to imple-
ment, and we expect the performance to be acceptable. Also, it is plainly
very natural to map ring-based networks to a torus-connection scheme.

When simulating k-ary n-cubes with an extra node-ring (the scheme
in figure 7.5b) the vertices are organized as shown in figure 8.16.

8.10 Randomization 101

SCI_interface

switch
SCI_interface
B

[
SCI_interface

%
ﬁ

%Ll |08

Figure 8.14: A vertex in a k-ary n-cube for n = 3, using the scheme of figure 7.5a.
The vertex contains 3 switches connecting 3 dimensions, and 3 active nodes.

8.9 Xll-animation

Due to the complexity of the simulator we have found it necessary to
display the contents of the SCI-interfaces on a workstation. Only with
the help of extensive graphic displays were we able to convince ourselves
that the simulator behaved as we wished. To create the display, we used
the graphic libraries for the X11 window system °.

Animation was only used during the debugging phase, not during the
actual simulation.

8.10 Randomization

We use random numbers for two purposes:

®X11 Athena widgets library and X11 toolkit intrinsics library

102 8 Construction of the simulator

Figure 8.15: Connecting vertices in a k-ary n-cube together. A 3-ary 2-cube.

1. To vary the loading of the network. For this we have used 3 dif-
ferent probability distributions (section 8.6): the uniform distribu-
tion, the normal distribution, and the negative exponential distri-
bution [Shannon].

2. To draw addresses for the request-packets. For this we have only
used the uniform distribution. This spreads the traffic, and avoids
(to some degree) hot spots.

8.10 Randomization 103

SCI_interface

switch

SCI_interface
N

SCI_interface

"node—

%

Figure 8.16: A vertex in a k-ary n-cube for n = 3, using the scheme of figure 7.5b.
Here 3 active nodes are shown.

9

Results

Section 7.1.2 presents a solution on how to construct k-ary n-cubes with
SCI-rings. In chapter 8 we explained how the simulator is constructed.
This chapter presents the results of using our simulator on a range of
selected k-ary n-cube networks.

First we have a short comparison between a selection of possible sta-
tistical distributions to use (uniform, normal or negative exponential),
for both rings and %-ary n-cubes. This is a continuation of the discussion
in section 8.6.

We continue with a discussion on rings, and view the limitations in
the performance of a ring.

Then we study the variation of the parameters &, n, and the amount

of active nodes separately.
Lastly, we discuss various bridge strategies, and the effect of locality.

Notation A short explanation of the abbreviations used in the figures:
d k: The number of vertices in each dimension.
'd n: The number of dimensions.
J a: The number of active nodes in each vertex.
J (2,4,7) means a 2-ary 4-cube with 7 nodes in each vertex.
d Rxx: A single ring with xx nodes.

1 Latency and throughput (simulated values as defined in section
8.7), and other related abbreviations:

TH Simulated Throughput, in [Mbytes/sec].
THT Theoretical throughput, in [Mbytes/sec].
L Simulated latency, in [nanosec].

LT Theoretical latency, in [nanosec].

min minimum,

max maximum.

104

9.0 Randomization 105

Wire delay on the links! 4 ns
Bypass delay 12 ns
Bridge delay 22 ns
Length of a simulation 200 seconds
Minimum response time in the responding node 200 ns
Outstanding requests (transactions) 1,2, &4
Minimum delay from response to new request 20 ns
Maximum delay from response to new request 30 - 14000 ns
Packet length 80 bytes
Packet header 16 bytes
Data in packet (counted in throughput) 64 bytes

Table 9.1: Parameter constants common to all simulations. All times are in
nanoseconds.

ave average.

NX Negative exponential distribution used to vary load.
NO Normal distribution used to vary load.

UN Uniform distribution used to vary load.

#S The total number of switches.

#P The total number of processors.

'd Type of simulator (see section 8.1.2)

sf Store and Forward.
sf e Store and Forward with one extra buffer in the switches.
w Virtual cut-through.
w_e Virtual cut-through with one extra buffer in the switches.

'd Type of vertex (see section 7.1.2.1 and figure 7.5)

nic The nodes in each vertex is placed in the corner-ring.
¢ The nodes in each vertex is placed in a ring by them selves.

1 Load variation parameters

J KiloRequests/second, this is limited by the amount of buffers in
the active nodes (maximum outstanding requests). It is ab-
breviated as “kreqg/sec” in the figures.

p Maximum outstanding requests per active node (# transactions)

!For simplicity we assume even wire-delays in the system, despite the discussion in
section 4.1.1.

106 9 Results

When not stated particularly, the “Wormhole” (virtual cut-through
switching technique) with extra buffers (in the switch-interfaces) —sim-
ulator is used. In most simulations here the nodes are placed in the
“corner-ring” (see figure 7.5a). The exception is section 9.3 and 9.6. Also,
load variation using the uniform distribution is used in all simulations
unless otherwise stated (the exception is section 9.2).

There are very many variations of k-ary n-cubes. It will take to much
time to simulate all of them. What factors were decisive when we chose
the topologies we did? Some were too large to simulate, they demanded
too much memory in the workstations. Others had a high switch/node
ratio that we felt were unrealistic. Otherwise, the selection presented
here shows a fair sample of k-ary n-cubes, with £ up to 11, » up to 7 and
with ¢ up to 16.

9.1 Simulation of a single ring

The most simple SCI-network is just to have a single ring.

Analysis of the SCI-ring has been done before, perhaps most thor-
oughly in [ScGodVe]. Also, we ourselves have published a preliminary
study of the SCI-ring [HulBot]. By comparing our simulation model-
results on a ring, with the results presented by [ScGodVe], we show that
the model behaves as expected.

We have simulated ring-sizes from 2 nodes and up to 20 nodes. The
load has been varied in the way explained in section 8.6.

Throughput Infigure9.1the simulated throughputisshown for rings
near saturation, for rings of increasing sizes (up to 20). Also plotted
is the latency then (near saturation: L_.max). As figure 9.1 shows, the
maximum throughput of a ring is 1.2 to 1.3 Gigabytes per second, inde-
pendently of the ring-size. We compare the throughput of 16-node ring
(1.2 Gbytes) with simulations of [ScGodVe]. They have approximately
1.2 Gbytes for a 16-node ring 2. Thus there seems to be little deviation.
The theoretical limit for this is 1.4 Gigabytes (see equation 5.3 on page
38), so our simulation results seem reasonable. 3

But why does the measured throughput vary between 1.2 and 1.3
Gigabytes? Since we vary the loading and traffic-pattern using ran-
dom numbers, the throughput-line in figure 9.1 will not be completely
straight. Note that this is the case for all the simulations presented in
this chapter.

Latency Ascanbe seenin figure 9.1, the latency of a ring increases as
the ring-size increases. This is rather obvious. The maximum latency
under near saturation conditions (L_max) in figure 9.1 seems to increase

2The simulation model with flow control, not the analytical model.

?We could probably get a higher throughput by sending longer packets. That would
reduce the echo- and header overhead. Also less of the available bandwidth is then
spent on idle-symbols.

9.1 Simulation of a single ring 107

[MBytes/sec] Characteristics of rings of various sizes

1300.00
1200.00
1100.00
1000.00
900.00
800.00
700.00
600.00
500.00
400.00
300.00
200.00
100.00

0.00

Figure 9.1: Various characteristics of rings for rings with 2 to 20 nodes. The
following characteristics are plotted: the maximum throughput (MBytes/sec),
the latency measured when maximum throughput is measured (nanosec), the
minimum latency (at light load), and the amount of busies measured at highest
throughput.

Throughput
[MBytgsl’;ec] 3 ring-sizes: throughput as a function of latency
1400.00 -
] ™ *
] * ° L
120000 = " * ° o
] [}
] °
< * ° [-]
1000.00 R °
4 u
] s * o
800.00] °
600.00 — u ¥k °
400.00 R 3 é
] % °
] I 8
200.00 *
] i °
] | °
0.00 T
0.00 200.00 400.00 600.00 800.00 1000.00
Latency
M Ring with 4 nodes % Ring with 10 nodes © Ring with 15 nodes [nanosec]

Figure 9.2: Throughput and latency for rings under various loading conditions. 3
different rings are presented: with 4 nodes, 10 nodes, and with 15 nodes.

108 9 Results

roughly linearly. This is not surprising. As the ring-size increases, the
number of links and bypass-fifos the packets have to traverse, will in-
crease. They both result in constant increase in delay. We have much
larger latency, compared to the result of [ScGodVe]. This difference can
largely be explained by the fact that [ScGodVe] assume a shorter node
and wire delay.

At light load (e.g. at 140 kreqg/sec) the latency (marked as L_min in
figure 9.1) increases in the same, roughly linear manner.

The table shows a rough comparison between equation 5.4 and 3 se-
lected points on the L_min -curve.

‘ H Measured ‘ Equation 5.4

4 nodes 95 112
10 nodes 138 160
15 nodes 257 200

Note that the L_min -curve represents conditions that are not completely
unloaded (but light load), and with a varying traffic pattern. The equa-
tion 5.4 represents the average unloaded latency. On the whole, the
figures are roughly of the same order.

Figure 9.2 shows the throughput as a function of latency for 3 differ-
ent ring-sizes. All have a maximum throughput of about 1.3 MBytes/sec.
The latency is very dependent on the ring-size.

9.2 Statistical distributions

The active nodes load the interconnection network with their packets.
An interesting point is whether our implementation of k-ary n-cubes is
sensitive to the form of statistical distribution of the frequency of this
loading. In this section we will attempt to see if the interconnection net-
work behaves differently when loaded with different distribution func-
tions. We study the behavior under the negative exponential distribu-
tion, the normal distribution, and the uniform distribution.

The background is presented in section 8.6. As one can see from the
graphs (figures 9.3, 9.4, 9.5 and 9.6) presented there is little deviation
between the simulation results of the three different distributions. In
most graphs the uniform distribution presents medium values between
the normal and negative exponential distributions. This is the case for
all loading situations (the various combinations of p- and j-values). Thus
we have chosen to use the uniform distribution on the rest of the simula-
tions we present in this chapter. This is also partly because the uniform
distribution is the fastest of the three. All the other distributions calls
the uniform distribution as a basis for generating their values.

9.3 Placement of the active nodes 109

1400.00
1300.00
1200.00
1100.00
1000.00
900.00
800.00
700.00
600.00
500.00
400.00
300.00
200.00
100.00
0.00

[MBytes/sec]
[nanosec]

R4

p=1

B % TH_NX

[kreq/s]

Figure 9.3: Comparison of a ring with 4 nodes using negative exponential, normal
and uniform distribution.
and 4 outstanding requests, respectively.

The 3 graphs show the performance when having 1, 2

1400.00
1300.00
1200.00
1100.00
1000.00
900.00
800.00
700.00
600.00
500.00
400.00
300.00
200.00
100.00
0.00

[MBytes/sec]
[nanosec]

R10

p=1

* TH_NX
® L_NX
@ TH_NO
B L_NO
H TH_UN
% L_UN

[krea/s]

Figure 9.4: Comparison of a ring with 10 nodes using negative exponential, normal
and uniform distribution.
and 4 outstanding requests, respectively.

The 3 graphs show the performance when having 1, 2

110 9 Results
[MBytes/sec] i
[nanosec] w_e_nic(7,2,3)
9000.00 &
jp=1 y: P 3 * TH_NX
8000.00 — H N
] d ® L_NX
700000 1 @ TH.NO
6000.00 — 5 L_NO
] H TH_UN
5000.00 — -
] ¥ L_UN
4000.00 —
3000.00 —
2000.00 —
1000.00 -
0.00 T 1 T T 1 T 1T T 1 T 1 T T T T T T T 11 [krea/sec]
o o
< 0 ¥ O O O O < 0 ¥ O O O O < O ¥ O © O O
- N (3] n o o o — o~ [32] n o o o - N (3] mn o o o

Figure 9.5: Comparison of a (7,2,3) using negative exponential, normal and
uniform distribution. The 3 graphs show the performance when having 1, 2 and
4 outstanding requests, respectively.

8000.00

7000.00

6000.00

5000.00

4000.00

3000.00

2000.00

1000.00

0.00

[Mreg/sec])
[nanosec] w_e_nic(2,4,3)

* TH_NX

p=1

® L_NX
@ TH_NO
B8 L_NO
H TH_UN

¥ L_UN

[kreq/s]

Figure 9.6: Comparison of a (2,4,3) using negative exponential, normal and
uniform distribution. The 3 graphs show the performance when having 1, 2 and 4
outstanding requests, respectively.

9.4 k-ary n-cubes 111

9.3 Placement of the active nodes

How should active nodes be connected in the vertices? There are two
choices which are illustrated in figure 7.5. In figure 7.5a (scheme A)
the the active nodes are placed in the corner-ring. Using scheme B in
figure 7.5b the active nodes are placed on an additional ring added to
the vertex.

Off-hand, it is likely that the latency for a packet is larger in scheme
B, since it must traverse the extra switch. This is probably true in most
cases, but there might be cases when scheme A is not best: When n is
large, the size of the corner-ring is large (it has n switches are connected
to it, plus the additional active nodes). The corner-ring might then too
easily become saturated. Thus it might be more optimal to use scheme
B.

Figure 9.7 shows if this is the case. It shows the difference between
the two schemes for 3 different topologies, using scheme A and scheme
B.

The top pair of graphs (subfigure a and b) and the middle pair (subfig-
ure ¢ and d) show the typical response. Then the size of the corner-ring
using scheme A is moderate (8 and 5 connections respectively). In both
the upper and the middle pair of graphs we see that scheme A (subfig-
ure a and c¢) tends to utilize the available bandwidth better. The ideal is
subfigure a, where the latency increases evenly as the throughput rises.
The extra switch used in scheme B tends to act as an unnecessary de-
lay (subfigure b and d). This results in the latency being slightly better
in scheme A, and also allowing slightly more packets to be sent (larger
throughput). The performance of scheme B is specially bad in subfigure
d, where the data tends to cluster in the bottom left part of the graph.
The available bandwidth doesn’t seem to be utilized properly. Scheme B
also has more retransmissions (not shown).

The bottom graphs show the response when the size of the corner-
ring using scheme A is larger (n + « = 5 + 5 = 10). With scheme A the
corner-ring now seems to be saturated (becomes a bottleneck). There is
more clustering of the data in the bottom left part of the graph. This
clustering does not take place using scheme B (subfigure f). This bottle-
neck seems to be lessened then. Thus we conclude that when the size
of the corner-ring becomes large using scheme A, one should consider
scheme B instead.

Note that the addressing of packets is completely random. Scheme
B is therefore more interesting if some degree of locality is applied. We
will therefore return to scheme B in section 9.6. In all other simulations
we use scheme A.

112

9 Results

13000 = - - 13000
E| 12000 ° °
12000 o
E|)
E| 11000 § ?
11000 o °
° 4
10000 10000
k| ° 4
9000 ° 9000
.| 8000
8000
E| ° °
7000 7000 3 *
3 ° 6000 M
6000 E
') L4
5000 5000 °
3 ° °
4000 Y 4000 °
3 [° °
3000 o 3000 ®
1 &® °
2000 - 2000
ER 8 °
1000 1000
o T T T T T T T T T 0 T T T T T T T T T
300 450 600 750 900 1050 1200 1350 1500 1650 1800 300 450 600 750 900 1050 1200 1350 1500 1650 1800
a) nic (2,5, 3), #P = 96 b) ¢ (2,5,3), #P =96
20000 20000
L]
18000 — 18000 —
° °
°
16000 — . 16000 —
.
14000 14000
L]
12000 12000
L]
°
10000 10000
°
8000 'S 8000 -3 .
6000 6000 | =
oo © L4 °
L] ° .
4000 4 g-0e 4000 e ' .
* °
2000 4 ®®-® 200 ® e s
°
0 T T T T T T T T o T T T T T T T T T
300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
¢) nic (4,3,2), #P = 128 d) c (4,3,2), #P = 128
12000 12000
L]
= ° o °
11000 11000 ° °
10000 — ° 10000 - P
9000 >
3 — .
° 9000
8000 8000 =
7000 7000 3
LN
6000 6000 3 °
°
5000 * e 5000 Py
4000 4000 °
°
3000 - 3000 — .
2000 3 2000
L]
1000 .0 4
a rYyS Py 1000
[4
0 T T T T T T 0 T T T T T T
o 500 1000 1500 2000 2500 3000 3500] 500 1000 1500 2000 2500 3000 3500

e) nic (2,5,5), #P = 160

f)c(2,5,5), #P = 160

Figure 9.7: Placement of the active nodes.

The figures show throughput

[Mbytes/sec] as a function of latency [ns] under various loading conditions. Three
topologies are shown, using scheme A and scheme B, left and right, respectively.

Discussed in section 9.3.

9.4 k-ary n-cubes 113

9.4 Fk-ary n-cubes

The simulations of k-ary n-cubes in this section is made with topologies
using nodes connected into the corner-ring (scheme A in the previous
section).

The k, n, and the number of nodes (¢) in each vertex are varied to
investigate the effect on the throughput and latency figures.

In order to make a good comparison one will have to make some sort
of measure of what makes some network better than others. The most
obvious is the throughput and latency figures, which is the most impor-
tant parameters describing the performance of a specific network. These
parameters are presented and discussed in the first part. Following is
a short discussion on the relation between theoretical figures and the
simulated. They are presented with graphs giving the throughput per
active node in the system in connection with the number of active nodes.

Designing a high performing network is relatively easy, but a theo-
retical model does not always reflect the implementation-cost. A good
measure of the cost factor of k-ary n-cubes (and other networks) is the
relation between the number of switching elements (#S) used to connect
a certain number of nodes (#P). Combining this with the performance
per node with respect to throughput and latency, should give a picture
of how to make a network specific for your needs.

A comparison of the simulated results with the theoretical formulas
in chapter 7 is also presented.

The last part of this comparison will present some numbers on the
amount of busied packets (retries) and their location in the network.

The choice of which topologies to simulate was made taking into ac-
count the simulation time, switch/node factor and the conclusions drawn
from preliminary simulations. This giving an indication of the maxi-
mum values to use for either k£, » and a.

9.4.1 Comparing the model with results of [JohnGood]

To make the figures in this chapter more credible we will here attempt
to compare a sample of our results with that of others. The work that
relates best is the work done by [JohnGood].

[JohnGood] views the vertices as consisting of a processor plus a
crossbar-connection to connect the dimensions together. See figure 9.8.
We of course, use the scheme of figure 7.5a.

Since the physical representation of k-ary n-cubes is very different
in the two schemes, this is a very rough approximate comparison.

We first compare figures for latency at light load, and then figures
for throughput.

Latency [JohnGood] shows the worst-case latency at light load, while
we have studied the average latency at light load. This comparison thus
has strong limitations.

114

9 Results

J——
A switch with complete
connectivity plus an
active component

(e.g. a processor)

Figure 9.8: A 2-ary 2-cube as presented in [JohnGood].

The physical differences in the two schemes create the following dif-
ferences in the latency-figures.

1. The cost of switching dimension (occurs on average n — 1 times) is

different. In our scheme the packet must traverse a switch, then a
wire, then a switch again. This adds up to 48 ns. [JohnGood] mod-
els the cost of switching dimension as 40 ns. This is a difference of
8(n — 1) ns.

. We model wire-delay plus bypass-delay as 16 ns. [JohnGood] has

this as 10 ns. This is on average 62 ns difference per dimension.

. We model packets as 80 bytes, [JohnGood] uses 50 bytes packets.

This means 30 ns (15 extra symbols sent) extra in our model.

In addition our scheme models the time for the packet to leave and
enter the vertex (the corner-ring). We assume for simplicity it has
only one active node attached. If ¢, is the wire-delay, and ¢, is the
bridge-delay, we must then add (to [JohnGood] figures) 2(2+,) =
2(2+4 22) = 48 ns.

This must be added to the difference in packet-length: 30 +48 = 78.

With item 1-3 we have explained some of the difference between our
measured figures with that of [JohnGood]. The difference is also due to
the fact that our figures here represent conditions with “light” load, not
completely unloaded, as the figures of [JohnGood] seem to be.

Thus we explain the difference as a result of the physically different
solutions selected, the slightly different load, packet length, and the fact
that we compare average figures with maximum figures.

The table shows 3 sample comparisons for latency

Latency (ns)
Topology || [JohnGood] | our results
I (max) II(ave) | II-1 | point 1,2,3 above
(8,2,1) ~ 200 293 93 | 8448478 =134
(5,2,2) ~~ 130 265 | 135 | 8+30+ 78 =116
(2,5,2) ~ 200 317 | 117 | 32+ 30+ 78 = 140

9.4 k-ary n-cubes 115

Throughput We see a much larger deviation in the throughput-figur-

es.
Throughput (Gbytes | sec/vertex)
Topology || [JohnGood] ‘ our results
(2,5,2) ~ 15 0.4
(2,5,1) ~ 15 0.33

Why this large deviation? Some differences:

1. [JohnGood] ignores retransmissions (this applies to latency too)

2. Lastly, and most important: larger switches of [JohnGood] will
have much more connectivity than our scheme. This will affect
throughput to a very large extent, though it is uncertain how much.

Summary What to conclude from this comparison? First it confirms
our model. When we take in account the physically differences in the
vertices, our model generates roughly the same figures as [JohnGood].

Secondly, larger and more expensive switches seem to have a much
larger capacity than our corner-ring concept. This is reasonable. A
larger switch has the ability to offer pair of nodes to establish a con-
nection simultaneously. Thus the flow through the switch (vertex) will
increase, giving a higher throughput.

9.4.2 Variation of &

To study the effect of various values for k&, the value of k is varied, keep-
ing the other parameters constant. The values we have chosen for the
topologies (k,2,3), k = 2,4,6,7,8,9,10 and (k,2,5), &k = 2,4,6,7,8,9, 10.
The graphs are presented in figures 9.9 and 9.10.

The increase of & implies a “stretch” in each dimension. Increasing
k results in more nodes on each dimension ring. And then more traffic
nodes which generate traffic on these.

The maximum throughput shows a steady increase in value corre-
sponding to the increase in the radix & with both topologies. The latency
also follows the increasing k£ and shows no signs of a rapid increase in re-
lation to maximum throughput. This could mean that one can increase
the size of & to a large number.

But as the radix & increases (around £ = 8 and above) we also get a
larger variation on the throughput. This is shown in figure 9.11. Spe-
cially in simulations with a high load. This implies that the network
is more sensitive for the traffic-pattern applied during high load. This
seems reasonable. If a network increases the value of k keeping the other
parameters constant, the amount of total applied load to the network in-
creases. The network to handle this extra load only has the same basic
rings to transport the packets, leading to a higher load on the dimension-
rings. This gives more congestion in each of the vertices. It is evident

116 9 Results
[MBytes/sec] w_e_nic(k,2,3)
[nanosec]
100000 —g
10568 12457
10000 —
] > TH max
2232
1(1644 1963 1850 ® Lmax
¥ L min
969 1001 1159
1000 =
1 484 477
1 329 356 3%
4 263
175

Figure 9.9: Variation of k: The maximum throughput and corresponding latency,

plus the minimum latency of (k,2,3).

[MBytes/sec] w_e_nic(k,2,5)
[nanosec]

100000

Figure 9.10: Variation of k: The maximum throughput and corresponding latency,

plus the minimum latency of (k,2,5).

9.4 k-ary n-cubes

117

Throughput
[Mbytes/sec]

8000.00
7500.00
7000.00
6500.00

6000.00

Aol b b o

5500.00

5000.00
4500.00
4000.00
3500.00
3000.00
2500.00

2000.00

IHETE FRETE UL RETT ST

1500.00 F—————T T
1000.00 1500.00

® w_e_nic(6,2,3)

Throughput
[Mbytes/sec]

2000.00

2500.00

3000.00
Latency
[nanosec]

10000.00

9000.00

8000.00

7000.00

6000.00

5000.00

4000.00

°
3000.00
®e
° °
°®

2000.00

1000.00

0.00 500.00 1000.00 1500.00 2000.00

® w_e_nic(8,2,3)

Throughput
[Mbytes/sec]

2500.00

3000.00

3500.00

4000.00
Latency
[nanosec]

6000.00
5500.00
5000.00
4500.00
4000.00
3500.00
3000.00
2500.00
2000.00
1500.00

1000.00 P 4
® “ o °
500.00 °

PETEY RTRTE FERTE FRURY FRTRI RTRTE FARTE FRTRI FRTH FYRTE STRTH FRTT
o

0.00

0.00 500.00 1000.00 1500.00 2000.00

® w_e_nic(10,2,3)

3000.00

L s B s B e L . s e B

2500.00

3500.00

4000.00
Latency
[nanosec]

Figure 9.11: Variation of £: The Throughput as a function of latency for 3 different
topologies: (6,2,3), (8,2,3), and (10,2,3). Thisillustrates that the network has a more

erratic behavior as k£ grows.

118 9 Results

when looking at the number of busied packets and seeing where they oc-
cur. The major part of busy-retries (up to approximately 70 %) is located
in the vertices, with packets destined for the dimension-rings *.

In systems with an average typical load, one can let the parameter %
get larger than the approximate maximum value 8-10. This by not push-
ing too much load on the network. This should give good performance
figures for the throughput and latency. Calculating the load as in sec-
tion 8.6 gives a time between each transmission of packets from nodes,
of 2900 clock-cycles. It corresponds approximately to the number 250
kreg/sec in the graphs. This is clearly low compared to 40000 kreq/sec.
With such a load the performance of a network with rather high value
for k& one will get a consistent throughput combined with an acceptable
latency.

In a system with very high average load, a possible solution to in-
crease the overall performance, is to make use of some locality in the
network. This should give a increase in performance to compensate for
the extra amount of load. See section 9.6.

The comparison between the number of nodes and the throughput
per node is shown to indicate the performance for each node.

[MBytes/sec] w_e_nic(k,2,3) w_e_nic(k,2,5)

[number] #SI#P
450.00 — — 70.00%
. S————D>— .

400.00 -
7 [60.00%

350.00 — F
] — 50.00%

300.00 F
250.00 E 40.00%
200.00 = 30.00%

150.00 C
] = 20.00%

100.00 C
5000 = 10.00%
0.00 1 1 1 1 T 1 1 1 T | 1 0.00%

Figure 9.12: Variation of k: Number of active nodes and throughput per active
node. Also shown (using the right axis) is the number of switches/active-nodes
ratio.

*Figure 9.26 is a plot of the number of busies for a (5, 2, 3). It shows that the largest
number of busies come from the interfaces labeled as ’3’,’4’, and ’5’ in figure 8.14.

9.4 k-ary n-cubes 119

What it tells us is that the usable throughput for each of the nodes
gets considerable lower as the value of & increases.

The ratio between the number of nodes and number of switches is
the same for all values of k. This is merely a result confirming that one
does not get any extra resources with an increase in k.

9.4.3 Variation of n

As for the variation of %, to study the effect of having various values for
n (the number of dimensions), is done by varying the value of n while
keeping the other parameters constant. The values we have chosen for
the topologies (2,1,3), k = 2,3,4,5,6 and (2,n,5), k = 2,3,4,5. The graphs
are presented in figures 9.13 and 9.14.

The main difference between varying the value of » instead of £, is
that one gets more resources available to handle the larger amount of
nodes connected. In other words, the number of rings increases with the
value of n, illustrated in figure 9.15. This is quite visible when observing
the throughput in figures 9.13 and 9.14 in comparison with the through-
put in figures 9.9 and 9.10. For increasing values of n the throughput
curve shows an increasing rate of inclination. While the same curve for
variation of k the rate is decreasing for an increase in the value k. But as
it uses more resources (passes through more switches/vertices) it has a
latency which is larger than a topology with high k. Each packet has on
average to pass through more switches on its way through the network.

When the value of n increases the throughput seems to get some what
unstable. It has the same tendencies as for the large values of &, as
shown in figure 9.11. The reason for this behavior is that as the value of
n increases, the number of nodes connected to each vertex increases. On
average each packet has to pass through one more vertex as n increases
by one. In other words the number of packets which passes the vertices
becomes higher. The network then becomes more sensitive to the traffic
applied.

9.4.4 Varying the amount of active nodes (a)

Varying the number of nodes in each vertex is just another way of set-
ting the load of the system. Increasing the amount of active nodes in
each vertex gives an increasing amount of load into the system. In the
graphs presented (Figure 9.16 and 9.17) one can see that the through-
put decreases when the number of nodes goes beyond 6 to 8 while the
latency then increases. This is the same problem as for large values of
k and n, the traffic (load) in each vertex-ring is large. Then the total
system performance is reduced.

9.4.5 Connecting about 50 nodes

A typical problem might be to choose the best way to connect about 50
active nodes together. The figures 9.19 and 9.20 show the performance

120 9 Results

[MBytes/sec] w_e_nic(2,n,3)
[nanosec]

100000

Figure 9.13: Variation of n: The maximum throughput and corresponding latency
plus the minimum latency of (2,7,3).

[MBytes/sec] w_e_nic(2,n,5)
[nanosec]

100000 g

Figure 9.14: Variation of n: The maximum throughput and corresponding latency
plus the minimum latency of (2,n,5).

9.4 k-ary n-cubes 121

w_e_nic(2,n,3) w_e_nic(2,n,5)
[MBytes/sec] #SIHP
[number]
200.00 — - 200%
180.00 £ 180%
160.00 3 - 160%
140.00 £ 140%
120.00 3 £ 120%
100.00 F 100%
80.00 E 80%
3 -
60.00 E 60%
40.00 3 E 40%
20,00 £ 20%
0.00 T T | T | T 1 1 - 0%
n=2 n=3 n=4 n=5 n=6 n=2 n=3 n=4 n=5
¥ TH_max/#P Q #P D #siHP

Figure 9.15: Variation of n: Number of active nodes and throughput per active
node. Also shown (using the right axis) is the number of switches/active-nodes
ratio.

of all combinations °® of k-ary n-cubes with 40 to 64 active nodes. All
combinations are included, except 2 cases where the implementation-
cost would be too high.

We will look at three parameters when discussing these topologies:
latency, throughput, and cost.

As can be seen in figure 9.19, the mean unloaded latency is approx-
imately the same for all the selected topologies. It varies from 263 ns
(4,2,3) to 349 ns (2,2,11). As can be seen in figure 9.20 the measured
average unloaded latency is between 1.15 and 1.35 times the theoretical
(equation 7.6).

Our measured values for maximum throughput are far below the the-
oretical (equation 7.7). In figure 9.20 the largest measured throughput-
value, relative to the theoretical, varies from 18% ((2,2,11),(2,2,10),and
(2,3,8)) to 54% ((7,2,1) and (8,2, 1)). The latter figure is very good, but
generally this shows that saturation effectively takes place long before
the theoretical maximum throughput can be achieved.

The “L_max” -curve is the average latency measured when the thr-
oughput is highest. It varies from 847 ns (3,2,6) to 3000 ns (2,2,11).
We see clearly a relationship: when the max-latency is highest (2,2, 10),

®All combinations of k-ary n-cubes with » in the range 2 to 5, k in the range 2 to 8,
and the number of active nodes per vertex from 1 to 11.

Except (4, 3,1) and (2, 6,1), they have 3 and 6 switches per node, respectively. This
is not the best way to utilize resources.

122 9 Results

[MBytes/sec]
[nanosec]

10000 j 1

w_e_nic(4,2,a)

6678

5035 4928 4864
¥ %
AN
4 "\ 3557

1 2507

1114

¥ TH max
1000 932 %
& L max

Figure 9.16: Variation of «: The maximum throughput and corresponding latency
plus the minimum latency of (4,2,a).

[MBytes/sec] w_e_nic(4,3,a)
[nanosec]

00000 —

Figure 9.17: Variation of «: The maximum throughput and corresponding latency
plus the minimum latency of (4,3,a).

9.4 k-ary n-cubes 123

w_e_nic(4,2,a) w_e_nic(4,3,a)
[MBytes/sec] #SIHP
[number]

700.00 -7 160%

600.00 140%

] 120%
500.00 —

R 100%
400.00

80%
300.00
60%

200.00
] 40%

100.00 — 20%

0.00 I I I I 0%

a=2 a=4 a=6 a=8 a=10

¥ TH_max/#P & #P @ #si#P

Figure 9.18: Variation of «: Number of active nodes and throughput per active
node. Also shown (using the right axis) is the number of switches/active-nodes
ratio.

(2,2,11),(2,3,7),(3,2,7), and (2, 3, 8), the throughput is the worst. In all
these cases the size of the corner-ring is 8 or higher. That might explain
the bad utilization (saturated corner-ring).

Some of the topologies in figure 9.19 with good throughput and ac-
ceptable latency are (2,4,3),(7,2,1),(5,2,2),(3,3,2),(2,5,2),and (8,2, 1).
In figure 9.20 we see that these topologies have the highest switch/node-
ratio. Thus they will cost more to construct.

We can see in figure 9.19 that best performance is when %, n, and «
all have “small values”. On the right side in the graph, these parame-
ters are “close” in value. If one of them had a high value the performance
would be reduced. Thus there is no ring in the system with “many” num-
bers of nodes/switches connected to it. The opposite is the case in the left
part of figure 9.19. Then some of the rings in the system are relatively
bigger, thus representing a potential bottleneck.

9.4.6 Connecting about 250 nodes

Another typical problem is how to connect about 250 active nodes
together. The figures 9.21 and 9.22 show the simulation results of all
combinations ° of k-ary n-cubes with 240 to 260 active nodes.

5All combinations of k-ary n-cubes with n in the range 2 to 6, k in the range 2 to 11,
and the number of active nodes per vertex from 2 to 16.

124 9 Results

13000 —

12000 3

11000 3

10000

9000

8000

7000 =

6000

5000

4000

3000 3 =
E %

2000
3 &

1000 - P & 87 P

e 'S i s s S e s e s e b
g & ®& < & © ©@ © H § ®& § § ® § § &§ @«
= = o o o o N o o N o o < < o o o w0
3 S 9 o o8 o [o S £ £ v & d = 2 o o

Figure 9.19: Measured performance of various k-ary n-cubes with 40-64 active
nodes.

3.00

m.molu

N.oolu

H.mo\u

1.00

050

0.00 T T T T T T T T T T T T T T T T
3 & & <~ & ©@ ® & ® § ® &§ § ® 9 9 «§ «
e — %) o o o % o [} o o o < < o o o [t)
N N o o o o ™ o ~ < <) o o ~ © o ~
8§ o & ¢ d d 8 ¢ d £ £ 6 d d &£ & ¢ d

¥ #SIHP & THITHT D LLT

Figure 9.20: Comparing theoretical and simulated results for k-ary n-cubes with
40-64 active nodes. “TH/THT” is the highest measured throughput (from figure
9.19) divided by the theoretical throughput (equation 7.7). “L/LT” is the simulated
latency divided by the theoretical unloaded latency. Also, the switch/node-ratio is
shown.

9.4 k-ary n-cubes 125

© S > < @ @ oY < [< < o [

— — o o e} o o o o ©) <)

N N o © o o ~ «© — o <) 1)

< w) < o 2 o < =) & N < Qo
* L_ave & TH_max @ L_max

Figure 9.21: Measured performance of various k-ary n-cubes with 240-260 active
nodes.

2.20

2.00

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20

0.00 T T T

(4,2,16)
(2,5.,8)
(9,2,3)
(7,2,5)
(8,2,4)

(11,2,2)
(2,6,4)
(4,3,4)
(3,4,3)
(532

X #S/HP & THITHT @ LLT

Figure 9.22: Comparing theoretical and simulated results for k-ary n-cubes with
240-260 active nodes. “TH/THT” is the highest measured throughput (from figure
9.19) divided by the theoretical throughput (equation 7.7). “L/LT” is the simulated
latency divided by the theoretical unloaded latency. Also, the switch/node-ratio is
shown.

126 9 Results

Here too, the unloaded latency is roughly the same for all topologies.
It varies from 347 ns (5,3,2) to 745 ns (5,2,10). This is between 1.19
(4,2,16) to 2.12 (5,2, 10) times the theoretical (figure 9.22).

The maximum utilized throughput is between 10% (2,5, 8) and 55%
(8,2,4) of theoretical throughput.

The best performance is given by (3,4, 3) and (5, 3, 2). They both have
a measured throughput over 25 Gbytes/sec. The latency measured at
this peek is 1020 ns and 1559 ns, respectively. Their unloaded latency is
371 ns and 347 ns, respectively. The drawback is, they both have a high
switch/node-ratio.

Here too, we see (in figure 9.21) that best performance is when &, n,
and « all have “small values”.

9.5 Difference in various switch strategies

As mentioned previously we have 4 different simulators, each with dif-
ferent switch strategies (see section 8.1.2).

We had initially planned to simulate the switching technique virtual
cut-through from the start, but we first simulated with store & forward
in the switches, since that was the easiest to implement. Having simula-
tors for both, this gave us the opportunity to investigate the differences,
if any. This is discussed in subsection 9.5.1.

We also thought that adding another pair of buffers in the inter-
faces in the switches would increase performance. It should reduce the
amount of retransmissions. Thus, in subsection 9.5.2 we study the effect
of having an additional pair of buffers in the interfaces in the switches.

9.5.1 Store & forward versus virtual cut-through

The switching technique used on a ring in SCI is virtual-cut-through
(the use of the bypass-fifo). How does the switching technique in the
switches affect performance? We will here discuss the use of store &
forward and virtual-cut-through in the switches.

In both cases we use the simulators that has an extra pair of buffers
in the interface in the switches.

With virtual cut-through the packet is stored only if contention aris-
es. Thus, intuitively virtual cut-through should behave as store & for-
ward when there is high load (see figure 3.7d). At low load virtual cut-
through should only use the buffers sparingly (see figure 3.7e).

Simulation indicates that it is not so simple in reality. We see in
figure 9.23 that as the loading of the network is increased, the difference
in the average latency of the two schemes decreases. Thus, as the load
increases, more packets are buffered in the virtual-cut-through scheme.
Virtual-cut-through approaches store & forward with respect to latency.
But even at the highest loading there is a notable difference between the

Except where the switch/node-ratio is too high (subjectively chosen): (4,4, 1), (3,5,1),
(2,7,2),and (2,8,1).

9.5 Difference in various switch strategies 127

[Mbytes/sec]
[nanosec]
5500.00

p=1
5000.00

4500.00
4000.00
3500.00
3000.00
2500.00
2000.00
1500.00
1000.00

500.00

0.00

140
250 —

340 1D
500 1 XI&
1000 —
2000 —

40000 —

140 — X¥

250 - DR®

340 —

500 —
1000 —
2000 —

40000

kreg/sec

* sf e TH & sf_e L_ave @ w_e_TH B¢ w_e_L_ave

Figure 9.23: A (4,2, 3) with 48 active nodes. The use of store & forward (marked
as sf_e) or virtual-cut-through (marked as w_e) in the switches. The difference in
latency-performance (marked as L) and throughput-performance (marked as TH)
under increasing load. The 3 graphs show the performance when having 1, 2 and
4 outstanding requests, respectively.

[Mbytes/sec] (2,5,3)
%’mnosec]
13000.00
3 p=1 =2 =4
12000.00 —; P E °

1100000
10000.00
9000.00
8000.00 3
7000.00
6000.00
5000.00
4000.00
300000 3
2000.00 -

1000.00 3

R
3

000

10000 —
250 —
340 —
500 —

2000 —

I
=]
=1
<]
«

10000 — P
340 —
500 —

40000

I
=]
=1
<]
«

140

250 —
340 —
500 —
1000 —

kreg/sec

* sf e TH & sf e L _ave ©® w e TH B w_e L ave

Figure 9.24: A (2,5, 3) with 96 active nodes. The use of store & forward (marked
as sf_e) or virtual-cut-through (marked as w_e) in the switches. The difference in
latency-performance (marked as L) and throughput-performance (marked as TH)
under increasing load. The 3 graphs show the performance when having 1, 2 and
4 outstanding requests, respectively.

128 9 Results

two. Since the latency for virtual-cut-through is lower at high loading,
the active node can send more packets, thus increasing the throughput.
When the loading is decreased, the number of packets sent is de-
creasing. The amount of packets sent for both schemes approach one
another, thus the throughput for the two approaches one another.
Figure 9.23 (4,2, 3) is a “small” topology of 48 active nodes. We see
the same trends in figure 9.24, a larger topology of 96 nodes (2,5, 3).

9.5.2 Varying the amount of buffering in the switches.

[Mbytes/sec]
[nanosec]
7000.00 —

p=4

6000.00

5000.00
400000
3000.00
2000.00

1000.00]

0.00 -}

2000 —
40000

2000 —
40000 —

kreg/sec
* w_TH ® w_L_ave & w_e TH B w e L ave q

Figure 9.25: The difference between having, or not having an additional pair of
buffers in the switches. A (5,2, 3) (has 75 active nodes) is shown as an example.
The 3 graphs show the performance when having 1, 2 and 4 outstanding requests,
respectively.

As mentioned previously, we have the possibility of simulating with
the switches having an additional pair of buffers. An interesting point
is to what degree this affects performance. Adding the buffering ca-
pacity should reduce the number of retries. That should increase the
amount of packets sent, which in turn increase the throughput. Also,
since the number of retransmissions should be reduced, the average la-
tency should be reduced.

We see in figure 9.25 that this behavior appears, but only at the high-
est loading conditions. We simulated a (5,2,3) with an extra pair of
buffers in the switches, and a (5, 2, 3) without extra buffering. Both us-
ing the virtual-cut-through switching technique.

We made similar comparisons for (2,2, 3) and (2, 5, 3) and saw similar
trends (not shown). The difference is negligible when the load is less
than 500 — 1000 kilo-requests/second.

9.6 Various levels of locality 129

retransmissions counted during 200 microsec
28000.00 —

E (52,3
26000.00 —

24000.00 E * w_node

22000.00 — & w_CornerR_Inner

20000.00 —3
E & w_CornerR_Outer

18000.00 —
E B w_sum
16000.00 —
E B w_e_node
14000.00 —

E % w_e_CornerR_Inner
12000.00 —

] < w_e_CornerR_Outer
10000.00 — - -

8000.00 > w_e_SUM

6000.00 -

4000.00
2000.00
1 Load
0.00 B ¥ 1 [KiloRequests/sec]

140 250 340 500 1000 2000 40000

Figure 9.26: The amount of busies (as a function of load) counted when simulated
with and without extra buffering in the switches. “node” is the interface of an
active node, “CornerR_Inner” is the interfaces marked as 3,4,5 in figure 8.14,
“CornerR_Quter” is the interfaces marked as 6,7,8 in figure 8.14. The graph shows
the performance when having 1 outstanding request.

Figure 9.26 shows the number of retransmissions counted during the
same simulation (lasts 200 seconds). At high load (e.g. at 40 000 kilo-
requests/second) there is a large difference in the amount of retrans-
missions generated when not having extra buffering (lines marked as
w_SUM or w_e_SUM). A total of almost 27 k retransmissions were gen-
erated when not having extra buffering (at 40 000 Kilo-requests/second).
When an extra pair of buffers per interface were added, this dropped to
about 4 k retransmissions. The simulation period was in both cases
2001 seconds and the loading the same. Note that in both cases the
largest portion of retransmissions was generated inside the “corner-
ring”. This is seen by the lines marked as “CornerR_Inner” in figure
9.26. Thus the corner-rings are the bottlenecks in our method of imple-
menting k-ary n-cubes.

9.6 Various levels of locality

All simulations so far have randomly addressed packets. Packets are
addressed evenly to all parts of the k-ary n-cube.

What performance can we get if we put some degree of “locality” into
the addressing of packets?

With locality we mean that the probability of communication be-
tween two nodes taking place increases if they are physically placed

130 9 Results

Throughput Locality variation for c(2,3,5)
[MBytes/sec]

10000.00

9000.00

8000.00

7000.00

6000.00

5000.00

4000.00

3000.00

2000.00

1000.00

0.00 T

0.00 500.00 1000.00 1500.00 2000.00 2500.00
Latency
° 10% X 50% u 90% [nanosec]

Figure 9.27: Scatter-plot for a ¢(2, 3,5) (has 40 active nodes) with various levels of
locality. Each level of “locality” represents 21 simulation-runs with various loading
conditions. As alarger percentage of packets are addressed within the local vertex,
the average latency decreases, and the maximum total throughput increases.

Throughput

[Mbytes/sec]
20000.00

ocality variation for c(4,2,6)

18000.00

16000.00

14000.00

12000.00

10000.00

8000.00

6000.00

4000.00

2000.00

TR FRTE REEETE FREEY FTNTS FTRTE PRTW RTREE FETRS S

0.00 L e L s e s By e B B B LB B B

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00
Latency

© 10% * 50% M 90% [nanosec]

Figure 9.28: Scatter-plot for a ¢(4, 2,6) (has 96 active nodes) with various levels of
locality.

9.7 Summary 131

“close” to one another. By close we here mean within the same vertex in
the k-ary n-cube. Locality will increase the throughput and decrease the
average latency [Agarwal]. Latency should improve because the risk of
contention and the number of hops is decreased.

In some applications it is reasonable to assume that the program is
divided into several parts, with various amount of communication be-
tween the different parts.

An example of this is if the local processors mostly access data and
instructions in a part of memory that is physically stored in the same
local vertex.

We have studied the effects that locality has on performance by vary-
ing the fraction of packets that are addressed to the active nodes in the
local vertex only. The rest of the packets are addressed at random to all
the other nodes in the topology (including nodes in the local vertex). For
example, in the data marked “90%” in figure 9.27, 90% of packets are
addressed to active nodes in the local vertex. The additional 10% of the
packets are addressed randomly to any part of the k-ary n-cube.

This scheme will probably be further enhanced if we physically sep-
arate the “local” traffic from the more global traffic. To achieve this an
additional ring (within the local vertex) is added to the vertex, reserved
active nodes only. This is scheme B of section 9.3.

Simulations using this model is presented in figure 9.27 (has 40 ac-
tive nodes). We here see that as the degree of locality grows, the varia-
tion in latency decreases. It approaches the average latency of indepen-
dent rings (compare with figure 9.2). In addition, a much larger through-
put is possible with locality (compare figure 9.27 with (2,3,5) in figure
9.19).

We can see the same trend in larger topologies. Figure 9.28 (has 96
active nodes) is an example.

9.7 Summary

Rings are not optimal when they are allowed to grow in size. The latency
grows linearly with the size of the ring. This makes it unsuitable to
use a single ring when a large number of nodes are to be connected. In
addition: Irrespective of applied load, the total throughput figure for a
single ring has a clear upper limit.

When constructing k-ary n-cubes the size of the dimension-rings (k)
and the corner-rings (n 4+ «) should be chosen with approximately the
same value. This gives the best performance. Then the size of the
corner-rings and the dimension-rings are balanced (assuming scheme
A in section 9.3).

The value of & should be held lower than 8 — 10. A further increase in
the value of k gives too much applied load into the system. The number
of vertices connected to the dimension-ring then gets too large.

The range best suited for n is up to approximately 6. Increasing this
value beyond this gives a relatively high latency, degrading the total

132 9 Results

system performance. This mainly because it takes more time to switch
to another dimension instead of continuing in the same dimension (the
favored switch setting -property on described on page 66). One should
also note the dependency between n and «. Since the sum of ¢« and n
gives the number of connected interfaces (nodes and switches) on each
of the corner-rings.

Increasing the number of active nodes in each of the vertices (a) ef-
fectively increases the applied load. If the applications running on a
system can make use of locality, greater values of &k, n, and « can be ac-
ceptable. Another possibility in order to increase the number of active
nodes in each vertex is to put them on an additional ring (scheme B in
section 9.3).

We conclude that none of the rings used to make up the network-
topology should be allowed to have more than approximately 8 — 10 nod-
es or switches connected toit. In addition, each of the rings (corner-rings
and dimension-rings) should be roughly equal in size. In other words:
All ring-sizes should be balanced.

If lower performance (throughput) is acceptable, or locality is ap-
plied, the limitations of the above can be somewhat modified. For in-
stance, by having a large degree of locality, the size of the corner-ring
can be enlarged. In addition, we saw in section 9.6 that this can be en-
chanced if scheme B of section 9.3 is used.

10

Conclusions

This thesis started out as a study of interconnection networks for use in
SCI and as a comparison between SWIPP and SCI.

To study topologies for SCI we decided to build a simulator. The two
most important decisions we had to make were: the type of topology and
the type of switches. After a thorough study we decided to use k-ary
n-cubes made up of 2-port switches.

The SCI standard defines a network interface in a multiprocessor
system. We have seen that SCI works well with the k-ary n-cube topol-
ogy. A routing algorithm for k-ary n-cubes can be made very simple, and
cheap in terms of extra hardware resources. With our implementation
the network is also provenly deadlock-free. We have observed that the
networks are stable under all loading situations, and that they are not
sensitive to any particular statistical distribution. The use of SCI-rings
in k-ary n-cubes has been shown to be a very robust combination. This
is due to the simple routing algorithm, combined with the virtual cut-
through switching technique.

On the other hand, everything is not perfect. The drawback with
our way of implementing k-ary n-cubes is that every corner-ring has a
potential of becoming a bottleneck in the system.

To get the best performance out our topology implementation, one
should carefully balance the sizes of the corner-rings versus the dimen-
sion-rings. A deviation from this rule is if the size of the corner-rings
get beyond a certain limit. If the number of nodes get too large one can
put the active nodes on a separate ring of their own, this giving better
results.

There are two factors that contribute most to improve performance:
more complex switches and locality.

A more complex switch would yield a higher performance than us-
ing our implementation. With complex we mean more input and output
ports and a larger degree of connectivity between them. Thus the study
of larger switches with more connectivity is an important factor worth
further study.

The other means of getting an improved performance is to introduce
locality. When introducing locality in each of the vertices in the network

133

134 10 Conclusions

the overall performance increases. The performance increases with the
increasing degree of locality.

We have verified our simulation model by comparing it with the
roughly similar work done by others. When comparing our single-ring-
simulations with others work, we see that there is relatively little differ-
ence. This is also partly the case when studying more complex networks,
though such a comparison is much more complex.

In all our simulations we have seen that the unloaded latency grows
relatively little with an increase in the topology size. This is a very im-
portant factor in a SCI-system (cache-coherency operations). An equa-
tion giving a first order approximation for the latency with our imple-
mentation of k-ary n-cubes is presented. The throughput is dependent
on the traffic applied and the capacity of the network.

We have shown that large networks connecting up to several hun-
dred active nodes can be built using simple 2-port switches with very
acceptable performance. This thesis has shown some possible solutions
to the design-issues involving such networks. Hopefully we have thus
made a contribution to future uses of SCI.

We have made a rough comparison of SWIPP and SCI, and shown
that both yield an average unloaded latency of roughly 150 cycles for
a network consisting of about a thousand active nodes. The latter is
assuming that both networks are using switches with high connectivity.
Since at present there are no simulation result on the behavior of SWIPP,
it is difficult to say much about the performance under load.

[Agarwal]

[Alnees et al]

[Baltz]

[Bell]

[BlekHag]

[Borrill]

[Bugge et al]

[Carrier]

[Chaik et al]

[Dahl et al]

[Dally87]

[Dally90]

Literature

Agarwal, A. : “Limits on Interconnection Network
Performance” IEEE Trans. on Parallel and Distributed
Systems, vol. 2, No. 4, Oct 1991

Alnaes, K. & Rongved, E. & Kristiansen, E.: “Chip Set
for Scalable Coherent Interface” Open Bus Systems 91 —
Proceedings, page 209

Baltzersen, P. M. Lie: “Svitsjenoder for et Pakkesvitsjet
Multiprosessornett”. Master thesis (in Norwegian), De-
partment of Informatics, University of Oslo, August 1989.

Bell, Gordon: “Ultracomputers: A terraflop before its time”
Communication of the ACM, pages 27-47, Aug. 1992

Ingeborg Blekastad & Monica Hagen: “Protokollmaskin,
en kommunikasjonsenhet for en hgyhastighets multipros-
essor”. Master thesis (in Norwegian), Department of In-
formatics, University of Oslo, January 1990.

Borrill, Paul:“High-speed 32-bit buses for forward-looking
computers”. IEEE SPECTRUM dJuly 1989

Bugge, Hakon & Kristiansen, Ernst & Bakka, Bjgrn:
“Trace Driven Simulations For A Two-Level Cache Design
In Open Bus Systems” Procceedings of the 17th Annual
International Symposium On Computer Architecture,
Seattle Washington, May 28-31, 1990

Carriero & Gelernter: “Linda in context” Communication
of the ACM, pages 444-458, April 1989

Chaiken D., Fields C., Kurihara K. & Agarwal A.:
“Directory-Based Cache Coherence in Large-Scale Multi-
processors” IEEE COMPUTER, June 1990

Dahl, O.J. & Myrhaug, B. & Nygaard, K. : “Simula 67
Common Base” Norwegian Computing Center, Oslo 1968

Dally, W.J.: “A VLSI Architecture for Concurrent Data
Structures” ©1987 by Kluwer Academic Publishers, ISBN
0-89838-235-1

Dally, V. J.: “Performance Analysis of k-ary n-cube
Interconnection Networks” IEEE Trans. Comput., vol. 39,
No. 6, June 1990

135

136

[Dally91]

[DallySeitz]

[DawDob86]

[DawDob87]

[El1AmSha]

[EsvSchrg]

[Feng]

[Goor]

[Gustavson]

[Gustav]

[HulBot]

[HwaBri]

[IEEE-SCI]

[James et al]

[JohnGood]

Dally, V. J.: “Express cubes: Improving Performance
of k-ary n-cube Interconnection Networks” IEEE Trans.
Comput., vol. 40, No. 9, Sept. 1991

Dally & Seitz: “Deadlock-free message routing in
multiprocessorInterconnection Networks” IEEE Trans.
Comput., vol. 36, No. 5, May 1987

Dawson & Dobinson:“A Framework for computer design”.
IEEE SPECTRUM Oct. 1986

Dawson & Dobinson:“Buses and Bus Standards”.
Computer Standards & Interfaces, Vol.6, No.4, 1987.

El-Amawy, Ahmed & Shahran, Latifii “Properties
and Performance of Folded Hypercubes” IEEE Trans.on
Parallel and Distributed Systems ., vol. 2, No. 1, Jan. 1991

Runa Esvall & Anne Schrgder Bonde: “Protokollmaskinen
PE”. Master thesis (in Norwegian), Department of
Informatics, University of Oslo, august 1992

Feng, Tse-yun: “A survey of interconnection networks”.
IEEE COMPUTER, Dec. 1981

Goor, A.J. van de: “Computer Architecture and Design”
©1989 by Addison-Wesley Publishing Company, Inc.

Gustavson, David:“The Scalable Coherent Interface and
Related Standards Projects”. IEEE Micro Feb. 1992

Gustavson, David:“ SCI is Approved”. An electronic mail
distributed to the SCI-community, dated Thu, 19 Mar
1992

Bothner, John W. & Hulaas, Trond Ivar: “Various
interconnects for SCI-based systems” Open Bus Systems
91 — Proceedings, page 197

Reprinted in appendix C

Hwang, Kai & Briggs, Fayé A.. “Computer Architecture
and Parallel Processing” ©1984 by McGraw-Hill, Inc.

IEEE: “The Scalable Coherent Interface” IEEE Std 1596-
1992

James D., Laundrie A., Gjessing S. & Sohi G.: “Scalable
Coherent Interface ”, IEEE COMPUTER, June 1990

Johnson, R. & Goodman, J.: “Synthesizing General
Topologies from Rings” Article submitted to ICPP 1992,
Internet: pipe.cs.wisc.edu — /TRs/rings.ps

137

[Karlsen]|

[KerKlein|

[KrisBotHul]

[La et al]

[Larsen]

[Leighton]

[Lundh]

[Matloff]

[NerSmaTor |

[PatHen]

[Roseth]

[ScGodVe]

[ScottGood]

Karlsen, Frode Redigh: “Et hgyhastighets, fiberoptisk fler-
prosessornett”. Master thesis (in Norwegian), Department
of Informatics, University of Oslo, October 1989.

Kermani & Kleinrock: “Virtual cut-through: A new
computer communication switching technique” Computer
Networks vol. 3, pp. 267-286, 1979

Kristiansen, E. & Bothner, J. & Hulaas, T. : “Behaviour of
Scalable Coherent Interface in larger systems” Proceedings
CAMAC ’92, Reprinted in appendix C

Larsen, Liao, Lundh, Sgrasen & @stby: “SWIPP -
Switched Interconnection of Parallell Processors”. Depart-
ment of Informatics, University of Oslo. Internal paper
1991

Larsen, @ystein Gran: “Development and emulation of in-
teraction mechanisms for a heterogeneous multicomputer”.
Ph.d thesis, Department of Informatics, University of
Oslo, October 1991

Leighton, F. Thomson: “Introduction to Parallel Algo-
rithms and Architectures” ©1992 by Morgan Kaufman
Publishers

Yngvar Lundh: “Skisse av multiprosessorstruktur”.
Internal paper, October 1987, Department of Informatics,
University of Oslo

Matloff, Norman: “An Argument Against Scalable Cache
Coherency”, Computer Architecture News Jun 01 1991 vol.
19 no. 4 page 117

Nergard, R. & Smaéstuen, S. & Torp, P. H. : “SWIPP’em”.
Master thesis (in Norwegian), Department of Informatics,
University of Oslo, august 1992

Patterson & Hennessy: “Computer Architecture: A quan-
tative approach” ©1990 by Morgan Kaufman Publishers

Roseth, @yvind: “Brokobling mellom et multicomputer-
nettverk og et lokalt nettverk”. Master thesis (in Norwe-
gian), Department of Informatics, University of Oslo, Au-
gust 1991.

Scott, S. & Goodman, J. & Vernon, M..: “Analysis of the
SCI Ring” Tech report #1055 University of Wisconsin-
Madison, November 1991

Scott, S. & Goodman, J.: “Performance of Pipelined K-
ary N-cube Networks” Tech report #1010 University of
Wisconsin-Madison, February 1991

138

[Seitz]

[Shannon]

[ShMayTho]

[Siegel]

[Stenstrom |

[Stroust]

[StrouSho]

[Tanen89]

[Tanen90]

[Quinn]|

[@stby]

Seitz, Charles L.: “The Cosmic Cube” Communication of
the ACM, pages 22-33, Jan. 1985

Shannon, R. E. : System Simulation, the art and science
©1975 by Prentice-Hall, Inc.

Sheperd, Roger & May, David & Thompsom, Peter :
“Transputers and Routers: Components for Concurrent
Machines” Inmos internal note dated Aug 28, 1991

Siegel, Howard Jay: “Interconnection Networks for Large-
Scale Processing” ©1985 by D.C. Heath and Company -
Lexington Books

Stenstrom, Per: “A survey of Cache coherence Schemes for
Multiprocessors” IEEE COMPUTER, June 1990

Stroustrup, Bjarne: “The C++ Programming Language”
©1986 by Addison-Wesley Publishing Company, Inc.

Stroustrup, Bjarne & Shopiro, J. E.: “A Set of C++ Classes
for Co-routine Style Programming” AT & T C++ Language
System Release 2.0, Library Manual

Andrew S. Tanenbaum: “Computer Networks”. ©1989 by
Prentice-Hall, Inc.

Andrew S. Tanenbaum: “Structured Computer Organiza-
tion 3rd. ed.”©1990 by Prentice-Hall, Inc.

Quinn, M. J.: “Designing Efficient Algorithms for Parallel
Computers” ©1987 by McGraw-Hill

Dstby: “Definition of some of the cuts in the MultiComputer
Network: Draft 2.0”. Internal paper, November 1990,
Department of Informatics, University of Oslo

agent, x

blocking, 22
busies, x
butterfly, 21

coherence, x
corner-ring, 71
coupling, 8
crossbar, 20

diameter, x, 28
dimension-ring, 71
dynamic, 18

flit, x
Flynn, 7

grain-size, 6
indirect, 21
latency, x

message passing, 9
MIMD, 8

MISD, 7

move64, 88
multi-stage, 20
multicomputer, 9
multiprocessor, 9

Index

139

multistage, 21

nic, 68

node, x

node-ring, 71
non-blocking, 20, 22
nr, 72

requester, x
responder, x
ringlet, xi

scalable, xi
shared memory, 9
SIMD, 7
single-stage, 20
singlestage, 20
SISD, 7
snooping, 12
speedup, 6

static, 18

symbol, xi

throughput, xi
transaction, xi

vertex, xi
von Neuman, 3

von-Neuman bottleneck, 4

140

Appendix

A

Bus standards

SClis a standard with the scope of replacing buses in many applications.
It is therefore natural to take a look at some previous and existing bus
standards

Until the 1980’s most computer buses were proprietary. But gradu-
ally the demand for standardization has come about [DawDob86, Daw-
Dob87, Borrill, Tanen89].

For a bus to become a formal standard (standard de jure) it has to be
approved by one of the standardization organizations. These are both
national and international. International standards are produced by
ISO (International Organization for Standardization) and the IEC (In-
ternational Electrotechnical Commision), the latter which has its roots
in the industry. Sorting under ISO are all the national members, like
ANSI (American National Standards Institute), BSI (Great Britain),
AFNOR (France), and DIN (Germany). Under IEC are several national
committees. ISO and IEC communicate through JTC1 (Joint Techni-
cal Committee on Information Technology). Another major contestant
in international standardization is the IEEE (Institute of Electrical and
Electronic Engineers)

Standards come about in at least three ways:

1 Proprietary buses become standards de facto, by widespread use.
DEC’s Unibus and the IBM PC bus are well-known examples.

1 The owners of proprietary buses suggest that their bus be adopted
as a formal standard by an international standard organization.
This is the case for the GPIB bus, originally developed by Hewlett
Packard, the VMEDbus from Motorola, Multibus from Intel, Nubus
from Texas Instruments, among others.

'd Special-interest-groups who are manufacturer-independent take
the initiative to develop a standard, under the guidance of an inter-
national standard organization. Manufacturers are encouraged to
freely use such standards for their products. Since such standards
are developed as standards from the beginning, they more easily
approach an optimal solution. Examples of such standards include
CAMAUC, Fastbus, Futurebus, and SCI.

143

144 Appendix A Bus standards

IEC
JTC1 —

National members, e.g. :
BSI DIN

National committees

|EEE
(individual membership)

Figure A.1: The relationship between various standard organizations.

There are many standards, partly because different applications re-
quire buses with different characteristics, at least if some optimum per-
formance is asked for. Some types of buses:

d A memory bus is used to take care of communication between pro-
cessor and memory. Often called the “internal bus”.

1 An /0 bus, also called a peripheral bus, is used to connect a com-
puter system to its discs and tape storage.

d An instrumentation busis a bus tailored for measurement and con-
troll devices in a laboratory environment.

1 A system bus is a general-purpose backbone bus to connect proces-
sors, memory, and peripherals together.

1 There are also developed buses for special applications. An ex-
ample is Fastbus, developed for data acquisition in high-energy
physics.

An overview of some of the more successful bus standards:

Unibus was a de facto system bus standard, introduced by DEC in the
late 1960’s for the PDP11. It was perhaps the first widespread bus
standard.

GPIB (IEEE 488, General Purpose Instrumentation Bus). It is maybe
the most popular instrumentation bus, developed by Hewlett Pack-
ard.

CAMAC (IEEE 595,596..., Computer Aided Measurement and Control)
is another instrumentation bus, favored for data acquisition in
physics.

IBM PC bus is a de facto standard for the IBM PC and its clones.

145

Multibus (IEEE 796) is a popular bus for microprocessors from Intel.

VMEDbus (IEEE 1014) is a popular system bus from Motorola. It was
originally intended for the MC68000, but is now used in a much
wider scope.

Fastbus (IEEE 960) is a high-performance instrumentation bus, devel-
oped for high-energy physics.

SCSI (ANSI). Small Computer System Interface. A very popular I/O
bus.

S-bus is a de facto standard made for SUN’s SPARC architecture.
Turbochannel is a de facto standard from DEC.

Futurebus (IEEE 896) is a high-performance system bus designed for
multiprocessing. It has protocols to maintain cache coherence. De-
veloped by IEEE, it is the first standard to use “hard metrics” ! in
its mechanical specification.

!The distance between the connector pins is 2 mm and the board size come in
multiples of 600 mm.

B

Tools

There are four different concepts we wish in a language to implement
our simulator:

'd Object-oriented. The real world is mostly considered to be made
up of objects, this is also true for multiprocessors. The following
is naturally considered as objects in our simulator: a queue, a fifo-
register, a latch, a piece of wire, a complete computer, a set of pro-
cessors and even a process itself can be viewed as an object. Object-
orientation has become very “trendy” in the last years. Neverthe-
less, here at Institute for Informatics there is a 20-year-old tra-
dition for object-oriented programming! Another advantage with
object-oriented code is that it is much more “cleaner”, it is more
easily read.

‘A Capable of partial parallelism. We wish to see how different nodes
communicate with each other. These nodes are intelligent” de-
vices, at least they are independent of each other. They each take
some initiative at "unpredictable” times. This demands that differ-
ent parts of our program show a level of independence with respect
to each other.

1 Acceptable speed.

1 Portability. The simulator should execute on various architectures.
A minimum was that it could execute on “sparcs” and “dec-stat-
ions”, which are the work-stations used at Institute for Informat-
ics.

With these four concepts in mind we have considered the following:

Simula We have a strong tradition for programming in Simula here at
the Institute for Informatics. It was developed not too far from
here, at “Norsk Regnesentral” in the late ’60s. It seems to be
ideal for simulation purposes: it is completely object-oriented, has

146

147

coroutines !, is strongly typed, has a wide range of statistical func-
tions, and has a rather comfortable “run-time-system” (garbage-
collector). Its major fault is its relatively slow execution-speed.

C & LWP The Lightweight Process (LWP) Library is a coroutine-library
from Sun for programming in a C environment. The main draw-
back is that C is not an object- oriented language.

C++ C++ is object-oriented and fast. Since it is syntactically similar to
C, it has become very widespread in use. For an introduction to
C++, see [Stroust].

C++ & Smurph A community at the University of Manitoba, Canada,
has made a rather comfortable C++- environment for simulating
LANs. The main problem is that it is too comfortable, that is, it
is difficult to see what the code is really doing. It is also too LAN-
oriented for our purpose.

C++ & tasks The task-library [StrouSho] is useful for implementing
coroutines. It is provided with the AT&T CC compiler and the
Objectworks (OWC from ParcPlace Systems) programming envi-
ronment for C++. To our knowledge only available on the “sparc”-
architecture.

We early decided to use C++, the only object-oriented language with ac-
ceptable execution-speed. The compiler we finally decided to use was
“g++” from the “Free Software Foundation”. This compiler is available
on most architectures.

!Coroutines is a mechanism which allows the programmer to have multiple
“threads of control”. The threads runs in a quasi-parallel manner. In other words
the thread of control can be switched between the various parts of the program, each
with its own stack of private data and program counter.

C

Articles

In November 1991 we attended the conference “Open Bus Systems ’91”
in Paris, arranged by the “VFEA International Trade Association. There
we had the chance to present some of our work to a wider audience.
We also wrote an article which was printed in the “proceedings” of the
conference. Since it is related to the contents of this thesis, it is included
in the following pages.

148

Various interconnects for SCl-based systems

Bothner, John Weding & Hulaas, Trond Ivar
University of Oslo/ Dolphin Server Technology

September 13, 1991

Abstract

Inthispaper wewish to show some of thepossible
ways in which small SCI-rings can be connected
together to form large systems of switches, pro-
cessors and memories.

Choosing a topology is very much dependent
of theuse of the network. A general multiproces-
sor requires an entirely different system than for
example a data acquisition system. The topolo-
gies mentioned in this paper are relevant to gen-
eral multiprocessors.

The authors are currently implementing asim-
ulation model for some of these topol ogiesas part
of their thesis.

1 Introduction

The Scalable Coherent Interface (SCI) — IEEE
P1596 — is a high performance interface standard
for multiprocessors. The nodes communicate by
sending packets on unidirectional point-to-point
links. Each link consists of 18 hit-lines, 16 for
data, 1forflagand 1for clock. Thelinesbetween
nodes in the figures represent such alink. They
are capable of an output of 1 GigaByte/second. !
The nodes can consist of a processor with no
memory, memory banks only, or a mixture of
both.

SCI can be configured in many ways. The
basic configurationisasimplering. Seefigurel.

For a complete presentation of the SCI-protocols and
the physical interface please read [1] and & so other papers
in this Proceedings.

N N

—_—

Figure 1: A simple ring-configuration with 6
nodes.

B ———

N N

Simulations we have done show that a ring-
configuration becomes saturated as more nodes
are put on the ring. See figure 2. As the
number of nodes increase the data-emission-
rate per node will rapidly decrease from the
theoretical upper limit of 1 GigaBytes/second.
The total throughput of the ring remains stable
at about 1.8 GigaBytes/second. The theoretical
limit is 2 GigaBytes/second, because on aver-
age each packet traverse only halfway around the
ring. Figure 2 also shows that transmission-time
(queue time in the nodes + transmission time on
the ring) obviously increase as the number of
nodes increase. The results are preliminary. It
does not, for instance take into account the over-
head of packet-headers. Also, the results are
“worst-case” since the nodes always transmit if
it gets the chance. But the trend in the figureis
clear enough.

OPEN BUS SYSTEMS'91

Peris, 26-27 November 1991

Throughput & Transmission-time of ring

Y x 10

2.00. it of th

oughput for ring

Theoretical li

1.80

1.60.

140

1.20

Theorgtical limit of throughplt for single n,ode.u"“u‘

1.00-

0.80

0.60

0.40

0.20

~—

0.00 500 1000 1500 2000 2500 3000 3500 40.00

Number of nodes on ring

—— Throughput per node Y is in Megabytes per second
Y is in Megabytes per second

Y is number of clockcycles

--- Throughput of ring
Transmission-time

Figure 2: Results of the simulation of a ring.

Thusbandwidth—and transmission-time—lim-
itationsbecome aproblem asthe number of nodes
on aring increase. The solution to this problem
is to have many small rings instead, these be-
ing connected together with switches. Figure 3
isasmall example of an interconnection network
with 7 (very) small rings connected by 2 switches.
In this paper we will present various ways of
implementing this interconnection network with
switches as defined by the SCl-standard. In al
thefiguresan’ N’ indicates either amemory-node
or a processor-node. An’'S' indicates a switch.
Sometimes we will be more explicit and write
"M’ for a memory-node and ' P’ for a processor-
node.

When designing a network for multiproces-
sors there are several aspects to consider. It
is desirable to have a high rate of connectivity
(number of hops between any nodes). This can
be achieved by either having a large number of
links connecting each node or a large number of
switches. Either extremes will be rather expen-

T
T T

Figure 3: A simple switch-configuration with 2
switches and 6 nodes. All the pairs of arrows is
a logical ring.

Due to pinout-limitations there is also a limit to
the number of links connected to a switch, if
implemented on one chip. Thus the maximum
number of SCl-interfaces in a single-chip SCI-
switch is probably 4.

We also want to avoid “hot spots’. Thus we
have to spread the memories among the proces-
sorsin the network as much as possible.

The switches mentioned here are able to con-
nect 2-4 SCI-rings, thus they have 2-4 SCI-
interfaces. The switches are shown somewhat
abstractly in figures4 and 5. Such switches have
yet to be designed.

O S
O Q
H 3 1 - 1 o H
Ringl| & ' Switch g Ring 2
e L D

Figure4: A 2-port switch connecting 2 rings.

2 Topologies
There are innumerable ways of using SCI as

sive, so a solution in between should be chosen. an interconnect for multiprocessors. Here we

2

OPEN BUS SYSTEMS’91

Peris, 26-27 November 1991

=

SCl-interface
—
—_—
@ Q
@) 5]
< £ Ring 2
. 3
Ring 4 g Switch L
o T
8 Q B ——
- 0]
SCl-interface

B

Figure5: A 4-port switch connecting 4 rings.

will consider threerelatively well-known topol o-
gies for computer-architectures. meshes, k-ary
n-cubes, and hypercubes. These are relatively
well understood in the literature, and are scal-
able.

21 Mesh
A possible “mesh” -configuration is shown in
figure 6. The switches can either have 2 ports
or 4 ports. The 2-port switch would probably be
cheapest, and maybe aso fastest. With a 4-port
switch a packet does not have to risk traversing
on average halfway around a ring, but because
of some more queueing delay, it is uncertain that
it is faster than a 2-port switch. This needs to
be simulated before we can say anything of cer-
tainty.

In figure 6, 'N’ represents a single mem-
ory, or a single processor, or a ring of proces-
sors/memories/combined.

2.2 k-ary n-cubes

k-ary n-cubes[2], [3]have been used successfully
in machines such as the Connection Machineand
the Cosmic Cube. It offers the possibility of al-
ternate paths and can be made deadlock free. It

Figure 6: A mesh-configuration. All the nodes
can be a single processor or memory, or a ring
with both.

is constructed of cubes with dimension » and %
switches in each dimension. The relation be-
tween dimension (n), radix (k) and total number
of switches (V) are as follows:

N =k* (k= ¥/N,n =log,N)

Using large radix & (in SCI the number of
switches on a ring) with low n makes it easy
to construct and scale rather large structures.
With low dimensionality the complexity of the
switches are reduced, but the number of hops
may increase. The opposite, asmall £ and alarge
n, may reduce the number of hops but demands
more complex switches. It has been shown [2]
that low-dimensional networks will outperform
(run faster and cost less) high-dimensional net-
works with the same bisection width?. You have
three basic k-ary n-cubes:

Unidirectional.
Figure 7 showsaunidirectional 4-ary 2-cube
using 2-port SCI-switches. The nodes (pro-
cessors and memories) can be connected in
the shown rings as in aternative 1. Alter-
natively on separate rings connected to the

2The bisection width [4] of a network is the minimum
number of wires cut when the network is divided into two
equal halves.

OPEN BUS SYSTEMS'91

4-ary 2-cube with a 2-port SCl-switch (a-
ternative 2).

If 4-port SCl-switches are used then 2
moreinterfaces(=- 2 morerings) per switch-
ing node is made available. The memories
and processors should then be put on these
extrarings.

The constraining of the number of ports
on a switch to 4, will allow the use of up
till 4 dimensions (» = 4) using an arbitrary
radix k. To ensure that this structure can
be made deadlock free the number of in-
put/output queues must be larger than one.

alternative 2 alternative 1

U

@ : Sci-switch Dimension 0

Figure 7: A unidirectional 4-ary 2-cube.

Torus connected bi-directional.

Figure 8 shows a torus connected bi-
directional 4-ary 2-cube. It has two chan-
nelsin oppositedirectionsbetween each pair
of connected nodes. Thus the number of
hops from source to destination node can
be halved, at the cost of using more com-

Peris, 26-27 November 1991

plex switches. Another point in using bi-
directionality is a better exploitation of the
locality of communication. When node A
sends a message to node B, node B will a-
ways have to send a response message back
toA.

It is here necessary to use 4-port SCI-
switches in the switching nodes shown in
figure 8. In order not to saturate the rings
shown only 2-port switches should beadded.
To these new switches, rings of processor-
nodes and memories are connected.

Dimensionl

il

s
-t
Sl eIE 'S
i
U ENS/EENG) E\),

;5“

@ : Switch Dimension 0

Figure 8: A torus connected bidirectional 4-ary
2-cube.

Mesh connected bi-directional.
If you eliminate the end around links in a
bidirectional k-ary n-cube you get a mesh
connected k-ary n-cube. But this modifica-
tion has the penalty of doubling the longest
path in the network and aso resulting in a
loss of symmetry.

OPEN BUS SYSTEMS’91

2.3 Binary hypercubes

Binary hypercubes is a subset of k-ary n-cubes
where k£ = 2, that is to say there are 2 vertices
for each dimension in the cube. There are a
total of N = 2" vertices in a hypercube. That
is where to put the switching nodes. Using a 4-
port switch implies a maximum dimension of 4
(= N =2* =16 vertices).

To expand beyond 4 dimensions it is possi-
ble to combine 2 or more 4-port switches to
“build” larger switches. For instance, to con-
struct a switch to connect 6 rings (6 dimensions)
one could combine 2 switches as shown in fig-
ure 9. The relationship between the number of
switches (5) and dimensions (D) is: D = 25 +2.
The drawback with such constructs is increased
path-length and increased queueing delay.

ERENE

6 3
B — - -

T sl T 41
Figure9: Connecting 6 dimensions (= 6 rings).

Note that the connection between the 2 switches
is a small SCl-ring, logically.

An interesting variation of the binary hyper-
cubeisthe cube-connected-cycle[5] [6]. Ateach
vertex in the hypercube aring of 2" switches is
inserted, where r is any integer. Note that if
r = 0 we have an ordinary binary hypercube. A
decrease in r (for a given number of vertices,
and keeping N constant) results in a cube-like
appearance, an increase resultsin amoreringlike
appearance.

A possible SCl-implementation of the cube-
connected-cycle is shown in figure 10 for 3 di-
mensions. The “corner-ring” does not necessar-

Peris, 26-27 November 1991

ily have 2" switches. Each of the 6 surfacesisa
ring. At the corners of the cube 3 surfaces meet.
They are connected to a “corner-ring” through
2-port switches, as shown in figure 11. These
corner-rings should contain only switches, not
processors and memories, so as to reduce the
possibility of it becoming a*“hot spot”.

This is relatively straightforward to extend to
more than three dimension by increasing the
number of switches on the “corner-ring”. For
an increase in number of dimensions by one, a
new surface is attached to the “ corner-ring”.

An alternative, shown in figure 10, is to have
SCl-rings along the edges of the cube.

"corner-
ring"

Q.-Edge-rlng"

-alternative

Figure 10: A cube-connected-cycle in 3 dimen-
sions where the 6 surfaces are rings of nodes.
The corners are shown in figure 11. An alterna-
tive is to have rings of nodes along the edges,
instead of in the surfaces. This is shown with a
lighter brush in the figure.

3 Conclusion

Simulation-results show that to build large sys-
tems with SCI, one ring is not enough. Multi-
ple rings must be used, connected together with
switches. Future work will consist of the simu-
lation of these scalable systems of meshes, k-ary
n-cubes, and hypercubes.

OPEN BUS SYSTEMS'91

|

"surface-rings" S
or =
"edge-rings" —

"corner-ring"

// \

Figure 11: Connecting dimensions in a cybe-
connected-cube for 3 dimensions.

If you have any questions, please contact us,
either by electronic mail:

trondh@ifi.uio.no & johnb@ifi.uio.no
or by ordinary mail:

Bothner/Hulaas

c/o Saraasen

Institutt for Informatikk

Universitetet i Odlo

Pb. 1080, Blindern

0316 OSLO 3

Norway

4 Acknowledgments

We would like to thank our advisors Ernst Kris-
tiansen and Oddvar Sgraasen for their help with
the preparation of this article. We would also
like to thank Sverre Johansen and Stein Gjessing
for enlightening discussions regarding SCI and
parallel processing.

References
[1] The Scalable Coherent Interface, DRAFT

Peris, 26-27 November 1991

1.0, Jan. 1991, |EEE P1596 working group

[2] W. J. Dally, “Performance Anaysis of k-
ary n-cube Interconnection Networks’ |EEE
Trans. Comput., vol. 39, No. 6, June 1990

[3] Dally and Seitz, “Deadlock-Free Message
Routing in Multiprocessor Interconnection
Networks’ IEEE Trans. Comput., vol. 36,
No. 5, May 1987

[4] C. D. Thompson, “A Complexity Theory of
VLSI” Dep. Comput. Sci., Carnegie-Mellon
Univ., Tech. Rep. CMU-CS-80-140, Aug
1980

[5] Preparata and Vuillemin, “The Cube
Connected Cycles. A Versatile Network for
Parallel Computation”, Communication of
the ACM, May 1981

[6] Haynes, Lau, Siewiorek, Mizell, “A Survey
of Highly Parallel Computing,”, Compulter,
vol. 15, No. 1,January 1982

The following article is written by Ernst Kristiansen. It was pub-
lished in the proceedings of the conference CAMAC ’92 ! | arranged in
Warsawa in September/October 1992. The topic of the article is mostly
based on the contents of this thesis. We therefore find it natural to in-
clude it in the appendix. It also serves as a rough summary of this the-
sis.

!Arranged by the Polish CAMAC committee. CAMAC is a bus standard (see
appendix A).

155

156 Appendix C Articles

D

Use and modifications of
program

This is meant to be a short introduction to those who wants to use the
simulators. It is assumed the reader is familiar with compiling (using
Make) and running a program in a UNIX environment.

D.1 Porting programs

The source code is available to all. To get a copy, please contact us.

Most of the code should compile with the g++ compiler from gnu.
The X11 window interface demands the Athena widgets library together
with a full X11 library release (X11, Xt etc.). The statistical routines is
linked from the Simula library. To port to something else, they should
be changed to something available on your own system. The class using
them is defined in the file main.H. It concerns particularly the routines
rnegexp and rnormal. The GNU C++ -library has routines that should
be available to most. We advice you use them.

In addition to the simulator there are some programs to generate the
appropriate topology-files read by the simulator. The topology-programs
(section D.4) should compile easily with the g++ — compiler from GNU.

All delay/time parameters is in clock cycles. Every clock cycle is 2
nanoseconds.

D.2 Options

Each simulator read the command input line to decide it’s behavior. The
command line options are as follows.

-1 filename Input topology file. See section D.4 on how to make these
files.

-0 filename Output result file.

-t number Simulation time in clock cycles.

167

168 Appendix D Use and modifications of program

-p number Number of outstanding transactions.

-j number The interval which decides the frequency of packets sent
from each node (using uniform distribution). See section 8.6 for
an explanation of the p and j parameters. number is the upper
limit of the interval to draw from.

-x Pops up a window for each SCl-interface on a X-terminal, showing
the contents of each interface (node/switch), if program is compiled
with X11-options (see section D.5).

-1 number Simulate with various degree of locality-addressing (see sec-
tion 9.6). The degree of local addressing is number percent. Must
be compiled with LOCAL_ADDR_CORNER set (in the makefile).
Only implemented in the simulator for virtual-cut-through with
extra buffer.

-negx number Use the negative exponential distribution to vary load-
ing conditions, with mean set to number. Only implemented in the
simulator for virtual-cut-through with extra buffer.

-norm number Use the normal distribution to vary loading conditions,
with mean set to number. Only implemented in the simulator for
virtual-cut-through with extra buffer.

D.3 Defined constants

In addition to the options previously described, there are several defined
constants in the source code. They specify additional parameters. These
are collected in the file: defs.H. To have any affect on the behavior of the
simulator one has to recompile the source code. An exception from this
is MAXNODES which is defined in the file: main.H.

defs.H: #define CPU_PROS_TIME 100 The time in clock cycles the
nodes needs to process an incoming request and produce a response.

defs.H: #define PACK_ARRAY SZ 10000 For debugging purposes
(#ifdef END DEBUG). To examine packets remaining in the net-
work when the simulation is ended. It is printed into a log-file at
the end. Allows 10000 packets to be active and registered in the
network at any time.

defs.H:7:#define Link Delay 2 The delay in time introduced by tra-
versing the links between nodes.

defs.H:8:#define Bypass Delay 5 The time to pass through the by-
pass-fifo pluss the 1 extra cycle delay introduced by the fifo itself.
The physical delay is then 6 cycles.

defs.H:9:#define Switch Delay 10 The time to pass through a switch
pluss the 1 extra cycle delay for the fifo. The physical delay is then
11 cycles.

D.5 Compiling the programs 169

#define BIDIR 1 Uses the routing algorithm for a bi-directional k-ary-
n-cube, when BIDIR is defined.

#define 2500 MAXNODES is the maximum total number of interfaces.
If you wish to simulate larger networks with more interfaces, this
constant must be increased. Note then that your computer will
have to have a very large memory.

D.4 Making topologies

For a simulator to run, it must have an input-file describing the network.
These input-files are made by different, smaller programs, depending of
the type of network:

Rings To construct a network with a single ring, use the program ring-
only-gen.
prompt> ring-only-gen X
where x is the size of the ring. The result is a file with name:
ringxnodes.top.

k-ary n-cube with the active nodes in the corner-ring To produce
k-ary n-cubes with the nodes placed in the “corner-ring”(see section
7.1.2.1 and figure 7.5a), the program nodes-in-corner is used
thus:

prompt> nodes-in-corner -kc-nd-ae

where ¢ is the k-value, d is the n-value, and e is the number of
active nodes in each vertex. The result is a file with name:
node-in-cornercarydcubeenodes.top.

k-ary n-cube with the active nodes in an extra ring To produce k-
ary n-cubes with the nodes placed in a separate ring (see section
7.1.2.1 and figure 7.5b), the program nodes-in-corner is used
thus:

prompt> corner-gen -kc-nd-ae
where ¢ is the k-value, d is the n-value, and e is the number of
active nodes in each vertex. The result is a file with name:
cornercarydcubeenodes . top.

“Bidirectional” k-ary n-cube To construct k-ary n-cubes with bidirec-
tional links as described in section 7.1.3, use the program long-
switch-gen:

prompt> long-switch-gen -kc-nd-ae
where c is the k-value, d is the n-value, and e is the number of ac-
tive nodes in each vertex. The result is a file with name:
long-switchcarydcubeenodes.top.

The simulator must then be compiled with #define BIDIR 1
set.

170 Appendix D Use and modifications of program

D.5 Compiling the programs

With each simulator there are two make-files. These files contains the
instructions how to compile the complete program using the make pro-
gram. make allows an automatic compilation of programs. For further
information see the manual pages under an Unix system.

One file is for compiling the simulator with the X11 display routines.
It is the XMakefile. It uses the AT&T CC compiler. The other one is the
Makefile, compiling the program without the possibility to use X11 to
display the action. It uses the g++ compiler.

To use either of these makefiles, one types:

prompt> make -f XMakefile

or

prompt> make

(make reads from the file; Makefile; on default).

	Contents
	List of Figures
	List of Tables
	Glossary
	1 Introduction
	2 A Brief introduction to parallel processing
	2.1 vonNeuman
	2.2 Goal: Faster computers
	2.3 The basics of parallel processing

	3 Interconnection Networks
	3.1 Static and dynamic topologies
	3.2 Deadlock
	3.3 Switching techniques
	3.4 Relationship with software

	4 The k -ary n-cube interconnection network
	4.1 Properties of k -ary n -cubes

	5 The Scalable Coherent Interface
	5.1 SCI basics
	5.2 Physical Part
	5.3 Protocols
	5.4 Cache coherence
	5.5 Other SCI-related projects

	6 Swipp & SCI
	6.1 Presentation of SWIPP
	6.2 Comparative study of SWIPP and SCI
	6.3 k -ary n -cubesimplementedinSWIPP&SCI

	7 Topologies using SCI
	7.1 Synthesizing k -ary n -cubeswithSCI-rings
	7.2 Other topologies

	8 Construction of the simulator
	8.1 Classes and functions
	8.2 Various development problems
	8.3 Priority
	8.4 Bandwidth arbitration on the rings
	8.5 Routing
	8.6 Variation in the network load
	8.7 Gathering statistics
	8.8 Constructingnetworks
	8.9 X11-animation
	8.10 Randomization

	9 Results
	9.1 Simulation of a single ring
	9.2 Statistical distributions
	9.3 Placement of the active nodes
	9.4 k -ary n -cubes
	9.5 Difference in various switch strategies
	9.6 Various levels of locality
	9.7 Summary

	10 Conclusions
	Literature
	Index
	Appendix

