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Abstract

Deep learning methods hold strong promise for identifying biomarkers for clinical appli-

cation. However, current approaches for psychiatric classification or prediction do not

allow direct interpretation of original features. In the present study, we introduce a

sparse deep neural network (DNN) approach to identify sparse and interpretable fea-

tures for schizophrenia (SZ) case–control classification. An L0-norm regularization is

implemented on the input layer of the network for sparse feature selection, which can

later be interpreted based on importance weights. We applied the proposed approach

on a large multi-study cohort with gray matter volume (GMV) and single nucleotide

polymorphism (SNP) data for SZ classification. A total of 634 individuals served as
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1734853; Norges Forskningsråd, Grant/Award

Number: 223273 training samples, and the classification model was evaluated for generalizability on

three independent datasets of different scanning protocols (N = 394, 255, and

160, respectively). We examined the classification power of pure GMV features, as well

as combined GMV and SNP features. Empirical experiments demonstrated that sparse

DNN slightly outperformed independent component analysis + support vector machine

(ICA + SVM) framework, and more effectively fused GMV and SNP features for SZ dis-

crimination, with an average error rate of 28.98% on external data. The importance

weights suggested that the DNN model prioritized to select frontal and superior tem-

poral gyrus for SZ classification with high sparsity, with parietal regions further included

with lower sparsity, echoing previous literature. The results validate the application of

the proposed approach to SZ classification, and promise extended utility on other data

modalities and traits which ultimately may result in clinically useful tools.

K E YWORD S
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1 | INTRODUCTION

Schizophrenia (SZ), a disabling psychiatric disorder with a lifetime

prevalence �0.8%, casts a serious socioeconomic burden worldwide

(McGrath, Saha, Chant, & Welham, 2008). More than a century after

Kraepelin's dichotomy was formulated, precise treatment is still not

available for SZ (Insel, 2014; Insel et al., 2010). Current diagnostic and

treatment practice are largely based on descriptive clinical characteris-

tics whose relationships to underlying biological processes await

delineation (Cuthbert & Insel, 2013; Insel et al., 2010). This gap under-

lies many issues faced by clinical psychiatry, including vague bound-

aries between defined clinical entities, and heterogeneity within

individual clinical entities. As a result, symptom presentations often

do not neatly fit the categorical diagnostic system, and one diagnostic

label covers biologically diverse conditions. These issues challenge

treatment planning, which turns out to be largely empirical (Chen,

Liu, & Calhoun, 2019; Insel & Cuthbert, 2015). It has now been widely

acknowledged that objective biological markers are needed to quan-

tify abnormalities underlying phenotypic manifestation, which allows

characterizing disorders based on a multitude of dimensions and along

a spectrum of functioning, so as to improve patient stratification and

inform treatment planning (Casey et al., 2013; Cuthbert, 2014).

Hopes have been invested in machine learning approaches as a

solution to this challenge, given the complexity of SZ. Patients with

SZ present widespread structural and functional brain abnormalities,

including gray matter loss in the frontal, temporal and parietal corti-

ces and subcortical structures (Ivleva et al., 2013; van Erp

et al., 2016; van Erp et al., 2018), reduced fractional anisotropy in

most major white matter fasciculi (Kelly et al., 2018), as well as

abnormal resting state functional connectivity in default mode,

somatomotor, visual, auditory, executive control and attention net-

works (Garrity et al., 2007; Skatun et al., 2017; Woodward, Rogers, &

Heckers, 2011). In parallel, genome wide association studies

(GWASs) of SZ lend support for a polygenic architecture, where the

disease risk is attributable to many genetic variants with modest

effect sizes (Ripke et al., 2014). These findings have boosted the

efforts to model SZ in a multivariate framework, which is expected

to not only delineate the relationships between individual bio-

markers and SZ, but also to provide a generalizable mathematical

model that can be used to predict risk.

One straightforward approach is to feed voxelwise neurobiological

features (e.g., gray matter density) into support vector machine (SVM).

With this strategy, Nieuwenhuis et al. obtained a classification accuracy

of �70% which was confirmed in independent data with a sample size of

a few hundred (Nieuwenhuis et al., 2012). Whether more sophisticated

feature selection can be combined with classifiers to yield improved dis-

crimination has also been explored. For instance, resting state connectiv-

ity between networks extracted by independent component analysis

(ICA), followed by K nearest neighbors, yielded an accuracy of 96% in a

data set consisting of 28 controls and 28 patients, which were randomly

partitioned to serve as training and testing samples (Arbabshirani, Kiehl,

Pearlson, & Calhoun, 2013). In addition, fusion of multiple modalities that

may carry complementary information of the brain holds promise for fur-

ther improvement. In a work by Liang et al., combining gray and white

matter features resulted in an average classification accuracy of �76% in

48 controls and 54 patients with first episode SZ, in a 10-fold cross vali-

dation set up (Liang et al., 2019). In contrast to neurobiological features,

genetic variables, such as single nucleotide polymorphisms (SNPs), in gen-

eral suffer modest effect sizes (Ripke et al., 2014) and could hardly be

directly trained for classification. A more commonly used feature for risk

discrimination is polygenic risk score (PGRS), which reflects the cumula-

tive risk of multiple variants, and proves to be a generalizable and promis-

ing marker for disease discrimination and patient stratification (Frank

et al., 2015; Vassos et al., 2017), with complementary value for group

classification beyond brain magnetic resonance imaging (MRI) and cogni-

tive data (Doan et al., 2017).
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More recently, the advancement of deep learning methods has

opened a new perspective on elucidating biological underpinnings of

SZ. Deep Neural Networks (DNNs) are known to excel in handling high-

dimensional data and automatically identifying high-level latent features,

which promotes them as promising tools for better understanding of

complex traits such as SZ. In a pioneer study, Plis et al. demonstrated

the application of restricted Boltzmann machine-based deep belief net-

work to structural MRI data. A classification accuracy of �90% was

obtained with a 10-fold cross validation in 181 controls and 198 patients

with SZ (Plis et al., 2014). A deep discriminant autoencoder network has

been proposed and applied to functional connectivity features, and

yielded a leave-site-out classification accuracy of �81% in 377 controls

and 357 patients with SZ (Zeng et al., 2018). A comparable leave-site-

out accuracy of �80% was observed in 542 controls and 558 patients

with SZ, when a multi-scale recurrent neural network was applied to

time courses of functional MRI data (Yan et al., 2019). However, these

approaches do not provide importance weights of original biological fea-

tures indicating their relative contribution to classification, making inter-

pretation less straightforward.

As commonly implemented, DNNs are black-boxes with hundreds

of layers of convolution, non-linearities, and gates, optimized solely for

competitive performance. While the value of DNN may be backed up

with a claimed high accuracy on benchmarks, it would be desired to be

able to verify, interpret, and understand the reasoning of the system.

This is particularly essential for the psychiatric community, for the pur-

pose of deconstructing complex disorders and facilitating improved

treatment. In the current work, we introduce a sparse DNN model

which allows identifying sparse and interpretable features for SZ dis-

crimination. The sparsity is achieved with an L0-norm regularization on

the input layer of the network for feature selection. Under the L0-norm

sparsity constraint, the model is trained to select the most important

features while retaining the high SZ classification accuracy. We applied

the sparse DNN approach on a multi-site gray matter volume (GMV)

and SNP data set for SZ discrimination. In brief, a total of 634 individuals

(346 controls and 288 patients with SZ) served as the training set, which

was internally partitioned for hyperparameter tuning. The resulting clas-

sification model was then evaluated for generalizability on three inde-

pendent data sets (N = 394, 255, and 160, respectively). We examined

the classification power of pure GMV features, as well as whether com-

bining GMV with SNP features would benefit classification. The perfor-

mance of the proposed approach was compared with that yielded by

ICA + linear SVM. Empirical experiments demonstrate that the selected

brain regions by sparse DNN are interpretable and echo many previous

neuroscience studies.

2 | MATERIALS AND METHODS

2.1 | Participants

A total of 1,443 individuals aggregated from multiple studies, includ-

ing MCIC, COBRE, FBIRN, NU, BSNIP, TOP, and HUBIN, were

employed for the current study. The institutional review board at each

site approved the study and all participants provided written informed

consent. Diagnosis of SZ was confirmed using the Structured Clinical

Interview for Diagnosis for DSM-IV or DSM-IV-TR. Table 1 provides

the primary demographic information of individual study. More details

regarding scanning information are listed in Table S1, which also pro-

vides a summary of previous publications with description of recruit-

ment. The training sample consisted of 288 cases and 346 controls

from MCIC, COBRE, FBIRN, and NU. Meanwhile, three independent

data sets, BSNIP (N = 394), TOP (N = 255) and HUBIN (N = 160) were

used for validation.

2.2 | Structural MRI data

Whole-brain T1-weighted images were collected with 1.5T and 3T

scanners of various models, as summarized in Table 1 and Table S1.

The images of the training set were preprocessed using a standard

Statistical Parametric Mapping 12 (SPM12, http://www.fil.ion.ucl.ac.

uk/spm) voxel based morphometry pipeline (Ashburner &

Friston, 2005; Gupta et al., 2015; Lin et al., 2017; Segall et al., 2009),

a unified model where image registration, bias correction and tissue

classification are integrated. The resulting modulated images were

resliced to 1.5 mm × 1.5 mm × 1.5 mm and smoothed by 6 mm full

width at half-maximum Gaussian kernel. A mask (average GMV > 0.2)

was applied to include 429,655 voxels. We further investigated corre-

lations between individual images and the average GMV image across

all the subjects. Subjects with correlations <3SD were considered as

outliers and excluded from subsequent analyses (Chen, Calhoun,

et al., 2019). Finally, voxelwise regression was conducted to eliminate

the effects from age, sex, and dummy-coded site covariates (Gupta

et al., 2015). While all the scanning parameters (Table S1) would yield

93 dummy variables in the training data, we chose to correct scanning

effects by “site” to avoid eliminating too much information due to

unknown collinearity. It should be noted that many approaches have

been proposed for eliminating site effects, including multisite harmo-

nization that aims to align data distributions (Wrobel et al., 2020).

However, in this work we wanted to examine the generalizability of

the classification models, including the vulnerability to site effects.

Consequently, we conducted a simple correction of site effects using

linear regression. The validation images were preprocessed separately,

using the same pipeline.

2.3 | SNP data

The SNP data were collected and processed as described in our previ-

ous work (Chen, Calhoun, et al., 2019). DNA samples drawn from

blood or saliva were genotyped with different platforms (see

Table S1). No significant difference was observed in genotyping call

rates between blood and saliva samples. A standard pre-imputation

quality control (QC) (Chen et al., 2013) was performed using PLINK

(Purcell et al., 2007). In the imputation, SHAPEIT was used for pre-

phasing (Delaneau, Marchini, & Zagury, 2012), IMPUTE2 for
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imputation (Marchini & Howie, 2010), and the 1,000 Genomes data as

the reference panel (Altshuler et al., 2012). Only markers with INFO

score > 0.3 were retained. Polygenic risk scores (PGRS) for SZ were

then computed using PRSice (Euesden, Lewis, & O'Reilly, 2015), which

was a sum of genetic profiles weighted by the odds ratios reported in

the PGC SZ GWAS, reflecting the cumulative risk for SZ of a set of

SNPs (Ripke et al., 2014). Specifically, the genotype data were pruned

at r2 < 0.1 (Chen et al., 2018). Then a full model PGRS was computed

on 61,253 SNPs retained after pruning.

2.4 | Sparse DNN

Figure 1 shows the overall architecture of our method, which contains

three stages. First, the GMV voxels are partitioned into a set of groups

(or brain regions) with a pre-defined radius. Then a sparse DNN model

is deployed for feature (brain region) selection, followed by

augmenting the selected sparse regions of GMV with the SNP data

for classifier retraining. In the sequel, we will introduce each of these

steps in more details.

Given a GMV dataset D = {(xi, yi), i = 1, 2, � � �, N}, where xi denotes

the i-th subject's GMV image and yi denotes the corresponding label:

case or control, we train a neural network h(x; θ), parameterized by θ,

to fit to the dataset D with the goal of achieving good generalization

to unseen test data. For a GMV image x � RM × 1, we use xj to repre-

sent the j-th voxel of image x, where j = 1, 2, � � �, M and M = 429,655

in our study.

As the number of voxels M is much larger than the number of

functional regions of human brain (e.g., typically around 100 as

defined by various brain atlases), we first partition the brain voxels

into a set of small regions, which are defined to have the same

radius in an exclusive manner. In brief, partition of the brain enu-

merates all the M voxels in an iterative way. In each iteration, we

first select an unassigned voxel as a root to start a new region.

We then compute the Euclidean distance between the root voxel

and all the unassigned voxels, of which those voxels with distance

smaller than R are assigned into this region. We iterate this pro-

cess until all the voxels are assigned to one of the regions. Conse-

quently, there is no overlap between defined regions. We denote

the k-th region Gk. After this preprocessing step, we identify

K regions, from which we aim to identify important regions for SZ

discrimination.

Stage 1 of our algorithm is to prune insignificant regions from

K pre-defined regions. We formulate our region selection algorithm

by considering a regularized empirical risk minimization procedure

with an L0-norm regularization. Specifically, we attach a binary ran-

dom variable zk � {0, 1} to all the voxels in region Gk:

ex = xK
Az, z� 0,1f gK , ð1Þ

where z � RK × 1 denotes a binary mask for brain image x � RM × 1,
J

is an element-wise product, and A � RM × K is an affiliation matrix we

construct from the preprocessing step above, with element Aj,k = 1 if

voxel xj is in region Gk, and 0 otherwise. For all the voxels in a region

Gk, they share the same binary mask zk, and k � {1, 2, � � �, K}. This
means if zk is 0, all the voxels in region Gk will have a value of 0, other-

wise the value of xj is retained. In the sequel, we will discuss our

method that can learn z from training set D, and we wish zk takes

TABLE 1 Subject demographic information

Cohort N Sex (M/F) Age (mean ± SD) Age (min − max) Diagnosis (HC/SZ)

Training

MCIC + COBRE + FBIRN + NU 634 459/175 35.44 ± 12.12 16–65 346/288

Validation

TOP 255 144/111 33.75 ± 8.99 17–62 154/101

HUBIN 160 108/52 41.69 ± 8.56 19–56 76/84

BSNIP 394 221/173 36.44 ± 12.47 16–64 208/186

F IGURE 1 Overall architecture of our method
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value of 1 if Gk is an important region and 0 otherwise. In other words,

z is a measure of feature (region) importance that we wish to learn

from data.

We regard z as the feature importance weight for the prediction

of DNN model h(xi; θ) and learn z by minimizing the following L0-norm

regularized loss function:

R θ,zð Þ= 1
N

XN

i=1
L h xi

K
Az;θð Þ,yið Þ+ λ zk k0

=
1
N

XN

i=1
L h xi

K
Az;θð Þ,yið Þ+ λ

XK

k =1
1 zk≠0½ � ,

ð2Þ

where L �ð Þ denotes the data loss over training data D, such as the

cross-entropy loss for classification, kzk0 is the L0-norm that measures

number of nonzero elements in z, λ is a regularization hyperparameter

that balances between data loss and feature sparsity, and 1[c] is an

indicator function that is 1 if the condition c is satisfied, and 0 other-

wise. Thus in Equation (2) we have two sets of parameters (θ, z),

where θ denotes the weights of neural network and z denotes the

importance weights attached to all small regions (i.e., x
J

Az) for fea-

ture selection. We optimize θ, z jointly to minimize the classification

loss on training data. Due to the L0 regularization, the solution of z is a

sparse vector, which performs region/feature selection. The impor-

tance weights as captured by z essentially measure the contribution

of each region to the final classification loss as shown in Equation (2),

thus can be used for interpretation. To optimize Equation (2), how-

ever, we note that both the first term and the second term of Equa-

tion (2) are not differentiable w.r.t. z. Therefore, further

approximations need to be considered.

We can approximate this optimization problem via an inequality

from stochastic variational optimization (Bird, Kunze, & Barber, 2018).

Specifically, given any function F zð Þ and any distribution q(z), the fol-

lowing inequality holds

min
z
F zð Þ≤Ez�q zð Þ F zð Þ½ �, ð3Þ

that is, the minimum of a function is upper bounded by the expecta-

tion of the function. With this result, we can derive an upper bound

of Equation (2) as follows.

Since zk, 8 k � {1, � � �, K} is a binary random variable, we assume zk

is subject to a Bernoulli distribution with parameter πk � [0, 1],that is,

zk � Ber(z; πk). Thus, we can upper bound min
z

R θ,zð Þ by the

expectation

~R θ,πð Þ= 1
N

XN

i=1
Eq zjπð Þ L h xi

K
Az;θð Þ,yið Þ½ �+ λ

XK

k =1
πk , ð4Þ

Now the second term of the Equation (4) is differentiable w.r.t. the

new model parameters π. However, the first term is still problem-

atic since the expectation over a large number of binary random

variables z � {0, 1}K is intractable, so is its gradient. To solve this

problem, we adopt the hard-concrete estimator (Louizos, Welling, &

Kingma, 2017). Specifically, the hard-concrete gradient estimator

employs a reparameterization trick to approximate the original

optimization problem of Equation (4) by a close surrogate loss

function

R̂ θ, logαð Þ= 1
N

XN

i=1
Eu�U 0,1ð Þ L h xi

K
g Af logα,uð Þð Þ;θð Þ,yið Þ½ �

+ λ
XK

k =1
σ logαk−β log

−γ

ζ

� �
=LD θ, logαð Þ+ λLC logαð Þ,

ð5Þ

with

f logαk ,ukð Þ= σ loguk− log 1−ukð Þ+ logαk
β

� �
ζ−γð Þ+ γ, ð6Þ

and

g �ð Þ=min 1,max 0, �ð Þð Þ ð7Þ

where σ(t) = 1/(1 + exp(−t)) is the sigmoid function, LD measures how

well the classifier fits to training data D, LC measures the expected

number of non-zeros in z, and β = 2
3, γ = −0.1, and ζ = 1.1 are the typi-

cal parameters of the hard-concrete distribution. Function g(�) is a

hard-sigmoid function that bounds the stretched concrete distribution

between 0 and 1. With this reparameterization, the surrogate loss

function Equation (5) is differentiable w.r.t. its parameters.

After training, we learn logα from the dataset D. At test time, we

employ the following estimator to generate a sparse mask or feature

importance weight:

ẑ=min 1,max 0,σ
logα
β

� �
ζ−γð Þ+ γ

� �� �
, ð8Þ

which is the sample mean of z under the hard-concrete distribution

q(zj logα).
After we train the sparse DNN with the L0-norm regularization,

we get the trained neural network parameters θ and sparse mask

ẑ� 0,1½ �K over all K regions, with element ẑk a continuous variable that

represents the importance of region Gk. Because of the sparsity induc-

ing property of the L0-norm, many elements of learned ẑ are pushed

to zero, which are considered as unimportant regions and thus pruned

from the model. The level of sparsity can be modulated by hyper-

parameter λ: the larger λ is, the sparser regions is identified, and vis-a-

versa.

In Stage 2 of our algorithm, we can further improve the accuracy

of the classifier by finetuning the DNN with the selected L regions

from Stage 1 but without the L0-norm regularization. To examine

whether incorporating genetic features can improve the classification

accuracy, we also concatenate the PGRS feature to the selected

voxels as the input of the DNN classifier to finetune the classifier.

In our study, the training data consisted of 634 individuals

(346 controls and 288 cases), which were equally partitioned into

three subsets (each containing 33% of the samples). A nested three-

fold cross validation was then implemented to identify the discrimi-

nating genetic and brain MRI features and construct a classification
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model for SZ. The region radius R we used was 12 mm and the brain

was partitioned into spherical regions sequentially (in an ascending

order) based on voxel indices, that is, in each round we selected the

first (as indicated by voxel index) unassigned voxel as the seed to gen-

erate a parcel. This led to a total of 1,111 regions with an average size

of 387 voxels. In Stage 1 group selection and Stage 2 retraining, we

used a DNN classifier with 2 fully connected layers of 200 and 16 neu-

rons, respectively, and the rectified linear unit (ReLU) activation func-

tion. We performed grid search to find the best hyperparameters for

our sparse DNN model. In Stage 1 group selection, we used the SGD

optimizer with learning rates of 0.005 and 1 for model parameter θ

and logα, respectively. In Stage 2 retraining classifier, we used the

Adam optimizer with learning rate of 0.005 for θ and a weight decay

of 1e-5. After the sparse DNN was trained on the GMV features, the

regions with nonzero ẑs were considered as important regions for the

SZ classification. The selected regions across three-fold cross valida-

tion were highlighted for model interpretation. In particular, we tuned

hyperparameter λ to compare the classification performances with dif-

ferent levels of sparsity. In Stage 2 retraining, the selected voxel

regions were fed into the classifier and could concatenate the PGRS

feature to improve the classification accuracy. The model established

in the training data was further evaluated on three external data sets:

BSNIP, TOP, and HUBIN.

2.5 | ICA + linear SVM and elastic net
regularization

To compare with sparse DNN, we also conducted classification using

linear SVM with components extracted by ICA as input. ICA decom-

poses data into a linear combination of underlying components among

which independence is maximized (Amari, 1998; Bell &

Sejnowski, 1995). When applied to sMRI data, ICA essentially iden-

tifies maximally independent components, each including a weighted

pattern of voxels with covarying gray matter patterns across samples

(Xu et al., 2008). ICA has been widely used in the neuroimaging field,

yielding meaningful and generalizable brain networks which are not

well captured by anatomical atlas (Beckmann, DeLuca, Devlin, &

Smith, 2005; Calhoun, Adali, Pearlson, & Pekar, 2001; Gupta

et al., 2015). In the current work, following the training and testing of

the sparse DNN, we applied ICA on the GMV data for 67% of the

training samples. The resulting components were then fed into linear

SVM to obtain a classification model. This model was then assessed

on the remaining 33% of the training samples for accuracy. Since the

number of ICA components was a hyperparameter to be tuned, we

repeated the above process with different component numbers. Echo-

ing the sparse DNN experiments, we compared models with a low

vs. high number of GMV components as predictors in terms of the

classification performance. When genetic feature was further incorpo-

rated, PGRS was treated as an additional predictor, which was sent

into linear SVM along with the GMV components. Note that genetic

data were available only for TOP and HUBIN, such that only these

two data sets were examined for imaging genetic based classification.

In addition, we conducted permutation tests to estimate the null

error rates where classification models derived from permuted diag-

nosis labels were applied to the three validation data sets. The null

error rates reflected the chance to make a correct guess regarding

diagnostic identities and were used to contrast with the original

results to validate the classification models presented in the

current work.

Besides ICA + SVM, we also examined the performance of

elastic-net regularization in classification, see Supporting Information

for details.

2.6 | Voxelwise group difference

Finally, we conducted a voxelwise analysis of case–control differences

in GMV using two-sample t-test. Voxels showing significant group dif-

ferences were identified controlling for false discovery rate (q < 0.05)

(Benjamini & Hochberg, 1995). The inferred directions of changes in

GMV were then compared with those inferred from DNN to assess

the interpretability of the DNN features.

3 | RESULTS

The performance is summarized in Table 2. While we adjusted λ in

Equation (2) to obtain models with different levels of sparsity

(i.e., leading to 5–30 important regions in sparse DNN), we noted

that the classification accuracy dropped significantly with sparsity

lower than 5 regions, and relatively saturated around sparsity of

20 regions. Consequently, we reported results of 5 and 20 regions

respectively, to show how sparsity impacted performance. And simi-

larly, for ICA + SVM, we reported results of 5 and 20 components. It

can be seen in Table 2 that, for both ICA and DNN approaches,

lower error rates were achieved when 20 rather than only 5 brain

regions/components served as predictors. When fewer brain regions

were used to train the model, the mean error rate across three inde-

pendent data sets was 34.64% for DNN and 35.38% for ICA, which

were comparable, though in specific data sets discrepancies could be

noted. When the classification model was allowed to incorporate

more brain regions/components, the mean error rate across three

data sets decreased to 31.02% for DNN models and 31.44% for ICA

models. Specifically, the error rates were comparable between ICA

and DNN in HUBIN, while DNN outperformed ICA in TOP (error

rate improved by 3.66%, nine more subjects classified accurately)

and ICA excelled in BSNIP (error rate improved by 1.78%, seven

more subjects classified accurately).

When PGRS was further incorporated for classification, the DNN

approach also showed slightly lower mean error rates across two vali-

dation data sets compared to ICA, as shown in in Table 2 (32.10%

vs. 32.81% for 5 regions, and 28.99% vs. 32.06% for 20 regions). It

was also noted that DNN yielded consistent improvement in accuracy

across all the data sets compared to when only GMV features were

used, either with 5 or 20 regions as predictors, where the decrease in
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error rate ranged from 1.41% to 3.94%. In contrast, when ICA compo-

nents were combined with PGRS for classification, the error rate did

not always decrease. Among all the tests, the lowest error rate

(27.75%) was observed in HUBIN, when the DNN classification model

used 20 brain regions plus the PGRS.

The null error rates as shown in Table 2 were averaged across

100 permutation runs, which were consistently higher than the true

error rates. With a low sparsity of 5 regions, SVM failed to converge

to a decision boundary for either GMV features or GMV + PGRS fea-

tures, such that all the subjects were classified as controls. Conse-

quently, the null error rates simply reflected the ratio of controls in

the TOP, HUBIN and BSNIP data. With a high sparsity of 20 regions,

SVM was able to converge on permuted diagnosis labels. The

resulting average null error rates ranged between 46.67% and

51.67%, which were substantially higher than the true error rates

obtained from the original data.

The sizes of identified DL regions ranged from 277 to 814 voxels,

with a mean of 488 voxels. In contrast, the independent components,

even when thresholded at jzj > 3 for top voxels, showed sizes ranging

from 555 to 11,668 voxels, with a mean of 6,409 voxels. With high

level of sparsity (5 regions), the DNN model used a total of 2,379

voxels (0.6% of the selected gray matter voxels) for classification

while �25,000 top voxels were used by ICA. The number of covered

voxels increased to �8,500 for DNN and �123,000 for ICA (top

voxels) when 20 regions/components were to be selected as predic-

tors. The brain regions identified by DNN are summarized in Table 3

(5 regions) and Table 4 (20 regions), and Figures 2 and 3 show the

spatial maps of individual regions. Note that only the regions identi-

fied in all three folds are listed. When 5 regions were to be selected

as predictors, the three folds consistently identified the same

5 regions, spanning inferior, middle, and superior frontal gyrus, supe-

rior temporal gyrus, as well as cerebellum. The weights, or direction of

TABLE 2 Summary of classification
error rates

sMRI sMRI + PRS

TOP (255) HUBIN (160) BSNIP (394) TOP (255) HUBIN (160)

DNN (5 regions)

EER1 35.69 33.08 32.99 32.94 28.13

EER2 34.90 36.25 34.26 33.33 33.13

EER3 34.90 36.25 33.50 32.55 32.5

EER mean 35.16 35.19 33.58 32.94 31.25

ICA + SVM (5 ICs)

EER1 36.86 31.88 36.29 30.20 35.00

EER2 37.25 34.38 37.31 30.59 35.63

EER3 34.90 32.50 37.06 29.80 35.63

EER mean 36.34 32.92 36.89 30.20 35.42

Permutation (5 ICs)

EER1 39.61 52.50 47.21 39.61 52.50

EER2 39.61 52.50 47.21 39.61 52.50

EER3 39.61 52.50 47.21 39.61 52.50

EER mean 39.61 52.50 47.21 39.61 52.50

DNN (20 regions)

EER1 30.59 28.13 30.96 30.65 26.27

EER2 30.98 32.50 31.73 27.75 27.25

EER3 33.33 28.75 32.23 32.26 28.24

EER mean 31.63 29.79 31.64 30.22 27.75

ICA + SVM (20 ICs)

EER1 33.33 27.50 29.95 32.94 29.38

EER2 39.22 31.25 31.73 35.29 33.75

EER3 33.33 28.75 27.92 30.98 30.00

EER mean 35.29 29.17 29.86 33.07 31.04

Permutation (20 ICs)

EER1 50.59 48.75 51.52 50.98 50.00

EER2 45.10 56.88 44.67 45.10 55.00

EER3 44.31 49.38 46.95 44.31 47.50

EER mean 46.67 51.67 47.72 46.80 50.83
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effects, were all positive, indicating higher GMV in controls compared

to cases. When 20 regions were to be selected, variations were noted

across folds, such that 13 brain regions were consistently identified.

Compared to those covered by 5 regions, cuneus, precuneus, medial

frontal gyrus, and paracentral lobule were further determined to be

informative and included for classification. Most of the regions

showed positive weights with higher GMV observed in controls com-

pared to cases. Meanwhile, negative weights were observed for

region 27 and 45.

For comparison, Figure 4 presents the spatial map of the voxels

showing significant case–control differences in the voxelwise analysis,

with the score reflecting the two-sample t-test p-value (−10log[p]).

Most of the brain regions identified by sparse DNN, either with

5-region of 20-region sparsity, showed large overlap with the

voxelwise analysis, as summarized in Table 5. With a high-sparsity set-

ting, 4 out of 5 identified DNN regions strongly overlapped with the

voxelwise results (overlap ratio > 0.8), while the remaining region

showed an overlap ratio of 0.62. With a low-sparsity setting, 9 out of

13 identified DNN regions showed an overlap ratio > 0.5, with the

remaining 4 regions showing an overlap ratio of 0.18, 0.34, 0.43 and

0.38, respectively. And the directions of effects inferred from the

interpretable DNN model were overall highly consistent with those

inferred from the original features. The only exception was region

27 identified in the 20-region model, which showed a negative weight

in DNN while the voxelwise analysis indicated higher GMV in controls

than cases.

4 | DISCUSSION

An interpretable sparse DNN approach was proposed for application

to medical data analysis and its capability was examined on a large

and heterogeneous SZ data set. The results confirmed that the pro-

posed approach yielded reasonable classification accuracies, could

identify meaningful brain regions, and the interpretation of these brain

regions was consistent with that directly inferred from original fea-

tures. Particularly, the proposed model appeared to more effectively

fuse imaging and genetic features for classification compared to ICA

+ SVM, holding potential for data fusion.

The DNN models reliably generalized to data collected at differ-

ent sites, with reasonable classification accuracies compared to ICA

+ SVM. Permutation tests yielded substantially higher error rates,

suggesting that the observed level of accuracy was not likely achieved

by chance. And the generalizability indicates that the classification

models are not vulnerable to scanning protocol, recruiting criteria,

ethnicity influence, medication history, and so forth. Regarding perfor-

mance, both DNN and ICA + SVM approaches presented higher accu-

racies when more brain regions/components served as predictors,

with error rates being 31.03% and 31.86%, respectively. While many

machine learning methods have been proposed for the same purpose,

a direct comparison is still missing, partly due to the unavailability of a

benchmark data set. Sample heterogeneity, data collection, and

preprocessing could all affect classification, which makes it difficult to

compare accuracies achieved from different data sets. As pointed out

by Cai et al. (2020), high classification accuracies are more likely to

show in single-site data, which need to be interpreted cautiously.

Echoing this, more recent work has made efforts to assess proposed

methods in large multi-study cohorts. For instance, the work by Yan

et al. (2019) and Zeng et al. (2018) proposed and applied deep learn-

ing methods to large multi-study functional MRI data and obtained

classification accuracies of 80% and 81%, respectively, for SZ with a

leave-site-out set up. Another work by Cai et al. (2020) tested combi-

nations of ICA-based functional connectivity features with various

classical classification models on a large multi-study data set and

obtained an accuracy of 70% for between-site generalizability. The

error rate obtained in our work is comparable to the literature with

performance evaluated under a similar scenario, indicating complex

heterogeneity of patients with SZ. Increasing sample size of the train-

ing data and incorporating other data modalities promise further

improvement.

The proposed approach highlights a sparsity constraint, allowing

the DNN model to achieve comparable performances with ICA while

leveraging 10 time less voxels for classification. A trade-off is also

noted between explained variance and interpretability of identified

features. In general, a low level of sparsity allows more features to be

admitted into the classification model, which however results in more

variance across samples. As shown in the current work, when a higher

level of sparsity was enforced, the same 5 regions were identified

across 3 folds. In contrast, with a lower sparsity, 13 out of 20 regions

were consistently identified, although the latter explained more vari-

ance and yielded higher classification accuracies. It should be pointed

out that, increasing the predictors from 5 to 20 regions resulted in a

decrease of �4% in error rate, which was indeed not profound consid-

ering that the 20 regions incorporated three times more voxels for

TABLE 3 Summary of the five important brain regions identified by sparse DNN

Region Area Brodmann area Volume (cc) MNI (x, y, z) Direction of effects

DL87 Uvula (cerebellum) N/A 0.7/0.0 (−18, −81, −33)/(0, 0, 0) +

DL382 Inferior frontal gyrus 47 1.9/0.0 (−54, 30, 0)/(0, 0, 0) +

DL493 Superior frontal gyrus 10 0.0/1.2 (0, 0, 0)/(27, 60, 9) +

Middle frontal gyrus 10 0.0/0.9 (0, 0, 0)/(34.5, 57, 9) +

DL555 Superior temporal gyrus 13, 22, 41 1.0/0.0 (−45, −30, 15)/(0, 0, 0) +

DL775 Inferior frontal gyrus 9 0.0/1.0 (0, 0, 0)/(57, 12, 36) +
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classification. In other words, although GMV abnormalities are widely

distributed across the brain in SZ, the majority of the variance can be

captured by the identified five distinct regions which only covered

�0.6% of the selected gray matter voxels. The samples missed in the

classification, or missing variance, likely call for a larger training data

set to allow better capturing heterogeneity, as well as for information

from other data modalities, rather than simply adding more features

from the sMRI modality.

SZ is a complex disorder, where genetic and environmental fac-

tors interact with each other to affect brain structure and function

which ultimately manifest into clinical symptoms. With so many fac-

tors involved in the pathology of SZ, it is expected that multiple data

TABLE 4 Summary of the 13 important brain regions identified by sparse DNN

Region Area Brodmann area Volume (cc) MNI (x, y, z) Direction of effects

DL2 Inferior semi-lunar lobule N/A 0.1/0.0 (−7.5, −60, −54)/(0, 0, 0) +

DL27 Cerebellar tonsil N/A 1.4/0.0 (−15, −55.5, −43.5)/(0, 0, 0) −

DL45 Cerebellar tonsil N/A 0.7/0.0 (−12, −55.5, −40.5)/(0, 0, 0) −

DL172 Superior temporal gyrus 38 0.0/1.0 (0, 0, 0)/(48, 22.5, −19.5) +

DL260 Middle frontal gyrus 11 0.9/0.0 (−37.5, 40.5, −10.5)/(0, 0, 0) +

DL509 Inferior frontal gyrus 13, 47 1.3/0.0 (−42, 25.5, 10.5)/(0, 0, 0) +

DL599 Cuneus 18, 19 0.0/1.0 (0, 0, 0)/(18, −88.5, 19.5) +

DL691 Middle frontal gyrus 10, 46 1.2/0.0 (−34.5, 46.5, 27)/(0, 0, 0) +

DL805 Middle frontal gyrus 9 2.0/0.0 (−45, 28.5, 39)/(0, 0, 0) +

DL846 Precuneus 7, 19 0.0/1.0 (0, 0, 0)/(30, −66, 42) +

DL1008 Medial frontal gyrus 6 0.0/1.3 (0, 0, 0)/(7.5, −4.5, 63) +

DL1017 Paracentral lobule 4, 5, 6 0.2/1.7 (−1.5, −40.5, 61.5)/(4.5, −37.5, 64.5) +

DL1039 Middle frontal gyrus 6 1.3/0.0 (−21, 9, 67.5)/(0, 0, 0) +

F IGURE 2 Spatial maps of the five schizophrenia-discriminating regions identified by sparse DNN

F IGURE 3 Spatial maps of the 13 schizophrenia-discriminating regions identified by sparse DNN
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modalities need to be integrated to fully characterize the disorder.

This also applies to classification, which should capitalize on data

fusion to extract complementary information from different modali-

ties. The proposed model holds promise for this purpose. In all the

tested scenarios, the DNN approach effectively fused GMV and PGRS

features to yield improved classification accuracies, indicating that the

model reliably extracted SZ-related variance in PGRS that was not

captured by GMV. In contrast, no consistent improvement was noted

for ICA + SVM when PGRS and brain components were directly fed

into linear SVM for classification training, which is consistent with a

previous study (Doan et al., 2017). The results appear to lend support

that nonlinear models excel in delineating the relationships across dif-

ferent modalities in hidden layers and robustly capturing complemen-

tary variance that is related to the trait of interest.

The brain regions identified by sparse DNN are overall group-

discriminating as indicated by the overlap with voxelwise analysis, and

well documented in SZ studies. With high sparsity, 5 brain regions

were consistently identified across 3 folds, as listed in Table 3,

F IGURE 4 Spatial maps of the voxels showing significant case–control differences in the voxelwise analysis. The positive/negative scores
reflect higher/lower GMV in controls compared to cases

TABLE 5 Overlap between
important regions of sparse DNN and
voxelwise analysis

Region Region size (# of voxels) Overlap (# of voxels) Overlap ratio

5-region

DL87 352 323 0.92

DL382 475 392 0.83

DL493 625 390 0.62

DL555 523 502 0.96

DL775 404 365 0.90

20-region

DL2 814 735 0.90

DL27 565 99 0.18

DL45 277 95 0.34

DL172 315 293 0.93

DL260 559 367 0.66

DL509 494 262 0.53

DL599 372 186 0.50

DL691 514 409 0.80

DL805 569 245 0.43

DL846 441 250 0.57

DL1008 462 176 0.38

DL1017 568 363 0.64

DL1039 492 421 0.86
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highlighting frontal gyrus, superior temporal gyrus, and cerebellum. All

the five regions presented positive weights, indicating higher GMV in

controls compared to patients, which was consistent with the results

of two-sample t-tests on original GMV features. SZ-related gray mat-

ter reduction has been widely observed in temporal and frontal

regions. A longitudinal study by Thompson et al. revealed accelerated

gray matter loss in early-onset SZ, with earliest deficits found in parie-

tal regions and progressing anteriorly into temporal and prefrontal

regions over 5 years (Thompson et al., 2001). The identified frontal

and temporal brain regions have also been identified for SZ-related

reduction in a comprehensive study on gray matter volume in psycho-

sis using the BSNIP cohort (Ivleva et al., 2013), as well as for showing

the most significant cortical thinning in patients with SZ in the

ENIGMA study (van Erp et al., 2018). The role of cerebellum in SZ has

been revised in recent years, where accumulating evidence suggests

that cerebellum is also involved in cognitive functions and cerebellar

abnormalities are noted in SZ (Andreasen & Pierson, 2008; Moberget

et al., 2018). Gray matter loss around the identified cerebellar region

has also been reported previously (Farrow, Whitford, Williams,

Gomes, & Harris, 2005). While the three aforementioned multi-site

classification studies (i.e., Cai et al., 2020; Yan et al., 2019; Zeng

et al., 2018) all used functional MRI features, no direct comparison

could be made regarding identified biomarkers. However, consistency

was noted for disrupted brain regions between the current work and

Cai et al. (2020), including superior and middle frontal gyrus, superior

temporal gyrus, cuneus, precuneus, as well as paracentral lobule.

Overall, the results validate the proposed method for identifying inter-

pretable biological features relevant to selected traits.

With low sparsity, 13 brain regions were consistently identified

by DNN across 3 folds, as listed in Table 4. In addition to frontal, tem-

poral and cerebellar regions discussed above, parietal regions includ-

ing cuneus, precuneus and paracentral lobule were highlighted. As

implicated in Thompson et al, while temporal and prefrontal gray mat-

ter loss were characteristic of adult SZ, parietal regions were noted

for earliest gray matter loss which was faster in younger patients with

SZ (Thompson et al., 2001). The identified parietal regions also echoed

the BSNIP findings to show higher GMV in controls compared to

patients (Ivleva et al., 2013). Overall, it is reasonable that DNN priori-

tized to select temporal and frontal regions for classification when

high sparsity was enforced, which aligns with the notion that gray

matter loss in these regions characterizes adult SZ. In the meantime,

when a lower sparsity was enforced, parietal abnormalities were the

first priority to be added as additional predictors which offered com-

plementary variance. Among the 13 regions, region 27 (cerebellar ton-

sil) was the only feature whose DNN weights did not coincide with

the inference drawn from original GMV features. It was noted that

the voxels in region 27 showed modest case–control differences com-

pared to voxels in other identified brain regions (Figure 4). We suspect

the selection of region 27 by DNN might be driven by some hidden

properties rather than group differences, which explains the inconsis-

tency in interpretation between DNN and two-sample t-tests.

One observation is that the 5 regions selected with low sparsity

were not a subset of those 13 regions selected with high sparsity.

Sparse DNN is designed to optimize classification accuracy for speci-

fied hyperparameters. It is possible that the best performance is

yielded by different sets of brain regions at different levels of sparsity.

Meanwhile, it is noted that Brodmann Area 9, 10, 13, and

47 highlighted under 5-region sparsity were also identified as impor-

tant regions with 20-region sparsity, showing a certain level of overlap

in corresponding anatomical regions. Overall, we expect that the data-

driven learning process may pick up slightly different small brain

regions with different hyperparameters, which however has no dra-

matic impact on interpretation.

One limitation of the current work is that we did not extensively

investigate the impact of brain partition. We did explore other partition

strategies, including using a descending or random rather than ascending

order for seed voxel selection as used in the main analysis. The resulting

classification accuracies were comparable or slightly lower than those

observed with the ascending partition, indicating that selection order

has no dramatic impact on performance. Meanwhile, we did not investi-

gate how the radius of brain regions would affect the performance. We

assumed the brain regions to be spherical, which may not align with the

optimal partition. It deserves further exploration whether the perfor-

mance may benefit from brain atlas-based partition (such as Yeo atlas

(Yeo et al., 2011)). This topic will be investigated in the future work.

Besides, likely due to the limited sample size, the DNN performance sat-

urated at 2 hidden layers. It remains a question how the performance

would scale with increasing sample size. This awaits investigation when

more data become available. Furthermore, while the DNN approach

holds promise for data fusion, its capability of integrating multiple high-

dimensional imaging modalities was not examined in the current work,

given that incorporating another modality would further reduce the

sample size. This will also be part of our future work. Finally, it is not

clear whether the proposed algorithm would yield a comparable perfor-

mance in first episode patients, which might be more challenging given

the effects of illness chronicity and the medication exposure. Unfortu-

nately, currently we only have data of no more than 20 first episode

patients which are not sufficiently powered for a comprehensive evalua-

tion of any algorithm. We will research for available data resources to

answer this question in our future work.

In summary, to the best of our knowledge, this is the first study

of DNN application to sMRI and genetic features for SZ case–control

classification with generalizability assessed in a large and multi-study

cohort. An interpretable sparse DNN approach was first proposed to

allow identifying, refining and interpreting features used in classifica-

tion. The results indicate that the new approach yielded reasonable

classification performances, highly sparse and interpretable classifica-

tion features, as well as potential for data fusion. Collectively, the cur-

rent work validates the application of the proposed approach to SZ

classification. We hope our future work could be extended to predic-

tion of clinical outcome, for example, treatment response, which can

be either binary or continuous variables. Particularly, we would like to

examine whether any of the identified group-discriminating brain

regions contribute to stratifying patients in terms of treatment

response, which may not only provide more insights into underlying

neurobiology of SZ, but also facilitate precision medicine.
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