
Simulating SCI and SCI/RT in Simula

Bjørn Bakke

Department of Informatics

University of Oslo

10th August 1995

1

PREFACE

This document contains my thesis for the Cand Scient degree at University of Oslo

(UiO) and my advisor has been Stein Gjessing at the Department of Informatics, UiO.

The thesis describes the work related to designing a simulator for a subset of the Scal-

able Coherent Interface protocol (SCI), published in a standard by the Institute of Elec-

trical and Electronic Engineers (IEEE). Some of the modi�cations proposed in relation to

SCI/Real-time (SCI/RT, IEEE P1596.6) have also been incorporated. The simulator has

been employed to investigate the performance of various aspects of the protocol-subset and

the SCI/RT modi�cations.

During the early stages of the thesis, my advisor suggested that I should write the thesis

in English and thereby making it more accessible � both in Europe and in USA there were

people associated with SCI. I hesitated because my native language was Norwegian and

not English, and my recent experience with the latter was limited to having read English

professional books at lower grade. Nevertheless, I decided to write my thesis in English

and found it a useful experience. It was also a laborious experience because it sometimes

proved di�cult to compose the correct sentences expressing the correct meaning without

making them too hard to read.

I would like to thank Stein Gjessing who has been an enthusiastic advisor and who has

given me help and advise of great value, people associated with SCI with whom I have

discussed SCI and SCI/RT, fellow students and Cybernetisk Selskab who have created

a social atmosphere here at UiO and my family who has supported and encouraged me

throughout my study.

Bjørn Bakke

Department of Informatics

University of Oslo

i

[This page has been intentionally left blank]

ii

Contents

1 Introduction 1

1.1 Background : 1

1.2 A summary of the thesis' goals, work and results : : : : : : : : : : : : : : : : 5

1.2.1 The goals : 5

1.2.2 The work : 5

1.2.3 The results : 6

1.3 Reasons for doing this work : 7

1.4 The structure of the thesis : 7

1.5 Summary : 8

2 Introduction to SCI and SCI/RT 9

2.1 The historical background and development of SCI : : : : : : : : : : : : : : : 10

2.2 The SCI protocol : 11

2.2.1 A processor's view : 14

2.2.2 The cache coherence layer (can be omitted) : : : : : : : : : : : : : : : 15

2.2.3 The packet transportation layer : 16

2.2.4 The physical layer (can be omitted) : : : : : : : : : : : : : : : : : : : 24

2.2.5 Other concepts : 24

2.3 SCI/Real-time � modifying the SCI-protocol : : : : : : : : : : : : : : : : : : 25

2.3.1 Real-time systems : 26

2.3.2 Priority based scheduling : 27

2.3.3 The proposals on how to modify SCI for real-time purposes : : : : : : 27

2.4 Summary : 29

3 Issues considered in the thesis 31

3.1 The main goal of the thesis : 31

3.2 Issues, and how to resolve them : 32

3.2.1 Issues related to the design and building process of the simulator : : 32

3.2.2 Issues related to the performance of SCI : : : : : : : : : : : : : : : : 32

3.2.3 Issues related to the performance of SCI/RT : : : : : : : : : : : : : : 34

3.3 Summary : 35

4 Designing and building the simulator 37

4.1 Sources of information : 37

4.2 The programming strategy : 38

4.2.1 Requirements to the simulator - a strategy is needed : : : : : : : : : 39

4.2.2 The design strategy : 40

4.2.3 Reasons for choosing the strategy : 42

iii

4.2.4 How the strategy is supported in Simula : : : : : : : : : : : : : : : : 42

4.2.5 An alternative strategy : 43

4.3 Implementation of the �nal simulator : 43

4.3.1 The historical development of the simulator : : : : : : : : : : : : : : : 43

4.3.2 SCIsim - the �nal version : 45

4.4 Summary : 54

5 Work related to simulation 55

5.1 Topologies and parameters assumed in SCI- and SCI/RT-simulations : : : : 55

5.1.1 Defenitions : 55

5.1.2 Assumptions regarding SCI-simulations : : : : : : : : : : : : : : : : : 57

5.1.3 Assumptions regarding SCI/RT-simulations : : : : : : : : : : : : : : : 61

5.2 Measurements emphasized in simulation : 61

5.2.1 Throughput : 61

5.2.2 Latency : 64

5.2.3 Performance : 65

5.3 How the measurements were obtained : 66

5.4 Summary : 66

6 Results from the simulation of SCI single-rings 69

6.1 Aspects regarding the presentation of results : : : : : : : : : : : : : : : : : : 69

6.2 Uniform load and tra�c pattern in single SCI-rings : : : : : : : : : : : : : : 70

6.2.1 Results related to uniform SCI-rings with 4 nodes, no �ow control : : 71

6.2.2 Results related to uniform SCI-ring with 4 nodes, standard SCI �ow

control : 83

6.2.3 Results related to SCI-rings of size 16 : : : : : : : : : : : : : : : : : : 89

6.2.4 Summary of results related to uniform load and tra�c patterns : : : 92

6.3 Hot-sender load and tra�c pattern in single SCI-rings : : : : : : : : : : : : : 94

6.3.1 Results related to hot-sender in SCI-rings with 4 nodes : : : : : : : : 95

6.3.2 Summary of results related to hot-sender : : : : : : : : : : : : : : : : 104

6.4 Node-starvation load and tra�c pattern in single SCI-rings : : : : : : : : : : 105

6.4.1 Results related to node-starvation in SCI-rings with 4 nodes : : : : : 105

6.4.2 Summary of results related to node-starvation : : : : : : : : : : : : : 114

6.5 Summary : 115

7 Results from the simulation of an SCI multi-ring interconnect 117

7.1 Parameters and measurements in multi-ring simulations : : : : : : : : : : : : 117

7.2 4-ring interconnect : 118

7.3 Summary : 125

8 Results from the simulation of SCI/RT 127

8.1 Parameters and measurements in SCI/RT simulations : : : : : : : : : : : : : 127

8.2 SCI/RT results : 128

8.3 Summary : 134

iv

9 Conclusion of the thesis 135

9.1 Conclusion on issues related to the design and building process of the simulator135

9.1.1 Conclusion on the original issues : 135

9.1.2 Other results : 139

9.1.3 Further work : 139

9.2 Conclusion on the issues related to the performance of SCI and SCI/RT : : : 140

9.2.1 Conclusion on the original issues : 140

9.2.2 Other results : 143

9.2.3 Further work : 144

9.3 Summary : 145

A Proposals on underlying models of the transmitter-stage 147

v

[This page has been intentionally left blank]

vi

Chapter 1

Introduction

This chapter gives an introduction to the thesis and indicates how the issues within the

research �elds of computer architecture, real-time systems and software development ini-

tiated the work with this thesis (section 1.1). Later in this chapter, a summary of the

thesis' main goals and results are given, together with an argument for why this work was

considered interesting (section 1.2 and 1.3). At the end of this chapter the main structure

of the remainder of the thesis is described (section 1.4).

A new way to design parallel computers with multiple processors and memory chips

called Scalable Coherent Interface (SCI) [IEEE, 1992a], has been proposed by the Institute

of Electrical and Electronic Engineers (IEEE). This standard will be referred to as the

SCI-standard or SCI-protocol for the remainder of this thesis.

The SCI-standard describes a protocol, governing the communication between multiple

processors and memory chips, and this thesis considers a subset of this protocol. One of

the goals in relation to this thesis has been to design a simulator for this protocol-subset

and with the help of the simulator, to analyze the performance of this subset. The simula-

tor was written in Simula, a high-level programming language supporting object-oriented

programming, and another goal was to use the object-oriented programming technique. Be-

cause I wasn't familiar with SCI, a thorough study of the SCI-protocol was required before

the simulator could be designed, and it was hoped that an object-oriented programming

strategy would ensure �exibility and modi�ability.

At the time of writing, there are several IEEE standardization working-groups related

to SCI, investigating properties of the SCI-protocol or de�ning extensions to it. One of

these working-groups is the SCI/Real-time working-group (SCI/RT), which tries to modify

the SCI-protocol, for real-time purposes. Some of the enhancements proposed within the

SCI/RT working group has been considered in this thesis, and the enhancements has been

incorporated into the simulator and their behavior and performance have been analyzed.

1.1 Background

Developing computers is a quest for increased computer-power in terms of speed and ca-

pacity. There seem to be a constant demand for bigger and faster computers and as soon

as the new computers are available they are quickly saturated by executing more and

larger programs. To meet this constant demand, the single-processor has been developed

and various techniques have been introduced, like pipelining and caching. Pipelining

refers to how machine-instructions in the processor are executed in a pipelined fashion and

1

according to [Kogge, 1981] and [Hennessy and Patterson, 1990] the �rst general-purpose

pipelined machine was the Stretch-IBM7030 (1959), though already the UNIVAC 1 (early

�fties) overlapped the program execution with some I/O operations. Caching refers to the

technique of storing recently used memory-locations in a small, local memory physically

close to the processor, possibly located on the processor chip itself. In this way the rela-

tively higher access latency of the shared memory is avoided. As with pipelining, caching is

not a new technology and according to [Hennessy and Patterson, 1990] the �rst paper on

caching was published in 1965 by Wilkes, and in [Wilkes, 1965] the use of fast core memory

as slave to a slower core memory is discussed.

The technology of single processor machines are far developed and highly tuned, but

there seem to be another approach needed in order to meet the future demand for higher

speed and capacity. The speed of light limits the maximum signal speed and there seem to

be a lower bound of the size of chips, used when the processors are implemented. Instead

of putting all the e�ort into developing single processor computers, some people choose

to focus upon parallel computers. In that way processes can be distributed among the

processors.

The latency represented by memory-accesses is also a major factor governing the overall

performance of the computer. If we wish to use multiple processors, we will quickly realize

that using a single large physical shared memory will reduce the performance because the

memory will become a bottle-neck. This problem can be solved with multiple memory

blocks, each block representing a part of the total address space of the shared memory.

When a computer with multiple processors is designed and later when programs are

developed for the this computer, there are di�erent problems encountered on the software

level and the hardware level. On the software level there are at least two major approaches

as to how the programmer could view such a computer, the �rst being shared memory

and the second being message passing. The shared memory approach is perhaps the

conceptually simpler of the two, because most programmers are familiar with this approach

from single-processor computers. In a parallel computer with shared memory there is one

global memory accessible to all the processors. Message passing involves the passing of

messages between processes, e.g. when the a process wants to read a location in memory,

it will have to send a message to the process that controls the memory.

Depending on which approach is used on the software level, the hardware level id a�ected

to a variable degree. Message passing does not require heavy modi�cation of the hardware

while the shared memory approach require careful hardware design. From a performance

point-of-view it is desirable to have processors with local caches, but in the shared memory

approach this will make things more complicate. The problem arise when several processors

read the same memory-location and store the location in their respective caches. As long

as the processors keep reading that memory-location there will not be any problem, in

fact this resembles the situation in a single processor machine. However, once a processor

wishes to modify the memory location we realize that the other caches have to be noti�ed

in some way. The problem facing us is how to make sure that the processors have a correct

view of the shared memory, often referred to as the cache coherence problem. If we

use backplane bus when designing a computer with multiple processors, we can achieve

cache-coherency by using a strategy called snooping [Goodman, 1983]. Unfortunately the

bus has its disadvantages, among them are its lack of scalability, because the bus is still

a shared resource which have to be allocated to the processors in a one-at-a-time fashion.

In chapter 2, the problems related to bus-based parallel computers will be discussed more

thoroughly, together with some alternatives.

2

In the second half of the seventies, the use of directories to identify the caches sharing

the same memory line was proposed by [Tang, 1976] and [Censier and Feautrier, 1978]. In-

stead of broadcasting update messages to all caches, they propose to send update-messages

to each individual cache identi�ed by the directory. One distinguishes between a central-

ized directory, where a central directory identi�es the caches storing the same line, and a

chained directory, where a chained list identi�es the sharing caches [Chaiken et.al., 1990].

The latter alternative is also referred to as a distributed directory because the control

information is distributed among the caches. (Chaiken et.al. also distinguishes between

full-mapped and limited central directories, but the essential thing here is the di�erence

between central and distributed directories)

One approach to multi-processor shared memory computers is proposed by the Institute

of Electrical and Electronic Engineers (IEEE) in their standard called �SCI-Scalable Coher-

ent Interface� [IEEE, 1992a]. This standard describes a physical interconnect and a proto-

col, showing how a computer with multiple processors and distributed shared memory can

be designed. The SCI-standard describes a protocol which ensure cache-coherence and this

part is clearly based on the ideas proposed by [Tang, 1976], [Censier and Feautrier, 1978]

and [Chaiken et.al., 1990], because the SCI cache-coherence protocol uses a distributed di-

rectory to identify the sharing caches. One of the goals when SCI was developed, was to

ensure scalability so that the performance increases when the number of processors and

memory chips increase. In chapter 2, a more thorough introduction of the SCI-protocol is

given.

When the SCI-project began in 1988, the people who were involved in the project aban-

doned the bus-approach when they realized the bus' lack of scalability and limited signal

speed (bidirectional links cannot have the same high signal speed as unidirectional links).

Stein Gjessing, Stein Krogdahl and Ellen Munthe-Kaas at the University of Oslo (UiO)

became involved in the project when the SCI working-group wanted a formal veri�cation

of the SCI-protocol. Already one of the major research projects at the Department of Infor-

matics at UiO had been to develop methodology and techniques which could be employed

when programs were speci�ed and veri�ed. While SCI-protocol was (and still is) formally

speci�ed in C-code, formal veri�cation of the SCI-protocol could be achieved by using the

theory developed at UiO. The results of this work is presented in [Gjessing et.al., 1990a],

[Gjessing et.al., 1990b] and [Gjessing and Munthe-Kaas, 1991].

At the time of writing the SCI-technology is relatively new, and no real-world computer

based on SCI is known to the author of this thesis. The SCI-standard does indeed describe

the expected behavior and protocols, but it does not describe how the protocol should be

implemented.

Even if there were SCI-based computers available, it is still di�cult to change hardware

parameters and characteristics, and people have turned to other techniques to analyze the

behavior and performance of SCI. Di�erent approaches have been used, some people have

developed programs using various programming languages (a software approach), others

have developed mathematical models.

Software simulations of SCI involves designing a program in a programming language

like C [Kernighan and Ritchie, 1988], C++ [Stroustrup, 1991] or Simula [Dahl et.al., 1982],

or in a specially designed simulation tool like Verilog/VHDL. Di�erent interconnect topolo-

gies, load-characteristics and tra�c patterns can be simulated and investigated by spec-

ifying various parameter-values. Simulators for SCI known to the author of this thesis

are:

3

� Bogaerts and Wu at Cern, Geneva, have designed a simulator for SCI consisting of

a re-implementation of the transaction protocol using MODSIM-II and the IEEE C-

code of the cache coherence protocol as given in the SCI-standard [IEEE, 1992a]. The

simulator can also simulate SCI-interconnects consisting of multiple rings and mul-

tiple switches. A document-draft describing the simulation environment is currently

available, refer to [Bogaerts and Wu, 1995] for further details.

� Bothner and Hulaas at the University of Oslo have designed a simulator for SCI and

the logical layer implemented in C-code. The simulator has been used in performance

evaluation of k-ary n-cubes running the SCI-protocol. Refer to [Bothner and Hulaas, 1993]

for further details.

� At the University of California San Diego (UCSD) a simulator for SCI has been

designed using MODSIM-II and the simulator has been used to investigate the per-

formance of an extension to the SCI-�ow control mechanism proposed at UCSD (pre-

sented in [Picker et.al., 1994]). Refer to [Picker and Fellman, 1994] for further details

on the simulator developed at UCSD.

� Stein Gjessing 1 at University of Oslo has designed a simulator for SCI-rings using

Simula, displaying the packet transmission as well as gathering statistical information.

� Hexsel and Topham at Edinburgh University have designed a simulator for SCI con-

sisting of an approximate model of the SCI-link interface and a detailed model of

the cache coherence protocol. The simulator is used in a performance evaluation of

a shared memory multiprocessor using SCI. Refer to [Hexsel and Topham, 1994] for

further details.

� The SCI-protocol itself is expressed in C-code, and this code is executable. Refer to

[IEEE, 1992a] for further details.

� Scott, Goodman and Vernon at University of Wisconsin, Madison, have designed

a simulator and developed a mathematical model for SCI, considering the packet

transportation layer. The simulator and the mathematical model have been used

when they analyzed the performance of SCI-rings. Refer to [Scott et.al., 1992] for

further details.

The mathematical approach involves developing a model in which mathematical formu-

las describe the system. In [Scott et.al., 1992] this kind of work is described.

In fall 1993, Stein Gjessing who already had been involved in SCI for several years,

realized that it was necessary and interesting to simulate some of the aspects of SCI and

proposed this as Cand. Scient. thesis work. The starting point was to design a program

simulating SCI using Simula, a programming language developed by people at Norwegian

Computing Center [Dahl et.al., 1982] in the sixties, and use this simulator when the the

performance of SCI was investigated. This thesis therefore describes work which belongs

to the group of software simulation of SCI, because the simulator was written in Simula.

A project related to SCI is the SCI/real-time (SCI/RT) and the work takes place in

an IEEE standardization working group. This working group is o�cially referred to as

1Stein Gjessing, University of Oslo, P.O.B. 1080 Blindern, N-0316 Oslo 3, Norway. Email:

steing@i�.uio.no

4

P1596.6 and its current chairman is Ralph Lachenmaier 2. The goal of the project is to

modify the basic SCI-protocol for real-time purposes and at the same time ensure that it

remained compatible to the basic SCI-protocol. Whereas the SCI-protocol emphasize the

correctness and e�ciency of the computations performed, the real-time aspect introduce

additional requirements - the computations have to be ready on time. A typical real-time

system contains a set of tasks that have to be performed at periodic intervals (sampling

operations), and some task are more important than others. The load can usually be

determined a priori, so the computer system must be designed with this in mind and make

sure that all tasks can be executed and terminate within their deadlines. The e�ort of the

SCI/RT working group has not yet led to an approved IEEE standard, a standard-draft is

available [IEEE, 1992b], and the latest proposals are, therefore, not included.

The modi�cations proposed within the SCI/RT working-group can roughly be said to

belong to two di�erent sets, the �rst being proposals that tries to modify the basic SCI-

protocol so that the resulting system obeys the requirements in Rate Monotonic Scheduling

(RMS) [Liu and Layland, 1973], and the second approach being proposals that tries to use

a token-based scheme. Real-time systems in general, RMS and SCI/RT will be described

more thoroughly in chapter 2.

1.2 A summary of the thesis' goals, work and results

1.2.1 The goals

The main goal of this thesis has been to design a modi�able and �exible program written

in Simula that simulates a subset of the SCI-protocol, and to use this simulator in a

performance analysis of SCI. Furthermore, the performance of various ring-sizes, load and

tra�c patterns should be analyzed, and these characteristics should be given as parameters

to the simulator. It should also be possible to investigate the performance of various

interconnect topologies, consisting of multiple rings and switches. A secondary goal has

been to modify the simulator so that the performance of some of the SCI/RT-proposals

could be analyzed.

More details can be found in chapter 3.

1.2.2 The work

This thesis involves work that can be divided into two logical stages. On the �rst stage

the simulator were designed and built, and on the second stage the simulator was used in

simulations related to the performance analysis. In reality, stage two began while stage one

was still in progress, because simulations were ran if the simulator could provide interest-

ing results, even though is was not complete. The modi�cations required to incorporate

SCI/RT-modi�cations, were carried out while baseline SCI simulations were running.

Designing and building the simulator introduced work which also can be divided into

two stages. Not being familiar with the SCI-protocol, a thorough study was required, and

considerable time and e�ort was spent before the simulator could be designed. Again,

there is no exact point during the work which marks the transition from understanding

SCI-protocol to simulating it, instead there was a considerable amount of parallel work.

2Ralph Lachenmaier � P1596.6 Chairman, Code 505B, NAWC/ADW, Warminster, PA 18975, USA.

Email: lachenmaier@nadc.navy.mil

5

The SCI/RT project was (and still is) very active, and can therefore be rather frustrating

to a person who already is struggling to understand the basic SCI-protocol. In order

to terminate the work within time, some of the enhancements proposed by the SCI/RT

working group were incorporated in the simulator, while others were left out. Nevertheless,

incorporating SCI/RT was one of the biggest challenges in this thesis, partly because it

gave the opportunity to follow the changes within the real-time community, and partly

because it would give an indication on how modi�able the simulator was.

More details can be found in chapter 4 and 5.

1.2.3 The results

The results are related to the design process of the simulator and the performance of SCI

and SCI/RT.

Designing the simulator required a thorough understanding of the SCI-protocol and

its modi�cations proposed in relation to SCI/RT. Designing the simulator proved to be

laborious because the SCI-protocol is complex and describe expected behavior, not how to

implement it. It has been discovered that it bene�ts both the understanding of SCI and the

process of representing it as a simulator, to work on issues related to the two simultaneously

(understanding and representing). It has also been discovered that it is possible to design

a modi�able and �exible simulator for the SCI-protocol, and which later can be modi�ed,

without extensive redesign, so that modi�cation to the SCI-protocol itself, e.g. SCI/RT,

can be simulated. The programming strategy was object-oriented and this proved to be a

fairly successful strategy, because the SCI/RT modi�cations could be incorporated without

changing the structure of the simulator. Simula supported the object-oriented programming

strategy, but Simula's run-time system a�ected the design process and an ad-hoc strategy

had to be employed to achieve reasonable e�ciency. This ad-hoc strategy which sought

to reduce the amount of dynamic allocation, sometimes con�icted with the object-oriented

programming strategy.

To analyze the performance of SCI and SCI/RT, various interconnect structures were

simulated under various conditions. It has been discovered that the load, the size of

send-packets, the load and tra�c pattern, the ring size and �ow control mechanism af-

fect the performance of an SCI-ring, and these results correspond to those presented in

[Scott et.al., 1992]. It has also been discovered that the SCI-ring is not scalable in terms of

throughput and latency. Simulating an interconnect with multiple SCI-rings and multiple

switches, indicate that a multi-ring interconnect could be a better alternative than a single

SCI-ring. The SCI �ow control mechanism has also been found to ensure fairness among

nodes in an SCI-ring.

Related to SCI/RT, preemptive-priority output-queue and bypass-queue have been sim-

ulated. The results from these simulations indicate that the above modi�cation ensure that

throughput and latency are related to priority (a high priority means a higher throughput

and lower latency than for a lower priority).

Simulations were run for a considerable amount of time and con�dence intervals were

calculated for the more important estimates. If the con�dence intervals were found to be too

broad (more than �5%) the results were rejected, and new and longer simulations were ran.

It is therefore reasonable to believe that the results obtained through the SCI-simulator

are reliable.

More details can be found in chapter 6, 7, 8 and 9.

6

1.3 Reasons for doing this work

Designing a program simulating a real-world system correctly is quite di�cult, because

correctness of the simulator is hard to prove. Formal veri�cation is not always possible,

and simpli�cations towards the real-world system are often assumed or else the program

could grow as complicated as the real-world system.

Consequently there is always some uncertainty related to simulation-results and it is,

therefore, still meaningful to design new simulators when comparable simulators already

exist. Results already discovered can be compared to new results obtained using another

simulator. If the new simulator was designed according to a di�erent strategy and using

another programming language, comparable simulations results will strengthen the existing

ones.

It is also reasonable to assume that a software simulator would be easier to modify than

the real-life counterpart. E.g. in the context of SCI, the size of send-packets has impact

on the overall performance, and using a simulator to analyze this aspect we would only

have specify a di�erent parameter-value, whereas in the real-life system we would, quite

possibly, have to design a new chip. Simulation is therefore an economical technique to

examine systems too costly to implement for analysis-purposes alone.

This thesis will describe the design process of an SCI-simulator, performance results

will be compared to existing results and additional simulation results are presented.

1.4 The structure of the thesis

The main structure of the thesis is as follows:

� Chapter 2 gives an introduction to SCI, SCI/RT and the various concepts needed in

the remainder of this thesis. Chapter 2 will focus upon those parts of the SCI-standard

that have been considered important in the work and that have been simulated. No

knowledge of SCI is assumed on behalf of the reader but it is assumed that he or she

is familiar with the basic concepts of computer architecture.

� Chapter 3 describes the main issues of this thesis. Some of the issues have already

been revealed in chapter 1, but chapter 3 will go into more detail.

� Chapter 4 describes the design process of the simulator and indicates the program-

ming strategy used. It begins with an argument on why a programming strategy is

needed, then turns to the programming strategy itself describing it and why object-

oriented programming is believed to support it.

� Chapter 5 describes the simulation work, and shows how the simulation-results were

obtained. It starts with a description on which topologies that have been simulated

and how the simulation work itself were carried out.

� Chapter 6 presents and discusses results achieved from the simulation of single SCI-

rings, performed under various assumptions regarding load, tra�c pattern, packet

sizes and ring sizes. These assumptions is thoroughly described in chapter 5, in

relation to the section of single ring topologies.

� Chapter 7 presents and discusses results achieved from the simulation of a multi-ring

interconnect, consisting of four SCI-rings and four switches. This topology and other

7

conditions assumed during simulation are described in chapter 5 in relation to the

section of multi-ring interconnects.

� Chapter 8 presents and discusses results achieved from the simulation some of the en-

hancements proposed in relation to SCI/RT. The various assumptions and parameter

settings used in these simulations is described in chapter 5 in relation to the section

of SCI/RT simulation.

� Chapter 9 contains the conclusion of the thesis, and will conclude on the original

issues of the thesis, described in chapter 3, present additional results and indicate

further work.

� Appendix A contains three proposals on how to represent the underlaying model of

the transmitter stage entity.

At the end of each chapter a brief summary is given.

1.5 Summary

This chapter has given an introduction to the thesis, indicating its historical background,

summing up its goals and results, and indicating its structure.

The general background of the thesis is the quest for computer power, a quest which

has led to the development of technology like pipelining and caching. Because of physical

limitations of signal-speed and size, some people choose to focus their attention on parallel

computers rather than single processor machines. The protocol of Scalable Coherent Inter-

face (SCI) [IEEE, 1992a], published by the Institute of Electrical and Electronic Engineers

(IEEE), describe one way to design a parallel computer with multiple processors and dis-

tributed shared memory. When SCI was developed (1988-1992), University of Oslo (UiO)

got involved in the project when some parts of the SCI-protocol required formal veri�ca-

tion. Veri�cation had already been a major research topic at UiO for several years. Several

people at UiO got involved in SCI, among them were Stein Gjessing, Stein Krogdahl and

Ellen Munthe-Kaas. SCI became an IEEE standard in 1992, but several related projects

still exist, like SCI/Real-time (SCI/RT) which try to modify the SCI-protocol for real-time

purposes. Currently the SCI/RT working-group has meetings 3-4 times a year.

The work with the thesis began in fall 1993, after Stein Gjessing had proposed the task

of simulating SCI in Simula as the starting point. As work progressed, it was decided to

include some aspects related to SCI/RT, and the SCI-simulator had to incorporate some

of the modi�cations proposed in relation to SCI/RT.

As indicated in this chapter, several SCI-simulators already existed when work began,

but designing a new SCI-simulator was still meaningful. Some uncertainty is always asso-

ciated with simulation-results (programming-errors are one of several reasons) but if there

are two di�erent simulators producing the same simulation-results, our con�dence in them

increase.

8

Chapter 2

Introduction to SCI and SCI/RT

This chapter gives an introduction to Scalable Coherent Interface (SCI) and SCI/real-time

(SCI/RT). In chapter 1, a very brief introduction to SCI and its historical background was

given in relation to the introduction to the thesis, but in order to apprehend the remainder

of this thesis, a more thorough introduction is required, hence this chapter. It is not

assumed that the reader has any knowledge of SCI, but it is assumed that he or she is

familiar with the basic concepts of computer architecture. There are three main sections

in this chapter.

Section 2.1 will brie�y describe the historical background of SCI.

Section 2.2 gives an introduction to the SCI-protocol itself. Rather than explaining only

those parts of SCI-protocol which is strictly necessary in the remainder of this thesis, section

2.2 will give an introduction which could also serve as an overview of the SCI-protocol.

Both approaches have their drawbacks, and the �rst approach may be unsatisfactory from

the SCI point-of-view, because important elements necessary for the overall understanding

would be left out. The second approach, which is chosen here, force the reader to go

through more information than is strictly necessary, but the parts which can be omitted

are marked in the text.

The SCI-technology is described in the IEEE standard P1596-1992 [IEEE, 1992a] and

in brief terms this standard describe a physical interconnect and a protocol using the

interconnect as a communication medium. Computers based on SCI-technology are parallel

computers with multiple processors and shared distributed memory, and one of the goals

when SCI was developed was to ensure scalability. This means that the performance of

an SCI-based computer should increase when the number of processors increase. The SCI-

protocol also ensure cache-coherence, which mean the caches are consistent at all times,

and that the processors have a correct view of the shared memory.

Section 2.3 gives an introduction to real-time systems in general and to SCI/RT in

particular. SCI/RT is currently one of several SCI-related activities and its goal is to

enhance the basic SCI-protocol in a way that makes it suitable in real-time systems. Real-

time systems have additional requirements compared to time-shared systems like SCI, and

usually contain periodic tasks whose timing and deadline is critical for the systems. At

the time of writing the e�ort of the SCI/RT working group has not yet led to an approved

IEEE standard, but several enhancements of SCI have been proposed. Section 2.3 will

describe some of these enhancements, emphasizing the proposals whose performance are

investigated in the analysis later in this thesis.

9

2.1 The historical background and development of SCI

One of the main goals when new computers are developed is to make them faster and more

powerful than existing computers. People involved in research �elds like numerical analysis,

database-programming and system-design seem to be in constant need of computer power.

When new resources are granted, they can be easily spent, for example by running more

programs.

In order to meet the demand for more computing power, processors have been developed

continuously, and in the course of time, technology like caching and pipelining have

been used extensively. Single processor computers are very far developed, and increasing

performance is getting more and more laborious. The speed of light limits the signal speed

and there also seem to be a lower bound of how small the chips can be made.

One way to meet the demand for faster computers is to use multiple processors. The

processors have to cooperate and traditionally there are two main strategies to achieve this,

either message passing or shared memory.

Communication between processors has traditionally taken place via a bus. A bus is a

large set of wires running through the computer, to which all entities are connected, and

there is a protocol governing the bus-allocation.

The bus-structure and -protocol may be very simple, but has some disadvantages. A

bus is bidirectional and this limits the signal speed, and the contact point between an

entity and the bus cause the signals to re�ect which also limits the signal-speed. The

bus-designer also has to make sure that the signal is able to propagate between all entities

without interruption, and therefore he or she has to cater for the worst case situation. The

worst case situation takes place when two entities located at either end of the bus wish to

communicate, and the signal has to travel all the way, from one end to the other, before any

other entity can access the bus. When the bus increase in size, the propagation delay will

increase also. Perhaps the biggest problem with the bus is that the bus-protocols are based

on a �one-at-a-time� strategy, and the bus becomes a bottleneck when tra�c increase. All

in all, the bus does not scale well when the number of entities connected to it (processors

and memory-chips) increase.

People who previously had been involved in projects like Fastbus (IEEE960) and Fu-

turebus (IEEE896), trying to develop high-speed buses, realized these limitations and in

1987 the so-called Superbus Study Group was started. This group decided to try another

approach and in 1988 a new IEEE working-group was started. Their goal was to design a

high speed interconnect that scaled well, support both message passing and shared memory,

and in the latter case ensure cache coherence.

One way to reduce the latency of memory-access is to use caching. A cache is a memory-

chip located close (physically) to the processor or even on the processor-chip itself. The

processor store recently used memory-lines in the cache temporarily to avoid the long

latency of accessing the shared memory. A processor may also use caching on several

layers. In a computer with multiple processors and where the processors use caching, one

is faced with the task of keeping all caches updated at all times or at least consistent, so

that the processors always have a correct view of the shared memory This is often referred

to as the cache coherence problem. If a bus is used, the cache coherence problem can

be solved by a technique with a strategy called snooping [Goodman, 1983].

The interconnect emerging from the SCI working-group was not so much a broadcast

medium as the traditional bus, and a di�erent approach to the cache coherence prob-

lem was required. Their solution was to use directories to identify caches storing the

10

same memory-line, and a message-passing protocol was de�ned to pass update messages

to those caches. The cache coherence problem in general and the use of directories to

identify caches storing the same memory-location has been discussed in [Tang, 1976] and

[Censier and Feautrier, 1978]. In [Chaiken et.al., 1990] it is distinguished between between

a centralized directory, where a central directory identi�es the caches storing the same

line, and a chained directory, where a chained list identi�es the sharing caches. In SCI

the directories are doubly linked lists, consisting of caches sharing the same memory-line,

and the SCI cache coherence protocol is therefore said to be distributed directory-based.

(Refer to section 2.2 for further details on the cache coherence protocol in SCI).

The SCI working-group considered it necessary to verify the cache coherence formally,

and this in turn involved the University of Oslo (UiO). For several years, one of the major

research topics for years at UiO had been to develop formal veri�cation techniques.

SCI became an IEEE-standard in 1992, and today there are still much activity going on.

Companies like Dolphin, Unisys and Apple have implemented or are trying to implement

the SCI-standard in hardware.

2.2 The SCI protocol

This section gives an introduction to the SCI-protocol, and it is sought to give an overview

of the protocol. Those parts of the SCI-protocol which are investigated later, in relation

to the performance analysis, are emphasized, while the other parts are described brie�y in

order give an overview of SCI and can be omitted by the reader.

The SCI-protocol is speci�ed in the SCI-standard [IEEE, 1992a] published by the In-

stitute of Electrical and Electronic Engineers (IEEE). The SCI-standard is a document

consisting of two main parts, the �rst part is an introduction and tutorial for SCI, and

the second part is the SCI-protocol formally speci�ed in the C programming-language.

This C-code part of the SCI-standard is the formal de�nition of the SCI-protocol and as

such takes precedence over the tutorial. The C-code should be consulted when the tutorial

seem ambiguous, but experience indicate that the C-code should be avoided until basic

knowledge of the SCI-protocol is acquired.

At the time of writing no books describing the SCI-protocol is known to the author

of this thesis, except for the above-mentioned SCI-standard. Several articles describ-

ing the SCI-protocol and various related aspects have been published, and those articles

provide an alternative approach to SCI, like [Picker et.al., 1994], [Scott et.al., 1992] and

[Bothner and Hulaas, 1991].

The SCI-standard describes a physical interconnect and an inter-processor protocol

using the interconnect as a communication medium. When two entities, e.g. a processor and

a memory controller, wish to communicate and exchange information they communicate

according to the protocol sending their messages on the interconnect. Di�erent entities,

even di�erent processors, can communicate because they use the same protocol.

A computer based on the SCI-protocol typically consists of multiple processors and

distributed memory. The physical interconnect and the inter-processor protocol allow mul-

tiple parties to communicate at the same time, and in this way multiple processor can

execute di�erent programs and at same time access the same memory, i.e. the memory is

shared by several processors. According to the classi�cation system proposed by Flynn

in [Flynn, 1972], a computer based on the SCI-protocol would belong to the class of ma-

chines described as multiple instruction stream, multiple data stream, abbreviated

11

NODE

LINK

(a) Single ring

NODE

SWITCH

LINK

(b) Multiple rings

Figure 2.1: Examples of SCI-interconnects (logical structure)

MIMD. The SCI-community, represented by David B.Gustavson and Qiang Li, has pro-

posed Local Area Multi Processor abbreviated LAMP, as another way to classify SCI

in [Gustavson and Li, 1995].

The logical structure of the physical interconnect in an SCI-based computer are made

up of entities referred to as links, nodes and switches. A link connects one node to

another, thereby creating a point-to-point link which enables the �rst node to transmit to

the other node, but not vice versa. The link is unidirectional and three di�erent types of

links have been de�ned in the SCI-standard to provide �exibility - a parallel electrical link,

a serial electrical link and a serial optical link. Associated with each node are two links,

one for input and one for output, and by combining links and nodes a ring structure will be

created, for example a ring with eight nodes as in �gure 2.1a. A switch can be regarded as

a special type of node, and it can have several link-pairs associated with it, which enables

multiple rings to communicate. An interconnect with three rings is shown in �gure 2.1b as

an example.

The concept of node is not fully de�ned in the SCI-standard, and design issues are

left to the person who implements it. A node has a unique destination address, and is a

collection of several smaller entities. It contains an interface to the ring, a transfer-cloud

and the application entities. An application entity can be a processor, a memory chip, a

cache or a combination of these three entities communicating locally via a bus or by other

means. A node example is shown in �gure 2.2.

As an example of inter-processor communication consider the situation where processor

A wishes to read a location in memory. As already mentioned the physical memory in

an SCI-based machine is distributed, and multiple memory chips compose the total shared

physical memory. Processor A do not have to know the physical whereabouts of the memory

chip containing the requested location, it simply passes the read-request to the transfer-

cloud. The following actions will take place (the memory chip with the requested location

is placed in node B):

� Processor A will issue a read-request and pass it to the local transfer-cloud. The

12

MEMORY CACHE

INTERFACE

TRANSFER−CLOUD

CPU

LINK

NODE

Figure 2.2: An SCI node.

task of the transfer-cloud is to handle a message issued by the application entity and

possibly translating the message into a packet or a sequence of packets if the request

involve communication with other nodes.

Assuming that the requested location is not stored in the local cache or the value

there is invalid, the transfer-cloud has to translate the read-request into a packet and

transmit it to the transfer-cloud in node B requesting the new value. The transfer-

cloud will carry out its task by passing the packet to the interface which will put

them onto the ring.

When the packet was created in the transfer-cloud of node A, it was given a unique

destination address, and it will traverse the ring simply by passing those interfaces

having a di�erent address, and will �nally be absorbed by the interface in node B. If

the destination is located in another ring, the packet has to be moved from this ring

to another by a switch and possibly perform several of these �ring-hops�, before it

reaches its destination.

� When the packet has reached the interface in node B, it will be passed on to the

transfer-cloud associated with the interface. The transfer-cloud translate the packet

into a message understood by the application entity and passed on. In this case the

application entity is the memory chip containing the requested location, and when

the read-request is received it will return the new value to processor A. In order to

return the value in the requested location, a read-response is issued by the memory

chip in node B and passed on to the transfer-cloud and the above process is reversed.

This brief description of communication in an SCI-based machine show two important

properties of the SCI-protocol:

1. The SCI-protocol is layered, and consists of a physical layer, a packet transportation

layer and a cache coherence layer. In this written order the layers correspond to an

increasing level of abstraction, also shown in �gure 2.3. Conceptually the communica-

tion takes place only between entities on the same layer and the entities communicate

by using the services provided by the layer below.

13

PACKET
TRANSPORTATION
LAYER

PHYSICAL

LAYER

CACHE
COHERENCE
LAYER

Figure 2.3: Layers in the SCI-protocol

2. The complexity of the interconnect is invisible to the application entities, and a

processor can issue its usual memory-requests regardless the physical location of the

memory. For example the machine can be upgraded by exchanging an old processor

with a new processor of a di�erent kind, and it is only the local transfer-cloud which

have notice the di�erence. The local transfer-cloud has to be modi�ed in order to

cater for the di�erent messages of the new processor.

Entities on the cache coherence layer provide services to application entities, like pro-

cessors and memory chips, and make use of services provided by entities on the packet

transportation layer. The cache coherence layer can be implemented by a transfer-cloud.

The task of the entities on the cache coherence layer is to translate requests from the ap-

plication entities into a sequence of packets, and transmit those packets to the destination

transfer-cloud. The cache coherence layer is discussed further in section 2.2.2, but can be

omitted by the reader because details on the cache coherence layer is not needed in the

remainder of this thesis.

Entities on the packet transportation layer provide services to entities on the cache

coherence layer, and make use of services by entities on the physical layer. The packet

transportation layer is implemented by an interface. The task of an entity on the packet

transportation layer is to transmit packets issued by the entities on the cache coherence

layer to the destination entity on the packet transportation layer. The packet transportation

layer is discussed in more detail in section 2.2.3.

Entities on the physical layer provide services to entities on the packet transportation

layer, and is implemented by a link. The task of the link is to transmit packets from one

interface to another, by transmitting the packets byte-by-byte or bit-by-bit. The physical

layer is discussed brie�y in section 2.2.4, but can be omitted also, while details of the

physical layer is not needed in the remainder of this thesis.

The concepts of saturation and ring-circumference are de�ned in section 2.2.5.

2.2.1 A processor's view

Above the top-layer of the SCI-protocol (�gure 2.3), the physical properties of the inter-

connect is invisible to the application entities. A processors will simply issue its usual

memory-requests when it wishes to read a location in memory, and it will receive a re-

sponse with the data in this location. A processor does not have to consider the physically

location of the memory-address when the read-request is issued.

14

head mid mid tail

RAM

CACHE A CACHE B CACHE C CACHE D

Figure 2.4: An SCI cache-list.

A memory chip will respond to memory request in the ordinary way, and regardless

where the request originated.

2.2.2 The cache coherence layer (can be omitted)

The task of the cache coherence layer is to provide service to the application entities like

processors, cache-chips, memory-chips or a combination of these, o�ering a shared memory

with cache coherency. In order to implement the services of the cache coherence layer,

the service provided by the packet transportation layer is used, and functionality added by

combining these services.

A cache stores control information in addition to the data itself, and for each cache line

a number of tags are reserved for the control information. For every memory-line (in the

physical shared memory) being cached, a list is maintained containing all the caches that

store the memory-line. This is a doubly linked list, and the tags are used to store the address

of the predecessor and successor cache element. Because a list is maintained identifying the

caches storing the same memory-line, and the control information are distributed among

the caches, the cache coherence layer of SCI is said to be distributed directory based.

The use of directories to identify the caches storing the same memory line was �rst proposed

by [Tang, 1976] and [Censier and Feautrier, 1978], and [Chaiken et.al., 1990] distinguishes

between centralized and chained directory (distributed list). An example of a cache-list is

shown in �gure 2.4, where four di�erent caches store the same memory-line in the shared

memory.

The protocol is invalidation-based, which mean that cache lines are marked invalid

when they no longer contain correct values, rather than updating the incorrect values.

The cache coherence layer handle three basic operations which manipulates a cache-list,

insertion, deletion and reduction. These operations are atomic, which mean that once an

operation is started it is guaranteed to run uninterrupted until termination. In brief terms

the three operations perform the following action:

Insertion: A new cache element is inserted into a cache-list. This operation is used when

a cache wants a copy of a speci�c memory-line.

Deletion: A cache element is removed from a cache-list. Deletion is used when the cache

wants to perform a cache roll-out, i.e. the cache needs space for more recent data.

15

Reduction: A cache element in a cache-list is put in front of the list, and all the remaining

cache-elements are marked invalid. This will reduce the cache list to a list of only

one element. Reduction is used when a cache wants to modify a cache-line.

With multiple processors running simultaneously, several processors may wish to read

or write the same memory-line, and this memory-line may or may not be stored in the local

cache of the processors, which again may or may not imply a cache roll-out. This mean

that multiple insertion, deletion and reduction operations can be initiated simultaneously

acting on the same cache-list. The SCI cache coherence layer guarantees that the caches

are consistent and that the processors have a correct view of the shared memory despite

the complex situations which can arise.

Further details related to the cache coherence protocol can be found in chapter �Cache

Coherence Overview� of the SCI-standard [IEEE, 1992a], and formal speci�cation and

veri�cation of the protocol is discussed in [Gjessing et.al., 1990a], [Gjessing et.al., 1990b]

and [Gjessing and Munthe-Kaas, 1991].

2.2.3 The packet transportation layer

The main task of the packet transportation layer is to provide services to the cache co-

herence layer, services which include transmission of packets across the interconnect. The

packet transportation layer make use of the services provided by the physical layer to im-

plement its service. The physical layer provide unidirectional point-to-point transmission

of bytes.

The entities that implement the packet transportation layer is often referred to as

interfaces because they act as an interface to the physical interconnect, hiding the physical

properties of the interconnect. On the packet transportation layer the communicating

parties are the interfaces. Depending on our point of view, this interface could be referred

to as a ring-interface (viewed from the cache coherence layer) or as a node-interface (seen

from the interconnect). In the remainder of the thesis the term node-interface will be

used when referring to an entity implementing the packet transportation layer.

Each node-interface have one input-link and one output-link. While every node-interface

have two links and the links are point-to-point, the logical structure of the interconnect

is that of a ring. Using switches, entities which have more than one node-interface, mul-

tiple rings can be connected and various topologies can be formed. Since the links are

unidirectional all information in a ring move in the same direction.

The interfaces communicate by exchanging packets, which are �nite sequences of sym-

bols. A symbol is 2 bytes and the smallest information fragment transmitted between

node-interfaces. A link transmit one symbol at a time.

There are two main types of packets, send-packets and echo-packets. A send-packet

carry information generated by an entity on the cache coherence layer to the destination

node-interface, whereupon an echo-packet is returned as an acknowledgment. The send-

packets are further divided into two sub-types, request send packet and response send

packet, each corresponding to the requests and responses generated at a higher layer. echo-

packets can also be divided into two sub-types, request echo and response echo, and act

as an acknowledgment of request and response send-packets respectively. Figure 2.5 show

the logical structure of the various packet types, and the type of information stored in each

symbol. The contents of the majority of these symbols are not considered in this thesis

because they are used on a higher layer. Only the targetid (packet's destination address),

16

targetid

command

sourceid

control

addressoffset{00..15}

addressoffset{16..31}

addressoffset{32..47}

ext(o or 16 bytes)

data

(0, 16, 64 or 256 bytes)

cyclic−redundency−code

targetid

command

sourceid

control

ext(o or 16 bytes)

data

(0, 16, 64 or 256 bytes)

cyclic−redundency−code

status

forwld

backld

REQUEST − SEND RESPONSE − SEND

} symbol

(a) Send-packets

targetid

command

sourceid

cyclic−redundency−code

targetid

command

sourceid

cyclic−redundency−code

REQUEST−ECHO RESPONSE−ECHO

} symbol

(b) Echo-packets

Figure 2.5: Packet types

17

sourceid (packet's source address), command, control and cyclic-redundancy-code

(error checking code) are considered important in the remainder of this thesis.

When a node-interface wishes to transmit a send-packet, it will transmit the packet on

the output-link, symbol by symbol, to the downstream neighbour. The send-packet carry

the destination address, and if this address do not match the address of the neighbouring

node-interface, it will be passed on to the next node-interface. This will go on until the

packet reaches the destination node-interface and will there be stripped from the ring. The

receiving node-interface immediately returns an echo-packet as an acknowledgment, and

this packet continue back to the send-packet's originator. The send-packet may also pass

through several switches, going from one ring to another. More details on communication

between node-interfaces are found in the sections �Packet transmission protocol� and

�Input-queue allocation protocol� below.

It is important to note that a packet is never interleaved by other packets. Unless strictly

necessary, a passing packet is never stored completely in the intermediate node-interface

before it is passed on to the next node-interface. Worm-hole routing is used in a node-

interfaces when possible, and symbols are moved from the input-link to the output-link as

quickly as possible.

Between packets, the node-interface is required to insert at least one idle-symbol,

which is a symbol carrying ring-local information concerning ring-priority and �ow control.

The idle-symbol has several bit-�elds which have special signi�cance, e.g. the lg bit-�eld

which will be discussed in section �Ring bandwidth allocation protocol�. The required

idle-symbol also eliminate di�erences in transmission-rate and receive-rate of neighbouring

node-interfaces. In the absence of packets, the node-interface generate a continuous stream

of idle-symbols, which serve as a synchronizing mechanism. This mean that there is a

continuous stream of symbols on the link, either packet symbols or idle-symbols. Assuming

that the links implement the physical layer of the highest capacity de�ned in the SCI-

standard (various physical layers with various capacity have been de�ned, refer to section

2.2.4), one symbol is transmitted every 2nd nanosecond and therefore the bandwidth is

1Gbyte/sec per link.

In each ring, one node-interface has added responsibility and perform special ring main-

tenance tasks. This node-interface is called the scrubber, and there is exactly one scrubber

in each ring. Its main task is to remove packets with corrupted destination-addresses from

the ring, packets which would otherwise circulate the ring inde�nitely.

The logical structure of the node-interface has been de�ned in the SCI-standard and is

shown in �gure 2.6. The multiplexer and the stripper act as interfaces to the output-

link and the input-link respectively, hiding the physical nature of signaling. The request

output-queue and response output-queue store temporarily the request and response

packets from the cache coherence layer until they can be transmitted. The request input-

queue and response output-queue store temporarily request and response packets received

and addressed to the node-interface. The packets in the input-queues will be removed by

the cache coherence layer. The bypass-queue store passing packets temporarily when the

node-interface is busy transmitting a packet from one of the two output-queues, and will be

emptied as soon as the transmission is done. The save-idle bu�er is used in relation to the

�ow control mechanism, and will be discussed in more details in section �Ring bandwidth

allocation protocol�. The receiver-stage handles the incoming symbol stream on the

input-link and controls the stripper (possibly implemented by the stripper). It will strip

o� packets addressed to the node-interface, store send-packets in one of the input-queues,

replacing the packet with idle-symbols and pass those symbols to the transmitter-stage.

18

16 16

R
E
Q
U
E
S
T

O
U
T
P
U
T
Q
U
E
U
E

R
E
S
P
O
N
S
E

O
U
T
P
U
T
Q
U
E
U
E

R
E
Q
U
E
S
T

I
N
P
U
T
Q
U
E
U
E

R
E
S
P
O
N
S
E

I
N
P
U
T
Q
U
E
U
E

BYPASSQUEUE

SAVEIDLE

M
U
L
T
I
P
L
E
X
E
R

S
T
R
I
P

RECEIVER
STAGE

TRANSMITTER
STAGE

Figure 2.6: The logical structure of the node-interface

Packets which are not addressed to the node-interface are passed on to the transmitter-

stage as they are. The transmitter-stage controls the multiplexer (possibly implemented

by the multiplexer) and will transmit a symbol in each clock-cycle. The transmitter-stage

has to decide whether to transmit from one of the output-queues, the bypass-queue, the

save-idle bu�er or directly from the receiver-stage.

The service of the packet transportation layer provided to the cache coherence layer is

reliable and error free packet transmissions. To achieve this, rules governing various aspect

of node-interface communication have been de�ned in the SCI-standard. The communi-

cation between node-interfaces follows a �xed pattern of transmitting send-packets and

receiving echo-packets, and the rules related to this is discussed in section �Packet trans-

mission protocol�. Forward progress is emphasized throughout the SCI-standard on the

di�erent layers, because in a multi-processor interconnect a lack of forward progress will

lead to dead-lock situations. The packet transportation layer is no exception in this respect,

because both the ring interconnect and the input-queues in the node-interfaces are shared

resources, and rules are needed to control how and when these resources are allocated.

Section �Ring bandwidth allocation protocol� and �Input-queue allocation protocol� will

discuss these issues.

Packet transmission protocol

This protocol is used when a send-packet is transmitted from one node-interface to another.

When N1 wishes to transmit a send-packet to N2, it puts the send-packet onto the ring,

according to the fair bandwidth allocation protocol (see below). The packet traverses the

ring and when it reaches N2, checked for error. If the send-packet is error-free and there

is su�cient space in the input-queue of N2, the packet is stored in the input-queue, and

N2 immediately emits an echo-packet. This echo-packet represents the acknowledgment of

the send-packet, carrying information on whether or not the send-packet was successfully

received. This is called a sub-action and �gure 2.7 shows an example. The SCI-protocol

distinguishes between request sub-action and response sub-action, corresponding to

requests and responses issued at a higher layer. A transaction consists of a request sub-

19

N1

N2

(1) SEND PACKET

(2) ECHO PACKET

Figure 2.7: An SCI sub-action.

action and a response sub-action.

If a packet has been distorted during transmission, i.e. bit-values inside the packet have

been changed because of an error, this situation is detected in the destination node and the

packet is simply discarded, and no acknowledgment is returned. The source-node detects

a lost packet with some kind of a timer, which initiates a signal to the cache coherence

layer after a predetermined time. Notice that this also includes packets in which the

destination address has been distorted, as these packets are detected by the scrubber node

and discarded.

The packet transmission protocol, does not o�er end-to-end acknowledgment in the case

where N1 and N2 are on di�erent rings. In this case the send-echo protocol is used between

N1 and the intermediate switch, and between the switch and N2. If the send-packet have to

pass through several rings and several switches are involved, the protocol is used between

the switches also. When a switch removes a packet from the ring and acknowledges it, the

switch is responsible for further transmission.

Ring bandwidth allocation protocol

The main goal of rules governing ring bandwidth allocation is to make sure that each

node-interface in an SCI-ring gets its fair share of ring bandwidth and in that way ensure

forward progress of packet transmission. This protocol regulates the packet transmission

of the node-interfaces in the same ring, and the protocol is ring-local and does not a�ect

node-interfaces in di�erent rings. To indicate why it is necessary to regulate the packet

transmission of node-interfaces, consider the following two options on how to control the a

node-interface without �ow control:

Opt. 1: Always let the bypassing symbols have the right of way, and only transmit packets

from the output-queue when the bypass-queue is empty.

Opt. 2: Always let the packets in the output-queue have the right of way, and temporarily

store bypassing symbols in the bypass-queue.

20

 (1)
sendEnable=
 idle.go;

 (2)
while (sending)
 save.go|=idle.go;

 (3)
while (not_empty)
 save.go|=idle.go;

 (4)
if (done)
 idle.go|=save.go;

input

input

input

input

output

output

output

output

save.go

save.go

save.go

(idle.go==1)

Figure 2.8: A fair SCI node-interface (reproduction of �gure 3.30 in [IEEE, 1992a]).

Opt. 1 would fail to ensure a node-interface its fair share of ring bandwidth, because

an upstream node-interface constantly transmitting packets would block the downstream

node. The bypass-queue in the downstream node would be full at all times.

Opt. 2 is not feasible because this would require an unlimited bypass-queue. If a node-

interface is constantly transmitting packets, all bypassing symbols (symbols from the node's

upstream neighbour) would be stored in the bypass-queue and never leave. As a result the

bypass-queue would grow inde�nitely.

A node-interface according to opt. 1 is very servile whereas a node-interface according

to opt. 2 is very greedy, and neither of them provide fairness and cannot ensure forward

progress. The solution lay between these two extremes, and in the SCI-protocol the solution

is token-based. According to this scheme a node-interface can only transmit a packet if the

bypass-queue is empty and a special token passes the node-interface. When a token passes,

the node-interface starts to transmit one packet from its output-queue, and simultaneously

stores incoming symbols in the bypass-queue. When the node-interface is done it enters

the recovery stage, in which the node-interface tries to empty the bypass-queue by stalling

the token until the bypass-queue is emptied.

Figure 2.8 show the behavior of a node-interface which act in accordance with the rules

of fair bandwidth allocation stated in the SCI-standard. A simpli�ed model of the node-

interface shown in �gure 2.6 has been assumed in �gure 2.8, only the bypass-queue and one

output-queue is shown. The save-idle bu�er is represented with a variable called save.go.

The node-interface goes through a cycle of events similar to those shown in the �gure 2.8.

21

The stage prior to stage (1) is not shown, in which the node-interface has an empty output-

queue and simply moves packets from the input-link to the output-link without using the

bypass-queue. In other words, the bypass-queue is empty prior to stage (1).

The token is an idle-symbol with the lg bit-�eld set (equal to 1), and referred to as a

Go-idle. An idle-symbol with the lg bit-�eld reset (equal to 0) is referred to as a NoGo-

idle.

Stage (1) describes the situation where a packet is inserted into the output-queue, and

the node-interface waits for a passing Go-idle. While waiting for a Go-idle it continues to

move packets from the input-link to the input-link (the bypass-queue is not used), until

a Go-idles passes, whereupon it goes to stage (2). During stage (2) the packet in the

output-queue is transmitted on the output-link, and at the same time packets received on

the input-link is stored temporarily in the bypass-queue (unless the packets are addressed

to the node-interface itself). When the transmission is done, the node-interface goes to

stage (3), often referred to as the recovery stage, because it is during this stage that the

node-interface recover from the packet transmission during stage (2). During stage (3) the

node-interface sends solely from the bypass-queue, but packets may well enter the bypass-

queue at the same rate as packets are leaving, so the node-interface emits only NoGo-idles

between packets from the bypass-queue. The NoGo-idles stop other node-interfaces from

transmitting packets from their output-queues, which in turn enables our node-interface to

empty the bypass-queue. During stage (2) and (3) the node-interface stores the incoming

idle-symbols, by performing an inclusive OR of the incoming idle-symbols (more precisely

the lg bit-�eld). This imply save.go==1 if at least one Go-idle was received on the input-

link during stage (2) or (3), and save.go==0 otherwise. When stage (3) ends and the

node-interface goes to stage (4), the save.go value is released in an idle-symbol, and the

node-interface is back to the situation prior to stage (1). A node-interface goes through

these stages repeatedly, during each cycle a packet is transmitted from the output-queue.

Input-queue allocation protocol

This protocol is often referred to as the AB-retry protocol, and in an SCI-ring the

protocol controls and if necessary restricts the access to the input-queues in the ring.

Rules are needed because the input-queue of an node-interface is accessible to all other

node-interfaces (every node-interface can transmit to any of the other node-interfaces) and

therefore is a shared resource. The input-queue of a node-interface is limited in size, and can

therefore only accommodate a limited number of packets. A packet which is addressed to a

node-interface where the input-queue is full, will be rejected, and has to be retransmitted

until it is accepted. Rejected packets are said to be busied by the destination node-

interface.

A number of unfortunate situations can arise if the allocation of input-queues is left

unrestricted. Consider an SCI-ring where two node-interfaces P1 and P2 transmit packets

to node-interface C. Assume that P1 sends a packet to C and that the packet is accepted

and the input-queue of C �lls up. If P2 transmits a packet to C, the packet will be rejected

and have to be retransmitted. P1 continue to transmit packets to C, and in the meantime a

packet have been removed from the input-queue in C. The packet from P1 will be accepted

and the input-queue �lls up again. A packet from P1 will again be rejected. As a result

P1 will successfully transmit all its packets, while P2 will transmit none.

The SCI-standard de�ne a solution to this and similar situations. Applied to the above

example, this mean that C will not accept new packets if packets have been rejected pre-

22

VALUE DESCRIPTION

NOTRY Make no queue-reservation if packet is rejected

DOTRY Make queue-reservation if packet is rejected

RETRY-A Packet previously rejected, during state SERVE-B or SERVE-NA

RETRY-B Packet previously rejected, during state SERVE-A or SERVE-NB

Table 2.1: Possible values of phase bit-�eld used in send-packets, related AB-retry

VALUE DESCRIPTION

BUSY-N Reserved for future use use NOTRY send-packet when retransmitting

BUSY-D No space reserved, use DOTRY when retransmitted

BUSY-A Space reserved, use RETRY-A when retransmitting

BUSY-B Space reserved, use RETRY-B when retransmitting

Table 2.2: Possible values of phase bit-�eld used in echo-packets indicating rejected send-

packets, related to AB-retry

viously. Space will eventually be created in the input-queue of C, and the rejected packets

of P2 can be accepted because space have been reserved for them. The new packets from

P1 will be rejected until all packets from P2 (previously rejected) have been accepted.

The SCI-standard de�ne how the send and echo-packets should indicate the various

situations that can arise at the receiver and transmitter. The send and echo-packets use

the phase bit-�eld in the command symbol (refer to �gure 2.5) to indicate whether a

send-packet was accepted or rejected. Table 2.1 and and table 2.2 show the di�erent labels

used in the AB-retry protocol, in send-packets and echo-packets respectively.

Each node-interface has two input-queues, one for requests and one for response packets.

While each queue can be �lled up independently, the AB-retry protocol have to be used

independently for the request and response input-queue. Figure 2.9 show the AB-retry

protocol as a state-change diagram, and it goes through the following cycle:

� A node-interface with a non-full input-queue accept packets as they enter, and an

echo indicating a successful transmission is returned for each packet. This state is

called the SERVE-NA-state.

� The moment a packet is rejected because the queue is full, the input-queue goes to

state SERVE-A, and an echo is returned indicating this situation.

� An input-queue in the state SERVE-A will only accept the packets previously rejected

in state SERVE-NA and SERVE-B. Under no circumstances will new packets be

accepted even if space permits, instead they will be rejected and the echo returned

will indicate this.

� When all packets that previously were rejected in state SERVE-NA, have been ac-

cepted, the node goes to the state SERVE-NB. In this state all packets, both new

and other packets, will be accepted. The moment a packet is rejected because the

input-queue is full, the state changes to SERVE-B, in which only packets previously

23

SERVE-NA

SERVE-NBSERVE-A

SERVE-B

Accepting all
packets, both new
and previously
rejected.

Accepting only
RETRY-A packets.
All other packets have
to be retransmitted
as RETRY-B packets.

Accepting only
RETRY-B packets.
All other packets have
to be retransmitted
as RETRY-A packets.

Accepting all
packets, both new
and previously
rejected.

All RETRY-B
packets accepted

All RETRY-A
packets accepted

Packet rejected,
retransmit as
RETRY-A packet.

Packet rejected,
retransmit as
RETRY-B packet.

Figure 2.9: The AB-retry protocol

rejected in SERVE-NB and SERVE-A will be accepted. When all packets previously

rejected in SERVE-NB and SERVE-A have been accepted, the input-queue goes to

state SERVE-NA.

2.2.4 The physical layer (can be omitted)

The task of the physical layer is to provide services to the packet transportation layer. The

services include transmission of symbols from one node-interface to the next. The physical

layer is implemented in a unidirectional point-to-point link, and various links have been

de�ned:

� Parallel electrical link - operating at 1Gbyte/sec. Used over short distances (meters)

� Serial optical link - operating at 1Gbit/sec. Used over longer distances (kilometers).

� Serial electrical link - operating at 1Gbit/sec. Used over intermediate distances. (Tens

of meters)

The �rst alternative was chosen as the underlying link-model when the simulator was

designed. This link contain 18 lines, 16 of them carry data and the remaining 2 are �ag-line

and clock line. The �ag line is used to determine which symbols are idle-symbols and which

are packet symbols. The clock line is used when the data-lines are sampled by the receiving

node-interface.

2.2.5 Other concepts

Saturation: An SCI-ring is saturated when the ring is unable to transmit more packets.

24

Ring circumference: The circumference of an SCI-ring is equal to the number of symbols

in the links and within the node-interface' bypass-queue and possible delay queue.

The ring circumference depends on the tra�c in the ring, and there is a lower bound

and an upper bound of the ring circumference. The lower bound is determined by

the latency of the links and the �xed minimum latency in the node-interfaces and

occurs when the ring is lightly loaded and no symbols is stored in the bypass-queue.

The upper bound is determined by the maximum packet size each node-interface can

transmit (it is only during transmission of packets from the output-queue that the

bypass-queue �lls up) and occurs when the ring is saturated.

2.3 SCI/Real-time � modifying the SCI-protocol

This section will give an introduction to the SCI/Real-time (SCI/RT) activity.

An introduction to real-time systems in general is given in section 2.3.1 and will describe

very brie�y properties of real-time systems. While the SCI/RT-project intends to base its

work on the theory of priority-based scheduling, an introduction to that topic is given in

section 2.3.2. These sections seek to motivate the reader for the SCI/RT-modi�cations

discussed in section 2.3.3, rather supply him/her with a complete introduction to real-time

systems and priority-based scheduling.

Section 2.3.3 will describe some of the proposals on how to modify the SCI-protocol for

real-time purposes. Some of these proposals are in accordance with the theory of priority

based scheduling and seek to design a system which obey the requirements therein, others

are not based on priority based scheduling. There is a large number of modi�cations

proposed in relation to SCI/RT and section 2.3.3 will brie�y describe some of them and

emphasizing those which are investigated later in this thesis.

When the SCI-project entered the �nal stage in 1992 and the SCI-standard was awaiting

approval, interest had already grown in using the SCI-protocol in real-time environments.

Especially the Canadian Department of National Defense (Navy) was interested in the SCI-

protocol and hoped to use SCI in some future naval combat systems. The SCI working

group considered it more important to have the SCI-protocol approved, rather than delay

the process and then try to modify SCI for real-time purposes. This activity therefore

branched o� into the SCI/RT working group (IEEE P1596.6) and work has progressed

since then.

The formal de�nition of the SCI/RT project is given in the following, as stated in the

draft for SCI/RT [IEEE, 1992b]:

Purpose: To de�ne a variation of the IEEE P1596 Scalable Coherent Interface (SCI)

For Real-Time Applications (SCI/RT) where the guaranteed forward progress of the

SCI, given an unknown computing load, is traded for the guaranteed latency of the

SCI/RT, given a known computing load.

Scope: The SCI/RT standard will encompass two changes of the SCI speci�cation that

will make it suitable for real-time applications:

1. to specify deterministic arbitration and bu�er control protocols that are compat-

ible with the priority-based scheduling theories, such as rate monotonic schedul-

ing, and

25

2. to extend the error detection and correction capability to provide automatic

hardware error detection and correction of a single-point hard fault, to provide

automatic hardware sub action fault-retry capability, and to provide backup

scrubber support.

This formal de�nition shows that the goal of SCI/RT is to modify the existing SCI-

protocol such that priority based scheduling methodology can be used, and at the same

time stay as compatible as possible to the SCI-protocol. In the SCI/RT-draft it is also

stated that the future real-time systems are believed to be more dynamic than existing

systems, new tasks can be added to the system dynamically by the users.

2.3.1 Real-time systems

One of the requirements to a computer system used in real-time environments, is that the

computations not only have to be performed correctly, but have to meet a timing constraint

also, i.e. the correctness also depends on when the results are generated. Compared to a

time shared system the timing constraint is an added requirement and when a new computer

system for real-time purposes is designed this requirement will in�uence the design process.

Another issue in real-time systems is the importance of stability and security. An

example of a real-time system is a computer system monitoring and controlling a nuclear

power plant. It is perhaps tolerable that a time shared system experience a breakdown

once a year, but in a computer system controlling a nuclear power plant this would be

totally unacceptable. In the time shared system the system can be restored to correct

status using back-up routines, but in the power plant the nuclear process may come out of

control. Therefore a system controlling a nuclear power plant have to avoid a break-down

at all cost.

Even if the computer system worked �ne, an emergency message from the nuclear kernel

of an unexpected heat-up could suddenly be generated. An emergency message should reach

the operator, or the process dealing with emergencies, as quickly as possible and without

being delayed by other messages of less importance. Therefore priorities are assigned to

messages in real-time systems, re�ecting their importance.

Another example of a real-time system would the navigation system of airplanes, mon-

itoring and controlling the avionics, and air tra�c control system. Common to these

examples are the critical situations which would arise if the system broke down.

In a time-shared system the important aspects are fairness among processes, forward

progress, and average throughput and latency characteristics. The computer load is rarely

known in advance and it also varies considerably, for example by adding or removing

computers from the system. A real-time system di�ers in this respect, because the computer

load is assumed to be fully understood and the tasks in the system are often periodical, like

sampling operations of temperature, pressure etc. Once in a while an emergency situation

arise, and must be handled without delay. The real-time system should be designed in a

way such that the timing behavior can be analyzed and predicted. This means that given

a set of tasks, it can be guaranteed the system can perform all these tasks in time, but

even when the system gets overloaded, the tasks with the highest priority should meet their

deadlines at the expense of the other tasks with lower priority. The system also has to be

fault tolerant and robust.

26

2.3.2 Priority based scheduling

A task within a real-time system is usually periodical and it has to be executed and ter-

minated within a certain deadline. It is normal to distinguish between tasks having hard

deadlines and soft deadlines. A deadline is said to be hard if it has to be met in order

to ensure system functionality, and it is said to be soft if it is desirable that a task meet its

deadline, but it is tolerable that it misses its deadline on occasion [Liu and Layland, 1973].

A scheduling algorithm is a set of rules that determine which task should be executed

at each instant of time. When all tasks within a real-time system are assigned a priority,

indicating their importance, and several tasks are trying to gain access to a shared resource,

a priority-driven scheduling algorithm is used when the shared resource is allocated to

the task with the highest priority. If the task with the higher priority arrives while a lower

priority task is using the shared resource, the lower priority task should be interrupted

(or suspended), and the shared resource should be allocated to the task with the higher

priority [Liu and Layland, 1973].

If the higher priority task has to wait for the lower priority task to terminate or be

suspended, a priority inversion has occurred. Priority inversion is unavoidable in general,

but should be kept at a minimum, because priority inversion reduce the overall performance

of the system and its predictability in terms of timing [IEEE, 1992b].

If �xed priorities have been assigned to the tasks (i.e. the priority of a task does not

change once it has been assigned), the optimal scheduling algorithm was found to be rate

monotonic by Liu and Layland in [Liu and Layland, 1973]. According to the the theory

of rate monotonic scheduling (RMS) a task is assigned a priority which depends on the

length of its period. A task with a shorter period is assigned a higher priority than a task

with a longer period. It is assumed that a task is ready to execute at the beginning of a

period and its deadline is equal to the end of that period. A task's service-/execution-time

should also be shorter than the length of the period.

The theory of rate monotonic scheduling considers only periodical tasks, but real-time

systems rarely contain tasks that are purely periodical, so various techniques on how to

handle aperiodic tasks have been proposed [Lin and Tarng, 1991].

The mathematical theory of RMS indicates how priorities should be assigned to tasks,

how to decide whether it is possible to schedule a certain set of tasks and also how to

determine the minimum number of priority levels. It is assumed that the total set of tasks

is known, along with their period and execution time. Further details on RMS can be found

in [Liu and Layland, 1973] and [Zalewski, 1993].

2.3.3 The proposals on how to modify SCI for real-time purposes

This section will �rst describe a selection of the modi�cations proposed in relation to

SCI/RT, and then describe the packet preemption protocol in more detail because its

performance has been investigated in this thesis.

Some of the proposals are made in accordance with the purpose of the SCI/RT project,

while other seem to be made on another basis than RMS. The latter proposals are mostly

token-based.

The following list describes a selection of the modi�cation proposed in relation to

SCI/RT:

Modi�cations in accordance with priority-based scheduling, [IEEE, 1992b]: Priority

inversion should be avoided because it degrades the predictability of the system, and

27

there are two main problems we need to consider:

� The bu�er over�ow problem

� The blocked service problem

The bu�er over�ow problem occur in situations when a packet tries to gain access

to an input-queue in a node-interface. If the queue is able to accommodate the

packet, it is inserted into the queue and an echo is returned. If the input-queue is

full, a priority inversion occur if there are at least one packet in the input-queue that

has a lower priority than the incoming packet. To avoid priority inversion when a

packet tries to gain access to an input-queue, the queue structure has to be modi�ed.

One solution to the bu�er over�ow problem is to use so called preemption. This

means that a high priority packet trying to gain access to a full input-queue will

force packets with lower priority to preempt. Within basic SCI, an echo is returned

immediately when the send-packet is fully received by the node-interface and it is clear

that the packet can be stored in the input-queue. When packets can be preempted in

the input-queue, echoes can no longer be returned in this way. Instead a DONE-echo

is generated and returned only when the send-packet is removed from the input-

queue by the application process and a RETRY-echo is generated and returned when

a send-packet is preempted because of an incoming packet with a higher priority.

The blocked service problem occurs in situations when a node-interface tries to

transmit packets from the output-queue and the bypass-queue in prioritized order.

If the output-queue contains a packet with a higher priority than any packet in the

bypass-queue, the output-queue should be served �rst, but if the bypass-queue is

unable to accommodate an incoming packet (with length equal to the packet in the

output-queue), then the bypass-queue has to be served �rst. As a result, priority

inversion occurs because a high priority packet in the output-queue has to wait for a

packet with a lower priority in the bypass-queue.

Two priority-based arbitration protocols have been proposed to solve the blocked

service problem, called packet deletion protocol and packet preemption pro-

tocol. In either protocol the input-queue and bypass-queue are priority queues, and

the bypass-queue has additional mechanisms so that packets can be preempted. A

send-packet is preempted in the bypass-queue by replacing it with the corresponding

RETRY-echo. Because send-packets are larger than echo-packets, preemption creates

free space in the bypass-queue. Consequently, echo-packets will not be preempted.

Priority inheritance: Dave James 1 proposes priority inheritance and to apply this to

any queue. Packets with low priority blocking a packet with a higher priority, inherit

the priority of the blocked packet. In this way the queue will be emptied more quickly

and the blocked packet can gain access. The priority inheritance is applied only locally

in order to empty the queue, and the packets will keep their original priority after

they have left the queue. [Roth, 94].

Token based schemes: Proposals in this group represent an alternative approach to

SCI/RT compared to the approach of modifying the SCI-protocol to create a sys-

1Dave James � SCI Working Group Vice Chairman, Apple Computer, MS 301-4G, 1 In�nite Loop,

Cupertino, CA 95014, USA. Email: dvj@apple.com

28

tem obeying the priority based scheduling theories. Common to these proposals are

the use of a special token which circulate the ring, carrying priority information.

Dave James at Apple Computers and Stein Gjessing at UiO propose to use spe-

cial please-packets. In this scheme a node is negotiating for bandwidth before it is

attempting to transmit. The please packets circulate the ring in prioritized order, fol-

lowing an arbitration token indicating which node is allowed to transmit. [Roth, 94].

Tim Scott proposes a strategy called simpli�ed Train Protocol for SCI/RT [Scott, 1995].

The above list describe some of the proposals made in connection with SCI/RT. After

having decided to incorporate a performance analysis of some of these proposals, it be-

came clear that it was too ambitious to investigate them all. Some of the proposals are

very sketchy, and a lot of details are left out. It was therefore decided to investigate the

performance of the following proposal:

Packet preemption protocol A node-interface is allowed to transmit a packet from its

output-queue if the following two predicates are both true:

� Output-queue contain a packet with higher priority than any packet in the

bypass-queue.

� There is su�cient free space in the bypass-queue, or there is su�cient delete-able

space in the bypass-queue.

If so, the node-interface will transmit the packet in the output-queue. If at any time a

packet tries to gain access to the bypass-queue, and there is not enough free space in

the queue to accommodate it, a preemption operation is carried out. This operation

begins with the lowest priority packet which is preempt-able, possibly the incoming

packet. In other words, the node-interface will preempt packets only when necessary.

If not both of the above predicates are true, the node-interface has to transmit from

the bypass-queue for a while, until these predicates become true.

2.4 Summary

This chapter has given the historical background of SCI in brief terms, given an introduction

to the SCI-protocol, real-time systems in general and SCI/RT in particular. Concepts

related to SCI and SCI/RT used in the remainder of the thesis are de�ned in this chapter.

People who previously had been involved in projects trying to increase the speed of the

backplane bus (Fastbus, IEEE 960, and Futurebus, IEEE 896) abandoned the bus structure

when they realized its physical limitations. As a result, the SCI-project was started in 1988

and a new approach was taken. In 1992, SCI became an IEEE-standard.

The SCI-protocol provides bus-like services to processors and memory. Multiple pro-

cessors, multiple caches and multiple memory chips can be connected together and will

communicate using the SCI-protocol. In this way a parallel computer with distributed

shared memory is created. The SCI-protocol is layered and contain a physical layer, a

packet transportation layer and a cache coherence layer, and each layer has a speci�ed

task. The packet transportation layer has been emphasized in this chapter because its per-

formance, under various conditions, is investigated in the remainder of this thesis. Logically

an SCI-interconnect consists of rings, either single rings or multiple rings communicating

29

via switches. A ring consists of several nodes which communicate using unidirectional

point-to-point links. Nodes communicate by transmitting packets on the interconnect.

The SCI/RT project seeks to modify the SCI-protocol for real-time purposes. Compared

to time shared systems like SCI, real-time systems have additional requirements which a�ect

the design process. To meet these requirements, several modi�cations to the SCI-protocol

have been proposed, either within the SCI/RT working group or outside, and some of

these proposals have been described brie�y in this chapter. Of these proposals, packet

preemption protocol has been emphasized because its performance is investigated in

the remainder of this thesis. At the time of writing it is still not clear how to modify the

SCI-protocol for real-time purposes, and the e�ort of the SCI/RT working group has not

yet led to an IEEE standard.

30

Chapter 3

Issues considered in the thesis

This chapter presents and discusses the issues considered in this thesis, or more precisely,

in the remainder of this thesis. It will also be indicated how these issues are planned to be

solved in the thesis.

The starting point of this chapter is the thesis' main goal, and section 3.1 will elaborate

this, and brie�y explain how the initial goal of the thesis was re�ned during the early stages.

Given the main goal of the thesis, a number of interesting issues arise, but to solve them

all is too ambitious. Therefore the logical next step is to decide upon those issues which

can be investigated within the framework of a Cand. Scient. thesis. Section 3.2 will present

the actual issues considered in this thesis, and how it was planned to solve them.

3.1 The main goal of the thesis

The main goal of the thesis has been to design an object-oriented program in Simula,

which simulates a subset of the SCI-protocol (the packet transportation layer) and which

can be used when investigating the behavior and performance of this protocol subset. The

simulator had to be modi�able and �exible so that modi�cations to the SCI-protocol itself,

like the modi�cations required within SCI/RT, could be simulated easily by modifying the

simulator. When the simulator was �nished, behavior and performance of various SCI-

interconnects should be analyzed, as well as the SCI/RT modi�cations.

This has not always been the main goal of the thesis because the very �rst proposal

to a thesis was to design a program which simulated the SCI-protocol, and which could

be used as a communication medium, o�ering the same interface and functionality as the

real-life system it simulated. As work progressed during the early stages, it became clear

that it was too laborious to design a program according to the above speci�cation and at

the same time ensure adequate e�ciency within the time-frame of a Cand. Scient. thesis.

Instead only a subset of the SCI-protocol was going to be simulated and its performance

and behavior investigated. The protocol subset consisted of the packet transportation

layer (section 2.2.3), and simplifying assumptions had been made towards the input of the

simulator. Rather than using real world programs as the main source of input, arti�cial

input was going to be used.

Later it was decided to simulate some of the modi�cations proposed in relation to

SCI/RT. Apart from producing results which could be interesting to the SCI/RT working-

group, incorporating SCI/RT would also give an indication of how �exible and modi�able

the simulator was.

31

3.2 Issues, and how to resolve them

Once the main goal was settled, a vast number of interesting issues arose, but to solve

them all would not have been feasible, and only those issues considered in this thesis are

discussed in the remainder of this section. Interesting issues can be found within the design

and building process of the simulator, and within the performance of SCI and SCI/RT,

and have therefore been grouped accordingly. Final conclusions on these issues are given

in chapter 9.

3.2.1 Issues related to the design and building process of the simulator

Several aspects of the design and building process give raise to interesting issues. The �rst

aspect is the programming language Simula which was given from the start because it was

hoped that Simula would enhance the correctness of the simulator. The second aspect is

the object-oriented programming strategy which was chosen early in the work to be the

main design principle, also because it was believed that an object-oriented strategy would

enhance the modi�ability and �exibility.

The following questions express the issues which are considered in this thesis and which

are related to the design and building process of the simulator:

Issue 1: Is it possible to design a simulator for the SCI-protocol which is �exible

and modi�able, so that future modi�cations to the SCI-protocol can be

simulated without extensive re-design?

The task of designing a program which simulates both the SCI-protocol and vari-

ous modi�cations to the SCI-protocol proposed in relation to SCI/RT may lead to

experience that give an indication whether this is possible.

Issue 2: How successful is the object-oriented programming strategy when sim-

ulating SCI, when modi�cations of the SCI-protocol are simulated also?

Incorporating SCI/RT in the SCI-simulator would indicate an answer to the above

question. An object-oriented program contains modules whose implementation are

hidden to the rest of the program, so a modi�cation of the module structure may not

imply extensive re-design. On the other hand, if the underlying model is changed,

new entities are introduced, and modifying the program may not be as simple.

Issue 3: How does the Simula programming language a�ect the design process

of the SCI-simulator in general, and the object-oriented programming

strategy in particular?

Simula is a programming language which is known to support object-oriented pro-

gramming. The class construct is used when abstract data types are implemented

whose implementation should be hidden from direct manipulation, and can be ac-

cessed only through a well-de�ned interface. On the other hand, Simula programs

are seldom fast, and long simulations may be needed to ensure reliable simulation

results.

3.2.2 Issues related to the performance of SCI

The number of issues related to the performance of SCI are large, so it was decided to focus

upon single SCI-rings and a small selection of multi SCI-ring interconnects. When work be-

32

gan, results had already been published on related aspects, among them [Scott et.al., 1992],

and it was decided to compare the results in the latter article to results achieved using the

simulator designed in this thesis.

The following questions express the issues which are considered in this thesis and which

are related to the performance of SCI:

Issue 4: What a�ects the performance of single SCI-rings, with less than 16

nodes?

On one hand, an SCI-ring allow multiple nodes to be active and simultaneously

transmit packets, while on the other hand, a packet may a�ect multiple nodes because

worm-hole routing is used and as a result several nodes can be blocked. Therefore it

is di�cult to predict the performance of single SCI-rings.

To �nd an answer to this question, single SCI-rings will be simulated under various

conditions. The exact parameter-values assumed in these simulations are presented

and discussed in chapter 5, and the simulation-results itself, related to Issue 4, are

presented in chapter 6.

Issue 5: Is the SCI-ring scalable, when the number of nodes are less than 16?

This question is closely related to Issue 4, because the ring allow multiple nodes to

transmit, but a packet may block multiple nodes, which leaves us with uncertainty

regarding the concurrency of the ring. If the SCI-ring was scalable we would expect

that the total throughput of a 16 node SCI-ring would be signi�cantly higher than

that of a 4-node SCI-ring.

To �nd an answer to this question, single SCI-rings of size 4 and 16 will be simulated.

The exact parameter-values assumed in these simulations are presented and discussed

in chapter 5, and the simulation-results itself, related to Issue 5, are presented in

chapter 6.

Issue 6: Does the �ow control mechanism speci�ed in the SCI-protocol ensure

fairness among the nodes?

It is not obvious that the �ow control mechanism described in section 2.2.3, really

ensure fairness. There is no direct feedback which throttles a node blocking another

node, except for the Go-idles. On the other hand, when a node is in recovery stage it

stalls the Go-idles from further progress, and it is reasonable that other nodes stop

transmitting once the Go-idles are removed from the ring.

To �nd an answer to this question, SCI-rings of size 4 and 16 will be simulated under

the assumption of a non-uniform load and tra�c pattern, and a possible di�erence in

behavior can be observe by using �ow control or no �ow control. The exact parameter-

values assumed in these simulations are presented and discussed in chapter 5, and

the simulation-results itself, related to Issue 6, are presented in chapter 6.

Issue 7: Are the results achieved using the simulator developed in this thesis

comparable to results in [Scott et.al., 1992]?

Some uncertainty is always associated with results achieved through simulation. Er-

rors can occur on various levels, from the program-code level up to the logical level

where the complexity of the real-world problem perhaps is not fully understood. It

33

would strengthen our con�dence in the simulator if the results achieved through this

simulator are comparable to other people's results.

To �nd an answer to this question, SCI-rings will be simulated under conditions which

resemble those assumed in [Scott et.al., 1992]. The exact parameter-values assumed

in these simulations are presented and discussed in chapter 5, and the simulation-

results itself, related to Issue 7, are presented in chapter 6.

Issue 8: Is there a better alternative than using a single SCI-ring interconnect

if we were going to connect 16 nodes?

A single SCI-ring may not be the ideal communication medium for 16 nodes. An inter-

connect with multiple rings provide alternative paths and may increase the through-

put. To answer the above question an interconnect consisting of four rings will be

simulated and compared to a single SCI-ring. The exact parameter-values assumed in

these simulations are presented and discussed in chapter 5, and the simulation-results

itself, related to Issue 8, are presented in chapter 7.

3.2.3 Issues related to the performance of SCI/RT

As it was indicated in section 2.3, SCI/RT is still a project in progress, and the e�ort of

the SCI/RT working group has not yet led to an IEEE standard. The modi�cations to

the SCI-protocol proposed are sometimes sketchy, and important details are often left out.

Therefore is was decided to investigate modi�cations proposed in the draft [IEEE, 1992b],

and simulate priority output-queue and preemptive bypass-queue. Even though the draft

is old, and may no longer represent the current state of the SCI/RT working-group, the

draft is still quite detailed and therefore simpler to implement in the simulator. It is also

interesting to simulate these modi�cations because some of the current proposals are based

on them.

The following question express the issue which is considered in this thesis and which

are related to the performance of SCI/RT:

Issue 9: Does the packet preemption protocol in combination with priority

output-queue and preemptive bypass-queue meet the requirements stated

in the formal de�nition of the SCI/RT project (refer to 2.3)?

The packet preemption protocol in combination with priority output-queue and pre-

emptive bypass-queue are only one of several modi�cations proposed in the draft

[IEEE, 1992b], and it is not likely that this modi�cation alone will ensure a system

suitable in real-time environments. Nonetheless it is reasonable that this modi�ca-

tions should have the properties which lead to the following kind of results:

1. When load is low, the priority distribution of packets transmitted and acknowl-

edged by the receiving node should be approximately equal to the priority distri-

bution of new packets. This mean that all packets, regardless of priority, should

reach their destination when load is low and low priority packets should not be

preempted if there bandwidth is available.

2. When load is higher, the priority distribution of send-packets transmitted and

acknowledged by the receiving node should be approximately equal to the pri-

ority distribution of new send-packets only for the highest priority levels. This

34

mean that the higher priority packets should reach their destination at the ex-

pense of lower priority packets when load is high.

3. The latency of high priority tra�c should be less than the latency of low priority

tra�c, both in general and in overload situations.

General tendencies and trends will be focused rather than exact quantitative measure-

ments. To answer the above question, an SCI-ring of size 4 will be simulated, where

each node use the packet preemption protocol in combination with priority output-

queues and a preemptive priority bypass-queue. The exact parameter-values assumed

in these simulations are presented and discussed in chapter 5, and the simulation-

results itself, related to Issue 9, are presented in chapter 8.

3.3 Summary

This chapter has presented and discussed the main goal of the thesis and related issues

which have been considered in this thesis.

The main goal of the thesis has been to design a modi�able and �exible simulator for a

subset of the SCI-protocol (packet transportation layer) using the programming language

Simula, to incorporate some of the SCI/RT modi�cations proposed by the SCI/RT working

group and �nally to use the simulator to investigate the performance of certain aspects of

SCI and SCI/RT.

A number of interesting issues arise in relation to the above goal, but within the time

frame of a Cand. Scient. thesis, these had to be limited in number. Nine issue has been

speci�ed in this chapter, expressed as questions, and will be referred to as Issue 1 - Issue

9 in the remainder of the thesis.

Issue 1 - Issue 3 are related to the design process of the simulator and asks whether it

is indeed possible to design a simulator for the SCI-protocol (packet transportation layer)

being both modi�able and �exible, and so that future modi�cations to the protocol (e.g.

SCI/RT) can be simulated without extensive redesign. Furthermore these issues ask how

successful the object-oriented programming strategy is when designing a simulator for SCI

and how Simula a�ects the design process in general and the object-oriented programming

strategy in particular, when designing a SCI-simulator.

Issue 4 - Issue 8 are related to the performance of SCI and wants to know what things

a�ect the performance of single SCI-rings, whether the SCI-ring is scalable, whether the

SCI �ow control mechanism ensure fairness to the nodes in an SCI-ring, whether the SCI-

simulator designed in this thesis produce results which are comparable to those presented

in [Scott et.al., 1992] and �nally whether there are better ways to connect 16 nodes than

using a single ring.

Issue 9 is related to SCI/RT and asks whether an SCI-ring using the packet preemption

protocol in combination with priority output-queues and preemptive priority bypass-queues

meet the requirements of SCI/RT project, as stated in the de�nition.

35

[This page has been intentionally left blank]

36

Chapter 4

Designing and building the

simulator

This chapter describes the design and building process of the program simulating the SCI-

protocol, a simulator developed in relation to this thesis and in accordance to the main

goal of the thesis as described in section 3.1.

Not being familiar with the SCI-protocol, the �rst task facing the author was to under-

stand the SCI-protocol to a level where a program simulating it could be designed. Section

4.1 will describe the various sources of information on which the understanding of SCI was

based.

The logical next step in the design process, after having understood SCI and various

related aspects, would simply be to simulate it, but a strategy is needed. The reason is

that the simulator is going to be used in performance analysis of SCI, and to be successful

in this intention, the simulator has to meet certain requirements, and it is because of

these requirements that a strategy is needed. In the main goal of the thesis (section

3.1) the simulator was required to be �exible and modi�able, but there are additional

requirements also. Section 4.2 will explain which requirements the simulator has to meet,

which strategy is used and why the strategy is expected to help design a simulator meeting

these requirements.

The historical development of the simulator and the �nal version of the simulator in

particular, is described in section 4.3. The implementation of the �nal version is shown,

because it indicates how the strategy was expressed in program code. It is hoped that

this section may be of interest to others who also work on SCI-simulations, not because

the simulator described there is believed to represent the optimal solution, but because it

presents an alternative from which better solutions can be designed.

4.1 Sources of information

When understanding the SCI-protocol, the main source of information has been the SCI-

standard [IEEE, 1992a], published by Institute of Electrical and Electronic Engineers (IEEE).

An IEEE-standard is developed by a Technical Committee of the IEEE Societies and a

Standards Coordinating Committee of the IEEE Standards board, consisting of people who

volunteer to participate. A standard begins as a draft, and after having been approved,

becomes an IEEE-standard. IEEE publishes documents with the intention of presenting

state of the art technology as standards, but an IEEE standard does not exclude alternative

37

approaches. Every �ve years an IEEE standard will have to be rea�rmed, and a standard

more than �ve years old, not being rea�rmed no longer represent the state of the art within

its scope. In the case of SCI, the draft was approved in 1992, and therefore rea�rmation

has not been in question yet.

As already explained in section 2.2, the SCI-standard is divided into two parts. The

�rst part is an introduction and tutorial to SCI, and the second part is the SCI-protocol

formally speci�ed in C-code. To a non-expert the SCI-standard is both voluminous and

complex, and therefore the tutorial part was approached �rst and has been referred the

most. The C-code part was consulted when the tutorial was unclear or ambiguous.

Various articles published regarding SCI have provided an alternative approach to SCI.

Articles by [Picker et.al., 1994], [Scott et.al., 1992] and [Bothner and Hulaas, 1991] have

been useful.

To understand the intention of the SCI/RT working group and its attempts to mod-

ify the SCI-protocol for real-time purposes, the main source of information has been the

SCI/RT draft [IEEE, 1992b]. The SCI/RT-draft was written in fall 1992 and has not been

altered since. Therefore the draft may no longer represent the current consensus of the

SCI/RT working group. The document still provide useful information though, because it

gives a brief introduction to real-time systems and priority based scheduling, and because

much of the current activity within SCI/RT are based on priority based scheduling (In

particular rate monotonic scheduling, refer to section 2.3.2).

Various articles has also provided an alternative approach to real-time systems, in par-

ticular [Zalewski, 1993].

Other sources of information have been various mailing lists like sci@sunrise.scu.edu

and sci rt@sunrise.scu.edu. Especially the latter mailing-list concerning SCI/RT, has

brought useful suggestions, comments and proposals. The mailing lists have contained both

good and bad information � good because recent discoveries become quickly are visible

and many proposals are presented � bad because some of the proposals were very sketchy

and a matter of opinion.

During the spring semester of 1994, seminars were held at regular intervals at UiO,

either the Department of Informatics or the Department of Physics, where issues related

to SCI were presented and discussed. During these seminar-meetings, people from various

organizations presented their current work or latest discoveries. Even though these sem-

inars did not present issues which were directly useful in the thesis, it led to a broader

understanding of the SCI-technology.

An international SCI-conference were held at UiO 20-23 Sept 1994, where projects and

recent discoveries were presented by people from various organizations. Especially the

SCI/RT workshop held during the conference, presented issues of particular interest.

When designing the SCI-simulator the books by [Birtwistle et.al., 1982] and [Kirkerud, 1989]

have been particularly useful, the latter can also serve as an introduction to object-oriented

programming in Simula.

4.2 The programming strategy

This section will describe the strategy which were used when the program simulating SCI

was designed. Section 4.2.1 will explain why a strategy was needed, section 4.2.2 will

describe the strategy itself and section 4.2.3 will explain why the strategy was chosen. How

the strategy �nds support in Simula is explained brie�y in section 4.2.4. An alternative to

38

the strategy used in this thesis is described in section 4.2.5.

4.2.1 Requirements to the simulator - a strategy is needed

A strategy was needed because the simulator had to meet certain requirements in order to

be useful in performance analysis. In the following, these requirements will be discussed.

As explained in chapter 3, the SCI-simulator had to be bothmodi�able and �exible.

In this way modi�cations of the SCI-protocol related to SCI/RT and various interconnect

topologies could be simulated.

The simulator also had to meet a requirement towards correctness, because the simula-

tor should simulate SCI-interconnects, and produce results which should apply to real-world

SCI-interconnects also. If the simulator should seek to be 100% correct, every possible de-

tail and aspect had to be simulated, and a formal veri�cation of the whole program had

to be performed. This was considered too much work within the framework of a Master

thesis.

The correctness requirement was therefore relaxed slightly, because a simulator being

�exible, modi�able and correct would represent too much work. After a closer look at the

simulations which were going to be performed later, it became clear that some details could

be left out altogether if a simpli�ed model of the real-world was assumed. It was decided

that the simulator had to be correct under these assumptions. It was also important that

these assumptions, which were made prior to the design of the simulator, were reasonable.

For example, a reasonable assumptions would be that a parallel SCI-link with 18 parallel

wires never experience skew (Skew is caused by di�erences in wire-lengths in a parallel link,

where a signal on the shorter wire propagate faster than a signal on the longer wire). On the

other hand, assuming an SCI-ring without the queue allocation protocol (refer to section

2.2.3) would not be reasonable because it was expected that the queue allocation protocol

would come into action during the simulations. Even after having made these simplifying

assumptions, a full formal veri�cation of the program was not considered feasible, and an

informal reasoning was considered a better alternative.

The requirements toward modi�ability and �exibility also implied that the simulator

had to be parameterized. As described in chapter 3, various ring sizes, topologies and

tra�c patterns was going to be simulated, and the simulator had to simulate these con-

ditions as precisely as possible. It was also considered important that the parameters

specifying a simulation, resembled the characteristics of the corresponding real-life system,

e.g. that queue-sizes were speci�ed in bytes.

Another important requirement was that performance analysis could be made,

which meant that the simulator had to output information concerning behavior and per-

formance of the simulated system. It was also considered important that the statistical

measurements was de�ned in a way that resembled those of the real-world system, e.g. that

the points of measurements in the simulator could be recognized in a real-world system.

Furthermore, the simulator should be able to provide information indicating the statistical

reliability of the measurements. For example, if we wished to determine the average latency

of packets in a given interconnect, the sample mean is a statistic which enable us to draw

inferences on the population mean, but the sampled mean is only a point estimate, and does

not indicate variance of the sampled values. The sample mean should therefore be supplied

with the standard error or a con�dence interval [Bhattacharyya and Johnson, 1977]. In a

book by Jain [Jain, 1991] regarding computer system performance analysis, the usefulness

of con�dence intervals is emphasized in a discussion on how to compare systems using

39

sampled data:

The basic idea is that a de�nite statement cannot be made about the character-

istics of all systems, but a probabilistic statement about the range in which the

characteristics of most system would lie can be made. - Raj Jain

The last requirement which was considered important was the e�ciency requirement.

If average measurements of throughput and latency were sought, a better estimate of the

average value would be produced using longer simulations. Reliable results should therefore

be available within reasonable time.

To summarize - the following requirements were considered important when the simu-

lator was designed:

� Modi�able and �exible

� Correct

� Parameterized

� Enabling performance analysis

� E�cient

4.2.2 The design strategy

This section will describe the strategy that has been used when the simulator related to

this thesis was designed. In section 4.2.1 the various requirements toward the simulator

was described, and consequently a strategy was needed to guide the design process.

Before the strategy is presented, some concepts will have to be de�ned:

Class: In a program, a class refers to a module whose inner structure is invisible to, and

cannot be accessible directly from the remainder of the program. A class can only

be accessed through procedures or actions which belong to the interface of the class.

The implementation of the procedures in the interface of a class is invisible to the

remainder of the program.

Object: An object is an instance of a class, and is generated dynamically. An object

resemble the class from which it has been created, because the object's inner structure

and implementation is invisible to other objects, and can only be accessed through

procedures in the interface of the object. There can also be several objects created

from the same class. The behavior of an object is speci�ed by the corresponding class

and its behavior should be visible to other objects only through the interface.

The overall strategy has been to design classes, from which objects can be created

dynamically and which in structure and behavior resembles the real world components

they represent and simulate. By combining several objects of various classes, complex

structures can be created. For example by designing classes representing the node-interface

and a class representing the link, objects of these types can be created dynamically and

then combined into the more complex structure of an SCI-ring. This structure representing

an SCI-ring will simulate a real world SCI-ring by activating the objects it contain, and

40

let the objects interact according to their corresponding class. Various structures can be

created by creating various number of objects, and by combining them di�erently.

If the class is parameterized, objects can be more closely speci�ed, and variation of the

objects is ensured. For example, if a class representing a node-interface is parameterized

and the bypass-queue size can be speci�ed, di�erent node-interface objects can be created

with di�erent bypass-queue size. Further �exibility can be achieved if the class is a sub-type

hierarchy, where a super-type have several sub-types. For example, if the class for bypass-

queue contain two sub-types, one for FIFO-queue and one for priority queue, bypass-queue

objects can be created with di�erent behavior, but with the same interface.

In other words, the strategy seeks to classify all entities in a real-world SCI-ring, and

design classes according to this classi�cation. A class should resemble the corresponding

entity-class in structure and behavior, and objects are generated from each class so that

each object represents an entity in a real-world SCI-ring. Object can be combined into

more complex structures afterwards.

The strategy above is an object-oriented programming strategy, but have an

added requirement towards the implementation of the class because the implementation

should resemble the structure of the real world counterpart. The �rst object-oriented

programming language was Simula [Wegner, 1990] and it developed during the 1960's by

people at Norwegian Computing Center. It contained language-constructs representing

classes, sub-classes (with inheritance) and objects [Dahl et.al., 1982].

No formal de�nition of object-orientation has yet been made, but the following quote

(taken from [Wegner, 1990]) gives an indication of what is commonly associated with object-

orientation:

Modeling entities by their behavior (their response to messages) is a central

principle of scienti�c method in many disciplines: behaviorism in psychology,

operationalism in physics, and Platonic ideals in philosophy. Objects are a

canonical form of description for any discipline or domain of discourse. Its

universality as a representation, modeling, and abstraction technique supports

the view that the object-oriented paradigm is conceptually and computationally

fundamental - Peter Wegner

A consequence of object-oriented programming is that programs contain modules (or

classes) which hide their complexity and implementation. The implementation of one class

can be changed without changing the other classes, and the implementation of one class

can be understood without having to understand the implementation of the other classes.

In larger programs this bene�ts modi�ability and ease of understanding.

Object-oriented programming is traditionally closely related to a top-down program-

ming strategy. In this strategy the programmer begins with a class which solve the whole

problem. If the problem is complex, implementing the class solving the problem is equally

complex, but the task is made manageable by identifying sub-problems and divide the im-

plementation into smaller parts. As a result the complexity is reduced, and for each task

a class is designed. The process can be repeated several times, but terminates when the

implementation of a class is easily expressed in program code.

In practical work on the SCI-protocol, the top-down strategy had to be combined with

a bottom-up strategy. A top-down strategy will not necessarily lead to a set of class-

de�nitions which in structure and behavior resemble their real-world counterpart, as re-

quired. Moreover the complexity of the SCI-protocol force the programmer to go into

details before a �nal decision can be made on which classes to design.

41

A combination of the top-down and bottom-up strategies has therefore been used in

order to decide which classes the simulator should contain.

4.2.3 Reasons for choosing the strategy

This section will explain why the strategy described in section 4.2.2 is expected to help

designing a simulator which meet the requirements in section 4.2.1.

The requirement concerning modi�ability and �exibility is expected to be met be-

cause the implementation of a class is hidden from the rest of the program and can be

modi�ed without a�ecting other classes in the rest of the program. If the inner structure

of a class has to be modi�ed, it should be possible to perform these modi�cations without

changing the interface of the data type. If it really should be necessary to change the

interface of a class, those parts of the program which access objects of this type have to

be modi�ed, which is a laborious task. Nevertheless it is hoped that in a well-structured

program the number of object accesses is bounded in number and space.

When a set of of classes have been de�ned, it should be fairly easy to combine them

into more complex structures, by creating objects dynamically. The user could specify the

desired structure, and the simulator could create the structure dynamically according to

the speci�cation. In this way the simulator becomes parameterized.

The strategy is also expected to enhance correctness because it is easier to reason

about the simulator's correctness when the structure is recognized as similar to the real

world structure, and because the real-world structure guides the program-design directly.

If the correctness of a class is established, which mean that the class behaves according

to its speci�cation when accessed through the interface, it is also known, once and for all,

that objects of this type maintain their consistency during simulation. A class is protected

from direct manipulation and accessible only through interface procedures.

When the structure and behavior of objects correspond to their real world counter-

parts, it is also easier to perform and present statistical measurements that will

be comparable to real-world measurements. To illustrate this point consider the following

example: Throughput (number of bytes per unit time), can be measured at various places

in an SCI-ring. On the links there are a stream of idle symbols and packet symbols, and the

throughput can be calculated using either all symbols or only one of the two variants. The

throughput can also be measured at a node-interface, using all packets addressed to it or

only those packets which are inserted into the input-queue (Packets that are addressed to

a node-interface could either be inserted into the queue or rejected, depending on whether

the queue can accommodate the packet or not). All these throughput measurements are

di�erent and equally interesting, and should be calculated as precisely as possible. This

is expected to easier when the structure of the objects resemble the structure of the real

world entities they represent.

So far, the strategy is expected to help designing a simulator which meet the requirement

in section 4.2.1. It is less certain that the requirement towards e�ciency is met, because

experience indicate that object-oriented programs create a vast number of dynamic objects

and use the garbage collector frequently. This will reduce the e�ciency of the program.

4.2.4 How the strategy is supported in Simula

The class construct in Simula can be used in order to group together a data-structure and

the procedures manipulating it. Some Simula-compilers support a mechanism which ensure

42

that classes are accessed only through their interface, but this has not been the case with

the compiler used in this thesis. A Simula class can be parameterized and class-hierarchies

can be de�ned. In this respect the strategy �nds support in Simula.

Programs written in Simula are usually not very fast, and this is caused partly by

a slow run-time system, and partly by the fact that Simula encourages object-oriented

programming, and this will, inevitably, lead to dynamically allocated objects.

4.2.5 An alternative strategy

An alternative to the programming strategy described in the previous sections, was sug-

gested by Stein Gjessing at UiO in the early stage of the work. This alternative strategy

focus upon the packet entity in the SCI-interconnect and it is seeks to represent and simu-

late the life of the packet, rather than the whole interconnect. A packet is represented by

an event, and a packet-event is scheduled and rescheduled in a way which resembled the

life of the packets in the real-world SCI-interconnect. For example, when a packet pass a

node-interface, this could be simulated by rescheduling the packet-event to let it become

active N nanoseconds later, where N is the delay in the node-interface.

One advantage of this alternative strategy is that it focuses upon the entity which give

raise to throughput and latency, and disregard the rest. In this way we may get less code

and a faster simulator. However, it is not obvious how to ensure correctness and the risk

is there that we make restricting assumptions toward the issues which we eventually are

going to investigate. At the time when the strategy was suggested, a considerable e�ort was

still involved in understanding the SCI-protocol and it was reasonable to believe that the

strategy required a thorough understanding of the SCI-protocol before a program could be

designed. In other words, programming would have to be postponed until the SCI-protocol

was fully understood. It was therefore decided to abandon the alternative strategy in favor

of the strategy described in section 4.2.2.

4.3 Implementation of the �nal simulator

This section will describe brie�y the development of the simulator, and in particular de-

scribe and discuss the �nal version. The latter part will indicate how the strategy described

earlier in section 4.2 was expressed program-code.

4.3.1 The historical development of the simulator

The biggest challenge in the design process was the fact that the SCI-protocol describe

the expected behavior, not so much how it should be implemented. A programmer who

designs a simulator for SCI has to make a choice on these implementation issues, and

has to realize the consequences because they will a�ect the behavior of the simulator. A

good understanding of the SCI-protocol was required especially when faced with di�erent

alternatives.

As an example, consider the task of simulating the output-queue structure. In the

output-queue there will be various types of packets, unsent packets, packets which have

to be retransmitted and packets sent which await echoes. The order in which these pack-

ets leave the output-queue cannot be chosen arbitrarily, because forward progress must

be ensured. Retry packets (packets which have to be retransmitted) should possibly be

transmitted before unsent packets, if an unsent packet is transmitted to the node which

43

rejected a packet previously, it would certainly be rejected. A packet which awaits an echo

should not be retransmitted at all, before an echo is received, but what if the echo is lost in

the ring? The example shows that the behavior of an SCI-ring has to be well understood

in order to simulate the protocol correctly.

During stage one, a very simple simulator was designed, and it was neither correct

nor complete, but only used as a tool in order to understand the basic mechanisms in

Simula used when simulating parallel processes. The stage one simulator only simulates

transmission of complete packets and nothing else. It was clear that the a node-interface

should be considered an independent process, and this could be accomplished by using the

class simulation package in Simula.

The next step was to simulate the packet concept in more detail, and in stage two

packets were simulated by symbol sequences, and this simulator as well as the succeeding

simulators, track every symbol around the ring. On this stage the interesting issue was how

to ensure correct receiving of symbols while symbols were simultaneously transmitted. It

was realized that a correct way to simulate this would be to design one receiver stage and

one transmitter-stage, which behaved independently. On this stage packets and symbols

were classes.

In the following stage, considerable e�ort was involved when the ring bandwidth allo-

cation protocol and the queue allocation protocol were going to be simulated. This e�ort

led to the stage three simulator, which implements the go-bit protocol and AB-retry pro-

tocol. On this stage, the simulator contain modules which simulated the building blocks of

the SCI-interconnect - node, node-interface and link. These entities were represented fairly

completely by the corresponding classes.

The strategy described in 4.2 had up to this point been followed diligently, and the

simulator had so far been designed without considering the e�ciency of the simulator.

Nevertheless, when the simulator were tested it became clear that something had to done

to speed up the simulator, because the e�ciency was appalling. Tests which simulated

approximately 1500ns of real system time, spent as much as 80-90% of the time running

the garbage collector, and the tendency was clear - the longer the simulation, the slower

the execution. Occasionally the program terminated abnormly, with a message from the

run-time system telling that no storage was freed by the garbage collector.

The low e�ciency of the simulator during stage three was not acceptable, and it was

decided to do something about it. As explained above, run-time statistics indicate that the

simulator spent as much as 90% of the time running the garbage collector, so attention was

drawn to those parts of the simulator which generated most of the objects. This turned

out to be the classes representing the packet entity, the multiplexer entity and the stripper

entity. More precisely the culprit was the class representing the symbol entity, because a

vast number of new symbol objects were created during run time. This was an awkward

situation, because those classes which previously had been designed just to simplify the

future design process, were now being scrutinized.

This led to stage four simulator, which di�ers from the stage three simulator by simu-

lating symbols by integers (symbols had previously been class-objects) and that the packet

class and bypass-queue class were modi�ed. Simulating symbol entities with integers were

not entirely according to the strategy, and it was expected that the modi�cations compared

to stage three would reduce the readability and the modularity of the simulator. To some

extent, this expectation was later con�rmed, in particular when statistical measurements

of the latency of packets were implemented. Packet objects had to carry time-stamps and

because a packet was a sequence of integers, time-stamps had to stored in bit-�elds of sev-

44

eral integers. Nevertheless it became apparent that the modi�cations during stage 4 were

a remedy that increased the e�ciency. Comparing test simulations to those previously

performed on stage three indicated that e�ciency had increased by a factor of 100, some-

times even more. The stage four simulator retained the same functionality as stage three

simulator, but garbage collection were drastically reduced.

Having designed the classes representing the building blocks in real-life SCI-interconnects,

their structure and behavior, the next step was to enable the user to specify arbitrary SCI-

interconnects. A speci�cation language and a parser for the language was designed. The

parser would read the speci�cation �le and according to this speci�cation �le create dynam-

ically the necessary objects of the classes node, nodeinterface and link. These actions

were carried out during stage �ve, leading up to the �nal version of the simulator (refer to

section 4.3.2 for more details). Some of the e�ort was also focused upon statistical aspects

regarding the measurements performed in the simulator. One of the requirements towards

the simulator was that statistical measurements could be performed and that they corre-

sponded closely to those which could be performed in a real-world SCI-interconnect. It

was also important that the simulator gave an indication on how exact the measurements

were. Point-estimates (mean value) should therefore be supplied with interval-estimates.

The concept of sampling gave the idea to class and objects of this class were assigned to

each interesting statistical measurement. In this way the mean, standard deviation and

con�dence intervals were calculated each time a sampling-operation was performed.

It was also during this stage that SCI/RT was incorporated in the simulator. Appro-

priate subclasses to the existing classes representing the bypass-queue and output-queue

were designed in order to cater for the di�erent behavior and internal structure required

by SCI/RT.

4.3.2 SCIsim - the �nal version

The program which has been designed for SCI is a program that contain a number of class

de�nitions. The classes can roughly be divided into two sets:

� The �rst set contain classes representing structural concepts like ring and inter-

connect, and their task is to create the structure dynamically and store the structure.

� The second set contain classes representing real-world entities which are the build-

ing blocks of SCI-interconnects, for example node, node-interface and link. These

classes have been designed according to the strategy described in section 4.2.

Brie�y the program behaves as follows: The user writes a �le containing the speci�cation

of the SCI-interconnect that is going to be simulated. The simulator, henceforth referred

to by its name �SCIsim�, will let the objects representing the structure (First set) read

the speci�cation �le, and dynamically create the object accordingly. These latter objects

belong to the second set, and they simulate the physical entities of an SCI-interconnects.

If the speci�cation �le is found correct, the created structure is used in simulation, which is

started immediately. During simulation, statistical information is gathered and calculated.

Once the simulation is over, and terminates successfully, statistical information is written

to �le, along with the current state of the interconnect.

An unsuccessful simulation is recognized by an error message, usually caused by unfor-

tunate parameter settings, e.g. specifying an 80 byte bypass-queue inside a node-interface

which is capable to transmitting packets up to 256 bytes.

45

SCI−INTERCONNECT
NODE
NODE INTERFACE
LINK
PACKET

SCI−SIMULATOR

(a) The concept

simulation class SCIsimulator(specfile);
 ref(inputfile) specfile;
begin

% LOCAL DATA−TYPE DEFINITIONS:

 element class packet <..>;
 class link <..>;
 process class nodeinterface <..>;
 process class node <..>;

 class network <..>;

% DEFINITIONS OF LOCAL PROCEDURES:

 procedure initialize <..>;

% STATEMENTS:

 initialize;
 <..>;

end;

% DEFINITIONS OF ACCESSIBLE PROCEDURES:

 procedure WriteSimulationInfo <..>;
 procedure WriteStatisticalInfo <..>;

% DATA STRUCTURE:

 ref(network) SCIinterconnect;

(b) The class

Figure 4.1: The SCI-simulator

The program is textually divided into several smaller �les so that each �le contain a

class or a set of procedures. Classes in Simula can be compiled separately in general, but

this is not possible when one class depends on another class' de�nition and vice versa.

In the SCIsim simulator there are several classes which are mutually dependent, so the

smaller �les has to merged into one large �le before compilation (Using the C-preprocessor

[Kernighan and Ritchie, 1988]).

In the remainder of this section, part of the implementation of the program will be

described in some detail, starting at the uppermost level of abstraction with the concept

of the SCI-simulator, and proceeding onto modules representing structural entities and

building blocks of SCI-interconnects. To indicate how the strategy described in section

4.2 in�uenced the program structure, a two-part presentation will be given. The �rst part

will describe the real world concept or entity, and the second part will describe the textual

representation of this concept or entity in the program. The textual representation is

simpli�ed compared to the version used in the program, showing the main structure only.

Lines in the textual representation which are comments, begin with '%'.

The SCI-simulator � �gure 4.1

Starting at the uppermost level of abstraction we have the SCI-simulator concept,

and it contains other concepts, like interconnect, link and node. In the SCIsim program the

concept of SCI-simulator is represented by the class SCIsimulator, which is a subclass

of the class simulation, a standard Simula library class. The latter class enables simple

process-simulation in the class SCIsimulator.

46

Ring 3

SCI − INTERCONNECT

Ring 1

Ring 2

Ring n

(a) The concept

class network(specfile);
 ref(inputfile) specfile;
begin

% DEFINITIONS OF LOCAL PROCEDURES:

 procedure Initialize <..>;

% STATEMENTS:

 initialize;

end;

% LOCAL DATA−TYPE DEFINITIONS:

 class ring <..>;
 class ring_set <..>;

% DEFINITIONS OF ACCESSIBLE PROCEDURES:

 procedure DisplaySimulation <..>;
 procedure DisplayStatistics <..>;

% DATA STRUCTURE:

 ref(ring_set) RingSet;

(b) The class

Figure 4.2: The SCI-interconnect

Figure 4.1a illustrates the idea graphically, and shows the concept SCI-simulator

encapsulating other concepts, like interconnect, link and node. Figure 4.1b shows the

textual representation of the class SCIsimulator which is used in the program. This

class contains two di�erent sets of classes, representing either structural concepts (e.g.

class interconnect) or physical entities (e.g. class node).

The structure of the class SCIsimulator is an SCI-interconnect, and its behavior

is to open the speci�cation �le, pass it onto a generated interconnect object and start

the simulation. Once the simulation is done, it will write statistical measurements and

simulation status-information to �le.

The SCI-interconnect � �gure 4.2

The SCI-interconnect concept relates to the real world SCI-interconnects, consisting

of multiple rings, communicating through switches. The SCI-interconnect concept can

therefore be described as a set of SCI-rings. Figure 4.2a shows the conceptual idea, and

�gure 4.2b shows the textual representation in the program, the class network. As shown

in the latter �gure the structure of the module that simulates the concept is a ring-set. Its

behavior is to create the rings in the ring-set according to the speci�cation �le and store

this structure.

The name of the class network, does not correspond textually to the concept name

SCI-interconnect, but is caused by a choice made during the early stages in the design

process.

47

SCI − RING

Node 1

Node 2

Node 3

Node m

Nodeinterface 1

Nodeinterface 2

Nodeinterface3

Nodeinterface n

Link 1

Link 2

Link 3

Link n

(a) The concept

class ring(<..>);
begin

% DEFINITIONS OF LOCAL PROCEDURES:

 procedure Initialize <..>;

% DEFINITIONS OF ACCESSIBLE PROCEDURES:

 procedure DisplaySimulation <..>;
 procedure DisplayStatistics <..>;

% STATEMENTS:

 Initialize;

end;

% LOCAL DATA−TYPE DEFINITIONS:

 class link_set <..>;

% DATA STRUCTURE:

 ref(nodeinterface_set) NodeinterfaceSet;
 ref(node_set) NodeSet;
 ref(link_set) LinkSet;

(b) The class

Figure 4.3: The SCI-ring

The SCI-ring � �gure 4.3

The SCI-ring concept contains the concepts of processor, memory and cache, and the

physical ring itself. The processors, memory chips and caches are referred to as application

entities, and a processor communicate with a memory chip using the local transfer cloud

which handles requests and possibly translating them into packets (refer to section 2.2).

These packets are put onto the physical ring using the local node-interface. Between each

node-interface there is a link, and to every node-interface there are two links, one input-link

and one output-link, thereby forming a ring. In this context the term �node� will refer to

a transfer cloud and its local application entities. The SCI-ring concept can therefore be

described as a set of nodes, a set of node-interfaces and a set of links.

Figure 4.3a shows the SCI-ring concept and �gure 4.3b shows the class ring which

is the textual representation. An object of the class ring contain three di�erent sets, a

node-set, a node-interface-set and a link-set. The node concept is simulated by the class

node, the node-interface concept is simulated by the class nodeinterface and the link

concept is simulated by the class link, and these classes will be discussed later. Note

that in �gure 4.3a the number of links and node-interfaces are equal, whereas the number

of nodes and node-interfaces may di�er. The number of nodes and node-interfaces di�er in

the case when multiple SCI-rings are connected via switches, because a switch has two or

more node-interfaces.

The behavior of the class ring is to read a part of the speci�cation �le and according

to this �le create the objects of the classes node, nodeinterface and link.

48

R
E

Q

R
E

S
P

R
E

Q

R
E

Q

R
E

Q

R
E

S
P

R
E

S
P

R
E

S
P

NODE INTERFACE

NODE INTERFACENODE INTERFACE

NODE INTERFACENODE INTERFACE

R
E

Q

R
E

Q

R
E

S
P

R
E

S
P

REQUEST−node RESPONSE − node

SWITCH

REQUEST &
RESPONSE − node

(a) The entity

process class node <..>;
begin

node class nodeapplication <..>;
begin

nodeapplication class RESPnode <..>;
begin

nodeapplication class REQnode <..>;
begin

nodeapplication class REQRESPnode <..>;
begin

nodeapplication class SCIRTnode <..>;
begin

node class SCIswitch <..>;
begin

 <..>;
end;

 <..>;
end;

 <..>;
end;

 <..>;
end;

 <..>;
end;

 <..>;
end;

 <..>;
end;

(b) The class

Figure 4.4: The SCI-node

The node � �gure 4.4

An application process entity is represented by a processor, a memory chip, a cache

or a combination of these entities, and in an SCI-interconnect these entities receive or

transmit ordinary requests or responses, using the local transfer cloud. The transfer cloud

will handle these requests or responses and possibly translates them into packets which are

transmitted on the interconnect (refer to section 2.2).

The class node simulates the application process entity and transfer cloud, under some

simplifying assumptions. The class node does not consider the part of the SCI-protocol

related to cache-coherence, and it does not behave in a request-response fashion. The class

node only generate packets according to a speci�ed size and according to a given load and

tra�c pattern.

The biggest di�erence between the class node and the previous modules like for ex-

ample class interconnect and class ring, is that the class node represents one of the

main building blocks in an SCI-interconnect. An object of class node therefore represents

49

an application process entity and the local transfer cloud, under the assumption described

above. The parameters given to an object of class node determines the behavior of this

object.

In the SCIsim simulator the switch entity is simulated by the class SCIswitch which

is a subclass of class node, and whose behavior is simply to move packets from one node-

interface to another. More precisely, an object of class SCIswitch moves a packet in the

input-queue of one node-interface in one ring, to the output-queue in another node-interface

in another ring. This mean that the class SCIswitch simulates a store-forward switch,

and does not use worm-hole routing. Compared to a switch using worm-hole routing, a

store-forward switch will represent a higher delay when load is low because packets have to

be completely received before they are passed on. When load is high the di�erence between

a switch using worm-hole routing and a switch using store-forward is expected to be small,

because in either case, the switches would be saturated and packets have to be temporarily

stored. A switch of this type is often referred to as a bridge or a 2� 2 switch.

Figure 4.4a shows the simpli�ed model of the application process entity and trans-

fer cloud and �gure 4.4b shows the the class node, the textual representation.

The node-interface � �gure 4.5

The node-interface entity implements the packet transportation layer, and acts as

an interface between the transfer cloud and the ring.

The structure of the node-interface entity was shown in chapter 2 and is repeated in

�gure 4.5a. Figure 4.5b shows the textual representation of the class nodeinterface

which simulates the node-interface entity. As illustrated in the �gure, the node-

interface entity has two output-queues, two input-queues, a bypass-queue, a stripper/decoder

and a multiplexer. The behavior of an object of class nodeinterface is designed to

resemble the node-interface entity. Packets from either of the two output-queues is

transmitted to the next down-stream neighbour according to the ring-bandwidth protocol.

Packets and symbols on the incoming link is either passed onto the transmitter-stage if

the packet is not addressed to this node-interface, or inserted into the input-queue in ac-

cordance with the queue allocation protocol. When a node-interface receives a packet, it

strips the packet from the ring, and sends No-Go idles to the transmitter-stage.

The class nodeinterface is a subclass of the class process (contained in the class

simulation) and in this way simple process-simulation can be performed. The behavior

of the class nodeinterface is governed by the incoming symbol, the state of the bypass-

queue, the input-queues and the output-queues. The clock-cycle of the node-interface

entity is simulated by a simple while-do loop in the class nodeinterface.

When designing the class nodeinterface some assumptions were made towards the

underlying model of the node-interface entity to simplify the design process. Among

those assumptions were:

� There is no skew in the links. Skew is caused by di�erences in wire lengths in parallel

links, and limits the maximum signal speed.

� There is no drifting of the internal clocks of the node-interfaces. The internal clocks

of the node-interfaces entity may drift slightly and this will cause them to become

unsynchronized. To cope with drifting, elasticity bu�ers are used at the input-link.

� There is no prioritized tra�c in the ring when basic SCI-rings are simulated. The

SCI-protocol de�nes two priority levels.

50

16 16

R
E
Q
U
E
S
T

O
U
T
P
U
T
Q
U
E
U
E

R
E
S
P
O
N
S
E

O
U
T
P
U
T
Q
U
E
U
E

R
E
Q
U
E
S
T

I
N
P
U
T
Q
U
E
U
E

R
E
S
P
O
N
S
E

I
N
P
U
T
Q
U
E
U
E

BYPASSQUEUE

SAVEIDLE

M
U
L
T
I
P
L
E
X
E
R

S
T
R
I
P

RECEIVER
STAGE

TRANSMITTER
STAGE

(a) The entity

process class nodeinterface(<..>);
begin

% LOCAL DATA−TYPE DEFINITIONS:

 class inputqueue <..>;
 class outputqueue <..>;
 class outputstatemachine <..>;
 statemachine class inputstatemachine <..>;
 class bypassqueue <..>;
 class stripper <..>;
 class multiplexer <..>;
 class saveidle <..>;

 class statemachine <..>;

% DEFINITIONS OF LOCAL PROCEDURES:

 procedure initialize <..>;

% DEFINITIONS OF ACCESSIBLE PROCEDURES:

 boolean procedure TransmitPacket <..>;
 ref(packet) procedure ReceiveResponsePacket <..>;
 ref(packet) procedure ReceiveRequestPacket <..>;

% STATEMENTS:

 initialize;
 while true do
 begin
 InputFromLink;
 TransitInputLogic;
 TransitOutputLogic;
 OutputToLink;
 hold(clock_frequence);
 end;

end;

% DATA STRUCTURE:

 ref(inputqueue) INPUTQREQ, INPUTQRESP;
 ref(outputqueue) OUTPUTQREQ, OUTPUTQRESP;
 ref(outputstatemachine) OUTPUTLOGIC;
 ref(inputstatemachine) INPUTLOGIC;
 ref(bypassqueue) BYPASSFIFO;
 ref(stripper) STRIP;
 ref(multiplexer) MUX;
 ref(saveidle) SAVEIDLEBUFFER;

(b) The class

Figure 4.5: The node-interface

51

16

R
E
Q
U
E
S
T

O
U
T
P
U
T
Q
U
E
U
E

R
E
S
P
O
N
S
E

O
U
T
P
U
T
Q
U
E
U
E

BYPASSQUEUE

SAVEIDLE

M
U
L
T
I
P
L
E
X
E
R

TRANSMITTER
STAGE

RECEIVER
STAGE

(a) The entity - fair bandwidth allocation

class outputstatemachine;
begin
 <..>
end;

outputstatemachine class GoBitAlgorithm;
begin
 <..>
end;

outputstatemachine class SimpleAlgorithm;
begin
 <..>
end;

outputstatemachine class SCI_RT_outputstatemachine;
begin
 <..>
end;

SCI_RT_outputstatemachine class PacketPreemptLittleAsPossible;
begin
 <..>
end;

(b) The class

Figure 4.6: The transmitter-stage

The transmitter-stage � �gure 4.6

The transmitter-stage is located in the node-interface and control the output-queue

and the bypass-queue, and has to decide which queue to transmit from. The transmitter-

stage therefore behave according to a queue arbitration protocol and there are di�erent

alternative which have to be considered. The following describe the alternatives considered

in this thesis:

SCI �ow control: In an SCI-ring the transmitter-stage must obey the ring bandwidth

allocation protocol as described in section 2.2.3.

No �ow control: In a ring without �ow control the transmitter-stage will transmit from

the output-queue only when the bypass-queue is empty. This means that bypassing

symbols always have the right of way, and was described in section 2.2.3.

52

F−flag

LINK

Clock

Data 0
Data 1

Data 15
One symbol

(a) The entity

class link(latency);
 real latency;
begin

% LOCAL DATA−TYPE DEFINITIONS

 class delayqueue <..>;

% DEFINITIONS OF ACCESSIBLE PROCEDURES:

 procedure PutSymbol <..>;
 procedure GetSymbol <..>;

% STATEMENTS:

 initialize;

end;

% DEFINITIONS OF LOCAL PROCEDURES:

 procedure initialize;

% DATA STRUCTURE:

 ref(delayqueue) symbol_sequence;

(b) The class

Figure 4.7: The link

Packet preemption protocol: In an SCI/RT-ring where the output-queues and priority

bypass-queues are preemptive priority queues, the transmitter-stage must choose the

queue with the highest priority. However, this is not always possible - if the output-

queue has a higher priority than the bypass-queue and the bypass-queue is full, the

transmitter-stage has to transmit from the bypass-queue or preempt the bypass-

queue. Again there are various alternatives on how and when to preempt, and in this

thesis the packet preemption protocol, described in section 2.3.3, is considered.

Figure 4.6a shows the transmitter-stage entity, and this entity is represented by the

class-hierarchy of class outputstatemachine shown in 4.6b. There has been designed

a sub-class for each of the three alternatives above. The class GoBitAlgorithm rep-

resents SCI �ow control, class SimpleAlgorithm represents No �ow control and class

PacketPreemptionLittleAsPossible represents Packet preemption protocol.

While �gure 4.6a does not indicate how the transmitter-stage should be represented, an

underlying model of the transmitter-stage and its behavior had to be de�ned. Appendix A

presents three proposals on how to describe the underlying model of the transmitter-stage,

one for each of the three alternatives above.

The link, �gure 4.7

The link entity represents the physical interconnect between two node-interface

entities. In the SCI-standard there is de�ned three di�erent link types - a parallel electrical,

an electrical serial and an optical serial link. The SCIsim simulator assumes the �rst

alternative as the underlying model, the parallel electrical link, and assumes that a link

transmit complete symbols. Figure 4.7a shows the link entity, and �gure 4.7b shows the

class link, which is the textual representation.

53

When an object of class link is created, the signal propagation delay can be speci�ed

using the parameter. The structure of the class link is a queue whose length is calculated

according to the delay parameter. The behavior of the class link is governed by the two

procedures, PutSymbol and GetSymbol, which are accessible outside the class.

4.4 Summary

This chapter has described the design and building process of the SCI-simulator.

The main source of information when designing the SCI-simulator has been the SCI-

standard [IEEE, 1992a], various articles published regarding SCI, the SCI/RT-draft [IEEE, 1992b]

and various proposals on how to modify the SCI-protocol for real-time purposes presented

on various mailing-list and on SCI/RT working-group meetings.

When designing the SCI-simulator, there were several requirements which had to be

met. The simulator had to be modi�able and �exible, correct, parameterized, e�cient and

enable performance analysis, and these requirements were considered mandatory to reach

the main goal. To meet the requirements a programming strategy was needed, and the

choice fell on the object-oriented strategy as the main guiding principle.

In object-oriented programming one seeks to represent the real world entities and con-

cepts as classes, and as a result the real-world structure can be recognized in the program-

structure. In this way it is believed that modi�ability and �exibility are enhanced because

modi�cation to the real-world entities a�ects the class representing it, and not necessary

the entire program. The close resemblance between the structure of real-world system and

program-structure enhances correctness, and measurements can be performed at places in

the program which correspond to those in the real-world system. While the program con-

tain classes, possibly sub-classes and classes which can be speci�ed individually, objects can

be generated at run-time and combined in di�erent ways, and as a results the simulator can

be made parameterized. Some uncertainty was associated with the e�ciency requirement

because experience indicated that object-oriented programs with extensive use of dynamic

allocation, sometimes proved to be slow.

Part of the implementation of the SCI-simulator, henceforth referred to as SCIsim-

simulator, was presented, showing how the real-world concepts and entities were expressed

in program-code. The concepts of SCI-simulator, SCI-interconnect and SCI-ring, and the

entities of node, node-interface, transmitter-stage and link, have been shown as examples

of the implementation.

54

Chapter 5

Work related to simulation

This chapter describes the work related to the simulation of SCI and SCI/RT, and will

explain how the actual measurements presented in chapter 6, 7 and 8 were obtained.

Section 5.1 will, according to Issue 4 - Issue 9 in chapter 3, describe which ring- and

interconnect-con�gurations that have been considered, and in more detail describe the

parameter-values assumed during simulation. Section 5.2 will describe and de�ne the mea-

surements emphasized in chapter 6, 7 and 8. Section 5.3 will explain how the actual

measurements were obtained.

5.1 Topologies and parameters assumed in SCI- and SCI/RT-

simulations

This section will describe the various topologies and parameters assumed during simulation

of SCI and SCI/RT, topologies and parameters determined mainly by the issues in chapter

3 related to the performance of SCI and SCI/RT. Section 5.1.1 will de�ne some concepts,

section 5.1.2 will present and discuss the parameter-values assumed in SCI-simulations

(Issue 4 - Issue 8 in chapter 3) and 5.1.3 will present and discuss the parameter-values

assumed in SCI/RT-simulations (Issue 9 in chapter 3).

5.1.1 Defenitions

As explained in chapter 4 the SCIsim simulator is parameterized. Because the parameters

remain unchanged during simulation, one simulation represents a �xed set of parameters

and in the total parameter-space, one simulation represents a singular point. If we were to

investigate, for example, how the output-queue size a�ects the performance and behavior

of an SCI-ring, we would have to perform several simulations where the output-queue size

was varied from one simulation to another. We will, therefore, distinguish between �xed

parameters and varied parameters:

Fixed parameter: A parameter whose value remain �xed from one simulation to another.

Varied parameter: A parameter whose value is varied from one simulation to another.

The load and tra�c pattern indicate the load in each node and to whom the node

transmits its packets. We will distinguish between the following load and tra�c patterns:

55

Uniform: The load is uniform, meaning that all nodes have the same load, and each node

transmit to every other node uniformly. A node will never transmit to itself.

Hot-sender: Identical to uniform, except that one node, the so-called hot-sender, tries

to transmit as much as possible. If no �ow control mechanism is used in an SCI-

ring, it is expected that a node behaving as a hot-sender will a�ect the downstream

neighbours. The downstream neighbours will be drowned in packets, but the SCI-�ow

control mechanism (refer to section 2.2.3) should remedy this situation.

Node-starvation: Identical to uniform, except that one node never receives packets from

other nodes. If no �ow control mechanism is used in an SCI-ring, it is expected that

a starved node will be a�ected. The starved node may be unable to transmit any

packet if the load is high, because it will be always busy bypassing packets from other

nodes. Again, the SCI-�ow control mechanism should remedy this situation.

Both the hot-sender and node-starvation are special cases of the large set of non-uniform

load and tra�c patterns. The hot-sender and node-starvation load and tra�c pattern were

chosen because they are simple and intuitive cases of non-uniform load and tra�c patterns.

Regarding the size of send-packets, we will distinguish between the following three

cases (the CRC-symbol included):

16byte: All send-packets are 16 bytes long.

80byte: All send-packets are 80 bytes long.

Mixed: 60% of send-packets are 16 bytes long, 40% are 80 bytes long.

In the SCIsim-simulator, the load is speci�ed in the following way: For each node it

is speci�ed how often the node is active and the probability that the it generates a send-

packet when it is active. While there are only two possible outcomes when a node is active

(generate a packet or not), the probability that a packet is generated is unchanged (all

parameters remain unaltered during simulation) and the outcome of one trial does not

a�ect the subsequent trials, this mean that the nodes in the SCIsim-simulator perform a

sequence of Bernoulli-trials [Bhattacharyya and Johnson, 1977].

If we denote the outcome of the above Bernoulli-trial �generate packet�, with success

(S) and the opposite, �do not generate packet�, with failure (F), the number of successes

X in n Bernoulli trials is binomially distributed. The mean value of X is Mean = np

[Bhattacharyya and Johnson, 1977].

When we simulate T nanoseconds of the life of an SCI-ring with N nodes, where each

nodei in the ring is active every ti-th nanosecond and the probability is pi that the node

generates a packet when it is active, the mean number of packets generated by nodei will

be:

Meani = (
T

ti

)pi

If the simulation-time is high, the number of trials will be high also (in this thesis the

number of trials will be 40000 or higher per node). It is therefore reasonable to calculate

the load according to the following formula (si denotes the size of send-packets generated

by nodei):

56

(a) Single-ring

Switch

X−direction

Y
−

direction

Node

(b) 4-ring interconnect

Figure 5.1: Simulated topologies related to SCI

Loadi =
Meanisi

T

=
(T
ti
)pisi

T

=
pisi

ti

(byte=ns)

In a uniform SCI-ring, we will have for all nodei that ti = t, pi = p and si = s, and

consequently, the load in each node and in the ring as a whole will be:

Loadi =
ps

t

(byte=ns)

Loadring = N

ps

t

(byte=ns)

The load will be increased from one simulation to another, starting with a value close

to zero and going up to a value where the results seem to stabilize.

5.1.2 Assumptions regarding SCI-simulations

In order to decide on Issue 4 - Issue 7 in chapter 3 (related to the performance of SCI),

one of the main topologies will be the single SCI-ring as shown in �gure 5.1a. The ring-size

will be varied (4 nodes or 16 nodes), the load and tra�c pattern will be varied (uniform, hot-

sender and node-starvation), the transmitter-stage will be varied (�ow control or no �ow

control), the size of send-packets will be varied (16byte, 80byte or mixed) and the load will

be varied (from 0.0byte/ns and upward). By varying all these parameters we will be able to

determine whether these parameters a�ects the performance of the single SCI-ring (Issue 4),

57

PARAMETER VALUE

Topology Single ring, �gure 5.1a

Size 4 nodes, 16 nodes

Load and tra�c pattern Uniform, hot-sender, node-starvation

Transmitter-stage SCI �ow control, no �ow control

Send-packet size 16byte, 80byte, Mixed

Load (0:0;!) byte/ns

Link delay 1.0 ns

Output-queue size 256 byte

Output-queue type FIFO

Input-queue size 256 byte

Input-queue type FIFO

Input-queue allocation opportunity interval 1000.0 ns

Bypass-queue size 256 byte

Bypass-queue type FIFO

Node-interface clock frequency 2.0 ns

Node-interface minimum delay 8.0 ns

Application process clock frequency 10.0 ns

Application process receiving probability 1.0

Table 5.1: Summary of parameter-values used in single-ring simulations

by varying the ring-size in particular we will get an indication whether the ring is scalable

(Issue 5), by varying the load and tra�c pattern and the transmitter-stage we will be able

to get an indication on whether the SCI �ow control mechanism ensure fairness (Issue 6),

and �nally, by using the ring-size of 4nodes/16nodes, packet-size of 16byte/80byte/mixed,

�ow control or no �ow control, and the load and tra�c pattern uniform/hot-sender/node-

starvation we will get an indication on whether the SCIsim simulator produce results that

are comparable to those presented in [Scott et.al., 1992] (Issue 7) because these parameters

are identical to those assumed there.

In order to decide on Issue 8 in chapter 3, the second main topology will be an in-

terconnect consisting of 16 nodes, the nodes being equally distributed in 4 rings and 4

switches enable communication between rings (�gure 5.1b). Only the load is varied here

(from 0.0byte/ns and upward), and this will give an indication whether the throughput

and latency is better in the 4-ring interconnect than in the single ring with 16 nodes (Issue

8).

To keep the parameter-space tractable the remaining parameters were �xed. For quick

reference the parameters and corresponding values are summarized in table 5.1 and 5.2. In

these tables, the value of �xed parameters are singular values whereas the values of varied

parameters are interval or sequence of values.

When �ow control was used, the standard SCI �ow control mechanism was assumed

(refer to �gure 2.8 in section 2.2.3). If no �ow control was used, the strategy was simply to

allow a node-interface to transmit only when the bypass queue was empty (refer to section

2.2.3).

The parameter controlling the load in each node was also varied, except in the node

acting as the hot-sender where the load was �xed throughout all simulations.

58

PARAMETER VALUE

Topology 4 rings w/4 switches, �gure 5.1b

Size 16 nodes

Load and tra�c pattern Uniform

Transmitter-stage SCI �ow control

Send-packet size Mixed

Switch type Store-forward

Routing Refer to text in section 5.1.2

Load (0:0;!) byte/ns

Link delay 1.0 ns

Output-queue size 256 byte

Output-queue type FIFO

Input-queue size 256 byte

Input-queue type FIFO

Input-queue allocation opportunity interval 1000.0 ns

Bypass-queue size 256 byte

Bypass-queue type FIFO

Node-interface clock frequency 2.0 ns

Node-interface minimum delay 8.0 ns

Application process clock frequency 10.0 ns

Application process receiving probability 1.0

Table 5.2: Summary of parameter-values used in 4-ring interconnect simulation

59

In the 4-ring interconnect simulation, 2 � 2 store-forward switches were used. In this

kind of switch, packets have to be fully received before they are moved to the next ring.

The routing is de�ned and proved deadlock-free in the following:

Routing in the 4-ring interconnect: Assume a 4-ring interconnect as shown in �gure

5.1 and that source-node N1 wish to transmit packet S to target-node N2. There

are three cases we have to consider:

Case 1: If N2 is located in the same ring as N1, S will not pass through any switch.

Case 2: If N1 and N2 is located in two neighbouring rings, S will pass through the

switch connecting the two neighbouring rings.

Case 3: If N1 and N2 is located in two diagonally opposite ring, S will �rst pass

through the switch in X-direction, then the switch in Y-direction.

Routing properties: The routing is static and all packets transmitted between the same

pair (N1;N2) will pass through the same switch(es). Another consequence of the

routing strategy is that a switch in Y-direction will only pass packets destined for a

node in the neighbouring ring, whereas a switch in X-direction will also pass packets

to the diagonally opposite ring.

In order to prove that the routing is deadlock-free, we have to show that any packet

generated by any node, to any node, in the 4-ring interconnect will eventually reach

its destination. An underlying assumption in the proof is that the ring bandwidth

protocol and the input-queue allocation protocol ensure forward progress.

Proof of Case 1: If N1 and N2 is located in the same ring we know that S will

be accepted by N2 because forward progress is ensured by the fair bandwidth

allocation protocol and the input-queue allocation protocol. As a result S will

reach N2.

Proof of Case 2: If N1 and N2 is located in two neighbouring rings, the two fol-

lowing sub-cases have to be considered:

Case 2': N1 and N2 is located in two neighbouring rings in Y-direction. Ac-

cording to Case 1, packets in the outgoing node-interface of the switch will

eventually leave the switch and be accepted by their target-node. This will

in turn create space in the switch to accommodate S and the packet will

eventually be accepted by the switch, again according to Case 1. Because

a switch in Y-direction only passes through packets between neighbouring

rings, S will reach N2.

Case 2�: N1 and N2 is located in two neighbouring rings in X-direction. First

step is to prove that S will be accepted by the switch in X-direction. The

switch in X-direction passes through packets to the neighbouring ring and

the diagonally opposite ring, the �rst kind of packets will leave the switch

according to Case 1 and the second kind of packets will leave the switch

because they will eventually be accepted by the switch in Y-direction accord-

ing to Case 2'. This will in turn create space in the switch in X-direction,

enabling it to accommodate S, and S will eventually be accepted by the

switch i X-direction. Once S is in the switch in X-direction, it will reach its

target-node, again according to Case 2'. As a result S will reach N2.

60

Proof of Case 3: If N1 and N2 is located in two diagonally opposite rings, we know

that S will �rst pass through the switch in X-direction and then through the

switch in Y-direction, according to Case 2�.

Because any packet S, generated by any source-node N1 to any target-node N2,

reaches its destination, the routing in the 4-ring interconnect is deadlock-free.

5.1.3 Assumptions regarding SCI/RT-simulations

In order to decide on Issue 9 in chapter 3 (related to the performance of SCI/RT), the main

topology will be a 4-node single-ring. The load and tra�c pattern is uniform and packets

are generated uniformly on four priority levels.

The output-queue and the bypass queue are both priority queues, and to handle with

the situation where a high priority packet tries to gain access to a full queue, both queues

use preemption. Preemption in the bypass queue is carried out by converting send-packets

with a lower priority than the incoming packet, into echo-packet. Preemption in the output-

queue is carried out by deleting unsent and retry packets with a lower priority than the

new packet (send-packets awaiting an echo will never be deleted). The transmitter-stage

controls the output-queues and the bypass queue, and behave according to the packet

preemption protocol proposed in [IEEE, 1992b] (refer to section 2.3.3).

The size of send-packets were speci�ed as mixed (refer to section 5.1.2). The size

of the bypass queues was set to 256 bytes and echo-packets inherited the priority of the

corresponding send-packet. It is reasonable that the size of the bypass queues and the

priority of echo-packets will a�ect the behavior and performance of an SCI/RT ring, but

this has not been investigated in this thesis.

For quick reference the parameters-values are summarized in table 5.3. Note that the

input-queues in a node-interface will never �ll up because the application process will

remove the packets in the input-queue as soon as they enter. Therefore ordinary FIFO

queues are used for input-queues.

5.2 Measurements emphasized in simulation

This section will de�ne the measurements emphasized during simulation, and in chapter 6,

7 and 8.

To analyze the performance and behavior of the packet transportation layer, throughput

and latency have been measured during simulation, for each node, for the ring in general

and, in the case of SCI/RT simulation, for each priority level.

The following subsections will elaborate the concept of throughput, latency and perfor-

mance.

5.2.1 Throughput

Throughput will be given in bytes per nanosecond byte=ns. A throughput-estimate is

calculated in the SCIsim simulator by counting the number of bytes passing a certain point

and divide it by the simulation time. Throughput is calculated in di�erent ways at various

places in the simulator.

The following throughput-measurements have been emphasized in the SCIsim simulator

and will be used in the presentation of simulation results in chapter 6, 7 and 8:

61

PARAMETER VALUE

Topology Single ring

Size 4 nodes

Load and tra�c pattern Uniform

Priority distribution of tra�c Uniform w/four pri.levels

Transmitter-stage Packet preemption protocol

Send-packet size Mixed

Echo-packet priority Inherit send-packet

Load (0:0;!) byte/ns

Link delay 1.0 ns

Output-queue size 256 byte

Output-queue type PRIQ w/preemption

Input-queue size 256 byte

Input-queue type FIFO

Input-queue allocation opportunity interval 1000.0 ns

Bypass-queue size 256 byte

Bypass-queue type PRIQ w/preemption

Node-interface clock frequency 2.0 ns

Node-interface minimum delay 8.0 ns

Application process clock frequency 10.0 ns

Application process receiving probability 1.0

Table 5.3: Summary of parameter-values used in SCI/RT simulations

62

RawThroughput: This throughput-measurement is calculated using the send-packets re-

ceived by an application process. The whole send-packet, minus the CRC-symbol, is

used in the calculation.

The throughput-measurement is calculated for request and response packets sepa-

rately, for each application process, for the ring as a whole and the interconnect in

general (if there are multiple rings).

NetThroughput: This throughput-measurement is calculated using the send-packets re-

ceived by an application process. Only the data-bytes are used in the calculation.

The throughput-measurement is calculated for request and response packets sepa-

rately, for each application process, for the ring as a whole and the interconnect in

general (if there are multiple rings).

RecThroughput: This throughput-measurement is calculated using the send-packets re-

ceived by a node-interface that are addressed to the node-interface. The complete

send-packet is used in the calculation, and regardless whether the packet is accepted

or rejected by the node-interface (The AB-retry protocol control the access of input-

queues, refer to section 2.2.3).

This throughput-measurement is calculated for request and response packets sepa-

rately, for each node-interface, for the ring as a whole and the interconnect in general

(if there are multiple rings).

AckRecThroughput: This throughput-measurement is calculated using the send-packets

received by a node-interface and that are inserted into the input-queue. This mean

that only send-packets that are accepted and stored in the input-queue are counted.

The whole send-packet, minus the CRC-symbol, is used in the calculation.

The throughput-measurement is calculated for request and response packets sepa-

rately, for each node-interface, for the ring as a whole and the interconnect in general

(if there are multiple rings).

TransThroughput: This throughput-measurement is calculated using the send-packets

transmitted by a node-interface. The whole send-packet is used in the calculation,

and regardless whether the packet was accepted or rejected by the receiving node-

interface.

This throughput-measurement is calculated for each node-interface and request and

response packets.

AckTransThroughput: This throughput-measurement is calculated using the send-packets

transmitted by a node-interface and that are acknowledged by the receiving node-

interface. The whole send-packet is used in the calculation.

This throughput-measurement is calculated for each node-interface, for request and

response packets separately and for each priority level (if any).

When no packets are rejected by the receiving node-interfaces, total RecThroughput

and total AckRecThroughput of an SCI-ring will di�er only slightly, because the CRC-

symbol is included in the calculation of RecThroughput and not in AckRecThroughput.

When packets are rejected by the receiving node-interface, total RecThroughput and total

AckRecThroughput of an SCI-ring may di�er signi�cantly because all send-packets received

63

by a node-interface is included in the calculation of RecThroughput whereas in the calcu-

lation of AckRecThroughput only those packets which are accepted are included. This also

applies to the relationship between TransThroughput and AckTransThroughput.

When single SCI-rings are simulated the total RawThroughput of the ring equals the

total AckRecThroughput. On the other hand, when multi ring topologies are simulated,

total RawThroughput and total AckRecThroughput will di�er, because some of the node-

interfaces are associated with switches.

5.2.2 Latency

Latency will be given in nanoseconds ns. The concept of latency in the SCIsim simulator

is related to the send-packets and to the signi�cant moments during a send-packet's life.

In the SCIsim simulator the life of a send-packet begins when it is created in the source-

node and ends when it is received by the target-node. A signi�cant moment during a

send-packet's life is for example when it is transmitted on the ring.

As explained in section 2.2.3, the packet transmission protocol is used when a packet

is transmitted from one node to another. If the source-node and target-node are located

in the same ring, a local sub-action takes place, which means that the send-packet is

transmitted on the ring and an echo-packet is returned as an acknowledgment. Otherwise,

when the source-node and target-node are located in di�erent rings, the send-packet has

to pass through several switches and rings, and a remote sub-action is initiated. This

mean that a local sub-action is initiated in each ring, between the source-node and the �rst

switch, between intermediate switches and �nally, between the last switch and the target-

node. To elaborate, a send-packet is transmitted from one source-node to one target-node,

but may pass through several rings and consequently several node-interfaces. In each ring

the send-packet is transmitted from one transmitter node-interface to one receiver node-

interface.

The following latency-measurements have been emphasized in the SCIsim simulator and

will be used in the presentation of simulation results in chapter 6, 7 and 8:

RemoteSubActionLatency: The time it takes from the packet is generated in the source-

node by an application process, until it is received by an application process in the

target-node.

LocalSubActionLatency: The time it takes from the packet is inserted into the output-

queue of the transmitter node-interface, until it is removed from the output-queue by

a DONE-echo.

LocalSubActionNoEchoLatency: The time it takes from the packet is inserted into

the output-queue of the transmitter node-interface, until it is fully received by the

receiver node-interface, regardless whether it is accepted or rejected.

RingLocalSubActionLatency: The time it takes from the packet is transmitted on the

ring by the transmitter node-interface (counting from the �rst symbol), until the

corresponding echo is received, regardless whether it was a DONE-echo or RETRY-

echo.

RingLocalSubActionNoEchoLatency: The time it takes from the packet is transmit-

ted on the ring by the transmitter node-interface (counting from the the �rst symbol),

64

Throughput

L
at

en
cy

A

B

Figure 5.2: Comparing the performance, an example

until it is fully received by the receiver node-interface, regardless whether it is accepted

or rejected.

There is a signi�cant di�erence between the RemoteSubActionLatency and the other

four latency-measurements, because the former is calculated by the application processes,

while the other four are calculated by the node-interfaces. The RemoteSubActionLatency

may include the passing of several switches and rings, while the other four latency-measurements

are ring-local.

There is also a signi�cant di�erence between LocalSubActionLatency (LocalSubAction-

NoEchoLatency) and RingLocalSubActionLatency (RingLocalSubActionNoEchoLatency)

because the �rst latency-measurement include the time spent in the output-queue. It is

reasonable to expect that when load is low, the quantitative di�erence between LocalSub-

ActionLatency (LocalSubActionNoEchoLatency) and RingLocalSubActionLatency (Ring-

LocalSubActionNoEchoLatency) will be small, but when load is high the quantitative dif-

ference will increase because send-packets would spend more time in the output-queue.

During simulation, send-packets will be generated and transmitted according to the

user-provided speci�cation, and each send-packet will give raise to the latency-measurements

described above. These measurements are calculated locally in each node, for each ring

and for the interconnect in general, and the mean-value, variance, standard deviation and

con�dence intervals are calculated also.

5.2.3 Performance

The concept of performance will in this thesis refer to the relationship between through-

put and latency. Good performance is associated with high throughput and low latency.

The term will be used relatively, indicating whether the performance in one case is better

than the performance in another. In example in �gure 5.2 it is therefore correct to state:

�The performance of B is better than A�.

65

5.3 How the measurements were obtained

The measurements, which will be presented later in this thesis, were obtained through

the following process: First a number of speci�cation �les were written, then the SCIsim

simulator was executed several times with a new speci�cation �le as input each time, and

�nally, when all simulations were terminated, the �les containing the statistical measure-

ments were analyzed and interesting data compiled into a more appropriate form (e.g. a

graph).

The speci�cation �les were written so that they would, eventually, cover all combinations

of parameter-values described in table 5.1, 5.2 and 5.3. As stated in the introduction to

section 5.1, one simulation represents a �xed set of parameter values, and therefore to

investigate the impact of increasing load in an SCI-ring, several simulations had to be

performed. A typical task in this part of the work, would be to write 30-40 speci�cation

�les which would di�er only in the load-parameter. This was rather cumbersome and

indicate that a prize had been paid, in terms of more work when specifying a simulation,

when the simulator was made parameterized.

Preliminary simulations were performed in order to determine the length of the simu-

lations. If results from these simulations indicated a too broad con�dence interval, usually

more than �5%, the simulations were rejected and a longer simulation-time was required.

In hindsight it might have been better to have designed the SCIsim simulator so that sim-

ulations were run for the necessary amount of time to ensure a given level of precision,

rather than the other way around.

The simulator were usually executed at times when computer-load was low, e.g. at

night, in order to take advantage of idle computers and thereby execute longer simulations.

In the SCIsim simulator a pseudo-random number generator was used in order to achieve

randomization, and this pseudo-random generator has to be initialized with a seed-value.

If the same seed is used every time the pseudo-random generator will produce the same

sequence of �random� numbers. In the SCIsim simulator a new seed is ensured each time a

simulation is started because it uses the value returned by the system sub-routine time()

as the seed-value. The time() sub-routine is available within the UNIX-environment and

returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.

The simulator also produced a large amount of statistical information which were writ-

ten to multiple �les. The �les had to analyzed and interesting measurements extracted and

combined. Again this part of the work proved to be rather cumbersome.

5.4 Summary

This chapter has described the work related to simulating SCI and SCI/RT, described the

various topologies and parameter-values assumed during simulation and which measure-

ments have been emphasized in the remainder of the thesis.

The issues described in chapter 3, related to the performance of SCI and SCI/RT (Issue

4 - Issue 9), determined the main topologies and parameter-values. The main topologies

have been the single SCI-ring, a 4-ring interconnect (�gure 5.1) and a 4-node SCI/RT-ring.

The SCIsim simulator was parameterized, and by varying the value of parameters (e.g. the

load), one could examine how that particular parameter a�ected the simulated topology

(e.g. increase in throughput). To help decide on Issue 4 - Issue 9, the ring-size was varied,

the packet-size was varied, the type of �ow control was varied, the load and tra�c pattern

66

was varied and the load itself was varied. The exact parameter-values are summarized in

table 5.1, 5.2 and 5.3.

This chapter has also de�ned the concepts of throughput, latency and performance

in the context of SCI and SCI/RT. There are di�erent ways to calculate throughput and

latency, and those used in the remainder of the thesis have been de�ned in this chap-

ter. Performance is de�ned as the relationship between throughput and latency, and good

performance is associated with high throughput and low latency.

Simulation-results were obtained by using the SCIsim-simulator (chapter 4) with the

parameters in table 5.1, 5.2 and 5.3 as input. Because a single simulation represent a �xed

set of parameters, a sequence of simulations had to be performed where one parameter-value

was changed from one simulation to another. During simulation, the SCIsim-simulator

gathered data and presented the �nal results when it terminated. Simulation results were

sometimes rejected if they proved too imprecise or the con�dence intervals were too broad.

In these cases, the simulations had to be re-run.

67

[This page has been intentionally left blank]

68

Chapter 6

Results from the simulation of SCI

single-rings

This chapter presents and discusses results from the simulation of single SCI-rings, results

which will help decide on Issue 4 - Issue 7 (chapter 3).

Section 6.1 will discuss some aspects regarding the presentation of results in this chapter

and in the subsequent chapters 7 and 8.

There are three main sections in this chapter and apart from presenting and discussing

results which relate to Issue 4 - Issue 7, these sections will also try to emphasize various

properties of the SCI-ring. Section 6.2, related to uniform load and tra�c pattern, will

emphasize average values for throughput and latency, and these results will help us decide

on Issue 4, Issue 5 and Issue 7. Section 6.3 and 6.4, related to hot-sender and node-

starvation load and tra�c pattern, will emphasize the properties of the SCI �ow control

mechanism, and these results will help us decide on Issue 4, Issue 6 and Issue 7.

Some of the results presented in this chapter are compared to results in [Scott et.al., 1992]

and in brief terms, that article presents simulation-results of single SCI-rings assuming var-

ious ring-sizes, packet-sizes, �ow control, load and tra�c patterns, where both a simulator

and a mathematical model were used.

6.1 Aspects regarding the presentation of results

The SCIsim simulator described in chapter 4 was used, and its input was the parameters

described in chapter 5.

As explained in chapter 5, simulations were run for a considerable amount of time in

order to ensure reliable results. If the results indicated a too broad con�dence intervals

(more than approximately �5%), these simulations were re-run for a longer period of

time. In this way acceptable precision was ensured and consequently, acceptable precision

are associated with the results in this chapter and in the subsequent chapters 7 and 8. To

avoid drowning the reader in details, point estimates are shown, but as an example, interval

estimates are presented in section 6.2.1.

Throughput this chapter and the subsequent chapters 7 and 8, results will be presented

in graphs. In these graphs, a line is drawn between two singular points if it is reasonable to

interpolate between them. There are some exceptions though where the results are rather

jumbled, and lines are drawn in order to visualize related results more clearly (graph 6.14

and graph 8.2a).

69

When a graph is presented and discussed in this chapter, and the subsequent chapters,

7 and 8, the presentation and discussion will take place in the following way:

1. Presentation of the actual results.

2. Discussion of which consequences the results in 1 have for the properties of the real-world

structure.

3. Discussion of whether the results are reasonable.

An underlying assumption in the discussion in 3 is that the SCIsim-simulator is correct,

an assumption which is reasonable considering the discussion in chapter 4.

6.2 Uniform load and tra�c pattern in single SCI-rings

This section will present and discuss results from the simulation of single SCI-rings where

the load and tra�c pattern was uniform. These results will help us decide on Issue 4, Issue

5 and Issue 7 presented in chapter 3. The following list describes the overall conditions

assumed during simulation:

� Topology: Single ring.

� Size: 4 nodes or 16 nodes.

� Load and tra�c pattern: Uniform.

� Transmitter-stage: SCI �ow control, no �ow control.

� Send-packet size: 16bytes, 80bytes or Mixed.

The load was increased from one simulation to another - starting with a value close to

zero and going up to a level where the throughput and latency measurements had stabilized.

The length of one simulation was determined after some preliminary simulations, some

con�gurations and topologies required longer simulations than others to ensure reliable

results (Refer to section 5.3). Therefore simulated time lay in the interval from 400000ns

to 900000ns. The remaining parameter-values assumed during simulation, can be found in

table 5.1 in section 5.1.2.

In order to indicate the throughput of a uniform, single SCI-ring, this section will em-

phasize the RecThroughput as de�ned in section 5.2. This throughput-measurement in-

cludes all send-packets received by a node-interface that are addressed to the node-interface

itself. Total and average values will be presented - the former include all node-interfaces in

the ring, while the latter equals the total throughput divided by the number of nodes.

In order to indicate the latency, this section will emphasize LocalSubActionLatency,

LocalSubActionNoEchoLatency, RingLocalSubActionLatency andRingLocalSub-

ActionNoEchoLatency as de�ned in section 5.2. As indicated in the de�nition, these

latency measurements are ring-local. Average and maximum values of these latency mea-

surements will be presented - the former being the mean value of the sampled values.

Section 6.2.1 will present and discuss results from the simulation of SCI-rings of size

4 displaying a uniform load and tra�c pattern, and which do not use the �ow control

mechanism.

70

Section 6.2.2 will present and discuss results from the simulation of uniform SCI-rings

of size 4 which use the SCI �ow control mechanism. While adding �ow control to a ring will

a�ect some measurements, other measurements are una�ected. Section 6.2.2 will therefore

present and discuss results, which are related to the �ow control mechanism, and compare

them to results in section 6.2.1.

Section 6.2.3 will present and discuss results from the simulation of uniform SCI-rings

with 16 nodes, which either use the SCI �ow control mechanism or not. Again, increasing

the size of an SCI-ring will a�ect some measurements, while other measurements are un-

a�ected. Section 6.2.3 will therefore present and discuss results which are related to the

larger size, and compare them to the ring in section 6.2.2.

Section 6.2.4 will give a summary of the main results related to uniform load and tra�c

pattern.

6.2.1 Results related to uniform SCI-rings with 4 nodes, no �ow control

This section will present and discuss the simulation-results in the following order:

� Throughput and latency as a function of load for the whole ring, graph 6.1a-c.

� The relationship between throughput and latency for the whole ring, graph 6.2a-c

and 6.3.

� Statistical properties of the simulation-results, graph 6.4a.

The three graphs in 6.1 shows throughput and latency as a function of load, and includes

the three cases of 16byte, 80byte and mixed send-packets. The results will be discussed in

the following:

Total RecThroughput as a function of total load, graph 6.1a.

This graph shows the total RecThroughput as a function of total load, when the send-

packets are either 16byte, 80byte or mixed. Total load and total RecThroughput is speci�ed

in byte=ns along the x-axis and y-axis respectively. Observing the results in graph 6.1a it

is reasonable to state the following:

� When load is low, total RecThroughput as a function of total load approximates

the linear function f(x)=x. This mean that total RecThroughput is approximately

equal to total load, when total load is less than a certain limit L. In the 16byte case

L is approximately 1.25byte=ns, in the 80byte and mixed case L is approximately

1.5byte=ns.

� When load is higher than L, total RecThroughput as a function of total load will drop

below f(x)=x, and will increase more and more slowly as total load increase. When

load is very high, total RecThroughput as a function of total load, will approximate

a constant function f(x)=K. In the 16byte case K is approximately 1.15byte=ns, in

the 80byte case approximately 1.70byte=ns and in the mixed case approximately

1.55byte=ns.

The above observations indicate properties of the total RecThroughput in real-life SCI-

rings. When total load is low and less than a certain limit, total RecThroughput equals

71

80 bytes

mixed

16 bytes

Total RecThroughput (byte/ns)

Total load (byte/ns)0.00

0.50

1.00

1.50

0.00 1.00 2.00 3.00 4.00

(a)

80bytes

mixed

16bytes

Avg. RecThroughput ((byte/ns)/node) x 10-3

Avg. load ((byte/ns)/node)0.00

100.00

200.00

300.00

400.00

0.00 0.50 1.00

(b)

80bytes

mixed

16bytes

Avg. LocalSubActionNoEchoLatency (ns) x 103

Total load (byte/ns)
0.00

0.50

1.00

1.50

2.00

0.00 1.00 2.00 3.00 4.00

(c)

Figure 6.1: Throughput and latency as a function of load. (Uniform, 4 nodes, no �ow

control).

72

the total load. If the total load exceeds this limit, total RecThroughput will be less than

the total load, and if total load increases further, total RecThroughput will approach a

maximum value. Even if the total load should increase further, the total RecThroughput

will remain stable and will not degrade.

This a reasonable conclusion on properties of the total RecThroughput in SCI-rings.

The following rationale explains why:

� When the load is low in an SCI-ring, few packets circulate the ring. When a node-

interface has transmitted a send-packet from the output-queue, it must empty the

bypass-queue before it can transmit more send-packets (This process of emptying

the bypass-queue is often referred to as recovery). In a lightly loaded SCI-ring

the probability that packets try to pass a node-interface already busy transmitting

from the output-queue, is small. Consequently a node-interface rarely has to empty

the bypass-queue after transmission and send-packets inserted into the output-queue

can be transmitted almost immediately. The output-queues will rarely �ll up and a

node-interface can transmit packets at the same rate as they are generated by the

corresponding application process.

� When the load increase, more packets will circulate the ring, and consequently a node-

interface is more often in recovery stage, and therefore unable to transmit packets

from the output-queue. The probability that a node-interface is blocked in this way

for a long time, has increased and once in a while, the output-queue of the node-

interface is full, because the node application process has generated more packets

than the node-interface can transmit. When the output-queue is full, the application

process has to discard packets (or stop generating new packets). When packets are

discarded, the total RecThroughput will be less than total load.

� When load is very high, the ring is �lled with packets. Under these conditions a node-

interface will be constantly busy, either transmitting packets or bypassing packets.

The application processes generate packets at a higher rate than the node-interface

can transmit and eventually, the output-queues will �ll up and the application pro-

cesses have to discard packets. The ring transmits at full speed and the total Rec-

Throughput has reached its maximum value.

As we can observe from graph 6.1a, the point when total RecThroughput starts to

approach the maximum total RecThroughput and the maximum value itself, depends very

much on the size of send-packets. The reason is that smaller send-packets (16byte case)

will experience a higher relative overhead compared to the larger packets (80byte case).

To every send-packet transmitted on the ring, a 2byte idle-symbol will be appended and

an 8-byte echo-packet will be generated (once the send-packet has arrived at the receiving

node-interface). An idle-symbol and an echo-packet represent a higher relative overhead to

a 16 byte send-packet, than to an 80 byte send-packet. Consequently, more bandwidth is

spent on echo-packets and idle-symbols than on send-packet in the 16byte case, compared

to the 80byte case. A combination of 16 byte and 80 byte packets, as in the mixed case,

will lead to an intermediate case. Therefore a ring transmitting only 16 byte packets will

be saturated more quickly (when total load is lower) than a ring transmitting only 80 byte

packets, and will experience a lower maximum total RecThroughput.

An important thing to notice about an SCI-ring without �ow control, is that once the

ring is saturated, a node-interface can only transmit send-packets if it also receive packets

73

from other node-interfaces in the ring. It is only by receiving packets from other node-

interfaces that a node-interface is able to empty the bypass-queue and eventually, transmit

new send-packets.

Average RecThroughput as a function of average load, graph 6.1b

This graph shows the average RecThroughput as a function of average load when the send-

packets are either 16byte, 80byte or mixed. Average load and average RecThroughput are

speci�ed in (byte=ns)=node along the x-axis and y-axis respectively.

The intention of showing the graph is to present the exact values of average Rec-

Throughput and because these values will be used later. All application processes are

request-response type in these simulations, and this mean that they all produce and con-

sume packets. Therefore the average load is equal to the total load averaged over the nodes

and the average RecThroughput is equal to the total RecThroughput averaged over the

nodes. Consequently the graph 6.1b is a scaled-down copy of the graph 6.1a. The maxi-

mum average RecThroughput in the 80byte case is 0.43(byte=ns)=node, in the mixed case

0.39(byte=ns)=node and in the 16byte case 0.29(byte=ns)=node

Refer to the discussion of graph 6.1a for further details.

Average LocalSubActionNoEchoLatency as a function of total load, graph 6.1c

This graph shows the average LocalSubActionNoEchoLatency as a function of total load

when the send-packets are either 16byte, 80byte or mixed. Total load is speci�ed in byte=ns

along the x-axis and LocalSubActionNoEchoLatency is speci�ed in ns along the y-axis. The

results presented in this graph have the following properties:

� When total load is less than approximately 1.4byte=ns, the average LocalSubAction-

NoEchoLatency of the 16byte case is smaller than the average LocalSubAction-

NoEchoLatency of the 80byte case and the mixed. When total exceed 1.4byte=ns,

average LocalSubActionNoEchoLatency of the 16byte case is higher than the average

LocalSubActionNoEchoLatency of the other two cases.

When total load is less than approximately 1.6byte=ns, the average LocalSubAction-

NoEchoLatency of the mixed case is less than the 80byte case, but when total load

exceed 1.6byte=ns the situation is reversed and the average LocalSubActionNoEcho-

Latency is higher in the mixed case than in the 80byte case.

� In all three cases the average LocalSubActionNoEchoLatency increase as the total

load increase, but the rate of growth in any point depends very much on the the total

load in that particular point and the size of send-packets.

This is easily visible in the 16byte case and when load is less than 1.0byte=ns, a small

increase in total load leads to a small increase in average LocalSubActionNoEcho-

Latency. Between 1.0byte=ns and 2.0byte=ns, a small increase in total load leads to a

large increase in average LocalSubActionNoEchoLatency. When the total load exceed

2.0byte=ns a small increase in total load again leads again to a small increase in aver-

age LocalSubActionNoEchoLatency. The average LocalSubActionNoEchoLatency in

the 16byte case therefore display an asymptotic behavior, and the simulation results

in graph 6.1c indicate that the lower asymptote is approximately 30ns and the upper

asymptote is approximately 1400ns.

74

An asymptotic property is also present in the results of 80byte case and the mixed

case. The simulation results in graph 6.1c seem to indicate that the lower and upper

asymptote in the mixed case is approximately 55ns and 700ns respectively. In the

80byte case the lower and upper asymptote is approximately 90ns and 800ns.

The above results indicate some properties of the LocalSubActionNoEchoLatency in

real-life SCI-rings. First, the results indicate that average LocalSubActionNoEchoLatency

increase when total load increase. Second, there is a lower bound as well as an up-

per bound for the average LocalSubActionNoEchoLatency. The average LocalSubAction-

NoEchoLatency will approach the lower bound as total load approaches zero, and will

approach the upper bound when total load grow higher and higher. Third, an increase in

total load will lead to an increase in average LocalSubActionNoEchoLatency, but the rate

of growth depends on the total load. If the ring transmits only 16 byte send-packets and

the total load is less than 1.0byte=ns or greater than 2.0byte=ns, a small increase in total

load will lead to a small increase in average LocalSubActionNoEchoLatency, and when to-

tal load is between 1.0bytes=ns and 2.0byte=ns a small increase in total load will lead to a

large increase in average LocalSubActionNoEchoLatency.

When total load is less than approximately 1.3byte=ns the average LocalSubAction-

NoEchoLatency of packets in an SCI-ring transmitting only 16 byte packets, is less than

the average LocalSubActionNoEchoLatency of packets in an SCI-ring transmitting only 80

byte packets. The average LocalSubActionNoEchoLatency of packets in an SCI-ring trans-

mitting mixed send-packets, fall between the 16byte case and 80byte case. When total

load exceed approximately 1.6byte=ns, the situation is reversed, and packets in an SCI-ring

transmitting only 80byte packets experience a smaller average LocalSubActionNoEcho-

Latency than packets in SCI-rings transmitting only 16 byte send-packets, or SCI-rings

transmitting mixed send-packets.

The above conclusion regarding LocalSubActionNoEchoLatency of packets is reason-

able. The following rationale will explain why:

� An increase in load will imply an increase in average LocalSubActionNoEchoLatency,

because an increase in load will lead to more packets circulating the ring. As a result,

it becomes more likely that a node-interface will experience a longer recovery stage

after a packet-transmission, and consequently it becomes more likely that new send-

packets have to wait in the output-queue before the node-interface is to transmit

again. Note that the LocalSubActionNoEchoLatency is the time from a send-packet

is inserted into the output-queue until it has been received completely by the receiving

node-interface.

The reason behind the rapid increase in average LocalSubActionNoEchoLatency in

the interval from 1.0byte=ns to 2.0byte=ns, is that the output-queues starts to �ll up.

� It is reasonable that there is a lower bound and an upper bound of the average Local-

SubActionNoEchoLatency. When the load is low, less than 1.0byte=ns in the 16byte

case, the application processes generate few packets, and few packets will circulate

the ring. As a results, the node-interfaces are rarely busy bypassing packets (few

packets circulate the ring) or in recovery stage (the application process generates few

packets which imply a long time interval between packets). A send-packet inserted

into the output-queue can therefore be transmitted almost instantaneously and once

the send-packet is transmitted on the ring, it will experience a minimum of delay

75

because there are no other packets ahead of it. The lower bound of average Local-

SubActionNoEchoLatency is therefore determined by the �xed minimum delay in the

ring structure.

When load is very high, the application processes generate a large number of packets

and a lot of packets will circulate the ring. The ring, consisting of links and bypass-

queues, will be completely �lled with send-packets and echo-packets, and the ring

circumference is at its largest. When new send-packets are inserted into the output-

queue, the node-interface is most likely busy bypassing packets or recovering from

an earlier transmission. If the load is su�ciently high, an application process will

generate packets at a higher rate than the node-interface can transmit, and after

some time the output-queue will �ll up. When the output-queue in all node-interfaces

are full, the average LocalSubActionNoEchoLatency will not increase further because

no new packets can be inserted into the output-queue until space is freed in the

output-queue. The ring continue to transmit packets at full speed so eventually space

is freed in the output-queues. While the average LocalSubActionNoEchoLatency

depends on the output-queue size, the upper bound will depend on the maximum

output-queue size. If the size of the output-queues had been in�nite the average

LocalSubActionNoEchoLatency would not have been bounded.

� It is reasonable that the upper and lower bound of average LocalSubActionNoEcho-

Latency depends on the size of send-packets used in the ring. When load is low, a

packet will experience almost no delay except for the �xed delay in links and node-

interfaces. It will take more time to transmit a large packet than a smaller packet, for

example an 80 byte send-packet needs 80ns to leave the transmitting node-interface,

whereas a 16 byte send-packet only needs 16ns. When load is very high, the output-

queues are �lled up completely and the ring is transmitting at full speed. As explained

in the discussion of graph 6.1a, a 16 byte send-packet has a higher relative overhead

than an 80 byte send-packet. Consequently, more bandwidth is spent on echo-packets

and idle-symbols and less bandwidth would be available for packet-transmission in

an SCI-ring transmitting only 16byte packets, compared to an SCI-ring transmitting

only 80 byte send-packets. In other words, it will take more time to transmit the

same amount of bytes if only 16byte send-packets are used, than it would if 80 byte

send-packets are used.

We have now discussed RecThroughput and latency as a function of load. Up to a

certain point, the total RecThroughput increase approximately linearly when total load

increase, but beyond this point the total RecThroughput begins to level o� and approach

a stable maximum value. This maximum value depends on the size of send-packets

transmitted in the ring. The average LocalSubActionNoEchoLatency also increase as the

total load increase, and are bounded upward and downward. The exact values of these

boundaries depend on the size of send-packets transmitted in the ring. In addition the upper

bound of average LocalSubActionNoEchoLatency depends on the maximum output-queue

size.

The relationship between average RecThroughput and average latency, graph

6.2a-c and 6.3.

The three graphs 6.2a-c show the relationship between average RecThroughput and var-

ious latency measurements, when the send-packets are either 80byte, mixed or 16bytes

76

Avg. LocalSubActionLatency

Avg. LocalSubActionNoEchoLatency

Avg. RingLocalSubActionLatency

Avg. RingLocalSubActionNoEchoLatency

Latency (ns)

-3Avg. RecThroughput ((byte/ns)/node) x 10
0.00

100.00

200.00

300.00

400.00

500.00

0.00 200.00 400.00

(a) 80byte

Avg. LocalSubActionLatency

Avg. LocalSubActionNoEchoLatency

Avg. RingLocalSubActionLatency

Avg. RingLocalSubActionNoEchoLatency

Latency (ns)

-3Avg. RecThroughput ((byte/ns)/node) x 10
0.00

100.00

200.00

300.00

400.00

500.00

0.00 200.00 400.00

(b) mixed

Avg. LocalSubActionLatency

Avg. LocalSubActionNoEchoLatency

Avg. RingLocalSubActionLatency

Avg. RingLocalSubActionNoEchoLatency

Latency (ns)

-3Avg. RecThroughput ((byte/ns)/node) x 10
0.00

100.00

200.00

300.00

400.00

500.00

0.00 200.00 400.00

(c) 16byte

Figure 6.2: The relationship between throughput and latency (Uniform, 4 nodes, no �ow

control).

77

respectively. The average RecThroughput is speci�ed in (byte=ns)=node along the x-

axis and the latency is speci�ed in (ns) along the y-axis. The four latency measure-

ments LocalSubActionLatency, LocalSubActionNoEchoLatency, RingLocalSub-

ActionLatency and RingLocalSubActionNoEchoLatency are shown. Refer to sec-

tion 5.2 for further details on these latency measurements.

The three graphs 6.2a-c have several properties in common. They will be discussed in

the following:

1. When average RecThroughput is low, the average LocalSubActionLatency is very

close to the average RingLocalSubActionLatency, but as the RecThroughput increase,

the average LocalSubActionLatency increase a lot more than the average RingLocal-

SubActionLatency. This is the case in graph 6.2a (80byte) and 6.2b (mixed) when

average RecThroughput is less than 0.02(byte=ns)=node, and in graph 6.2c (16byte)

when average RecThroughput is less than 0.1(byte=ns)=node.

This indicate that in uniform SCI-rings, the average LocalSubActionLatency and

average RingLocalSubActionLatency are approximately equal when average Rec-

Throughput is low, but will diverge when load increase because the average LocalSub-

ActionLatency increase more rapidly than the average RingLocalSubActionLatency.

This is a reasonable conclusion because when RecThroughput is low, packets spend

little time in the output-queues. Consequently, the LocalSubActionLatency and

RingLocalSubActionLatency of a send-packet will be equal in the average case. Note

that the only di�erence between LocalSubActionLatency and RingLocalSubAction-

Latency is that the former include the time spent in the output-queue.

We also observe that the average RingLocalSubActionLatency increase slowly com-

pared to the average LocalSubActionLatency, and then stops abruptly when the Rec-

Throughput reaches its maximum value. This indicates that the average RingLocal-

SubActionLatency does not increase inde�nitely once the ring is saturated. This is

reasonable because once the ring is saturated, the ring circumference is at its largest

and the RingLocalSubActionLatency depends on the ring circumference. Also the

average LocalSubActionLatency will stop abruptly (not shown in the three graphs

6.2a-c but is shown in graph 6.1c) because when the ring is saturated the ring cir-

cumference has reached its maximum size and the output-queues are full. The exact

point where this situation occurs depends on whether 16 byte packets, 80 byte packets

or mixed packets have been used.

2. When average RecThroughput is low, the average LocalSubActionNoEchoLatency is

very close to the average RingLocalSubActionNoEchoLatency, but as RecThroughput

increases the average LocalSubActionNoEchoLatency will increase a lot more than

the average RingLocalSubActionNoEchoLatency.

This indicate that in uniform SCI-rings, the average LocalSubActionNoEchoLatency

and average RingLocalSubActionNoEchoLatency are approximately equal when aver-

age RecThroughput is low, but will diverge when load increase, because the average

LocalSubActionNoEchoLatency increase more rapidly than the average RingLocal-

SubActionNoEchoLatency. There is also an upper bound for the RingLocalSub-

ActionNoEchoLatency.

This is analogous to the above result and the reader should refer discussion in 1 for

further details. Note that the only di�erence between LocalSubActionNoEchoLatency

78

and RingLocalSubActionNoEchoLatency is that the former include the time spent in

the output-queue.

3. In the 16byte case (graph 6.2c) we observe that for any given RecThroughput, the av-

erage RingLocalSubActionLatency is approximately twice the corresponding RingLo-

calSubActionNoEchoLatency.

This indicate that in a uniform SCI-ring transmitting only 16 byte send-packets, the

RingLocalSubActionLatency of the packets is approximately twice the RingLocal-

SubActionNoEchoLatency.

This is reasonable because a send-packet has to traverse half-way around the ring

in the average case, and the corresponding echo-packet has to traverse the other

half. Note that RingLocalSubActionLatency include the time to traverse both the

send-packet and the echo-packet (refer to section 5.2 for more details), while the

RingLocalSubActionNoEchoLatency the time to traverse the send-packet. The Ring-

LocalSubActionLatency of a 16 byte send-packet is not exactly twice the RingLocal-

SubActionNoEchoLatency because an echo-packet is only 8 bytes long.

4. For any given RecThroughput, the di�erence between average LocalSubActionLatency

and average LocalSubActionNoEchoLatency is equal to the di�erence between aver-

age RingLocalSubActionLatency and average RingLocalSubActionNoEchoLatency.

This is reasonable because in these simulations, no send-packets are rejected by the

receiving node-interface and echoes will always indicate a successful transmission.

Both the LocalSubActionLatency and RingLocalSubActionLatency include the time

it takes to send the echo-packet back to the transmitting node-interface, whereas

LocalSubActionNoEchoLatency and RingLocalSubActionNoEchoLatency does not.

In graph 6.3, the 16byte, 80byte and mixed case are compared, and the relationship

between average RecThroughput and average LocalSubActionNoEchoLatency is shown.

When average RecThroughput is less than approximately 0.27(byte=ns)=node the average

LocalSubActionNoEchoLatency in the 16byte case is less than that of the 80byte case and

the mixed case. If we with the term �good performance� associate high RecThroughput

and low latency, the performance of the average node in an SCI-ring transmitting 16 byte

packets are better than the performance of the average node in an SCI-ring transmitting

80 byte packets, when average RecThroughput is less than 0.27(byte=ns)=node.

When average RecThroughput exceed 0.27(byte=ns)=node, the situation is reversed,

and the performance of an SCI-ring transmitting only 16 byte packets is worse than the

performance of SCI-rings transmitting only 80 bytes packets.

This is reasonable because an SCI-ring with 4 nodes transmitting only 16 byte packets

is saturated when the average RecThroughput approaches 0.29(byte=ns)=node. Generating

even more packets will only add to the output-queue length and thereby the time packets

spend in the queue. The result is that the LocalSubActionNoEchoLatency will increase.

This also apply to the mixed packet case and the 80 byte packet case. The performance

is better in the mixed case than in the 80 byte case, when the average RecThroughput is

less than 0.32(byte=ns)=node. When average RecThroughput exceeds 0.32(byte=ns)=node,

the situation is reversed and the packets in the 80byte case experience a lower LocalSub-

ActionNoEchoLatency than packets in the mixed case.

These results can be compared to results presented in [Scott et.al., 1992], and graph

6.3 is directly comparable to a graph there. The results in graph 6.3 resemble the re-

79

80bytes

mixed

16bytes

Avg. LocalSubActionNoEchoLatency (ns)

-3Avg. RecThroughput ((byte/ns)/ns) x 10
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

0.00 200.00 400.00

Figure 6.3: Performance comparison of di�erent packet sizes (Uniform, 4 nodes, no �ow

control)

Graph 6.3 [Scott et.al., 1992] Deviation

16 byte vs. mixed (0:27; 150) (0:26; 160) (�4%;+7%)

80 byte vs. mixed (0:32; 230) (0:31; 250) (�3%;+9%)

Table 6.1: Points of intersection

80

Maximum value

95% CI, upper bound

95% CI, lower bound

Minimum value

LocalSubActionNoEchoLatency (ns)

-3Avg. RecThroughput ((byte/ns)/node) x 10

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

0.00 200.00 400.00

Figure 6.4: Statistical properties of the simulation-results (Uniform, 4 nodes, no �ow

control, mixed packets).

sults in [Scott et.al., 1992], though the actual measurements di�er slightly. Compared to

[Scott et.al., 1992], the graph 6.3 indicate a slightly better performance of uniform SCI-

rings with 4 nodes without �ow control. The intersection points between the 16byte case

and the mixed case, and the mixed case and the 80byte case, in graph 6.3 are compared to

[Scott et.al., 1992] in table 6.1.

Statistical properties of LocalSubActionNoEchoLatency, graph 6.4

To indicate the reliability of the measurements presented so far, �gure 6.4 display some

statistical properties associated with the LocalSubActionNoEchoLatency in the mixed case.

The graph will show the following statistical properties of the LocalSubActionNoEcho-

Latency:

� The relationship between average RecThroughput and the minimum LocalSub-

ActionNoEchoLatency sampled during simulation.

81

� The relationship between average RecThroughput and the maximum LocalSub-

ActionNoEchoLatency sampled during simulation.

� The relationship between average RecThroughput and the 95% con�dence interval

(C.I.) for the population mean of LocalSubActionNoEchoLatency. The lower

and upper bound of the con�dence interval is shown. This illustrates that there is a

95% probability that the population mean of LocalSubActionNoEchoLatency lay

between the lower and upper bound.

The abovementioned population mean refers to the true, yet unknown, mean

value of LocalSubActionNoEchoLatency within the simulated system. Through simulation

an estimate of the population mean have been calculated and presented i graph 6.1 through

6.3. The 95% con�dence interval shown in graph 6.4 will therefore indicate whether this

estimate are plausible.

The sample space, from which the estimate of the mean-value of LocalSubAction-

NoEchoLatency was calculated, was all the send-packets received by any node-interface

during simulation. In the 80byte case the size of the sample space varied from 151 to 15955

depending the load, in the mixed case the size varied from 288 to 27319, and in the 16byte

case it varied from 400 to 28583. The sample size is smallest when the load is low and the

highest when the load high.

If we consider the 95% con�dence interval in graph 6.4, we observe that the interval is

between �0:6% and �6:8% of the estimated mean value presented in graph 6.2.1b and 6.3.

In the 80byte case the 95% con�dence interval is between �1% and �1:5% and in the 16

byte case it is between �0:6% and �3% of the estimated mean value (80byte and 16byte

case is not shown in graph 6.4).

It may come as a surprise that the con�dence interval does not vary more than is the

case. This is reasonable though because simulation within the same set (80byte, mixed and

16byte) were performed for same amount of simulated time. At small loads the number of

packets were small so the sample size was small too, which would imply a higher standard

deviation and a broader con�dence interval, but at the same time the tra�c was so small

that packets seldom experienced delay in the output-queues or the bypass-queues. The

sampled values at low loads therefore did not diverge much. When the load grew higher

the number of packets increased and thereby the sample space increased. A larger sample

space usually imply a smaller standard deviation and a narrower con�dence interval, but

at the same time the tra�c had increased so the packets more often experience a delay in

the output-queue and the length of this delay is not deterministic because no �ow control

mechanism was used. Therefore the sampled values was spread a lot more.

We will also observe in graph 6.4 that the minimum sample of LocalSubActionNoEcho-

Latency is the same for any RecThroughput, and this apply to other cases as well. This

is reasonable because it represents the situation where a node transmits to its downstream

neighbour. The maximum value of LocalSubActionNoEchoLatency sampled during simu-

lation seem to increase as the average RecThroughput increase, though in a non-monotonic

fashion. This is also reasonable because when RecThroughput increase, the number of

packets in the ring increase, and it becomes more likely that a node is blocked for a consid-

erable time. Consequently, send-packets spend more time in the output-queues compared

to when RecThroughput was lower.

82

80byte/no-flow

80byte/flow

16byte/no-flow

16byte/flow

Total RecThroughput (byte/ns)

Total load (byte/ns)
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0.00 1.00 2.00 3.00 4.00

Figure 6.5: Throughput as a function of load (Uniform, 4 nodes, no �ow control versus

�ow control).

6.2.2 Results related to uniform SCI-ring with 4 nodes, standard SCI

�ow control

This section will present and discuss results that are particular to uniform SCI-rings with

�ow control. The thorough discussion of RecThroughput and latency which were carried

out on section 6.2.1 related to the graphs 6.1, 6.2 and 6.3 has been omitted, because the

results described there apply to uniform SCI-rings with �ow control as well. Still, there

are quantitative di�erences between SCI-rings with �ow control and SCI-rings without �ow

control, so this section will focus upon these di�erences. The results will be presented in

the following order:

� Throughput as a function of load for the whole ring, comparison of �ow control to

no �ow control. Graph 6.5.

� Latency as a function of load for the whole ring, comparison of �ow control to no

�ow control. Graph 6.6.

� The relationship between throughput and latency for the whole ring, comparison of

�ow control to no �ow control. Graph 6.7.

Total RecThroughput as a function of total load, graph 6.5

This graph shows the total RecThroughput as a function of total load when the send-

packets are either 16byte or 80byte, and the ring either uses the standard SCI �ow control

mechanism or no �ow control at all. Total load and total RecThroughput is speci�ed in

byte=ns along the x-axis and y-axis respectively.

The interesting thing here is to compare total RecThroughput in the two cases 80byte/�ow

and 80byte/no-�ow, and the two cases 16byte/�ow and 16byte/no-�ow. If we �rst

83

consider 80byte send-packets, we observe that the total RecThroughput in the �ow case and

the no-�ow case are approximately equal when total load is less than 1.25byte=ns. When

total load exceeds 1.25byte=ns, the total RecThroughput of the �ow case and the no-�ow

case di�er signi�cantly as they approach di�erent maximum values. The maximum total

RecThroughput of the ring without �ow control it is approximately 1.70byte=ns, while in

the ring with �ow control it is approximately 1.45byte=ns, representing a 15% reduction.

If we then consider 16byte send-packets we will observe almost the same relationship

as in the 80byte case. When total load is less than 1.10byte=ns, the total RecThroughput

in the �ow case and the no-�ow case are approximately equal. When total load exceed

1.1byte=ns the total RecThroughput of the �ow case and the no-�ow case di�er signi�cantly,

and the maximum total RecThroughput of the ring without �ow control is approximately

1.15byte=ns, while in the ring with �ow control it is 0.95byte=ns, which represent a 17%

reduction.

This indicate some properties of the total RecThroughput in uniform SCI-rings. When

load is less than a certain limit L, the total RecThroughput is not a�ected by the �ow

control mechanism, and is approximately equal to the total RecThroughput if no �ow

control was used. When load exceed L, the total RecThroughput in the ring with �ow

control will be less than the total RecThroughput in the ring without �ow control. The

maximum total RecThroughput in the ring with �ow control will also be less than the

maximum total RecThroughput in the ring without �ow control.

It is reasonable that the total RecThroughput is approximately equal when load is low,

because few packets will circulate the ring and a node-interface is rarely busy bypassing

packets or recovering from a prior transmission. A ring using the SCI �ow control mech-

anism is �lled with Go-idles when the load is low, and a node-interface does not have to

wait long for a passing Go-idle after a packet is inserted into the output-queue. If the ring

does not use �ow control, the node-interface simply transmits the packet without waiting

for any Go-idle. Therefore the delay before a packet can be transmitted is almost equal in

rings with �ow control and rings without �ow control. The output-queues will rarely �ll

up, and the node-interfaces transmit at the same rate as the application processes generate

packets.

It is also reasonable that maximum total RecThroughput is less in SCI-rings with �ow

control than in SCI-rings without �ow control. The following rationale explain why:

SCI-rings without �ow control: Assume a uniform load and tra�c pattern, and a load

su�ciently high so that the output-queues are non-empty at all times. A node-

interface in this ring will be constantly busy, either bypassing packets, transmitting

packets from the output-queue or recovering from a previous transmission (Note that

recover means to empty the bypass-queue after a transmission).

In an SCI-ring without �ow control, a node-interface can transmit a packet only if

the bypass-queue is empty. The node-interface goes through a cycle of stages and can

transmit packets only in some of them. Let us �rst assume that the bypass-queue is

empty and before the packet can be transmitted, the packet currently bypassed has

to come to an end. Then the packet in the output-queue is transmitted, and at the

same time incoming symbols are stored in the bypass-queue. When the transmission

is done, the node-interface goes to recovery stage, in which the node-interface tries to

empty the bypass-queue by transmitting packets from it, but packets may well enter

the bypass-queue at the same rate as the packets are leaving. Therefore considerable

time can be spent recovering from a transmission, in fact the recovery stage will

84

not end unless the node-interface receives a packet addressed to it. When receiving

a packet, the node-interface strips it from the ring and passes idle-symbols to the

bypass-queue, and a sequence of idle-symbols are collapsed into one. In this way the

bypass-queue is emptied, or at least shrunken in size, and after the node-interface has

received one or several packets addressed to it, the bypass-queue is once again empty

and the node-interface can again transmit a packet from the output-queue.

The details are not important, but what is important, is that a node-interface in

an SCI-ring without �ow control at high load, can only transmit packets from the

output-queue if it also receives packets addressed to it. If the node-interface does

not receive a packet, it will be stuck in a never-ending recovery stage. In a uniform

SCI-ring with 4 nodes, one out of three packets on the input-link is addressed to the

node-interface, and this will enable the node-interface to transmit new packets.

SCI-rings with �ow control: Assume a uniform load and tra�c pattern and a load

su�ciently high so that the output-queues are non-empty at all times. As in the SCI-

ring without �ow control, a node-interface will be constantly busy, either bypassing

packets, transmitting packets from the output-queue or recovering from a previous

transmission. In the �ow-controlled ring, a node-interface can also be blocked for

some time, awaiting a Go-idle. This blocked-stage is the crux of the SCI-�ow control

mechanism, because it stops a node-interface from transmitting send-packets from

the output-queue, as long as another node-interface in the ring is trying to empty its

bypass-queue.

A node-interface in an SCI-ring with �ow control can only transmit packets from

the output-queue if the bypass-queue is empty and a Go-idle has passed. The node-

interface will go through a cycle of stages, and can only transmit in some of them.

Let us assume that the bypass-queue is empty. The node-interface is most likely busy

bypassing a packet (without storing it in the bypass-queue), and the node-interface

must wait until this packet has come to an end, and then it goes to the blocked stage

where it awaits a Go-idle. When it observes a passing Go-idle, perhaps wedged in

between the packets, it appends the packet. At the same time incoming packets are

stored in the bypass-queue. When the transmission is done, the node-interface goes

to recovery stage, where it tries to empty its bypass-queue by transmitting packets

from it, and between packets the node interface emits NoGo-idles. In this way other

node-interfaces are blocked until the bypass-queue is empty.

When the node-interface is recovering it will emit NoGo-idles between the packets

transmitted from the bypass-queue, and in this way end the recovery stage. Un-

fortunately the NoGo-idles a�ect the whole ring, not only the node-interfaces which

cause the bypass-queue of the �rst node-interface to �ll up, but also node-interfaces

that communicate without a�ecting the �rst node-interface. Communication which

do not pass the �rst node-interface, is also stopped as a result of the NoGO-idles and

some bandwidth is eventually lost. Therefore the maximum total RecThroughput

is less than in the no-�ow case. It is also important to note that a node-interface

in an SCI-ring with �ow control does not send out packets during all stages. In

the blocked-stage, the node-interface may well emit a long sequence of NoGO-idles,

because another node-interface in the ring tries to empty its bypass-queue.

This explains why the maximum total RecThroughput is less when �ow control is used

in uniform SCI-rings. The reduction in maximum total RecThroughput is partly caused

85

16byte/flow

16byte/no-flow

80byte/flow

80byte/no-flow

Avg. LocalSubActionNoEchoLatency (ns) x 103

Total load (byte/ns)
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

0.00 1.00 2.00 3.00 4.00

Figure 6.6: Latency as a function of load (Uniform, 4 nodes, no �ow control versus �ow

control)

by the �ow control mechanism (blocking non-interfering node-interfaces) and partly caused

by how a uniform SCI-ring without �ow control behave (node-interfaces are always sending

something).

This seem to speak against the use of a �ow control mechanism in the SCI-ring, but

there are other important aspects too. The SCI-standard emphasize forward progress and

consequently, it must guarantee fair distribution of bandwidth. The uniform SCI-ring

without �ow control may seem fair, because all nodes transmit approximately the same

amount, but this is caused by the uniform load and tra�c pattern. As we will se later,

things will be di�erent in a non-uniform load and tra�c pattern.

Average LocalSubActionNoEchoLatency as a function of total load, graph 6.6

This graph shows the average LocalSubActionNoEchoLatency as a function of total load

when the send-packets are either 16byte or 80byte, and the ring either use the standard

SCI �ow control mechanism or no �ow control at all. Total load is speci�ed in byte=ns

along the x-axis and average LocalSubActionNoEchoLatency is speci�ed in ns along the

y-axis.

The interesting thing here is to compare average LocalSubActionNoEchoLatency in

the two cases 80byte/�ow and 80byte/no-�ow, and the two cases 16byte/�ow and

16byte/no-�ow. If we �rst consider 80byte send-packets, we observe that the average

LocalSubActionNoEchoLatency in the �ow case and the no-�ow case are approximately

equal when total load is less than 0.5byte=ns. When total load exceeds 0.5byte=ns, the

average LocalSubActionNoEchoLatency of the �ow case and the no-�ow case diverge and

will approach di�erent maximum values. The maximum average LocalSubActionNoEcho-

Latency of the ring without �ow control it is approximately 700ns, while in the ring with

86

�ow control is approximately 850ns, which represent an increase of 21%.

If we then consider 16byte send-packets, we will observe almost the same relationship as

in the 80byte case. When total load is less than 0.5byte=ns, the average LocalSubAction-

NoEchoLatency in the �ow case and the no-�ow case are approximately equal. When total

load exceeds 0.05byte=ns, the average LocalSubActionNoEchoLatency of the �ow case and

the no-�ow case di�er signi�cantly, and the maximum average LocalSubActionNoEcho-

Latency of the ring without �ow control is approximately 1400ns, while in the ring with

�ow control it is 1800ns, which represent an increase of 28%. We also observe that the

rapid increase in average LocalSubActionNoEchoLatency (eg. in the 16byte case when the

when total load exceeds 1.0byte=ns) takes place when the maximum total RecThroughput

is reached in graph 6.5.

This indicate some properties of the average LocalSubActionNoEchoLatency in real-life

SCI-rings. When load is less than a certain limit L, the average LocalSubActionNoEcho-

Latency is approximately equal, regardless whether �ow control is used or not. If load

exceeds L, the average LocalSubActionNoEchoLatency will increase a lot faster when �ow

control is used, than it would do if no �ow control is used. The maximum average Local-

SubActionNoEchoLatency is also signi�cantly higher when �ow control is used.

It is reasonable that the average LocalSubActionNoEchoLatency is approximately equal

at low loads, and that the average LocalSubActionNoEchoLatency increase faster when �ow

control is used when load increase. The following will explain why:

� When load is low, few packets circulate the ring. In an SCI-ring with �ow control,

the ring will be �lled with Go-idles (except for an occasional packet) because a node-

interface rarely has to empty the bypass-queue after a transmission. A packet inserted

into the output-queue can therefore be transmitted almost immediately, because the

bypass-queue is rarely full and Go-idles �ll the ring.

In an SCI-ring without �ow control, a packet inserted into the output-queue can also

be transmitted almost immediately because all that is required is an empty bypass-

queue.

� When load increase further, more packets circulate the ring. A node-interface will

therefore experience longer and more recovery stages.

In an SCI-ring without �ow control a node-interface can transmit if the bypass-

queue is empty and the recovery stage ends whenever the node-interface receives a

packet. In an SCI-ring with �ow control a node-interface can transmit if the bypass-

queue is empty and a Go-idle passes, and the recovery stage ends whenever the node-

interface receives a packet addressed to it or a sequence of idles. Consequently, the

LocalSubActionNoEchoLatency will be higher when �ow control is used than when

no �ow control is used, because of the additional requirement of the passing Go-idle.

It is also reasonable that the maximum average LocalSubActionNoEchoLatency is

higher when �ow control is used. From discussion of �gure 6.5 we know that the max-

imum total RecThroughput is lower when �ow control is used and this mean that less

bandwidth is available when send-packets are transmitted. Consequently, when �ow con-

trol is added to an SCI-ring, more time will be spent transmitting the same amount as

before.

87

80byte/no-flow

80byte/flow

16byte/no-flow

16byte/flow

Avg. LocalSubActionNoEchoLatency (ns)

-3Avg RecThroughput ((byte/ns)/node) x 10
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

0.00 200.00 400.00

Figure 6.7: The relationship between throughput and latency (Uniform, 4 nodes, no �ow

control versus �ow control)

The relationship between average RecThroughput and average LocalSubAction-

NoEchoLatency, graph 6.7

This graph shows the relationship between average RecThroughput and average Local-

SubActionNoEchoLatency, when the send-packets are either 16byte or 80byte, and the ring

either use the standard SCI �ow control mechanism or no �ow control at all. The Rec-

Throughput is speci�ed in (byte=ns)=node along the x-axis and the latency is speci�ed in

(ns) along the y-axis.

If we �rst consider 80byte send-packets, we observe that the average LocalSubAction-

NoEchoLatency is almost identical in the �ow case and the no-�ow case, when average

RecThroughput is less than 0.05(byte=ns)=node. When average RecThroughput exceed

0.05(byte=ns)=node, the �ow case and the no-�ow case diverge quickly and the average

LocalSubActionNoEchoLatency of the �ow case is higher than the no-�ow case. If we then

consider 16byte send-packets, we observe that the average LocalSubActionNoEchoLatency

is almost identical in the �ow case and the no-�ow case, when average RecThroughput

is less than 0.10(byte=ns)=node. When average RecThroughput exceed 0.1(byte=ns)=node,

the �ow case and the no-�ow case diverge quickly and the average LocalSubActionNoEcho-

Latency of the �ow case is higher than the no-�ow case.

This indicate that an SCI-ring without �ow control, has a higher average RecThroughput

and a lower average LocalSubActionNoEchoLatency than an identical SCI-ring with the

�ow control added. When we consider uniform SCI-rings under similar conditions, the

performance of the average node in rings without �ow control is higher than in rings with

�ow control.

This is a reasonable conclusion, if we consider the results presented in graph 6.5 and

6.6:

88

� From graph 6.5 we know that the total RecThroughput of the 16byte/no-�ow

case and the 16byte/�ow case is almost identical when the total load is less than

0.5byte=ns. As a result the total RecThroughput is less than 0.5byte=ns. From graph

6.6 we know that the average LocalSubActionNoEchoLatency is almost identical when

total load is less than 0.5byte=ns. Therefore the 16byte/�ow and the 16byte/no-

�ow is almost identical when average RecThroughput is less than 0.125(byte=ns)=node

(SCI-ring with 4 nodes).

� When total load exceeds 0.5byte=ns, but remain less than 1.1byte=ns, the total Rec-

Throughput of the 16byte/no-�ow case and the 16byte/�ow case continue to in-

crease and remain close in graph 6.5. The average LocalSubActionNoEchoLatency on

the other hand, increase more in the 16byte/�ow case than in the 16byte/no-�ow

case, as shown in graph 6.6. Therefore the 16byte/�ow case and the 16byte/no-

�ow case diverge in graph 6.7, when average RecThroughput is in the interval from

0.125(byte=ns)=node to 0.225(byte=ns)=node.

� When total load exceeds 1.1byte=ns, the average LocalSubActionNoEchoLatency of

the 16byte/�ow case and the 16byte/no-�ow case continue to increase, as shown

in graph 6.5. In graph 6.6 the total RecThroughput of the 16byte/�ow case will not

increase further, while the 16byte/no-�ow case will continue to increase until total

load exceed 1.5byte=ns. Therefore the 16byte/�ow case lay above the 16byte/no-

�ow in graph 6.7.

These results can be compared to results presented in [Scott et.al., 1992], and graph

6.7 is directly comparable to a graph there. We will focus upon the 80byte/�ow case and

the 16byte/�ow case, as the other two have been discussed previously in section 6.2.1.

The graph 6.7 resembles the results presented in [Scott et.al., 1992], though there are

quantitative di�erences. Compared to [Scott et.al., 1992], the graph 6.7 indicate a slightly

worse performance of uniform SCI-rings with 4 nodes using �ow control and when 16byte

send-packets are used. When 80byte send-packets are considered the results in graph 6.7

indicate approximately the same performance as that presented in [Scott et.al., 1992].

6.2.3 Results related to SCI-rings of size 16

This section will present and discuss results from the simulation of uniform SCI-rings with

16 nodes, which either use the SCI �ow control mechanism or not. Results that are directly

related to the larger ring structure will be emphasized, and results from section 6.2.1 and

6.2.2 will be used in order to compare 16 node SCI-rings to 4 node SCI-rings. The following

results will be discussed in this section:

� Throughput as a function of load for the whole ring, comparison of 4 node SCI-rings

to 16 node SCI-rings. Graph 6.8.

� Latency as a function of total load for the whole ring, comparison of 4 node SCI-rings

to 16 node SCI-rings. Graph 6.9.

� The relationship between throughput and latency for the whole ring, comparison of

4 node SCI-rings to 16 node SCI-rings. Graph 6.10.

89

4nodes/80byte

16nodes/80byte

4nodes/16byte

16nodes/16byte

Total RecThroughput (byte/ns)

Total load (byte/ns)
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 1.00 2.00 3.00 4.00 5.00

Figure 6.8: Throughput as a function of load (Uniform, 4 node versus 16 node, �ow control)

Simulation results indicate that adding �ow control to a uniform 16 node SCI-ring will

a�ect the RecThroughput and latency in the same as it will in a uniform 4 node SCI-ring.

When load is low, the �ow control mechanism does not a�ect the total RecThroughput,

and total RecThroughput is equal regardless whether �ow control is used or not. When

load is higher, the total RecThroughput is less when �ow control is used and the maximum

total RecThroughput is reduced with 20% when either 16byte or 80byte send-packets are

used. The average LocalSubActionNoEchoLatency is not a�ected when load is low, but

will be a�ected when load is high. In general the average LocalSubActionNoEchoLatency

is higher when �ow control is added to the ring, and in particular the maximum average

LocalSubActionNoEchoLatency is increased with 37% when 80byte packets are used and

28% when 6byte packets are used. For further details on �ow control in uniform SCI-rings,

refer to the discussion of �ow control in uniform 4 node SCI-rings in section 6.2.2.

Total RecThroughput as a function of total load, graph 6.8

This graph shows the total RecThroughput as a function of total load when the send-

packets are either 16byte or 80byte, the ring uses �ow control and the ring contains either

4 nodes or 16 nodes. Total load and total RecThroughput is speci�ed in byte=ns along the

x-axis and y-axis respectively.

The interesting thing here is to compare total RecThroughput in the two cases 4nodes/80byte

and 16nodes/80byte, and the two cases 4nodes/16byte and 16nodes/16byte. If we

�rst consider 80byte send-packets, we observe that the total RecThroughput in the 4 node

ring and the 16 node ring is almost identical when total load is less than 1.5byte=ns. When

total load exceeds 1.5byte=ns, the total RecThroughput in the 4 node ring is higher than

the total RecThroughput in the 16 node ring. The maximum total RecThroughput in the

4 node ring is 4% higher than the maximum in the 16 node ring.

If we then consider 16byte send-packets, we observe that the total RecThroughput in

90

16nodes/16byte

16nodes/80byte

4nodes/16byte

4nodes/80byte

Avg. LocalSubActionNoEchoLatency (ns) x 103

Total load (byte/ns)
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0.00 1.00 2.00 3.00 4.00 5.00

Figure 6.9: Latency as a function of load (Uniform, 4 node versus 16 node, �ow control).

the 16 node ring is slightly higher, no more than 9%, than the total RecThroughput of the 4

node SCI-ring, when total load is less than 1.1byte=ns. When total load exceed 1.1byte=ns

the situation is reversed and the total RecThroughput of the 4 node ring is slightly higher

than in the 16 node ring. The maximum total RecThroughput of the 4 node ring is 1%

higher than the maximum total RecThroughput of the 16 node ring.

Assuming that the ring display a uniform load and tra�c pattern, and that it uses �ow

control, the above observation indicate that the total RecThroughput as a function of load

in a 4 node SCI-ring and a 16 node SCI-ring does not di�er more than 10%, and that the

maximum total RecThroughput of 4 node ring in some cases is higher than in the 16 node

ring..

This result is somewhat disappointing, because it means that the total RecThroughput

does not increase as the number of nodes in a uniform SCI-ring increase. Consequently the

SCI-ring structure cannot be scalable up to 16 nodes.

Average LocalSubActionNoEchoLatency as a function of total load, graph 6.9

This graph shows the average LocalSubActionNoEchoLatency as a function of total

load when the send-packets are either 16byte or 80byte, the ring use �ow control and the

ring contain either 4 nodes or 16 nodes. Total load is speci�ed in byte=ns along the x-axis

and LocalSubActionNoEchoLatency is speci�ed in ns along the y-axis.

The interesting thing here is to compare average LocalSubActionNoEchoLatency in the

two cases 16nodes/16byte and 4nodes/16byte, and the two cases 16nodes/80byte

and 4nodes/80byte. If we consider 16byte send-packets, we observe that the average

LocalSubActionNoEchoLatency in the 4 node ring is less than in the 16 node ring at any

load. When load is low, less than 0.5byte=ns, the average LocalSubActionNoEchoLatency

is approximately 300% higher in the 16 node ring than in the 4 node ring, but when load

91

is higher, greater than 2.0byte=ns, the average LocalSubActionNoEchoLatency in the 16

node ring is approximately 400% higher than in the 4 node ring.

If we then consider 80byte send-packets we will make the same observation. In general,

the average LocalSubActionNoEchoLatency is less in the 4 node ring than in the 16 node

ring. When load is less than 0.5byte=ns, the average LocalSubActionNoEchoLatency is

approximately 16% higher in the 16 node ring than in the 4 node ring. When load is

greater than 2.0byte=ns, the average LocalSubActionNoEchoLatency is 450% higher in the

16 node ring than in the 4 node ring.

This indicate that the average LocalSubActionNoEchoLatency is higher in a 16 node

SCI-ring than in a 4 node SCI-ring, assuming similar conditions. This apply to any given

load, and in particular at high loads when the maximum average LocalSubActionNoEcho-

Latency is approximately 4 times higher in the 16 node ring than in the 4 node ring.

It is reasonable that the average LocalSubActionNoEchoLatency is higher in the 16

node ring than in the 4 node ring, because the ring-structure and the total output-queue

size is larger. The LocalSubActionNoEchoLatency includes the time from a send-packet

is inserted into the output-queue, until it has been received by the receiver node, and

when the ring-size increase, the LocalSubActionNoEchoLatency will also increase. It is

also reasonable that the maximum LocalSubActionNoEchoLatency of the 16 node ring is

approximately 4 times higher than the 4 node ring because the total output-queue space

is 4 times larger in the 16 node ring than in 4 node ring, and because the maximum

LocalSubActionNoEchoLatency depends on total output-queue space.

The relationship between average RecThroughput and average LocalSubAction-

NoEchoLatency, graph 6.10

This graph shows the relationship between average RecThroughput and average LocalSub-

ActionNoEchoLatency, when the send-packets are either 16byte or 80byte, the ring use �ow

control and the ring contain either 4 nodes or 16 nodes. The RecThroughput is speci�ed

in (byte=ns)=node along the x-axis and the latency is speci�ed in (ns) along the y-axis.

The interesting thing here is to compare average LocalSubActionNoEchoLatency in the

two cases 16nodes/16byte and 4nodes/16byte, and the two cases 16nodes/80byte

and 4nodes/80byte. The results indicate that each node have a higher RecThroughput

and a lower LocalSubActionNoEchoLatency in the 4 node ring than in the 16 node ring.

If we with high throughput and low latency associate good performance, the average node

in the smaller ring has a higher performance than the average node the larger ring.

6.2.4 Summary of results related to uniform load and tra�c patterns

The following is summary of the main results related to uniform SCI-rings, results which

will help us decide on Issue 4, Issue 5 and Issue 7 (chapter 3):

� The total RecThroughput equals the total load when total load is less than a

certain limit L. This limit depends on the size of send-packets used in the ring, eg.

when 16byte send-packets are used, L = 1:25byte=ns.

� Maximum total RecThroughput is a stable value even when total load increase.

The maximum value is approached when load exceed L.

92

4nodes/80byte

4nodes/16byte

16nodes/80byte

16nodes/16byte

Avg. LocalSubActionNoEchoLatency (ns) x 103

-3Avg RecThroughput ((byte/ns)/node) x 10
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 100.00 200.00 300.00 400.00

Figure 6.10: The relationship between throughput and latency (Uniform, 4 node versus 16

node, �ow control)

� Maximum total RecThroughput depends on the size of send-packets used in the

ring. Large send-packets gives a higher maximum total RecThroughput than

smaller send-packets.

� The average LocalSubActionLatency and LocalSubActionNoEchoLatency in-

crease as total load increase, but is bounded downward and upward. The lower bound

depends on the minimum �xed delay in links and node-interfaces, and the size of send-

packets used in the ring. The upper bound also depends on the minimum �xed delay

in links and node-interfaces, but in addition it depends on the maximum output-queue

size.

� Flow control will reduce the maximum total RecThroughput. When either 16byte

or 80byte send-packets are used the reduction amounts to 15%.

� Flow control will increase the maximum averageLocalSubActionNoEchoLatency.

When 16byte send-packets are used in the ring the increase amounts to 28%.

� Increasing the number of nodes from 4 to 16 in a uniform SCI-ring, will not increase

the total RecThroughput of the ring.

� Increasing the number of nodes from 4 to 16 in a uniform SCI-ring, will increase the

average LocalSubActionNoEchoLatency in general, and the maximum average

LocalSubActionNoEchoLatency in particular. When 16byte send-packets are

used, the increase of the maximum average LocalSubActionNoEchoLatency amounts

to 400%.

93

� The performance of the average node is higher in a 4-node SCI-ring than in a 16-node

SCI-ring.

� The SCIsim-simulator produce results which resemble those presented in [Scott et.al., 1992]

when the same con�guration are simulated. Properties of the SCI-ring related to ring-

size, packet-size and �ow-control (as indicated above in this list) corresponds to those

indicated in [Scott et.al., 1992].

6.3 Hot-sender load and tra�c pattern in single SCI-rings

This section will present and discuss results from the simulation of single SCI-rings where

the load and tra�c pattern is referred to as hot-sender. These results will help us decide

on Issue 4, Issue 6 and Issue 7 as presented in chapter 3. The following list describes the

overall conditions assumed during simulation:

� Topology: Single ring.

� Size: 4 nodes or 16 nodes.

� Load and tra�c pattern: hot-sender.

� Transmitter-stage: SCI �ow control, no �ow control.

� Send-packet size: Mixed.

Except from the hot-node, where the load was �xed to 4.2byte=ns, the load was increased

from one simulation to another - starting with a value close to zero and going up to a

level where the throughput and latency measurements had stabilized. The length of one

simulation was determined after some preliminary simulations (Refer to section 5.3) and

for the 4-node ring and the 16-node ring the simulation time was 1200000ns and 2500000ns

respectively. The remaining parameter-values which were assumed during simulation, can

be found in table 5.1 in section 5.1.2. The nodes in the smallest ring are labeled P0

through P3 for convenience, and P0 will refer to the hot node, P1 to its immediate

downstream neighbour etc.

In order to indicate the throughput of each node in a hot-sender SCI-ring, this sec-

tion will emphasize the TransThroughput as de�ned in section 5.2. This throughput-

measurement includes all send-packets transmitted by a node-interface.

In order to indicate the latency of each node, this section will emphasize LocalSub-

ActionNoEchoLatency. Both average and maximum values of LocalSubActionNoEcho-

Latency will be presented for each node.

Section 6.3.1 will present and discuss results from the simulation of hot-sender SCI-

rings with 4 nodes, where the ring either use the SCI �ow control mechanism or not. A 16

node SCI-ring has also been simulated under the assumption of hot-sender load and tra�c

pattern, but the results resemble closely the results of the 4 node ring, so results related to

the 16 node ring will not be presented.

Section 6.3.2 will give a summary of the main results related to hot-sender.

94

6.3.1 Results related to hot-sender in SCI-rings with 4 nodes

This section will present and discuss the simulation-results in the following order:

� Throughput as a function of load for each individual node, comparison of no-�ow

control to �ow control. Graph 6.11a-b.

� Latency as a function of load for each individual node, comparison of no-�ow control

to �ow control. Graph 6.12a-b.

� The relationship between throughput and latency for each individual node, compar-

ison of no-�ow control to �ow control. Graph 6.13a-b.

� Worst case latency as a function of load for the downstream neighbour P1, comparison

of no-�ow control to �ow control. Graph 6.14.

TransThroughput as a function of load, graph 6.11a-b

This �gure contains two graphs, one related to SCI-rings without �ow control (graph 6.11a)

and the other related to SCI-rings with �ow control (graph 6.11b). Each graph shows for

each node P0-P3, the TransThroughput as a function of load in P1-P3. Note that the load

in P0 is �xed. Load and throughput is speci�ed in byte=ns along the x-axis and y-axis

respectively.

We observe in graph 6.11a that the TransThroughput of P0 is signi�cantly di�erent

from that of node P1-P3. When load in P1-P3 approach 0.0byte=ns, the TransThroughput

of P0 will approach 0.95byte=ns. When load in P1-P3 increase, the TransThroughput of P0

will decrease, while the TransThroughput of P1-P3 will increase. The TransThroughput

of all nodes converge when load in P1-P3 increase, and when it exceeds 0.60byte=ns the

TransThroughput of P0-P3 is approximately equal. A more careful observation reveal

that node P1-P3 experience an approximately linear growth of TransThroughput when

load increase in the interval from 0.0byte=ns to 0.20byte=ns, while the TransThroughput

of P0 decrease approximately linearly in the same interval. When load in P1-P3 exceeds

0.20byte=ns, the TransThroughput start to level out, approaching 0.39byte=ns. We will

also observe that the TransThroughput of P1, the immediate downstream neighbour of the

hot node P0, is slightly lower than the TransThroughput of P2 and P3, when load is in the

interval from 0.3byte=ns to 0.60byte=ns.

The results presented in graph 6.11a indicate that in an SCI-ring of size 4, displaying

a hot-sender load and tra�c pattern, the hot node has a higher TransThroughput at low

loads, than the remaining nodes. When load in the remaining nodes increase (the load in

P1-P3 are equal) the TransThroughput of P1-P3 increase, while the TransThroughput of P0

decrease, and will approach the same stable value. When load in each node P1-P3 exceed

0.60byte=ns, all nodes have almost the same TransThroughput. Node P1, the immediate

downstream neighbour of P0 has the same transmitted throughput as node P2-P3, except

when load lay in the interval 0.3byte=ns to 0.65byte=ns where P1 transmit slightly less.

The results in graph 6.11a and the above conclusion is reasonable assuming a hot-sender

load and tra�c pattern. When load in P1-P3 is very low, P0 has the ring entirely to itself,

and will transmit packets as fast as it can. Because very few send-packets from P1-P3

are passing P0, and almost all echo-packets entering P0 on the input-link are addressed to

P0 itself, P0's output-link will transmit (almost) only send-packets from P0's own output-

queue. The average size of send-packets transmitted from P0 is 0.6*16 + 0.4*80 = 41.6byte

95

P0 (hot)

P1

P2

P3

TransThroughput (byte/ns)

Load (byte/ns)
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.20 0.40 0.60 0.80 1.00

(a) No �ow control

P0 (hot)

P1

P2

P3

TransThroughput (byte/ns)

Load (byte/ns)
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 0.20 0.40 0.60 0.80 1.00

(b) Flow control

Figure 6.11: Throughput as a function of load (Hot-sender, 4 nodes, mixed packets).

96

and an idle-symbol will be appended. Therefore the TransThroughput of P0 will approach

41.6/(41.6+2) = 0.95byte=ns when load in P1-P3 is very low. This corresponds to the

result in graph 6.11a.

When the load in P1-P3 increase from a small value, P1-P3 will transmit more packets

and this will in turn increase their TransThroughput. The hot node will have to bypass

more packets to P2 and P3 than before, and consequently the TransThroughput of P0

will decrease. P1-P3 are able to increase their TransThroughput, despite P0's constant

�ow of packets, because all nodes generate packets with uniform destination addresses. As

explained in section 6.2 (where �ow control were compared to no-�ow control in a uniform

SCI-ring), a node-interface in an SCI-ring without �ow control can transmit only if also

receives packets addressed to it. Therefore P1 is not more a�ected by the hot node than

P2 and P3 in terms of TransThroughput, though the TransThroughput of P1 is slightly

less than that of P2-P3 when load is in the interval 0.30 to 0.60byte=ns.

When the load in P1-P3 is very high, greater than 0.60byte=ns, the output-queues

will be constantly �lled with packets, and P1-P3 will start to behave like P0 and try

to transmit as much as possible. Therefore the hot-sender load and tra�c pattern will

resemble the uniform load and tra�c pattern. Consequently, the TransThroughput of P0-

P3 is approximately equal, and will approach the maximum average throughput observed

the uniform SCI-ring shown in graph 6.1b.

In graph 6.11b, we observe results that resemble those results presented in graph 6.11a,

with some exceptions. Where the �ow control and the no �ow control di�er, is in the

TransThroughput of node P1. In graph 6.11b we observe the same TransThroughput of

P1-P3 at any load, whereas in the no �ow control case the TransThroughput of node P1

was slightly less than that of node P2 and P3.

The TransThroughput of P1-P3 increases when load in P1-P3 increase, and the growth

is almost linear when load is less than 0.20byte=ns. When load exceeds 0.20byte=ns, the

TransThroughput of P1-P3 will level o�, and when load exceeds 0.40byte=ns, it will have

reached the same maximum value. The TransThroughput of P0 is very high at low loads,

but decreases when load in P1-P3 increase, and will approach a stable value when load

exceeds 0.40byte=ns. The TransThroughput of P0 is approximately equal to that of node

P1-P3 when load is high.

The results in graph 6.11b indicate some properties of an SCI-ring, displaying a hot-

sender load and tra�c pattern. The hot node has a high TransThroughput when load in

P1-P3 is low, whereas P1-P3 have a low TransThroughput. When load in P1-P3 increase,

the TransThroughput of the hot node will decrease while the TransThroughput of the other

nodes will increase. When load in P1-P3 is very high, the TransThroughput of all nodes

are almost equal, approximately 0.29byte=ns.

The results in graph 6.11b and the above conclusion is reasonable assuming an SCI-ring

with �ow control displaying a hot-sender load and tra�c pattern. When load is low, the

other nodes transmit few packets and P0 has the ring almost entirely to itself. While there

are few send-packets from P2 and P3 that are passing P0, and almost all echo-packets on

P0's input-link are addressed to P0 itself, the bypass-queue rarely �lls up and P0 rarely has

to empty the bypass-queue after a transmission. The ring is therefore �lled with Go-idles,

except for the send-packets transmitted by P0. P0 is therefore able to transmit packets

continuously.

When load in P1-P3 increase, P1-P3 will transmit more packets, and this will in turn in-

crease their TransThroughput. The TransThroughput of P0 will decrease, because packets

97

from P2 and P3 have to pass through node P0. The �ow control mechanism also eliminates

the di�erence in TransThroughput between P1 and P2/P3.

When load is very high, the output-queues in P1-P3 are constantly �lled with send-

packets, and the behavior of P1-P3 will resemble the behavior of P0. Consequently the hot-

sender load and tra�c pattern starts to resemble the uniform, because all nodes transmit

packets uniformly and have the same e�ective load. As a result, the TransThroughput

of each node are approximately equal when load is high, and is almost identical to the

maximum average throughput in a uniform 4-node SCI-ring.

It is also reasonable when load is high, that the TransThroughput of each node is

reduced compared to a no-�ow ring. The hot-sender load and tra�c pattern resembles the

uniform when load is high, and the �ow control mechanism a�ects the whole ring. Refer

to the discussion of �gure 6.5 in section 6.2.2 for further details.

If we consider the results in graph 6.11a-b without considering the latency, the behav-

ior of the SCI �ow control mechanism is not convincing. The slight di�erence in Trans-

Throughput among P1-P3 in the no-�ow ring is eliminated when �ow control is used, but

the prize that has been paid is a reduction in TransThroughput when load is high. In fact,

P0 has a generally higher TransThroughput in the no-�ow ring than in the �ow controlled

ring.

Average LocalSubActionNoEchoLatency as a function of load, graph 6.12

This �gure contains two graphs, one related to SCI-rings without �ow control (graph 6.12a)

and the other related to SCI-rings with �ow control (graph 6.12b). Each graph shows for

each node P0-P3, the average LocalSubActionNoEchoLatency as a function of load in P1-

P3. Note that the load in P0 is �xed. Load is speci�ed in byte=ns along the x-axis and

LocalSubActionNoEchoLatency is speci�ed in ns along the y-axis.

We observe from graph 6.12a that the average LocalSubActionNoEchoLatency is highest

for packets transmitted from P0, regardless the load in P1-P3. Among the nodes P1-P3,

we observe that the average LocalSubActionNoEchoLatency are highest for P1, second-

highest for P2 and smallest for P3, when load is less than 0.5byte=ns. When load exceeds

0.5byte=ns, the results are somewhat jumbled, but seem to converge. For all nodes the

LocalSubActionNoEchoLatency increase when load in P1-P3 increase. When load exceeds

0.5byte=ns, the results are somewhat jumbled, but the general tendency seem to indicate

a maximum value.

This indicate that in 4 node SCI-ring without �ow control and which displays a hot-

sender load and tra�c pattern, the average LocalSubActionNoEchoLatency is highest for

the hot node. Of the remaining nodes, the immediate downstream neighbour of the

hot node experience the second-highest average LocalSubActionNoEchoLatency, the next

downstream neighbour the third-highest average LocalSubActionNoEchoLatency, and the

node furthest away experience the lowest average LocalSubActionNoEchoLatency. There-

fore the nodes are a�ected by the hot-sender depending of the distance from the hot-sender.

The nodes which are closest (in downstream direction) to the hot-sender are more a�ected

than the nodes furthest away. As we observed in 6.11a, the TransThroughput of P1-P3 are

almost identical when load is less than 0.20byte=ns, and this mean that when load is low,

P1-P3 will transmit the same amount of bytes, but for the nodes closest to the hot node

this will take more time than for the nodes furthest away.

98

P0 (hot)

P1

P2

P3

Avg. LocalSubActionNoEchoLatency (ns) x 103

Load (byte/ns)
0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00

(a) No �ow control

P0 (hot)

P1

P2

P3

Avg. LocalSubActionNoEchoLatency (ns) x 103

Load (byte/ns)
0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00

(b) Flow control

Figure 6.12: Latency as a function of load (Hot-sender, 4 nodes, mixed packets).

99

It is reasonable that the hot node has the highest average LocalSubActionNoEcho-

Latency because its output-queue is always full and the last packet in the output-queue

must wait until all the other packets have left the queue. When the load in the remaining

nodes are low, their output-queues rarely �ll up, and they only have to wait for the packet

from P0 to pass or the bypass-queue to empty. On P1's input-link, one out of three packets

are addressed to the P1, while on P2's input-link, one out of two packets are addressed to

P2 and there are a lot of empty spaces (idle-symbols) between packets. On the input-link

of P3, all incoming send-packets are addressed to it and in addition there are some echo-

packets. This mean that P1 has to wait longer than P2, and P2 has to wait longer than

P3.

When load increase, P1-P3 have new packets ready in the output-queue before they have

been able to empty the bypass-queue, and as a result the LocalSubActionNoEchoLatency

will increase. When load in P1-P3 is very high the output-queues are constantly �lled with

send-packets, in which case the average LocalSubActionNoEchoLatency of each node has

reached its maximum level.

When load is high, the hot-sender load and tra�c pattern approach the uniform load

and tra�c pattern, and as a consequence the maximum average LocalSubActionNoEcho-

Latency of any node in graph 6.12 is approximately equal to the maximum average Local-

SubActionNoEchoLatency of a uniform SCI-ring as shown in graph 6.1c.

When we observe graph 6.12b, we will see that the average LocalSubActionNoEcho-

Latency is di�erent in the �ow controlled ring than in the no-�ow ring (graph 6.12a). The

average LocalSubActionNoEchoLatency is higher for the hot node than for any of the other

three nodes (P1-P3), and it will increase rapidly when load increase. When load in P1-P3

exceed 0.4byte=ns, the average LocalSubActionNoEchoLatency levels out and will approach

1200ns. For P1-P3 on the other hand, the average LocalSubActionNoEchoLatency is ap-

proximately equal. Even when load is low, where we previously have observed a signi�cant

di�erence in average LocalSubActionNoEchoLatency in the no-�ow ring, the average Local-

SubActionNoEchoLatency of P1-P3 is almost equal in the �ow controlled ring.

The average LocalSubActionNoEchoLatency also seem to converge when load exceed

1.0byte=ns, and the average LocalSubActionNoEchoLatency of P0-P3 seem to approach

the same maximum value. When load in P1-P3 approach 0.0byte=ns the LocalSubAction-

NoEchoLatency in any node seem to approach a minimum value. The lower bound is

signi�cantly higher in P0 than in P1-P3. The lower bound in P0 is approximately 350ns

and in P1-P3 approximately 80ns.

This indicate that in an SCI-ring with �ow control displaying a hot-sender load and

tra�c pattern, the average LocalSubActionNoEchoLatency is higher for the hot node than

in the remaining nodes, but the di�erence will decrease when load increases. The average

LocalSubActionNoEchoLatency is almost identical in the remaining group of nodes, re-

gardless the load. The average LocalSubActionNoEchoLatency of all nodes also approach

the same maximum value.

The results presented in graph 6.12b and the above conclusion is reasonable assuming

an SCI-ring with �ow control displaying a hot-sender load and tra�c pattern. When load

in P1-P3 is low, the load in P0 is still �xed to a high value and its output-queue is com-

pletely �lled with send-packets. Therefore the LocalSubActionNoEchoLatency are higher

in P0 than in P1-P3, which on the other hand, rarely generate packets. The �ow control

mechanism controls the recovery stage in P1-P3, and node P1 is not more a�ected than P2-

P3 by the hot node. It is also reasonable that the average LocalSubActionNoEchoLatency

100

in P0-P3 approach a stable maximum value because at high loads the output-queues are

�lled, and the LocalSubActionNoEchoLatency will not increase further. The maximum

average LocalSubActionNoEchoLatency of any node is identical to the maximum average

LocalSubActionNoEchoLatency of a uniform SCI-ring under similar conditions.

These results concerning average LocalSubActionNoEchoLatency are more encourag-

ing than the results concerning the TransThroughput presented in 6.11a-b. The average

LocalSubActionNoEchoLatency of P1-P3 was severely a�ected by the hot node in the ring

without �ow control, whereas in the ring with �ow control, P1-P3 has approximately the

same average LocalSubActionNoEchoLatency. The results in graph 6.11a-b therefore in-

dicate that SCI �ow control mechanism can ensure fairness in an SCI-ring with a hot

node. The price that has been paid, is a higher average LocalSubActionNoEchoLatency in

general.

The relationship between TransThroughput and average LocalSubActionNoEcho-

Latency, graph 6.13a-b

This �gure contains two graphs, one related to SCI-rings without �ow control (graph 6.12a)

and the other related to SCI-rings with �ow control (graph 6.12b). Each graph shows for

each node P0-P3, the relationship between TransThroughput and average LocalSubAction-

NoEchoLatency. TransThroughput is speci�ed in byte=ns along the x-axis and LocalSub-

ActionNoEchoLatency is speci�ed in ns along the y-axis.

If we observe the graph 6.13a we will see that the results of each node P0-P3 di�er sig-

ni�cantly. Given the same transmitted throughput, the average LocalSubActionNoEcho-

Latency of P1 is higher than that of P2, and the average LocalSubActionNoEchoLatency

of P2 is higher than that of P3. The results of P0 is signi�cantly di�erent from P1-P3.

This indicate that the performance of the hot-node's �rst downstream neighbour is

worse than the performance for any other node in the ring. It will have a higher average

LocalSubActionNoEchoLatency given the same TransThroughput. The second downstream

node is less a�ected than the �rst, and have a higher performance, the third node is less

a�ected than the second and so forth. When load in P1-P3 is high, the TransThroughput of

P1-P3 approach 0.4byte=ns and the performance of each node is approximately the same.

This is reasonable result considering the results presented in graph 6.11a-b and 6.12a-b.

When we observe graph 6.13b, which represent the �ow controlled ring, we will see

that the performance of each node is quite di�erent in this ring than in the no-�ow ring.

The relationship between TransThroughput and average LocalSubActionNoEchoLatency

for P1-P3 is approximately equal.

This indicates that the performance of each node P1-P3 are approximately equal in an

SCI-ring with �ow control and a hot-sender load and tra�c pattern. When load in P1-P3

is high, the TransThroughput of each node approach 0.3byte=ns and the performance of all

nodes are approximately equal. The results therefore indicate that adding �ow control to

an SCI-ring displaying a hot-sender load and tra�c pattern, will equalize the di�erence in

performance. This is reasonable result considering the results presented in graph 6.11a-b

and 6.12a-b.

Results presented in graph 6.13a-b can be compared to results presented in [Scott et.al., 1992].

Both [Scott et.al., 1992] and the graph 6.13a-b indicate that node P1 is more a�ected by

the hot-node than P2-P3 in an SCI-ring without �ow control, and in both cases �ow control

will eliminate the di�erence.

101

P0 (hot)

P1

P2

P3

Avg. LocalSubActionNoEchoLatency (ns) x 103

TransThroughput (byte/ns)
0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00

(a) No �ow control

P0 (hot)

P1

P2

P3

Avg. LocalSubActionNoEchoLatency (ns) x 103

TransThroughput (byte/ns)
0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 0.20 0.40 0.60 0.80 1.00

(b) Flow control

Figure 6.13: The relationship between throughput and latency (Hot-sender, 4 nodes, mixed

packets).

102

P1 no flow

P1 flow

Max. value LocalSubActionNoEchoLatency (ns) x 103

Load (byte/ns)
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0.00 0.20 0.40 0.60 0.80 1.00

Figure 6.14: Worst case latency as a function of load for the downstream neighbour P1

(Hot-sender, 4 nodes, mixed packets).

The quantitative results in [Scott et.al., 1992] di�er from the results in graph 6.13a-b

especially at low loads. In [Scott et.al., 1992], the performance of P1-P3 is almost identical

when TransThroughput is low, regardless whether �ow control is used or not. In graph

6.13a-b we observe a signi�cant di�erence between node P1 and nodes P2-P3 in the ring

without �ow control. Nevertheless, it is considered reasonable that there is a di�erence in

average LocalSubActionNoEchoLatency when transmitted throughput is low because on

P1's input-link, two out three packets have to be bypassed, while on P2's input-link only

one out of two packets must be bypassed. On P3's input-link, there are only send-packets

addressed to P3 itself and P3 only has to bypass echo-packets, which are smaller in size

compared to send-packets.

Maximumvalue of LocalSubActionNoEchoLatency as a function of load, graph

6.14

This graph shows for node P1 (The hot node's immediate downstream neighbour),

the maximum value of LocalSubActionNoEchoLatency sampled during simulation, as a

function of load in P1-P3. Load is speci�ed in byte=ns along the x-axis and LocalSub-

ActionNoEchoLatency is speci�ed in ns along the y-axis.

In graph 6.11a-b, 6.12a-b and 6.13a-b average values of throughput and latency have

been emphasize, and average values are interesting in order to show that the �ow control

mechanism ensure fairness in the average case. In the context of SCI, it must be guar-

anteed that a node receive a minimum amount of bandwidth and that there exist an

upper bound for the LocalSubActionNoEchoLatency. To indicate whether the �ow control

mechanism indeed reduce the worst case latency, �gure 6.14 show the maximum value of

103

LocalSubActionNoEchoLatency of P1 as a function of load, comparing an SCI-ring with

�ow control to an SCI-ring without �ow control.

The interesting situation to consider here arise when load is low, because it is then that

P1 is drowned in packets from the hot node. In graph 6.14 we observe that when load is

less than 0.40byte=ns, the maximum value of LocalSubActionNoEchoLatency of P1 is less

in the ring with �ow control than in the ring without �ow control. When load is less

than 0.20byte=ns, the maximum value of LocalSubActionNoEchoLatency in the ring with

�ow control is approximately 1000-1500ns less than in the ring without �ow control.

This indicate that adding �ow control to a ring displaying a hot-sender load and tra�c

pattern will reduce the worst case latency of P1 when load is low. This also indicate the

existence of an upper bound for the LocalSubActionNoEchoLatency when �ow control is

used.

6.3.2 Summary of results related to hot-sender

The following is summary of the main results related to SCI-rings displaying a hot-sender

load and tra�c pattern, results which will help us decide on Issue 4, Issue 6 and Issue 7

(chapter 3):

� In an SCI-ring with a hot-sender and without �ow control, the �non-hot� nodes

are a�ected depending on the distance (downstream) from the hot node, and the

nodes closest (in downstream direction) to the hot node is a�ected more than the

nodes furthest from the hot node. The a�ected nodes have approximately the same

TransThroughput, but the nodes closest to the hot node have a higher LocalSub-

ActionNoEchoLatency.

� In an SCI-ring with a hot-sender and with �ow control, the �non-hot� nodes have ap-

proximately the same TransThroughput and the same average LocalSubAction-

NoEchoLatency. The worst case LocalSubActionNoEchoLatency is also re-

duced for the immediate downstream neighbour compared to the no-�ow case. Adding

�ow control to the ring with a hot-sender will therefore ensure fairness. The fairness

is attained at the expense of the maximum total TransThroughput of the ring.

When mixed packets are used, the reduction of maximum total TransThroughput

amounts to 25%.

� When load in the �non-hot� nodes increase, the TransThroughput of the hot-

sender will decrease.

� When load in the �non-hot� nodes are very high, the hot-sender load and tra�c

pattern will resemble the uniform load and tra�c pattern.

� In relation to hot-sender, the SCIsim-simulator produce results which resemble those

presented in [Scott et.al., 1992] - both cases indicate that the �non-hot� nodes are

a�ected depending on their distance (downstream) from the hot-sender in the ring

with no �ow control, whereas the performance of the �non-hot� nodes are equalized

when SCI �ow control is used. There are quantitative di�erences between the hot-

sender results in [Scott et.al., 1992] and results presented in this section, in particular

in the no-�ow case when load is low.

104

6.4 Node-starvation load and tra�c pattern in single SCI-

rings

This section will present and discuss results from the simulation of single SCI-rings where

the load and tra�c pattern is referred to as node-starvation. These results will help us

decide on Issue 4 and Issue 6 as presented in chapter 3. The following list describes the

overall conditions assumed during simulation:

� Topology: Single ring.

� Size: 4 nodes or 16 nodes.

� Load and tra�c pattern: node-starvation.

� Transmitter-stage: SCI �ow control, no �ow control.

� Send-packet size: Mixed.

The load in each node was increased from one simulation to another - starting with

a value close to zero and going up to a level where the throughput and latency measure-

ments had stabilized. The length of one simulation was determined after some preliminary

simulations (Refer to section 5.3) and for the 4-node and 16-node ring the simulation time

was 1200000ns and 2000000ns respectively. The remaining parameter-values which were

assumed during simulation, can be found in table 5.1 in section 5.1.2. The nodes in the

smallest ring are labeled P0 through P3 for convenience, and P0 will refer to the

starved node, P1 to its immediate downstream neighbour etc.

In order to indicate the throughput of each node in a node-starvation SCI-ring, this

section will emphasize the TransThroughput as de�ned in section 5.2. This throughput-

measurement includes all send-packets transmitted by a node-interface.

In order to indicate the latency of each node, this section will emphasize LocalSub-

ActionNoEchoLatency. Both average and maximum values of LocalSubActionNoEcho-

Latency will be presented for each node.

Section 6.4.1 will present and discuss results from the simulation of node-starvation

SCI-rings with 4 nodes, where the ring either uses the SCI �ow control mechanism or not.

A 16-node SCI-ring has also been simulated under the assumption of a node-starvation

load and tra�c pattern, but results here resemble closely the results of the 4 node ring, so

the results of 16-node SCI-ring will not be presented.

Section 6.4.2 will give a summary of the main results related to node-starvation.

6.4.1 Results related to node-starvation in SCI-rings with 4 nodes

This section will present and discuss the simulation-results in the following order:

� Throughput as a function of load for each individual node, comparison of no-�ow

control to �ow control. Graph 6.15a-b.

� Latency as a function of load for each individual node, comparison of no-�ow control

to �ow control. Graph 6.16a-b.

� The relationship between throughput and latency for each individual node, compar-

ison of no-�ow control to �ow control. Graph 6.17a-b.

105

� Worst case latency as a function of load for starved node P0, comparison of no-�ow

control to �ow control. Graph 6.18.

TransThroughput as a function of load, graph 6.15a-b

This �gure contains two graphs, one related to SCI-rings without �ow control (graph 6.15a)

and the other related to SCI-rings with �ow control (graph 6.15b). Each graph shows

for each node P0-P3, the TransThroughput as a function of load in P0-P3. Load and

throughput is speci�ed in byte=ns along the x-axis and y-axis respectively.

Observing graph 6.15a we will see that the TransThroughput di�er signi�cantly among

the nodes, especially between P0, the starved node, and the rest. When load in each

node is less than 0.3byte=ns, the TransThroughput of each node increases linearly when

load increases. When load exceeds 0.3byte=ns, the TransThroughput of P0 levels out and

starts to decrease. When load exceeds 1.0byte=ns, the TransThroughput of P0 approaches

0.0byte=ns. The TransThroughput of P1-P3 continue to increase even when load exceeds

0.3byte=ns, but there are minor quantitative di�erences. When load exceeds 0.8byte=ns,

the TransThroughput of P1-P3 have reached the maximum value of 0.51byte=ns.

The results presented in graph 6.15a indicate that the TransThroughput of each node in

a 4-node SCI-ring without �ow control displaying a node-starvation load and tra�c pattern,

di�er signi�cantly. When load is low, less than 0.3byte=ns (mixed send-packets), there is

no di�erence in TransThroughput of the four nodes P0-P3, and the TransThroughput

equals the load. When load exceed 0.3byte=ns, the TransThroughput of the starved node

starts to decrease and will be reduced to 0.0byte=ns when load is su�ciently high. The

TransThroughput of the non-starved nodes will continue to increase even when load exceeds

0.3byte=ns and up to 0.8byte=ns when maximum TransThroughput is reached.

The results in graph 6.15a and the above conclusion is reasonable assuming an SCI-ring

without �ow control displaying a node-starvation load and tra�c pattern. In an SCI-ring

without �ow control a node can transmit only when the bypass-queue is empty. In order

to transmit several packets the node must empty the bypass-queue between transmissions

and in the absence of �ow control, this can be attained only when the node receives packets

addressed to it or when the ring is lightly loaded. When load is low, few packets circulate

the ring. Therefore there is enough free space between packets to enable the starved node

to empty the bypass-queue between transmissions. It is only the free space between the

packets which enables the starved node to transmit send-packets, and when load is high,

packets will �ll the ring at the expense of free space. As a result the starved node will

struggle to empty the bypass-queue before new send-packets enter the output-queue. If the

load is su�ciently high, the starved node will spend a very long time in the recovery stage,

and only occasionally manage to empty the bypass-queue. Consequently, the starved node

will transmit less than the other nodes and its output-queue will �ll up.

The non-starved nodes will not be a�ected in the same way as the starved node because

they all receive packets from each other, in fact the non-starved nodes receive packets from

the starved node also. As a result the non-starved nodes increase their TransThroughput

until the ring is fully saturated. In the load interval form 0.3byte=ns to 0.8byte=ns there is

a slight di�erence in TransThroughput among the non-starved nodes and this is reasonable.

In the same load-interval, the starved node is still able to transmit some packets, and it is

P0's packets, transmitted uniformly to the non-starved nodes, that a�ect the non-starved

nodes and their TransThroughput. P1, the downstream neighbour of the starved node, is

more a�ected than P2 and P3 because it has to bypass packets to P2 and P3 (from P0).

106

P3

P2

P1

P0 (starved)

TransThroughput (byte/ns) x 10-3

Load (byte/ns)
0.00

100.00

200.00

300.00

400.00

500.00

600.00

0.00 0.20 0.40 0.60 0.80 1.00

(a) No �ow control

P3

P2

P1

P0 (starved)

TransThroughput (byte/ns) x 10-3

Load (byte/ns)
0.00

100.00

200.00

300.00

400.00

500.00

600.00

0.00 0.20 0.40 0.60 0.80 1.00

(b) Flow control

Figure 6.15: Throughput as a function of load (Node-starvation, 4 nodes, mixed packets).

107

Node P2 only has to bypass packets to P3 (from P0), whereas P3 does not have to bypass

any packets from the starved node. As a result, P1 transmit slightly less than P2, and P2

transmit slightly less than P3. When load exceed 0.8byte=ns the starved node transmit

very few packets, and it will behave almost as a bypass-queue. The non-starved nodes

transmit uniformly among themselves and as a result they have approximately the same

TransThroughput.

Observing graph 6.15b, we will see that the results of the �ow controlled ring di�er

signi�cantly from the ring without �ow control (graph 6.15a). When load is less than

approximately 0.25byte=ns, the TransThroughput of each node increases linearly as load

increase, and TransThroughput equals the load. When load exceed 0.25byte=ns and in-

crease further, the TransThroughput will approach a maximum value. For P0 (the starved

node) the maximum TransThroughput is approximately 0.25byte=ns, and for P1, P2 and P3

(the non-starved nodes) the maximum transmitted throughput is 0.28byte=ns, 0.29byte=ns

and 0.32byte=ns respectively.

The results presented in graph 6.15b indicate that in a 4-node SCI-ring with �ow control

displaying a node-starvation load and tra�c pattern, all nodes, including the starved node,

have a minimum TransThroughput. When load is low, less than approximately 0.25byte=ns,

all nodes have approximately the same TransThroughput, and the TransThroughput will

equal the load. When load exceed 0.25byte=ns the TransThroughput of all nodes will

approach a maximum value. The maximum TransThroughput of the starved node is less

than the maximum TransThroughput of any of the non-starved nodes.

The results in graph 6.15b and the above conclusion is reasonable assuming an SCI-ring

with �ow control displaying a node-starvation load and tra�c pattern. The �ow control

mechanism stop other nodes from transmitting packets when a node is in recovery and

in this way, the length of the recovery stage is bounded. When the starved node P0 has

transmitted a packet and goes into the recovery stage, it will actively reduce the bypass-

queue's size by emitting NoGo-idles and thereby drain Go-idles from the ring. When no

Go-idles are left in the ring, the other nodes will not be able to transmit packets and P0

will therefore empty its bypass-queue.

Because P0 never receive packets addressed to it, its only way to reduce the bypass-

queue during recovery is to emit NoGo-idles. It is therefore reasonable that the starved

node transmit less than the non-starved nodes (which receive packets).

The di�erence in maximum TransThroughput of P1-P3 is also reasonable because node

P0 transmit uniformly to all other nodes. P1 will have to bypass packets to P2 and P3

(from P0), P2 will have to bypass packets to P3 (from P0) whereas P3 will not have to

bypass any packets from P0. Since P1 has to bypass more packets than P2, and P2 has to

bypass more packets than P3, P1 will transmit less than P2 and P2 transmit less than P3.

Considering the results presented in graph 6.15a related to SCI-rings without �ow con-

trol, where the starved node was unable to transmit at high loads, �ow control seem to

have a promising e�ect on the starved node. The simulation results in graph 6.15b indicate

that even the starved node receive a minimum amount of bandwidth. The prize that has

been paid is a 25% reduction in maximum TransThroughput of the ring.

108

Average LocalSubActionNoEchoLatency as a function of load, graph 6.16a-b

This �gure contains two graphs, one related to SCI-rings without �ow control (graph 6.16a)

and the other related to SCI-rings with �ow control (graph 6.16b). Each graph shows for

each node P0-P3, the average LocalSubActionNoEchoLatency as a function of load in P0-

P3. Load is speci�ed in byte=ns along the x-axis and LocalSubActionNoEchoLatency is

speci�ed in ns along the y-axis.

Observing graph 6.16a we see that the average LocalSubActionNoEchoLatency di�er

signi�cantly among the nodes. When load is less than 0.20byte=ns the starved node P0, has

the same average LocalSubActionNoEchoLatency as P1-P3, the non-starved nodes. When

load exceeds 0.20byte=ns, the average LocalSubActionNoEchoLatency of P0 increases very

fast, and diverges from that of P1-P3. Moreover the results do not indicate whether there

is an upper bound for the average LocalSubActionNoEchoLatency of P0.

The results of the non-starved nodes indicate an upper and a lower bound for average

LocalSubActionNoEchoLatency of P1-P3, and when the load exceeds 0.80byte=ns, the re-

sults of P1-P3 converge and seem to level out. When load is in the interval from 0.3byte=ns

to 0.80byte=ns, the average LocalSubActionNoEchoLatency di�er among the non-starved

nodes and P1 has a higher LocalSubActionNoEchoLatency than P2, and P2 has a higher

LocalSubActionNoEchoLatency than P3.

The results presented in graph 6.16a indicate that the nodes in a 4-node SCI-ring

without �ow control displaying a node-starvation load and tra�c pattern, have a signif-

icantly di�erent LocalSubActionNoEchoLatency. The starved node will experience the

same average LocalSubActionNoEchoLatency as the non-starved nodes when load is low,

but when load increase the average LocalSubActionNoEchoLatency increase rapidly and ap-

parently without an upper bound. The average LocalSubActionNoEchoLatency of the non-

starved nodes are bounded upward and downward. In the load interval from 0.20byte=ns

to 0.70byte=ns, P1 will have a slightly higher average LocalSubActionNoEchoLatency than

P2, and P2 will have a slightly higher LocalSubActionNoEchoLatency than P3, but when

load is either very high or very low, P1-P3 have almost the same average LocalSubAction-

NoEchoLatency.

The results in graph 6.16a and the above conclusion is reasonable assuming an SCI-ring

without �ow control displaying a node-starvation load and tra�c pattern. When load is low,

few packets circulate the ring, and there are a lot of free space between then. Therefore, the

bypass-queue rarely �lls up during transmission and packets inserted into the output-queue

can be transmitted almost immediately without having to wait in the output-queue. As

a result, the average LocalSubActionNoEchoLatency is identical in all nodes P0-P3 when

load is low.

When load is in the interval from 0.2byte=ns to 0.3byte=ns, we know from graph 6.15a

that the starved node increase its TransThroughput, but the average LocalSubAction-

NoEchoLatency increase more than P1-P3. This is reasonable because the free space be-

tween packets are few and far between, so P0's recovery stage will take more time, and P0's

packets will have to wait in the output-queue. When load exceeds 0.3byte=ns, packets will

be generated faster in P0 than can be transmitted, and in addition the TransThroughput of

P0 is actually reduced (refer to �gure 6.15a). The output-queue of P0 �lls up rapidly and

packets have to wait a long time before they can be transmitted. As a result, the average

LocalSubActionNoEchoLatency of P0 increases quickly when load is high.

The non-starved nodes transmit packets uniformly among themselves, and their bypass-

queues will be emptied when they receive packets. In the average case the length of the

109

P0 (starved)

P1

P2

P3

Avg. LocalSubActionNoEchoLatency (ns) x 103

Load (byte/ns)
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 0.20 0.40 0.60 0.80 1.00

(a) No �ow control

P0 (starved)

P1

P2

P3

Avg. LocalSubActionNoEchoLatency (ns) x 103

Load (byte/ns)
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 0.20 0.40 0.60 0.80 1.00

(b) Flow control

Figure 6.16: Average latency as a function of load (Node-starvation, 4 nodes, mixed

packets).

110

recovery stage, and consequently the time between transmissions, are almost identical in

the three nodes. The di�erence in average LocalSubActionNoEchoLatency in P1-P3, when

load is in the interval from 0.3byte=ns to 0.7byte=ns, is caused by the fact that the starved

node is still able to transmit some packets. P1 will have to bypass packets to P2 and P3

(from P0) and P2 will have to bypass packets to P3 (from P0), whereas P3 does not have

to bypass any packets from P0. As a results, the recovery stage is longer in P1 than in P2,

and longer in P2 than in P3. When load exceeds 0.8byte=ns we know that P0 no longer

is transmitting, and it will therefore not a�ect the non-starved nodes. Consequently, P1-

P3 experience the same average LocalSubActionNoEchoLatency when load is higher than

0.8byte=ns.

Observing graph 6.16b, we see that the results of the �ow-controlled ring is di�erent

from the ring without �ow control. For all nodes P0-P3, there is an upper and a lower bound

for the average LocalSubActionNoEchoLatency. When load is low, all nodes experience the

same average LocalSubActionNoEchoLatency, and when load is high, the nodes approach

di�erent maximum values. The results therefore show the asymptotic behavior we observed

in graph 6.1c (section 6.2 related to uniform tra�c pattern).

The results in graph 6.16b therefore indicate that the average LocalSubActionNoEcho-

Latency of each node in an SCI-ring with �ow control and node-starvation, is bounded

upward. It is also important to emphasize that the starved node has a bounded average

LocalSubActionNoEchoLatency, as opposed to the seemingly unbounded average Local-

SubActionNoEchoLatency in the ring without �ow control.

The results in graph 6.16b and the above conclusion is reasonable. When load is low,

there are few packets circulating the ring and there are a lot of free space between packets.

Consequently the bypass-queue seldom �lls up and a packet inserted into the output-queue

can be transmitted almost immediately. When load increases, there will be more packets

circulating the ring, and there are less free space between packets. The bypass-queues begin

to �ll up and the output-queues as well, because there are more new packets generated than

can be transmitted.

It is reasonable that the starved node experience a higher LocalSubActionNoEcho-

Latency than the non-starved nodes, despite that �ow control is used, because its only

way to empty the bypass-queue is to emit NoGo-idles between packets. The non-starved

nodes receive packets and this will enable them to reduce the bypass-queue faster than the

starved node.

The di�erence in maximum average LocalSubActionNoEchoLatency among the nodes

is caused by the di�erence in maximum TransThroughput. P0 has the smallest maximum

TransThroughput of all the nodes, and it will take more time to transmit the same amount

compared to P3. The latter node has the highest maximum TransThroughput of them all,

and as a result, the smallest maximum average LocalSubActionNoEchoLatency.

The relationship between TransThroughput and average LocalSubActionNoEcho-

Latency, graph 6.17a-b

This �gure contains two graphs, one related to SCI-rings without �ow control (graph 6.12a)

and the other related to SCI-rings with �ow control (graph 6.12b). Each graph shows for

each node P0-P3, the relationship between TransThroughput and average LocalSubAction-

NoEchoLatency. TransThroughput is speci�ed in byte=ns along the x-axis and LocalSub-

ActionNoEchoLatency is speci�ed in ns along the y-axis.

111

P0 (starved)

P1

P2

P3

Avg. LocalSubActionNoEchoLatency (ns) x 103

-3TransThroughput (byte/ns) x 10
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 200.00 400.00 600.00

(a) No �ow control

P0 (starved)

P1

P2

P3

Avg. LocalSubActionNoEchoLatency (ns) x 103

-3TransThroughput (byte/ns) x 10
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.00 200.00 400.00 600.00

(b) Flow control

Figure 6.17: The relationship between throughput and latency (Node-starvation, 4 nodes,

mixed packets).

112

Observing graph 6.17a we see that the performance of the four nodes is approximately

equal when TransThroughput is low, less than 0.175byte=ns. When load increase, the

performance of P0 diminishes, spending much time transmitting the same throughput as

the other nodes. When load increase further, we observe that the performance of P0 grow

even worse, the throughput decreases and the average latency increases. The performance

of the non-starved node vary slightly, the performance of P3 is better than P2's, and the

performance of P2 is better than P1's, but when load is very high their performance are

almost identical.

This result is reasonable seen in the light of the results presented in 6.15a and 6.16a.

When the load is low, the starved node experience the same TransThroughput and av-

erage LocalSubActionNoEchoLatency as the non-starved nodes, but when load increases,

P0's TransThroughput will decrease and the LocalSubActionNoEchoLatency will increase,

yielding a poor performance. The non-starved nodes have approximately the same Trans-

Throughput and the same average LocalSubActionNoEchoLatency at higher loads, while

at intermediate loads, P3 have a higher TransThroughput and a lower average LocalSub-

ActionNoEchoLatency than P1 and P2, and therefore a better performance than P1 and P2.

P2 have a higher TransThroughput and a lower average LocalSubActionNoEchoLatency

than P1 at intermediate loads, and therefore has a better performance than P1.

Observing graph 6.17b, we will see another result compared to 6.17a. The perfor-

mance of the nodes are almost identical when TransThroughput is less than 0.22byte=ns,

and the average LocalSubActionNoEchoLatency is almost identical given the same Trans-

Throughput. When TransThroughput exceeds 0.22byte=ns, the performance goes down in

all nodes, and it takes much more time (higher average LocalSubActionNoEchoLatency)

to transmit a little more throughput. The performance of P0 is slightly worse than the

performance of the non-starved nodes.

The result in graph 6.17b is reasonable considering the results in 6.15b and 6.16b. It

is also reasonable that the performance of P3 is higher than the other nodes because it

has a higher maximum TransThroughput and smaller maximum average LocalSubAction-

NoEchoLatency than the other nodes.

Maximumvalue of LocalSubActionNoEchoLatency as a function of load, graph

6.18

This graph shows for node the starved node P0, the maximum value of LocalSubAction-

NoEchoLatency sampled during simulation, as a function of load in P0-P3. Load is speci�ed

in byte=ns along the x-axis and LocalSubActionNoEchoLatency is speci�ed in ns along the

y-axis.

So far, adding �ow control to a ring seems to have a promising e�ect on the starved

node, and simulation result indicate that a minimum bandwidth can be guaranteed as well

as an upper bound for the average LocalSubActionNoEchoLatency. It is also interesting

to observe the maximum value of LocalSubActionNoEchoLatency of P0 sampled during

simulation, and compare �ow control to no �ow control rings.

Observing graph 6.18, we will see that the maximum sample is identical in the �ow case

and the no-�ow case when the load is less than 0.3byte=ns. When load exceeds 0.3byte=ns

the maximum sample in the no �ow case increase rapidly, whereas the �ow case seem to

stabilize around 5000ns. The maximum value of LocalSubActionNoEchoLatency sampled

during simulation of the no-�ow ring is 246522ns, indicating a very long recovery stage.

113

P0 no flow

P0 flow

Max. value LocalSubActionNoEchoLatency (ns) x 103

Load (byte/ns)
0.00

50.00

100.00

150.00

200.00

250.00

0.00 0.20 0.40 0.60 0.80 1.00

Figure 6.18: Worst case latency as a function of load for the starved node P0 (Node-

starvation, 4 nodes, mixed packets).

The results in graph 6.18 therefore indicate that the worst case LocalSubActionNoEcho-

Latency is bounded upward for the starved node when SCI �ow control is used, whereas

in the ring without �ow control it will, most likely, be unbounded. Of course the re-

sults in graph 6.18 represent only singular values (the maximum sample), and could have

been caused by mere chance. Nevertheless, the stable maximum value of LocalSubAction-

NoEchoLatency in the �ow controlled ring and the increase in the no-�ow case during 15

simulations, give us reason to believe that an upper bound indeed exist when �ow control

is used.

6.4.2 Summary of results related to node-starvation

The following is a summary of the main results related to SCI-rings displaying a node-

starvation load and tra�c pattern, results which will help us decide on Issue 4 and Issue 6

(chapter 3):

� In an SCI-ring with a starved node and without �ow control, the starved node is

not a�ected when the load is low. When load increase, the starved node will be

a�ected and will have a lower TransThroughput and a higher average LocalSub-

ActionNoEchoLatency than the non-starved nodes. When load is very high, the

starved node will be unable to transmit anything and the LocalSubActionNoEcho-

Latency, both in the average case and the worst case, will be unbounded.

� In an SCI-ring with a starved node and �ow control, the starved node receive a min-

imum amount of bandwidth, and has approximately the same TransThroughput

as the non-starved node. Both the average and the worst case values of Local-

SubActionNoEchoLatency for the starved node is reduced compared to the ring

114

without �ow control. The maximum TransThroughput of the ring is reduced with

approximately 15% compared to the no-�ow case.

6.5 Summary

This chapter has presented and discussed results from the simulation of single SCI-rings,

enabling us to decide on Issue 4 - Issue 7 related to the performance of SCI, as described

in chapter 3.

The results have been presented in three main sections (6.2, 6.3 and 6.4) related to

uniform, hot-sender and node-starvation load and tra�c pattern respectively (de�ned in

chapter 5), and a summary of these results are given at the end of each section (6.2.4, 6.3.2

and 6.4.2).

The summary of results related to uniform load and tra�c pattern will help us decide

on issue 4, Issue 5 and Issue 7, the summary of results related to hot-sender load and tra�c

pattern will help us decide on Issue 4, Issue 6 and Issue 7 and �nally, the summary of

results related to node-starvation load and tra�c pattern will help us decide on Issue 4

and Issue 6. The reader should therefore refer to those latter sections. Final conclusions

on Issue 4 - Issue 7 are given in chapter 9.

115

[This page has been intentionally left blank]

116

Chapter 7

Results from the simulation of an

SCI multi-ring interconnect

This chapter presents and discusses results from the simulation of the 4-ring interconnect,

consisting of 4 SCI-rings communicating through 4 switches. These results will help decide

on Issue 8 in chapter 3.

The SCIsim simulator described in chapter 4 was used and its input was the parameters

described in chapter 5.

Section 7.1 will brie�y describe the parameter-values assumed during simulation and

which measurements have been emphasized in section 7.2. The latter section will present

the actual results and compare those to results from simulation of single SCI-rings. Section

7.3 will summarize the main results related to the multi-ring interconnect.

7.1 Parameters and measurements in multi-ring simulations

The following list describes the overall conditions assumed during simulation:

� Topology: 4 rings w/4 switches, refer to �gure 5.1b.

� Size: 16 nodes.

� Load and tra�c pattern: Uniform.

� Transmitter-stage: SCI �ow control.

� Send-packet size: Mixed.

The load was increased from one simulation to another - starting with a value close to

zero and going up to a level where the throughput and latency-measurements had stabilized.

The length of one simulation was determined after some preliminary simulations (Refer to

section 5.3) and it was found that simulation time equivalent to 1500000ns produced reliable

results. The remaining parameter-values assumed during simulation, can be found in table

5.2 in section 5.1.2. The term 4-ring will refer to the simulated interconnect.

In order to indicate the throughput of the 4-ring interconnect, this section will em-

phasize the RawThroughput and NetThroughput as de�ned in section 5.2. The two

throughput-measurements include all send-packets received by an application process (The

switches are not considered) and RawThroughput counts all bytes in a send-packet minus

117

the CRC-symbol, whereas NetThroughput counts the data-bytes only. Total and average

�gures will be presented - the former includes all nodes, while the latter equals the total

throughput divided by the number of nodes.

In order to indicate the latency, this section will emphasize RemoteSubAction-

Latency as de�ned in section 5.2. According to the de�nition, RemoteSubActionLatency

equals the time from the packet is generated in the source-node until it is received by the

target-node. In a multi-ring interconnect, the RemoteSubActionLatency may include the

time a packet spends passing through several rings and switches.

7.2 4-ring interconnect

This section will present and discuss the results in the following order:

� Throughput as a function of load for the whole interconnect, comparison of 4-ring

interconnect to single-ring. Graph 7.1.

� Latency as a function of load for the whole interconnect, comparison of 4-ring inter-

connect to single-ring. Graph 7.2a-b.

� The relationship between throughput and latency for the whole interconnect, com-

parison of 4-ring interconnect to single-ring. Graph 7.3a-b.

Total RawThroughput and total NetThroughput as a function of total load,

graph 7.1

This graph shows total RawThroughput and total NetThroughput as a function of total

load, in the 4-ring interconnect and a single-ring with 16 nodes. Total load and total

throughput is speci�ed in byte=ns along the x-axis and the y-axis respectively.

If we �rst consider the 4-ring interconnect and its total RawThroughput and total

NetThroughput we will observe the following:

� When load is in the interval from 0.0byte=ns to 1.6byte=ns, the total RawThroughput

and total NetThroughput increase approximately linearly when total load increase.

Total RawThroughput is approximately equal to total load, whereas NetThroughput

is less than total load.

� When total load is in the interval from 1.6byte=ns to 2.0byte=ns, the RawThroughput

and NetThroughput decrease when total load increase.

� When total load exceeds 2.0byte=ns, the total RawThroughput and total NetThroughput

approach a stable value when total load increase. The stable value of RawThroughput

and NetThroughput is 0.95byte=ns and 0.60byte=ns respectively.

� In general, the NetThroughput is less than RawThroughput. For any given load, the

NetThroughput is approximately 35% less than RawThroughput.

The results in graph 7.1 indicate some properties of the throughput in an interconnect

con�gured as the 4-ring interconnect. When load is less than a certain limit L, the total

RawThroughput and total NetThroughput will increase as total load increase, and approx-

imately linearly. In particular the total RawThroughput equals the total load. When load

118

4-ring/RawThroughput

Single-ring/RawThroughput

4-ring/NetThroughput

Single-ring/NetThroughput

Total throughput (byte/ns)

Total load (byte/ns)
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0.00 1.00 2.00 3.00 4.00

Figure 7.1: Throughput as a function of load (4-ring versus single-ring).

exceed L, the total RawThroughput and total NetThroughput will decrease as total load

increase, and will level out and approach a stable value when total load gets high. This

stable value is less than the maximum value experienced at lower loads. In other words,

when load increase, the total RawThroughput and total NetThroughput will �rst increase,

then decrease and �nally stabilize.

The results in graph 7.1 and the above conclusion is reasonable assuming a 4-ring

interconnect. The most signi�cant event takes place when the switches begin to saturate.

A 2� 2-switch, the type of switch simulated in the SCIsim simulator, is saturated in one

direction when the input-queue of the in-going node-interface and the output-queue of the

outgoing node-interface is full. A switch is fully saturated when it is saturated in both

directions.

A switch becomes saturated when total load exceeds a certain limit and packets are

entering the in-going node-interface faster than packets are transmitted from the outgoing

node-interface. The following will explain why it is reasonable that total throughput is

decreasing in graph 7.1:

� When total load is less than a certain limit L, the switches will not saturate. All

packets that are generated will be received either by a node-interface or by a switch.

In the latter case the packets will be moved to another ring. Because packets are

received at the same rate as they are generated, total RawThroughput will equal the

total load.

� When total load exceed L, more packets will circulate each ring. Because tra�c in

each ring have increased, the switches are unable to transmit as much as they used

to. In addition the number of packets passing through each switch have increased and

119

consequently the switches become saturated. When a switch is saturated, new packets

which trying to gain access to the switch (in order to move to another ring) will be

rejected and must be retransmitted. These rejected packets will come in addition to

new packets and increase the tra�c on each ring further. Rejected packets does not

lead to reduced throughput in itself, but rejected packets will add to tra�c in an

already overloaded ring and make things worse.

Because tra�c has increased in the ring, the switches are not able to transmit as much

as they used to. When load was lower, the switches actually behaved as hot senders

because a large part of the packets on each ring had to pass through the switches in

order to reach their target-node. From section 6.3 we know that hot senders are able

to transmit most when load is low in the remaining nodes and when load increase in

the remaining nodes the hot sender will transmit less. The load and tra�c pattern

in the 4-ring interconnect is uniform and this imply that 12 out of 15 send-packets

generated by an application process are destined for a node in another ring.

In other words, the switches are bottlenecks, but this alone does not cause the reduc-

tion in total throughput we observe in graph 7.1 when total load exceed 1.6byte=ns.

What is causing the reduction in throughput is that the alleged bottlenecks become

narrower when load increase.

The switches are, however, still able to transmit something, their minimum amount

of bandwidth is guaranteed by the �ow-control mechanism (according to section 6.3

and 6.4). Some of the packets transmitted by the switches are destined for nodes in

the same ring and packets will be accepted by the target-node. When load is very

high and the rings and switches are fully saturated, a stable level of throughput is

reached. The routing of packets in the 4-ring interconnect will not lead to dead-lock

situations (Refer to section 5.1.2 for further details), so packets in the switches will

eventually leave and make progress.

It is also reasonable that total NetThroughput is less than total RawThroughput be-

cause the latter include both data and header of the send-packets while the former include

only the data. In graph 7.1, the total NetThroughput is 35% less than total RawThroughput

because 35% is spent on header. The following calculation of packet-size (Pmean) and

header-size (Pheader) shows this (note that the CRC-symbol has been omitted):

Pmean = 0:6 � 14 + 0:4 � 78 = 39:6bytes

Pheader = 14bytes

Pheader=Pmean = 14=39:6 � 35%

If we then compare the 4-ring interconnect to the single-ring, we will see that total

RawThroughput and NetThroughput is approximately equal when total load is less than

1.1byte=ns. When total load exceed 1.1byte=ns, we observe that the total RawThroughput

and total NetThroughput of the single-ring will level out and approach a stable maximum

value. In the 4-ring interconnect, the total RawThroughput and total NetThroughput will

continue to increase as long as total load is less than 1.6byte=ns, upon which the total

RawThroughput and total NetThroughput decrease, and approach a stable value. The

stable value of total throughput in the 4-ring interconnect is approximately 17% less than

the maximum total throughput of the single-ring.

The results in graph 7.1 therefore indicate that the total RawThroughput and Net-

Throughput is equal in the 4-ring interconnect and the 16node single-ring when load is

120

low. When load gets higher, the total throughput of the 4-ring interconnect is higher than

in the single-ring, but only temporarily, because as load increase further, the throughput

of the 4-ring interconnect will decrease and become less than in the single-ring.

Average RemoteSubActionLatency as a function of total load, graph 7.2

This graph shows average RemoteSubActionLatency as a function of total load, in a

4-ring interconnect and a single-ring with 16 nodes. Total load is speci�ed in byte=ns along

the x-axis and average RemoteSubActionLatency is speci�ed in ns along the y-axis. Graph

7.2b zooms in on graph 7.2a so that details are revealed.

If we �rst consider the 4-ring interconnect and its average RemoteSubActionLatency,

we will observe the following:

� Average RemoteSubActionLatency increase when total load increase, and the rate of

growth vary signi�cantly.

� There is an upper and a lower bound of the average RemoteSubActionLatency. The

average RemoteSubActionLatency approaches the lower bound of 170ns when total

load approaches 0.0byte=ns, and will approach the upper bound of 10500ns when

total load exceeds 3.0byte=ns.

The results in graph 7.2a-b indicate that in the 4-ring interconnect, the average Remote-

SubActionLatency will increase when total load increase, and the average RemoteSub-

ActionLatency will be bounded both upward and downward.

The results in graph 7.2a-b are reasonable. When load is less than 1.6byte=ns, pack-

ets are transmitted at the same rate as new packets are generated and the output-queues

does not �ll up. From graph 7.1, we know that the total RawThroughput and total Net-

Throughput will increase linearly when load is less than 1.6byte=ns.

When load exceeds 1.6byte=ns, the switches begin to �ll up because tra�c in each

ring is so high that switches are unable to transmit packets as fast as they are receiving

new packets. As a result the output-queue will �ll up and the latency will increase rapidly.

From graph 7.1 we know that total throughput in fact will decrease when total load exceeds

1.6byte=ns, so this will only make things worse.

When total load is very high, exceeding 3.0byte=ns, the rings and switches will be

saturated, and the output-queues in the node will be full at all times. Therefore, the

average RemoteSubActionLatency will approach a stable value. From graph 7.1, we know

that total throughput will approach a stable value when total load exceeds 3.0byte=ns.

If we then compare the 4-ring interconnect to the single-ring, we will observe the fol-

lowing:

� When total load is less than 0.55byte=ns, the single-ring has a lower average Remote-

SubActionLatency than the 4-ring interconnect.

� When total load lays in the interval from 0.55byte=ns to 1.75byte=ns, the single-ring

has a higher average RemoteSubActionLatency than the 4-ring interconnect.

� When total load exceeds 1.75byte=ns, the single-ring has a lower average Remote-

SubActionLatency than the 4-ring interconnect. In either case a maximum stable

value is approached when total load gets very high, and in the 4-ring interconnect

the maximum value is approximately twice the maximum of the single-ring.

121

4-ring

Single-ring

Avg. RemoteSubActionLatency (ns) x 103

Total load (byte/ns)
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0.00 1.00 2.00 3.00 4.00

(a)

4-ring

Single-ring

Avg. RemoteSubActionLatency (ns)

Total load (byte/ns)
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

0.00 0.50 1.00 1.50 2.00

(b) Zoom-in

Figure 7.2: Latency as a function of load (4-ring versus single-ring).

122

The results in graph 7.2 therefore indicate that the average RemoteSubActionLatency is

smallest in the single-ring when load is less than a certain limit L1. When total load exceed

L1, the situation is reversed and the average RemoteSubActionLatency of the single ring

is higher than in the 4-ring interconnect. When load increase further and exceeds a second

limit L2, the situation is once again reversed and the average RemoteSubActionLatency of

the single ring is less than in the 4-ring interconnect.

The results in graph 7.2 and the above conclusion is reasonable. When load is less than

L1 the �xed minimum delay in the 4-ring interconnect and the single-ring is signi�cant.

In the 4-ring interconnect a large part of the packets have to pass through one or more

switches, and while the switches behave in a store-forward fashion, packets have to be fully

received before they are passed on to the next ring. Therefore, the �xed minimum delay

is higher in the 4-ring interconnect than in the single-ring, and the �xed minimum delay

becomes signi�cant when load is low.

When load exceeds L1, more packets will circulate the single-ring and in the 4-ring

interconnect. Packets in the single-ring will be delayed once they are on the ring because

more packets are in front of it, while on the 4-ring interconnect the advantage of alternative

paths becomes signi�cant and the average RemoteSubActionLatency will be smaller in the

4-ring interconnect than in the single-ring.

When load exceed L2, the 4-ring interconnect becomes saturated and the rings and

the switches are saturated. Therefore, the delay in the switches have grown high because

the input-queue of the in-going node-interface and the output-queue of the outgoing node-

interface of each switch is full. In addition, the total throughput will decrease when total

load exceeds 1.6byte=ns.

It is also reasonable that the maximum average RemoteSubActionLatency is higher in

the 4-ring interconnect than in the single-ring because the total throughput is less in the

4-node interconnect than in the single-ring when load is high, and the saturated switches

will only add to the delay on the interconnect.

The relationship between average NetThroughput and average RemoteSub-

ActionLatency, graph 7.3a-b

These graphs show the relationship between average NetThroughput and average Remote-

SubActionLatency, in a 4-ring interconnect and a single-ring with 16 nodes. Average Net-

Throughput is speci�ed in (byte=ns)=node along the x-axis and the average RemoteSub-

ActionLatency is speci�ed in ns along the y-axis. While average NetThroughput is the

total NetThroughput of the whole interconnect averaged over the nodes (16 in all) the

graph show the performance of the average node, indicating how how much throughput it

receive and how much time it takes. Graph 7.3b zooms in on graph 7.3a so that details are

revealed.

If we observe the graphs 7.3a-b, we will see that the performance of the average node

is better in the single ring than in the 4-ring interconnect when load is low. When load

increase further, the situation is reversed and the performance of the average node is better

in the 4-ring interconnect than in the single-ring. When load is very high, the performance

of the 4-ring interconnect diminishes, and the average node in the single-ring perform better

than the average node in the 4-ring interconnect.

The results in graph 7.3a-b is reasonable when we consider the results in graph 7.1 and

7.2a-b:

123

4-ring

Single-ring

Avg. RemoteSubActionLatency (ns) x 103

-3Avg. NetThroughput ((byte/ns)/node) x 10
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0.00 20.00 40.00 60.00

(a)

4-ring

Single-ring

Avg. RemoteSubActionLatency (ns)

-3Avg. NetThroughput ((byte/ns)/node) x 10
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

0.00 20.00 40.00 60.00

(b) Zoom-in on (a)

Figure 7.3: The relationship between throughput and latency (4-ring versus single-ring).

124

� When total load is less than 0.55byte=ns, the throughput is identical in the 4-ring

interconnect and the single-ring, but the average RemoteSubActionLatency is lower

in the single-ring. As a results, the performance of the average node is better in the

single-ring than in the 4-ring interconnect in this load-interval.

� When total load lay in the interval from 0.55byte=ns to 1.1byte=ns, the throughput is

still identical in the 4-ring interconnect and the single-ring, but the average Remote-

SubActionLatency is lower in the 4-ring interconnect than in the in single-ring. As a

result, the performance of the average node is better in the 4-ring interconnect than

in the single-ring in this load-interval.

� When total load lay in the interval from 1.1byte=ns to 1.75byte=ns, the throughput is

higher and the average RemoteSubActionLatency is lower in the 4-ring interconnect

than in the single-ring. As a result, the performance of the average node is better in

the 4-ring interconnect than in the single-ring in this load-interval.

� When total load exceed 1.75byte=ns, the throughput of the 4-ring interconnect will

quickly get less than the throughput of the single-ring, and the average RemoteSub-

ActionLatency will get higher also. As a result, the performance of the average node

is better in the single-ring than in the 4-ring interconnect in this load-interval.

7.3 Summary

This chapter has presented and discussed simulation results from the simulation of a 4-ring

interconnect, enabling us to decide on Issue 8 regarding the existence of a better way to

connect 16 nodes than using a single SCI-ring (as described in chapter 3). The 4-ring

interconnect consisted of 16 nodes equally distributed in 4 rings with 4 switches (�gure

5.1b). The 4-ring interconnect has been compared to a single SCI-ring with 16 nodes and

in both cases a uniform load and tra�c pattern has been assumed. The following is a

summary of the main results:

� The maximum total throughput observed in the 4-ring interconnect is approximately

38% higher than the maximum throughput observed in the single-ring.

� The total throughput in the 4-ring interconnect does not increase monotonically when

load increase - it will �rst increase and after the maximum is reached, it will decrease

and approach a stable value. The stable value of the 4-ring interconnect is 17% less

than the stable value observed in the single-ring.

� The average RemoteSubActionLatency in the 4-ring interconnect increase when load

increase, and are bounded upward and downward.

� The average RemoteSubActionLatency in the 4-ring interconnect is higher than in

single-ring when load is low, but as load increase the situation is reversed and the

average RemoteSubActionLatency in the 4-ring interconnect is less than in the single

ring. When load is very high the maximum average RemoteSubActionLatency is

approximately 100% higher in the 4-ring interconnect than in the single-ring.

A �nal conclusion on Issue 8 is given in chapter 9.

125

[This page has been intentionally left blank]

126

Chapter 8

Results from the simulation of

SCI/RT

This chapter presents and discusses results from the simulation of SCI/RT, results which

will help decide on Issue 9 in chapter 3. Results from the simulation of one of the modi-

�cations presented in [IEEE, 1992b] proposed in order to modify the SCI-protocol for real

time purposes will be presented and discussed. As in chapter 6 and 7, the SCIsim simulator

was used, and was given as input the parameters described in chapter 5.

Section 8.1 will brie�y describe the parameter-values assumed during simulation and the

measurements which have been emphasized in section 8.2. The latter section will present

the actual results. Section 8.3 will summarize the main results related to SCI/RT.

8.1 Parameters and measurements in SCI/RT simulations

The following list describes the overall conditions assumed during simulation:

� Topology: Single ring.

� Size: 4 nodes.

� Load and tra�c pattern: Uniform.

� Priority distribution: 4 priority-levels, uniformly distributed.

� Transmitter-stage: Packet preemption protocol.

� Output-queue type: Priority and preemptive queue.

� Bypass-queue type: Priority and preemptive queue.

� Send-packet size: Mixed.

The load was increased from one simulation to another - starting with a value close to

zero and going up to a level where the throughput and latency measurements had stabilized.

The length of one simulation was determined after some simulations (Refer to section

5.3) and it was found that simulation time equivalent to 1000000ns produced acceptable

results. The remaining parameter-values assumed during simulation can be found in table

5.3 in section 5.1.3. The term SCI/RT-ring will refer to the simulated ring. Packets are

127

generated uniformly on four priority-levels 1-4, and where 4 is the highest priority-level

and 1 is the lowest. The terms Pri1-Pri4 will also be used when referring to the various

priority-levels. Because the priority distribution of new packets is uniform, the number of

new packets generated on each priority-level are approximately equal.

In order to indicate the throughput of the SCI/RT-ring, this section will emphasize

the AckTransThroughput as de�ned in section 5.2. This throughput measurement in-

cludes those send-packets transmitted by a node-interface which are acknowledged by the

receiving node-interface. For each priority-level, total AckTransThroughput (the sum of

AckTransThroughput of each node) will be presented.

In order to indicate the latency of the SCI/RT-ring, this section will emphasize Local-

SubActionLatency as de�ned in section 5.2. This latency measurement equals the time

from the send-packet is inserted into the output-queue of the transmitting node-interface

until a corresponding DONE-echo is received (whereupon the send-packet is removed from

the output-queue). For each priority-level, average LocalSubActionLatency will be pre-

sented.

8.2 SCI/RT results

This section will present and discuss the results in the following order:

� Throughput as a function of load for each priority-level, graph 8.1.

� Latency as a function of load for each priority-level, graph 8.2.a-b

� The relationship between throughput and latency for each priority-level, graph 8.3a-b.

These SCI/RT results will be discussed and evaluated according to the criteria proposed

in section 3.2.3, where issues related to SCI/RT were presented.

Total AckTransThroughput as a function of total load, graph 8.1

This graph shows for each priority-level, 1-4, the total AckTransThroughput as a func-

tion of total load (sum of load on all priority-levels). Load and throughput is speci�ed in

byte=ns along the x-axis and y-axis respectively. Note that total load equals the sum of

load in each node, regardless the priority. While new packets are generated uniformly on 4

priority-levels, 25% of total load is on priority-level 1, 25% of total load is on priority-level

2 etc. When total load exceeds 35byte=ns (not shown in graph 8.1), simulations indicate

that the results in graph 8.1 for total load of 30byte=ns and higher, is representative for

even higher loads also.

Observing graph 8.1 we will see the following:

� When total load is less than 1.3byte=ns, the total AckTransThroughput in each case

Pri1-Pri4, will increase when total load increase. Total AckTransThroughput is also

approximately equal in the four cases. When total load is approximately 1.3byte=ns,

the sum of total AckTransThroughput is:

4X

i=1

AckTransThrougputPrii = 0:29 + 0:30 + 0:31 + 0:29 = 1:19byte=ns

128

Pri4

Pri3

Pri2

Pri1

Total AckTransThroughput (byte/ns) x 10-3

Total load (byte/ns)
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

0.00 10.00 20.00 30.00

Figure 8.1: Throughput as a function of load (SCI/RT-ring).

� When total load exceeds 1.3byte=ns, the total AckTransThroughput in each case di�er

signi�cantly. The total AckTransThroughput is higher in the Pri3 and Pri4 case than

in the Pri1 and Pri2 case. Total AckTransThroughput is also higher in the Pri2 case

than in the Pri1 case. In the Pri1 case, total AckTransThroughput will decrease

when total load exceeds 1.3byte=ns, and will approach 0.0byte=ns when total load is

very high. In the Pri2 case, the total AckTransThroughput will increase until total

load exceeds approximately 5.0byte=ns and will decrease and approach a stable value

of 0.21byte=ns when total load increases further. The total AckTransThroughput in

the Pri3 and Pri4 case are approximately equal and will increase when total load

increases, and will approach a stable value of approximately 0.47byte=ns when load

is very high.

The results in graph 8.1 indicate some properties of an SCI/RT-ring in terms of through-

put. When total load is less than 1.3byte=ns, throughput (acknowledged by the receiving

node) on the four priority-levels are approximately equal, and all packets, regardless of their

priority, will reach their destination. This mean that the priority distributions of packets

transmitted and acknowledged by the target node, equals the priority distribution of new

packets when load is low.

When load is higher than 1.3byte=ns, the throughput on the lowest priority-level, 1,

is less than the throughput on higher priority-levels, and will approach 0.0byte=ns. The

throughput on the higher priority-levels, 2-4, will approach a stable value. This mean

that the priority distribution of packets transmitted and acknowledged di�er from the

priority distribution of new packets with low priorities, 1 and 2, and resembles the priority

distribution of new packets with high priority, 3 and 4. Nevertheless, the results in graph 8.1

is somewhat surprising because when total load exceeds 10byte=ns, 25% of that is packets

on priority-level 4 and these packets should �ll the ring completely. 25% of 10byte=ns is

2.5byte=ns and this exceeds total throughput of the ring (refer to graph 6.1a) and should

129

eventually prevent lower priority packets from entering the ring.

It is reasonable when load is low, that the throughput on each priority-level is approx-

imately equal assuming a uniform priority distribution of new packets. When load is low,

the output-queues and bypass-queues rarely �ll up and few packets, primarily lower priority

packets, will be preempted. Consequently, all packets will reach their destination.

When load is high, the output-queues and the ring begins to �ll up. Higher priority

packets will have the right of way, and will more quickly reach their destination than the

lower priority packets.

It is more di�cult to explain why the throughput on priority-level 2 and 3 approach a

stable non-zero value, rather than approach 0.0byte=ns, and that priority-level 4 does not

consume all bandwidth. One possible explanation is that only retry and unsent packets

in the output-queue are preempted and outstanding packets are una�ected, when a high

priority packet try to gain access to a full output-queue. Lower priority packets will be

preempted in the bypass-queue when load is high and because echo-packets in these sim-

ulations inherit the send-packet's priority, echo-packets will be passed by packets with a

higher priority. In this way echo-packets will spend a long time in the ring before they are

back at the node that transmitted the send-packet, and outstanding lower priority packets

will stay longer in the output-queue than outstanding higher priority packets. In this way

precious queue space is held up by low priority send-packets.

The results in graph 8.1 therefore indicate that priority output-queue and bypass-queue

w/preemption, meet only a part of the requirements in 3.2.3. When load is substantially

higher than the total throughput of the ring, it is reasonable to expect that only Pri4

packets should circulate the ring. Nevertheless, the results indicate that the throughput is

higher for higher priorities than for lower priorities.

Average LocalSubActionLatency as a function of total load, graph 8.2a-b

These graphs show for each priority-level 1-4, the average LocalSubActionLatency as a

function of total load. Load is speci�ed in byte=ns along the x-axis and latency is speci�ed

in ns along the y-axis. Graph (b) zooms in on (a) to reveal details otherwise unseen.

When total load exceeds 35byte=ns (not shown in graph 8.2a-b), simulations indicate that

the results in graph 8.1, when total load exceeds 30byte=ns, are representative for higher

loads also.

Observing graph 8.2a-b, we will see the following:

� When total load is less than 0.7byte=ns, the average LocalSubActionLatency in each

of the four cases Pri1-Pri4, lay in the interval from 115ns to 150ns. The highest

priority has the lowest latency.

� When total load exceeds 0.7byte=ns, the average LocalSubActionLatency in each case

di�er signi�cantly, and are higher for lower priorities than for higher priorities. Sorted

in increasing order of latency, the priority-levels are: Pri4, Pri3, Pri2, Pri1.

Average LocalSubActionLatency in the Pri1 case will increase when load increases,

but when load exceeds 10byte=ns the results are rather jumbled, but still indicate a

signi�cant higher latency than in the three cases Pri2-Pri4. The latter cases seem to

approach a stable maximum value of 3700ns, 800ns and 250ns respectively.

The results in graph 8.2 indicate some properties of the SCI/RT-ring in terms of latency.

When load is low, the average LocalSubActionLatency is approximately equal on the four

130

Pri1

Pri2

Pri3

Pri4

Avg. LocalSubActionLatency (ns) x 103

Total load (byte/ns)
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0.00 10.00 20.00 30.00

(a)

Pri1

Pri2

Pri3

Pri4

Avg. LocalSubActionLatency (ns) x 103

Total load (byte/ns)
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 10.00 20.00 30.00

(b) Zoom in on (a)

Figure 8.2: Latency as a function of load (SCI/RT-ring).

131

priority-levels. This mean that packets, regardless of priority, spend approximately the

same amount of time in the ring before they are acknowledged by the target node.

When load is high, the latency on a high priority-level is less than the latency on a

lower priority-level. The latency is less on priority-level 4 than on any other priority-level

and priority-level 1 has the highest latency of all. Even when load increases, the average

latency of priority-level 4 is stable and will approach 250ns. This meets the requirements

in 3.2.3, where it was required that latency of higher priority packets should be less than

the latency of lower priority packets, in general and when load is high.

The results in graph 8.2a-b are reasonable considering the results in graph 8.1. In the

latter graphs we observed that the throughput was approximately equal on the di�erent

priority-levels when load was low, and therefore the latency will be approximately equal.

When load is low, there is also few packets on the ring, so a low priority packet will rarely

be passed by packets with a higher priority.

When load exceeds 1.3byte=ns, we observed in graph 8.1 that throughput on priority-

level 1 was less than the throughput on priority-level 2-4, and throughput on priority-level

2 was less than on priority-level 3-4. Because the priority of new packets are uniformly

distributed, the latency of low priority packets will be higher than the latency of higher

priority packets simply because less bandwidth is available to lower priority tra�c.

We also observed in graph 8.1 that the total throughput of priority-level 3 and 4 were

approximately equal, but the average LocalSubActionLatency is still approximately 50% -

70% less on priority-level 4 than on priority-level 3. This indicate that priority 4 packets

pass lower priority packets once they are one the ring.

The relationship between total AckTransThroughput and average LocalSub-

ActionLatency, graph 8.3a-b

These graphs show for each priority-level, 1-4, the relationship between total AckTrans-

Throughput and average LocalSubActionLatency. Throughput is speci�ed in byte=ns along

the x-axis and latency is speci�ed in ns along the y-axis. The graph therefore indicate the

performance of each priority-level, and associated with good performance is high through-

put and low latency. Graph (b) zooms in on (a).

Observing graph 8.1a-b we see that the performance is better on priority-level 4 than

on the lower priority-levels. Sorted in decreasing order of performance, the priority-levels

are: 4, 3, 2, 1. In particular, the performance of priority-level 1 is very bad when load is

high.

The results in graph 8.1a-b are reasonable considering the results in graph 8.1 and

8.2. In the two latter graphs, we observed that the AckTransThroughput is higher and the

average LocalSubActionLatency is lower on priority-level 4 than on the other priority-levels.

Consequently priority-level 4 has a better performance than priorities 1-3.

For priority-level 1 we observed in graph 8.1 and graph 8.2 that the AckTransThroughput

decreased when total load exceeded 1.3byte=ns and that the average LocalSubAction-

Latency increased and become signi�cantly higher compared to priority-level 2, 3 and 4. As

a result the performance of priority-level 1 is worse than the performance on priority-level

2, 3 and 4.

132

Pri4

Pri3

Pri2

Pri1

Avg. LocalSubActionLatency (ns) x 103

-3Total AckTransThroughput (byte/ns) x 10
0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0.00 200.00 400.00 600.00

(a)

Pri4

Pri3

Pri2

Pri1

Avg. LocalSubActionLatency (ns) x 103

-3Total AckTransThroughput (byte/ns) x 10
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0.00 200.00 400.00 600.00

(b)

Figure 8.3: The relationship between throughput and latency (SCI/RT-ring).

133

8.3 Summary

This chapter has presented and discussed results from the simulation of an SCI/RT-ring

with 4 nodes, in this way enable us to decide on Issue 9 as described in chapter 3, regard-

ing whether the modi�cation consisting of preemptive priority output-queues and bypass-

queues, controlled by the packet preemption protocol (chapter 2), meet the requirements

in the de�nition of the SCI/RT project (chapter 2). The following is a summary of the

main results related to SCI/RT:

� When load is low, the priority distribution of packets transmitted and acknowledged

equals the priority distribution of new packets. When load is high the priority dis-

tribution of packets transmitted and acknowledged equals the priority distribution of

new packets for the highest priorities only. However, the simulation results indicate

that the highest priority-level does not consume all bandwidth when the load is very

high (So high that the load on the highest priority-level exceed the maximum total

throughput of the ring). Instead the throughput on the second and third highest

priority-level approached a non-zero value.

� The average LocalSubActionLatency is approximately equal when load is low, but

when load is high the latency of one priority di�er from the other. The latency is

higher for lower priority-levels than for higher priority-levels. Packets on priority-level

4 have a lower average latency than packets on priority-level 1-3.

A �nal conclusion on Issue 9 is given in chapter 9.

134

Chapter 9

Conclusion of the thesis

This chapter contains the conclusion of the thesis. The elements considered important here

are to conclude on the thesis' original issues described in chapter 3, to indicate additional

results and to indicate further work. Conclusions are based on results and observations

presented in chapter 4, 6, 7 and 8.

Because the original issues of this thesis, described in chapter 3, are either related to

the design and building process of the simulator or related to the performance of SCI and

SCI/RT, this chapter contains two main sections.

9.1 Conclusion on issues related to the design and building

process of the simulator

This section will present and discuss the conclusion on the issues related to the design

and building process of the simulator. The conclusions are based on chapter 4, where

the programming strategy and a part of the implementation of the SCIsim-simulator was

presented.

Section 9.1.1 will conclude on the original issues presented in the beginning of the thesis

(section 3.2.1). Section 9.1.2 will discuss additional results discovered when the simulator

was designed and section 9.1.3 will present further work and an alternative approach to

designing a simulator for the SCI-protocol.

9.1.1 Conclusion on the original issues

The issues in section 3.2.1 were expressed as questions and these will be repeated in the

following discussion:

Issue 1: Is it possible to design a simulator for the SCI-protocol which is �exible

and modi�able, so that future modi�cations to the SCI-protocol can be

simulated without extensive re-design?

A simulator for the SCI-protocol has been designed and the design process was de-

scribed in chapter 4. The simulator considers a subset of the SCI-protocol (packet

transportation layer, refer to section 2.2.3) and some of the modi�cations proposed

in relation to SCI/RT have been incorporated.

Chapter 4 argued that not only had the simulator to be modi�able and �exible,

but also correct, parameterized, e�ective and enable performance analysis. In the

135

following it will be discussed whether the �nal SCIsim-simulator ful�lls the criteria

in chapter 4.

The implementation of the SCI/RT-modi�cations indicates that the SCIsim-simulator

is modi�able and �exible. The work went fairly easy and the problem was under-

standing the intuitive idea rather than incorporating it into the simulator. Sub-

classes representing the SCI/RT-bypass-queue, SCI/RT-output-queue and SCI/RT-

transmitter-stage were designed. Also the representation of the packet concept was

changed half-way during the design process because the simulator had to be speeded

up. Altering the representation of the packet concept did not a�ect the classes repre-

senting the output-queue and the input-queue. What may have reduced the �exibility

and modi�ability of the SCIsim-simulator is the fact that symbols are simulated by

integers, and symbols often have to carry some kind of time-stamps during simulation.

Consequently it may be di�cult to add new latency measurements in the future.

The simulator is reasonably correct. Various simulations have been performed and

some of them under assumptions similar to those in [Scott et.al., 1992]. Results in

[Scott et.al., 1992] resemble those presented in chapter 6 (refer to section 6.2.4). The

simulation results in chapter 6, 7 and 8 have also been discussed thoroughly and

found reasonable.

The SCIsim-simulator is also parameterized meaning that each node, node-interface

and link can be speci�ed independently, in order to simulate various conditions. The

performance of various SCI-interconnects can be analyzed because the simulator cal-

culate various measurements during simulation. Some measurements do not corre-

spond 100% to others, for example the RecThroughput does not correspond 100%

to LocalSubActionLatency (which they should) because some send-packets may have

been used in the calculation of the of RecThroughput and not yet in the calcula-

tion of LocalSubActionNoEchoLatency. However, the error will be smaller for longer

simulations.

The e�ciency of the simulator is acceptable and simulations which involve much

dynamic allocation tend to be slower than simulations that involve less. Simulation

time also increases when the interconnect grows in size.

If we assume that the modi�cations of the SCI-protocol a�ect the internal structure

of a real-world entity (e.g. bypass-queue), it is reasonable to conclude that it is

possible to design a �exible and modi�able simulator for SCI. The implementation of

a class representing a real-world entity can be changed in an object-oriented program

without a�ecting the rest of the program.

Issue 2: How successful is the object-oriented programming strategy when sim-

ulating SCI, when modi�cations of the SCI-protocol are simulated also?

An object-oriented programming strategy was used when the SCIsim-simulator was

designed. The strategy was described in section 4.2 and the historical development

and implementation was described in section 4.3.

The programming strategy was chosen because it was believed that it would help

design a simulator meeting the criteria proposed in chapter 4. During the early stages

in the design process the strategy was followed diligently, but when the e�ciency

proved to be lacking, symbols were represented by integers rather than class-objects.

136

class B;
begin

 ref(A) rA;

 procedure P2; <..>

 .
 .
 rA.P1;
 .
 .

end;

class A;
begin

 ref(B) rB;

 procedure P1; <..>

 .
 .
 rB.P2;
 .
 .

end;

Figure 9.1: Two mutually dependent classes.

Symbols had previously been represented by class objects, and using integers meant

that an ad-hoc strategy had been employed.

In other respects the programming strategy helped design a simulator which were

modi�able, �exible, correct, parameterized and which enabled performance analysis.

The SCI/RT modi�cations were fairly easy to incorporate and was incorporated into

the simulator by designing sub-classes for the SCI/RT-bypass-queue, SCI/RT-output-

queue and SCI/RT-transmitter stage.

It is therefore reasonable to conclude that the programming strategy was fairly suc-

cessful. All requirements, except the one concerning e�ciency, were met. When it

was clear that the simulator was too slow, symbols were represented by integers.

This was an ad-hoc strategy which, at one point, violated the original object-oriented

programming strategy.

Issue 3: How does the Simula programming language a�ect the design process

of the SCI-simulator in general, and the object-oriented programming

strategy in particular?

The SCIsim-simulator was written almost entirely in Simula. Procedures which enable

bit-pattern manipulation were written in C. Part of the implementation was described

in chapter 4.

Simula a�ected the design process of the SCIsim-simulator when the run-time sys-

tem proved to be too slow. Because one of the requirements toward the simulator

concerned e�ciency, an ad-hoc strategy was employed and it was decided to repre-

sent symbols by integers. Nevertheless, Simula supported the programming strategy

to a large extent and with its class and sub-class construct, real-world entities and

concepts could be represented by classes. Variation within the same class of entities

could be represented by various sub-classes.

When a large program is designed according to an object-oriented programming strat-

egy, it is often desirable to have the program textually divided into smaller �les, so

that each �le contains a single class or related classes. This will not only make the

program more manageable when editing it, but will also emphasize the classes as

separate, logical entities. A class in one �le could be compiled separately and then

the classes which depended on it could be recompiled without having to recompile

the whole program. In general, classes in Simula can be compiled separately, but

137

class super;;

class SuperA;
 virtual: procedure P1;;

class SuperB;
 virtual: procedure P2;;

(a) File 1

external class super;

SuperA class A;
begin

 ref(B) rB;

 procedure P1; <..>

 .
 .
 rB.P2;
 .
 .

end;

(b) File 2

external class super;

SuperB class B;
begin

 ref(A) rA;

 procedure P2; <..>

 .
 .
 rA.P1;
 .
 .

end;

(c) File 3

Figure 9.2: A solution to the problem of mutually dependent classes.

when two classes are mutually dependent, they have to be compiled together and

reside textually in the same �le (�gure 9.1). As a result, it is not always possible to

textually divide a program into a set of �les so that each �le contains a single class

which can be compiled separately.

When the SCIsim-simulator was designed, an attempt was made to divide the pro-

gram into separate �les which then could be compiled separately. This proved di�cult

because several classes were mutually dependent and had to reside textually in the

same �le. A part-wise textual partitioning was achieved by putting the classes into

separate �les and prior to a compilation merge the �les into one. The C-preprocessor

[Kernighan and Ritchie, 1988] was used for this purpose.

One way to divide textually the two classes in �gure 9.1 is shown in �gure 9.2. In the

context of SCI-simulations the idea is as follows:

� De�ne a super-class with virtual procedures representing the various entities and

concepts in a real-world SCI-interconnect. These super-classes could textually

reside in one �le and be compiled together.

� De�ne a sub-class each super-class for every entity-type in the SCI-interconnect.

Each sub-class could textually reside in one �le and be compiled separately.

To conclude on Issue 3, the Simula programming language a�ected the design process

because of its lacking e�ciency in certain situations (heavy use of dynamic allocation)

and special measures had to be taken in order to speed up the program. In doing

so, the object-oriented programming strategy was violated, by simulating symbols by

integers rather than class-objects. This increased the speed considerable, but later,

when SCI/RT modi�cations were incorporated, this also proved to have reduced the

modi�ability and �exibility, because it became more di�cult to add latency measure-

ments.

138

9.1.2 Other results

Designing the SCIsim-simulator was laborious, even though only a subset of the SCI-

protocol was considered (the packet transportation layer). One has to understand the

SCI-protocol thoroughly, which require considerable e�ort, and then has to decide how to

represent it in the simulator. The SCI-protocol is complex, contains a lot of details and

above all, describes only a protocol and not how to implement it. Some implementation

issues are rather obvious, eg. that the bypass-queue should be represented by a FIFO-queue

containing symbols, while other issues are far less obvious, eg. how to represent the ring

bandwidth allocation protocol and input-queue allocation protocol (refer to section 2.2.3).

Designing the SCIsim-simulator also indicates that it bene�ts both the understanding of

SCI and the process of representing it, to work on issues related to the SCI-protocol and the

SCI-simulator simultaneously. To understand the SCI-protocol is of course mandatory when

an SCI-simulator is designed, but the design process gives something in return. Designing a

program creates an awareness for details and special cases which prove useful when complex

parts of the SCI-protocol are approached.

As required, the SCIsim-simulator is parameterized and enable performance analysis.

Each simulation can be speci�ed in detail and the resulting simulation can be analyzed

in detail also � the simulator gather a large amount of data during simulation. As soon

as simulation-work began it became clear that this scheme was not very user-friendly, e.g.

30-40 speci�cation-�les had to be written in order to simulate an increase in load.

If a simulator is highly parameterized and generates extensive simulation-results, there

should be a way to specify �xed parameters once and for all, and only those results which

are interesting should be visible. The speci�cation-�les which were given to the SCIsim-

simulator as input, were written according to a simple context-free grammar and one so-

lution to the above problem - having to specify every parameter every time - could have

been to design a program which generated speci�cation-�les according to this grammar. A

�xed set of parameters could be speci�ed once and for all, and only those parameters still

unbounded had to be speci�ed each time.

The SCIsim-simulator got rather big, and in hindsight it is clear that some details are

super�uous. Nevertheless, a well-working simulator was needed because another important

issue was to analyze the performance of SCI and SCI/RT, and this seemed to speak for

prolonged e�ort when it was felt that enough time and e�ort was spent already.

9.1.3 Further work

If a new simulator was going to be designed at this stage, for the SCI-protocol and some

of the SCI/RT modi�cations, two di�erent approaches would be considered.

The �rst approach is identical to the object-oriented programming strategy described

in section 4.2.2. Departing from or violating the strategy would not be accepted, because it

is considered more important to ensure modi�ability and �exibility than downright perfor-

mance. If dynamic allocation proved to be massive and caused slow simulations, symbol-

objects could be re-used rather than burdening the run-time system with constant allocation

and deallocation. Also a consistent strategy to perform measurements would be developed

and used from the very start.

The second approach would be to focus on the packet entity, the entity which gives

raise to latency and throughput. This approach was proposed by Stein Gjessing at UiO

during the early stages of the work (refer to section 4.2.5) but was abandoned because it

139

was not obvious how to ensure correctness. A substantial amount of the e�ort involved

at the time was focused on understanding SCI, and this second approach seemed to take

a thorough understanding of the SCI-protocol for granted. At this stage however, the

strategy is more likely to succeed, because in the meantime, a better understanding of SCI

has been acquired.

Either of the two above approaches has advantages and disadvantages. We have seen

in this thesis, things that would indicate a modi�able and correct simulator if the �rst ap-

proach is used � the SCIsim-simulator is modi�able and correct (among other properties).

On the other hand, re-using symbol-objects is not exactly in the spirit of object-oriented

programming because allocation and deallocation of objects is the task of the run-time

system and should be invisible to the programmer.

The second approach may lead to less code and a faster program because a lot of the

actions performed in the SCIsim-simulator would be left out (they would not be needed).

On the other hand, it is not obvious how to ensure correctness without a renewed analysis

of the SCI-protocol, this time from the packet point-of-view.

Adding the cache coherence protocol on top of the simulator for the packet transporta-

tion layer, would make the SCI-simulator complete, and real programs could be the main

source of input.

9.2 Conclusion on the issues related to the performance of

SCI and SCI/RT

This section will present and discuss the conclusion on the issues related to the performance

of SCI and SCI/RT. Conclusions are based on chapter 6, 7 and 8, where simulation results

related to single SCI-rings, a multi-ring interconnect and SCI/RT-rings were presented.

Section 9.2.1 will conclude on the original issues related to the performance of SCI and

SCI/RT (section 3.2.2 and 3.2.3). Section 9.2.2 will discuss additional results discovered

during simulation. Section 9.2.3 will discuss further work.

9.2.1 Conclusion on the original issues

The issues in section 3.2.2 and 3.2.3 were expressed as questions, and these will be repeated

in the following discussion:

Issue 4: What a�ects the performance of single SCI-rings, with less than 16

nodes?

Single SCI-rings have been simulated under various conditions, including ring size,

load and tra�c pattern, �ow control and packet size. The results from these simula-

tions were presented in chapter 6.

The total throughput of a uniform SCI-ring will increase when load increases, and

will approach a stable value. This means that the total throughput of an SCI-ring

remain stable under transient overload (Refer to section 6.2.4).

The average latency of a uniform SCI-ring is bounded upward and downward, and the

upper bound remain stable even when load is high. This means that the maximum

average latency is stable during transient overload (Refer to section 6.2.4). The max-

imum average LocalSubActionLatency and LocalSubActionNoEchoLatency depends

on the maximum output-queue size.

140

The SCI �ow control mechanism will, regardless whether the load and tra�c pattern

is uniform, hot sender or node starvation, reduce the maximum total throughput

and increase the average latency of the ring, compared to an identical ring without

�ow control. How much the throughput is reduced and latency is increased depends

on the size of send-packets transmitted in the ring. When either 16byte packets

or 80byte packets are transmitted, the maximum total throughput is reduced with

approximately 15% and maximum average latency is increased with approximately

28% (Refer to section 6.2.4, 6.3.2 and 6.4.2).

An SCI-ring transmitting small send-packets will have a lower average latency com-

pared to an SCI-ring transmitting larger send-packets, when the two rings are identical

and the load is low. The situation is reversed when load is high, and the SCI-ring

transmitting large send-packets will have a lower latency than the SCI-ring trans-

mitting smaller send-packets. Large send-packets also mean a higher maximum total

throughput and a lower average latency than smaller send-packets (Refer to section

6.2.4).

Increasing the number of nodes in a uniform SCI-ring will not increase the total

throughput, but will instead increase the average latency in general, and the maxi-

mum average latency in particular.

To conclude on Issue 4: The load, the size of send-packets, the type of �ow-control

mechanism and the ring-size a�ects the performance of an SCI-ring. A non-uniform

load and tra�c pattern will a�ect the performance of each node individually in an

SCI-ring (more of that in relation to Issue 6).

Issue 5: Is the SCI-ring scalable, when the number of nodes are less then 16?

SCI-rings of size 4 and 16 have been simulated, with or without �ow control and

assuming various sizes of the send-packets. The main results were presented in section

6.2.3.

We observed that total throughput was approximately equal (di�ering no more than

5% in favor of the smaller ring), and that the latency was generally higher in the

bigger ring. The performance of the average node is also higher in the smaller ring

than in the bigger ring, transmitting more with a lower latency (Refer to section

6.2.4).

To conclude, the SCI-ring is not scalable in terms of throughput and latency. If the

SCI-ring was scalable, the throughput of the ring would increase when the number

of nodes increased. When we observe that the throughput does not increase, but

instead observe that the latency increases, we must conclude that the SCI-ring is not

scalable. This conclusion apply to the ring structure and the packet transportation

layer, and a 16-node SCI-ring may still be a better choice than a 4-node SCI-ring. If

for example, the processors and memory chips did not have the speed to fully utilize

a 4-node ring, more processors and memory chips could utilize a 16-node ring fully

(or an even bigger ring).

Issue 6: Does the �ow control mechanism speci�ed in the SCI-protocol ensure

fairness among the nodes?

SCI-rings of size 4 and 16 have been simulated, with or without �ow control and

which display non-uniform load and tra�c patterns, referred to as hot-sender and

141

node-starvation (Refer to section 5.1.2 for further details). Section 6.3 and section

6.4 presented results from these simulations.

Related to hot sender we observed in the ring without �ow control, that the down-

stream neighbours of the hot sender were a�ected depending on their distance from

the hot node. The closest (downstream) node was more a�ected than the other

nodes and had a higher latency and slightly lower throughput. Adding �ow control

eliminated the di�erence in throughput and latency among the non-hot nodes, both

average and worst case (Refer to section 6.3.2).

Related to node starvation we observed in the ring without �ow control, that the

starved node was not a�ected when load was low, but was severely a�ected when

load was higher, and its the transmitted throughput approached zero and the latency

was unbounded. Adding �ow control helped the starved node, and it was able to

transmit something, though slightly less than the non-starved nodes, and both the

average and worst case latency was bounded (Refer to section 6.4.2).

The results from simulating non-uniform load and tra�c patterns therefore give good

reason to conclude that the SCI �ow control mechanism ensures fairness among the

nodes. When �ow control is added to the ring, a prize is paid in terms of reduced

maximum total throughput and increased average latency.

Issue 7: Are the results achieved using the simulator developed in this thesis

comparable to results in [Scott et.al., 1992]?

Some of the simulations were performed under conditions which were made as close

as possible to those conditions assumed in [Scott et.al., 1992]. A direct comparison

to the results in [Scott et.al., 1992] was carried out in the end of section 6.2.2 and

6.2.3.

There we observed that the results achieved using the SCIsim-simulator resembled

the results in [Scott et.al., 1992] and either case indicate the same properties of the

SCI-ring towards packet size, �ow control and ring size (Issue 4). The quantitative

di�erences in direct comparison were sometimes small, ranging from 3% to 9%, and

sometime bigger. The biggest di�erence were in the results related to �ow control

(Refer to 6.2.4).

To conclude, the results in [Scott et.al., 1992] resembled those presented in chapter

6, and both indicate the same properties of the SCI-ring towards �ow control, packet

size and ring size. When results were compared directly, the quantitative di�erences

varied.

Issue 8: Is there a better alternative than using a single SCI-ring interconnect

if we were going to connect 16 nodes?

A 4-ring interconnect with 16 nodes and 4 switches were simulated and compared to

a 16 node SCI-ring. Except for the di�erence in interconnect structure the conditions

assumed during simulation were identical, among them a uniform load and tra�c

pattern. Chapter 7 presented the results from the comparison.

We observed that the total throughput of the 4-ring interconnect was not stable when

total load increased, and actually decreased after it had passed a temporary peak. The

maximum total throughput was nevertheless higher in the 4-ring interconnect than in

142

the single-ring, but the stable total throughput was lower in the 4-ring interconnect

than in the single-ring when load was very high.

Up to the point when the 4-ring interconnect became saturated, the latency was

lower in the 4-ring interconnect than in the single-ring (except when load was very

low, where the latency was lower in the single-ring than in the 4-ring due to the

store-forward switch).

The results therefore give no clear indication of whether there is a better way to

connect 16 nodes than using the single-ring. The throughput and latency was better

in the 4-ring interconnect than in the single ring, but only until the 4-ring interconnect

got saturated. From then on the throughput decreased and latency increased, i.e. the

4-ring interconnect was not stable during transient overload. Still, the results from

the 4-ring simulations give reason to believe that there is a better way to connect

16 nodes than using a single ring, and perhaps more switches could increase the

performance of the 4-ring interconnect.

Issue 9: Does the packet preemption protocol in combination with priority

output-queue and preemptive bypass-queue meet the requirements stated

in the formal de�nition of the SCI/RT project (refer to 2.3)?

A ring with 4 nodes has been simulated and results were presented in chapter 8.

The nodes had priority-preemptive output and bypass-queue. In section 3.2.3 it was

proposed certain criteria with which the SCI/RT results should be evaluated, because

the criteria in the SCI/RT draft [IEEE, 1992b] was considered too elusive.

In the SCI/RT results, we observed that the modi�cations met only a part of the

criteria. The throughput was higher for higher priorities than for lower priorities,

and the latency was less for higher priorities than for lower priorities, but when load

was very high it was reasonable to expect that the highest priorities consumed all

bandwidth. Instead the the throughput for the 3 highest priorities (out of 4 priority-

levels) approached a stable non-zero value.

To conclude on Issue 9: The modi�cation consisting of priority-preemptive output

and bypass-queue does not meet the entire set of the criteria proposed in 3.2.3, but

the results are still promising. The modi�cation ensures that higher priorities get

more of the bandwidth than the lower priorities and that the latency is lower for the

higher priorities than for lower priorities.

9.2.2 Other results

The 4-ring interconnect is not stable under transient overload. Simulations indicate that

the switches are causing the situation, because they are unable to transmit more when load

increase. Instead the switches transmit less. The switches are bottlenecks which become

smaller when load increase and nodes in each ring transmit more.

Because a switch is transmitting packets on behalf of several nodes, it will behave almost

as hot sender, and as we observed in section 6.3, a hot sender will transmit less when load

(in the remaining nodes) increase.

Incorporating SCI/RT into the SCI-simulator was one of the biggest challenges in the

work related to the thesis, not only because of the implementation problem encountered,

but also because it required an overview and understanding of the various modi�cations

proposed, and above all to decide on which of the proposals to investigate. Di�erent people

143

had di�erent ideas on how to modify the SCI-protocol (they still do because SCI/RT is

still an open issue), some proposed modi�cations in relation to Rate Monotonic Scheduling

(RMS) and other propose a token-based scheme. These were, and still are, the two main

approaches to SCI/RT. A di�erence between the two approaches seems to be that in the

RMS-approach packets are preempted and bandwidth inevitably wasted, while in the token

based scheme the idea is to negotiate for bandwidth before packets are transmitted.

It is not possible to recommend one approach over the other based on the results in

this thesis, only modi�cations related to RMS have been investigated, but the results are

still promising on behalf of the RMS-approach. Furthermore, the process of understanding

SCI/RT and deciding which of the proposals to investigate, indicates that modifying the

SCI-protocol for real-time purposes is di�cult, even when the modi�cations are based on

mathematical theories, like RMS.

9.2.3 Further work

In this thesis uniform and non-uniform load and tra�c patterns have been simulated. Worst

case and best case have not been simulated but would be interesting to determine additional

properties of the SCI-interconnect.

It would also be interesting to investigate di�erent con�gurations of nodes whose load

and tra�c pattern are given. If there are groups of nodes which communicate almost only

within the group, these groups should perhaps be assigned a ring each. In this way nodes

are partitioned into smaller groups of nodes, and each group be assigned one ring each.

Switches could be used between the rings to enable the occasional communication between

groups.

Interconnects which are larger than those considered in this thesis, may display prop-

erties not visible in smaller rings, so simulating large interconnects consisting of hundreds

of nodes would be interesting. If the cache coherence layer was implemented on top of the

existing simulator, real programs could be used as input to the simulator.

Related to SCI/RT simulations, several issues arose after the results had been investi-

gated. The size of the bypass-queue is expected to a�ect the performance of the ring and

large bypass-queues may lead to a higher latency, but less preemption. Also the various

strategies regarding the priority of echo-packets have not been investigated, except that

one of these strategies is used during simulation (an echo-packet inherits the priority of

the corresponding send-packet). Several strategies exist and echo-packets can be assigned

highest possible priority, lowest possible priority, inherit the priority of the corresponding

send-packet or inherit the priority of the blocked send-packet in the output-queue in the

case of an echo-packet generated in a bypass-queue by a preemption.

The size of the output-queue and the number of outstanding packets is also expected

to a�ect the performance of the SCI/RT ring, and the size of the output-queue and the

bypass-queue should perhaps relate in some way. If the bypass-queue is too big compared

to the output-queue, a lot of echo-packets could reside in the bypass-queue and could be

passed by higher priority send-packets, instead of getting back to the node and free space

there. In this way outstanding low priority send-packets may hold up valuable space in

the output-queue and eventually prevent higher priority packets from entering the output-

queue, and as a result reduce the throughput for higher priorities.

The preemption priority output-queue and bypass-queue assumed in the SCI/RT sim-

ulations should also be regarded as theoretical devices, because the time to perform a

preemption is not considered. An unlimited number of send-packets can be preempted

144

within a clock-cycle, which is not possible in a hardware implementation. It would be very

interesting to investigate how the preemption-latency a�ected the various priority-levels.

9.3 Summary

This chapter has presented and discussed the conclusion of the thesis. It has concluded on

the issues presented in chapter 3, Issue 1 - Issue 9, and has presented additional results

and discussed further work, related to the design process of the SCIsim-simulator and the

performance of SCI and SCI/RT. Consequently, this chapter summarizes the main results

of the thesis and rather than summarize the summary here, the reader should refer to

section 9.1 and 9.2.

145

[This page has been intentionally left blank]

146

Appendix A

Proposals on underlying models of

the transmitter-stage

This appendix contains three proposals on how to describe the physical model of the

transmitter-stage in a node-interface. These proposals have been used when the SCIsim

simulator was designed.

In a node interface (Figure 2.6) the transmitter-stage must decide, at each instant of

time (each clock cycle), whether to transmit from the output-queue or the bypass-queue.

The transmitter-stage in an SCI-ring with �ow control must behave di�erently from a

transmitter-stage in an SCI-ring without �ow control (if our intention was to investigate the

di�erence in performance). Each of the following three cases, which have been investigated

in chapter 6, 7 and 8, are handled by a di�erent type of transmitter-stage. In �gure A.1-A.3

the transmitter-stages are shown as �nite state machines:

SCI �ow control: In an SCI-ring with �ow control, the ring bandwidth allocation proto-

col (refer to section 2.2.3) are used.

When all nodes in an SCI-ring implements the �nite state machine in �gure A.1, the

SCI-ring bandwidth allocation protocol is obeyed and fairness ensured.

No �ow control: In a ring without �ow control a node will transmit from the output-

queue only when the bypass-queue is empty.

When all nodes in an SCI-ring implements the �nite state machine in �gure A.2, the

SCI-ring will not employ any form of �ow control.

Packet preemption protocol: In an SCI/RT-ring where the output-queues and priority

bypass-queues are preemptive priority queues, the nodes must choose the queue with

the highest priority. However this is not always possible - if the output-queue has a

higher priority than the bypass-queue and the bypass-queue is full, the node has to

transmit from the bypass-queue or preempt the bypass-queue. Again there are various

alternatives on how and when to preempt, and in this thesis the packet preemption

protocol, described in section 2.3.3, is considered.

When all nodes in an SCI/RT-ring implements the �nite state machine in �gure A.3,

the packet preemption protocol is obeyed.

As mentioned above, the transmitter-stages are shown as �nite state-machines, and

each transmitter-stage behave according to this state-machine. The states are shown as

147

ABBREVIATION MEANING

MUX The multiplexer

RecStage The receiver-stage

RecStage.lg The value in the lg-bit�eld (Refer to 2.2.3) of the last symbol

from the receiver-stage

OQ.GetSymbol Get the next symbol in the �rst packet in the output-queue

BQ.GetSymbol Get the next symbol in the bypass-queue

BQ.PutSymbol(X) Put symbol X into the bypass-queue

BQ.Preempt(X) Preempt packets in the bypass-queue until X bytes of free

space is created

SaveIdle The saveidle-bu�er

New NoGo-idle Create a new No-Go idle-symbol

Table A.1: Abbreviations used in the statements

ABBREVIATION MEANING

MUX == PacketizedSymbol The last symbol passing the multiplexer was a

packet symbol

MUX == NoGo-idle The last symbol passing the multiplexer was a

No-Go idle-symbol

MUX == Go-idle The last symbol passing the multiplexer was a

Go idle-symbol

EOP The last symbol passing the multiplexer was the

last symbol in a packet

RecStage == PacketizedSymbol The last symbol from the receiver-stage was a

packet symbol

RecStage == Idle The last symbol from the receiver-stage was an

idle-symbol

BQ There exist at least one packet in the bypass-queue

BQ.Su�FreeSpace(X) There exist at least X number of free bytes in

the bypass-queue

BQ.Su�DelSpace(X) There can be created (by preempting packets)

at least X number of free bytes in the bypass-queue

OQ There exist at least one packet in the output-queue

OQ.Pri >= BQ.Pri There exist a packet in the output-queue with

a higher or equal priority than the highest

priority in the bypass-queue

OQ.�rst.size+2 Size of the highest priority packet in the

output-queue plus size of the CRC-symbol (2 bytes)

Table A.2: Abbreviations used in the predicates

148

ovals (eg. the IDLE state in �gure A.1) and a state-transition is shown as a an arrow

from one state to another (eg. from IDLE to BLOCKED). A transition between two

states takes place when the predicate associated with the transition (shown in bold-face,

e.g. not OQ) is true, and during the transition the statements (shown in parenthesis, e.g.

[MUX := RecStage]) are executed. To simplify the �gures, the two output-queues are

treated as one queue.

The statements are written in pseudo-code and contain some abbreviations which are

de�ned in table A.1. The abbreviation used in the predicates are de�ned in table A.2.

149

IDLE

BLOCKED

TRANSMIT

RECOVERY 1

RECOVERY 2

not OQ

OQ

not EOP

MUX == Go−Idle

MUX == PacketizedSymbol or
MUX == NoGo−Idle

EOP and
(BQ or RecStage==
PacketizedSymbol)

BQ and EOP

BQ and not EOP

not BQ and
RecStage ==
PacketizedSymbol

RecStage == PacketizedSymbol

not BQ and
RecStage == Idle

RecStage == Idle

EOP and
not BQ and
RecStage == Idle

[MUX := RecStage;]

[MUX := RecStage;]

[MUX := RecStage;]

[MUX := OQ.GetSymbol;
 <Handle incoming symbol>]

[MUX := OQ.GetSymbol;
 <Handle incoming symbol>]

[MUX := New NoGo−Idle;
 <Handle incoming symbol>]

[MUX := New NoGo−Idle;
 <Handle incoming symbol>]

[MUX := BQ.GetSymbol;
 <Handle incoming symbol>]

[MUX := RecStage;]

[MUX := RecStage;]

[MUX := RecStage.lg OR
 SaveIdle;]

[MUX := RecStage.lg OR
 SaveIdle;]

[MUX := RecStage.lg OR
 SaveIdle;]

<Handle incoming symbol>: if RecStage == PacketizedSymbol then BQ.PutSymbol(RecStage)
 else SaveIdle := SaveIdle OR RecStage.lg;

Figure A.1: A transmitter-stage according to SCI �ow control

150

IDLE

BYPASS

TRANSMIT

EOP

not EOP

not EOP

EOP

not BQ and not OQ

BQ

not BQ and OQ

[MUX := BQ.GetSymbol;
 < Handle incoming symbol >]

[MUX := OQ.GetSymbol;
 < Handle incoming symbol >]

[MUX := New IdleSymbol;
 < Handle incoming symbol >]

[MUX := BQ.GetSymbol;
 < Handle incoming symbol >]

[MUX := OQ.GetSymbol;
 < Handle incoming symbol >]

[MUX := New IdleSymbol;
 < Handle incoming symbol >]

[MUX := New IdleSymbol;
 < Handle incoming symbol >]

< Handle incoming symbol > : if RecStage == PacketizedSymbol then
 BQ.PutSymbol(RecStage);

Figure A.2: A transmitter-stage according to no �ow control

151

IDLE

EOP

not EOP

not BQ and not OQ

EOP

not EOP

(OQ and not BQ) or
(OQ and BQ and OQ.Pri>=BQ.Pri and
 (BQ.SuffFreeSpace(OQ.first.size+2) or
 BQ.SuffDelSpace(OQ.first.size+2)))

(BQ and not OQ) or
(BQ and OQ and not (OQ.Pri>=BQ.Pri and
 (BQ.SuffFreeSpace(OQ.first.size+2) or
 BQ.SuffDelSpace(OQ.first.size+2))))

[MUX := New IdleSymbol;
 < Handle incoming symbol >]

[MUX := New IdleSymbol;
 < Handle incoming symbol >]

[MUX := New IdleSymbol;
 < Handle incoming symbol
 and preempt BQ if
 necessary >]

[MUX := OQ.GetSymbol;
 < Handle incoming symbol
 and preempt BQ if
 necessary >]

[MUX := OQ.GetSymbol;
 < Handle incoming symbol
 and preempt BQ if
 necessary >]

[MUX := BQ.GetSymbol;
 < Handle incoming symbol >]

[MUX := BQ.GetSymbol;
 < Handle incoming symbol >]

if RecStage == NonConsumeableIdle or
 RecStage == PacketizedSymbol then BQ.PutSymbol(RecStage);

< Handle incoming symbol
 and preempt BQ if
 necessary > : if RecStage == NonConsumeableIdle or

 RecStage == PacketizedSymbol then
begin
 if BQ.Full then BQ.Preempt(2);
 BQ.PutSymbol(RecStage);
end;

< Handle incoming symbol > :

BYPASS

TRANSMIT

Figure A.3: A transmitter-stage according to packet preemption protocol

152

Bibliography

[Bhattacharyya and Johnson, 1977] Gouri K.Bhattacharyya, Richard A.Johnson

�Statistical Concepts and Methods�

New York: John Wiley & sons, Inc., 1977

[Birtwistle et.al., 1982] Graham M.Birtwistle, Ole-Johan Dahl, Bjørn Myhrhaug, Kristen

Nygaard.

�SIMULA BEGIN�

Lund, Sweden: Studentlitteratur. Goch, Germany: Bratt Institut für

Neues Lernen. Bromley, UK: Chartwell-Bratt Ltd., 1982

[Bogaerts and Wu, 1995] Andre Bogaerts, Bin Wu.

�The SCILab Cookbook�

CERN 1211, Geneva-23, Switzerland, July 1995

Available via anonymous ftp from: sunsci.cern.ch - simula-

tion/DOC/SCILab.ps

[Bothner and Hulaas, 1991] John Weding Bothner, Trond Ivar Hulaas.

�Various interconnects for SCI-based systems�

University of Oslo, Department of Informatics, P.O.Box 1080 Blindern,

N-0316 Oslo 3, Norway, 1991

Available via anonymous ftp from: i�.uio.no - pub/sci/Topologies Paris.PS

[Bothner and Hulaas, 1993] John Weding Bothner, Trond Ivar Hulaas.

�Topologies for SCI-based systems with up to a few hundred nodes�,

Cand. Scient. thesis.

University of Oslo, Department of Informatics, P.O.Box 1080 Blindern,

N-0316 Oslo 3, Norway, 1993

Available via anonymous ftp from: i�.uio.no - pub/sci/Topologies Thesis.PS

[Censier and Feautrier, 1978] Lucien M.Censier, Paul Feautrier.

�A New Solution to Coherence Problems in Multicache Systems�

IEEE Transactions on Computers, Vol.27, No.12, December 1978,

p.1112-1118

153

[Chaiken et.al., 1990] David Chaiken, Craig Fields, Kiyoshi Kurihara, Anant Agarwal.

�Directory-Based Cache Coherence in Large-Scale Multiprocessors�

IEEE Computer, June 1990, p.49-58

[Dahl et.al., 1982] Ole-Johan Dahl, Bjørn Myhrhaug, Kristen Nygaard.

�SIMULA 67 Common Base Language�

Report no. 725 (S 22), Norwegian Computing Center, revised

November 1982.

[Flynn, 1972] Michael J.Flynn.

�Some Computer Organizations and Their E�ectiveness�

IEEE Transactions on Computers, Vol.C-21, Iss.9, September 1972,

p.948-960

[Gjessing et.al., 1990a] Stein Gjessing, Stein Krogdahl, Ellen Munthe-Kaas.

�A top Down Approach to the Formal Speci�cation of SCI Cache

Coherence�, Technical Report 146.

Department of Informatics, University of Oslo, P.O.Box 1080 Blindern,

N-0316 Oslo 3, Norway, August 1990

Available via anonymous ftp from: i�.uio.no - pub/sci/tech-rep-146.PS

[Gjessing et.al., 1990b] Stein Gjessing, Stein Krogdahl, Ellen Munthe-Kaas.

�Formal Speci�cation and Veri�cation of SCI Cache Coherence�,

Technical Report 142.

Department of Informatics, University of Oslo, P.O.Box 1080 Blindern,

N-0316 Oslo 3, Norway, August 1990

Available via anonymous ftp from: i�.uio.no - pub/sci/tech-rep-142.PS

[Gjessing and Munthe-Kaas, 1991] Stein Gjessing, Ellen Munthe-Kaas.

�Formal Speci�cation of Cache Coherence in a Shared Memory

Multiprocessor�, Technical Report 158.

Department of Informatics, University of Oslo, P.O.Box 1080 Blindern,

N-0316 Oslo 3, Norway, 1991

Available via anonymous ftp from: i�.uio.no - pub/sci/tech-rep-158.PS

[Goodman, 1983] James R.Goodman.

�Using cache memory to reduce processor-memory tra�c�

Proceedings Tenth Annual Symposium on Computer Architecture,

Stockholm, Sweden, (ACM), 1983, p.124-131

[Gustavson and Li, 1995] David B.Gustavson, Qiang Li.

�Local-Area MultiProcessor: the Scalable Coherent Interface�

SCIzzL, Santa Clara University, Department of Computer Engineer-

ing, Santa Clara, California 95053, 1995

154

[Hennessy and Patterson, 1990] John L.Hennessy, David A.Patterson.

�Computer Architecture, A Quantitative Approach�

San Mateo, California: Morgan Kaufmann Publishers, Inc., 1990

[Hexsel and Topham, 1994] Roberto A.Hexsel, Nigel P.Topham

�The Performance of SCI Memory Hierarchies�

Technical Report CSR-30-94, Department of Computer Science,

Edinburgh University, February 1994

[IEEE, 1992a] Institute of Electrical and Electronics Engineers.

�SCI - Scalable Coherent Interface�, IEEE Std. 1596-1992.

Institute of Electrical and Electronics Engineers, Inc., 345 East 47th

Street, New York, NY 10017, USA

[IEEE, 1992b] Institute of Electrical and Electronics Engineers.

�SCI/RT - Scalable Coherent Interface For Real Time Applications�,

draft D0.13 for IEEE p1596.6.

Institute of Electrical and Electronics Engineers, Inc., 345 East 47th

Street, New York, NY 10017, USA

[Jain, 1991] Raj Jain.

�The art of computer systems performance analysis: techniques for

experimental design, measurements, simulation, and modeling�

New York: John Wiley & sons, Inc., 1991

[Kernighan and Ritchie, 1988] Brian W.Kernighan, Dennis M.Ritchie.

�The C Programming Language�

2nd ed., Englewood Cli�s, New Jersey: Prentice Hall, 1988

[Kirkerud, 1989] Bjørn Kirkerud.

�Object-oriented programming with SIMULA�

Wokingham, England: Addison-Wesley Publishing Company, 1989

[Kogge, 1981] Peter M.Kogge.

�The Architecture of Pipelined Computers�

New York NY: McGraw-Hill Book Company, 1981

[Lin and Tarng, 1991] Tein-Hsiang Lin, W.Tarng.

�Scheduling periodic and aperiodic tasks in hard real-time computing

systems�

Performance Evaluation Review, Vol.19, Iss.1, May 1991, p.31-38

[Liu and Layland, 1973] C.L.Liu, James W.Layland.

�Scheduling Algorithms for Multiprogramming in a Hard Real-Time

Environement�

Journal of the ACM, Vol.20, No.1, January 1973, p.46-61

155

[Picker et.al., 1994] Dan Picker, Ronald D.Fellman, Paul M.Chau.

�An Extension to the SCI Flow Control Protocol for Increased Network

E�ciency�

Department of Electrical and Computer Engineering, University of

California, San Diego, La Jolla, CA.92093-0407

[Picker and Fellman, 1994] Dan Picker, Ronald D.Fellman.

�An SCI Simulator with Tra�c Flow Animation

Department of Electrical and Computer Engineering, University of

California San Diego, La Jolla, CA.92093-0407

Available via anonymous ftp from: arad.ucsd.edu - pub/Papers/SCISimulator.ps.Z

[Roth, 94] Luchi Roth.

A discussion of Proposed SCI Enhancements for Military Appls

AMPAC, Inc., Warminster, PA 18974, USA.

Email: roth@NADC.NADC.NAVY.MIL

Distributed January 16. 1994 on mailing list sci announce@hplsci.hpl.hp.com.

[Scott, 1995] Tim Scott.

�Simple train protocol for sci/rt�

NAVSURFWARCENDIV, Code 6041, 300 Highway 361 Crane, IN

47522-5001, USA.

Email: tscott@avoca.nwscc.sea06.navy.mil

Distributed March 6. 1995 on mailing list sci rt@sunrise.sci.edu.

[Scott et.al., 1992] Steven L.Scott, James R.Goodman, Mary K.Vernon.

�Performance of the SCI Ring�

19th Annual International Symposium on Computer Architecture

Computer Architecture News, Vol.20, Iss.2, May 1992, p.403-414

[Stroustrup, 1991] Bjarne Stroustrup.

�The C++ Programming Language�

2nd ed., Reading MA:Addision-Wesley, 1991

[Tang, 1976] C.K.Tang.

�Cache system design in the tightly coupled multiprocessor system�

AFIPS Conference Proceedings, Vol.45, National Computer Confer-

ence, 1976, p.749-753.

[Wegner, 1990] Peter Wegner.

�Object-oriented programming�

Encyclopedia of Computer Science

3rd ed., London: Chapman & Hall, 1990, p.959-962

156

[Wilkes, 1965] M.V.Wilkes.

�Slave Memories and Dynamic Storage Allocation�

IEEE transactions on electronic computers, Vol.14, Iss.2, April 1965,

p.270-271

[Zalewski, 1993] Janusz Zalewski.

�What every engineer needs to know on rate monotonic scheduling. A

tutorial�

Department of Computer Science, Southwest Texas State University,

San Marcos, TX 78666-4616.

Email: jz01@academia.swt.edu

Note: The above internet-addresses are correct at the time of writing, but because

internet-resources tends to be unstable, their correctness in the future cannot be guaran-

teed. The internet-addresses should therefore be regarded as a supplement to the formal

reference.

157

	Contents
	Chapter 1 Introduction
	Chapter 2 Introduction to SCI and SCI/RT
	Chapter 3 Issues considered in the thesis
	Chapter 4 Designing and building the simulator
	Chapter 5 Work related to simulation
	Chapter 6 Results from the simulation of SCI single-rings
	Chapter 7 Results from the simulation of an SCI multi-ring interconnect
	Chapter 8 Results from the simulation of SCI/RT
	Chapter 9 Conclusion of the thesis
	Appendix A Proposals on underlying models of the transmitter-stage
	Bibliography

