
Comparing the motion planning methods
Hybrid A* and RRT for autonomous
off-road driving of bicycle vehicles

Song Luu

Thesis submitted for the degree of
Master in Robotics and Intelligent Systems

30 credits

Department of Informatics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Spring 2021

Comparing the motion planning
methods Hybrid A* and RRT for

autonomous off-road driving of bicycle
vehicles

Song Luu

© 2021 Song Luu

Comparing the motion planning methods Hybrid A* and RRT for autonomous off-road
driving of bicycle vehicles

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

Motion planning for autonomous vehicles have become a popular topic over the last three
decades, with the aim of enhancing safety and efficiency while planning in unfamiliar and
demanding environments. When it comes to preparing to drive in rough terrain, nothing
is simple. Due to characteristics such as inclination and terrain roughness, separating the
environment into obstacles space and free space is insufficient when driving in a challenging
environment. In this thesis, the environment is created using a combination of terrain
knowledge and an obstacle map. This allows the proposed methods to investigate optimality
conditions in terrain directly utilizing terrain characteristics.

This thesis focuses on comparing RRT and Hybrid A* using a simple bicycle model, given
the same conditions and environment. The experiments were carried out in two different
ecosystems, Rena and Hardangervidda. Especially in a open and flat place like Rena, the
Hybrid A* algorithm with higher δ values struggled to find a path, due to the minor elevation
difference in the landscape. Here, RRT and Hybrid A* algorithm with δ = 0, both yielded
great results with a success rate of 100 % after 10 iterations. In terms of examining optimality
conditions, one may argue that RRT has a tendency to find paths that are more safe and likely
to be what a person would prefer to drive. Hybrid A* with δ = 0, on the other hand, takes
significantly longer to approximate the shortest path. Although the paths obtained in RRT
may differ significantly between iterations, RRT and Hybrid A* with δ = 0 might be the best
choice in a flat surface such as in Rena.

In Hardangervidda, on the other hand, all algorithms were able to develop a solution path
with a success rate of 100 % after 10 iterations. The impact of choosing an incline-based cost
is significantly more emphasized due to the large elevation difference in the landscape. In
this case, choosing the path with the least amount of incline is more important than finding
the shortest path. For this reason, it is reasonable to argue that Hybrid A* with δ = 1 is the
optimal planner in Hardangervidda among the presented algorithms in the thesis.

i

ii

Acknowledgements

First and foremost, I would like to extend my sincere gratitude to my supervisors, Kim
Mathiassen and Marius Thoresen, for their helpful guidance, support and enthusiasm
throughout the entire thesis. Their knowledge of the field were extremely valuable.

Secondly, I would like to express a special thanks to our closest friends and family who
helped me getting through the program, especially this semester.

In addition, a special thanks and appreciation to my fellow students, especially Daniel
Woldegiorgis, Eivind Brastad Dammen, Sjamil Gazimagamaev and Øyvind Soma. I could not
have completed this program without the support of you guys.

Finally, I want to thank University of Oslo for giving me the opportunity to take part in the
Robotics and Intelligent Systems program and I want to offer my heartfelt gratitude to all of
the professors for their outstanding work.

Oslo, May 2021

Song Luu

iii

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Previous work . 2
1.4 Thesis outline . 3

2 Background and literature 4
2.1 Motion planning . 4

2.1.1 Configuration Space . 5
2.1.2 Environment . 6
2.1.3 Motion planning with a vehicle model . 6

2.2 Sampling based algorithm . 8
2.2.1 Rapidly-exploring random tree . 8
2.2.2 Bidirectional Rapidly-exploring random tree 10
2.2.3 Rapidly-exploring random tree* . 10

2.3 Search-based algorithm . 11
2.3.1 A* algorithm . 11
2.3.2 Hybrid A* algorithm . 13

3 Methodology 14
3.1 Objectives . 14
3.2 Preparation phase . 16

3.2.1 Data collection . 16
3.2.2 Models . 16
3.2.3 Image processing . 18

3.3 Implementation phase . 21
3.3.1 Designing RRT . 21
3.3.2 Designing Hybrid A* . 23

3.4 Expected results . 25

4 Results 26
4.1 Parameter tuning . 26
4.2 Rena . 30
4.3 Hardangervidda . 32
4.4 Analysis . 34

v

5 Discussion 37
5.1 Validation . 37

5.1.1 Unexpected behavior from path planning 37
5.1.2 Obstacle map of Hardangervidda . 38
5.1.3 Visualization . 38
5.1.4 Calculating incline . 38
5.1.5 Simplified vehicle model . 39

5.2 Encountered challenges . 39
5.2.1 Retrieving data from hoydedata . 39
5.2.2 Making a cost function . 39
5.2.3 Execution time for Hybrid A* . 40

5.3 Future work . 40

6 Conclusion 41

A Simulation - Hardangervidda 46

B Map analysis 48
B.1 Rena . 48
B.2 Hardangervidda . 49
B.3 Calculating incline for analysis . 50

C RRT code 51
C.1 Initialization of RRT . 51
C.2 Collision routine - RRT . 51
C.3 Finding path to goal - RRT . 52
C.4 RRT algorithm . 52

vi

List of Figures

2.1 An example of a path planning problem showing two equivalent paths to end
destination avoiding some obstacles. [30] . 4

2.2 "Motion planning in workspaces and in configuration spaces." [27] 5
2.3 Motion planning with a vehicle model . 7
2.4 Example of RRT algorithm [36] . 8
2.5 Extend operation in RRT [20] . 9
2.6 An example of motion planning for a unicycle, using a set of motion primitives

[32] . 10
2.7 Bidirectional RRT [32] . 10
2.8 An example of A* algorithm in a grid search environment [8] 12
2.9 The main difference between A* and Hybrid A* [4] 13

3.1 The thesis’ methodology . 15
3.2 High-resolution terrain data from hoydedata.no 16
3.3 High-resolution terrain data of Rena, Norway obtained from hoydedata.no . . . 17
3.4 The left image illustrates the Digital Surface Model and the right image

illustrates the Digital Terrain Model of Rena, Norway. 17
3.5 An illustration showing the main differences between DSM vs DTM [9] 18
3.6 The difference between DSM and DTM from the same image as in Figure 3.4. In

addition, a threshold of 3 meters is used to remove noise. 19
3.7 Pure steepness map obtained using Sobel operator. The Sobel picture is from

Rena. 19
3.8 Obstacle map of Hardangervidda. When the gradient is greater than 3 meters,

it is considered an obstacle. 20
3.9 The Sobel image of Hardangervidda . 20
3.10 RRT flowchart . 22
3.11 Hybrid A* flowchart . 24

4.1 Hybrid A* with δ = 0.25, without costs for steering and velocity 27
4.2 Hybrid A* with δ = 0.25, with additional costs for steering and velocity 28
4.3 Hybrid A* with δ = 0.25, with additional costs for steering and velocity as well

as a slightly changed starting pose θ . 29
4.4 One of the iterations in Rena. δ = 0.25 and δ = 0.5 failed to find a feasible path. . 31
4.5 One of the iterations in Hardangervidda . 33
4.6 Run 2. Unexpected behavior with δ = 0.25 and δ = 0.5 36

5.1 Hybrid A* with δ = 1, struggling to find a path . 38

A.1 Run 2 - Hardangervidda . 47

vii

List of Tables

4.1 Setup for experiment 1 . 26
4.2 Setup for experiment 2 . 27
4.3 Setup for experiment 3 . 29
4.4 Experiment setup in Rena - Run 4 . 30
4.5 Simulation data for Figure 4.4 . 30
4.6 Experiment setup in Hardangervidda - Run 2 . 32
4.7 Simulation data for Figure 4.5 . 32
4.8 Monte Carlo simulation in Rena: 10 iterations . 34
4.9 Experiment setup in Rena - Run 2 . 35
4.10 Monte Carlo simulation in Hardangervidda: 10 iterations 35

5.1 Motion primitives . 37

viii

Abbreviations

AUV Autonomous Underwater Vehicle

DARPA Defense Advanced Research Projects Agency

DSM Digital Surface Model

DTM Digital Terrain Model

FFI Forsvarets forskningsinstitutt

GPS Global Positioning System

LIDAR Laser Imaging Detection and Ranging

NASA National Aeronautics and Space Administration

PRM Probabilistic Roadmap

RRT Rapidly-exploring Random Tree

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

ix

Chapter 1

Introduction

This chapter will give a brief overview of the motivation and the problem statement of this
thesis. In addition, some related work, as well as state-of-the-art motion planning algorithms
for autonomous off-road vehicles, will be presented here to provide an overview of the area.
Finally, a description outlining the remainder of the thesis will be given.

1.1 Motivation

In the autonomous self-driving space, the robotic motion planning issue has seen a steady
increase in terms of research and implementation over the last three decades. Vehicles are now
capable of operating autonomously to some degree, thanks to recent advances in sensing and
computing technology. However, research is still ongoing with the aim of improving safety
and efficiency by exchanging knowledge and coordinating vehicle behavior on the road.

The Norwegian Defence Research Establishment (in Norwegian: Forsvarets forskningsin-
stitutt (FFI) has for a number of years been researching Autonomous Underwater Vehicle
(AUV) and Unmanned Aerial Vehicle (UAV). In recent years, FFI has begun to look into
Unmanned Ground Vehicle (UGV) to research autonomous driving in terrain [25] [38] [26].

UGV is often used in applications where its purpose is to replace humans in dangerous,
high-pressure situations. In defence, one may use UGV as combat vehicles, but it also has
other applications including firefighting, public safety, surveillance, and supply distribution
in remote areas [40]. Outside of military applications, one may see UGVs are being used in
space applications, i.e. the National Aeronautics and Space Administration (NASA)’s Mars
Exploration Rover project [24]. Moreover, in commercial applications like in agriculture or
manufacturing purposes.

Motion planning, also known as path planning, is the method of determining a path
through an obstacle-filled area. The motion planning problem is to find a sequence of control
inputs which drives the robot from its initial state to one of the goal states given a robot and
its dynamics, a representation of the environment, an initial state, and a set of goal states [16].
The vehicle must be able to prepare and arrive at a destination with ease.

However, for off-road driving, the surroundings are complex and it may be ineffective to
divide the world into obstacles/non-obstacles. The optimal path may not be the shortest one.
Hence, there are multiple variables to considerate, e.g. finding the path with least incline, the
least unevenness, the least vegetation, or the one that is considered the safest path.

1

1.2 Problem statement

The research into motion planning for autonomous off-road driving is still ongoing, with
the aim of enhancing safety and efficiency while planning in unfamiliar and demanding
environments [14]. The ability to autonomously navigate to a destination in a safe manner is
one of the key issues when preparing in challenging terrain conditions. Based on this issue, the
aim of the thesis is to investigate two appropriate motion planning algorithms for simulating
off-road driving. The following research questions are addressed in this thesis:

1. Are there any motion planning methods that are particularly suitable for this specific
task?

2. Investigate adaptation possibilities and utilize this for finding close to realistic and
optimal paths.

3. Identify performance metrics for the two motion planning algorithms for evaluation.

1.3 Previous work

In 1959, Edsger W. Dijkstra published a paper about an algorithm for finding the shortest
paths between nodes in a weighted graph [5]. Dijkstra’s algorithm calculates the path of least
cost/weight, also known as the shortest path, by incrementally constructing a collection of
nodes with the shortest distance from the source. The collection of nodes are expanded by
selecting the edge with least cost, ensuring that the shortest path property is maintained for
each new node. The search continues until the goal is reach, and the optimal path is found.

One of the most known motion planning algorithms is the so-called A* search algorithm
which was first published in 1968 by researchers at Stanford Research Institute, namely
Peter Hart, Nils Nilsson and Bertram Raphael [11]. This algorithm is inspired by Dijkstra’s
algorithm, but achieves faster performance due to its ability of using heuristics to guide its
search.

These searching algorithms inspired many researchers, especially the extension of the well-
known A* search algorithm to operate in a known environment. The Defense Advanced
Research Projects Agency (DARPA) organized the DARPA Urban Challenge [2], a driverless
car competition in 2007. The Stanford Racing Team [4] participated, using a hybrid solution
of A*. This A* searching algorithm were expanded with a kinematic state space of the vehicle
in SE(2), defined by x, y and θ. In this paper, the state-update rule operated and updated in
continuous time, while the search were discretized accordingly. Combining this hybrid-state
A* search with Reed-Shepp paths, the vehicle were able to move forward in the state space
while it taken in consideration of the obstacle grid’s Voronoi graph, yielding great results and
took second place in that competition.

In the following years, more trajectory planners were introduced mainly focusing in
unknown, unstructured environments with many obstacles. In [6], a unique variant of A*
were presented to find a feasible path even with badly placed way-points due to poor Global
Positioning System (GPS) signals. This robust solution utilizes Laser Imaging Detection and
Ranging (LIDAR) and camera data to calculate cost, while taking in consideration to obstacles,
curvature and slope. In similar to [4], this planner also considers the obstacle grid’s Voronoi
graph. This way, the vehicle will safely avoid obstacles. This autonomous vehicle took first
place in the "Autonomous Navigation" scenario at euRathlon in 2013 [7].

Another approach was presented in [15] where an efficient path planning method was
designed for real-time operations using short range sensors. By using a A*-like searching

2

algorithm, along with detailed vehicle model and greatly accurate pose estimation, the vehicle
could safely preform local path planning. In this research, two real world experiments were
performed with exceptional performance.

While A* search methods gained a lot of attraction, an important method in path planning
were introduced, i.e. sampling based algorithms. In the early 90s, one of the most popular
methods that was gaining a lot of momentum was the Probabilistic Roadmap (PRM) approach,
which was developed by researchers at Utrecht University and Stanford University [18]. The
idea of the PRM was to generate many samples in the space. Those samples will lie everywhere
on the space, for instance on obstacles or in the free space. Afterwards, the roadmap is
constructed by trying to connect pairs of samples that are close to each other. After many
repetitions, for instance a few thousand samples, one may eventually obtain a dense graph
known as a roadmap. In order to connect point A to point B, one should look onto the roadmap
and find a nearby node that is in the roadmap from your point A, correspondingly for point B.
The last step is to use a standard graph search technique.

In 1998, Steven M. LaValle proposed an efficient method for finding feasible paths more
rapidly [20], i.e. Rapidly-exploring Random Tree (RRT). This method is based on randomly
sampling a searching area by incrementally building up the searching tree. To obtain
optimality, [16] introduced both PRM* and RRT* by implementing a distance-based cost
function that will be minimized. In later stages, [21] further developed the RRT* in a off-road
terrain with uncertain slip, yielding great results. [37] combined RRT* with LIDAR sensors,
where samples were gathered from LIDAR point cloud data, before planning a path while
consider roughness to increase safeness.

1.4 Thesis outline

The following sections of this thesis are structured as follows. In Chapter 2, important concepts
and technologies in motion planning will be introduced. The methodology used to address
the problem statement is covered in Chapter 3. The findings of the simulation are described in
Chapter 4, as well as a section dedicated to analysis of the obtained data. Chapter 5 will discuss
the validity of the results, challenges encountered during the thesis, along with proposals for
future work. Finally, a conclusion is presented in Chapter 6.

3

Chapter 2

Background and literature

This chapter introduces important concepts and technologies in motion planning such as
sampling-based method Rapidly-exploring Random Tree and search-based method Hybrid
A*. This will form a foundation that will be used in later chapters.

2.1 Motion planning

Generally speaking, motion planning consists of finding a path or a trajectory for some moving
object though an environment. The moving object could be a robot, an autonomous vehicle or
perhaps some animated characters in a video game. The primary goal of motion planning is
to find a feasible path from an initial state to a target state, with finding an optimal path as a
secondary goal. All paths must be feasible, but they do not always have to be optimal.

Figure 2.1: An example of a path planning problem showing two equivalent paths to end
destination avoiding some obstacles. [30]

4

In the literature, the terms feasible and optimal are used to describe the quality of a solution
path. A feasible path is one that satisfies all the constraints for the moving object. It is critical
that the vehicle does not collide with any obstacles in the environment. In addition to this
constraint, it is also important to implement constraints in term of physical limitations of the
moving object, such as rates of turning and acceleration [28].

An optimal path is a path that is based on minimizing a specified cost function. For instance,
the most common cost function is based on distance, where the objective is to minimize it to
find the optimal path in term of distance. However, as mentioned in Chapter 1.1, the optimal
path may not be the shortest one, but other factors such as incline, unevenness, vegetation or
safeness that may be more important. To do so, one must design a customized cost function for
the specific purpose of the path planning. An example of a path planning problem is illustrated
in Figure 2.1.

2.1.1 Configuration Space

For the sake of planning, it is important to define the configuration space of the robot. A
configuration is a set of variables that describes the robot’s pose, such as the base position
of the robot, its rotation and translation. For instance, if a robot is a single point translating
in a two-dimensional plane, then each configuration q can be represented by two parameters
(x, y) in a plane. In other words, a configuration space, or C-space, is a set of all possible
configurations that a robot can assume [32].

Figure 2.2: "Motion planning in workspaces and in configuration spaces." [27]

In Figure 2.2, the left figure shows a two-linked robot in a workspace with colored
obstacles. Given both initial and goal settings in the workspace, it is possible to describe the
correspondence between obstacles in the workspace and obstacles in the configuration space,
as shown in the right figure. The blue curve is the result of a path planning algorithm, forming
a path from start to goal destination [29].

Working in C-space is quite beneficial due to the fact that the moving object is a single point
rather than a set of variables.

5

2.1.2 Environment

In motion planning, a map or a model of the environment is required. It is reasonable to
divide the environment into obstacle and non-obstacle segments in order to solve the motion
planning problem. In the literature, obstacle space is referred as a restricted area that the robot
cannot move because the robot can encounter an obstacle. Non-obstacle space, also known as
free space, is a set of configurations that prevent colliding with obstacles. Many algorithms
includes a collision detection to test whether the robot’s pose collides with the environment,
for instance in [15] and [28].

However, everything is not straightforward when preparing to drive in terrain. When
driving in a difficult setting, dividing the environment into obstacles space and free space
is insufficient due to factors such as incline and terrain roughness. In order to address this
problem, a LIDAR derived elevation map may be used in planning. In this case, the entire
map of the environment, i.e. a global offline map, can be obtained in advance using LIDAR
scans from a flight. A vehicle may also be equipped with sensing technologies such as LIDAR
to perform real-time terrain mapping in order to sense the area, i.e. a local online map. LIDAR
collects data on terrain features such as obstacle sizes and roughness on a local level and
returns a collection of point data, as done in [37]. One may get a good overview of the area
by combining terrain knowledge with the obstacle map. Furthermore, there are also many
methods for establishing an environment model such as a grid decomposition map, quad split
graph and visibility graph [23].

2.1.3 Motion planning with a vehicle model

A vehicle model must be specified for motion planning simulation purposes. Establishing a
vehicle model that satisfies its non-holonomic constraints, i.e. constraints that prevent a vehicle
from traveling directly to any point in its configuration space, is crucial. In order to go from
one state to another, the vehicle must take a sequence of actions.

This section will cover some of the most popular vehicle models that meet these
requirements, such as the unicycle and the bicycle model.

Unicycle model

A single-wheeled vehicle is known as a unicycle. This model can be described by configuration
q =

[
x y θ

]T, where (x, y) are the Cartesian coordinates of the wheel base, and θ is the
orientation of the wheel with respect to the x-axis [32]. This model has a rolling restriction,
which implies that all motion in the direction of the wheel plane is determined by wheel spin.
This constraint can be written as:

ẋ · sin(θ)− ẏ · cos(θ) = 0 (2.1)

According to equation 2.1, the velocity is zero in the wheel’s rolling direction. Figure 2.3a
shows the unicycle model. However, the drawback of this model is that it has balance problem.
The transition equation satisfies its non-holonomic constraints and is given as:

ẋ = v · cos(θ)
ẏ = v · sin(θ)

θ̇ = ω

(2.2)

where v is the driving velocity and ω is the steering velocity.

6

(a) Unicycle model [32] (b) Bicycle model [32]

Figure 2.3: Motion planning with a vehicle model

Bicycle model

A bicycle is a two-wheeled vehicle that can be classified according to its configuration q =[
x y θ φ

]T, where (x, y) are the Cartesian coordinates of the wheel base, θ is the orientation
of the wheel with respect to the x-axis and φ is the steering angle. The bicycle model is
illustrated in 2.3b.

Similar to the unicycle model, this model has physical limitations e.g. the vehicle cannot
drive sideways as well as the steering radius is bounded [3]. Consider a small time interval
∆T, then the vehicle must drive in the direction that the wheels are pointing. This condition
can be written as:

ẋ f · sin(θ + φ)− ẏ f · cos(θ + φ) = 0

ẋ · sin(θ)− ẏ · cos(θ) = 0
(2.3)

where (x f , y f) is the Cartesian coordinates of the center of the front wheel. In order to
analyze the kinematics of the model, one must select a reference point (x, y). If the desired
point is at the center of the front wheel, the transition equation is given as:

ẋ = v · cos(θ + φ)

ẏ = v · sin(θ + φ)

θ̇ = v · sin(φ/L)
φ̇ = ω

(2.4)

If the desired point is at the center of the rear wheel, the transition equation is given as:

ẋ = v · cos(θ)
ẏ = v · sin(θ)

θ̇ = v · tan(φ/L)
φ̇ = ω

(2.5)

where v is the driving velocity and ω is the steering velocity [32].

7

2.2 Sampling based algorithm

Sampling based algorithms have become a popular choice due to its effectiveness and robust-
ness in high-dimensional continuous spaces. These algorithms explores the environment by
randomly selecting way-points from the state space and examines whether the point is reach-
able for the vehicle using steering and collision checking routines [28]. If successful, the al-
gorithm will return a valid path.

2.2.1 Rapidly-exploring random tree

As briefly mentioned in Chapter 1.3, LaValle proposed an efficient method for finding feasible
paths more rapidly [20]. This method is based on randomly sampling a searching area by
incrementally building up the searching tree.

Figure 2.4: Example of RRT algorithm [36]

The RRT algorithm is very simple to understand and implement. Based on the motion
planning problem mentioned in Chapter 1.1, i.e. to find a sequence of control inputs which
drives the robot from its initial state to one of the goal states given a robot and its dynamics, a
representation of the environment, an initial state, and a set of goal states. The vehicle must be
able to smoothly plan and reach an end destination.

The general idea is to create a tree that starts at the beginning and expands until it reaches
the desired region. A tree is a graph in which each node has only one parent. First, the only
node in the tree is the start node. Afterwards, the algorithm generates a random sample in
the map. If that sample is located in the free space and if the direct line to the closest node in
the tree does not cross any obstacles, a step will be taken from the tree to the sample using a
predefined step size ε. Lastly, the initial node will be connected to the new node, incrementally
building up the searching tree to hopefully find the path.

If this operation fails, the algorithm will select the node in the tree that is nearest to it. This
continues until the tree reaches the desired destination. The algorithm terminates when the
target is connected to the tree.

Instead of choosing a random sample in the map, LaValle recommended a bias function.
This bias improves exploration performance by selecting the goal node rather than a random
sample. As a result, steering the search towards the final goal.

8

Algorithm 1: RRT algorithm [20]

Function Build_RRT(x_init):
graph.init(x_init)
for k = 1 to K do

x_init← random_state()
EXTEND(graph, x_init)

end
return graph

Function EXTEND(graph, x):
x_near← NEAREST_NEIGHBOR(x,graph)
if NEW_STATE(x, x_near, x_new, u_new) then

graph.add_node(x_new)
graph.add_edge(x_near, x_new, u_new)
if x_new = x then

return goal reached
end
return continue

end
return failed to find path

Figure 2.5: Extend operation in RRT [20]

An approach to extend RRT for a non-holomomic vehicle is to use motion primitives, i.e. a
set of computed motions that the robot can take, to make the path admissible. The procedure
is similar to Algorithm 1, where the main difference is that for each generated sample x,
the motion primitives are applied starting from x_near. One could either select one of the
configurations randomly or select the one that is closest to the random generated sample x.
A collision test must be preformed before adding the path to the tree. Figure 2.6 shows an
example of this approach.

The benefit of RRT is the efficiency with regard to computational effort. This algorithm
finds a feasible path in high dimensional continuous spaces rapidly compared to searching
algorithms like A*. However, one of the main drawbacks of RRT is that the path obtained is
only feasible.

9

Figure 2.6: An example of motion planning for a unicycle, using a set of motion primitives [32]

2.2.2 Bidirectional Rapidly-exploring random tree

LaValle suggested the concept of having two growing trees instead of one to increase efficiency
[20]. One tree begins at the initial state, while the other begins at the end state. A solution path
is identified whenever the two RRTs intersect. To ensure that the trees meet before covering
the entire searching area, the RRT construction must be biased. In this field, further research
has been conducted, such as in [22] and [31].

Figure 2.7: Bidirectional RRT [32]

2.2.3 Rapidly-exploring random tree*

One of RRT’s drawbacks is that the solution is not optimal like the one given by the A* 2.3.1,
but this can be dealt by using path optimization techniques that can reduce greatly the length
of the RRT path. [16] tackled this problem by introducing RRT*, an algorithm that focused on
path optimality. The purpose is to look at multiple nodes and choose the connection which
preserve the structure, and which minimizes the path length. Furthermore, one wants to find
the cost between the sampled node and the parent node such that it is minimized.

Once a path is found from an initial trial, the method performs sampling again and
evaluates if the new path is more optimal than the previous path. The sampled paths will
asymptotically converge to the optimal path.

10

2.3 Search-based algorithm

Search-based algorithms, also referred as grid-based algorithms in the literature, are based on
overlaying a grid on the configuration space. When overlaying a grid on the configuration
space, each configuration is identified with a grid point. For each grid point, the robot is
allowed to move to nearby points given there are no obstacles in the path.

2.3.1 A* algorithm

One of the most known search-based algorithms is the A* search algorithm [11]. This informed
search algorithm achieves great performance by utilizing heuristics to guide its search. With
this approach, the goal is to find the shortest path from point A to B in a graph using the edge
connections. At first, the starting node is added to the open set. Essentially, the open set is a
queue that keeps track of the nodes that one wants to consider. The algorithm is prioritizing
nodes with respect of a total cost for distance, i.e.

F(n) = H(n) + G(n) (2.6)

H score is a function h(n) that gives us an estimate of the absolute distance from current
node n to the end node, without considering any obstacles that blocks the path. G score,
however, is the current shortest distance from the start node to the current node, while the F
score is the total score with H score and G score combined. The F score, or the total score,
represents how far the current node n is to the goal node n while taken in consideration of
the shortest distance from the start node to current node n. In other words, the total score
represents how the finalized path would look like.

As mentioned earlier, the algorithm considers nodes that has the lowest total score, because
it attempts to find the shortest path. While considering nodes, the algorithm is computing the
total score to its neighbor nodes n. When finished, the node that has been examined is moved
to a set called the closed set. By doing so, it prevents checking a node more than once. The
neighbor nodes that are examined, are then moved to the open set which will be ordered in an
ascending matter. The algorithm terminates once a path is found or there are no paths eligible
to be extended, i.e. failing to find a valid path.

11

Algorithm 2: A* algorithm pseudocode [19]

OPEN //nodes to be evaluated
CLOSED //nodes that has been evaluated
add the start node to OPEN
while path_not_found do

current = node in OPEN with the lowest f_cost
remove current from OPEN
add current to CLOSED
if current_node = end_node then

return path
end
for all neighbors of the current node do

if neighbor IS NOT reachable OR neighbor IS IN CLOSED then
skip to the next neighbor

end
if new path to neighbor IS shorter OR neighbor IS NOT IN OPEN then

set f_cost of neighbor
set parent of neighbor to current
if neighbor IS NOT IN OPEN then

add neighbor to OPEN
end

end
end

end

Figure 2.8: An example of A* algorithm in a grid search environment [8]

A* produces an optimal path when successful. However, this method is computational
expansive and consumes a lot of memory space. This is because every cell in the grid needs to
be stored in the memory, even if it is not contribute to finding the solution. The computations
required are increasing exponentially as the dimensionality of the problem or the resolution of
the grid increases [12].

12

When designing an A* algorithm, there are multiple ways to measure distance such as:

1. Manhattan distance, which allows 4 directions of movement.

2. Diagonal distance, which allows 8 directions of movement.

3. Euclidean distance, which allows any direction of movement.

Certainly, the choice of measuring distance has a large impact on what how many neighbor
nodes that are going to be considered. As a result, not only could this impact the finalized path,
but also the running time and performance.

2.3.2 Hybrid A* algorithm

In the last decade, there has been done further research in the field of Hybrid A* due to its
outstanding performance in motion planning applications, especially in an unknown territory
with uncertainties. Normally, in a Hybrid A* algorithm, the A* algorithm is expanded with a
vehicle model bearing in mind of the constraints in term of physical limitations of the moving
object, such as rates of turning and acceleration. A tree is growing out of the nodes to replicate
the steering angles for a given vehicle. As a consequence of that, the path produced in Hybrid
A* is smoother compared to A*. Figure 2.9 emphasizes these modifications.

Figure 2.9: The main difference between A* and Hybrid A* [4]

Similar to A*, Hybrid A* algorithm intends to find the shortest path. Due to motion
primitives and tree expansion, the path obtained in Hybrid A* is only an approximation of
the shortest path, as illustrated in Figure 2.9. Furthermore, as mentioned in Chapter 1.3,
researchers have also discovered ways to modify the cost function so that it takes into account
steepness or curvature, as done in [6]. This can be archived by adding a cost term in equation
2.6 that utilizes terrain characteristics to calculate an additional cost, e.g.

F(n) = H(n) + G(n) + C(n) (2.7)

13

Chapter 3

Methodology

This chapter describes the methodology adopted in order to answer the thesis’ problem
statement presented in Chapter 1.2:

1. Are there any motion planning methods that are particularly suitable for this specific
task?

2. Investigate adaptation possibilities and utilize this for finding close to realistic and
optimal paths.

3. Identify performance metrics for the two motion planning algorithms for evaluation.

3.1 Objectives

This thesis focuses on simulating a motion planning problem, i.e. planning a path in a
challenging terrain with many uncertainties. In order to plan the optimal path, one may often
try various methods with different environments which can be used for comparison in the later
stages.

According to recent studies, there are two types of methods that are most commonly
studied: sampling-based methods and searching-based methods. The methodology chosen
in this thesis is to compare a sampling-based method with a searching-based one. RRT, a
sampling-based method, has been chosen for investigation due to its ability to find a feasible
path efficiency with regard to computational effort. Hybrid A*, on the other hand, has been
chosen for further research as the searching-based method due to its extensive possibilities
for developing a cost function that takes into account steepness, curvature and distance, as
mentioned in Chapter 2.3.2. It would be particularly interesting to look at the differences
between the two motion planning algorithms, as well as how well they would perform in a
challenging terrain with numerous obstacles.

This thesis focuses on comparing RRT and Hybrid A* using a simple bicycle model,
given the same conditions and environment. Furthermore, it is essential to utilize the terrain
characteristics directly to investigate optimality conditions in terrain. Deciding upon what is
the optimal path is something that must be examined in the thesis.

14

Figure 3.1: The thesis’ methodology

The thesis’ objectives can be illustrated as shown in Figure 3.1 and can be divided into three
phases detailed as followed:

1. Preparation

First and foremost, a model of the environment is required for motion planning
applications. Since this thesis focuses on simulated driving, it is desirable to obtain and
use real and high-resolution terrain data. As a result, a global offline map may be the
best option. As stated in Chapter 2.1.2, one might combine terrain information with an
obstacle map to get a good overview of the area. As a consequence, image processing is
needed to manipulate the terrain data to meet the task’s requirements.

2. Implementation

The aim of this phase is to answer to the second thesis problem statement, as mentioned
previously. The goal is to create an RRT and Hybrid A* software architecture based
on a bicycle model. Following that, the implemented algorithms will be tested in the
environments that were acquired during the preparation phase.

3. After implementation

The final phase is dedicated to addressing the third thesis problem statement. Multiple
simulations in various environments will be conducted with the aim of investigate
optimality conditions based on different terrain characteristics. Later on, the gathered
data will be analyzed and discussed.

15

3.2 Preparation phase

Initially, a map or a model of the environment is required in preparation for software
implementation. This is important due to the fact that the methods will directly utilize
the terrain characteristics to plan a path given some start and end coordinates. Since this
research study is focusing on simulating motion planning for autonomous off-road vehicles,
it is satisfactory to download terrain data, i.e. a global offline map, rather than using outdoor
map tools such as LIDAR for real experiments. As a result, terrain data has been downloaded
from hoydedata.no [13], a website that provides high-resolution terrain map data over Norway.
Figure 3.2 illustrates the website which will be immensely used during the preparation phase.

Figure 3.2: High-resolution terrain data from hoydedata.no

3.2.1 Data collection

When collecting data from hoydedata, the first step is to find a desirable field of their choice.
The received data is in GeoTIFF, an image format file for high-quality graphics which includes
georeferencing information. This format is inconvenient when using computer vision libraries
like OpenCV, because tif-files are not supported. Fortunately, there are various methods to
visualize satellite images, for instance RasterIO, Georaster and GDAL [17]. GDAL is the most
popular library amongst them, making it a natural choice for converting datatypes [10] [41]. By
using GDAL, one may successfully convert tif-files to matrices, which makes image processing
achievable.

3.2.2 Models

When retrieving the data from hoydedata.no, one will get a model containing information about
the surface and the terrain of a certain area. After converting tif-files to matrices, one can
exploit the models to create an environment. Scaling has been performed due to the size of the
obtained data. The original data was in 0.25 point density, but it was scaled to 1.05 for storage
and display purposes.

16

hoydedata.no
hoydedata.no

Figure 3.3: High-resolution terrain data of Rena, Norway obtained from hoydedata.no

Figure 3.4: The left image illustrates the Digital Surface Model and the right image illustrates
the Digital Terrain Model of Rena, Norway.

Digital Surface Model

A Digital Surface Model (DSM) is a three dimensional representation of a surface that captures
the elevation of all objects, such as trees, buildings and vegetation seen from above [33]. This

17

information is crucial in the process of creating an obstacle map. Figure 3.4 illustrates a DSM
obtained from hoydedata.no.

Digital Terrain Model

Similar to DSM, a Digital Terrain Model (DTM) is also a three dimensional representation of a
surface. The main difference in DTM compared to DSM is that it does not include underlying
objects such as trees. It includes height differences in a terrain. An example of a DTM can be
seen in Figure 3.4.

Figure 3.5: An illustration showing the main differences between DSM vs DTM [9]

3.2.3 Image processing

Now that both DSM and DTM are acquired, it is time to do some image processing to create a
obstacle map. An easy approach is to compute the difference between DSM and DTM to get
a map consisting of obstacles. With this relatively easy approach, one may see some adequate
results like shown in Figure 3.6. The code can be inspected in Listing B.1.

To sort the image during the development of the obstacle map, a threshold is set. The noise
is removed using a 3 meters threshold. Everything over 3 meters in Rena, such as trees, would
be considered as obstacles.

Sobel operator

Map analysis is essential when creating a motion planning application. A notable tool is the
Sobel operator [34]. One can consider using a Sobel operator to obtain even more information
from the gathered terrain data. Sobel operation is a edge detector which is used to find the
gradient of an image. If a Sobel operator is applied to the Digital Terrain Model, i.e. the plain
terrain model without objects, the result will be a map containing valuable information about
the gradient, hence a pure steepness map. Figure 3.7 illustrates the steepness of the same area
as in Figure 3.3.

Because the objective of this thesis is to simulate in many environments, a similar procedure
is used to create a new model. This segment will take place in Hardangervidda, Norway, a
mountainous region with numerous gradient variations. Instead of utilizing a threshold for
the DTM − DSM picture, a threshold is utilized in the Sobel picture for creating an obstacle
map of Hardangervidda. When the gradient exceeds 3 meters, it is classified as an obstacle.
The code can be inspected in Listing B.2.

18

hoydedata.no

Figure 3.6: The difference between DSM and DTM from the same image as in Figure 3.4. In
addition, a threshold of 3 meters is used to remove noise.

Figure 3.7: Pure steepness map obtained using Sobel operator. The Sobel picture is from Rena.

19

Figure 3.8: Obstacle map of Hardangervidda. When the gradient is greater than 3 meters, it is
considered an obstacle.

Figure 3.9: The Sobel image of Hardangervidda

20

3.3 Implementation phase

The implementation phase aims directly at the problem statement presented in Chapter 1.2
and Chapter 3. Since the preparation phase is finished, and the maps are prepared, it is time
to start with the implementation. In this phase, the software framework of RRT (presented in
2.2.1) and Hybrid A* (presented in 2.3.2) will be implemented.

The software will be implemented in Python 3 due to its popularity amongst programmers
and its huge library versatility in image processing, automation and visualization. Many
modules in Python are being used, including pygame for visualization, OpenCV for image
processing and others that will be explained in further sections.

Obviously, there are other programming languages that are suitable for this task. C++ and
ROS has been considered in the earlier stages of this thesis, but due to personal preference and
coding capability, it was natural to choose Python for this task.

3.3.1 Designing RRT

In this section, RRT will be implemented based on Chapter 2.2.1 and explained in detail. The
code can be viewed in GitHub repository [35] and is based on [1]. The following flowchart
presented in Figure 3.10 shows the algorithm in a step-by-step manner.

First, based on the motion planning problem mentioned in Chapter 1.1, it is required to
define an initial state, goal state and get a representation of the environment in order for the
vehicle to plan a path from A to B. These parameters will be set in the initialization section of
Figure 3.10, along with the obstacle map obtained from Chapter 3.2.3. This map is essential in
order to do collision checks for the given vehicle. Second, the tree that is built by nodes, has to
be stored in arrays to keep track of its parent.

The general idea is to create a tree that starts at the beginning and expands until it reaches
the desired region. First, the only node in the tree is the start node. The algorithm then moves
on to sampling a new point on the map at random. By comparing distances between all nodes
in the tree, the nearest node in the tree will be identified. If the sample is in free space and the
direct line to the nearest node in the tree does not cross any obstacles, a predefined step size
will be taken from the tree to the sample. Finally, the initial node will be connected to the new
node, gradually increasing the size of the searching tree in the hopes of discovering the path.

The collision check routine is done mainly by using a look-up table of the obstacle map,
with the assumption that the vehicle is a dot in the environment. This routine is divided into
two parts. Firstly, whenever a new random point is sampled, a check is done whether or
not that point is in a obstacle. The new node (xn,yn) is sent to the obstacle map, checking
whether the pixel value is 255. If this is the case, the pixel must have a white background.
If the pixel value is 0, i.e. black filling, the new node will be removed, and a new point will
be sampled. Secondly, the function crossObstacle(x1,x2,y1,y2) is checking whether there are
obstacles in between those two coordinates, making it untraversable. This is done by using a
linear interpolation approach with 100 samples in between two coordinates. If those conditions
are satisfied, the edge will connect the two nodes, further expanding the tree. The code can be
inspected in Listing C.2.

If the tree doesn’t reach the goal within 10 seconds, the algorithm will terminate. However,
if the tree finds the goal position, it will go through the stored nodes and append its parents
starting from the goal node. This way, the algorithm can track where the nodes came from and
backtracks to the initial position. The code can be inspected in Listing C.3.

For every 20 iterations, a bias function is called. This function is designed to drive the
search towards the goal by selecting the goal position as the reference direction rather than a

21

Figure 3.10: RRT flowchart

random sample, as mentioned in Chapter 2.2.1. The code for this function can be inspected in
Listing C.4. Every other iterations will use the expand function until a path is found.

22

3.3.2 Designing Hybrid A*

In this section, Hybrid A* will be implemented based on the literature provided in Chapter
2.3.2. The code can be viewed in GitHub repository [35] and the reference code for Hybrid A*
is based on [39]. The algorithm is described in the flowchart below in Figure 3.11.

Since the objective is to compare RRT and Hybrid A*, the same environment is loaded to
form an identical base as in RRT. In this way, it will be easier for compare the algorithms in the
analysis part of the thesis. The provided Hybrid A* algorithm is an extension of A* and where
a simple bicycle model is implemented for the vehicle to find its neighbor nodes for any given
node that the vehicle is in. With this approach, kinematic constrains will be preserved. Motion
primitives, i.e. computed motions that the robot can take, is used to calculate costs.

As previously stated in Chapter 2.3.1, the open set that keeps track of the nodes in a
queue, prioritized by the lowest total score. To keep track of the priority queue open set,
the python module heapq is used. This module is advantageous because it automatically
sorts the incoming path and the corresponding costs in an ascending order. At first, the
starting node is added to the open set, and it is the first node that will be explored to kick
off the searching process. Then, the bicycle model described in Chapter 2.1.3 will be used for
finding its neighbor nodes from the starting node. A similar collision check as in RRT will be
preformed, in order to check whether the path is suitable for driving. Afterwards, each motion
will be assigned a total cost, and the lowest score among them will be selected for further
exploration until a solution is found.

The cost function that will be used for the proposed method is,

F(n) = H(n) + ((1− δ) · G(n) + δ · C(n_prev, n)) + Cs + Cv (3.1)

where

1. F(n) is the total cost.

2. H(n) is the heuristics function that gives us an estimate of the absolute Euclidean
distance from current node to the end node.

3. G(n) is the distance travelled from start to current node.

4. C(n_prev, n) is the cost function. This function directly uses the Sobel image, summing
the absolute gradients, i.e. change in elevations for 20 samples between the motion
primitives. Interpolation of the curved path is used to determine the waypoints of 20
samples between nodes.

5. C_s is the cost for steering. 1

6. C_v is the cost for velocity. 2

7. δ is the weighting scalar ∈ [0, 1].

By assigning a low δ value, for instance 0, the algorithm will behave like a pure A*
algorithm where the objective is to find the shortest path. Furthermore, as δ increases towards
1, the algorithm will focus more on the terrain slope when planning a path. This way, the
algorithm is expected to find a less rough path focusing more on the terrain cost rather than
pure distance. The flowchart describing the algorithm can be seen in Figure 3.11.

1Must be tuned prior to simulation.
2Must be tuned prior to simulation.

23

Figure 3.11: Hybrid A* flowchart

24

3.4 Expected results

As mentioned in Chapter 2.2.1, the main benefit of RRT is its efficiency in terms of
computational time. As opposed to searching algorithms like Hybrid A*, RRT finds a feasible
path in high-dimensional continuous spaces faster. Hybrid A* with δ = 0, on the other
hand, produces an optimal path in term of minimum distance when successful. However,
this method is computational expansive and consumes a lot of memory space because all cell
information needs to be stored in the grid. Moreover, it will be interesting to look at the results
obtained in Hybrid A* algorithm with different δ values. It is expected that the algorithm will
find a alternative path by partially or only taking in consideration of incline, depending on the
δ value. This will make the vehicle drive longer compared to minimum distance path planner
in Hybrid A* with δ = 0.

25

Chapter 4

Results

This chapter describes the result of the methodology outlined in Chapter 3. To evaluate
the efficiency of the proposed methods, the algorithms will be evaluated in two completely
different settings. Prior to simulation, the proposed cost function’s parameters will be tuned.

4.1 Parameter tuning

The first experiments will be in conducted Rena, Norway, with the focus on tuning the cost
function prior to simulation. This place is suitable for simulation because this place is open
and the surface is quite flat. In the past few years, FFI has also conducted real experiments
here.

In the first experiment, the focus is on tuning the cost function of Hybrid A* to investigate
optimality conditions based on terrain characteristics. Hybrid A* with δ = 0.25 will be checked
for steering and velocity without incurring any extra costs. This means that the planner can
plan a path without taking into account driving in reverse and can steer as it pleases.

Experiment 1 - Parameter tuning

Algorithm Hybrid A* with δ = 0.25

Start coordinates (458, 164)

End coordinates (272, 331)

Starting pose 110° deg

Steering [−30°, 0°, 30°]

Cost for steering [0, 0, 0]

Velocities [-5, 20]

Cost for velocities [0, 0]

Table 4.1: Setup for experiment 1

As shown in Figure 4.1, the starting coordinates (458, 164) are indicating with a green circle
in the upper right corner of the image, while the goal coordinates (272, 331) are the larger circle
in the left side of the image. The dense section of the found path, marked by a large number of
red circles, takes up the majority of the path and indicates that the vehicle is planning a path
by driving backwards. The planner refuses to increase the overall cost, in order to set up the

26

Figure 4.1: Hybrid A* with δ = 0.25, without costs for steering and velocity

vehicle to drive forward. This is certainly not ideal, and the reason of this behavior is that the
cost of driving backwards is identical as driving forward. To prevent such kind of unwanted
behavior, it is necessary to put a penalty on the vehicle of driving in reverse.

The next experiment, additional costs will be added into the cost function. Here, a penalty
of driving reverse is set to 25. In addition, in order to limit the vehicle to steering left and right,
a minor cost of steering is set to 2.5. The complete experiment setup can be seen in Table 4.2.

Experiment 2 - Parameter tuning

Algorithm Hybrid A* with δ = 0.25

Start coordinates (458, 164)

End coordinates (272, 331)

Starting pose 110° deg

Steering [−30°, 0°, 30°]

Cost for steering [2.5, 0, 2.5]

Velocities [-5, 20]

Cost for velocities [25, 0]

Table 4.2: Setup for experiment 2

27

Figure 4.2: Hybrid A* with δ = 0.25, with additional costs for steering and velocity

Figure 4.2 highlights the importance of costs that penalize undesirable behavior, as seen in
Figure 4.1. This modification allowed the vehicle to move forward to a larger extent, but it is far
from what a human would prefer of driving, due to its planning in a dense and obstacle-filled
area.

After more experimenting, the cost of velocities is set to [25, 0], i.e. a penalty of 25 for
driving in reverse. As well as assigning a cost of driving in reverse, the proposed method
of Hybrid A* algorithm also punishes the vehicle of steering frequently to maintain a more
smooth path. The proposed cost for steering is set to [5, 0, 5], which means to assign 5 in cost
when steering left or right.

The impact of the vehicle’s starting pose θ on the finalized path is worth noting. Consider
the same experiment setup as previously. The starting pose has been slightly modified, and
will be set to 80° deg. Table 4.3 shows the experiment setup.

28

Experiment 3 - Parameter tuning

Algorithm Hybrid A* with δ = 0.25

Start coordinates (458, 164)

End coordinates (272, 331)

Starting pose 80° deg

Steering [−30°, 0°, 30°]

Cost for steering [2.5, 0, 2.5]

Velocities [-5, 20]

Cost for velocities [25, 0]

Table 4.3: Setup for experiment 3

Figure 4.3: Hybrid A* with δ = 0.25, with additional costs for steering and velocity as well as
a slightly changed starting pose θ

In terms of behavior, Figure 4.3 indicates an improvement over the previous experiments.
By avoiding all wooded areas, the finalized path seems to be much like what a person would
drive. When performing tests in later stages, the choice of starting pose θ would be kept in
mind.

29

4.2 Rena

Figure 4.4 shows one of the test runs conducted in Rena. As anticipated, RRT finds a feasible
path fastest among the algorithms with a elapsed time of 0.851 seconds. However, the obtained
path is more than twice as long, in terms of distance, then the shortest path obtained in Hybrid
A* with δ = 0.

Rena run 4

Start coordinates (30, 231)

End coordinates (458, 130)

Starting pose 1 0° deg

Steering [−30°, 0°, 30°]

Cost for steering [5, 0, 5]

Velocities [-5, 20]

Cost for velocities [25, 0]

Table 4.4: Experiment setup in Rena - Run 4

As can be seen in Table 4.5, the traveled distance increases as δ approaches 1. When δ is
zero, the algorithm behaves more or less like an A* algorithm, with the aim of finding the
shortest path from point A to point B. When δ rises, it is noticeable that the vehicle intends
to drive further and places greater focus on the terrain’s steepness, prioritizing low cost, i.e.
driving in flat terrain rather than finding the shortest path. In comparison to the Hybrid A*
algorithm, the path obtained in RRT is very random, as the tree may changing between runs.

Except when delta is equal to 0.25 and 0.5, every algorithm were able to find a feasible path.
This will be addressed in greater detail in the following sections.

Simulated data for run 4 in Rena, Norway

Algorithm Elapsed time Distance Incline 2 Successfully finding a path?

RRT 0.851 s 970.34 m 16.12 deg Yes

Hybrid A*, δ = 0 356.2 s 480.0 m 11.45 deg Yes

Hybrid A*, δ = 0.25 - - - No

Hybrid A*, δ = 0.5 - - - No

Hybrid A*, δ = 0.75 0.827 s 760.0 m 12.73 deg Yes

Hybrid A*, δ = 1 0.839 s 720.0 m 10.73 deg Yes

Table 4.5: Simulation data for Figure 4.4

1Not applicable for RRT, since this algorithm does not include vehicle pose.
2Total absolute incline. The incline was measured using a Sobel image and linear interpolation of 20 samples

between two nodes. See Listing B.3 to view the code.

30

(a) RRT (b) Hybrid A*, δ = 0

(c) Hybrid A*, δ = 0.75 (d) Hybrid A*, δ = 1

Figure 4.4: One of the iterations in Rena. δ = 0.25 and δ = 0.5 failed to find a feasible path.

31

Figure 4.4 shows the different paths obtained in the experiment. By observing the results,
one may argue that the path obtained in RRT is the most optimal one in term of safeness and
most likely what a person would like to drive. However, as seen in Table 4.5, the incline is
lower by choosing a path through the forest. This will be further addressed in later sections.

4.3 Hardangervidda

Similar experiments are carried out in a more challenging setting. The setting for this segment
will be in Hardangervidda, Norway, a mountainous region with numerous gradient variations.
Examining the performance when steepness is taken into account would be particularly
interesting. There may be further differences in the found solution due to the incredibly
difficult environment with many steepness variations.

Hardangervidda run 2

Start coordinates (64, 91)

End coordinates (143, 281)

Starting pose 3 0° deg

Steering [−30°, 0°, 30°]

Cost for steering [5, 0, 5]

Velocities [-5, 20]

Cost for velocities [25, 0]

Table 4.6: Experiment setup in Hardangervidda - Run 2

With this shift in environment, all algorithms were able to plan a solution path, with a
success rate of 100% after one iteration.

Simulated data for one run in Hardangervidda, Norway

Algorithm Elapsed time Distance Incline 4 Successfully finding a path?

RRT 0.442 s 240,86 m 37,91 deg Yes

Hybrid A*, δ = 0 1.191 s 220.0 m 17.49 deg Yes

Hybrid A*, δ = 0.25 0.566 s 240.0 m 21.96 deg Yes

Hybrid A*, δ = 0.5 0.475 s 220.0 m 17.49 deg Yes

Hybrid A*, δ = 0.75 0.548 s 300.0 m 11.37 deg Yes

Hybrid A*, δ = 1 0.794 s 380.0 m 3.19 deg Yes

Table 4.7: Simulation data for Figure 4.5

3Not applicable for RRT, since this algorithm does not include vehicle pose.
4Total absolute incline. The incline was measured using a Sobel image and linear interpolation of 20 samples

between two nodes. See Listing B.3 to view the code.

32

(a) RRT (b) Hybrid A*, δ = 0

(c) Hybrid A*, δ = 0.25 (d) Hybrid A*, δ = 0.5

(e) Hybrid A*, δ = 0.75
(f) Hybrid A*, δ = 1

Figure 4.5: One of the iterations in Hardangervidda
33

In this experiment, the proposed methods are demonstrated in an environment with a wide
variety of gradient variations. Due to the elevation variations in the terrain, the impact of using
an incline-based cost function is much more emphasized in Hardangervidda. As δ increases,
one can see better results in terms of finding less steep paths. The results are illustrated in the
Sobel map in Figure 4.5 and the corresponding earth map can be found in Appendix A.

The discrepancies between these algorithms can be seen after performing experiments
in two different environments. In the following pages, the simulated results will be further
clarified.

4.4 Analysis

The aim of this section is to dig deeper into the data collected and presented in the previous
chapter. The behavior of the presented algorithms will be compared in order to answer
the research questions presented in Chapter 1.2, especially research question 3, i.e. identify
performance metrics for the two motion planning algorithms for evaluation.

The key figures that are used for describing the quality of the path are:

1. Mean elapsed time - How long does it take the algorithm to come up with a solution?

2. Mean distance - How far does the vehicle travel to arrive at the destination?

3. Mean incline - What is the slope of the path?

4. Success rate - What is the probability that the algorithm can find a solution?

After conducting experiments in two different settings, the differences between these
algorithms are evident after 10 simulated drives for each environment. Table 4.8 shows the
statistics of the conducted experiments in Rena. It is worth noting that the success rate has
an effect on the mean values. If an algorithm fails to find a correct path, the mean value will
include fewer samples, which can be misleading when evaluating the results.

Simulated driving in Rena, Norway

Algorithm Mean elapsed time Mean distance Mean incline Success rate

RRT 0.51 s 441.94 m 14.90 deg 100.0%

Hybrid A*, δ = 0 52.34 s 248.0 m 14.02 deg 100.0%

Hybrid A*, δ = 0.25 0.50 s 277.86 m 12.19 deg 70.0%

Hybrid A*, δ = 0.5 0.55 s 325.63 m 15.93 deg 80.0%

Hybrid A*, δ = 0.75 0.59 s 341.11 m 13.06 deg 90.0%

Hybrid A*, δ = 1 0.63 s 330.63 m 13.96 deg 80.0%

Table 4.8: Monte Carlo simulation in Rena: 10 iterations

The first thing to note is how quickly RRT comes up with a solution. In Table 4.8, RRT solves
the problem 102.62 times faster than the classical A*, i.e. Hybrid A* with δ = 0. However,
while this approach may not be ideal in terms of effort or fuel consumption, it is feasible. In

34

Rena run 2

Start coordinates (148, 173)

End coordinates (200, 340)

Starting pose 5 0° deg

Steering [−30°, 0°, 30°]

Cost for steering [5, 0, 5]

Velocities [-5, 20]

Cost for velocities [25, 0]

Table 4.9: Experiment setup in Rena - Run 2

comparison, the mean distance driven in RRT is 1.78 times longer than δ = 0, 1.36 times longer
than δ = 0.5 and 1.34 times longer than δ = 1.

Whenever δ = 0.25 or δ = 0.5, the found paths has the tendency to drive in circles when
close to the goal, as illustrated in Figure 4.6. This has to do with the cost function, as the
algorithm can be confused if both distance and incline are taken into account at the same
time. Furthermore, the motion primitives may be too high in term of velocity combined with
steering angle, requiring the vehicle to drive in reverse to reach the desired destination. This
unfortunate behavior has a negative impact on the average distance and incline. Due to how
incline is calculated, whenever the vehicle is driving in reverse, the incline will be wrongly
measured because of the fixed step of 20 samples in between nodes.

Simulated driving in Hardangervidda, Norway

Algorithm Mean elapsed time Mean distance Mean incline Success rate

RRT 0.52 s 439.93 m 13.04 deg 100.0%

Hybrid A*, δ = 0 59.03 s 290.50 m 14.92 deg 100.0%

Hybrid A*, δ = 0.25 0.60 s 425.0 m 12.61 deg 100.0%

Hybrid A*, δ = 0.5 0.59 s 419.0 m 12.98 deg 100.0%

Hybrid A*, δ = 0.75 0.67 s 427.5 m 12.69 deg 100.0%

Hybrid A*, δ = 1 0.91 s 516.0 m 9.35 deg 100.0%

Table 4.10: Monte Carlo simulation in Hardangervidda: 10 iterations

In contrast, all algorithms were able to plan a solution path in Hardangervidda, with a
outstanding success rate of 100 % after 10 iterations. Because of the significant elevation
differences in the landscape, the influence of choosing an incline-based cost is much more
emphasized, as indicated before in chapter 4.3. The final results after 10 simulations can be
seen in Table 4.10.

5Not applicable for RRT, since this algorithm does not include vehicle pose.

35

(a) RRT (b) Hybrid A*, δ = 0

(c) Hybrid A*, δ = 0.25 (d) Hybrid A*, δ = 0.5

(e) Hybrid A*, δ = 0.75 (f) Hybrid A*, δ = 1

Figure 4.6: Run 2. Unexpected behavior with δ = 0.25 and δ = 0.5

36

Chapter 5

Discussion

This chapter summarizes the analysis that has been presented. Various difficulties faced
during the thesis will also be addressed. A summary of possible work that has been proposed
will also be included in this section.

5.1 Validation

An evaluation of the study is important in order to examine and bring out any issues
influencing its validity.

5.1.1 Unexpected behavior from path planning

During the simulation phase, the paths generated by the various motion planning methods
seemed to have a few unexpected behaviors. First, behavior such as in Figure 4.6d where the
vehicle is driving in circle prior to reaching the goal destination should be avoided in motion
planning. One possible solution may be to reduce the vehicle’s velocity as well as the steering
angle so that it is possible to drive slower when reaching the desired destination, e.g.

Example of motion primitives

Steering [−30°,−15°, 0°, 15°, 30°]

Velocities [-5, 5, 10, 20]

Table 5.1: Motion primitives

Notably, finding a feasible path is preferable to being stopped by the termination criteria.
In the last experiment in Rena, Hybrid A* algorithm with δ = 1, struggled to find a goal, and
alternated between motion primitives near the goal. Figure 5.1 illustrates the search before it
got terminated.

Second, the vehicle has an tendency of driving in reverse in order to get to the desired
destination, illustrated in Figures 4.4c and 4.6c. This behavior might also be fixed by adapting
new motion primitives as shown in Table 5.1.

Lastly, in Figure 4.4, all algorithms except when δ is equal to 0.25 and 0.5, were able to find
a feasible path. The path planning algorithms were stuck inside the forest in the upper right of
the image, since the total cost were lower in there because of the heuristics function H(n). As
a result, the search was terminated after 15 minutes according to the termination criteria.

37

Figure 5.1: Hybrid A* with δ = 1, struggling to find a path

5.1.2 Obstacle map of Hardangervidda

The obstacle map of Hardangervidda was created using the Sobel operator, as mentioned in
Chapter 3.2.3. However, it seems unreasonable to set the threshold of the gradient to be 3
meters, as the vehicle may not be capable of driving in such high elevation differences. This
mistake must be considered in future research, with the threshold possibly being tuned down
to 1 meter.

5.1.3 Visualization

The nodes are saved in a list when a path is found using the Hybrid A* method. However, the
nodes are connected by edges in a linear fashion for visualization, which is incorrect due to
the tree’s extension in terms of steering angles. This is a minor flaw for the visualization part
in Hybrid A*.

5.1.4 Calculating incline

Related to the previous section, the incline is calculated using the list of nodes after a path is
found. By using linear interpolation, the captured incline is not aligned with the actual incline
(the curved line as shown in Figure 2.9), resulting in somewhat misleading results that are
used for analysis.

Furthermore, the total absolute incline is affected by one significant issue that was covered
before in Chapter 4.4 regarding computing the inclination when driving backwards. Since the

38

motion primitives when driving backwards are 1/4 the length of driving forward, i.e. [-5,
20], the interpolation of 20 samples will therefore be an issue. Ideally, whenever the vehicle is
driving backwards, the number of samples could for example decreased to 5 samples instead
of being constant at 20.

5.1.5 Simplified vehicle model

Due to the challenges around retrieving data from hoydedata.no, which will be discuss later
in Chapter 5.2.1, the bicycle model utilized in this thesis is a little underdeveloped. This
is related to the map’s difficulty in obtaining accurate distance readings without taking in
consideration of the provided metadata. In addition, since the original data were scaled from
0.25 point density to 1.05 due to display purposes, the distances may be measured inaccurately.
As a result, the length of the vehicle model is set to 0.2 m, making it seem as a dot in the
environment.

5.2 Encountered challenges

Throughout the thesis, there were a number of significant difficulties faced during the
execution. This section will go through the challenges to be aware of.

5.2.1 Retrieving data from hoydedata

When retrieving data from hoydedata.no as explained in Chapter 3.2.1, the data might
sometimes be corrupted. The reason for this may be that the current map segment crosses the
GeoTIFF data, which is divided into minor areas. Therefore, the field of selection is something
to be aware of. A lot of trial and error has been done in order to find a suitable field that has
data that can be used for further image processing.

Moreover, when downloading data from hoydedata.no, a desired set of data, in this case
DSM and DTM, can be received. In addition, metadata is provided, which can be used
to obtain information about the terrain and the field’s coordinates. Due to time limitation,
metadata is not used in this thesis. The procedure for matching the obstacle map to the current
map, on the other hand, is achieved by trial and error using human eyes. This might not be
ideal for further research.

5.2.2 Making a cost function

The cost function is essential for motion planning. All searching based approaches are based on
a cost function in order to plan a path. As explained in Chapter 3.3.2, the searching is based on
minimizing a specific cost function for some variables, for instance distance. Unquestionably,
it is difficult to establish a perfect cost function, which has been analyzed and modified during
the thesis. Some parameters are only dependent on an integer, such as punishing the vehicle
for steering left or right or restricting the vehicle’s ability to drive backwards. As a result, this
is something that should be investigated further for future work.

39

hoydedata.no
hoydedata.no
hoydedata.no

5.2.3 Execution time for Hybrid A*

During the experiments, there were several concerns with the implementation’s execution
time. After experimenting with various initial states, it was found out that the start position
direction, i.e. starting pose θ, has a significant effect on the execution time. The Hybrid A*
algorithm must look for the best possible path to turn to the target whenever the starting pose
is not headed towards the goal states. This process could take up to 15 minutes, especially
when δ is equal to zero. As a result, whenever the vehicle is heading towards the target, the
proposed method has an easier time finding a path.

5.3 Future work

Other research questions for future work have arisen as a result of the findings presented in
this study.

First, as mentioned previously, the cost function is essential for motion planning since all
searching based methods are based on minimizing a cost function in order to plan a path.
In attempt to develop paths that are more human-like, in contrast to what is discussed in
Chapter 5.1.1, various parameters must be fine-tuned and researched further, as pointed out in
Chapter 5.2.2. The idea of implementing cost dynamically using LIDAR, is something worth
investigating when planning a real experiment [6].

Second, investigating the usage of metadata in the environment design increases the
simulation’s validity. It is possible to conduct more realistic experiments/simulations by
combining georeferencing data with a more comprehensive vehicle model. The bicycle
concept has shown to be an effective and easy approach for car-like vehicles. However, by
incorporating a thorough kinematic model of the vehicle, such as the engine’s forces, it will
be easier to monitor the vehicle’s intended path. This enables for further experiments and
perhaps even real-world experiments using UGV provided by FFI.

Third, to increase safety of the planned trajectories, one may consider implementing the
obstacle grid’s Voronoi graph as done in research papers, such as [4] [6]. By planning a path
that is farthest away from barriers, the car will safely avoid obstacles, which is especially
crucial in motion planning algorithms in unfamiliar landscape.

Finally, besides the two environments, it could be interesting to test the proposed methods
in other settings. This way, one may obtain a better understanding of the cost function and
possibly fine-tune it to improve the results.

40

Chapter 6

Conclusion

The main focus of this research is regarding motion planning for autonomous off-road driving.
Based on previous research about motion planning algorithms, this thesis’ problem statement
can be formulated as follows:

1. Are there any motion planning methods that are particularly suitable for this specific
task?

2. Investigate adaptation possibilities and utilize this for finding close to realistic and
optimal paths.

3. Identify performance metrics for the two motion planning algorithms for evaluation.

When it comes to preparing to drive in rough terrain, nothing is simple. Due to
characteristics such as inclination and terrain roughness, separating the environment into
obstacles space and free space is insufficient when driving in a challenging environment. The
environment in this thesis is constructed using a combination of terrain knowledge and an
obstacle map. This enables the proposed methods to utilize the terrain characteristics directly
to investigate optimality conditions in terrain.

The sampling based method RRT is chosen due to its ability to find a feasible path efficiency
with regard to computational effort. On the other hand, Hybrid A* has been chosen due
to its extensive possibilities for developing a cost function that takes into account steepness,
curvature and distance.

The experiments were carried out in two different ecosystems, Rena and Hardangervidda.
Especially in a open and flat place like Rena, the Hybrid A* algorithm with higher δ values
struggled to find a path, due to the minor elevation difference in the landscape. Here, RRT
and Hybrid A* algorithm with δ = 0, both yielded great results with a success rate of 100%
after 10 iterations. In terms of examining optimality conditions, one may argue that RRT has
a tendency to find paths that are more safe and likely to be what a person would prefer to
drive. Hybrid A* with δ = 0, on the other hand, takes significantly longer to approximate the
shortest path. Although the paths obtained in RRT may differ significantly between iterations,
RRT and Hybrid A* with δ = 0 might be the best choice in a flat surface such as in Rena.

In Hardangervidda, on the other hand, all algorithms were able to develop a solution path
with a success rate of 100% after 10 iterations. The impact of choosing an incline-based cost
is significantly more emphasized due to the large elevation difference in the landscape. In
this case, choosing the path with the least amount of incline is more important than finding
the shortest path. For this reason, it is reasonable to argue that Hybrid A* with δ = 1 is the
optimal planner in this environment among the presented algorithms in the thesis.

41

The goal of this study is to compare two motion planning algorithms and determine an
appropriate path that may be utilized as a rough global planner before moving on to local
search, as done in [15]. Nevertheless, there is potential for improvement as discussed in
Chapter 5.3 and it may be beneficial to include more motion primitives in order to prevent
unexpected behavior as discussed in Chapter 5.1.1.

42

Bibliography

[1] Mouad Boumediene. GitHub - mouad-boumediene/python-visualization-of-the-RRT-algorithm-
with-pygame. Mar. 2021. URL: https://github.com/mouad-boumediene/python-visualization-
of-the-RRT-algorithm-with-pygame (visited on 07/05/2021).

[2] DARPA Urban Challenge. 2007. URL: https://archive.darpa.mil/grandchallenge/ (visited on
02/05/2021).

[3] Yan Ding. Simple Understanding of Kinematic Bicycle Model | by Yan Ding | Medium. Feb.
2020. URL: https ://dingyan89 .medium.com/simple - understanding - of - kinematic - bicycle -
model-81cac6420357 (visited on 22/05/2021).

[4] Dmitri Dolgov, Michael Montemerlo and James Diebel. ‘Practical Search Techniques in
Path Planning for Autonomous Driving’. In: AAAI Workshop - Technical Report (Jan. 2008).

[5] E W Drrksrra. A Note on Two Problems in Connexion with Graphs. Tech. rep., pp. 269–296.

[6] Dennis Fassbender, André Mueller and Hans Joachim Wuensche. ‘Trajectory planning
for car-like robots in unknown, unstructured environments’. In: IEEE International
Conference on Intelligent Robots and Systems Iros (2014), pp. 3630–3635. ISSN: 21530866.
DOI: 10.1109/IROS.2014.6943071.

[7] Marta Palau Franco. euRathlon 2013 land robotics competition – Day Four recap | Robohub.
Sept. 2013. URL: https://robohub.org/eurathlon-2013-land-robotics-competition-day-four-
recap/ (visited on 02/05/2021).

[8] GeeksforGeeks. A* Search Algorithm - GeeksforGeeks. 2021. URL: https://www.geeksforgeeks.
org/a-search-algorithm/ (visited on 04/05/2021).

[9] Geoimage. Mining Satellite Digital Elevation Models. URL: https://www.geoimage.com.au/
_blog/News/post/high- demand- for - digital - elevation-models - from- satellite/ (visited on
25/04/2021).

[10] GISInternals Support Site. 2021. URL: https://www.gisinternals.com/query.html?content=
filelist&file=release-1928-x64-gdal-3-2-1-mapserver-7-6-2.zip (visited on 28/04/2021).

[11] Peter E. Hart, Nils J. Nilsson and Bertram Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. 1968. DOI: 10.1109/TSSC.1968.300136.

[12] Kris Hauser. Robotic Systems (draft) - Chapter 10. 2018. URL: http://motion.pratt.duke.edu/
RoboticSystems/.

[13] Høydedata. URL: https://hoydedata.no/LaserInnsyn/ (visited on 26/04/2021).

[14] Yonghoon Ji et al. ‘Adaptive Motion Planning Based on Vehicle Characteristics and
Regulations for Off-Road UGVs’. In: IEEE Transactions on Industrial Informatics 15.1
(2019), pp. 599–611. DOI: 10.1109/TII.2018.2870662.

43

https://github.com/mouad-boumediene/python-visualization-of-the-RRT-algorithm-with-pygame
https://github.com/mouad-boumediene/python-visualization-of-the-RRT-algorithm-with-pygame
https://archive.darpa.mil/grandchallenge/
https://dingyan89.medium.com/simple-understanding-of-kinematic-bicycle-model-81cac6420357
https://dingyan89.medium.com/simple-understanding-of-kinematic-bicycle-model-81cac6420357
https://doi.org/10.1109/IROS.2014.6943071
https://robohub.org/eurathlon-2013-land-robotics-competition-day-four-recap/
https://robohub.org/eurathlon-2013-land-robotics-competition-day-four-recap/
https://www.geeksforgeeks.org/a-search-algorithm/
https://www.geeksforgeeks.org/a-search-algorithm/
https://www.geoimage.com.au/_blog/News/post/high-demand-for-digital-elevation-models-from-satellite/
https://www.geoimage.com.au/_blog/News/post/high-demand-for-digital-elevation-models-from-satellite/
https://www.gisinternals.com/query.html?content=filelist&file=release-1928-x64-gdal-3-2-1-mapserver-7-6-2.zip
https://www.gisinternals.com/query.html?content=filelist&file=release-1928-x64-gdal-3-2-1-mapserver-7-6-2.zip
https://doi.org/10.1109/TSSC.1968.300136
http://motion.pratt.duke.edu/RoboticSystems/
http://motion.pratt.duke.edu/RoboticSystems/
https://hoydedata.no/LaserInnsyn/
https://doi.org/10.1109/TII.2018.2870662

[15] Julian Jordan and Andreas Zell. ‘Real-time model based path planning for wheeled
vehicles’. In: Proceedings - IEEE International Conference on Robotics and Automation 2019-
May (2019), pp. 5787–5792. ISSN: 10504729. DOI: 10.1109/ICRA.2019.8794133.

[16] Sertac Karaman and Emilio Frazzoli. ‘Incremental sampling-based algorithms for
optimal motion planning’. In: Robotics: Science and Systems 6 (2011), pp. 267–274. ISSN:
2330765X. DOI: 10.15607/rss.2010.vi.034. arXiv: 1005.0416.

[17] Mohit Kaushik. Reading and Visualizing GeoTiff | Satellite Images with Python | by Mohit
Kaushik | Towards Data Science. 2020. URL: https://towardsdatascience.com/reading-and-
visualizing-geotiff-images-with-python-8dcca7a74510 (visited on 27/04/2021).

[18] Lydia Kavraki et al. ‘Probabilistic Roadmaps for Path Planning in High-Dimensional
Configuration Spaces’. In: Robotics and Automation, IEEE Transactions on 12 (Sept. 1996),
pp. 566–580. DOI: 10.1109/70.508439.

[19] Sebastian Lague. Pathfinding/Pseudocode at master · SebLague/Pathfinding · GitHub. 2016.
URL: https : / / github . com / SebLague / Pathfinding / blob / master / Episode % 2001 % 20 -
%20pseudocode/Pseudocode (visited on 04/05/2021).

[20] Steven M. LaValle and James J. Kuffner. ‘Rapidly-Exploring Random Trees: Progress and
Prospects’. In: (1998). URL: http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01.pdf.

[21] Sang Uk Lee, Ramon Gonzalez and Karl Iagnemma. ‘Robust sampling-based motion
planning for autonomous tracked vehicles in deformable high slip terrain’. In: Proceed-
ings - IEEE International Conference on Robotics and Automation 2016-June (2016), pp. 2569–
2574. ISSN: 10504729. DOI: 10.1109/ICRA.2016.7487413.

[22] Haoyue Liu et al. ‘Goal-biased Bidirectional RRT based on Curve-smoothing’. In: IFAC-
PapersOnLine 52.24 (2019). 5th IFAC Symposium on Telematics Applications TA 2019,
pp. 255–260. ISSN: 2405-8963. DOI: https://doi .org/10.1016/j. ifacol .2019.12.417. URL:
https://www.sciencedirect.com/science/article/pii/S2405896319323250.

[23] Hui Liu. ‘Chapter 1 - Introduction’. In: Robot Systems for Rail Transit Applications. Ed. by
Hui Liu. Elsevier, 2020, pp. 1–36. ISBN: 978-0-12-822968-2. DOI: https://doi.org/10.1016/
B978-0-12-822968-2.00001-2. URL: https://www.sciencedirect.com/science/article/pii/
B9780128229682000012.

[24] Mars 2020 Perseverance Rover - NASA Mars. URL: https://mars.nasa.gov/mars2020/ (visited
on 01/05/2021).

[25] Kim Mathiassen et al. ‘Development of an Autonomous Off-Road Vehicle for Surveil-
lance Missions’. In: Proceedings of IST-127/RSM-003 Specialists’ Meeting on Intelligence &
Autonomy in Robotics. DOI: 10.14339/STO-MP-IST-127, NATO UNCLASSIFIED. NATO
Science and Technology Organization. Bonn, Germany, Oct. 2016. DOI: 10.14339/STO-
MP-IST-127.

[26] Kim Mathiassen et al. ‘Making the Milrem Themis UGV ready for autonomous
operations’. In: Unmanned Systems Technology XXIII. Ed. by Paul L. Muench, Hoa G.
Nguyen and Brian K. Skibba. SPIE, Apr. 2021. DOI: 10 . 1117/12 . 2585879. URL: https :
//doi.org/10.1117/12.2585879.

[27] Motion planning in workspaces and in configuration spaces. The left... | Download Scientific
Diagram. URL: https://www.researchgate.net/figure/Motion-planning-in-workspaces-and-in-
configuration-spaces-The-left-figure-shows_fig2_281389394 (visited on 01/05/2021).

[28] Brian Paden et al. ‘A survey of motion planning and control techniques for self-driving
urban vehicles’. In: IEEE Transactions on Intelligent Vehicles 1.1 (2016), pp. 33–55. ISSN:
23798858. DOI: 10.1109/TIV.2016.2578706. arXiv: 1604.07446.

44

https://doi.org/10.1109/ICRA.2019.8794133
https://doi.org/10.15607/rss.2010.vi.034
https://arxiv.org/abs/1005.0416
https://towardsdatascience.com/reading-and-visualizing-geotiff-images-with-python-8dcca7a74510
https://towardsdatascience.com/reading-and-visualizing-geotiff-images-with-python-8dcca7a74510
https://doi.org/10.1109/70.508439
https://github.com/SebLague/Pathfinding/blob/master/Episode%2001%20-%20pseudocode/Pseudocode
https://github.com/SebLague/Pathfinding/blob/master/Episode%2001%20-%20pseudocode/Pseudocode
http://msl.cs.uiuc.edu/~lavalle/papers/LavKuf01.pdf
https://doi.org/10.1109/ICRA.2016.7487413
https://doi.org/https://doi.org/10.1016/j.ifacol.2019.12.417
https://www.sciencedirect.com/science/article/pii/S2405896319323250
https://doi.org/https://doi.org/10.1016/B978-0-12-822968-2.00001-2
https://doi.org/https://doi.org/10.1016/B978-0-12-822968-2.00001-2
https://www.sciencedirect.com/science/article/pii/B9780128229682000012
https://www.sciencedirect.com/science/article/pii/B9780128229682000012
https://mars.nasa.gov/mars2020/
https://doi.org/10.14339/STO-MP-IST-127
https://doi.org/10.14339/STO-MP-IST-127
https://doi.org/10.1117/12.2585879
https://doi.org/10.1117/12.2585879
https://doi.org/10.1117/12.2585879
https://www.researchgate.net/figure/Motion-planning-in-workspaces-and-in-configuration-spaces-The-left-figure-shows_fig2_281389394
https://www.researchgate.net/figure/Motion-planning-in-workspaces-and-in-configuration-spaces-The-left-figure-shows_fig2_281389394
https://doi.org/10.1109/TIV.2016.2578706
https://arxiv.org/abs/1604.07446

[29] Jia Pan and Dinesh Manocha. ‘Efficient Configuration Space Construction and Optimiz-
ation for Motion Planning’. In: Engineering 1.1 (2015), pp. 046–057. ISSN: 20958099. DOI:
10.15302/J-ENG-2015009. URL: http://dx.doi.org/10.15302/J-ENG-2015009.

[30] Pathfinding 2D Illustration - Pathfinding - Wikipedia. URL: https://en.wikipedia.org/wiki/
Pathfinding#/media/File:Pathfinding_2D_Illustration.svg (visited on 01/05/2021).

[31] Ahmed Hussain Qureshi and Yasar Ayaz. ‘Intelligent bidirectional rapidly-exploring
random trees for optimal motion planning in complex cluttered environments’. In: arXiv
(2017). ISSN: 23318422. arXiv: arXiv:1703.08944v1.

[32] Bruno Siciliano et al. Robotics: Modelling, Planning and Control. 1st. Springer Publishing
Company, Incorporated, 2008. ISBN: 1846286417.

[33] Saurabh Singh. Difference between DEM/DTM and DSM. URL: https://www.gisresources.
com/confused-dem-dtm-dsm (visited on 30/04/2021).

[34] Sobel Edge Detection - an overview | ScienceDirect Topics. URL: https://www.sciencedirect.
com/topics/engineering/sobel-edge-detection (visited on 28/04/2021).

[35] songl/Masterthesis: Comparing the motion planning methods Hybrid A* and RRT for autonom-
ous off-road driving of bicycle vehicles. URL: https://github.uio.no/songl/Masterthesis (visited
on 22/05/2021).

[36] Justin Svegliato. How does a robot plan a path using RRT? | by Justin Svegliato | Towards
Data Science. 2020. URL: https://towardsdatascience.com/how-does-a-robot-plan-a-path-in-
its-environment-b8e9519c738b (visited on 03/05/2021).

[37] Reiya Takemura and Genya Ishigami. ‘Traversability-based RRT for planetary rover
path planning in rough terrain with LIDAR point cloud data’. In: Journal of Robotics and
Mechatronics 29.5 (2017), pp. 838–846. ISSN: 18838049. DOI: 10.20965/jrm.2017.p0838.

[38] Marius Thoresen et al. ‘Path Planning for UGVs based on Traversability Hybrid A*’. In:
IEEE Robotics and Automation Letters (2021). DOI: 10.1109/lra.2021.3056028.

[39] Jasvir Virdi. GitHub - jvirdi2/AstarandHybridAstar. Mar. 2020. URL: https://github.com/
jvirdi2/A_star_and_Hybrid_A_star (visited on 07/05/2021).

[40] Saloni Walimbe. The Role of Autonomous Unmanned Ground Vehicle Technologies in Defense
Applications - Aerospace & Defense Technology. Oct. 2020. URL: https://www.aerodefensetech.
com/component/content/article/adt/features/articles/37888 (visited on 01/05/2021).

[41] Frank Warmerdam and Even Rouault. GDAL — GDAL documentation. 2021. URL: https:
//gdal.org/ (visited on 26/04/2021).

45

https://doi.org/10.15302/J-ENG-2015009
http://dx.doi.org/10.15302/J-ENG-2015009
https://en.wikipedia.org/wiki/Pathfinding#/media/File:Pathfinding_2D_Illustration.svg
https://en.wikipedia.org/wiki/Pathfinding#/media/File:Pathfinding_2D_Illustration.svg
https://arxiv.org/abs/arXiv:1703.08944v1
https://www.gisresources.com/confused-dem-dtm-dsm
https://www.gisresources.com/confused-dem-dtm-dsm
https://www.sciencedirect.com/topics/engineering/sobel-edge-detection
https://www.sciencedirect.com/topics/engineering/sobel-edge-detection
https://github.uio.no/songl/Masterthesis
https://towardsdatascience.com/how-does-a-robot-plan-a-path-in-its-environment-b8e9519c738b
https://towardsdatascience.com/how-does-a-robot-plan-a-path-in-its-environment-b8e9519c738b
https://doi.org/10.20965/jrm.2017.p0838
https://doi.org/10.1109/lra.2021.3056028
https://github.com/jvirdi2/A_star_and_Hybrid_A_star
https://github.com/jvirdi2/A_star_and_Hybrid_A_star
https://www.aerodefensetech.com/component/content/article/adt/features/articles/37888
https://www.aerodefensetech.com/component/content/article/adt/features/articles/37888
https://gdal.org/
https://gdal.org/

Appendix A

Simulation - Hardangervidda

46

(a) RRT (b) Hybrid A*, δ = 0

(c) Hybrid A*, δ = 0.25 (d) Hybrid A*, δ = 0.5

(e) Hybrid A*, δ = 0.75 (f) Hybrid A*, δ = 1

Figure A.1: Run 2 - Hardangervidda

47

Appendix B

Map analysis

B.1 Rena

1 from osgeo import gdal
2 import numpy as np
3 from scipy import ndimage , misc
4 import scipy
5 import cv2
6

7

8 ## Changing resolution - original res is 0.25
9 gdal.Warp(’rena/rena1/dom/DOM_32 -1 -520 -164 -61 _new.tif’, ’rena/rena1/dom/DOM_32

-1 -520 -164 -61. tif’, xRes =1.05, yRes =1.05)
10 gdal.Warp(’rena/rena1/dtm/DTM_32 -1 -520 -164 -61 _new.tif’, ’rena/rena1/dtm/DTM_32

-1 -520 -164 -61. tif’, xRes =1.05, yRes =1.05)
11

12

13 dataset_DOM = gdal.Open(’rena/rena1/dom/DOM_32 -1 -520 -164 -61 _new.tif’, gdal.
GA_ReadOnly)

14 band = dataset_DOM.GetRasterBand (1)
15 arr_DOM = band.ReadAsArray ()
16 arr_DOM = arr_DOM [18:574 , 0:650]
17

18 dataset_DTM = gdal.Open(’rena/rena1/dtm/DTM_32 -1 -520 -164 -61 _new.tif’, gdal.
GA_ReadOnly)

19 band = dataset_DTM.GetRasterBand (1)
20 arr_DTM = band.ReadAsArray ()
21 arr_DTM = arr_DTM [18:574 , 0:650]
22

23 diff = arr_DTM -arr_DOM
24 test_sobel = scipy.ndimage.sobel(arr_DTM)
25

26

27 #Segmentation
28 col = len(diff [:,0])
29 row = len(diff [0,:])
30 env = np.ones((col ,row), dtype=np.uint8)
31 env[diff <-3] = 0
32 plt.imshow(env , cmap = "gray", vmin = 0, vmax = 1)
33 pyplot.imsave("rena/segmented.png", env)

Listing B.1: Creating environment of Rena

48

1 import cv2
2

3 #Threshhold
4 im_gray = cv2.imread("rena/segmented.png", cv2.IMREAD_GRAYSCALE)
5

6 thresh = 127
7 im_bw = cv2.threshold(im_gray , thresh , 255, cv2.THRESH_BINARY)[1]
8 cv2.imwrite(’rena/blackwhite.png’, im_bw)

Listing B.2: Creating environment of Rena part 2

B.2 Hardangervidda

1 from osgeo import gdal
2 import numpy as np
3 from scipy import ndimage , misc
4 import scipy
5

6

7 ## Changing resolution - original res is 0.25
8 gdal.Warp(’vidda /1/ vidda/data/dom/DOM_32 -1 -487 -134 -31 _new.tif’, ’vidda /1/ vidda/

data/dom/DOM_32 -1 -487 -134 -31. tif’, xRes =1.05, yRes =1.05)
9 gdal.Warp(’vidda /1/ vidda/data/dtm/DTM_32 -1 -487 -134 -31 _new.tif’, ’vidda /1/ vidda/

data/dtm/DTM_32 -1 -487 -134 -31. tif’, xRes =1.05, yRes =1.05)
10

11

12 dataset_DOM = gdal.Open(’vidda /1/ vidda/data/dom/DOM_32 -1 -487 -134 -31 _new.tif’,
gdal.GA_ReadOnly)

13 band = dataset_DOM.GetRasterBand (1)
14 arr_DOM = band.ReadAsArray ()
15 arr_DOM = arr_DOM [18:574 , 0:650]
16

17

18 dataset_DTM = gdal.Open(’vidda /1/ vidda/data/dtm/DTM_32 -1 -487 -134 -31 _new.tif’,
gdal.GA_ReadOnly)

19 band = dataset_DTM.GetRasterBand (1)
20 arr_DTM = band.ReadAsArray ()
21 arr_DTM = arr_DTM [18:574 , 0:650]
22

23

24 diff = arr_DTM -arr_DOM
25 plt.imshow(diff)
26

27 test_sobel = scipy.ndimage.sobel(arr_DTM)
28 plt.imshow(test_sobel)
29

30

31 #Segmentation
32 col = len(diff [:,0])
33 row = len(diff [0,:])
34 env = np.ones((col ,row), dtype=np.uint8)
35 env[test_sobel <-3] = 0
36 plt.imshow(env , cmap = "gray", vmin = 0, vmax = 1)
37 pyplot.imsave("vidda/seg.png", env)

Listing B.3: Map creation of Hardangervidda

49

B.3 Calculating incline for analysis

1 def inc(self , corr , corr2):
2 ’’’
3 Gather terrain information of DTM.
4 Input: A set of corrdinates (x,y)
5 Output: Elevated terrain information
6 ’’’
7 x1 ,y1 = corr
8 x2 ,y2 = corr2
9 dist = distance(x1, x2, y1 , y2)

10 step = dist /20
11 incline = []
12 for i in range (0,21):
13 u = i/20
14 x = x2*u + x1*(1-u)
15 y = y2*u + y1*(1-u)
16

17 a = np.arctan2(self.img_sobel[math.floor(y)][(math.floor(x))], step)
18 incline.append(np.rad2deg(a))
19 return incline

Listing B.4: Function for incline

50

Appendix C

RRT code

The complete code can be viewed in GitHub repository [35].

C.1 Initialization of RRT

1 class RRTGraph:
2 def __init__(self , start , goal , MapDimensions , map_filename):
3 (x,y) = start
4 self.start = start
5 self.goal = goal
6 self.goalFlag = False
7 self.maph , self.mapw = MapDimensions
8

9 #Storing the tree
10 self.x = [] #X and Y coordinates of every nodes
11 self.y = []
12 self.parent = [] #Storing the parents of those nodes
13

14 #Initialize the tree
15 self.x.append(x) #Append start node x coordinate
16 self.y.append(y) #Append end node y coordinate
17 self.parent.append (0)
18

19 #Load map
20 img = cv2.imread(map_filename)
21 self.env_list = img.tolist ()
22

23 #Path
24 self.goalstate = None
25 self.path = []

Listing C.1: Initialization of RRT

C.2 Collision routine - RRT

1 def isFree(self):
2 ’’’
3 Collision -test; is the new sample located in free space
4 ’’’
5 n = self.number_of_nodes () -1 #get the last node (new sample)
6 (x,y) = (self.x[n], self.y[n])

51

7 env = self.env_list #obstacle map
8

9 if (env[y][x])[0] != 255: #if collision , remove node , return false
10 self.remove_node(n)
11 return False
12

13 if (env[y][x])[0] == 255: #if no collision
14 return True
15

16 def crossObstacle(self ,x1,x2,y1,y2):
17 ’’’
18 Does this edge cross an obstacle?
19 Testing if two coordinates are crossing any obstacle using interpolation
20 ’’’
21 env = self.env_list
22

23 for i in range (0 ,101):
24 u = i/100
25 x = x1*u + x2*(1-u)
26 y = y1*u + y2*(1-u)
27

28 if (env[math.floor(y)][(math.floor(x))])[0] != 255: #if collision
29 return True
30 return False

Listing C.2: Collision routine in RRT

C.3 Finding path to goal - RRT

1 def path_to_goal(self):
2 if self.goalFlag: #If a path is found
3 self.path = [] #Empty list to hold path nodes
4 self.path.append(self.goalstate) #Append goal as the first element

on the list
5 newpos = self.parent[self.goalstate] #Append its parents to the list
6 while (newpos !=0): #Append parents until it hits the

start node
7 self.path.append(newpos)
8 newpos = self.parent[newpos]
9 self.path.append (0) #Append start node

10 return self.goalFlag

Listing C.3: Finding a solution path in RRT

C.4 RRT algorithm

1 def bias(self , ngoal):
2 n = self.number_of_nodes ()
3 self.add_node(n, ngoal [0], ngoal [1])
4 nnear = self.nearest(n)
5 self.step(nnear , n)
6 self.connect(nnear , n)
7 return self.x, self.y, self.parent
8

9

10 def expand(self):

52

11 n = self.number_of_nodes ()
12 x,y = self.sample_env () #sample the environment
13 self.add_node(n,x,y) #includes the function crossObstacle(x1,x2

,y1 ,y2)
14 if self.isFree ():
15 xnearest=self.nearest(n)
16 self.step(xnearest , n)
17 self.connect(xnearest ,n)
18 return self.x, self.y, self.parent

Listing C.4: RRT algorithm

53

	Introduction
	Motivation
	Problem statement
	Previous work
	Thesis outline

	Background and literature
	Motion planning
	Configuration Space
	Environment
	Motion planning with a vehicle model

	Sampling based algorithm
	Rapidly-exploring random tree
	Bidirectional Rapidly-exploring random tree
	Rapidly-exploring random tree*

	Search-based algorithm
	A* algorithm
	Hybrid A* algorithm

	Methodology
	Objectives
	Preparation phase
	Data collection
	Models
	Image processing

	Implementation phase
	Designing RRT
	Designing Hybrid A*

	Expected results

	Results
	Parameter tuning
	Rena
	Hardangervidda
	Analysis

	Discussion
	Validation
	Unexpected behavior from path planning
	Obstacle map of Hardangervidda
	Visualization
	Calculating incline
	Simplified vehicle model

	Encountered challenges
	Retrieving data from hoydedata
	Making a cost function
	Execution time for Hybrid A*

	Future work

	Conclusion
	Simulation - Hardangervidda
	Map analysis
	Rena
	Hardangervidda
	Calculating incline for analysis

	RRT code
	Initialization of RRT
	Collision routine - RRT
	Finding path to goal - RRT
	RRT algorithm

