
DEEP LEARNING-BASED SEGMENTATION OF WHITE

MATTER HYPERINTENSITIES IN MAGNETIC RESONANCE

IMAGES: AN EARLY MARKER FOR DEVELOPMENT OF

ALZHEIMER'S DISEASE

Martin Soria Røvang

Electronics, informatics and technology

Signal processing and imaging

60 ETC

The University of Oslo

Department of Physics / Department of Informatics

May 17, 2021

ii

Summary

Background Alzheimer's disease is the most common cause of dementia, and the disease can be characterized

by aggregation of the protein Amyloid-β [1]. Amyloid-β is poisonous for the nerve cells and forms pathologic

lesions that can be visualized by medical imaging techniques. Currently, Positron Emission Tomography (PET)

is the imaging-based gold standard for detecting amyloid-beta deposits. However, PET is an expensive and

time-consuming method and requires the administration of a radioactive isotope.

Magnetic Resonance Imaging (MRI) is a non-invasive and more available alternative to PET. In MRI, amy-

loid depositions are associated with the formation of white matter hyperintensities (WMHs), and in Alzheimer's

patients, a higher baseline of WMH is associated with a greater increase in Amyloid-β[2]. Accurate detection

and quanti�cation of WMH from MRI are therefore important in the diagnostic workup of Alzheimer's disease.

Deep learning-based methods have proved powerful in a wide range of image segmentation tasks, and in this

thesis, the aim is to test di�erent deep learning approaches to automatically segment WMHs from MRI. A fully

automated WMH segmentation tool is expected to aid the radiologist in the diagnostic workup in patients with

early signs of Alzheimer's disease, speed up the diagnostic process, and may also reduce user bias.

Methods and data Di�erent types of UNet[3] architectures were implemented and tested for the segmen-

tation of WMH lesions in MRI data. These architectures were a reduced version of UNet, UNet with attention

with & without pyramid input, and an input method where we added three vicinity 2D slices stacked together

as channels to get a bit of 3D information. In the experiments we used a Tversky focal loss with two di�erent

setting, where the best parameters used were, α = 0.85, β = 0.15 and γ = 4/3. This allows the gradient to be

more focused on both the false negatives and hard examples.

Data from a large ongoing pre-dementia multi-center imaging study was used for model training and testing

and included the two di�erent MRI sequence types; T2-weighted Fluid-Attenuated Inversion Recovery (FLAIR)

and T1-weighted MRI volumes. The experiments used data from two datasets. The �rst experiments used

data from one scanner, Philips Ingenia. The other experiments used a larger dataset that contained MRI from

di�erent scanner models, which are shown in the table below.

Data splits Skyra Prisma Ingenia Optima MR450w Achieva Avanto Avg. voxel size
Training 51 156 216 85 57 14 0.863mm3

Validation 7 35 50 13 11 5 0.856mm3

Test 7 38 48 20 11 4 0.865mm3

The best model in each experiment was found when the validation loss was at the lowest point during 50 epochs.

We then tested how the model performed for whole 3D lesions and computed the average mini-batch F3score.

To �nd the 3D lesions, we used 3D pixel-connectivity for the 3D predicted mask and ground truth mask. Here

we used the average recall score for a given lesion, where we separated lesions into four main lesion size brackets,

iii

from small to large. The lesions were detected as true positive if more than 60% of the lesions were detected.

Results and discussion Overall, good segmentation performance was obtained compared to the current

state-of-the-art[4]. In the test data, an F3 score of = 0.74 was obtained on the test data where F3 is the weighted

harmonic mean of precision and recall, reaching its optimal value at 1. The segmentation accuracy decreased

with decreasing lesion size, as expected. However, for clinically relevant lesion sizes, an average recall score

of 0.93 was achieved. Finally, the model also correctly detected some WMH lesions that were missed by the

experts, which suggests some level of generalization of the models.

Keywords: White matter hyperintensities, Brain lesions segmentation, UNet

iv

vi

Abbreviations

MRI - Magnetic Resonance Imaging

WMH - White Matter Hyperintensities

PET - Positron Emission Tomography

SGD - Stochastic Gradient Descent

GT - Ground truth

FLAIR - Fluid-Attenuated Inversion Recovery

CNN - Convolutional Neural Network

MSD - Medical Segmentation Decathlon

AD - Alzheimer's Disease

vii

Contents

Summary iii

Abbreviations vii

Preface xiii

1 Introduction 1

1.1 Goal of this thesis . 2
1.2 Outline . 3

2 Intro to CNN 4

2.1 Convolutional neural networks . 4
2.2 Receptive Field . 6
2.3 E�ective Receptive Field . 6
2.4 Batch normalization layers . 6
2.5 Group Normalization . 7
2.6 Activation functions . 8
2.7 Optimizers . 11
2.8 Regularization . 12

3 Related literature 13

3.1 U-Net: Convolutional Networks for Biomedical Image Segmentation 13
3.2 Alzheimer's Disease Classi�cation through Transfer Learning . 15
3.3 A Novel Focal Tversky loss function with improved Attention UNet for lesion segmentation . . . 16
3.4 Fully Convolutional Network Ensembles for White Matter Hyperintensities Segmentation in MR

Images . 16
3.5 Thickened 2D Networks for E�cient 3D Medical Image Segmentation 17

4 Metrics, optimizers and loss functions 18

4.1 Evaluation Metrics . 18
4.2 Loss functions . 20

5 Dataset and preprocessing 23

5.1 Datasets . 23
5.2 Statistics of data . 23

viii

5.3 Pre-processing . 27
5.4 Feature analysis . 31

6 Models 34

6.1 UNet . 34
6.2 Attention UNet . 34
6.3 3D UNet256 alternative - 3 slices as channels . 36

7 Methology 38

7.1 Transfer Learning . 38
7.2 Image Entropy . 38
7.3 Training/Validation evaluation procedure . 39
7.4 Lesion metric evaluation volume prediction . 39
7.5 Pixel connectivity (lesions) . 40
7.6 Setup . 41

8 Experiments and results 46

8.1 Experiments with pre-trained UNet256 . 46
8.2 Experiment with non pre-trained UNet256 . 46
8.3 Experiment UNet256 with attention gates, pyramid input, no pre-trained. 48
8.4 Experiment pre-trained UNet256 with attention gates without pyramid input. 50
8.5 Experiments with 3-slices as a channel. 50
8.6 Robusti�cation of best result . 52
8.7 Experiments with 3-slices as a channel using FLAIR only. 54
8.8 Experiment Mish and group normalization . 55
8.9 Test data experiment . 56
8.10 Large dataset experiments . 59
8.11 3-slice as channels FLAIR only, [Large data] sagittal slices with ReLU 60
8.12 Pre-trained FLAIR only, [Large data] axial slices, ReLU . 61
8.13 3-slice as channels FLAIR only, [Large data] axial slices with Mish and augmentation 62
8.14 3-slice as channels FLAIR only, [Large data] axial slices with Mish 63
8.15 3-slice as channels FLAIR axial slices with Mish and augmentation, with some of the largest GT

errors removed . 65
8.16 Test results [Large data] . 67

9 Discussion 69

9.1 Data imbalance . 69
9.2 Change of orientation . 70
9.3 Batch normalization and standardization . 70
9.4 Generalization problems . 70
9.5 Dataset di�erence (introduction of larger dataset) . 71
9.6 Di�erence between dice metric and lesion metrics . 75
9.7 Errors in dataset . 75
9.8 Training and prediction for di�erent image orientations . 76

ix

9.9 Future work . 77

10 Conclusions 84

Appendix 87

References 88

x

xii

Preface

This report documents the writer's master thesis (M.Sc.) that have been a part of the master's program Electri-

cal engineering, informatics, and technology: Signal processing and imaging at Department of informatics (IFI)

at University of Oslo (UiO). The thesis is written for Computational radiology and arti�cial intelligence (CRAI).

I want to thank my family, Ina, Antonio, Mira, Adrian, Knut and Kari, which have been very encouraging

throughout the whole master's program, especially since the COVID19 pandemic has been a part of the whole

master thesis.

I also want to thank my advisors Anne H. S. Solberg (IFI), Atle Bjørnerud (CRAI, OUS, and Dept of Physics,

UIO) which have helped me a lot, and Per Selnes, who has both helped me learn much about the brain and

collecting a lot of data for me to work with.

xiii

xv

1 Introduction

Diagnostic imaging refers to the medical field of radiology and nuclear medicine, where digital images generated
by advanced scanner technology are used to detect and characterize the disease and to follow up on the effect
of treatment and intervention. Like most other fields of technology, medical imaging has been transformed
by the digital revolution, which has led to a sharp increase in the amount of data generated for each patient
examination. This rapid increase in data generation has not been matched by a similar increase in the number of
experts (radiologists and other medical professionals) available to inspect and interpret the imaging data. This
means that each medical expert must review an increasing amount of medical image data for each examination
done, with the risk of missing important findings, which can impact patient treatment and outcome. There is,
therefore, a well-established need for robust automated computer-based tools to aid the human expert in the
image interpretation process. The most obvious (and so far most established) use of computer-aided diagnostic
imaging support is in the field of detection and quantification of focal pathology in medical images. Here, focal
pathology refers to any pathological process that manifests itself as visual (to humans or computers) changes
in the medical images caused by pathological changes in the tissues. Typical examples of focal pathological
changes include tumors and neurodegenerative disease.

In this thesis, we have specifically been analyzing magnetic resonance imaging (MRI) data of patients with
early signs of Alzheimer’s disease. MRIs from these patients often have pathological focal changes in brain
white matter, referred to as white matter hyperintensities (WMH), and manual delineation and quantification
of these changes is an extremely laborious and time-consuming task even for an expert.

Automated WMH detection is a typical semantic segmentation problem, and the use of deep learning-based
methods for this purpose has already proved very useful [5]. More specifically, the branch of deep learning using
convolutional neural networks (CNNs) has become the standard approach for image segmentation. One very
popular type of CNN is the UNet[3].

UNet uses an encoding-decoding structure with skip connections which helps attain the finer details in the
larger resolution layers while also having a large receptive field. After UNet was published, the architecture has
been used in many different segmentation problems for both medical and non-medical tasks.

Magnetic resonance imaging is a medical imaging technique used in radiology. MRI uses a strong magnetic
field to create an interaction between particles and their spin state and charge in the body. The patient is
exposed to the electromagnetic energy at the correct frequency that is absorbed by the body, and then a short
time later, the energy is reemitted and can be detected in the form of radiofrequency signals in a received coil,
and which is subsequently digitized and computer-processed to generated volumetric images representing the
biophysical properties of the signal emitting water molecules in tissue.

MRI is particularly useful to visualize soft tissues like the brain, and different types of image contrasts can
be generated depending on the parameters used and the specifics of the data acquisition process.

1

CHAPTER 1. INTRODUCTION

In this thesis, two types of MRI sequences with different contrast properties were used; namely FLAIR and
T1-weighted sequences. Fluid-attenuated inversion recovery, or FLAIR for short, uses a method for suppressing
the cerebrospinal fluid (CSF) during imaging [6].

Since FLAIR sequences suppress the otherwise bright CSF signal, it is very sensitive to detecting WMHs
and is, therefore, the sequence of choice for this purpose in clinical use. T1-weighted images, on the other hand,
renders WMHs dark in the image and are thus less sensitive to WMH detection but may add values in WMH
characterization (categorizing different sub-types of WMHs).

T1-weighted images are also the preferred modality for a general assessment of brain structure. In Figure
1.1 we can see one sample of an axial slice with WMH in FLAIR. The MRI’s are volumes, which allows us to
slice a 2D sample in three different orthogonal orientations as seen in Figure 1.2.

Figure 1.1: (a)(b). Example of a 2D axial slice with WMH marked as red in (b).

1.1 Goal of this thesis

The goal of this thesis is to experiment with different UNet architectures for automatic WMH lesion detection
in MRI volumes. This work comprised of two main points:

• Use UNet architecture as the base model with limited GPU memory footprint.

• Find the best segmentation model.

2

CHAPTER 1. INTRODUCTION

Figure 1.2: (a)(b)(c) Sample slice of all three orientations.

1.2 Outline

In this thesis, we follow an evolving process where an experimental outcome affects how we proceed with the
next experiments. The main chapters are organized as follows:
Chapter 2: Intro to CNNs explains some of the theory behind convolutional neural networks. Here we
introduce several of the popular activation functions and optimizers used in deep learning-based segmentation.
Chapter 3: Related literature gives an introduction to some of the related literature and their methods
upon which various of the experiments in this thesis is based upon.
Chapter 4: Metrics and loss functions discuss and explains the metrics and loss function used in experi-
ments.
Chapter 5: Dataset and preprocessing shows the statistics of the data and how we preprocessed the
dataset before using it in both training and inference.
Chapter 6: Models explains the model architectures used in experiments.
Chapter 7: Methology explains the experimental methods used.
Chapter 8: Experiments and results shows the experiments and their results. These results affected what
model we used going forward.
Chapter 9: Discussion is the chapter we discuss results and some of the possible future work to enhance the
model.
Chapter 10: Conclusion gives a summary of the conclusion made after the experiments and discussion.

3

2 Intro to CNN

Image segmentation is a process of partitioning images into one or multiple regions. This makes it easier to
change the representation or interpret the images. In deep learning, we can have a model learn the per-pixel
probability of belonging to a given class by using supervised learning with pre-labeled target masks. In this
section, we reiterate some of the core principles behind the model architectures used in the thesis and the
metrics used for evaluation. The loss function is also discussed, and the derivation is shown.

2.1 Convolutional neural networks

Convolutional neural networks (CNN) have shown impressive results in image processing. CNN uses layers of
convolutions to output feature maps which are learned by the gradient flow of back-propagation given by a loss
function. Neural networks use the idea of a neuron depicted in Figure 2.1. The input goes through a series of
weighting and adding operations. The output is then activated by a activation function, more details in Chapter
2.6.

1

.

.

.

.

.

Figure 2.1: Artificial neuron. [p.937][7].

In Figure 2.2 (b), we see four convolution kernels extracting four different feature maps, and then each neuron
can be activated by an activation function. We can apply different techniques like drop out, batch normalization,
and much more to enhance the network. Figure 2.3 shows the convolution map output from three to one channel
using a 1x1 kernel. This is used in the last layer to reduce the features to one dimension. After reducing the
channels, we can, in a binary segmentation or classification model, apply a sigmoid activation to squeeze the
values to the range [0, 1].

4

CHAPTER 2. INTRO TO CNN

(a) Convolution map calculated by a convolution
kernel over three channels, this is therefore a 3
to 1 channel transformation. 2D convolution has
kernels that iterate in 2D but weighs all pixels in-
side the kernel over all channels.(Image courtesy
of Eli Bendersky [8])

Image

Feature maps

(b) An example with four different filters out-
putting four different feature maps. You could
also add a bias term which is added to the out-
put of the convolution layer.

Figure 2.2: This figure shows how the convolution layers work. Adding a lot of these layers can extract incredible
feature details.

Figure 2.3: In the models shown, the last layers use 1x1 convolutions to merge the last feature map layers into
one map, which goes through softmax or sigmoid for prediction.

In the activation layer is a sigmoid function, Equation 2.9, which forces the output between [0, 1] such that
we get probabilities for a given pixel to belong to the positive class. This output is then used to compare with
the ground truths, which are compared using the Tversky focal loss. The loss function will be the source of
gradients propagating through the network.

5

CHAPTER 2. INTRO TO CNN

2.2 Receptive Field

Receptive fields are important to understand when setting up a CNN network. The receptive field is how many
neurons each neuron in the deeper layer is connected to. This can be viewed as the field of vision of the neurons.

2.3 Effective Receptive Field

The effective receptive field (ERF) is the area of the original image that influences a given neuron in a given
layer. ERF shows the connection back to the original image from a given neuron in the layer l. The ERF using
the buttom-up approach can be calculated as shown in Equation 2.1 [9]:

Rk = Rk−1 + (fk − 1)

k−1∏
i=1

si, (2.1)

where, Rk is the ERF for a neuron in layer k and R0 = 1 (input layer), fk is the filter size in layer k and si is
the stride of the layer i. The bottom-up approach projects the ERF from a layer k onto the input image. The
advantage of this method is that it produces the ERF for all layers from one feed-forward pass.

The receptive field is important for knowing how much context each neuron has. If this field is very small,
neurons will only use information in the vicinity, which could decrease the model’s understanding of the input
and prediction results. In medical imaging, we might want to know what information is taken into account for
a decision. We might want to know how large the area of the image is taken into account for deciding to weigh
the pixel more than others. For example, if a feature from a different part of the body is inside the receptive
field, the network could use this information from a different part of the body to find something interesting in
other parts of the body, depending on the problem. In Figure 2.4 we can see an illustration of the receptive field.
With the UNet architectures used in all the experiments, the effective receptive field is at 40x40 in the deepest
layer, which should be sufficient. Although the values inside the field do not weigh the same as described in
[10], only a fraction of the theoretical field seems to be used.

2.4 Batch normalization layers

During training, the parameters of the layers change. Hence, changes to the distribution as well. The network,
therefore, learns slower as it needs a more fine-tuned learning rate and initialization. Batch normalization
standardizes the inputs to the activation function such that the mean is zero and the standard deviation is one.
Batch normalization will smooth out the optimization landscape causing a more stable learning process[11] and
will force the response to be in the linear region of the sigmoid function. Batch normalization is given as:

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)] + ϵ
, (2.2)

where x̂(k) is the input to the activation layer, x(k) is the output from the convolution layer, and k is the batch
index. Since this normalization constrains the value between [-1, 1] (good for gradient flow for sigmoid) the
transform in Equation 2.3 is used for scaling and shifting. Using the scale- and shift transformation, the output
could represent an identity transform if it is found to be optimal.

6

CHAPTER 2. INTRO TO CNN

9x9
Convolution

Input
Image

2x
Pooling

9x9
Convolution

9x9 26x26

Figure 2.4: Effective receptive field of a network. By adding cascading convolutions, the network convolves the
previous weighted pixel into another pixel, increasing the receptive field, which is important concerning how large
the lesions are.

y(k) = γ(k)x̂(k) + β(k). (2.3)

These operations are differentiable and store the parameters for use in evaluation. In evaluation, the learned
parameters are used instead of the input batch mean and variance. One big problem with this is that it uses
batch statistics, which could be a bad representation if the mini-batch size is small. During inference the batch
normalization uses the running mean and running variance estimates in Equation 2.4 and Equation 2.5:

µ̂(k)new = mµ̂(k) + (1−m)µ̂(k),

σ̂2
(k)new = mσ̂2

(k) + (1−m)σ̂2
(k), (2.4)

where m is momentum and µ̂(k) and σ̂2
(k) is the running mean and variance.

y(k) =
γ√

σ̂2
(k)new + ϵ

x(k)new +

β −
γµ̂(k)new√
σ̂2
(k)new + ϵ

 . (2.5)

2.5 Group Normalization

Group normalization does not depend on batch size and uses the same statistics for both training and inference[12].
Group normalization normalizes G groups of channels instead of normalizing across batch as shown in Figure
2.5. Variable G is the number of groups to normalize. If we use G = C, we get instance normalization[13]. In-
stance normalization is to normalize each channel independently. The output is then normalized using Equation
2.6:

7

CHAPTER 2. INTRO TO CNN

x̂(c) =
x(c) − E[x(c)]√

Var[x(c)] + ϵ
, (2.6)

where xc is the input from channels in the respective group, and x̂c is the normalized input to the activation
function.

Group normalization does have the same scale and shift mechanic per channel as described in Chapter 2.4
in Equation 2.3.

Figure 2.5: Left: Group normalization layer, Right: Batch normalization layer. By using G = 5, we get three
channels in each group if we have 15 channels.

2.6 Activation functions

Activation function makes weighted features click. By looking at activation functions in the way of the biological
brain, it let features weighted in such a way to pass through the network in a given way. For instance, if a ReLU
function is used, the values below zero are set to zero, and values above are the same. All negative values will
therefore be suppressed by a ReLU. Other activation functions are discussed below.

ReLU One of the most used activation functions as of the year 2020 is the Rectified Linear Unit
(ReLU)[14]. The function is given in Equation 2.7:

f(x) =

x, x ≥ 0

0, else.
(2.7)

Equation(2.7) applies a non-linear transformation but contains two linear piecewise functions. The linearity
makes the network generalize more and easy to optimize. The great advantage of ReLU is by zeroing out
negatives will create sparsity in the activations assuming randomly initialized weights. By outputting input ≥ 0

leads to unbounded scale Equation 2.8:

max(0, ax) = amax(0, x) a ≥ 0. (2.8)

One of the negative properties of the activation is that it is non-differentiable at zero. However, this is fixed by
setting the derivative to zero or one. The dying ReLU problem, since the function forces all outputs below zero

8

CHAPTER 2. INTRO TO CNN

to zero, the network could end up with dead neurons. The function is plotted in Figure 2.6. This activation
function is used in almost every architecture, including UNet.

Figure 2.6: ReLU activation function. All negative values are zero and the same output as input if elsewhere.
ReLU is not differentiable at zero, therefore, thresholding to zero is performed if x = 0. Image grabbed from
[15].

Sigmoid The sigmoid function is a very known probability transforming function. The function squeezes
the values x ∈ [−∞.∞] to y ∈ [0, 1]. Hence, this function is very appropriate for the last layer of the network.
A plot of sigmoid is shown in Figure 2.7) and shown in Equation 2.9. Sigmoid is nearly linear around −1

and 1, while exponentially flattens outside this interval. One problem with this is that the gradient vanishes
as the neurons saturate, causing a problem with the gradient flow. Batch normalization discussed in Chapter
2.4 alleviates some of this problem as it normalizes the output to be inside the linear region of the sigmoid.
This function was only used as the last layer in the models used in the experiments and in the attention gates.
Attention gates are explained in Chapter 6.2.

S(x) =
1

1 + e−x
. (2.9)

In Equation 2.9 x is the output of previous layer.

Figure 2.7: Sigmoid function. This function squeezes the values between 0 and 1. A problem with this function
is that the gradients are mostly linear in the middle and dies out exponentially at the tails, causing vanishing
gradients. Since the sigmoid is almost linear between 0 and 1, the sigmoid either has a very small gradient or
linear gradient. This function does not have a mean of zero, which could make the network converge slower
as mentioned in Speeding learning, [16]. This function works well with batch normalization as the output is
standardized to be within the linear region. The image is taken from [17]

9

CHAPTER 2. INTRO TO CNN

Mish Mish uses a self-gating property by multiplying non-modulated input with the output of non-linear
function of the input. This activation function also eliminates the dying ReLU problem by preserving some
of the negative valued information. The function is plotted in Figure 2.8 and the activation function and its
derivative is shown in Equation 2.10, Equation 2.11:

f(x) = x tanh(softplus(x)) = x tanh

(
1

β
ln(1 + eβx)

)
, (2.10)

f ′(x) =
exω

δ2
, (2.11)

where we used β = 1 in the experiments. Soft-plus also has a threshold parameter where values above will
revert to a linear function for stability, input · β > threshold.
In Equation 2.11, ω = 4(x+ 1) + 4e2x + e3x + ex(4x+ 6) and δ = 2ex + e2x + 2. The function is also bounded
which acts as a strong regularizer. Mish function has a much smoother optimization landscape, hence gradient
flow is more smooth[18]. In Figure 2.8 an example of input noise to a toy model shows the difference during
inactivation. The Mish activation function lets most of the input have a response, while the ReLU activation
has a lot of dead neurons. According to [18] using Mish might increase performance as Mish has smoother
gradient flow, elimination of dead neurons, avoids saturation, has self-gating property, where the scalar input
is provided to control the zero and sign of the activation. The function is also self-regularized by bounding
the larger negative values to zero, like ReLU forcing negative values to zero can cause sparsity in the neuron
activations and add generalization.

Random noise input x N(= 0, = 20) Mish ReLU

Figure 2.8: Left: Mish activation function. Right: Gaussian noise image x ∼ N(µ = 0, σ = 50) input to a toy
model consisting of 3 convolution layers using mish activation and one with ReLU activation. The ReLU kills
off almost everything, while Mish have similar activation on the spikes, it does not have the same amount of
"dead neurons" as ReLU.

10

CHAPTER 2. INTRO TO CNN

2.7 Optimizers

Optimizers are functions that tie the loss function together with the model’s parameters. Since the model
function is very complex and has to be estimated from the dataset, we have to minimize it with respect to the
loss function in an iterative manner. This can be done in many ways, but some of the more popular optimizers
use techniques like momentum to remember previous changes to help estimate the path towards the minimum.

SGD with momentum One of the most popular optimizers is the Stochastic gradient descent (SGD)
with momentum. SGD used a single example from the training data and updates the parameters by finding the
gradient to a loss function and multiply it with a learning rate parameter that scales down the gradient. Which
is to avoid forgetting what was learned. The SGD has the following update rule shown in Equation 2.12:

∆wt = −ηgt, (2.12)

where ∆wt is the change to the weights in the network during Back-propagation, η is the learning rate and
gt = ∇f(θ) is the gradient for a loss function f(θ). Momentum is an extra term added to the update function.
Momentum adds weights from previous weight updates that add ”stopping power” to the update rule. This
can make the update bypass noisy regions of the loss landscape and help bypass local minima. Update rule for
SGD with momentum shown in Equation 2.13:

∆wt = −ηgt + α∆wt−1, (2.13)

where α is the momentum parameter which is scaled depending on how much momentum is needed but is
usually between 0.5 and 1.0 [19]. SGD with momentum therefore has the update equation shown in Equation
2.14.

wt = wt − ηgt + α∆wt−1, (2.14)

Adam The Adam optimizer[20] is the most popular as of today[21]. It uses an adaptive learning rate,
which means that it computes individual learning rates for different parameters. It uses the first and second
moments of the gradients to adapt the learning rate for all the weights. The moments of Adam are calculated
as shown in Equation 2.16 on the mini-batches, not just single samples.

mt = β1mt−1 + (1− β1)gt (2.15)

vt = β2vt−1 + (1− β2)g
2
t (2.16)

Here m, v is moving averages, and g is the gradient on the current mini-batch.
By initializing the running average with zeros the expectation leaves bias terms, dividing the moving averages

by the bias gives the bias corrected equations (2.17, 2.18)

m̂t =
mt

(1− βt1)
(2.17)

v̂t =
vt

(1− βt2)
(2.18)

Finally, the weights are updated as shown in Equation 2.19.

11

CHAPTER 2. INTRO TO CNN

θt = θt−1 − η
m̂t

(
√
v̂t + ϵ)

(2.19)

The initialized learning rate will act as the bounded learning rate as the Adam optimizer changes the learning
rate for the different parameters. The term ϵ is a small value to stabilize the update. In most cases, this value
is something in the order of 1e−6.

2.8 Regularization

Regularization is a method in machine learning that helps the model from overfitting. Regularization is added
in different ways to punish the optimization, for example, adding extra loss in the loss function based on the
number of parameters the network has or add extra loss based on the size of the weights. For instance, if a
model has extremely large weights on a few weights, the model will most likely be overfitted to various types of
features. Punishing the model to spread out the weight values can make the model more generalized.

Dropout is a technique that removes layers with a given probability and, therefore, a stochastic reg-
ularization technique. One motivation behind this is the natural process of gene mutation. Dropping out
layers with a given probability for each training sequence will produce thinned versions of the main network,
and each back-propagation is for these thinned networks. The removed layers get a gradient of zero. Hence,
the trained network is built from 2n thinned networks where each thinned network rarely gets trained. In test
time, the layers are not dropped but rather multiplied with the probability p, which was assigned to that given
layer. This retains the expected value from training to testing [22].

12

3 Related literature

This section discusses and reiterates the highlights of related literature.

3.1 U-Net: Convolutional Networks for Biomedical Image Segmentation

Architecture The UNet architecture is shown in Figure 3.1. It consists of contracting and expansive paths.
The contracting path consists of repeated application of two convolutions (unpadded), each followed by a ReLU
activation function and a 2x2 max pooling with stride = 2 for downsampling. At each downsampling step,
the number of feature channels is doubled. Every step in the expansive path consists of an upsampling of the
feature map followed by a 2x2 upsampling that halves the number of feature channels. A skip-connection is
concatenated from the contracting to the expansive path, and two 3x3 convolutions, each followed by a ReLU.
In the paper, they had to crop the maps from the skip-connection since they did not pad the convolutions,
hence, losing some of the borders for each convolution. As the final layer, a 1x1 convolution is used to map each
64-component feature vector to the desired number of classes.

Method Medical images can be very large, so a overlap-tile strategy can be implemented to larger images.
A crop of the big image is taken (to have even size, so the contracting/expanding part of the network works
without dimension problems) and then segmented. The borders of the images are mirrored for the convolution
kernels to fit. U-Net does not use any padding which, causes the output to be a bit smaller in size than the
input. The borders between cells are hard to segment correctly, hence, the author added a weight map for each
mask image that has loss weights at the border used in the cross-entropy loss function. The weights map was
computed using morphological operations and computed as shown in Equation 3.1.

w(x) = wc(x) + w0 · exp
(
− (d1(x) + d2(x))

2

2σ2

)
(3.1)

where wc : Ω → R is the weight map to balance the different classes, d1 : Ω → R denotes the distance to the
border of nearest cell, d2 : Ω → R the distance to the border of the second nearest cell and the positions are
x ∈ Ω with Ω ⊂ Z2. In the paper they used w0 = 10 and σ ≈ 5 pixels. These weight maps are used in the cross
entropy loss function given in Equation 3.2.

E =
∑
x∈Ω

w(x) log(pl(x)(x)) (3.2)

where pl(x)(x)) is the probability of correct class in that position and l : Ω → {1,K} are the true labels.

The neuron weights are initialized such that the output variance is unit variance. This is done by drawing

13

CHAPTER 3. RELATED LITERATURE

Figure 3.1: UNet architecture from the paper [3].

values from a gaussian distribution and using a standard deviation of
√

2
N where N denotes the number of

incoming nodes to one neuron. In the paper, they favored using large input tiles instead of large batch sizes,
hence, they used a batch size of one single image. This was to make maximum use of the GPU memory.

The augmentation used were primarily shift, rotation, deformation, and gray value variations. Random
elastic deformation was used to increase the size of the dataset, as it was very small. They also used drop out
for the contracting path.

Optimizer and loss The optimizer was stochastic gradient descent with momentum = 0.99, and the loss
function was softmax with cross-entropy.

Dataset The dataset used in the original UNet paper are cells imaged with light microscopy. The data
is from the ISBI cell tracking challenge 2014 and 2015. The first dataset ”PhC-U373” contains Glioblastaoma-
astrocytoma U373 cells on a polyacrylamide substrate recorded by phase-contrast microscopy. This contains
35 partially annotated training data. So here we can see there is not much training data. The second data
set was ”DIC-HeLa”, which are HeLa cells on a flat glass recorded by differential interference contrast (DIC)
microscopy. It contains 20 partially annotated training images. When images were very large, the overlap-tile
strategy was used, and at the edges, the pixels were symmetrically padded.

14

CHAPTER 3. RELATED LITERATURE

3.2 Alzheimer’s Disease Classification through Transfer Learning

Method In the paper[23], they adapted two popular CNN architectures for an AD (Alzheimer’s Disease)
diagnosis problem through transfer learning. Transfer learning is the concept of using the trained weights and
architecture of a pre-existing network that has been used on another domain and re-train it for a different task.

The idea is that by using the pre-trained weights, we skip a lot of the local minimums in the domain, such
that we do not need to train very much for the new problem and need less training data. The architectures are
VGG16 and Inception which were winners of the previous ImageNet Large Scale Visual Recognition Challenge.

These architectures were trained on natural images, which is another domain than the problem in this
paper(MR images). The pre-trained weights are open source and can be downloaded. In the paper, they did
not choose the dataset at random but rather chose images with most information using entropy for each image
slice using Equation 3.3.

H = −
M∑
i=1

pi log pi (3.3)

where M is the set of intensity values in the image if gray-scale (256) and pi is the probability for a given
intensity.

The pre-trained models VGG16 and Inception with the last layer changed to fit the AD detection task, so
this layer has been trained from scratch. The network architectures are as follows:

VGG16:
VGG16[24] uses 16 layers with 3x3 convolution layers. This network has a lot of parameters making it very
heavy to train, and the pre-trained weights are very large, although very intuitive to understand.
Inception:
The inceptions[25] breakthrough is in the realization that non-linear functions can be learned by changing how
the convolutional layers are connected. By replacing the fully connected layer with a global average pooling
and then connect it with a softmax layer for classification. Thus, there are fewer parameters, and as a result,
less overfitting.

Dataset The dataset contains MR images of patients with AD or HC. These contain both cross-sectional
and longitudinal slices. These networks have then been trained on a small dataset(most informative 32 images)
taken from the OASIS dataset1. To test the generalization power of the transfer learning a limited amount of
images were used to train the network. The entropy method discussed in Methods has been used to get the
most informative 32 images from the axial plane of each 3D scan. This resulted in 6400 training images, 3200
of which were AD nad the other 3200 were HC. The MR images are resized to fit the models, for VGG16 the
images have been resized to (150x150) and (299x299) for Inception.

Contrary to the MRI volumes in our dataset, these volumes have been skull-stripped, leaving only the brain
visible. One of the goals of our models is to have volumes straight out of the scanner such that the model can
predict as fast as possible and without eventual error-prone pre-processing.

1https://www.oasis-brains.org/ - latest 05.04.2021

15

https://www.oasis-brains.org/

CHAPTER 3. RELATED LITERATURE

3.3 A Novel Focal Tversky loss function with improved Attention UNet for
lesion segmentation

Method In [26] they used a generalized dice loss function, Focal Tversky loss. This function uses the param-
eters α, β, and γ to tune the loss function for a given problem. Increasing α weights the false-negative more
than false positives, and increasing β weights false positives more. The γ changes the slope of the function to
increase the gradient for easy/hard examples. The function is shown in Equation 4.12,

TIfloss =

(
1− TP +Ω

TP + αFN + βFP +Ω

)γ
. (3.4)

Architecture The architecture is a UNet structure with attention gates[?]. The architecture is shown
in Figure 3.2. The paper did experiments with both multi-scale input and deep supervision layers. CNN’s with
attention gates (AGs) focus on the target region, with respect to the classification goal, and can be trained end-
to-end. At test time, these gates generate soft region proposals to highlight salient ROI features and suppress
feature activations by irrelevant regions [26][Intro].

Figure 3.2: Attention UNet architecture from the paper [26].

Dataset In the paper, they used the Breast Ultrasound Lesions 2017 dataset (BUS)[27] dataset where
lesions occupy 4.84% of the images area.

Optimizer and loss The optimizer used was stochastic gradient descent with momentum, using an initial
learning rate at 0.01, which decays by 10−6 on every epoch. The loss function is Focal Tversky loss as discussed
in Method.

3.4 Fully Convolutional Network Ensembles for White Matter Hyperintensities
Segmentation in MR Images

Method and Architecture In [4], each 3D scan they employed a z-standardization for pre-processing to nor-
malize the intensities distribution for each individual 3D scan. This paper used ensembles of UNet architecture
where many models were trained. These models were then used to vote for each individual pixel by computing

16

CHAPTER 3. RELATED LITERATURE

the mean for all model outputs for final prediction during evaluation. This reduces overfitting and variance by
taking the mean of the final results. The augmentation consisted of sheering, rotation, and scaling. The scaling
was set to have a random interval between the smallest and largest pixel resolutions in the dataset.

Dataset This data comes from the WMH segmentation challenge at https://wmh.isi.uu.nl/, consisting of
FLAIR and T1 MRI volumes.

Parameters The U-Net hyperparameters were set as follows: batch size for computing the training loss
was set to 30; learning rate was set to 0 0002; the number of epochs was set to 50. The number of models in
the ensemble was set to 3.

3.5 Thickened 2D Networks for Efficient 3D Medical Image Segmentation

Method In [28], they experimented with an alternative to 3D convolutional networks by using more than one
2D slice from the MRI volume as channel information. This is a way to include 3D information in the model,
but also decrease the memory usage and increase the speed of both training and inference. In experiments, they
tested different sizes of thickness, from 3-slice to at most 24-slice. In the experiments, results keep increasing
until slice thickness reaches 15. They also tested both the 2D and 3D thickened approach, where 2D is for one
orientation only, while 3D uses all three orientations, axial, coronal, and sagittal.

Architecture The architecture proposed in this paper was split into two parts, where the 2D backbone
model were DeepLabV3+ [29] based on ResNet50 [30]. The input is first split into mini groups and then goes
through the first 2D backbone. The outputs are fused with concatenation from the different groups on channel
dimensions. A two-layer convolution compresses the channel number to its half and the other to 256. The
features then go through a slice-sensitive attention module. The architecture is shown in Figure 3.3.

Figure 3.3: Thickned architecture from the paper [28].

Dataset Experiments are conducted on several abdominal organs individually, including two regular organs
and three blood vessels in their dataset, and the hepatic vessels in the Medical Segmentation Decathlon (MSD)
[31] dataset.

Optimizer and loss and parameters The loss function used was the Dice loss. . For the 2D setting,
they initialized the model with ImageNet [32] pre-trained weight and trained for 100k iterations with SGD
optimizer, where the momentum is 0.9 and weight decay 0.0005. The batch size is 8, and the learning rate is
0.005, which decays by a factor of 10 at iteration 70k and 90k. The batch size is 8, and the learning rate is
0.005, which decays by a factor of 10 at iteration 70k and 90k. For the 3D setting, they adopt an SGD optimizer
with a polynomial learning rate scheduler starting from 0.01 with a power of 0.9.

17

4 Metrics, optimizers and loss functions

This section explains the metrics used for evaluation, some explanation of the most popular optimizers, and the
one used in the experiment. The loss function used in experiments is explained.

4.1 Evaluation Metrics

Metrics measure the results which are important for a given task. These measurements are done on the
validation and test data. Probabilities from the last sigmoid layer are thresholded to zero if they are below 0.5
and 1 if equal to or above 0.5 and then use the validation metrics. The best model found during training is done
by using the weights from where the validation data has the lowest Tversky focal loss for 50 epochs. Tversky
focal loss is described in section(4.2. The metrics are found by flattening the whole batch and then computing
the metric. In Figure 4.1 and Figure 4.2 the two methods are shown.

Recall (smooth) Shows how much of the lesion labels are found with a value between zero and one,
where a value of zero is no true positives and a value of one if there are no false negatives. Recall is shown in
Equation 4.1:

R =
TP +Ω

TP + FN +Ω
, (4.1)

where TP is true positive, FP is false positive, FN is false-negative and Ω is a smoothing factor which provides
numerical stability and can be used to smooth out the function[33], this parameter is further discussed in
section(4.2). The outputs from the network are from a sigmoid function. Hence the following equations(4.2):

TP =
∑
i

ŷiyi,

FP =
∑
i

(1− yi)ŷi, (4.2)

FN =
∑
i

yi(1− ŷi),

where ŷi is the probability of a pixel belonging to class 0 or 1 (negative/positive) this value is given by the
sigmoid function shown in Equation 2.9 which squeezes the output value into the range [0, 1]. yi is the ground
truth pixel, which has the binary value of either zero or one. Since as few false negatives as possible are very
important in medical problems, the recall will be one of the most important metrics during experimentation.

Precision (smooth) Shows how much of the lesion pixels are found with a value between zero and one,
where a value of zero is that there are no true positives and a value of one if there are no false positives. The

18

CHAPTER 4. METRICS, OPTIMIZERS AND LOSS FUNCTIONS

Ground
Truth

flatten
flatten flatten flatten

Predicted

flattenflattenflatten flatten

Figure 4.1: In this case, the very small lesions will dominate the metric score as they are much more frequent.
N =mini-batch size, zi one-dimensional array of one ground truth sample, zj one-dimensional array of one
predicted sample, w is the width of the mask, and h is the height of the mask.

smoothed precision score can be found in Equation 4.3:

P =
TP +Ω

TP + FP +Ω
. (4.3)

Dice (smooth) One of the most commonly used metrics in segmentation is the dice score. The metric
is the harmonic mean between precision and recall and can be defined as shown in Equation 4.4).

D =
2TP +Ω

2TP + FP + FN +Ω
. (4.4)

Generalized F-score In many cases, recall is more important than precision. The general Fβ score can

19

CHAPTER 4. METRICS, OPTIMIZERS AND LOSS FUNCTIONS

Ground
Truth

Predicted

flatten

flatten

Figure 4.2: This was the method used in this thesis. In this case, the larger lesions will have more impact on the
metric score if it is inside the mini-batch. N = mini-batch size, z one-dimensional array of the whole flattened
mini-batch. w is the width of the mask, and h is the height of the mask.

add importance to either recall or precision. This metric is shown in Equation 4.5:

Fβ =
(1 + β2)TP

(1 + β2)TP + FP + β2FN
, (4.5)

if β > 1 recall is weighted more than precision, and if β < 1 precision is weighted more than recall. If we want
the recall to be two times as important as precision, we have F2 score, and if we want it to be three times as
important, we have F3 and so on. If β = 1 the generalized F-score turns into the non-smooth dice score.

4.2 Loss functions

Medical image segmentation, in most cases, suffers from an imbalance in the dataset, for example, much more
negative examples than positives. Another imbalance is that the backgrounds and foregrounds are much larger
than the lesions, as shown in Figure 4.3, seen as white dots. As shown in the figure, both the background and
the brain tissue not having lesions is about 98% of the 2D slice. Classical loss functions such as entropy would
create large gradients towards predicting the massive background and brain tissue correctly.

Dice Loss A very popular loss function for image segmentation is the Dice loss[34]. Dice loss is a loss that
uses the harmonic mean between precision and recall, which prevents large backgrounds from overwhelming the
gradient. The smooth dice loss is found in Equation 4.6:

DSCLc =

(
1−

∑N
i=1 picgic +Ω∑N

i=1 pic + gic +Ω

)
, (4.6)

where for the binary problem gic ∈ {0, 1} and pic ∈ {0, 1} represents the ground truth and the predicted label,
respectively. The N is the total number of pixels. If we have an image segmentation problem that has a very
small ROI(region of interest) we might need to weigh recall(false negatives) more.

Tversky Loss and focal loss A loss function that deals with large data imbalance is the Tversky focal
loss[26][35]. This loss function is derived from the generalized dice loss called the Tversky loss. The focal loss

20

CHAPTER 4. METRICS, OPTIMIZERS AND LOSS FUNCTIONS

adds an exponential parameter that causes the gradient in either the lower or higher end of the loss to saturate.
By choosing the parameter in such a way that the higher end of the Tversky score is flattened, will saturate
the gradient for the easy/already understood examples in the training data. Hence, focus more on the harder
examples. In [26] they introduced a novel focal Tversky loss, where a parameter γ has been introduced to the
Tversky loss [36]. This parameter prevents the easy negative examples to dominate the gradient by focusing on
harder examples by setting γ > 1 as shown in Figure 4.4. The Tversky similarity index is defined as shown in
Equation 4.7:

TI(α, β,Ω) =

∑N
i=1 picgic +Ω∑N

i=1 picgic + α
∑N
i=1 pic̄gic + β

∑N
i=1 picgic̄ +Ω

, (4.7)

where pic is the probability that pixel i is of positive class c and pic̄ is the probability pixel i is of the non
positive class c̄, the same for gic and gic̄, respectively.
This can be simplified for binary classification as shown in Equation 4.8:

TI(α, β,Ω) =
TP +Ω

TP + αFN + βFP +Ω
. (4.8)

Some 2D slice examples have small lesion sizes (down to one pixel). These examples should not necessarily
give high loss because they are not important clinically and may cause problems with the generalization. As
previously mentioned, an example of small lesions are shown in Figure 4.3. Therefore Ω can also act as a

Figure 4.3: In these 2D slices small lesions (bright white spots) are pointed our by the red arrows. The small
ROI can be hard to segment.

regularizer. For example, if the model predicts zero positives, while the ground truth has one positive lesion
pixel, the output of the Tversky index is then as shown in Equation 4.9:

TIΩ=0 =
0 + 0

0 + α+ 0 + 0
= 0. (4.9)

This yields a high gradient and maximum loss, but this is not necessarily good since predicting one single pixel
is not very important. Changing Ω to two gives the Equation 4.10.

TIΩ=2,α=0.7 =
0 + 2

0 + 0.7 + 0 + 2
=

2

0.7 + 2
≈ 0.74. (4.10)

We can see that this is very different. Here we have a very high Tversky index score instead, which is more
appropriate. Using the smoothing factor will also fix the dividing by zero limits if all scores are zero. Hence,
when the numerator and denominator metrics are all zero, yield a Tversky score of one and a loss of zero. In

21

CHAPTER 4. METRICS, OPTIMIZERS AND LOSS FUNCTIONS

most medical problems, we are more interested in the least FP (false positives) as possible, weighting this is
done with the α parameter. To obtain the loss function, we subtract the Tversky index from 1, which is shown
in Equation 4.11:

TIloss = 1− TP +Ω

TP + αFN + βFP +Ω
. (4.11)

To obtain the focal loss we add γ as an exponent as shown in Equation 4.12:

TIfloss =

(
1− TP +Ω

TP + αFN + βFP +Ω

)γ
. (4.12)

Figure 4.4: Loss values for different values of γ. The focal loss with γ < 1 focuses more on the easier examples,
as the gradient is higher when the Tversky index > 0.5. If γ > 1, the gradient is higher for the lower Tversky
index and, therefore, focuses more on the harder examples. One thing to notice is that by having a γ > 1, the
gradient towards the Tversky index > 0.8 is starting to saturate. This can help the model from overfitting and
help in generalization.

This leads to one of the derivatives for backpropagation shown in Equation 4.13:

dTIfloss
dŷi

=
dTIfloss
dTI

dTI

dŷi
= −γ(1− TI)γ−1 dTI

dŷi
. (4.13)

The derivative of the loss function with respect to the sigmoid activation is smaller if TI increased by Ω.

22

5 Dataset and preprocessing

In this section, we explain the dataset and the preprocessing steps used.

5.1 Datasets

The dataset contains 100 MRI volumes, where domain experts have annotated ground truth masks for the MRI
volumes. Most of these masks have very few positive pixels creating a severe class imbalance. The size of the
2D slices is 256x256, and they have channels FLAIR and T1. The data is separated into training, validation,
and test[37][p. 222], using NumPy functions shuffle function1 with random seed 123.

In this thesis, we have two datasets. One is the small dataset, which we obtained early during experimenta-
tion. The first experiments used data from one scanner, Philips Ingenia where MRI volumes have a voxel size
of 0.954mm3. The other experiments used a larger dataset that has MRI volumes from many different scanners
and hospitals, which added different resolutions to the dataset. These scanners are shown in Table 5.1.

Table 5.1: Scanner models for the large dataset.

Data splits Skyra Prisma Ingenia Optima MR450w Achieva Avanto Avg. voxel size
Training 51 156 216 85 57 14 0.863mm3

Validation 7 35 50 13 11 5 0.856mm3

Test 7 38 48 20 11 4 0.865mm3

Since there are different resolutions in the large dataset resolution, the receptive field of the model will be able
to look at the different contexts of different parts of the brain in exchange for less context inside a given area.
The UNet model has skip-connections making the architecture have a fixed range of receptive fields. If the
resolution is low, then more parts of the brain will be inside the receptive field. If the resolution is high, then
fewer parts of the brain will be inside the receptive field in exchange for more information inside the small region
of the brain.

5.2 Statistics of data

Small dataset The mean and standard deviation of a sample of the training data is shown in Figure 5.2 and
the validation data in Figure 5.3. One problem with the small dataset is that validation and test data are very
small after performing a 70,15,15 split.

In Table 5.3 some important lesion metrics are shown. These metrics will be used in comparison with
predicted lesions. These metrics are important because it is not generally the pixel predictions themselves who

1https://numpy.org/doc/stable/reference/random/generated/numpy.random.shuffle.html

23

CHAPTER 5. DATASET AND PREPROCESSING

are important, but the size of the 3D lesion. The lesions are grouped as discussed in Chapter 7.5, where we use
pixel connectivity to group the pixels into groups of 3D lesions.

All the 100 MRI volumes in the small initial dataset have been scanned by the same machine of type Philips
Ingenia which can cause generalization issues discussed in Chapter 9. In Table 5.2 information about the dataset
is shown. There are no MRI volumes that have zero lesions, but three MRI volumes in the training data have
below 100 pixels, which is very little. Figure 5.1 describes the distribution of the number of WMH-identified
pixels (by the experts) per image slice across the entire dataset for each volume.

Table 5.2: Data information for the small dataset splits. In this table, we can see how many 2D slices have
WMH pixels.

Dataset Total Number
of 2D slices Masks ≥ 100 WMH Empty masks Masks < 100 WMH Volumes with

zero lesions
Training 11712 1297 8700 3 0
Validation 2562 324 1851 0 0
Test 2562 335 1863 0 0

Figure 5.1: (a), (b) / (c). Distribution of lesion pixels for each MRI volume. (a) The training dataset. (b)
Validation dataset (c) Test dataset. 64 MRI volumes in training, 15 MRI volumes in the validation dataset,
and 13 in the test dataset. The frequency is in MRI volumes, not 2D slices.

Large dataset This dataset contained MRI volumes from many different scanners and hospitals. Using

24

CHAPTER 5. DATASET AND PREPROCESSING

25.0 27.5 30.0 32.5 35.0 37.5 40.0
Intensity

0

2

4

6

8

10

12

14

Nu
m

be
r o

f M
RI

 v
ol

um
es

Mean intensity

(a) Mean values of samples from the small train-
ing data.

48 50 52 54 56 58 60 62
Intensity

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f M
RI

 v
ol

um
es

Standard deviation

(b) Standard deviations from the small training
data.

Figure 5.2: The mean and standard-deviation of the small training data with 60 samples is shown. The standard
deviation seems to almost follow a gaussian distribution. The same statistics are plotted in Figure 5.3, but with
the validation data instead.

20 22 24 26 28 30 32 34 36
Intensity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Nu
m

be
r o

f M
RI

 v
ol

um
es

Mean intensity

(a) Mean values of small validation data.

40 45 50 55 60
Intensity

0

1

2

3

4

5

6

Nu
m

be
r o

f M
RI

 v
ol

um
es

Standard deviation

(b) Standard deviations of the small validation
data.

Figure 5.3: The mean and standard deviation of the small validation data. The validation data is very small
at N = 9 after removing MRI volumes not containing FLAIR and T1, so comparing this to the small training
data is not that significant. There seems to be at least one outlier in the standard deviation of this sample.

25

CHAPTER 5. DATASET AND PREPROCESSING

Table 5.3: Ground truth lesion metrics for the small validation dataset. Depths and voxels are averages over
total lesions.

Lesion Size [0, 10) [10, 400) [400, 1000) [1000, ∼)
Avg. voxels 3 52 566 3960
Avg. depth 1 6 28 42
Total 555 189 9 7

a more diverse dataset helps with the generalization of the model. Different scanners have their own noise
distributions and different imaging settings like magnetic strength etc. Lesion Information for the large dataset
is shown in Table 5.4. Figure 5.4 show the sum of all positive pixels in the MRI volumes masks in the new
dataset. In Figure 5.5 a sample of 60 MRI volumes in the training data is shown, and in Figure 5.6 the sample
of 60 MRI volumes from the validation data is shown. Comparing these distributions, we can see that the
standard deviation is much larger than in the smaller dataset. The reason for this is that the larger dataset has
many MRI volumes containing much more noise and more/fewer background values. In Figure 5.8 and Figure
5.7 some 2D slices are shown with and without color sliced intensities. We can see that it is hard to see the
low-intensity noise in the original image, but after color slicing, we see that values in the [1,19) intensity range
contain a lot of noise in some MRI volumes. The noise can add generalization to the model as the model need
to adapt to the disruption of the intensity values in the region of interest.

Table 5.4: Data information for the small dataset splits. In this table, we can see how many 2D slices have
WMH pixels.

Dataset Total Number
of 2D slices Masks ≥ 100 WMH Empty masks Masks < 100 WMH Volumes with

zero lesions
Training 132070 27946 80303 0 0
Validation 27274 5996 16331 0 0
Test 28425 5525 17468 0 0

Table 5.5: Ground truth lesion metrics for the large validation dataset. Depths and voxels are averages over
total lesions.

Lesion Size [0, 10) [10, 400) [400, 1000) [1000, ∼)
Avg. voxels 3 44 631 3817
Avg. depth 2 6 23 42
Total 10436 4210 116 133

Image presentation Domain experts like to view the 2D slices in the axial orientation as shown in Figure
4.3. For the model training, the orientation of the input data is not important if the data has isotropic resolution;
that is, the same resolution along all three axes as was the case for the data available here. After prediction,
the output could then be viewed along any chosen plane through the 3D volume making up each MRI dataset.

In experiments, we explore the axial and sagittal orientations to see if it has any effects on prediction. If
the dimensions become uneven or less than 256 pixels, zero padding is needed, which may affect the model.
The most important part of the prediction is that the input is in the same way as it was during training and
validation.

How the volume is stacked together from 2D slice predictions are shown in Figure 7.4.

26

CHAPTER 5. DATASET AND PREPROCESSING

Figure 5.4: (a), (b) / (c). Distribution of positive pixels(lesion pixel) for each MRI volume in the large dataset.
(a) The training dataset. (b) Validation dataset (c) Test dataset. The frequency is in MRI volumes, not 2D
slices.

5.3 Pre-processing

The general intensity values can be quite different from volume to volume because of noise, magnetic field
strength, and others. Because of this, we need to standardize the dataset in a way such that these factors do
impact the model as little as possible. Z-standardization scale the values such that the values are between
[-1, 1]. Since the lesions usually are the brightest parts of the image, they will end up around one, mean values
will end up at zero, and the background values will end up at around a negative one. As pre-processing the
dataset is z-standardized over the whole MRI volumes independently from other volumes using Equation 5.1:

Zk =
xk − µV

σV
, (5.1)

where µV is the mean of MRI volume, σV is the standard deviation of the MRI volume, xk is the MRI volume
slice xk ∈ RM×N , M being the height of the slice, N is the width, and k is the depth index for volume depth
K. This operation will convert the data into intensites from the mean and yield a zero mean and a standard
deviation of one over the whole MRI volume. Having data with zero mean and normalized standard deviation
could help with convergence[16]. This is the pre-processing step used in all experiments. For the training data,

27

CHAPTER 5. DATASET AND PREPROCESSING

20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5
Intensity

0

2

4

6

8

10

12

14

Nu
m

be
r o

f M
RI

 v
ol

um
es

Mean intensity

(a) Mean values of training data.

35 40 45 50 55 60
Intensity

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f M
RI

 v
ol

um
es

Standard deviation

(b) Standard deviations of the training data.

Figure 5.5: The first and second-order moment of the large training data. This dataset has much more data
allowing for 60 samples in the validation data as well.

20 25 30 35 40
Intensity

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Nu
m

be
r o

f M
RI

 v
ol

um
es

Mean intensity

(a) Mean values of validation data.

30 35 40 45 50 55 60 65
Intensity

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Nu
m

be
r o

f M
RI

 v
ol

um
es

Standard deviation

(b) Standard deviations of the validation data.

Figure 5.6: The first and second-order moment of the large validation data.

28

CHAPTER 5. DATASET AND PREPROCESSING

(a) Gray scale 2D slice from validation data.
Left: 2D slice example with a lot of noise. Right:
2D slice from another volume.

(b) Color sliced 2D slice from validation data.
Left: 2D slice from a volume. Right: 2D slice
from another volume.

(c) Gray scale 2D slice from validation data.
Left: 2D slice from a volume. Right: 2D slice
from another volume.

(d) Color sliced 2D slice from validation data.
Left: 2D slice from a volume. Right: 2D slice
from another volume.

Figure 5.7: Some volume seems to have a lot of noise bringing the mean and variance up. This skews the
intensity values of the brain and can have an effect on the model. Note: The statistics shown as the subtitle is
for the whole volume, not for that given slice.

29

CHAPTER 5. DATASET AND PREPROCESSING

(a) Gray scale 2D slice from validation data.
Here are more examples of some 2D slices in the
more commonly occurring percentile.

(b) Color sliced 2D slice from validation data.
Here are more examples of some 2D slices in the
more commonly occurring percentile.

(c) Gray scale 2D slice from validation data.
Here are more examples of some 2D slices in the
more commonly occurring percentile.

(d) Color sliced 2D slice from validation data.
Here are more examples of some 2D slices in the
more commonly occurring percentile.

Figure 5.8: There seem to be some noisy examples overall in the dataset. Noise is not necessarily bad as it could
enhance the generalization of the model. Note: The statistics shown as the subtitle is for the whole volume, not
for that given slice.

30

CHAPTER 5. DATASET AND PREPROCESSING

we also used entropy measures to remove 2D slices containing small amounts of information.

5.4 Feature analysis

In this section, we show some basic feature analysis using t-SNE[38]. t-SNE is a statistical method for visualizing
high-dimensional data. The algorithm converts the similarities between data points to join probabilities by
minimizing the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embedding
and the high-dimensional data. Since t-SNE is an optimization algorithm that used a non-convex loss function,
a different initialization will yield different results. For these tests, we kept the NumPy random seed at 123 as
we have done for all experiments.

In Figure 5.9 one example of the reduced features based on the slice-orientation is shown. The dimensionality
have been reduced from xi ∈ R256x256 → yi, where yi is in the map space R2. There is an bijection in the
reduced map space, hence, every point represents one slice in the volume.

It is interesting to note that the sagittal and axial orientations have very different feature clusters. In
the first column, the dimensionality-reduced results of 8-bit volume are shown. In the second column is the
z-standardized slices, and in the last column, one example of the image presentation is shown.

As observed, the features reduce in different ways depending on the image orientation. The bubbles depict
the lesion sizes. The larger bubbles are the larger lesions. The most amount of lesion pixels in a slice was 124
pixels. In axial orientation, it seems like the lesions group up in a leaf-like structure, while in the sagittal slice,
the lesions group up in one given area.

In Figure 5.10 one example with almost no lesions are shown together with two random volumes. The
z-standardization seems to help the algorithm to separate the clusters. Since we are able to separate the lesions
into their own clusters, we hypothesize that we are able to predict the lesions with fairly good accuracy and
that the axial slice orientation is the best.

The lesions seem to stay within the leaves which might suggest that the lesions occur in distinct parts of
the brain. The leaf patterns also look very alike for the respective image orientations. These patterns suggest
that there is a pattern in how the lesions are formed, and that the deep learning model might pick this up.

For all feature reduction we used all the default values from the sci-kit learn T-SNE function at 2, where
the main parameter perplexity = 30. Even though we see patterns for the lesions, it might not mean anything
special as the interpretation of T-SNE is quite complex. 3

2https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html - 09.04.2021
3https://distill.pub/2016/misread-tsne/ - 09.04.2021

31

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
https://distill.pub/2016/misread-tsne/

CHAPTER 5. DATASET AND PREPROCESSING

Figure 5.9: (a)(b)/(c). Features per slice from the different orientations. In each plot: (a) (b) and (c) different
orientation of the same volume is shown. T-SNE can be used to reduce the dimensions of data to make it easier
to interpret the data. In this example, each slice was reduced from 256x256 to 1x1 point in 2D space. This was
done overall slices and added to the final 2D plot as shown. The bubble sizes follow the sum of lesion pixels in
that given 2D slice. The aspect ratio is a bit off, causing some stretching effects on the slice images.

32

CHAPTER 5. DATASET AND PREPROCESSING

Figure 5.10: (a)(b)/(c). An example with very few lesion pixels is shown in (a). In (b) and (c) two random
volume examples are shown. The aspect ratio is a bit off, causing some stretching effects on the slice images.

33

6 Models

In this section, we explain the architecture of the models used during experimentation.
The models are built with modules of layers usually comprised of convolution layers, activation layer, nor-

malization layer, and pooling layers. There can also be some type of regularization layer, such as dropout. One
of the most popular segmenation model is the UNet[3].

6.1 UNet

In 2015 Olaf Ronneberger, Philip Fischer, and Thomas Brox introduced the U-Net architecture for medical image
segmentation[3]. This architecture is good at localizing by using the elegant concatenated skip-connections
for each down-sampling. Skip-connections help with gradient flow between the layers, as the gradient may
saturate in deep and large networks. The network architecture is shown in Figure 6.2. The original architecture
does not pad the layers, decreasing the size of the output map. In the deepest layer, the feature maps are 32×32

when the input images are 572× 572. In our architecture, we use zero paddings to get the same output as the
input size after feeding it to the model, even though padding affects the network[39]. We also used 256 × 256

input images to get feature maps of 16× 16 in the deepest layer.
The architecture used in our experiments has half the feature map size compared to the original. In our

experiments, we use 256x256 images, while in the original paper, it was used 512x512. Feature map size in our
experiments are [32, 64, 256, 512], and then up-sampled using transposed convolutions through the decoder
part of the architecture. The last layer was changed from softmax to sigmoid for probability since we have a
binary classification problem. The kernel size for all the convolution layers are 3x3 with stride = 1, padding =
1 and dilation = 1. The last convolution before sigmoid has 1x1 with stride = 1 padding = 1, dilation = 1 and
bias = False. The downsampling was done using max-pooling with stride = 2 and kernel size = 2, cutting the
resolution in half.

The contracting part of the network finds the features, and the expanding part localizes the area to segment
in the final output. For the up-sampling, we could either employ bilinear interpolation or learnable up-sampling/
transposed convolutions. In our experiments, we used transposed convolutions for upsampling. One problem
with transposed convolutions is that the convolved output can have a checkerboard pattern. Figure 6.1 show a
checkerboard pattern when using unequal stride to kernel size.

6.2 Attention UNet

The attention UNet[41] attempts to identify the salient regions and to prune the features to preserve only the
activations relevant to the specific task, which in this case is low ROI segmentation. The architecture is seen in

34

CHAPTER 6. MODELS

Figure 6.1: Transposed convolutions with different size and stride. Figures are from [40].

(a) Transposed convolution with stride = 2 and size = 3. Double overlap causes a
checkboard pattern in 2D.

(b) Transposed convolution with stride = 3 and size = 3. No overlap between nearby
upsampled pixels.

3232 I

64 64 I/
2

128 128 I/
4

256 256 I/
8

512 512 I/
16

Bottleneck Conv

256 256 256 256 I/
8

128 128 128 128 I/
4

64 64 64 64 I/
2

32 32 32 32 I

Sigmoid

Figure 6.2: The UNet model used in our experiments. The original layer had 1024 feature maps in the bottleneck,
but since we work with 256x256 2D slices, we decreased the feature maps in the bottleneck to 512 feature maps.

Figure 6.3. In this figure, the Attention UNet with pyramid input is shown. The same parameters were used
as in the regular UNet, except for the attention gates and in some experiments the pyramid input.

The pyramid downsampling was done using max-pooling with stride = 2 and kernel size = 2 on the input
image. The image pyramid is an attempt to improve segmentation accuracy since the small ROI features can
get lost in cascading convolutions. The attention gate diagram is shown in Figure 6.4.The attention coefficients
can be formulated as shown in Equation 6.2:

qiatt,i = ψT (σ1(W
T
xx

l
i +W

T
g g + bxg)) + bψ, (6.1)

αl = σ2(q
l
att(x

l, g : Θatt)), (6.2)

where Θatt is the set of parameters containing the linear transformations W x ∈ RFl×Fint , W g ∈ RFg×Fint ,
ψ ∈ RFint×1 and the bias terms, bxg ∈ RFint and bψ ∈ RFint

35

CHAPTER 6. MODELS

Figure 6.3: Model of attention UNet. The circles in the skip connection are the attention gates. These attention
modules output an attention map which is multiplied with the feature maps to learn self-attention. The archi-
tecture is the same as UNet, the only difference is the attention gates.

Downsampling

Upsampling

Figure 6.4: The architecture of the attention gates used in the attention UNet. The gating signal g coming from
the coarser scale feature maps is added together with the input signal xl, which is the skip connection coming
from the higher spatial resolution. This input is down-sampled to be able to sum it with the gating signal. After
going through the ReLU, σ1, 1x1 mapping ψ, and sigmoid σ2, the output is up-sampled using a bilinear. The
attention weight map α is multiplied with the skip connection to create the attention weighted output map.

6.3 3D UNet256 alternative - 3 slices as channels

The dataset is made of MRI volumes, therefore, it is logical to think of 3D neural networks as a way to optimize
the objective. One of the big problems with 3D neural nets is the immense memory usage. Typical volumes
in the dataset consist of 256x256x183 float value (when z-standardized) plus x amount of batch size, including

36

CHAPTER 6. MODELS

now 3D weight kernels in the architecture, which leads to an explosive amount of memory usage.
One way to lessen the usage of memory is to use patches of the 3D volume during training. After prediction,

the output can be stitched back together, creating the original volume. This patching method could lead to the
creating of edges across lesion volumes, by, for example, if the patching is done in between a lesion, etc. This
might lead to a sub-optimal understanding of the lesion features.

Using this method still uses a lot of memory. In most of the experiments, the channels were FLAIR and
T1, but we could instead use either one slice from all three orthogonal orientations or stack three or more slices
in one orientation to get depth information. Here we can stack, for example, three vicinity slices and predict
a segmentation map for the center slice. The model can use one down and one up information for a given
orientation for prediction as shown in Figure 6.5. This method does not need any alterations to the architecture
either.

Figure 6.5: Using three slices as channels, where we want to predict a single prediction map for the center slice.
If we use three slices of FLAIR and T1, the channels would be six. The channels can be the concatenation of
FLAIR(3x) and T1(3x). This method is a thickened 2D approach, not 3D since we only use information from
one orientation.

37

7 Methology

In this section, we explain the methods used during experimentation.
In this thesis, we have one small subset of data coming from one scanner, which is used in the first couple

of experiments. Later, we received a large dataset coming from many different hospitals and scanners, which
are used for the last experiments and used for the final results. This is also mentioned in the experiments. The
dataset contains Fluid-attenuated inversion recovery (FLAIR) and T1 MRI volumes, which are both used as
channels in some of the experiments. Since it is more practical to only use one of these, in the last experiments,
the only FLAIR was used, which showed promise and were used for the final results.

White matter hyperintensities (WMH) can be hard to segment because most of the lesions can be very
small. One example of a small to medium-sized lesions are shown in Figure 1.1. A loss function used in our
experiment, Tversky focal loss[26], can help the model not overfit and to focus on both hard examples and false
negatives, depending on how you tune the parameters.

7.1 Transfer Learning

Transfer learning is the method of using the pre-trained weights of a model trained on another dataset and using
it on a new dataset with a different objective. Most low-level features extracted are the same across different
categories. By using pre-trained weights, we leverage the power of an already trained model for prediction by
making small tweaks to the weights in order to minimize the loss for the new objective.

Instead of training from scratch and the need for a massive training dataset, we might only need a small
dataset and a couple of epochs in order to attain good results. One problem with using transfer learning is
that the gradient might start off very small since it is already very close to the minimum. This will make our
momentum low and might cause the optimization to end up in one of the local minima. Some experiments in this
thesis are done using pre-trained weights from a Kaggle competition for lower grade glioma tumor segmentation
on 2D MR slices.

7.2 Image Entropy

As described in [7][p. 545] ”How few bits are needed to represent the information? That is, is there a minimum
amount of data that is sufficient to describe an image without losing information in an image? Information
theory provides the mathematical framework to answer this and related questions. Its fundamental premise is
that the generation of information can be modeled as a probabilistic process that can be measured in a manner
that agrees with intuition. Following this supposition, a random event E with probability P (E) is said to

38

CHAPTER 7. METHOLOGY

contain:
I(E) log

1

P (E)
= − logP (E), (7.1)

units of information. If P (E) = 1 (that is, the event always occurs), I(E) = 0 and no information is attributed to
it. Because no uncertainty is associated with the event, no information would be transferred by communicating
that the event has occurred [it always occurs if P (E) = 1]” By using log2 we have the unit of information in
a bit. If there is only one value across the whole image, the information is zero. Therefore for all experiments,
the slices with the information above a threshold of two were used during training. This was found by visually
inspecting the 2D slices around this value. Information content was found by using the Shannon entropy as
defined in Equation 7.2. By removing images with low entropy, the slices-with-lesion to the slices-without-lesion
ratio was decreased, this is good because of the large imbalance.

Ĥ = −
L−1∑
k=0

pr(rk) log2(pr(rk)). (7.2)

In Equation 7.2[7][p. 546] L is the intensity levels and pr(rk) is the probability of that given intensity. The
result is in bits/pixel. The entropy of all training MRI volumes is shown in Figure 7.1.

Entropy is high if there are many different intensities to describe an image. Hence, noisy 2D slices will have
high entropy, where uniform distribution will have the highest. All data has the same depth N = 183. The red
line indicates the threshold for removing 2D slices. In Figure 7.2 we can see some examples of 2D slices at the
threshold border. Since this entropy line is almost the same for all MRI volumes, we can suspect that there
is not much difference in the data. This makes sense as it later was discovered to be all from the same MRI
scanner. Looking at Figure 8.18 the entropy is a lot more diverse.

In all experiments, a threshold of two was used. This was found by looking at the 2D slices directly by taking
the value where brain tissue started to form. From Equation 7.2, the entropy is maximized if the intensities of
the image follow a uniform distribution and are minimized if all intensities are the same.

Removing 2D slices under the threshold left us with 9421 training images and 2562 validation images. No
images were removed in the validation set.

7.3 Training/Validation evaluation procedure

The loss and evaluation metrics have been calculated by first finding the loss and scores in a mini-batch (12
images). This loss is found by flattening the mini-batch and using Tversky focal loss. When evaluating the
metrics like recall, dice, and F3, the mini-batches are all flattened before the score is found. After all mini-
batches for the epoch is complete, the final result is then the average over all the mini-batch step results. In
Figure 7.3 the training procedure is shown. The metrics use a hard threshold of 0.5 to binarize the outputs
from the sigmoid function before computing the score.

The dice and recall are only calculated for the validation set. During training, the weights are saved when
the validation loss is at the lowest value.

7.4 Lesion metric evaluation volume prediction

When the best model is found, the weights are loaded, and the MRI volumes in the validation and/or test data
are predicted by chunking each volume into batches. These batches are segmented and stacked into a volume

39

CHAPTER 7. METHOLOGY

0 25 50 75 100 125 150 175
Slice

0

1

2

3

4

5

En
tro

py

Depth_type
N = 183

Figure 7.1: Entropy content over MRI volumes over the slices in training data. The dataset has a very small
standard deviation in information over slices. All slices/images above 2 bits/pixel were used. Here the maximum
entropy is at around five bits/pixel.

array of the size of the original FLAIR volume. This is shown in Figure 7.4.

7.5 Pixel connectivity (lesions)

For lesion analysis the functions label1 and regionprop2 from scikit-image library[42] has been used to group
the pixels to lesion clusters. The label function uses pixel connectivity. This method groups pixels together
if they connect in either 4 or 8 connection, some examples are shown in Figure 7.5. In this thesis, we used
8-connectivity. The grouping is done after the whole volume is predicted.

For different pixel values V={1,2,3,..M} or binary V = {1} we assign into one group if the pixels is 8-
connected, ((x+1, y+1, z+1)), ((x−1, y−1, z+1)), ((x−1, y−1, z−1)), ((x+1, y−1, z−1)), ((x+1, y+1, z−1)),
((x+ 1, y − 1, z + 1)), ((x+ 1, y + 1, z − 1)) and ((x− 1, y + 1, z − 1))

Regions It would be interesting to know how many lesion regions the model can detect, not just how
many pixels of regions. We will use the function ”label” from scikit-image3 to group regions and count them.
In Figure 7.6 there is an example of regions. Regions/Lesion counting is further discussed in Chapter 9.6.

1https://github.com/scikit-image/scikit-image/blob/master/skimage/measure/_label.py#L32-L120 - fetchdate: 11/01/2021
2https://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.regionprops - fetchdate: 11/01/2021
3https://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.measure.label - fetchdate: 11/01/2021

40

CHAPTER 7. METHOLOGY

Figure 7.2: Examples of 2D slices at the entropy threshold border. There is not that much information, but
we do not want to remove too much either. The threshold at two seems reasonable. Each 2D slice is from a
different MRI volume.

7.6 Setup

The initial learning rate was η = 0.0001, and a learning rate scheduler reduced it by a factor of 0.2 every five
plateau epoch4. A mini-batch size of 12 2D random slices was used with an Adam optimizer with parameters:
betas = (0.9, 0.999) eps = 1e−08 and weight decay = 0. These parameters were used for all experiments unless
specified. Adam optimizer was used since it is the most popular as of this moment [21].

To maintain the same size after convolution the images are expanded using zero paddings. The weights were
initialized with uniform distribution, U(−σN , σN), where σN = 1/

√
N , N is the size of the layer. The random

seed was 123 for both numpy and torch. The torch functions torch.backends.cudnn.benchmark = False
and torch.backends.cudnn.deterministic = True5 was used for reproduceability.

For all experiments was a smoothing factor of Ω = 2 was used. The loss function was Tversky focal loss from
Equation 4.11, with parameters γ = 4/3, α = 0.7 and β = 0.3, unless specified otherwise. These parameteres
were used because they gave the best result in [26]. Note that in [26] 1/γ was used in Equation 4.12 with a
value of γ = 4/3, which will focus on the easy examples as γ−1 = (4/3)−1 = 3/4. This can be seen in the Figure

4If the validation loss does not decrease for five epochs, the learning rate is reduced.
5https://pytorch.org/docs/stable/notes/randomness.html

41

CHAPTER 7. METHOLOGY

MRI volume
1

MRI volume
213

MRI volume
73

MRI volume
103

MRI volume
4

Randomly
sampled
volumes
chunk

z-
standardizing

Preprocessing
step

Entropy
remove

Shuffled
volume slices

containing their
respective

mask

Prediction and
backprop for all

batches

Figure 7.3: Data pipeline for the training procedure. This cycle was done until all the training data have gone
through the training procedure. The chunking of MRI volumes was done because of memory constraints. The
MRI data was grabbed randomly until all volumes have had been seen during training. The validation procedure
goes through the same steps except for entropy removal and back-propagation. Then it all starts over again for
the next epoch.

4.4. Assuming this was a typo we use γ = 4/3 for how the focal loss is defined in Equation 4.12.

42

CHAPTER 7. METHOLOGY

Segmentation

Model

Figure 7.4: Data pipeline for the volume prediction procedure. Since the models use 2D slices and not volumes,
a batch of slices are taken in sequence and stack up a volume until the whole volume is segmented. N is the
depth of the FLAIR volume and ni is batch number i with batch size n.

43

CHAPTER 7. METHOLOGY

4 connectivity 8 connectivity

Figure 7.5: Examples of connected regions in 2D using 4- and 8-connected. Colors represent the different regions.
8-connected seems the most appropriate.

44

CHAPTER 7. METHOLOGY

Figure 7.6: Left: GT(Ground truth). Right: Predicted. Example of ground truth masks and predicted mask
regions. It can be seen here that the prediction of the large regions is one larger region, and in the ground truth,
there are two regions very close together, but all regions are overlapping. In the lesion metric tables shown in
experiments, coordinates of the GT lesions were used to find the recall score by finding the prediction on the
same coordinates.

45

8 Experiments and results

In this section, we show results for different experiments and give a short explanation.

8.1 Experiments with pre-trained UNet256

In Chapter 3, some of the model’s used pre-trained weights such as ImageNet. In our pre-trained experiments
we use weights from 1 ([43]). The pre-trained weights were trained on a dataset that has MRI volumes with
lower-grade gliomas. That dataset contained 110 pre-contrast, FLAIR (fluid-attenuated inversion recovery),
and post-contrast MRI volumes as channels. In our data, we do not have all these channels, hence, transfer
learning might not work well.

All weights were retrained in this experiment. The losses are shown in Figure 8.1. The weights were trained
on three channels, thus, in this experiment, the input was 256x256 sagittal slice orientation slices concatenated
with FLAIR, T1, and FLAIR(again), such that the input size is (mini-batch size, 3, 256, 256). We added
FLAIR twice to not having to remove any of the pre-trained weights, which uses three input channels. In this
experiment, no augmentation was used. In the experiment shown in Figure 8.2, the parameters were changed
to α = 0.85, β = 0.15 to increase the recall.

Results for the metrics are shown in Table 8.1.

Table 8.1: Results for the pre-trained model for the given focal Tversky loss parameters. The higher recall is
better because finding lesions are considered to be more important than false positives.

γ α β Dice Recall
4/3 0.70 0.30 0.66 0.74
4/3 0.85 0.15 0.63 0.81

8.2 Experiment with non pre-trained UNet256

We performed experiments with random uniform initialized weights to get a baseline for all the experiments.
The model seems to perform relatively well in both pre-trained and not pre-trained experiments. Results are
shown in Table 8.2 and the respective loss is plotted in Figure 8.3 and Figure 8.4. The loss seems to oscilates
in the early epochs. The validation loss seems to start diverging close to epoch 50, but might still have some
minimization left as the divergence is not that clear.

1https://github.com/mateuszbuda/brain-segmentation-pytorch

46

CHAPTER 8. EXPERIMENTS AND RESULTS

Figure 8.1: The average mini-batch Tversky focal losses for the pre-trained model. Since this is a medical
problem, as we get a high enough dice score, we would like a large recall score to make sure we find the positives.
According to this plot, we might want to weigh the α (FN) parameter a bit more to further increase the recall.

Figure 8.2: The average mini-batch Tversky focal losses for the pre-trained model, with focal Tversky loss param-
eters: α = 0.85, β = 0.15, γ = 4/3. The validation loss oscillates more rapidly, and the validation loss seems
to plateau/diverge at the end. This might suggest that the minimum found is likely the best for the parameters
with respect to validation.

Table 8.2: Results for the model trained from scratch for the given Tversky focal loss parameters. The pre-trained
model seems to be slightly better.

γ α β Dice Recall
4/3 0.70 0.30 0.65 0.74
4/3 0.85 0.15 0.63 0.80

47

CHAPTER 8. EXPERIMENTS AND RESULTS

Figure 8.3: The average mini-batch Tversky focal losses for the model without pre-trained weights. Here the
parameters were α = 0.7, β = 0.3 and γ = 4/3. The loss starts at about 1, but the loss is rapidly decreasing.

Figure 8.4: The average mini-batch Tversky focal losses for the model without pre-trained weights. α = 0.85,
β = 0.15 and γ = 4/3. Changing the parameters seems alleviate the large loss spikes encountered in Figure 8.3.

8.3 Experiment UNet256 with attention gates, pyramid input, no pre-trained.

Many of the lesions are very small, so we perform experiments with the attention modules as described in
Chapter 6.2 and Chapter 3.3. In this experiment, the attention architecture from Section 6.2 was used. The
same parameters as for the regular UNet256 were used to compare the results. Pyramid input was used as seen
in Figure 6.3. The down-sampling was done with max-pooling with kernel = 2x2 and stride = 2. Small spatial
details get lost during cascading convolutions and nonlinearities. Hence, pyramid input is a way to introduce the

48

CHAPTER 8. EXPERIMENTS AND RESULTS

smaller details to the more feature-rich layers by concatenating them with the non-convolved but downsampled
input. The soft attention gates are also a way to avoid the interesting features in the lower resolution getting
lost during the decoding phase.

In Figure 8.5 an example result for the validation data is shown. In the last layer, we can see that the true
positive region is highlighted, but also another region that is not a true positive. We can also observe that the
ReLU sets all values below zero to zero, which then goes through a sigmoid layer, forcing the zero values to 0.5.
This can be seen in the background of the attention map.

Figure 8.5: The positive regions can be very small, as seen in these predictions. The last three columns show the
attention weighting map for the three deepest layers of the network. As the resolution increases, the weighting
gets more concentrated on the lesions.

Results were dice: 0.66 and recall: 0.75. This model also has an interesting attention map that could be used
for prediction analysis and used to explain what regions are being ”looked at”. The loss can be seen in Figure
8.6. The loss oscillates wildly to 50 epochs. The minimum loss is also very close to 50 epochs. Therefore, more
optimization can most likely be done here.

49

CHAPTER 8. EXPERIMENTS AND RESULTS

Figure 8.6: The average mini-batch Tversky focal losses for the attention model without pre-trained weights and
with pyramid input. Here the parameters were α = 0.7, β = 0.3 and γ = 4/3. Here it seems like the training
could go on a bit further since the best result were at the very end of the epoch length. The metrics for the
minima were dice: 0.66 and recall: 0.75.

8.4 Experiment pre-trained UNet256 with attention gates without pyramid in-
put.

In this experiment, we used pre-trained weights with attention. One problem with using the pre-trained weights
is that attention modules are not in the weights list because they were not in the original model. Therefore,
we had to use initial weights in the attention modules and having the rest of the model using the pre-trained
weights.

Results of the scores are shown in Table 8.3, and the losses are shown in Figure 8.8 and Figure 8.9. In the
loss figures, we can see that we have probably found the optimum for this model as the validation is diverging. In
Figure 8.7 an example prediction with attention map is shown. Comparing an example output of the attention
map in figures(8.7) and (8.5, we can see that the pyramid input seems to make the attention more precise.

Table 8.3: Results for the pre-trained attention model for the given focal Tversky loss parameters. In this
experiment, we got a better recall, but at the cost of dice, this means the precision score went down. This
suggests that the pyramid input helped to decrease false positives.

γ α β Dice Recall
4/3 0.70 0.30 0.67 0.72
4/3 0.85 0.15 0.63 0.79

8.5 Experiments with 3-slices as a channel.

In this experiment, we added depth information as channels. Even though we do not add any slice attention
modules to the model, as discussed in relevant literature Chapter 3.5, we hypethize that adding three slices in

50

CHAPTER 8. EXPERIMENTS AND RESULTS

Figure 8.7: There is a large difference in how the attention map is weighted compared to Figure 8.5. The lowest
layer weighs parts of the skull, and the largest resolution layer has much larger attentions around the lesions.
The pyramid input seems to help the attention gates to perform better.

one orientation will help in detection. Instead of one 2D slice from FLAIR and T1, we add three slices in depth
from both. The depth slice stacking is done by taking three vicinity slices as shown in Figure 6.5 and then
the model predicts the middle slice mask. Using the depth as channels in input is described more in detail in
Section 6.3.

In this experiment we obtained the loss shown in figures(8.10) and (8.11). The best metric results are shown
in Table 8.4. Using nearby depth information seems to increase both dice and recall score. Adding more slices
might help because if we look at the lesion metric Table 5.3, we see that the lesions span up to 40+ voxels on
average in the larger lesions. But we hypothesize that it won’t help very much as one up and one down slice is
enough to predict one slice of lesions.

Results for the losses are shown in Figure 8.10 and Figure 8.11. The score results are shown in Table 8.4.

51

CHAPTER 8. EXPERIMENTS AND RESULTS

Figure 8.8: Average mini-batch losses for the model without pre-trained weights. Parameters used were γ = 4/3,
α = 0.70 and β = 0.30.

Figure 8.9: The average mini-batch Tversky focal losses for the model without pre-trained weights. Parameters
used were γ = 4/3, α = 0.85 and β = 0.15.

Table 8.4: Results for UNet256 using 3-slices as input for the given Tversky loss parameters. The experiment
with γ = 4/3, α = 0.85 and β = 0.15 yield best results.

γ α β Dice Recall
4/3 0.70 0.30 0.70 0.75
4/3 0.85 0.15 0.68 0.80

8.6 Robustification of best result

Adding augmented examples of the data can help the model generalize more. Augmentations like having vertical
and horizontally flipped examples of the data in the dataset can help the model understand these flipped features.

52

CHAPTER 8. EXPERIMENTS AND RESULTS

Figure 8.10: The average mini-batch Tversky focal losses for the model using 3-slices as input in channel.
Parameters used were γ = 4/3, α = 0.70 and β = 0.30. The validation seems more stable than the other
experiments.

Figure 8.11: The average mini-batch Tversky focal losses for the model using 3-slices as input in channel.
Parameters used were γ = 4/3, α = 0.85 and β = 0.15. The validation seems more stable than the other
experiments

Convolutional neural networks are not rotation invariant and therefore need these augmentations, or use some
type of rotation equivariant filters to understand rotated examples[44]. In the augmented experiments, 300
random examples were flipped randomly in both vertical and/or horizontal, with both operations having the
probability of p = 0.5.

In [45] they argued that flipping along the horizontal axis is valid because of the left and right symmetry
of the brain regions, which is also mentioned in [46]. Although they did not have a segmentation problem, a
classification problem, we hypothesize that adding vertical and horizontal flips can help the model generalize
more on how the features of the lesion look like as it is mostly in the proximity of the lesion where the correlated
features are. Continuing training the best 3-slice model in Section 8.5 with augmentation increases the
score and generalization. For augmentation, the 300 images of each chunk (12 patients’ worth of images were
used for each chunk) were flipped both horizontally and/or vertically with a probability of 0.5. Adding vertical
flips might not be completely correct, as mentioned in [46], where vertical flips are not always ”interchangeable”

53

CHAPTER 8. EXPERIMENTS AND RESULTS

as in horizontal flips. Other typical augmentations in MR include, but are not limited to: Translation, which
is changing the position of the object/slice. Scaling and cropping, which can help the model learn important
features independently of original size[46]. Caution must be made when doing augmentation for segmentation
as we must not create any errors in the mask, which usually needs the same transformation as the 2D slice.
Other types of augmentations are noise, rotations, and sheering, which we can see some natural examples of in
our dataset. In [4] they also used rotation, sheering, and scaling as augmentation.

Adding augmentation increased our training data from 9421 to 11221 images. The result shown in Figure
8.12. The training data still used data not removed by the entropy threshold described in Section 5.3, while
the validation uses all slices. Here the dice score becomes worse, but the recall increases. The lesion metrics is
shown in Table 8.5 below.

Results for the loss is shown in Figure 8.12 and the lesion metric is shown in Table 8.5.

Figure 8.12: The average mini-batch Tversky focal losses. Parameters used were γ = 4/3, α = 0.85 and β = 0.15.
In this figure, the mini-batch mean loss is shown. This is a continuation of the best 3-slice experiment. The
weights from the experiment were loaded and augmentation was added, and then trained again. Result here is
F3 = 0.75, dice = 0.66 and recall = 0.84 on the validation data.

8.7 Experiments with 3-slices as a channel using FLAIR only.

All previous experiments used both FLAIR and T1 as channels. In deployment, it would be much easier and
less time-consuming if the model only needed FLAIR as input. As experiments show, the use of T1 does not
give much higher scoring. We first trained the model as before, and then retrained these weights with the same
augmentation as in Section 8.6. Results: The loss is shown in Figure 8.13 and the lesion metric is shown in
Table 8.6.

54

CHAPTER 8. EXPERIMENTS AND RESULTS

Table 8.5: Lesion prediction metrics. The model predicts more lesions with a small depth decreasing the average
depth and voxels. The recall is overall pretty good, but it increases with lesion size. Depths and voxels are
averages over lesions. *TP, FN, and FP are not pixel-wise, but for predicted lesions, The TP is set if the
predicted lesions are at least 60% of GT lesion. *Avg. recall(smooth) is calculated using the pixels inside of the
lesions and then average over them in all their respective lesion bracket. These scores are from the validation
data, and the lesions are in 3D.

Lesion Size [0, 10) [10, 400) [400, 1000) [1000, ∼)
Avg. voxels 3 51 636 4255
Avg. depth 2 5 24 43
Total 441 172 9 7
Total TP* 266 147 9 7
Total FN* 289 42 0 0
Total FP* 175 25 0 0
Avg. recall(smooth) - 0.79 0.92 0.94
Lesion precision 0.60 0.85 1.0 1.0
Lesion recall 0.49 0.78 1.0 1.0

Figure 8.13: The average mini-batch Tversky focal losses. Parameters used were γ = 4/3, α = 0.85 and β = 0.15.
In these figure the mini-batch mean loss is shown. Score: F3 = 0.74, dice = 0.66 and recall = 0.82.

8.8 Experiment Mish and group normalization

Adding augmentation seems to boost recall. In this section, we further improved by changing the ReLU
activation function to Mish. In this training process, augmentation was used from the beginning of the training.
Since batch normalization works better with large batch size, we also performed two experiments by changing
to group normalization as described in Section 2.5. One problem with this change is that we now have a new
hyperparameter G. We did two experiments with Mish as activation, one with G = 4 and another with G = 32.
Results are shown in Figure 8.15. As seen in Table 8.8, the model predicted one large false positive, which
is not even part of the brain. The image is shown in Figure 8.16. These results were worse than using batch

55

CHAPTER 8. EXPERIMENTS AND RESULTS

Table 8.6: Lesion prediction metrics. The detection of the lesion is not as great as the model with both FLAIR
and T1.*TP, FN, and FP are not pixel-wise, but for predicted lesions, It is counted if the predicted lesion is at
least 60% of GT lesion. Avg recall is calculated using the pixels inside the lesions bounding box and then average
over them in all the corresponding lesion brackets. These scores are from the validation data.

Lesion Size [0, 10) [10, 400) [400, 1000) [1000, ∼)
Avg. voxels 3 58 620 3849
Avg. depth 2 6 24 40
Total 456 155 9 7
Total TP* 241 138 9 7
Total FN* 314 51 0 0
Total FP* 215 17 0 0
Avg. recall(smooth) - 0.77 0.93 0.93
Lesion precision 0.53 0.89 1.0 1.0
Lesion recall 0.43 0.73 1.0 1.0

normalization with Mish. Henceforth, we use batch normalization for the rest of the experiments.
Results for Mish with augmentation using FLAIR only losses is shown in Figure 8.14 and the lesion

metric is shown in Table 8.7.
Results for Mish and group normalization losses is shown in Figure 8.15 and lesion metrics are shown

in Table 8.8 and Table 8.9.

Figure 8.14: The average mini-batch Tversky focal losses. Parameters used were γ = 4/3, α = 0.85 and β = 0.15.
In these figure the mini-batch mean loss is shown. Score: F3 = 0.76, dice = 0.64 and recall = 0.85. The F3

score is two percentage point better.

8.9 Test data experiment

The results on the test data are the most interesting and important part. This part of the data had no
interaction with the training process and, therefore, yields the best representation of the real-world result. In
this experiment, we used the Mish, batch normalization, and augmentation with verical and/or horizontal flips

56

CHAPTER 8. EXPERIMENTS AND RESULTS

Table 8.7: Prediction lesion metrics for flair only model using Mish and group normalization. This model seems
to detect more of the lesions with sizes 10-400 but at the cost of more false negatives. Avg. recall is calculated
using the pixels inside the lesions bounding box and then average over them in all the corresponding lesion
brackets. These scores are from the validation data.

Lesion Size [0, 10) [10, 400) [400, 1000) [1000, ∼)
Avg. voxels 3 51 589 4219
Avg. depth 2 5 23 37
Total 546 168 9 7
Total TP* 284 143 9 7
Total FN* 271 46 0 0
Total FP* 262 25 0 0
Avg. recall - 0.79 0.93 0.96
Lesion precision 0.52 0.85 1.0 1.0
Lesion recall 0.51 0.76 1.0 1.0

Figure 8.15: The average mini-batch Tversky focal losses. Parameters used were γ = 4/3, α = 0.85 and β = 0.15.
In these figure the mini-batch mean loss is shown. Left: G = 4 Score: F3 = 0.75, dice = 0.59 and recall = 0.89.
Right: G = 32 Score: F3 = 0.73, dice = 0.59 and recall = 0.86.

Table 8.8: Prediction lesion metrics for only flair model with mish and G = 32. Using G = 32, led to one large
false positive, which is very bad. Avg. recall is calculated using the pixels inside the lesions bounding box and
then average over them in all the corresponding lesion bracket. These scores are from the validation data.

Lesion Size [0, 10) [10, 400) [400, 1000) [1000, ∼)
Avg. voxels 3 57 608 2886
Avg. depth 2 6 22 37
Total 508 193 10 7
Total TP* 243 146 9 7
Total FN* 312 43 0 0
Total FP* 265 47 1 0
Avg. recall - 0.78 0.97 0.95
Lesion precision 0.48 0.76 1.0 1.0
Lesion recall 0.44 0.77 1.0 1.0

model, which gave the best F3 scoring in previous validation experiments. Results F3 score: 0.80, Dice: 0.66,
Recall: 0.90. From now on the dice and recall score will be skipped as the F3 is the most important score. The

57

CHAPTER 8. EXPERIMENTS AND RESULTS

Figure 8.16: Large false positive in the validation data, which is not even part of the brain. This model is too
aggressive in segmentation during prediction.

Table 8.9: Prediction lesion metrics for flair only model with mish and G = 4.Using fewer groups made the
network not predict a large false positive in the validation data. Avg. recall is calculated using the pixels inside
the lesions bounding box and then average over them in all the corresponding lesion brackets. These scores are
from the validation data.

Lesion Size [0, 10) [10, 400) [400, 1000) [1000, ∼)
Avg. voxels 3 51 640 3355
Avg. depth 2 5 24 37
Total 660 199 9 7
Total TP* 314 152 9 7
Total FN* 241 37 0 0
Total FP* 346 47 0 0
Avg. recall - 0.82 0.97 0.96
Lesion precision 0.48 0.76 1.0 1.0
Lesion recall 0.57 0.80 1.0 1.0

lesion metrics are shown in Table 8.10. Some examples are shown in Figure 8.17. In these examples, we can
observe that the prediction is very precise.

Table 8.10: Prediction lesion metrics for test data. The results are better than the results from validation
data. This is because the model does much better on the larger lesions, which the test data had more examples.
Avg. recall is calculated using the pixels inside the lesions bounding box and then average over them in all the
corresponding lesion bracket. These scores are from the test data.

Lesion Size [0, 10) [10, 400) [400, 1000) [1000, ∼)
Avg. voxels 3 53 631 1978
Avg. depth 2 5 20 31
Total 551 195 11 9
Total TP* 287 176 11 9
Total FN* 232 20 0 0
Total FP* 264 19 0 0
Avg recall - 0.87 0.94 0.97
Lesion precision 0.52 0.90 1.0 1.0
Lesion recall 0.55 0.90 1.0 1.0

58

CHAPTER 8. EXPERIMENTS AND RESULTS

Figure 8.17: Example predictions on a 2D slice for two different MRI volumes from the test data. The first row
shows a zoomed-in version of the lesion inside the bounding box. The aspect ratio is a bit off, causing some
stretching effects on the slice images.

8.10 Large dataset experiments

In these experiments, we introduce the large dataset, which will provide the main experiments as this dataset
contain a much broader range of different MRI volumes. The dataset was preprocessed the same way with
entropy measure thresholding for the training data as well. In Figure 8.18 we can see some difference in entropy
compared to the previous dataset. Since this data is from different machines, hospitals, etc, it will have some
differences in imaging settings and different MRI volume sizes. In Figure 8.18 some MRI volumes are much
larger in-depth and are much noisier, creating large entropy over the whole volume. The largest standard
deviation is in depths N = 176 and N = 300, but it is expected to have some deviation. All slices/images
above 2 bits/pixel were used. Here the maximum entropy is at around 6 bits/pixel. The red line indicates the
threshold for removing 2D slices. As observed in this figure, the information seems to follow mostly the same
patterns when they are in the same depth. N is the depth of the MRI volume. The number of MRI volumes in
each depth bracket is shown in Table 8.11. The one MRI volume at depth N = 120 starts where we have brain
tissue, therefore every 2D slice above the threshold.

The entropy threshold is kept at two since we do not want to remove too much data, this was first introduced
in Section 7.2. This dataset has a lot of different types of MRI volumes indicated by the vast difference in
information over slices. Here we might hypothesize that the model trained on the smaller dataset, which only
had MRI volume depths N = 183 slices will not do good on this large dataset. Some examples of entropy border

59

CHAPTER 8. EXPERIMENTS AND RESULTS

cases is shown in Figure 8.19. In all these experiments we used Tversky focal loss with γ = 4/3, α = 0.85 and
β = 0.15, and chunk sizes are set to 4 volumes per chunk. Since the chunk size is smaller, it might impact the
results a bit as we used 12 in the smaller dataset. The chunk size was decreased as many of the MRI volumes
were larger and therefore increased the memory footprint.

0 50 100 150 200 250 300
Slice

0

1

2

3

4

5

6

En
tro

py

Depth_type
N = 176
N = 192
N = 256
N = 183
N = 312
N = 300
N = 120
N = 224
N = 288

Figure 8.18: Entropy content over MRI volumes over the slices in training data. The dataset has a very small
standard deviation in information over slices which is indicated by the confidence-band.

Depths 120 176 183 192 224 256 288 300 312
Num. MRI Volumes 1 64 134 155 1 87 1 57 85

Table 8.11: Some MRI volumes with a given depth only occurs one time. This table shows the amount of MRI
volumes in the different depth brackets shown in Figure 8.18.

8.11 3-slice as channels FLAIR only, [Large data] sagittal slices with ReLU

Using FLAIR as the only channel shows great results in experimentation on the small dataset. Hence, we
continue using this as the only channel.

Results F3 = 0.75 and lesion metrics are shown in Table 8.12. Comparing axial and sagittal slice orientation
experiments, it seems to suggest that it does not increase the prediction as long as inferred slice orientation is
consistent with the trained slice orientation. The losses are shown in Figure 8.20. We can observe the loss is

60

CHAPTER 8. EXPERIMENTS AND RESULTS

0 50 100 150 200 250

0

50

100

150

200

250

0 50 100 150 200 250

0

50

100

150

200

250

0 50 100 150 200 250

0

50

100

150

200

250

0 50 100 150 200 250

0

50

100

150

200

250

0 50 100 150 200 250

0

50

100

150

200

250

0 50 100 150 200 250

0

50

100

150

200

250

Figure 8.19: Entropy threshold border cases from different depth volumes. As seen in the examples, most border
examples do still not contain that much information, and in the last row of column two, we can see how noise
has a lot of entropy. The threshold was set very low to not remove too much data. Each 2D slice is from a
different MRI volume.

fairly stable throughout the training process. This is interesting because most of the loss curves have strong
spikes and oscillates a bit in the beginning.

8.12 Pre-trained FLAIR only, [Large data] axial slices, ReLU

In this experiment, we flipped the orientation to axial and tried the pre-trained model again. Since the original
pre-trained model used three channels and we want to only use FLAIR, the channel is concatenated with the
same FLAIR, C = [FLAIR, FLAIR, FLAIR], here we could add the 3-slices as in previous experiments, but
we wanted to stay as close to the pre-trained data as possible, although in retrospect using three slices with
pre-trained might be better.

Results F3 score: 0.73. The lesion metric is shown in Table 8.13 and is visualized in Figure 8.22. The larger
lesions seems to have examples of lower recall than in Figure 8.24 from Section 8.13 which used Mish activation

61

CHAPTER 8. EXPERIMENTS AND RESULTS

Figure 8.20: The average mini-batch Tversky focal losses for the validation data 3-slice as channels FLAIR only,
[Large data] sagittal slices with ReLU experiment.

Table 8.12: Prediction lesion metrics for FLAIR model. Avg. recall is calculated using the pixels inside the
lesions bounding box and then average over them in all the corresponding lesion brackets. These scores are from
the validation data.

Lesion Size [0, 10) [10, 400) [400, 1000) [1000, ∼)
Avg. voxels 3 51 625 4348
Avg. depth 2 6 21 41
Total 9009 4036 119 136
Total TP* 3307 3282 119 136
Total FN* 7554 1059 2 2
Total FP* 5702 754 0 0
Avg. recall - 0.76 0.92 0.94
Lesion precision 0.37 0.81 1.0 1.0
Lesion recall 0.30 0.76 0.98 0.99

and augmentation. In Figure 8.21 the losses are shown. In this loss plot we can see that the pre-trained weights
puts the model closer to the minimum in the first epoch compared to the experiments trained from scratch.

8.13 3-slice as channels FLAIR only, [Large data] axial slices with Mish and
augmentation

The experiment in Section 8.11 show four large false negative. To try removing these false negatives, we applied
mish activation and augmentation as it seems to increase the recall score, as shown in Section 8.8.

Results F3 score: 0.75. The lesions metrics is shown in Table 8.14 and losses is shown in Figure 8.23.
The table is visualized in Figure 8.24, in this figure, some of the largest lesions have a very bad recall. After
consultation with a professional, the large lesions with very bad scores were found to have errors in the ground

62

CHAPTER 8. EXPERIMENTS AND RESULTS

Figure 8.21: The average mini-batch Tversky focal losses for the validation data for the Pre-trained FLAIR only,
[Large data] axial slices, ReLU.

Table 8.13: Lesion prediction metrics. There is not much change in the larger lesions, but the pre-trained have
higher false negatives in the second smallest lesions bracket. Avg. recall is calculated using the pixels inside the
lesions bounding box and then average over them in all the corresponding lesion brackets. These scores are from
the validation data.

Lesion Size [0, 10) [10, 400) [400, 1000) [1000, ∼)
Avg. voxels 3 50 615 4226
Avg. depth 1 5 20 40
Total 10407 3868 121 135
Total TP* 3082 3100 120 135
Total FN* 7779 1241 2 3
Total FP* 7325 768 1 0
Avg. recall - 0.72 0.91 0.92
Lesion precision 0.30 0.80 0.99 1.0
Lesion recall 0.28 0.71 0.98 0.98

truth masks. The false-positive, which was later found to have faulty ground truth, might indicate that the
model has some level of generalization.

8.14 3-slice as channels FLAIR only, [Large data] axial slices with Mish

In this experiment, we trained from scratch using the mish activation function. As shown in Table 8.15 below,
we do not have a large false positive and one less false negative than the pre-trained model with ReLU.

Results F3 score: 0.74. The lesion metric is shown in Table 8.15. In this experiment, we have no large
false positives, since we know there is at least one false positive which is actually true positive(as discussed
previously and in Section 9.7 it may suggest that this generalize less than the other models that had one large

63

CHAPTER 8. EXPERIMENTS AND RESULTS

[0,10) [10, 400) [400, 1000) [1000, ~)
Lesion volume brackets

0.0

0.2

0.4

0.6

0.8

1.0
Re

ca
ll

Figure 8.22: This is a visualization of Table 8.13. There is not much difference between this and Figure 8.24,
but the largest lesions is slighty worse.

Figure 8.23: The average mini-batch Tversky focal losses for the validation data for the 3-slice as channels
FLAIR only, [Large data] axial slices with Mish and augmentation experiment.

false positive. If the training data contain the same types of errors, it could be that this model is more prone
to overfitting to these errors. The losses is shown in Figure 8.25. Even though the saved model is very close to
the last epoch, which might suggest that we could find a better model by adding more epochs, it most likely
won’t as the loss seems to plateau in the last 15 epochs.

64

CHAPTER 8. EXPERIMENTS AND RESULTS

Table 8.14: Lesion prediction metrics. There are one large false positives and a total of 4 large false negatives.
Avg. recall is calculated using the pixels inside the lesions bounding box and then average over them in all the
corresponding lesion brackets. These scores are from the validation data.

Lesion Size [0, 10) [10, 400) [400, 1000) [1000, ∼)
Avg. voxels 3 52 621 4371
Avg. depth 2 6 21 41
Total 9331 4200 121 136
Total TP* 3399 3360 120 136
Total FN* 7462 981 2 2
Total FP* 5932 840 1 0
Avg. recall - 0.77 0.93 0.94
Lesion precision 0.36 0.80 0.99 1.0
Lesion recall 0.31 0.77 0.98 0.99

[0,10) [10, 400) [400, 1000) [1000, ~)
Lesion volume brackets

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Figure 8.24: This is a visualization of Table 8.14. The second smallest lesion bracket has the highest standard
deviation and also has a lot of lesions at very low recall. Most of the highest lesions have a high score, but there
are some outliers with a bad score. We suspect that systematic error is inside the data as the highest lesions
have a higher standard deviation than the second-largest lesions bracket.

8.15 3-slice as channels FLAIR axial slices with Mish and augmentation, with
some of the largest GT errors removed

The ground truth in some volumes was not correct, as we found out in the previous section. The large false
negatives and the large false positives did not have the correct masks. These were removed from the dataset
and then continued training using the weights from Section 8.14).

The lesion metric is shown in Table 8.16 and the visualization of the table is shown in Figure 8.27. The loss
plot is shown in Figure 8.26. As expected, the large false negatives and the false positive is gone as we removed
them from the dataset. We can see that the scores, overall, are better for all lesion brackets.

Results F3 score: 0.76. The lesion metric is shown in Table 8.16.

65

CHAPTER 8. EXPERIMENTS AND RESULTS

Figure 8.25: The average mini-batch Tversky focal losses for the validation data for the 3-slice as channels
FLAIR only, [Large data] axial slices with Mish experiment.

Table 8.15: Lesion prediction metrics. In this experiment, we have some large false-negative lesions. Avg. recall
is calculated using the pixels inside the lesions bounding box and then average over them in all the corresponding
lesion brackets. These scores are from the validation data.

Lesion Size [0, 10) [10, 400) [400, 1000) [1000, ∼)
Avg. voxels 3 51 618 4062
Avg. depth 2 5 21 40
Total 9877 4154 121 135
Total TP* 3324 3304 121 135
Total FN* 7537 1037 1 3
Total FP* 6553 850 0 0
Avg. recall - 0.76 0.93 0.93
Lesion precision 0.34 0.80 1.0 1.0
Lesion recall 0.31 0.76 0.99 0.98

Table 8.16: Prediction lesion metrics. Avg. recall is calculated using the pixels inside the lesions bounding box
and then average over them in all the corresponding lesion brackets. These scores are from the validation data.

Lesion Size [0, 10) [10, 400) [400, 1000) [1000, ∼)
Avg. voxels 3 52 626 4439
Avg. depth 2 5 20 41
Total 10514 4178 116 133
Total TP* 3646 3329 116 133
Total FN* 6790 881 0 0
Total FP* 6868 849 0 0
Avg. recall(smooth) - 0.79 0.95 0.96
Lesion precision 0.35 0.80 1.0 1.0
Lesion recall 0.35 0.79 1.0 1.0

66

CHAPTER 8. EXPERIMENTS AND RESULTS

Figure 8.26: The average mini-batch Tversky focal losses for the validation data for 3-slice as channels FLAIR
axial slices with Mish and augmentation, with some of the largest GT errors removed experiment. The validation
loss oscillates a lot. The best model was found close to the max epoch of 50, indicating that a better model could
be found by increasing epochs.

[0,10) [10, 400) [400, 1000) [1000, ~)
Lesion volume brackets

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Figure 8.27: This is a visualization of Table 8.16. The bad recall scores in the two largest lesion brackets are
now obviously gone.

8.16 Test results [Large data]

Using the model from Section 8.15) we get results F3 score: 0.74. Lesion metrics are shown in Table 8.17 and
visualized in Figure 8.28. Some of the bad/corrupted annotated examples leaked into the test dataset when the

67

CHAPTER 8. EXPERIMENTS AND RESULTS

dataset was split into training, validation and test. This is further discussed in Section 9.7).

Table 8.17: Prediction lesion metrics for the test data. As expected, we have some large false negatives and false
positives as we have not repaired the test data. The underlying issue was separated into training, validation,
and test data. Avg. recall is calculated using the pixels inside the lesions bounding box and then average over
them in all the corresponding lesion brackets. These scores are from the test data.

Lesion Size [0, 10) [10, 400) [400, 1000) [1000, ∼)
Avg. voxels 3 52 629 3826
Avg. depth 2 5 22 37
Total 9420 3895 117 97
Total TP* 3144 3103 116 97
Total FN* 6159 734 1 3
Total FP* 6276 792 1 0
Avg. recall(smooth) - 0.80 0.94 0.93
Lesion precision 0.33 0.80 0.99 1.0
Lesion recall 0.34 0.81 0.99 0.97

[0,10) [10, 400) [400, 1000) [1000, ~)
Lesion volume brackets

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Figure 8.28: Some bad results in the two largest lesions bracket in the test data. This was expected as the initial
split into training, validation, and test added a few faulty annotated examples to the splits. The test was the
only part that did not get any corrections, hence, the scoring may therefore be better than these results imply.
It is interesting to note that the model can classify well on the few examples with faulty ground truth.

68

9 Discussion

In this section, we discuss the important parts of the experimentations. The results, in general, seem to be very
good, at least for the largest lesions. The smallest lesion bracket has such small lesions (1-4 voxels) that many
of them are most likely errors in the annotations. Annotation errors were discovered during a review of results
by an expert.

9.1 Data imbalance

Data imbalance can cause a bias in the model towards the data which is encountered the most during training.
Table(5.2 and Table 5.4 show that the data does not contain any volumes with zero lesions. This can make
the model biased towards these types of patients. The model might be overconfident in a real-world setting,
and therefore, segment lesions on volumes with zero lesions or predict very unexpectedly, as the data might
be outside the trained domain. This assumes that volumes with lesions have some underlying bias that spans
over the whole volume or interacts with many parts throughout the brain. We never experimented with full
3D models, which might reduce this bias as the models trained with random 2D slices. Hence, we assume that
this bias is negligible in our models. Since the test data did not have any MRI volumes with zero lesions, the
experiments could not test for this issue.

The lesion-to-background ratio is very high in all the slices and volumes. This was balanced more using the
focal Tversky loss discussed in Chapter 4.2.

The examples predicted with high confidence and are correct (high Tversky score) yield a small gradient
causing small changes to the weights. Examples with bad predictions yield higher gradients, causing harder
examples to be more in focus during training. This could also lead to better generalization as lesions predicted
well enough will not be overfitted. The way the backpropagation is done in the experiments do also punishes
the smaller lesions since a mini-batch size of 12 is used and is flattened into one large image, and then the loss
and metrics are found. This will make the smaller lesions less important if the very large lesions are in the
mini-batch.

Taking the average for all single slices could punish too much, as the smaller lesions are much harder to
segment correctly. Adding ground truth errors in the mix and the optimization ends up in a tug of war between
the large and small lesions, although here, the smoothing parameter Ω could help. The mini-batch loss could
most likely be handled better than this way since the second lesions bracket might be punished too much, as
seen in the lesion metric visualizations in Figure 8.22.

69

CHAPTER 9. DISCUSSION

9.2 Change of orientation

To enhance the prediction metrics, we tried to change the input slice orientation. We had to pad the uneven
dimensions to 256 for it to fit the model. The padding method was done using the minimum value in the slice
instead of zeros after z-standardization, as zero’s have a new meaning after standardization. Some volumes
had larger width than 256, which were center cropped to 256. Cropping could lead to the outer parts of the
brain being at the border. In [39] they showed that different border values impact the convolutions. During
experimentation, the model seems to perform the same for all orientations, but during inference, the input has
to be on the same orientation as it was during training to perform well. This is because the feature structure
is different for the three axes. The experiments show that using different orientations did not seem to increase
the results.

9.3 Batch normalization and standardization

In these experiments, we have z-standardized over the patient volumes. Thus, when predicting, we must have
the whole volume, not single-sliced images, even if single/three slices are used in prediction. This is not a
problem if the use case is always predicting a whole volume. If single image prediction is needed, a retrained
model with a new normalization or standardization method is needed. In these experiments, the data was
z-standardized over each patient volume.

Batch normalization is a method that usually needs a large batch size to work well, and some literature
suggests using batch renormalization when using small-batch sizes[47]. One interesting point is that the batch
normalized parameters are learned from batches of different iid slices, while in deployment, the batches are in
sequence over the same MRI volume, changing the dynamic of how the standardization works. In training, we
used entropy to remove images with little information. Therefore the parameters in batch normalization (and
in the network in general) are learned by only looking at images with a decent amount of information.

For the batch normalization parameters, the mean and standard deviation is from feature maps with a lot
of information, while during inference, the feature maps in the first and last parts of the MRI sequence do not
contain any or very little information. One other interesting thing to note is that, when using the pre-trained
weights, the batch normalization parameters are learned from the pre-trained data, which might cause some
problems during transfer-learning as the data could be very different.

9.4 Generalization problems

In the first set of experiments, the data from one machine was used. Different MRI machines can have different
noise properties, and image contrasts even for the same type of image sequence (e.g. FLAIR). By only training
using data from one machine, the model could develop a bias towards these properties. As shown in the entropy
figures in previous sections, the entropy distributions are very different in the two training datasets. The entropy
figures are also shown together to compare in Figure 9.1.

We also performed an experiment where we used the model trained on the small training dataset, which
contained only MRI volumes from one machine, to test on the large validation dataset. The lesion metrics are
shown in Figure 9.2. As we can see in this figure, the model did not perform all that well. Some examples of
large false negatives from this experiment are shown in Figure 9.5. In this figure, the model has problems with
many large lesions, even though they er fairly bright.

70

CHAPTER 9. DISCUSSION

False positives are shown in Figure 9.6. Here the prediction was not in the brain at all. The reason for this
is, not only that the small dataset is very small, but since they are all from the same machine, the resolution
difference will have a strong impact. The voxel size in the small dataset is the same for all volumes and is larger
than the average voxel size in the large dataset. I think much of this issue would be resolved with proper scale
augmentation.

We also did one experiment where we inferred on the small validation dataset with the model trained with
the large dataset in Chapter 8.15. In this experiment, we see that the model performs really well as it finds
almost all the lesions. The lesion metrics are shown in Figure 9.3. In this figure, we can observe that the large
lesions are predicted really well.

An important thing to note is that the small dataset, only containing one resolution, will overfit the receptive
field for this resolution. For instance, if the model is only trained on MRI volumes with a given resolution, the
model will only learn the receptive field containing this given resolution. If the resolution is low, the context
within the receptive field will look at a broader region but with fewer details.

If the resolution is high, then only finer details are within the receptive field. Since the model trained on
the larger dataset contains different resolutions, it will generalize more for different resolutions. As mentioned,
UNet has skip-connection, which will add a range of receptive fields, causing the model to have the ability to
learn and understand many different resolutions.

Dropout layers were not used in any of these experiments because one of the earliest experiments did not
perform well when applied dropout to all layers. Because of various implications in the code at that time and
that Tversky focal loss also helps in avoiding overfitting, made us not include the experiment. In retrospect, we
should have looked more into the use of dropout layers.

0 50 100 150 200 250 300
Slice

0

1

2

3

4

5

6

En
tro

py

Depth_type
N = 176
N = 192
N = 256
N = 183
N = 312
N = 300
N = 120
N = 224
N = 288

(a) Entropy from the large training dataset.

0 25 50 75 100 125 150 175
Slice

0

1

2

3

4

5

En
tro

py

Depth_type
N = 183

(b) Entropy from the small training dataset.

Figure 9.1: Entropy for the two training datasets used in experiments. There are many different entropy
distributions in the dataset with samples from many different MRI machines.

9.5 Dataset difference (introduction of larger dataset)

The large validation dataset is almost 3x the size of the smaller training dataset. In Figure 9.7 we can see
the Kullback-Leibler divergence between the small training data and the large validation data from the two
datasets. In Figure 9.8 the large training data and the large validation for the variance distributions N = 60,

71

CHAPTER 9. DISCUSSION

[0,10) [10, 400) [400, 1000) [1000, ~)
Lesion volume brackets

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Figure 9.2: Lesion metrics from the model in Chapter 8.9). This is the model trained on the small training data
and inferred on the large validation data. The score was F3 = 0.40. The mean recall for all except the largest
bracket is below 0.5.)

[0,10) [10, 400) [400, 1000) [1000, ~)
Lesion volume brackets

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Figure 9.3: Lesion metric from the model in Chapter 8.15. This is the model trained on the large training data
and inferred on the small validation data. The model performs well on the small validation. The score was
F3 = 0.64. The score is low compared to the test data because this model seems to over segment the lesions in
the small validation dataset. Examples of over-segmentation is shown in Figure 9.4.

except the old validation data which only had N = 9 volumes is shown.
In Figure 9.9) and Figure 9.10, we can see the same but with the small validation data instead. In the

two first figures, we can see that the small training data lacks a lot of the information contained in the new
validation data, with emphasis on the second-order moment. The difference in datasets can also be observed
in the 2D slice entropy plots in Figure 8.18 and Figure 7.1. What these divergence distributions can tell us is

72

CHAPTER 9. DISCUSSION

Figure 9.4: Examples from the small validation data predicted by the model from the large training data. It
seems that there are many cases of bad ground truths as the model seems to segment more of the bright regions
than the ground truth. The aspect ratio is a bit off, causing some stretching effects on the slice images.

that the small dataset seems to lack the information to understand the larger dataset. We also see the entropy
difference in Figure 9.1.

73

CHAPTER 9. DISCUSSION

Figure 9.5: Example predictions for the model from Chapter 8.9 (best results from small dataset experiment) on
the large validation data. The model seems to have a hard time with some of the less bright regions. The second
last image had almost zero predictions in the 2D slice. The aspect ratio is a bit off, causing some stretching
effects on the slice images.

74

CHAPTER 9. DISCUSSION

Figure 9.6: In this example the false positives are completely off. The very bright region caused the model to
predict lesions outside the brain. The aspect ratio is a bit off, causing some stretching effects on the slice images.

9.6 Difference between dice metric and lesion metrics

The dice score is found by taking the harmonic mean between precision and recall, which is based on the per-slice
input (in these experiments). If a slice contains two positive pixels and none are predicted, the score will be
zero if we use the non-smoothed version. In practice, finding only a two-pixel wide lesion is not very important.
Hence, looking at the lesion metric by volume size is more important. One good finding of the model is that it
is much better at segmenting the large lesions. Dice score also weights the recall and precision the same, which
is clinically not as important. This is why the F3 scoring is a better metric, but it does not say anything about
the size of the lesion, which is even more important. A lesion volume size metric-based loss would be the best
choice, although this would require a 3D-based segmentation model. It is important to note that there is some
resolution difference for the voxels in the MRI volumes. This is good for the generalization of the model but
impacts the understanding of the lesion metric to some degree. Hence, the average lesion voxels can be a little
bit different in SI length units.

9.7 Errors in dataset

In Table 8.14 and Table 8.15 one large false-positive lesion with volume of 600 was predicted. The slice is shown
in Figure 9.11. As we can see in this figure, the model predicted fairly large lesions which are not in the ground
truth. After consultation with a professional, this was shown to be a lesion. The ground truth mask was also
faulty in general. A well-trained model over a large training data can therefore be used to find outliers, which
can later be inspected to help find an error in the ground truth data.

The experiment in Chapter 8.12 and Chapter 8.13 predicted the false negative, which is falsely annotated,
which might suggest that these models are more generalized.

In Figure 9.12 we show some of the large false-negative lesions. Here we can see that the ground truth

75

CHAPTER 9. DISCUSSION

20 30 40
Intensity mean

0.00

0.05

0.10

pr
ob

ab
ilit

y
de

ns
ity

Distributions
pdf Validation old data
pdf Training old data
Validation New data
Training old data

20 30 40
Intensity mean

0.0

0.5

1.0

1.5

KL divergence = 4.540
KL
KL Area

20 30 40
0.00

0.05

0.10

Distributions
pdf Validation New data
pdf Training new data
Validation New data
Training new data

20 30 40
0.0

0.5

1.0

1.5

KL divergence = 3.516
KL
KL Area

Figure 9.7: Distribution of 60 patient volume sample means. KullbackLeibler divergence between the distribu-
tions. We can observe a larger difference between the small training data and the large validation data(first row).
The large training data is much larger and, therefore, expect the large training data to overlap the distributions
much more than shown (last row).

masks are over-segmenting and not correctly placed according to the FLAIR 2D slice. The model predicted the
correct places very well, but the ground truth annotation was wrong. This is an interesting example of how
we can use the model to detect wrong annotations. If we assume that most of the training data is correct, the
wrong annotated examples will end up as outlier predictions under validation/testing.

It is expected to have such errors when datasets are very large. What is most important is that after the
data has been split into training, validation, and test that the test data is checked as much as possible before
testing. In this thesis, this was problematic as the data must be inspected by a domain expert, which can be
expensive and time-limited.

Some bad results in testdata was expected as we could not check for bad ground truths. As seen in the
lesion metric table, we had some false negatives and false positives. This was expected as the errors which were
in the whole dataset leaked during the dataset split. One slice of the false-positive seen in Table 8.17 is shown
in Figure 9.13.

9.8 Training and prediction for different image orientations

During training and evaluation, the sagittal orientation was used. In the sagittal orientation, the throat is
always inside the slice when most of the brain is visible, as seen in Figure 8.7. This could act as noise to the
network, which the network has to learn and understand. Looking at the sagittal orientation as shown in Figure

76

CHAPTER 9. DISCUSSION

30 40 50 60
Standard deviation intensity

0.00

0.05

0.10

0.15

pr
ob

ab
ilit

y
de

ns
ity

Distributions
pdf Validation old data
pdf Training old data
Validation New data
Training old data

30 40 50 60
Standard deviation intensity

0.0

0.5

1.0

1.5

KL divergence = 7.610
KL
KL Area

30 40 50 60
0.000

0.025

0.050

0.075

0.100

Distributions
pdf Validation New data
pdf Training new data
Validation New data
Training new data

30 40 50 60
0.0

0.5

1.0

KL divergence = 3.842
KL
KL Area

Figure 9.8: Distribution of 60 patient volume sample standard deviations. KullbackLeibler divergence between the
standard deviation distributions. The small training dataset has a very high divergence from the large validation
data. The seconder-order moment has a larger divergence than the first-order moment. This indicates some
fundamental statistical differences between the datasets.

9.11, we see it has less noise surrounding the brain. The model might perform better if we zero pad the uneven
dimension and use a sagittal orientation instead for both training and prediction.

When performing a prediction in deployment, this zero padding has to be removed to fit the original volume
so that it can be overlayed correctly later. After experimentation changing the orientation did not seem to change
the results. It is very important to keep the input consistent because prediction on the sagittal orientation when
trained on axial orientation changes the prediction results considerably.

We also experimented with a 3-slice approach to give the model more context for prediction. In these
experiments, we only used three slices for one orientation. We could also experiment with three slices where
each is from their unique orientation to get 3D context.

Future work also includes data from more machines to further increase the generalization.

9.9 Future work

On the topic of medical segmentation, there is a lot of important research. The question of explainability
is one of these. In Figure 9.15 an occlusion experiment was done. Occlusion testing is using some geometry
to block an area of the image before prediction to see what the model weights the most during inference on
a given input. Occlusion can also be used as an augmentation method[48]. In Figure 9.15 the blue areas are
regions that decreased the number of lesions predicted from the original prediction. A positive value in red is

77

CHAPTER 9. DISCUSSION

20 25 30 35 40
Intensity mean

0.00

0.05

0.10

0.15

0.20

pr
ob

ab
ilit

y
de

ns
ity

Distributions
pdf Validation old data
pdf Training old data
Validation New data
Training old data

20 25 30 35 40
Intensity mean

0

1

2

KL divergence = 2.772
KL
KL Area

20 25 30 35 40
0.00

0.05

0.10

0.15

0.20
Distributions

pdf Validation New data
pdf Training new data
Validation New data
Training new data

20 25 30 35 40
0

1

2

KL divergence = 2.867
KL
KL Area

Figure 9.9: Distribution of 60 patient volume sample first-order moments. KullbackLeibler divergence between
the distributions. Here the validation data is from the small dataset. We can observe that the large training
dataset is very close to the small validation data. The training data from the large dataset is much larger as
well. Hence, the distribution will cover much more than shown in this figure. The small validation data does
only have about 9 MRI volumes, therefore, this comparison is not that good. The divergence is mostly the same,
we could expect the large training data to perform the same or better on the small validation data as the small
training data.

the regions that add more lesions than the original prediction. An example where more lesions are predicted is
shown in Figure 9.16.

Another work is to make the models could be better in general. The second smallest lesion bracket as seen
in Figure 8.17 from the test results could need some tuning. The recall score is generally unstable and should
be increased. One problem with the small lesions is more easily lost in the cascading convolutions as they are
so small. One idea is to have two different architectures, one for larger lesions and one for the smaller ones.
Newer deep learning segmentation architectures can also be tested. The augmentation can also be changed, as
it was done in [4], where they used sheering, rotation and scaling. One problem with augmentation like rotation,
sheering, and scaling is that it has to do some interpolation which could cause errors in the ground truth.

In these experiments, we did not tune hyperparameters to the maximum either. By using new deep learning
libraries that can help in hyperparameter tuning, such as Tune[49], we could enhance the model.

78

CHAPTER 9. DISCUSSION

30 40 50 60
Standard deviation intensity

0.00

0.05

0.10

0.15

0.20

pr
ob

ab
ilit

y
de

ns
ity

Distributions
pdf Validation old data
pdf Training old data
Validation New data
Training old data

30 40 50 60
Standard deviation intensity

0.0

0.5

1.0

1.5

2.0
KL divergence = 2.448

KL
KL Area

30 40 50 60
0.00

0.05

0.10

0.15

Distributions
pdf Validation New data
pdf Training new data
Validation New data
Training new data

30 40 50 60

0.0

0.1

0.2

0.3
KL divergence = 0.891

KL
KL Area

Figure 9.10: Distribution of 60 patient volume sample standard deviations. KullbackLeibler divergence between
the distributions. Here the validation data is from the small dataset. We can observe that the large training
data is very close to the old validation data. The training data from the large dataset is much larger as well.
Hence, the distribution will cover much more than shown in this figure. The small validation dataset does only
have about 9 patients, therefore, this comparison is not very good but could give an expectation in performance.
The divergence between the second-moment distributions is much lower with the large dataset, and since the
small dataset mean divergence is about the same, we could expect the same or better performance on the small
validation after training on the new data.

Figure 9.11: This false positive was later discovered to be a true positive by a domain expert. The bounding box
shows the size of the lesion at the maximum. This also fits our suspicion discussed in Figure 9.11. The aspect
ratio is a bit off, causing some stretching effects on the slice images.

79

CHAPTER 9. DISCUSSION

Figure 9.12: In many of the experiments, the model did well but some large lesions ended up as a false negative
since some of the ground truth masks were not correctly mapped to the volume. We did the same lesions metric
analysis on the training data to see if we could find errors there as well, and we did. After consultation with an
expert, we removed some of these examples from the dataset. After removal of these examples, the model was
retrained with a dataset labeled fixed large dataset. The aspect ratio is a bit off, causing some stretching effects
on the slice images.

80

CHAPTER 9. DISCUSSION

Figure 9.13: The model had one large false positive as seen in Table 8.17. In this figure, we see one slice of
the large lesion. We can observe that the ground truth is corrupted/wrong. After consultation with a domain
expert, this was found to be lesions predicted correctly by the model. The aspect ratio is a bit off, causing some
stretching effects on the slice images.

81

CHAPTER 9. DISCUSSION

Figure 9.14: Example of large false-negative lesions. This is a sequence in the MRI volume. In the top example,
we can see that there were no predictions. Faint areas like these made the lesions predicted as false negative as
only parts of the ground truth lesion was detected. In the sequence, we can observe that the lesion is still fairly
well predicted. Using the a priori knowledge of errors in the data, it can be assumed that some of these large
lesions have faulty ground truth, causing the prediction to be classified as false negatives. The aspect ratio is a
bit off, causing some stretching effects on the slice images.

82

CHAPTER 9. DISCUSSION

Figure 9.15: Ablation test for the whole image. Parts in blue show negative predictions from the baseline. The
baseline is the number of lesions predicted on the original image. In this test, we used a square by the size of
25x25 to block out an area of the image before prediction. The values in the square are the minimum values of
the image (values outside the head).

Figure 9.16: This figure shows as the box is moving inside the brain tissue. In the image, to the left, the box
is outside the brain. In the figure to the right, we can see the blocking of the brain leads to more predictions.
Most of the lesions are around the ventricle, which is mostly the dark areas in the brain. When blocking one
region and there are bright spots around the blocked square the model seems to have high confidence that there
are lesions.

83

10 Conclusions

In this thesis, we have experimented with different UNet architectures for white matter hyperintensity segmen-
tation on MRI slices. By leveraging the power of Tversky focal loss, the models obtained a good generalized F3

score. Two main UNet architectures were tested, Regular UNet and Attention UNet, with and without pyramid
input. The use of pre-trained weights, the use of Mish activation function, and horizontal and vertical flip data
augmentation were tested. By using F3 as the main metric and the lesion recalls, we found the best model to
be data augmented, mish activation with three slices in axial depth as input. In our experiments, we only used
50 epochs as the maximum, which in some experiments showed to be too little as the best model found during
the experiments were very close to 50 epochs, which might suggest that a better model were still ahead. The
experiments showed that it was not a very big difference between all the models.

The best model received a F3 = 0.74 on the test data, where the large and most important lesions had an
average recall score of 0.93. The smaller lesions were harder to segment correctly due to annotation errors, and
that the region of interest is very small. The model could most likely be further enhanced by using more proper
augmentation methods like scaling, rotation and use a more up-to-date segmentation model, and of course,
more data.

Some flaws in the ground truth were discovered during experimentation as some large lesions were predicted
as false positives, even though they were true positives. This was discovered after consultation with a professional
where the false positives were shown. Hence, more flaws in the dataset are expected. Experiments on different
orientations show little changes in scoring, and since 2D slices were used for prediction, the volume has to be
built up during prediction to be viewed from all orientations.

Medical data have problems with ground truth since professionals have to annotate the data, and even
professionals can disagree. There must exist a GT (either there is a lesion or not a lesion) - but the GT may not
be known. This makes the labels in medical data something called a gold standard, which can be problematic
for a model to understand as the gold standards might deviate from an underlying global function/ GT. The
experiments performed showed promising results with the use of UNet architecture for the segmentation of
WMH lesions.

84

86

Appendix

Most used frameworks:
Deep learning framework Pytorch[50]
Numerical computations Numpy[51]
Plotting[52][53]
Classical image processing Scikit-image[42]

87

References

[1] C. Jack, D. Knopman, W. Jagust, R. Petersen, M. Weiner, P. Aisen, L. Shaw, P. Vemuri, H. Wiste,
S. Weigand, T. Lesnick, V. Pankratz, M. Donohue, and J. Trojanowski, “Tracking pathophysiological
processes in alzheimer’s disease: an updated hypothetical model of dynamic biomarkers,” Lancet neurology,
vol. 12, pp. 207–216, 02 2013.

[2] A. C. Birdsill, R. L. Koscik, E. M. Jonaitis, S. C. Johnson, O. C. Okonkwo, B. P. Hermann, A. Larue,
M. A. Sager, and B. B. Bendlin, “Regional white matter hyperintensities: aging, alzheimer’s disease risk,
and cognitive function,” Apr 2014.

[3] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmenta-
tion,” CoRR, vol. abs/1505.04597, 2015.

[4] H. Li, G. Jiang, J. Zhang, R. Wang, Z. Wang, W.-S. Zheng, and B. Menze, “Fully convolutional network
ensembles for white matter hyperintensities segmentation in mr images,” NeuroImage, vol. 183, p. 650665,
Dec 2018.

[5] N. Sharma and L. Aggarwal, “Automated medical image segmentation techniques,” Journal of medical
physics / Association of Medical Physicists of India, vol. 35, pp. 3–14, 04 2010.

[6] B. M. Dale, M. A. Brown, and R. C. Semelka, Pulse Sequences, pp. 80, 81. 5 ed.

[7] R. C. Gonzalez and R. E. Woods, Digital image processing. 330 Hudson Street, New York, NY 10013:
Pearson, 2008.

[8] E. Bendersky, “Convolution figures,” 2021.

[9] H. Le and A. Borji, “What are the receptive, effective receptive, and projective fields of neurons in convo-
lutional neural networks?,” CoRR, vol. abs/1705.07049, 2017.

[10] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective receptive field in deep convolutional
neural networks,” 2017.

[11] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch normalization help optimization?,”
2019.

[12] Y. Wu and K. He, “Group normalization,” 2018.

[13] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The missing ingredient for fast styl-
ization,” 2017.

88

CHAPTER 10. CONCLUSIONS

[14] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in ICML, 2010.

[15] Wikipedia, “Relu activation.”

[16] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, Neural Networks: Tricks of the Trade (2nd ed.),
vol. 7700. 330 Hudson Street, New York, NY 10013: Springer, 2012.

[17] Wikipedia, “Sigmoid activation.”

[18] D. Misra, “Mish: A self regularized non-monotonic neural activation function,” CoRR, vol. abs/1908.08681,
2019.

[19] E. Alpaydin, Introduction to machine learning. The MIT Press, third ed., 2014.

[20] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

[21] “Adam optimizer at papers with code,” March. 11, 2021. [Online].

[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to
prevent neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–
1958, 2014.

[23] M. Hon and N. Khan, “Towards alzheimer’s disease classification through transfer learning,” 2017.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 2015.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich,
“Going deeper with convolutions,” 2014.

[26] N. Abraham and N. M. Khan, “A novel focal tversky loss function with improved attention u-net for lesion
segmentation,” CoRR, vol. abs/1810.07842, 2018.

[27] M. Yap, G. Pons, J. Martí, S. Ganau, M. Sentís, R. Zwiggelaar, A. Davison, and R. Martí, “Automated
breast ultrasound lesions detection using convolutional neural networks,” IEEE Journal of Biomedical and
Health Informatics, vol. 22, pp. 1218–1226, July 2018.

[28] Q. Yu, Y. Xia, L. Xie, E. K. Fishman, and A. L. Yuille, “Thickened 2d networks for efficient 3d medical
image segmentation,” 2019.

[29] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-decoder with atrous separable
convolution for semantic image segmentation,” 2018.

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” 2015.

[31] A. L. Simpson, M. Antonelli, S. Bakas, M. Bilello, K. Farahani, B. van Ginneken, A. Kopp-Schneider,
B. A. Landman, G. Litjens, B. Menze, O. Ronneberger, R. M. Summers, P. Bilic, P. F. Christ, R. K. G.
Do, M. Gollub, J. Golia-Pernicka, S. H. Heckers, W. R. Jarnagin, M. K. McHugo, S. Napel, E. Vorontsov,
L. Maier-Hein, and M. J. Cardoso, “A large annotated medical image dataset for the development and
evaluation of segmentation algorithms,” 2019.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural
networks,” in Advances in Neural Information Processing Systems (F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, eds.), vol. 25, Curran Associates, Inc., 2012.

89

CHAPTER 10. CONCLUSIONS

[33] P. R. C.D. Manning and H. Schütze, Introduction to Information Retrieval. No. 260, 2008.

[34] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional neural networks for volumetric
medical image segmentation,” 2016.

[35] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” CoRR,
vol. abs/1708.02002, 2017.

[36] S. S. M. Salehi, D. Erdogmus, and A. Gholipour, “Tversky loss function for image segmentation using 3d
fully convolutional deep networks,” 2017.

[37] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Springer Series in Statis-
tics, New York, NY, USA: Springer New York Inc., 2001.

[38] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine Learning Research,
vol. 9, pp. 2579–2605, 2008.

[39] B. Alsallakh, N. Kokhlikyan, V. Miglani, J. Yuan, and O. Reblitz-Richardson, “Mind the pad – cnns can
develop blind spots,” 2020.

[40] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard artifacts,” Distill, 2016.

[41] O. Oktay, J. Schlemper, L. L. Folgoc, M. C. H. Lee, M. P. Heinrich, K. Misawa, K. Mori, S. G. McDonagh,
N. Y. Hammerla, B. Kainz, B. Glocker, and D. Rueckert, “Attention u-net: Learning where to look for the
pancreas,” CoRR, vol. abs/1804.03999, 2018.

[42] S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart,
and T. Yu, “scikit-image: image processing in python,” PeerJ, vol. 2, p. e453, 2014.

[43] M. Buda, A. Saha, and M. A. Mazurowski, “Association of genomic subtypes of lower-grade gliomas with
shape features automatically extracted by a deep learning algorithm,” Computers in Biology and Medicine,
vol. 109, 2019.

[44] B. S. Veeling, J. Linmans, J. Winkens, T. Cohen, and M. Welling, “Rotation equivariant cnns for digital
pathology,” 2018.

[45] A. Farooq, S. Anwar, M. Awais, and S. Rehman, “A deep cnn based multi-class classification of alzheimer’s
disease using mri,” in 2017 IEEE International Conference on Imaging Systems and Techniques (IST),
pp. 1–6, 2017.

[46] J. Nalepa, M. Marcinkiewicz, and M. Kawulok, “Data augmentation for brain-tumor segmentation: A
review,” Frontiers in Computational Neuroscience, vol. 13, p. 83, 2019.

[47] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal
covariate shift,” 2015.

[48] R. Fong and A. Vedaldi, “Occlusions for effective data augmentation in image classification,” 2019.

[49] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica, “Tune: A research platform for
distributed model selection and training,” arXiv preprint arXiv:1807.05118, 2018.

90

CHAPTER 10. CONCLUSIONS

[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance deep learning library,”
in Advances in Neural Information Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran Associates, Inc., 2019.

[51] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del R’ıo, M. Wiebe, P. Peterson, P. G’erard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi,
C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,” Nature, vol. 585, pp. 357–362, Sept.
2020.

[52] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engineering, vol. 9, no. 3,
pp. 90–95, 2007.

[53] M. Waskom and the seaborn development team, “mwaskom/seaborn,” Sept. 2020.

91

	Summary
	Abbreviations
	Preface
	Introduction
	Goal of this thesis
	Outline

	Intro to CNN
	Convolutional neural networks
	Receptive Field
	Effective Receptive Field
	Batch normalization layers
	Group Normalization
	Activation functions
	Optimizers
	Regularization

	Related literature
	U-Net: Convolutional Networks for Biomedical Image Segmentation
	Alzheimer's Disease Classification through Transfer Learning
	A Novel Focal Tversky loss function with improved Attention UNet for lesion segmentation
	Fully Convolutional Network Ensembles for White Matter Hyperintensities Segmentation in MR Images
	Thickened 2D Networks for Efficient 3D Medical Image Segmentation

	Metrics, optimizers and loss functions
	Evaluation Metrics
	Loss functions

	Dataset and preprocessing
	Datasets
	Statistics of data
	Pre-processing
	Feature analysis

	Models
	UNet
	Attention UNet
	3D UNet256 alternative - 3 slices as channels

	Methology
	Transfer Learning
	Image Entropy
	Training/Validation evaluation procedure
	Lesion metric evaluation volume prediction
	Pixel connectivity (lesions)
	Setup

	Experiments and results
	Experiments with pre-trained UNet256
	Experiment with non pre-trained UNet256
	Experiment UNet256 with attention gates, pyramid input, no pre-trained.
	Experiment pre-trained UNet256 with attention gates without pyramid input.
	Experiments with 3-slices as a channel.
	Robustification of best result
	Experiments with 3-slices as a channel using FLAIR only.
	Experiment Mish and group normalization
	Test data experiment
	Large dataset experiments
	3-slice as channels FLAIR only, [Large data] sagittal slices with ReLU
	Pre-trained FLAIR only, [Large data] axial slices, ReLU
	3-slice as channels FLAIR only, [Large data] axial slices with Mish and augmentation
	3-slice as channels FLAIR only, [Large data] axial slices with Mish
	3-slice as channels FLAIR axial slices with Mish and augmentation, with some of the largest GT errors removed
	Test results [Large data]

	Discussion
	Data imbalance
	Change of orientation
	Batch normalization and standardization
	Generalization problems
	Dataset difference (introduction of larger dataset)
	Difference between dice metric and lesion metrics
	Errors in dataset
	Training and prediction for different image orientations
	Future work

	Conclusions
	Appendix
	References

