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Abstract

Data integration and knowledge representation in the oil and gas drilling
domain are two challenges much work is focused upon. They are important
real-world challenges to deal with, and the drilling domain has much to gain
from better solutions than the ones that exist today. Data integration is
a problem that has been known for a long time, but the existing solutions
are cumbersome and expensive to use and maintain. Ontology based data
integration is one approach that shows much promise and is currently gaining
ground. This thesis presents both necessary theoretical background, and also
domain knowledge that serves as important input. With the insight gathered
from this background, an ontology for the drilling domain is created, and
two use cases that are based on this ontology are presented. One of these
cases is a general description of a data integration case using the QuOnto
framework, and the other is a XML to RDF data conversion tool created in
Java.






Acknowledgements

This thesis has from the start been dependant upon many people who have
given of their time and expertise to help me complete this work. The domain
knowledge that I would not have had any chance to find out on my own has
been especially helpful. First I would like to thank Jens Ingvald Ornses
and Robert Ewald at NOV (National Oilwell Varco), as well as Henning
Jansen previously at NOV, for valuable insight both in WITSML and in
drilling operations in general. A special thanks to Jens Ingvald for helping
me test “Statements” as a way of extracting domain knowledge. Also I would
like to thank Nejm Saadallah at IRIS (International Research Institute of
Stavanger) for much help in WITSML related issues. Then I would like
to thank Inge Svensson at Baker Hughes for contributing in creation of
the drilling ontology. Secondly I would like to thank David Norheim at
Computas for providing insight into semantic technology. I would also like
to thank Johan Kliiwer at DNV (Det Norske Veritas) for help in several
ontology related matters. Last I thank my adviser Arild Waaler (professor,
UiO/IfI) for much valuable input throughout the entire process, and Audun
Stolpe at UiO/IfI for theoretical help and general input.






Contents

Abstract

Acknowledgements

1

Introduction / problem description

1.1
1.2
1.3
1.4

Ontologies and Data Integration . . ... .. ... ... ...
Oil & Gasuse cases . . . . . . v v v v v v i v e
Data integration in the Oil&Gas domain . . . . . . . . .. ..
Structure of thesis . . . . . ... ... ... L.

Oil drilling as a domain of interest

2.1

2.2

Standards and sources of knowledge . . . .. .. .. ... ..
2.1.1 WITSML . . ... ..
2.1.2 DDR - Daily Drilling Report . . . .. ... ... ...
213 ISO 15926 . . . . . . . . . L
2.1.4  Schlumberger Oilfield Glossary . . . . .. .. .. ...
2.1.5 AKSIO . .. ...
2.1.6 Domain experts. . . . . . . . . ... ...
Specific problem and solutions . . . . .. ... ........
221 WITSML and DDR . .. ... ... ... .......

Semantic technology

3.1
3.2

3.3

3.4

Overview over established technologies . . . . . . . ... ...
Established technologies in further detail . . . . . . . ... ..
321 RDF ... ... .
322 OWL . ...
323 SPARQL .. ... ...
Emerging technologies . . . . .. ... ... ... .......
3.3.1 DL-Lite . . . . . . ..
OWL Challenges and limitations . . . .. .. ... ... ...
3.4.1 mn-ary Relations . . . . ... ... 0oL
3.4.2 Mereology; partOf relations . . . . .. ... ... ...
3.4.3 Multiple path problem . . . . . .. ... ... ... ..

17
17
17
21
22
22
23
24
24
25



CONTENTS

3.4.4
3.4.5
3.4.6

Consequences that cannot be expressed directly . . . .
Scalability and sublanguages . . . . ... ... .. ..
Modularity . . . .. .. ...

4 Creating the drilling ontology

4.1 Source
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6

4.2  Overall

contributions . . . ... ..o oL
WITSML . . ... .
ISO 15926 . . . . . . . .
ISO 15926 and WITSML . . ... ... ... .. ...
Schlumberger Oilfield Glossary . . . ... ... .. ..
AKSIO . .. ..
Domain Experts . . . . .. ... 0o L.
ontology structure . . . . . . .. ... ... ...

4.3 Combining the sources . . . . . . . . .. ... ... .. ....
4.4 Standardized Ontologies . . . . . .. .. .. ... ... ....

4.4.1
4.4.2

Upper ontologies . . . . . . ... ... ... ..
Ontological context . . . . . . ... .. .. ... ....

4.5 Ontology engineering methodology . . . . . .. .. ... ...

4.5.1
4.6 The Dr

4.6.1

4.6.2

Proposed methods . . . . .. ... ... ... ... ..
illing Ontology . . . . . . ... ... ... .. ....
Early design experiences . . . . . . ... ... ... ..
My application of engineering methods . . . . . . . ..

5 Application of the drilling ontology
51 QuOnto . . . . .. ..

5.2 Data fr
5.2.1

om WITSML/XML toRDF . . . . ... ... .....
Two approaches to XML — RDF conversion

5.3 Implementation of XML — RDF converter . . . . . ... ..

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5

6 Conclusion

XML Parsing . . . . . . . ... o
RDF conversion . . .. ... ... ... ... ...,
RDF conversion without template ontology . . . . . .
RDF conversion with template ontology . . . . . . ..
Possible improvements and changes. . . . . . ... ..

6.1 Summary . . . . ... e

6.2 Future

work . ..o

Terms and Acronyms

File locations

Bibliography

vi

46
50
92

53
93
93
60
61
62
62
63
64
65
69
69
70
72
72
75
75
77

83
83
85
85
88
89
90
90
91
94

95
95
97

99

101

103



CONTENTS

Appendix 107

A Bonus Material 109

A1 Statements . . . ... ... 109

A.1.1 Methodology . . .. ... .. ... ... ... ... .. 111

A12 Testcase . . . . . . . . 112

A2 More on Mereology . . . . . .. ... .. ... ... 116

A.3 Normative vs Descriptive . . . . .. ... .. ... ... ... 117
A4 WITSML/XML to RDF/OWL conversion and problems

concerning this . . . . . . . .. ..o oo 120

A.4.1 Structured datatypes in RDF and OWL . . . . .. .. 120

vii



viii



Figures

1.1

3.1
3.2
3.3
3.4

5.1

IOHN activities . . . . . . . . . . ... 5
Semantic web stack . . . . . ... ... L. 28
RDF graph example . . . . . .. ... ... ... ... ..., 29
RDF n-ary relation graph . . . . . .. .. .. ... ... ... 39
Multiple path example . . . . . .. .. ... ... ... 46
QuOnto Structure . . . . . ... ... ... ... ... 84






Chapter 1

Introduction / problem
description

1.1 Ontologies and Data Integration

This thesis will deal mostly with knowledge representation and especially
data integration in oil and gas drilling operations, and present attempts
at solutions and use-cases relevant for this domain. Data integration is a
problem that has been known for a long time. It is an important real-world
challenge to deal with, as there are great benefits to successful integration
of data across computer systems, platforms and even entire organizations.
Using ontologies for this purpose is a new approach, and data integration is
seen as one of the fields where ontologies can be best utilized for increased
efficiency.

Ontology languages in general are relatively new, and have not been applied
in any great extent to real-world problems. Many of the large ontologies
that exist are medical ontologies still with an academic focus. They are
as such not coined specifically at solving real problems, and do not suit
data integration particularly well. For ontologies to be best applied to
this problem, they ought to be designed with this specific purpose in mind
from the start. The thought is that ontologies will not solve any problems
that have not yet been solvable, but rather handle existing problems in a
more efficient and cheaper way. The robustness of ontologies is one of the
properties that hopefully will prove them to be well suited for particular
tasks such as data integration. The fact that maintenance today is a very
large part of the total system cost, an ontology based system with less and
easier maintenance should by itself prove beneficial. As ontologies are quite
new and still an academic endeavor, it is not much used in the industry
yet. This means that an important part of research in the field is to focus
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on real-world domains and problems to explore and illustrate just what the
strengths of ontologies are. This thesis hopes to do exactly this with focus
on the Oil and Gas drilling domain.

1.2 Oil & Gas use cases

Integrated Operations

These days, one of the things that many people in the oil and gas industry
at least in Norway talk about is Integrated Operations (I0). The reason
for the great interest in this two-letter abbreviated concept is the drive
for more efficient and better retrieval of hydrocarbons, as well as a more
streamlined overall flow of resources (including people) within the businesses,
which again leads to increased efficiency through better work processes and
faster handling of problems that arise. And problems are bound to occur
in such a complex and difficult operation as the retrieval of hydrocarbons
is. Quick and correct measures for any situation is paramount towards the
goal of increased overall efficiency. This of course leads directly to increased
profits which is important to any industry, although those aspects will not
be focused upon in this thesis.

These points are some of the things that many people in the oil and
gas industry strive to improve, but what exactly is meant by Integrated
Operations and where does it fit in? The Norwegian Oil Industry Association
(OLF) defines Integrated Operations as “real time data onshore from offshore
fields and new integrated work processes”. There are however other
definitions of 10. Statoil for instance is mostly focused on moving people and
resource from offshore to onshore, thus eventually having a bare minimum
of people and equipment offshore. This is a narrower aim than what OLF
envisions, but many of the challenges are the same. OLF focuses on two quite
wide concepts in their definition: data and work processes. These two things
are certainly not only relevant for the oil and gas industry, but for almost
any industry for sure. Data can be anything from measured sensor values
or calculated values, to information about employees and their affiliations.
In between there can surely be data on just about anything, and these data
sets need to be handled and stored somehow in computer systems. On top
of this comes the work processes which mostly deal with people and how
they solve tasks, but computer systems and interaction with them is also an
important factor.

There is certainly room for improvement still in any industry in handling

"http://www.olf.no/getfile.php/zKonvertert/www.olf .no/Rapporter/
Dokumenter/070919%20I0%20and’%200ntology%20-%20Brosjyre.pdf
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data and work processes. OLF represents the oil and gas industry in Norway
and made their definition based on this industry’s needs, but many of the
results will surely be relevant for other businesses as well. However this is
not an easy task to accomplish, and considerations at different levels with
varying focus is necessary. Both the handling of data and the work processes
are largely about the same thing: to be able to make better decisions. There
are two sides to this.

1. Better access to experts. It is mostly through good work processes
that this can be accomplished. Having the right person at the right
time in the right place can mean the difference between quickly solving
a problem and struggling with it for hours or days.

2. Better bases for decisions. The quality of the data as well as the way
it is presented are both important factors, and have significant impact
of the quality of decisions. Even the most able experts will not be able
to reach good decisions if information available to them is poor.

This thesis will for the most part focus on the basis for decisions, meaning
the data aspect mainly concerning data structuring and data integration. I
will work on providing better access to and analysis of data, as well as better
quality of the data itself. How this can be realized through work processes
will not be considered.

How then does “real time data onshore from offshore fields” relate to the
goals of more efficient and better retrieval of hydrocarbons, as well as a
more streamlined overall flow of resources? Huge amounts of data are
generated both while drilling and while in production on a field. Handling
this data is an important part of securing an efficient operation. Among
the data are many indicators of problems and keys to solving them as well.
Downhole measurements can for instance give indication of an impending
blowout, which can lead to dangerous situations if not handled properly
quickly enough. A major challenge in this respect is making sure the right
data reach the right specialist that can analyze and decide what action to
take in any given situation. Traditionally, most such decisions were taken
offshore by the people on the platform while perhaps consulting experts on
land. This did not happen nearly quick enough though. Today, service
companies have better solutions with live video conferences every day where
onshore experts talk about operations with the offshore personnel every day.
This is still just the first step towards a fully integrated approach to oil and
gas operations. With talk of fully automated offshore operations and all the
personnel is sitting onshore, the flow of data becomes extremely important.
Getting relevant data to the correct person quickly is paramount to quick
decision-making when time is critical.

But Integrated Operation also visions a future where many decisions are



1. INTRODUCTION / PROBLEM DESCRIPTION

made automatically by smart computer systems. This is obviously the
quickest way to respond to time-critical situations, but it also places great
requirements on the computer systems that must process the data and
reach a decision. In this regard we can state two loose criteria on the data
representation structure.

1. The structure of the data must be rich enough to contain relationships
between different entities that humans take for granted when analyzing
data. This means that implicit knowledge and context that a human
domain expert has must be formalized and made explicit in the data
structure. An example of this can be something as simple as the
manner in which the steering wheel of a car influences the direction
the car moves. Our computer system can describe a simple relationship
such as “The car moves in the direction the steering wheel is turned”,
and this will work in very simple cases where nothing can go wrong.
But as soon as the steering wheel is turned and the car does not
alter direction, something is obviously wrong. We humans the know
that most likely a connection has broken somewhere between the
steering wheels and the tires, but for a computer system that only
has knowledge about steering wheels and car directions this makes no
sense. So we must here expand the structure to include the parts that
can be broken and disrupt normal operation.

2. As such the precision of these structures must also be good enough so
that there is no doubt what the meaning of the relationships are. If
we are to expand the simple steering wheel and direction structure,
it must be done in such a way that there is no doubt what the new
relationships mean.

As we will see, this thesis will look at ways of structuring data such that it
contains as much meaning as possible and relates to other data and entities
in the domain. The actual decision-making will not be dealt with.

The main focus of this thesis is on data integration. A classic problem
that arises in large businesses is that inter-department communication is
lacking and they create their own data systems with their own representation
models of data and information. These models may often describe more or
less the same domain, but still be incompatible. This is clearly a problem
when someone wants to gather information from different systems that use
different models. A large manual job of aligning the data must often be
done, and this is costly and time consuming. On a larger scale this problem
only gets worse when dealing with different companies with different areas
of interest while working in the same domain. Huge data integration efforts
are necessary to get computer systems to communicate with each other.
This problem can of course in principle be avoided by standardization, but
things aren’t always that simple as will be explained further when discussing
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Business processes

Figure 1.1: This graph shows how technologies and business processes in
IOHN interact.
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WITSML.

IOHN & AutoConRig

IO High North (IOHN) is a large joint industry project with the goal of
using information technology to improve offshore operations in the arctic
region. Norway and other countries are starting to develop oil and gas fields
in such areas, and IOHN will provide an important contribution. As the
IOHN wiki website? says it: "The overall goal for the Integrated Operations
in the High North (IOHN) project is to design, implement and demonstrate
a reliable and robust architecture for Integrated Operations Generation 2
(I0 G2). Existing open standards are used and extended when required
and new standards are incubated to ensure interoperability, to facilitate
integration and to transfer data. To make data-to-information-to-decisions
work processes more efficient, information and knowledge models based on
open standards are also developed and used.”

IOHN consists of several smaller activities that have specific projects
attached to them. Figure 1.1 shows how the different activities in IOHN
interact with each other. The activity that is concerned with ontology
building is Activity 3. This activity, as well as activity 5 which concerns
drilling, are the two that has the largest relevance to this thesis. From

*https://www.posccaesar.org/wiki/I0HN
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participating slightly in the work behind these activities, I have gotten
valuable input in the form of domain expert knowledge and feedback,
in addition to some general understanding of the processes involved in
such a large research program. This thesis hopes to contribute with
input concerning ontology building in general and the drilling ontology in
particular. One of the projects that I have had most involvement in is the
activity 5 project Autoconrig.

Autoconrig is a research project aimed at automatizing as much of the
drilling operation as possible. This is proposed being done primarily by
implementing “smart agents”. These smart agents each has a relatively
simple task to monitor or control, e.g. sensor-monitoring or machinery-
operation. Part of the problem is finding out exactly what must be included
in the agents to be able to run the entire drilling operation. There is a lot of
data and details which are not crucial, so identifying these are an important
task, since having a simpler system means easier to implement and maintain.
It must however still be able to perform every necessary task in drilling a
well.

To have a common reference model which all the smart agents draw their
knowledge from, an ontology has been proposed as the solution. By
utilizing the complex structure expressible by OWL, the simple task of
one smart agent is linked and related to other agents in an intuitive and,
more importantly, correct way. Since the agents certainly will have to
communicate, having each agent be aware of their structural and operational
context is clearly desirable. For instance a motor agent should know what the
motor is connected to and which operation involves it, such as the drawworks
being used for lowering and lifting the string into the borehole. All this can
be expressed in the ontology. It is desirable to examine to what extent
ontologies can be utilized in a project such as Autoconrig.

AKSIO & CODIO

The AKSIO project?® is a completed project that had the goal of making
information retrieval from documents concerning drilling easier. The idea
was to use an ontology to annotate documents with names from the ontology
to reflect the actual content in the documents. This way, one could use the
ontology to search for matches to the annotations as well as annotations
that are related in some way through the ontology. This way of expanding
the search would mean that more documents that might be relevant could
be found as well. The project was meant mostly as a research prototype
to see if this kind of technology was viable for the intended purpose. An

3Both AKSIO and CODIO are projects lead by Computas
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implementation was created to test the concept, which worked fairly well.
The help of domain experts in creating the ontology and access to actual
documents from the drilling domain helped the success of this project.

The CODIO project is a research project where the goal is to create a
system for decision-support in drilling operations. This sounds very much
like the AutoConRig project, and there are certainly similarities. However,
where AutoConRig has the ambition of automating large portions of the
drilling process, CODIO only aims at giving decision support to the people
performing the drilling. Central to their approach is a Bayesian network
model of probability. The way this is supposed to work is by looking at
sensor data and other input and feeding them into the network. The design
of the network then decides what the output will be. The output we will
get is mostly probabilities for an event to occur and a suggestion of which
action that should be taken. An important part of this entire approach is
that the decision reached should feedback and alter the probability model
so that future similar cases are affected by decision taken prior to it.

In CODIO they propose to use an ontology mainly for limiting the size
of the Bayesian network needed to be reasoned upon. The concepts
that are common for the ontology and the network are based on the
reasoning conducted at any time. From this it appears is that CODIO
and AutoConRig might have slightly different uses for ontologies, as well as
the fact the AutoConRig specifies no need for a Bayesian network.

e Since AutoConRig wants to automate everything and have agents
control machinery, they want equipment and this machinery to be a
part of the ontology. CODIO however is not (at this stage) interested
in this.

e Both are interested in tagging or classifying sensor data, and other
low level data. Having data clearly structured and related is clearly
of interest and help to both, as the actual decision-making process
relies heavily upon what is measured by the numerous sensors on many
different types of equipment.

o At least AutoConRig, but most likely CODIO also, is interested in
having events described by the ontology.

As in AutoConRig, CODIO is also dependent upon an ontology in the
drilling domain. The work in this thesis will perhaps serve also here as
valuable input to the ontology that is required by CODIO.
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1.3 Data integration in the Oil& Gas domain

Data integration often deals with combining multiple sources of information
into one output where all data is presented in the same format, such that
it can easily be utilized in other systems. This is not an easy task to
accomplish, and many systems for integrating data exist today which deal
with these kinds of problems. None of them are perfect though, and much
manual work must be done before they can function properly. ISO 15926 is
a standardization effort that in part has problems such as these as one of
its main uses. It will be briefly discussed later in the thesis. Other solutions
will also be presented based on state-of-the-art semantic technology that is
still an active research field.

Such solutions to data integration problems are relevant both for drilling
and for production, though the two are a bit different in what needs they
have. This thesis focuses mainly on drilling, but many things discussed are
also relevant for a production environment. So as an overview thus far, this
thesis will deal mostly with data(information/knowledge) representation and
data integration in oil and gas drilling operations, and present attempts at
solutions and use-cases relevant for drilling.

Now to take a step back and consider what exists to work with to try and
reach closer to the goals and visions previously stated; that is the increased
efficiency of hydrocarbon retrieval. 1 will begin by considering existing
standards in the oil and gas industry and see where that takes us.

The focus of this thesis is on drilling, thus it is natural to begin by considering
WITSML (Wellsite Information Transfer Standards Markup Language).
This is a standard that was created with the purpose of transferring drilling
data from wellsites to centers where the data can be stored and processed.
WITSML also defines a way of querying the data stored in WITSML servers.
The standard is on an XML format, and the structure is defined completely
by a set of XML schema files. This subsequently means that WITSML
data is stored in XML document files and the limitations of XML (such as
the inherent tree structure, and lack of data identifiers other than through
the structure itself) apply to WITSML. WITSML is therefore not able to
express generic relationships between the data resources. Because of this
there might be implicit relationships between data instances in WITSML
that cannot be expressed due to limitations in XML. For the purpose of
integrating WITSML data with other that data such relationships might be
necessary.

In a related issue, the precision of the structure is also not good enough, as
the standard opens up for interpretation in several cases. Several companies
are in fact using the standard in slightly different ways today. This is
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clearly not a desirable situation, but as this is the current state of affairs it
must be dealt with in a satisfactory manner. Implementing new standards
is always a big challenge since most companies already have their own
internal proprietary systems and must make them work together with the
standard. In these cases, they may look for shortcuts and simplifications in
the standard so that they minimize the effort required. This of course means
that the implementation of the standard varies from company to company.
If things are so bad that the various implementations are incompatible with
each other, the standard almost seems meaningless, which is an unwanted
situation. WITSML is however not completely as bad as just described, but
it certainly has issues that need to be dealt with. That is however not the
focus as such of this thesis. I will rather use the domain knowledge contained
in WITSML and structure it in hopefully a better and richer.

As much as I have presented petroleum related topics thus far, the problems
stated cannot be solved alone by a petroleum engineer or any other
drilling domain expert. This is an informatics thesis and as such, it will
focus on the technological aspects that pertain to the management of
information. The solution for many of the problems in data integration
and data representation involves creating an unambiguous vocabulary over
the domain of interest.

e What we want to create is a vocabulary, which basically is a set of
terms that are relevant to the domain of interest. This vocabulary
should be structured through relationships in an appropriate way to
reflect the domain of interest as closely as possible.

e ‘Unambiguous’ refers to the absence of multiple interpretations of the
data structure. An unambiguous data structure has only one correct
interpretation, and this interpretation should be made obvious so that
misuse does not occur. In the case of WITSML as described earlier,
it is not unambiguous, which is one of its flaws.

But to create such an unambiguous vocabulary is a difficult task that
requires skills that most people in the oil and gas industry do not possess.
They do however have important domain knowledge that is essential when
creating these kinds of data models (which is the case for any domain).
Domain experts are crucial when it comes to identifying important terms
that describe the domain, but for structuring these terms a technology expert
is needed. A joint effort of petroleum experts and informatics experts is
clearly necessary to achieve the best results.

To be able to create this vocabulary representing drilling data better than
WITSML does, a formalism is needed to be able to express the data
structure. Such technology already exists and more is being developed and
improved continuously. The World Wide Web Consortium (W3C) is a great
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resource for such technology and their Web Ontology Language (OWL) is
a well suited formalism for just this kind of representation. Its most useful
variant is based on description logics, which has an important position in
this thesis. These ontologies that we can represent using OWL are logical
vocabularies with a clearly defined semantics. They support reasoning which
can extract implicit knowledge from the explicitly stated information in the
ontology. This can yield new knowledge based on incomplete input only
with the help of the logical structure of the ontology, since the explicit
structure is more or less a template for how the information instances should
be related to each other. Reasoning can thus in some cases deduce what kind
of relationships between data exist that haven’t been explicitly stated. This
is useful both when creating the ontology and when using it.

Roughly described, an ontology consists of a TBox which is the intentional
knowledge, and an ABox which is extensional knowledge. During creation,
TBox reasoning is used to find flaws (inconsistencies) in the structure and
also to find consequences of the statements entered. In actual use reasoning
on the ABox, with the TBox providing the necessary relational structure, is
most useful since this yields potential new information about data instances.
It is worth noticing an analogy to relations databases here. TBox can be
thought of similar to the relational schema, while the ABox can be thought
as the tabular data. The difference however is that while in a relational
database the schema is disregarded when doing queries on the data, in an
ontology both the TBox and the ABox are important for querying. These
properties make ontologies a very good formalism for representing complex
data structures. However, contrary to regular databases where the schema
is thrown away after creation, the TBox in an ontology is still an important
part of the ontology when using it and especially when reasoning on it.

With this in mind, what I want to find out is how a W3C ontology based
on knowledge mainly from WITSML, but also from other sources, can be
constructed. This WITSML ontology will capture much of the drilling
domain and be a general purpose ontology with “a little of everything” that
can then be extended and specialized in several directions based on different
uses for it. One of these uses could be some automated system for drilling,
or other automated systems that rely heavily on robust computer systems.
Also, as a vocabulary for the drilling domain such an ontology can become
a standard for the entire domain. However, for data integration such an
ontology is most likely not going to be efficient. A general purpose ontology
trying to capture knowledge about the whole domain will likely be too large
and slow to use for data integration that handles huge amounts of data and
requires fast computation. Data integration with ontologies is dependent
upon queries and query answering. For TBox satisfiability OWL2 is found

10
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to have a complexity of NExpTime-hard?. The topic of complexity classes
with be further handled in section 3.3.1 on DL-Lite. Even though that is
worst-case, it is relatively easy to use OWL constructs to create such an
ontology. For data integration a much better worst-case is necessary. There
are three so-called profiles defined as a part of OWL2. These are fragments
of OWL2 with specific purposes intended. I will say more about these later
in general, but the one that is most suited for data integration is OWL2 QL.
This profile uses the description logic DL-Lite, which is a subset of OWL2.
It excludes most of the constructs that make the complexity intractable.
What remains is still a expressive enough formalism to be usable in data
integration, and also other simple forms for modeling. And query answering
in DL-Lite is shown to be in AC? 5, which is a very important property
for handling large amount of data for integration. There exists an ontology
framework called QuOnto which uses DL-Lite ontologies and is thus well
suited for data integration. This framework is able to collect data directly
from SQL databases through mappings to the ontology. So instead of using
a regular OWL ontology for data integration, I will be creating a DL-Lite
ontology also partially based on WITSML to be used in a data integration
case.

Another important consideration to make is whether having a general
purpose ontology is a sound approach. This ontology would have to be
further extended with details later when the actual use of it is clearly
defined. This is one scenario where a new extended ontology must relate
to the existing ontology. Other such cases include an ontology that imports
concepts from a different ontology, and splitting up an ontology into smaller
parts. For my case specifically it might be interesting to see if two such
ontologies can refer to each other, and in what way. Common for these
cases is that there must be a theory of modularity which ensures that no
problems arise when using several ontologies together. This is also a field
that is actively researched, and I will spend some time considering the impact
it has on the construction of my ontologies.

I have two aims with this work:

1. To create a general purpose vocabulary in OWL based on knowledge
from WITSML. This vocabulary will capture much of the drilling do-
main in a somewhat superficial way, while more detailed specializations
can be created as they are needed. The main strength of this ontology
will be its unambiguity, which enables it to be used as a standard for
domain knowledge representation. And also since OWL is based on
description logics, the nice properties it thus inherits when it comes

“Much information regarding complexity of OWL at http://www.cs.man.ac.uk/
“ezolin/dl/
°[1] page 4
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to computability makes it more than just a simple dictionary in that
computers can “understand” its meaning. This means that e.g. com-
puterized reasoning can lead to conclusions that haven’t been explicitly
stated but are nonetheless true.

2. Show how this vocabulary, or a DL-Lite stripped-down version of it,
can be used for data integration in the drilling domain. In doing this I
will explore some theoretical difficulties that arise and discuss possible
solutions wherever I am in a position to do that.

However, towards reaching these goals there is also compliance with any
existing ontologies in the domain to consider. As far as I am aware, there are
no ontologies dedicated to the drilling domain as of now. There are however
ontologies which intersect with the drilling domain. ISO 15926 is such an
ontology. I mentioned ISO 15926 briefly further up already. It is a large
repository for knowledge in the petroleum industry and other industries. It
is mostly a taxonomy which defines classes in a textual way. Most of these
definitions have not been explicitly stated in a logical way which would
be natural to do in an OWL ontology. In addition to this, the modeling
formalisms also differ from OWL so that translating from ISO 15926 to
OWL is not a straight-forward operation. There are though methods in
development that make this task easier. The reason such a translation could
be desirable is that ISO 15926 is a large repository of domain knowledge,
and it is after all an ISO standard. The creators of ISO 15926 are pushing to
have the industry adopt it in their systems, a push which is slowly making
progress.

My interest in ISO 15926 lies mainly in accessing whatever relevant drilling
domain concepts it may contain, as well as considering the possibility to
(partially) use the ISO 15926 part 2 as an upper ontology for my ontology
work. Since ISO 15926 uses a different formalism from OWL as stated,
this perhaps entails more difficulties than gains. Part 2 also contains some
questionable modeling and some of it isn’t used at all in ISO 15926 part 4
which is the reference library. One serious consideration that needs to be
made is whether ISO 15926 Part 2 is the choice of upper ontology, or rather
use a different one such as DOLCES or BFO”.

Another important topic that needs to be considered. When creating a single
ontology with no ties to other ontologies, upper ontologies do not necessarily
provide much help. Compliance with them could make the overall structure
more understandable, but may not add much else. However when several
ontologies or other knowledge representation systems are to communicate
or or be integrated, upper ontologies help to make sure that the meaning of

Shttp://www.loa-cnr.it/DOLCE.html
"http://www.ifomis.org/bfo
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classes and relations do not diverge in the different systems. This ensures
that no misunderstandings or incompatibility over the most basic concepts
occur. Upper ontologies basically provide templates for how an ontology
should be modeled, and are as such very valuable tools.

Two of the most interesting upper ontologies now existing are DOLCE and
BFO. They are both good examples of upper ontologies and arguably the
best of what exists now. Most of the text concerning upper ontologies will
be based on those two. DOLCE is bigger and more complex than BFO, but
BFO also contains many important features an upper ontology should have.

Crucial in both ontologies, is the top level distinction between endurants
and perdurants® (different names for them are continuants and occurents
respectively). The difference between the two shows itself in the way they
relate to time. Endurants can be said to be wholly present at any moment
in time they exist, while perdurants consist of temporal parts such that they
are only partially present at any moment in time. The property of endurants
means that part-of relationships with endurants should have a time-index
to be meaningful. The example “this keyboard is part of my computer™
is incomplete without saying when the keyboard is a part of the computer.
However in “my youth is part of my life”, which is a perdurant parthood,
specifying time is not required.

Furthermore, endurants can be split into physical and non-physical
endurants, and depending upon the level of detail in the upper ontology,
even further distinction can be made. Similarly, perdurants can be divided
into e.g. events, processes, phenomena, activities and states. They can
have temporal or spatial parts. An example of this kind of parthood is
“Proofreading is part of writing a thesis”.

What we gain from using upper ontologies (and other standardized
ontologies), is that clear and well-defined distinction is made between types
of classes in the ontology. External context adds meaning to the ontology in a
way that would be difficult to achieve without links to other ontologies. This
makes it easier to understand the meaning of the ontology, even with little
domain specific knowledge. Integration thus becomes easier to do. Also,
certain modelling that is often difficult can be handled in a standardized
way which makes the whole creation of the ontology a simpler task.

8[2] page 10
“Example from [2] page 11
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1.4 Structure of thesis

Chapter 2 — Oil drilling as a domain of interest

This chapter will introduce that most important sources of domain
knowledge that I have used throughout the entire thesis. They are here
considered one at a time.

Chapter 3 — Semantic technology

The chapter on semantic technology give a brief description of the current
technologies. Then it goes more into detail on the relatively new DL-
Lite, and the last portion tackles some of the challenges that the current
technology has to deal with.

Chapter 4 — Creating the drilling ontology
In this chapter, the sources for domain knowledge are again considered,
but this time as ontology construction sources in particular. I try to give

methodologies that can be used to extract useful knowledge from these
sources, and then create an actual drilling ontology based on this.

Chapter 5 — Application of the drilling ontology

The use cases described here are meant to rely on the ontology presented
in the previous chapter. The first use case is somewhat an abstract
description of a data integration application using an ontology framework
called QuOnto. The second use case is a XML to RDF data conversion tool
created in Java, which uses ontologies for improved quality.

Chapter 6 — Conclusion

The last chapter contains a summary of the thesis as well as thoughts on
where further work could be applied.

Terms and Acronyms
A list of important terms and acronyms, and their meaning.
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File locations

This lists all the external files, including links, created with relevance to this
thesis.

Appendix A.1 — Statements

This appendix contains my findings and experiences in a specific method for
extracting knowledge from domain experts.

Appendix A.2 — More on Mereology

Here I go into more detail on mereology than I do in the main part of the
thesis.

Appendix A.3 — Normative vs Descriptive

This is a take on two different approaches to ontology design that may have
implications at an abstract level.

Appendix A.4 — WITSML/XML to RDF/OWL conversion and
problems concerning this

In this appendix I go into more of the thoughts behind the XML to RDF
data converter presented in chapter 5.
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Chapter 2

Oil drilling as a domain of
interest

2.1 Standards and sources of knowledge

In this section I will present what I consider important standards and
influences for the creation of the drilling ontology. Here I will simply present
and explain them one by one, but in chapter 4 about the drilling ontology,
the way of combining them as input to the creation of the drilling ontology
will be discussed in detail.

2.1.1 WITSML

WITSML! (Wellsite Information Transfer Standards Markup Language)
is an industry standard for transferring drilling data mainly from drilling
installations (offshore) to data centers onshore, but it is also used in the
exchange of data between partners onshore. It is maintained by Energistics,
a consortium of many companies with interests in the drilling domain.
They meet for discussions yearly to decide on the course WITSML should
take and what should be included in or excluded from the standard.
The fact that many of the most important members of the industry are
represented in the consortium makes WITSML an important standard to
consider, and a starting point for looking at data integration in the drilling
domain. Since WITSML is meant to handle much of the data that in many
cases is interesting to integrate, considering WITSML from an integration
perspective as well as a more general knowledge representation perspective
seems prudent. The data structures which WITSML is created to represent

"http://www.energistics.org/witsml-standard
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should thus be a large part of what a drilling ontology should contain. T will
handle WITSML’s role in shaping the drilling ontologies more thoroughly
in section 4.1.1.

WITSML is based on an older standard called WITS, to which they added
the structure of a markup language to create WITSML as it is today. It
is thus built on XML and the structure and contents are defined solely by
a set of XML schema files (XSD files). This set consists of 20+ top level
object schemas, from which the XML document files are created. Some of
the most important of these top level schemas are?:

e log : Contains log data.
e mudLog : Contains log data about the mud in circulation.

e trajectory : Description of the trajectory or path that a wellbore
follows.

e tubular : Information about which components a drillstring is made
up of.

e well : Information about a well which in WITSML is defined as
“a unique surface location from which wellbores are drilled into the
Earth for the purpose of either (1) finding or producing underground
resources; or (2) providing services related to the production of
underground resources.”

e wellbore : Information about a wellbore which in WITSML is defined
as “a unique, oriented path from the bottom of a drilled borehole to
the surface of the Earth. The path must not overlap or cross itself.”

e wellLog : Contains log data about a well.

These object schemas include in a hierarchy a number of other schemas,
in which schemas for datatypes form the foundation. The most simple of
the datatypes are XSD types with a few value restrictions added to them.
However a large part of the types are enumerated datatypes which list legal
values for a number of properties. These can for instance be a list of all
possible type of tubular components, or types of activities. In addition
to these there are the quantities which refer to units of measure, which
are important parts of representing measured or calculated data values.
Transferring such data values is a large part of what WITSML is used for,
mainly in the form of logs which are represented in many of the top level
XML documents. An example of a portion of WITSML document structure
may be expressed like this (here not in proper WITSML /XML syntax):

Wellbore

2which parts of WITSML that are important may vary from user to user
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nameWell = 6507/7-A-42
name = A-42
commonData
dTimCreation = 2001-04-30T08:15:00.000

Here “Wellbore” is a top level object, meaning that there are XML documents
created containing at least one wellbore. Each of these wellbores then
has several elements below it in normal XML fashion. For instance
“commonData” is an imported schema and is as the name implies, common
for many of the kinds of documents that can be created. The data value
“dTimCreation” is described in WITSML as “When the data was created at
the persistent data store....”.

Although WITSML is often stored in dedicated WITSML servers, the data
may be stored in regular relational data bases instead of actually storing the
XML documents as this is not very efficient. The WITSML standard also
provides a querying language which is used to access WITSML data. This
is simply the interface which must be standard, but actual implementations
could vary greatly. As we will see, there are unfortunately more critical
parts of WITSML where variation may occur as well.

For the purpose of precise knowledge representation as well as data
integration, it is important to have a foundational model which is
unambiguous in that the behavior/structure must be clearly defined in all
cases. The same is true for a standard to function as a proper standard.
In a large consortium all participants naturally have their wishes as to
what should be included in a standard, so compromises are made to satisfy
different interests. How this process evolved with WITSML is not clear
(to me), but often these sort of situations can lead to a much more diffuse
standard than is desirable. In the case of WITSML, several parts of the
structure are loosely defined so that potentially conflicting documents can
be created. Multiple interpretations and implementations exist which differ
on some areas. For instance some use the standard in a way that says: a rig
can have one well. Others use the standard in a way such that: a rig can
have multiple wells. This might be a minor problem, but similar cases exist
and they introduce difficulties when handling WITSML data from multiple
sources. Another problem that could be worse to detect and handle, is
one dealing with tubular components. Drill pipes in the particular type
of tubular component which is used most of all. They are created with a
standardized length, but part of the drill pipe is the joint which is supposed
to be screwed into a different drill pipe. Whether or not this joint is included
in the total length may vary from company to company. Since the calculation
of the length of the drillstring is very important in drilling, this is something
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2. OIL DRILLING AS A DOMAIN OF INTEREST

that must be made clear, but unfortunately WITSML provides no guidelines
as to how this should be handled. Other cases dealing with interpretations
of data may also exist. While in practice such problems might be rare, it
questions WITSML as a standard.

As WITSML is based on XML, limitations inherent in XML expressivity
and structure naturally apply to WITSML as well. The sort of complex
relationships which might be desirable in a general domain knowledge
representation, are not present in WITSML. There are few or no abstractions
of knowledge relevant to the drilling domain in WITSML. However this is
not a relevant part of a simple transfer format. WITSML deals with concrete
data and entities only, and does not refer to any higher level of abstraction,
which would help in describing the data in a more general manner. But
for creating such a general representation, additional information about
relationships between different kinds of data are needed. As an example
of one difficulty that arises because of the lack of a clear abstraction on top,
is how enumerations are used. While some enumerations are unproblematic,
such as the listing of possible units for a unit of measure, others are not as
straight-forward. The handling of tubular components is one of these. Even
though it is correct that the long list of type of components denote different
tubular components, nothing is said about how similar these must be and
what the defining properties of a tubular component are. In fact, more or
less the only thing tubular components have in common is that they are a
part of a tubular. Other than that they may have very different properties.
In WITSML the type itself is simply a property of tubular component so the
question arises whether a more clear division among various types is needed.
Although for its current purposes there may be no problems, knowledge
representation based on WITSML must consider questions such as these.
Many such relationships and abstractions lie implicit in the standard as
it is today, but these are mostly in the heads of the domain experts that
created the standard and cannot be pulled directly out of WITSML. Help
from experts will be needed in doing this, which will be discussed further in
section 4.1.1 and in section 4.1.6.

WITSML might be slightly more suited in its current form for data
integration. The included query language in WITSML is usable for simple
data extraction where we know exactly what data we are interested in
and how it is structured. This suits integration where we are interested
in consolidating limited sets of data. But since the query language relies on
very explicit input, more complex integration dealing with incomplete data
and uncertain structures will not be possible as it is. The query interface
itself is defined by using XML files and simple pattern matching to fill in
data in the XML elements provided. This limits the complexity of the
queries that can be expressed. As the implementations may use a relational
database for actual storage, using SQL for queries is surely a possibility.
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This may often provide a workable solution, however the structure of the
data is a limitation by itself as well. An ontology based data integration
with use of relationships and semantics will require a completely new data
model, which can of course be based on WITSML. But WITSML by itself
will not suffice in most cases of complex data integration.

Despite its limitations, WITSML works well for its current purpose, but it
is not good enough for use in representing domain knowledge on a general
basis, nor for use in complex data integration. It is however a good source of
domain knowledge and relevant data which should be included in a drilling
ontology. As long as so much data is available in WITSML format, to be
able to use these data in test cases for data integration has its advantages,
so a model based on WITSML is beneficial. WITSML is also a well-known
standard with many users, meaning that any WITSML-derived work will
automatically have more influence and impact than most work done from
scratch.

2.1.2 DDR - Daily Drilling Report

The daily drilling report is a standardized format for transferring data
about daily drilling to the Norwegian oil authorities. By Norwegian law,
all operators drilling in Norwegian areas have to hand in such a report every
day to keep track of the drilling activity at the Norwegian continental shelf.
The DDR standard itself is by large based on WITSML. It is defined as a
single XML schema which refers to WITSML types for reference. Most of
the types and also enumerations used in DDR are directly gathered from
WITSML, but there are also elements in DDR which are not in WITSML,
so DDR is not a proper subset of WITSML.

An example structure from DDR which shows the connection to WITSML:

<witsml:drillReport>
<witsml:nameWell>34/10-A-32 C</witsml:nameWell>
<witsml:nameWellbore>34/10-A-32 C</witsml:nameWellbore>
<witsml:name>witsml:name</witsml:name>
<witsml:dTimStart>2006-06-07T00:00:00.000</witsml:dTimStart>
<witsml:dTimEnd>2006-06-07T23:00:00.000</witsml :dTimEnd>
<witsml:versionKind>preliminary</witsml:versionKind>
<witsml:createDate>2006-06-07T13:15:00.000</witsml:createDate>
<witsml:wellAlias>
<witsml:name>34/10-A-32 C</witsml:name>
<witsml:namingSystem>NPD code</witsml:namingSystem>
</witsml:wellAlias>

I will say more about DDR in section 5.1 where I describe a use case that
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uses the ontology framework QuOnto to do data integration on DDR data.

2.1.3 1ISO 15926

ISO 15926 is a large ontology and information repository created by the
POSC organization. Its main purpose is to be used as a reference library
that in part has ontology structure. For the most part it contains information
relevant to oil and gas, process and chemical industries. But it can also be
used for other industries and businesses.

ISO 15926 is divided into several parts, some of which are part of the actual
ontology and some of which are not. Part 2 is the upper ontology part that
defines the topmost structure that all lower parts of the ontology must refer
to. It is the smallest part of the ontology, with just a few hundred classes.
Part 4 which is the reference library already consists of tens of thousands of
classes, and is growing continuously. This reference library contains many
classes relevant to the oil and gas domain, but a large part of it is not
relevant at all. The detail level in part 4 stretches from general classes such
as “pump” down to very specific pumps suitable for a particular job.

Part 7 of ISO 15926 introduces so-called called templates, which are meant
to simplify the job of entering new data into the ontology. As ISO 15926 is
not an OWL ontology, but rather a proprietary ontology language, it is more
difficult for people without enough experience to use ISO 15926. Templates
such as those in part 7 makes the job easier both of adding and gathering
data, as well as interfacing ISO 15926 with OWL.

As the people working on ISO 15926 has recognized the value in being able
to connect the ontology to OWL, more and more have been done in this
direction. It is possible to extract data from the ontology and convert it
to the OWL format automatically, and all the parts of ISO 15926-2 which
are currently in use have been formulated in OWL. However because of
the difference in foundation from the description logics in OWL, it is not
a proper representation of the knowledge in part2. For this reason there is
also being done work to create an ISO 15926 upper ontology based on OWL.

There are other parts as well, but they are not as relevant to this thesis.

2.1.4 Schlumberger Oilfield Glossary

The Schlumberger Oilfield Glossary® is an online repository of domain
knowledge in the oil and gas domain. This includes drilling as well as
production, and other subdomains. The focus will lie on the drilling part of

*http://www.glossary.oilfield.slb.com/
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the repository. It is quite extensive with over 3000 entries in total, of which
a substantial part is on drilling. Many of these entries describe various kinds
of equipment, and how they are fitted together. But there is also information
on processes and tasks performed on the drilling rig. Much of this, and the
most interesting for this thesis, is what happens downhole while drilling.
There are many entries which link to each other and describe the tools and
equipment used while drilling.

As an example from the glossary, the entry for logging while drilling
(LWD):

“The measurement of formation properties during the excavation of the hole,
or shortly thereafter, through the use of tools integrated into the bottomhole
assembly. LWD, while sometimes risky and expensive, has the advantage
of measuring properties of a formation before drilling fluids invade deeply.
Further, many wellbores prove to be difficult or even impossible to measure
with conventional wireline tools, especially highly deviated wells. In these
situations, the LWD measurement ensures that some measurement of the

subsurface is captured in the event that wireline operations are not possible.

We will in chapter 4 see how useful knowledge can be extracted from texts
like this.

2.1.5 AKSIO

AKSIO has already been discussed in the introduction, so this section will
simply reiterate some of the important points made there.

AKSIO was a collaborative project where the goal was to heighten the
quality of data/documents returned in searches and queries regarding
drilling/petroleum operations. For this purpose an ontology was created,
and the idea was that data/documents should be tagged with concepts from
the ontology, and then through the relations in the ontology concepts related
to the query-word would also be found. This project’s purpose was not a
finished product, but it was meant as a research effort and a prototype
to build upon later. The value in AKSIO lies mostly in the fact that the
ontology was created in collaboration with domain experts, so we will assume
that the information is good. The concept names defined are likely to be
the ones actually used in the domain of drilling, and this is important to
capture. The ontology is mostly just a concept-hierarchy with very few roles,
but the ones created provide some relational information.
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2.1.6 Domain experts

Domain experts are an important source of information in creating all
sorts of knowledge representation systems. There will always be unclarities
when trying to obtain knowledge from just reading documentation. Domain
experts are a valuable source of information that otherwise can be difficult
to acquire. Direct querying and questioning of these experts can give
understanding of the most difficult parts of the domain. They know their
domain better than anyone and are often the same people who will be using
the system/ontology, meaning that their input will directly influence the
systems they themselves will be using.

In the drilling domain, domain experts can give help to give the whole picture
of the operation, and explain largely in which order processes happen, and
what is dependant upon what. This is knowledge that often is poorly
represented in documentation, and having it explained by an experts and
being able to ask relevant questions is quite valuable. Having gained this
insight, the ontology developer should dig into as much of the other sources
as possible and get to know the details. After acquiring a certain level of
understanding and also finding out where the problems and difficulties are,
the domain experts prove a very important source for solving those problems.

2.2 Specific problem and solutions

While the gathering of the domain knowledge into a single document by itself
has value, applying this collection of knowledge to solving specific problems
makes the effort all the more worthwhile. One such specific problem, that
also was discussed at length in the introduction, is data extraction and
integration. While the knowledge itself does not enable data integration, it
does provide the foundation for either creating tools for data integration,
or for using existing tools. I will look at both of these ways in which data
integration can be achieved.

Common for both of the solutions is that they utilize ontologies as a
way of representing domain knowledge and connect the actual data to
these ontologies. Since the task of creating all the software necessary for
data integration is rather large as a single part of a master thesis, I will
mostly describe the way it can be achieved, but also provide some software
implementations that are useful as parts of a full integration. The actual
ontologies used are closely linked to the drilling ontology that is a central
part of this thesis. Chapter 4 will deal with the drilling ontology in detail,
and chapter 5 will present how this relates to the use cases described here.
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2.2.1 WITSML and DDR

The focus of this part of the thesis is on the conversion and integration
of WITSML and DDR data. As these solutions both rely heavily upon
ontologies, the details on these solutions and how they utilize ontologies will
be presented in chapter 5, after the ontologies and the technical aspects of
them have been presented in chapters 3 and 4.

Proprietary solution

An important part of data integration is the conversion of data into a single
format that is easy to work with when doing the actual integration. This
proprietary solution focuses on this aspect. It provides a generic way of
converting data from any XML format, thus including WITSML, to RDF
and OWL. This is done with the aim that the integration will be conducted
with OWL ontologies as an integral part and the data in RDF connected to
these ontologies. This is where the link to the drilling ontology will become
apparent. Here I also provide an implementation in Java of the converter.

QuOnto solution

QuOnto is an ontology representation and reasoning framework well suited
for data integration using ontologies in DL-Lite. In theory it can collect data
from any kind of data storage and integrate these, but there are not so many
actual implementations yet. The data is then connected to the ontology
using user-defined mappings. These are besides the ontology the most
important part of the process. The software that is using this framework
then simply has to query the ontology using a version of SPARQL extended
with SQL-like statements, and the data will be extracted on the correct
format and be associated with the correct ontology class. This can be done
for multiple data sources each with a unique mapping to the ontology. This
way data represented in various ways can be properly integrated.
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Chapter 3

Semantic technology

This chapter deals with the theoretical foundations used to express
ontologies, mostly concerning OWL. I will give an overview of the main
technologies relevant and then go into a little more detail. The second half
of this chapter will present emerging technologies based on OWL as well as
issues related to OWL that have significance for creating a drilling ontology,
but also other ontologies.

3.1 Overview over established technologies

The technologies that make the foundation of what is becoming mainstream
semantic technology are first and foremost RDF (Resource Description
Framework), OWL (Web Ontology Language) and SPARQL (SPARQL
Protocol and RDF Query Language). These three make up the most
important formalisms for working with semantic content, and their position
in the semantic web stack can be seen in figure 3.1. RDF is most known in its
XML serialized form, but there is no necessary link between the two. RDF
is conceptually a general directed graph structure, while XML is strictly
defined by its syntax which is in a tree-form. This RDF graph is built out
of triples with a Subject-Predicate-Object structure. RDF is as such a very
powerful representational formalism.

As powerful as RDF is, in itself it does not specify more concrete uses. It does
however provide the formal constructs to do this such that vocabularies with
RDF structure can be created. One of the most popular RDF vocabularies
is FOAF (friend of a friend) for describing people and their relations.
This vocabulary is as most RDF vocabularies simply a syntactic extension
upon RDF, and thus uses the semantic foundation of RDF without adding
anything. There are also formal vocabularies on RDF which extend both
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Figure 3.1: This illustration shows one take on the semantic web stack.

syntax and semantics. RDFS and OWL are the most prominent of these.

RDFS (Resource Description Framework Schema) does not appear much in
this thesis, but it is worth mentioning to complete the picture. As the name
implies it was created to give RDF a meta-level in the form of a schema.
This is different from e.g. XML schema as RDFS also has a formal semantics
defined. This semantics provides subclass relations and other constructs
for creating a class/concept taxonomy. There are two main ways in which
the semantics for a taxonomy can be defined; intensional and extensional.
Simply put, in the extensional semantics classes are defined by the set of its
individual members. What this means is that in an extensional semantics,
two classes with exactly the same individual members are equivalent classes.
In an intensional semantics this is however not the case. Even with exactly
the same members, two classes cannot be inferred to be equal. In the case of
the formal RDF vocabularies, RDFS is intensional while OWL is extensional.

OWL!, the Web Ontology Language, was created as a formal vocabulary
over RDF for modelling full-fledged ontologies. While the difference from
RDFS has been established they both are similar in that they facilitate
taxonomies. As such the subclass relations (and some others) mean the
same. What differs is the interpretation of classes. Besides that, OWL is

The focus will be on the OWL variants based on description logics. OWL-FULL is
largely ignored
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Figure 3.2: This graph is an example of how RDF can be visualized.

a much larger formalism than RDFS, and can express way more complex
structures. This is thanks to the foundation of OWL which lies in description
logics[3]. Because of limitation to the first version of OWL, a second
version of OWL has reached the status of recommendation at W3C. This
OWL2 adds a number of important constructs, such as qualified number
restrictions, and a richer set of relational constructs.

3.2 Established technologies in further detail

3.2.1 RDF

RDF (Resource Description Framework) is a W3C recommendation intended
for describing data, or any kind of computerized representation of resources
in general. All RDF statements are triples on the form Subject-Predicate-
Object, e.g.

Lars livesIn Norway

Here Lars is the subject, livesIn is the predicate and Norway is the object.
Similar kinds of statements can be used to create a full interconnected
structure. In this manner RDF can be viewed as a graph, where the subjects
and objects are nodes, and the predicates are edges. An example graph from
W3C can be seen in figure 3.2.
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An important property of RDF is that it provides for identification of
resources based on URIs (Uniform Resource Identifier). These URIs
generalize the URLs used for identifying web pages. A significant difference
and limitation of URIs is that while URLs in a proper network uniquely
points to a single web page, URIs comes with no such guarantee. This
is because URIs have a much broader area of usage and is not tied to
any specific location. While the URL “http://www.larsdomain.no/Lars”
would point to a single web document in that specific location, the URI
“http://www.larsdomain.no/Lars” have no such universal single meaning.
It is simply a name that can anyone can use to describe any kind of
resource, regardless of what the text string implies. To alleviate this, it
is generally agreed that people use domains they control when creating
URISs for describing resources. This way I can assure a conceived universal
meaning for my URI “http://www.larsdomain.no/Lars” if I control the
domain “larsdomain.no”. Any further mention of unique URIs or identifiers
will refer to this perceived uniqueness established through agreement of use.

With this established, we can see that the triple above lacks domains to be
properly unique. Fortunately I have introduced the domain “larsdomain.no”
that I will use to provide uniqueness of my resources.

http://www.larsdomain.no/Lars http://www.larsdomain.no/livesIn
http://www.larsdomain.no/Norway

What I have done here is to make sure that all three parts of the statement
are unique, by identifying them with a (fictive) internet domain. Even
though I undoubtedly want to ensure that “Lars” is unique, this is not
actually the case with the two other. Both the predicate “livesIn” and the
object “Norway” should already have good existing RDF definitions. It is
much better then to use those existing resources instead of creating my own
“Norway”. This way I most likely expand my knowledge greatly, since a
resource like “Norway” should be included in many triples. Thus an even
better triple might look something like this :

http://www.larsdomain.no/Lars
http://wuw.personconcepts.com/livesIn
http://www.norway.no/Norway

Now I have altered the predicate and the object to reflect what could be
existing RDF resources. This is a great way of reusing other work and also
connecting your own RDF graph to a larger whole.

When creating RDF graphs with common domain names it is useful to
introduce namespaces as a way to save space and make the triples more
readable. A namespace defines and abbreviates a common prefix for the
items in a vocabulary and usually corresponds to the URI up to, but not
including, the local name. We can for instance define the namespace “myns”
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to mean “http://www.larsdomain.no/”. This way the first resource from
above can be written as “myns:Lars”. This is common when using RDF and
its derivatives such as OWL.

RDF also provides a set of built-in resources with a well-defined semantics.
An example of these is rdf:type, which can be used as a predicate to express
a object-memberOf-class kind of relationship. A complete overview of the
RDF semantics can be found at http://www.w3.org/TR/rdf-mt/.

RDF itself is an abstract resource representation framework, which can
utilize different serializations (file formats). The most common is XML,
but others such as n3? and Turtle® are also used. The same naturally
applies to OWL as well.

3.2.2 OWL

OWL is the Web Ontology Language, a W3C recommendation with the
purpose of providing a standardized ontology language. OWL initially had
three variant: OWL-LITE, OWL-DL and OWL-FULL*. The most useful
and interesting one is by far OWL-DL. It is based upon a description logic
with the designation SHOIN(D)[4]. Currently OWL version 2 with the
description logic SROIQ(D)[5] is becoming the new standard for representing
OWL ontologies. In addition to the complete OWL2 language, three
sublanguages of OWL2 called profiles are presented as ontology languages
aimed at more specific uses. These three are OWL2 RL, OWL2 QL> and
OWL2 RL. They are described further in section 3.4.5.

As was explained above, OWL is built upon RDF. OWL extends RDF as
a formal vocabulary which has a formally defined semantics, which is the
strength of OWL. Much more complex structures and relationships can be
expressed with a semantic foundation in OWL than with simply RDF. Per
definition everything in OWL is also proper RDF, but the simpler semantics
of RDF does not interpret the triples to the extent that OWL does. The
underlying description logics of OWL provides semantics that enables OWL
to be as expressive as it is. In logics we talk about axioms as the statements
that describe the relationships between classes and relations. Examples of
such axioms can be:
classA C classB

classA C drelationR.classB

*http://www.w3.org/Designlssues/Notation3.html

Shttp://www.w3.org/TeamSubmission/turtle/

YOWL-LITE is a less expressive fragment of OWL-DL and OWL-FULL is a much
more expressive language that is undecidable. OWL-LITE and OWL-FULL will not be
discussed any further in this thesis.

Sparticularly interesting since it uses DL-Lite as logic foundation
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The first axiom says that classA is a subclass of classB, while the second
axiom says that classA is the subclass of all things that have a relationR
relation to classB. This does not look like anything RDF triples can express
outright. To do that OWL provides for the syntactic link that connects
description logics and RDF. Generally a subsumption axiom is a more
complex structure than an RDF triple, and as such must be expressed using
several triples. The two axioms from above can be express as triples such
as this, grouped by the axiom they express:

classA rdf :type owl:Class
classB rdf :type owl:Class
classA owl:subClass classB

classA rdf :type owl:Class
classB rdf:type owl:Class
relationR rdf:type owl:0bjectProperty
classA owl:subClassOf anonymous1
anonymous1 rdf:type owl:Class
anonymousl owl:Restriction anonymous?2
anonymous2 rdf :type owl:Restriction
anonymous?2 owl:onProperty relationR
anonymous?2 owl:someValuesFrom classB

As we can see from the listing above, the number of triples can be quite
large for even a relatively simple axiom. Fortunately ontology building tools
do this job for us, so effort can go into actual creation of the ontology.

Since description logics build on a long tradition of logic theories and the
ability to reason efficiently upon these, OWL follows in the same fashion. As
a decidable fragment of first order logic®, this means that inconsistencies in
the ontology can be discovered automatically, and interesting consequences
that were either intended or unintended can be derived from ABox and TBox
reasoning.

Decidability is an important aspect when it comes to reasoning about
ontologies. OWL-DL has the nice property that it is decidable, meaning
that all consequences can be derived in finite time. This could however be
non-deterministic exponential time, so in worst case scenarios things might
not look as good after all. For this reason, many research groups are working
on smaller fragments of DL such that they retain as much expressivity as
possible while bringing reasoning down to polynomial time and below. The
OWL2 profiles relate to such fragments, and DL-Lite (not to be confused
with OWL-LITE) is the fragment that is used in the profile OWL2 QL. It

®Description Logic Handbook[6] section 1.7.2
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will be discussed further in section 3.3.1.

3.2.3 SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is the query
language W3C recommends for querying RDF graphs. It is a simple variable
substitution based query language, where triples are given and variables in
those triples are substituted with all possibilities found in the RDF graph.
It is also possible to restrict the results by constricting the values returned
in similar ways to SQL. A simple SPARQL example query:

SELECT “name 7age 7
WHERE 7person foaf:name 7name . 7person foaf:age 7age

The capitalized words are reserved keywords, the words with a preceding
? are variables, while the rest of the words such as foaf:name should be
occurring in the RDF graph. “foaf’ is here an existing RDF vocabulary
“friend of a friend” that models social relations.

SPARQL is a powerful tool for querying RDF data, but it gets a little more
complicated to use with OWL. As we have seen in the previous section
on OWL, many triples are often needed for expressing even simple axioms.
This means that at least when writing queries by hand, they quickly become
large and difficult to handle. If the computer automatically generates queries
based on simpler input, this should not be a problem however.

There is more to SPARQL than the simple example query from above.
Constructs for e.g. ordering and filtering also exist. The W3C specification
for SPARQL with more details on this can be found at http://wuw.w3.org/
TR/rdf-sparql-query/.

3.3 Emerging technologies

3.3.1 DL-Lite

When the purpose of our ontology is data integration and other cases that
handle large amounts of data, all of OWL/OWL2 might prove way too
expressive compared to what we actually need. That is, the expressiveness
also means that reasoning and query answering potentially become really
slow. OWL has NExpTime and OWL2 has 2NexpTime complexity in
consistency and satisfiability reasoning with regards to the TBox size[7, §],
and query answering is not even completely known. This would be very bad
if we are dealing with huge amounts of data, which often will be the case in
integration for oil and gas applications.

33


http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

3. SEMANTIC TECHNOLOGY

DL-Lite[1, 7] refers to a whole family of description logics, with the common
property that they all are “lighter” than the traditional DLs such as SHOIN
and SROIQ. It was developed just for the purpose of being able to guarantee
fast reasoning and query answering, while capturing some of the most
popular modeling formalisms, such as Entity-Relationship model and UML
class diagrams. In this family of DL-Lite logics, I will focus on some of
the ones that are the least expressive, and thus are contained in the better
end of complexity classes. This of course because the OWL2 profile “QL” is
based on one of these logics, furthermore the same is true for the ontology
framework QuOnto.

We will begin by describing the most expressive DL-Lite and restrict it until
we reach the ones we are after.

DL-Litel%,

This version of DL-Lite is the most expressive and its complexity in various
cases is too high for use in data integration. It has an ExpTime combined
complexity’, and coNP complexity in data complexity, where we have
instance checking and query answering®. I will not go into the details
of each complexity class relevant here, but simply establish their order of
complexity? of tractability and refer to [1] section 3.3 for more information.

ACP C LogSpace C NLogSpace C P C NP C ExpTime

The logic DL-Liteﬁﬁ{ has concepts C and roles R defined as follows:
R = PP,
B = 1|A;| > qR,
C ::= B|-C|C; 1 Cy,

where B is a basic concept, A is a concept name, P is a role name, and q is
a positive integer.

A DL—Lz'teZQO{)\{ TBox 7 is then a finite set of concept and role inclusions of
the form:
C1 E Gy,

Ri1C Ry

7[1] section 3.2. Combined complexity is the measure where the entire knowledge base
K is regarded as an input

8[1] section 3.2. Data complexity is the measure where the TBox is regarded to be
fixed, while the ABox is counted as input. Conversely TBox complexity is the measure
where the ABox is regarded to be fixed, while the TBox is counted as input.

9a small fraction of the complexity classes available
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and an ABox A is a finite set of assertions of the form:
Ag(ai),
—Ap(a:),
Py(a;,a4),
—Py(ai, a;)

Together these two form a DL—Liteﬁ"(}{ knowledge base K = (7,.A). Further
explanation and the semantic interpretation can be found in [1] section 2.1.

To start out with this logic and gain the fragments we are after we have to
restrict it along three axes: (i) the Boolean operators bool on concepts, (ii)
the number restrictions (N) and (iii) the role inclusions (R).

Restrictions on the inclusion axioms

If we restrict the concept inclusions of a DL—LiteZ%/O\{ TBox to:

Bl L B27

By £ =By,
_'Bl E B27
where B; are basic concepts, our TBox will be called a Krom TBox.

If we restrict the concept inclusions of a DL-Liteﬁﬁ{ TBox to:
My By, ©& B

our TBox will be called a Horn TBoz.

Finally, if we restrict the concept inclusions of a DL-Liteﬁ/;{ TBox to:

B C By,

By € =By,

our TBox will be called a core TBox. As By T —Bs is equivalent to
B By C 1, core TBoxes can be regarded as sitting in the intersection
of Krom and Horn TBoxes.

RN

The focus will from now on be on the fragments of DL-Litey,.
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Further restriction

We will now restrict further by limiting number restrictions and role

inclusions!?:

e The fragment of DL—LiteE)/,}é without number restrictions > ¢R, for

q > 2, but with role inclusions will be denoted by DL-Litek, .. Note
that this means we still have existential concepts dR.

e The fragment of DL-Lite®N without role inclusions, but with func-

core
tionality constraints and existential concepts IR denoted DL-LiteZ,..

What is interesting with these fragments that have just been described is
that DL-Lite . is the exact logic that is the basis for the OWL 2 QL
profile,; and the most expressive variant that can be used in QuOnto is the

combination of DL-Lite®,  and DL-Lite’, . which is called DL-Litey.

core core’

For all these three fragments the combined complexity of the satisfiability
problem is < NLogSpace, and the data complexity for query answering
is ACY. This particular property has great implications for how DL-Lite
relates to SQL. The common relational database system SQL also has a
query answering complexity of AC?. This means that DL-Lite can use a
relational database management system (RDBMS) to answer queries. Large
amounts of data that is interesting to integrate is stored in RDBMSs, so this
connection is quite valuable to have.

The people behind DL-Lite have created a whole framework named QuOnto
for developing and implementing ontologies in DL-Lite, and querying against
data from many SQL databases. This framework also facilitates data
integration. They even defined a query language based on both SQL and
SPARQL called SparSQL that tries to combine the best from both query
languages while still retaining the AC? complexity class. Using this SparSQL
query language, it is possible to query SQL data directly through mapping
to the ontology, while getting the reasoning capabilities of DL-Lite. This
means that a much richer set of results can be obtained than with just
normal SQL queries.

DL-Lite vs OWL2

DL-Lite is as stated a fragment of OWL2. This means that not all ontologies
in OWL2 can be expressed in DL-Lite without removing axioms. As a
general OWL2 ontology is more expressive than a general DL-Lite ontology,
linked to this expressiveness is also complexity. Because of this, an OWL2

10Note the there are other fragments with their specific restrictions that have not been
mentioned here.
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ontology will need much more resources for computing queries and reasoning
than a DL-Lite ontology. For an ontology handling large amounts of data,
it is clearly desirable to keep the complexity down so that each operation
on the data takes as little time as possible. DL-Lite is a suitable fragment
for such cases where the ontology is not so complex, but the amounts of
data are large. As previously stated, this is perfect for use cases on data
integration.

DL-Lite is created to be a simple subset of OWL2 that retains certain
properties while having much lower computational complexity than all of
OWL2. OWL2 has a complexity with regard to data size (ABox) of at least
coNP-Hard[9], and a combined TBox and ABox complexity of ExpTime-
hard or possibly even worse. It is the combination of constructs available
in OWL2 that yields this rather horrendous complexity. Most of these
constructs have typically large branching when doing inference on them.
Disjunction on the left hand side, and nominals in any form are examples
of constructs that in any case blow up the complexity exponentially. DL-
Lite then naturally cannot include constructs such as these, but also other
constructs have rather bad impacts on the complexity.

The following OWL constructs are the ones that are available in OWL 2
QL

e subclass axioms (SubClassOf)

e class expression equivalence (EquivalentClasses)

e class expression disjointness (DisjointClasses)

e inverse object properties (InverseObjectProperties)

e property inclusion (SubObjectPropertyOf not involving property
chains and SubDataPropertyOf)

e property equivalence (EquivalentObjectProperties and EquivalentDat-
aProperties)

e property domain (ObjectPropertyDomain and DataPropertyDomain)
e property range (ObjectPropertyRange and DataPropertyRange)

e disjoint properties (DisjointObjectProperties and DisjointDataProper-
ties)

e symmetric properties (SymmetricObjectProperty)
e reflexive properties (ReflexiveObjectProperty)

e irreflexive properties (IrreflexiveObjectProperty)

"1ist from W3C http://www.w3.org/TR/owl2-profiles/#0WL_2_QL
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e asymmetric properties (AsymmetricObjectProperty)

e assertions other than individual equality assertions and negative
property assertions (DifferentIndividuals, ClassAssertion, ObjectProp-
ertyAssertion, and DataPropertyAssertion)

And these are the ones that are in OWL2 but not in OWL 2 QL: (list from
W3C)

e existential quantification to a class expression or a data range
(ObjectSomeValuesFrom and DataSomeValuesFrom) in the subclass
position

o self-restriction (ObjectHasSelf)

e existential quantification to an individual or a literal (ObjectHasValue,
DataHasValue)

e enumeration of individuals and literals (ObjectOneOf, DataOneOf)

e universal quantification to a class expression or a data range
(ObjectAllValuesFrom, DataAllValuesFrom)

e cardinality restrictions (ObjectMaxCardinality, ObjectMinCardinal-
ity, ObjectExactCardinality, DataMaxCardinality, DataMinCardinal-
ity, DataExactCardinality)

e disjunction (ObjectUnionOf, DisjointUnion, and DataUnionOf)
e property inclusions (SubObjectPropertyOf) involving property chains

e functional and inverse-functional properties (FunctionalObjectProp-
erty, InverseFunctionalObjectProperty, and FunctionalDataProperty)

e transitive properties (TransitiveObjectProperty)
e keys (HasKey)
e individual equality assertions and negative property assertions

Compared to all of OWL2, this is clearly a limitation when it comes to
expressiveness. Some constructs such as qualified number restrictions and
disjunction would often be desirable to use. But there is a natural correlation
between expressiveness and complexity. High expressiveness means high
complexity and low complexity means low expressiveness (however note that
low expressiveness does not necessarily imply low complexity, and that high
complexity does not necessarily imply high expressiveness). So a trade-off
must be made in DL-Lite if we are to be able to use it as intended, handling
huge amounts of data (ABox instances). DL-Lite needs to have LogSpace
complexity with regards to data to be able to use easily against relational
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http:iAwww example. org/staffid/85740

hup Ihweww example.orgterms/address

http:/www.example. org.n’termsfcny hup Ihwww example. org/terms/postalCode
Bedford 01 730
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1501 Grant Avenue Massachusetts

Figure 3.3: This graph show how n-ary relations can be handled in RDF
and OWL.

databases. Several variants of DL-Lite retain this property, with DL-Lite_A
probably being the most interesting one.

3.4 OWL Challenges and limitations

While OWL is an expressive formalism, it has its limitations and there exist
fields that are currently researched. I will briefly present a few of these here.
Some that I stumbled upon while creating my ontologies will be explained
more in detail in later chapters.

3.4.1 n-ary Relations

OWL only supports binary relations natively, and in many cases this can be
a limitation. If we for instance want to create a structure for addresses and
connect this to whoever lives at the address, then an n-ary relation would
be a natural way to do this. We would then want a person in the relation
as well as the city, state, street, and so on.

This is however not possible because OWL, and the description logic
underneath it, only supports binary relations. For this problem reification is
one solution. This means that we create a class out of the relation and then
create instances of this class when using it in the A-Box. W3C has made an
illustration of just this, which is shown in figure ?7.

In this example of a reification, we have an address relation from a person
instance to an anonymous instance of some class that is the reified n-ary
relation. From that instance then is relations to each of the individual
components of the address: city, street, state and postalCode.
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This approach is most likely the best solution there is to the n-ary relation
problem, and also a good one when it is agreed upon and handled correctly.
One can for instance use some sort of macro that behind the scenes translates
the intended n-ary relation into a suitable OWL reification. This would
however mean there must be some kind of middleware between the ontology
and the application using it so that the meaning of the n-ary relation is
properly maintained.

As the limitation of binary relations are an integral part of description logics,
there seems to be no easy way to fix this at the core level. Solution such as
using reification might prove the only possibility.

3.4.2 Mereology; partOf relations

Mereology'? is the theory of parthood relations. It is an old philosophical
discipline, and has thus a long history behind it. Many considerations
has been made in a strict philosophical manner in this field, but from a
computer science and engineering point of view, the results are fewer. Now
as ontologies are gaining ground, these theories are finding concrete problems
to be utilized in. This means that much work is being done that deals with
computer-specific aspects. Efficiency, expressiveness and computability are
factors that have to be considered in this respect. I will try to shed some
light on this.

Properly representing such a part of relational hierarchy is something that
can be potentially a large task. It can either be done very simple without
much consideration on specialized use, or it can be made with many relations
that are only to be used with certain classes. This approach would require
much work, but might be worth it in a very expressive ontology. Below I
present a few alternatives for creating a part of hierarchy, using the drilling
domain to illustrate the possibilities and differences.

The four alternatives presented are:

1. large relational hierarchy with basically a distinct partOf relation for
each use

2. a single (or few) partOf relation where the difference are made
apparent through the classes

3. smart relational hierarchy based on theories in mereology

4. a single partOf relation where no distinction of use is made

?http://plato.stanford.edu/entries/mereology/
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Alternative 1

Many subrelations of a “partOf’ relation (structuralPartOf, functional-
PartOf, ...) that through the relations give additional meaning to the partOf
relation. Instead of using a single partOf relation for everything that is part
of something else, several subrelations of partOf is added. This can be ben-
eficial in that it will be easy to distinguish between different kind of partOf
relations, and grouping them together.

The approach in this alternative has a high level of granularity with regards
to partOf relations and class membership. This can best be illustrated
through an example:

We have a class BottomholeAssembly, which is subclass of the following
classes:

TubularSection

hasBHAComponent some BHAComponent
hasDrillBit exactly 1 DrillBit
hasDrillCollar some DrillCollar

To put it more verbosely, a BottomHoleAssembly is subclass of the
conjunction of: everything that is a TubularSection, everything that has
a BHAComponent, everything that has exactly 1 DrillBit, and everything
that has a DrillCollar.

The relation hierarchy of interest here is:

hasPart
hasPhysicalPart
hasStructuralPart
hasTubularComponent
hasBHAComponent
hasDrillBit
hasDrillCollar

and the class hierarchy of interest here is:

TubularComponent
BHAComponent
DrillBit

DrillCollar

meaning that each class has its own unique relation. While there are
advantages to this approach, as described above, there are also problems. If
we now create instances of each class in the BottomholeAssembly restriction,
and define the instances of the same classes to be different from each other
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13 we see that our BottomholeAssembly instance must have the following:
e at least one harBHAComponent-relation to a BHAComponent
instance,

e exactly one hasDrillBit-relation to a DrillBit instance,
e at least one hasDrillCollar-relation to a DrillCollar instance.

The problem with this approach is that if we make two DrillBit instances,
and connect one through the hasDrillBit relation and the other through the
hasBHAComponent relation, we will not have any inconsistency even though
we would want (possibly expect) that to happen, as we have stated that we
only want a relation to one DrillBit instance. The problem is of course that
we have explicitly stated that we want one hasDrillBit relation to a DrillBit,
and that does not exclude the possibility of several hasBHAComponent
relations to other DrillBits.

This will however always be the case when using subrelations, so that
defining the axioms using hasStructuralPart still makes it possible to add
many instances using the superrelation hasPhysicalPart (and hasPart). It
may indeed seem like using subrelations is risky business when it comes to
reasoning, if the relations aren’t used exactly as intended. Of course, since
hasDrillBit is a subrelation of hasStructuralPart there are no problems using
hasDrillBit even if the axiom is using hasStructuralPart.

One might wonder if it even is necessary to have such a high level of
granularity in subrelations. As the axiom filler classes themselves are single
classes, having single relations that are only used for those classes might
essentially be to express the same thing twice. This might point in the
direction that a single partOf relation without a hierarchy is good enough.

To use another example from a different domain. Consider food represented
by a class “Food”, and two relations “like” and “love”. We make the
assumption that “love” is a subrelation of “like”, since it sounds reasonable
that, everything that we love we also like. We may now set out to express
a number of arbitrary axioms about a “Person” class where we express
“Person”’s feelings toward “Food”. Assume we have an axiom stating that
“Person” can only love one Food, and possible other axioms. An ABox
assertion stating that “Peter loves bananas” then will surely mean that we
cannot also have an assertion “Peter loves apples”. However, it is quite
possible to say that “Peter likes apples”. There is nothing odd about this at
all, but it shows in a simpler way the difficulties in the previous example.

13The absence of the unique name assumption in DL makes it necessary to explicitly
state that two instances actually aren’t the same thing.
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Alternative 2

The second alternative is to put some restriction on the class that is the
whole to give an implication of what kind of part-whole relationship is
relevant for the class. Then use an elementary partOf relation from the
parts to the whole. Any meaning that implies structural part or functional
part and such should then appear through the restrictions on the whole. To
illustrate using an example:

x part0f CirculationSystem

Since CirculationSystem is in this case thought to be a class that expresses
not one single physical entity but is an abstraction where its parts share
common properties, it thus has no structural parts. Any parts must then
be of other kinds. To express that it has e.g. functional parts we might
make it subclass of a FunctionalSystem, and then separate this from actual
physical objects such that the use of partOf in this case is clearly different
from something like “Engine partOf Car”.

Alternative 3

Do something like what is described this Cognitive Science Journal
article[10]. Here is described a more general view that is meant as a top-
level partOf-hierarchy. They describe a separation into 6 different kinds of
partOf / Whole relationships with examples:

Component / Integral Object - handle / cup
Member / Collection - tree / forest
Portion / Mass - slice / pie

Stuff / Object - steel / bike
Feature / Activity - paying / shopping
Place / Area - oasis / desert

This means that there will be several different partOf relationships. This
may make it more correct with regards to reality, but will complicate things
a great deal for the people using the ontology. Which relation to use may
not always be obvious, and there might be cases when none really fits. This
could be cleverly masked though, so that it will appear simple to the user
which relation to choose in any case.

However as this is a sort of partitioning of partOf membership that is suited
for top-level ontologies, it should not be something that every creator of
ontologies must deal with. A much more likely scenario is that when an
ontology designer connects an ontology to a top-level ontology, the lower-
level partOf relations should be linked to the relevant top-level partOf
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relation. This speaks in the favor of multiple partOf relations, since if just
one partOf relation is used there would arise complications when connecting
to a top-level ontology with partOf relations such as the ones described here.

Other similar descriptions of mereology exist, such as the Stanford
encyclopedia of philosophy http://plato.stanford.edu/entries/mereology/

Alternative 4

The last alternative is not to make any distinction between different kinds
of partOf relations at all. This would be a very simple approach with a
single partOf relation. Its strength is obviously the simplicity and ease of
having fewer relations to worry about. Whenever a part-whole relationship is
needed, this single relation would provide that. In ontologies that describe
very limited domains with similar kinds of classes, this kind of approach
may suffice. Especially in cases where the ontology is to be linked to a
top-level ontology as described in the previous section, the simplicity of the
ontology could either be a positive or a negative thing. A small limited
domain ontology where most part-whole relationships are of similar type
would be easy to align with a top-level ontology using a more complex partOf
hierarchy. A large domain ontology that uses a single partOf relation for
many kinds of part-whole relationships would however require many changes
to align it with a top-level ontology.

These considerations should be able to serve as a guideline to when a single
partOf relation is enough.

Which one to use when

The question of which of these approaches (or even different ones) are
best to use in an ontology, is not easy to answer. From what I can
gather at this time, the purpose and the level of general granularity of the
ontology being constructed dictates which of these alternatives is best to
use. There do exist some guidelines for how this should be conducted,
such as the W3C article on this that contains some good pointers, http:
//www.w3.0rg/2001/sw/BestPractices/0EP/SimplePartWhole/. But still this
problem requires further inquiry to create a methodology for choosing the
best variant in each case.

In the drilling ontology, which will be described in the next chapter, I have
opted to a combination of the first and second alternatives. This both
since I have been unsure of which one to choose, but also to test reasoning
capabilities and get a feel for the differences.
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3.4.3 Multiple path problem

The problem with multiple paths is one that is well-known among researchers
that know OWL, but not so much among people who are little by little trying
to use OWL in commercial applications. In many cases their ontologies
might of such a simple nature it won’t be a problem anyway. But the
problem exists and appears quickly in more complex ontologies. That being
said, it is easy enough to make tiny ontology where this problem arises.

What I here mean by path is a set of TBox axioms linking classes together
in some way through relations. An example of this could be:

Person C JworksFor.Company

Company C Jowns. Equipment

With these two axioms there is a conceptual path from Person to Company
to Equipment. This by itself poses no problems. Now add a third axiom:

Person C JworksOn.Equipment

This axiom creates a different conceptual path from Person to Equipment.
Judging from the way both these paths connect Person with Equipment,
it would seem fair that if something were to happen with the equipment
the company owns, then this would mean that something happens with the
equipment the person works on. If we now add an axiom that says that “A
poor company has only broken equipment”:

Company M PoorCompany C Yowns.BrokenEquipment

we would expect that the equipment the person is working on is also broken
equipment, as expressed in the axiom:

PersonM3worksFor.(CompanyPoorCompany) C JworksOn.Broken Equipment

This is however not the case. The reason for this lies in the tree model
property of OWL, which says that if an OWL ontology has a model, then it
has a model with a tree-like relational structure as well [11]. This means that
even though there exist a model for the ontology where the person works
on broken equipment, there also exist a model where the person works on
good equipment. And since reasoning is only able to derive what is true for
all models, there is no way that the last axiom can be derived. What this
implies is that even though we can describe arbitrary relational structures
in OWL, we are only able to reason on a “tree-like subset” of the ontology.
A graphical representation of the example is shown in figure 3.4.

There is no easy solution to this problem, but [11] proposes an extension to
OWL called structured objects that deals with the problem in a nice way.
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Person

Poor
Company

worksOn

< -

Broken
Equipment

Figure 3.4: This graph illustrates the example of multiple paths. The figure
on the left shows the state of the three first axioms. The figure
on the left shows the state we get when the new axiom is added.

Equipment |-

It basically proposes to create arbitrary graph structures within the TBox
of the ontology in a way such that they are separated from the rest of the
ontology. They can then have SWRL-like rules work on them to fix the
problem illustrated here without sacrificing decidability.

3.4.4 Consequences that cannot be expressed directly

There are certain consequences through reasoning that cannot be properly
expressed in OWL as it is currently. This limitation has close ties to the
reason for the multiple path problem previously described. Below I will
describe two such limitations expressed in a traditional way similar to first
order rules. The lack of variables in OWL is again what makes this problem
appear. We thus cannot capture ABox-consequences such as:

Person(x) and Woman(y) and hasSibling(x,y) -> hasSister(x,y)
Or such as:

Tubular(x) and TubularComponent(y) and hasPart(x,y) ->
hasTubularComponent (x,y)

In the first example here, it is natural for us humans to immediately
understand that a sibling that is a woman must be a sister. The second
example is equivalent to the first, only it uses names from the drilling
ontology. It is desirable to be able to express this in ontologies as well.
But this is not possible to do directly without utilizing tricks which make
things more complicated that necessary.

What we want to be able to do is to axiomatize in the TBox the example
from above, such that when a person has a sibling that is a woman, the
axiom will tell us that the woman is the sister of the person.
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This can be solved by the following:

1. Composition
hasSister = hasSibling o womanID*
woman® is here the diagonal of the class Woman, which is the same
as the identity function of the class. The significance of this is further
described below. This is the best solution currently available if we
want to restrict ourselves to OWL only. It makes things complicated
though, and reasoning on compositions is not possible in DL-Lite.

2. Use a rule language such as SWRL for such consequences instead of
adding anything to OWL. This has its advantages and disadvantages.
It saves us from adding unnecessary complexity to the ontology, but
it makes us rely on a formalism outside of OWL that in many cases is
not decidable.

3. Adding construct to OWL that reflects the composition above.

I will focus on the first possible solution to the problem and outline it
a little further. OWL2 has added among other things the possibility to
use compositions of relations, which means that this kind of solution is
in principle possible. Logically what this means is if we have two binary
relations R C X x Y and S CY x Z then the composition R o S is defined
as

RoS={(x,2) e X xZ:(z,y) € RN (y,2) € S}

In the example from above R is hasSibling and S is womanlID. In the case of
womanlD it is a diagonal relation, meaning that the domain and the range of
the relation are equal (womanID C Y x Y'), then we extract the diagonal 14
from this cross product of the set shared by the domain and the range. This
sort, of relation is not by default supported by OWL, so a proof is needed to
make sure it can be used without any problems.

Diagonal of a set

Problem description: To define the diagonal A% = {(a,a) : a € A} of a
set A.

Axioms We introduce a primitive relation dA and axiomatize it as follows:

4the identity such that the set of the diagonal is equal to {(y,v) :y € Y}
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AdA.TC A (Domain of dA is upper-bounded by A)
(3.1)
AC3dA.T (Domain of dA is lower-bounded by A) (3.2)
TC<1dA. T Functionality of dA (3.3)
IdA. T T 3dA.Self Reflexivity (3.4)

Proof of correctness Let A be a concept name. We show that (a,a) €
(AT)A = dA? for all interpretations Z of the axioms.

LHS C RHS: Suppose (a,a) € LHS. Then a € A%, whence a € (3dA.T)*
by axiom 2. Hence a € (3dA.Self)* by axiom 4. It follows by the definition
of 3R.Self (where R is any relation), that (a,a) € dAZ, which is what we
wished to show.

RHS C LHS: Suppose (a,b) € dA%. It suffices to show that a € AT
and that a = b. It follows from the assumption and the semantics of
existential restrictions that a € (3dA.T)f. Hence, we have a € AT, by
axiom 1. It remains to show that a = b. Since a € (IdA.T)? we have that
a € (3dA.Self)*, by axiom 4. Hence (a,a) € dAZ. Now, (a,b) € dAT too,
whence, since dA is functional by axiom 3, it follows that a = b as desired.

O

Once this proof is settled, we need to make sure that this composition in
OWL actually yields the consequences we are after. By the definition of
composition the hasSister will now be the composition of hasSibling and
womanlID, but it is also interesting to see that when actually used in an
ontology, reasoning gives us the results we want. What we want to show is
that when a Person that has a sibling which is a Man, this sibling is actually
inferred to be a brother, and likewise with Woman and sister. To show this,
we establish the following class hierarchy:

Person
Woman
Man

then we establish these relations:

dMan
dWoman
hasSibling
hasBrother
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hasSister

where dMan and dWoman are the diagonals of Man and Woman. The
relaions hasBrother and hasSister must have defined the crucial compositions
that are what make this work. For hasBrother this composition (also called
property chain) is

hasSibling o dMan -> hasBrother
and for hasSister it is:
hasSibling o dWoman -> hasSister

What remains now is the proper axiomatization of the diagonals. In the
OWL files http://heim.ifi.uio.no/larsove/ontology/siblingsister2.owl
and http://heim.ifi.uio.no/larsove/ontology/siblingsister.owl are two
attempts at this. In the first file I tried to axiomatize the diagonal completely
in the RBox (all the axioms restrict the dMan and dWoman relations
directly) by using the Functional and Reflexive RBox constructs. This
did not work properly however, as the reasoner inferred that dMan and
dWomen were equivalent relations. The reason for this is that Reflexivity
and Functionality are interpreted as properties on all individuals in the
domain, and not just the individuals of Man and Woman.

To deal with this problem I made the second version where the diagonal
relations are axiomatized in their respective class instead. This version
functions flawlessly and a Person having a sibling which is a Man is inferred
to have a brother; likewise with Woman and sister.

Aside from the extra axioms that increase the size of the ontology, there is
a slight problem. In the relation hierarchy it would be nice if we could
have hasBrother and hasSister as sub-relations of hasSibling. But this
is unfortunately not possible. Since the compositions in hasBrother and
hasSister include the hasSibling relation, we cannot at the same time have
the relations be sub-relations of hasSibling.

A similar problem where composition can be utilized

Also, we have a related case where compositions can be used as a solution.
We again have an ABox-consequence that cannot be captured:
Person(x) and hasFather(x,y) and hasBrother(y,z) -> hasUncle(x,z)

To express this we can create the composition:

hasFather(x,y) o hasBrother(y,z) -> hasUncle(x,z)
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This will work nicely (http://heim.ifi.uio.no/larsove/ontology/uncle.
owl), but there are problems concerning this. We would want the relation
hasUncle to be irreflexive and asymmetric to avoid cases where a person is
uncle to himself, and person x is uncle to person z while at the same time
person z is uncle to person x. Unfortunately the OWL2 RBox constructs
for irreflexivity and asymmetricity cannot be used when the hasUncle
relation is defined by a composition.

3.4.5 Scalability and sublanguages

One thing that needs to be considered when creating an ontology, is how
scalable it needs to be. For this we must obviously know something about
what its intended use is. An ontology that will handle huge amounts of
ABox data will require other properties than an ontology that is mostly
going to be used solely as a TBox terminology.

Before OWL2, there were not much in the way of standardizing simpler
fragments of OWL, but still a lot of research and development were done
to create less complex ontology languages for more specific purposes. Most
of these focus on reducing the expressivity of OWL to be able to handle
large amounts of data more efficiently. When using the constructs OWL
provide, it is fairly simple to create an ontology that scales horribly both
with regards to the size of the TBox and the size of the ABox. For example,
when computing concept satisfiability a complexity class of ExpTime and

even worse can be obtained simply by the use of disjunctions'®.

To cope with these problems, W3C adds with the standardization of OWL2
also three “profiles” (ref http://www.w3.org/TR/owl2-profiles/), which are
such fragments of OWL2 aimed at particular uses. These three are together
with their main properties:

OWL 2 EL

Quote from http://www.w3.org/TR/owl2-profiles/

OWL 2 EL is particularly useful in applications employing
ontologies that contain very large numbers of properties and/or
classes. This profile captures the expressive power used by many
such ontologies and is a subset of OWL 2 for which the basic
reasoning problems can be performed in time that is polynomial
with respect to the size of the ontology [EL++] (see Section 5
for more information on computational complexity). Dedicated

15[12] section 5
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reasoning algorithms for this profile are available and have been
demonstrated to be implementable in a highly scalable way.
The EL acronym reflects the profile’s basis in the EL family of
description logics [EL++], logics that provide only Existential
quantification.

OWL 2 QL

Quote from http://www.w3.org/TR/owl2-profiles/

OWL 2 QL is aimed at applications that use very large volumes
of instance data, and where query answering is the most
important reasoning task. In OWL 2 QL, conjunctive query
answering can be implemented using conventional relational
database systems. Using a suitable reasoning technique, sound
and complete conjunctive query answering can be performed in
LOGSPACE with respect to the size of the data (assertions).
As in OWL 2 EL, polynomial time algorithms can be used
to implement the ontology consistency and class expression
subsumption reasoning problems. The expressive power of the
profile is necessarily quite limited, although it does include most
of the main features of conceptual models such as UML class
diagrams and ER diagrams. The QL acronym reflects the fact
that query answering in this profile can be implemented by
rewriting queries into a standard relational Query Language.

OWL 2 QL the OWL2 profile that is based on DL-Lite, so this is
relevant for the thesis.

OWL 2 RL

Quote from http://www.w3.org/TR/owl2-profiles/

OWL 2 RL is aimed at applications that require scalable
reasoning without sacrificing too much expressive power. It is
designed to accommodate OWL 2 applications that can trade
the full expressivity of the language for efficiency, as well as
RDF(S) applications that need some added expressivity. OWL
2 RL reasoning systems can be implemented using rule-based
reasoning engines. The ontology consistency, class expression
satisfiability, class expression subsumption, instance checking,
and conjunctive query answering problems can be solved in time
that is polynomial with respect to the size of the ontology. The
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RL acronym reflects the fact that reasoning in this profile can
be implemented using a standard Rule Language.

3.4.6 Modularity

As ontologies grow larger and larger, it might not be desirable to keep
everything in one monolithic ontology, but rather to split it up into several
smaller modules. This could either be a static configuration, or perhaps even
dynamic modules that are extracted based on which part of the ontology we
are interested in at a given time. When we create an ontology from scratch, it
might also be prudent to start modularizing immediately to avoid extensive
work later. In many cases there will also be existing ontologies we would
want to import into our own and use parts of. For all these cases a good
theory must lie behind that ensures that there will be no problems with
this modularization. [13] establishes a theory behind modularization and
presents a relatively simple approximation that extract modules which are
close to the optimal solution; the module that consists of exactly what we
need and nothing else. This article bases much of its results on the concepts
established and described in [14]. As the details of this theory are somewhat
extensive, I will not tackle them in this thesis.

I will however approach modularity from a higher perspective and look at
how it might be relevant for the construction of a drilling ontology. A few
examples of modularization use that might be appropriate in different cases:

e split up existing ontology into static parts
e split up existing ontology dynamically on request

e create ontologies from scratch that together describe a particular
domain

e importing ontologies other people have created

As will be seen in the next chapter, what I have eventually chosen to do
with the Drilling Ontology is to split it up to accomodate various uses while
retaining a common core set of axioms.
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Chapter 4

Creating the drilling
ontology

In this chapter I will present how the sources of domain knowledge influenced
the creation of the drilling ontology. Then I will describe in part the process
of building the ontology. This section involves both the concretization
of drilling domain knowledge, as well as some considerations in ontology
engineering. Finally I will present parts of the drilling ontology itself.

4.1 Source contributions

In chapter 2 the most important sources for domain knowledge were
presented one at a time. Now the focus will be on combining these sources
and how to extract relevant knowledge to create a drilling ontology. I will
first go through each of the sources and describe how they influenced the
creation of the ontology. Some sources has affected specific parts of the
ontology, while others have been more about the overall picture. This will
be somewhat elaborated later in this chapter. Then I will present how the
knowledge gained from each of the sources affected each other and lead to
the drilling ontology. It is worth noticing that the ontology is by no means a
finished product yet, and other considerations especially by domain experts
may lead to different drilling ontologies in the future.

4.1.1 WITSML
WITSML (wellsite information transfer standard markup language) is an

important standard when it comes to transferring drilling data between
various facilities onshore and offshore. As such it naturally contains much
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low-level information such as data from measurements and how to properly
represent and identify these. This provides a good foundation to building
the parts of the ontology that deals specifically with low-level data'. This
is clearly the sort of data that often need to be integrated. Enabling the
ontology to deal with this kind of data is therefore paramount to its success
in data integration.

However, in a more general-purpose drilling ontology describing only low-
level data by itself will not suffice. There is in any domain high-level
knowledge? as well. And properly connecting the high-level concepts with
low-level data is important for the entirety of the drilling ontology. I
therefore also want to check if there is any such high-level knowledge
in WITSML; meaning I want not only to extract the data values from
measurements, but also how and by what machinery these were measured,
and how they relate to other parts of the ontology. For this purpose the XML
schemas where the standard is defined is what needs to be closer examined.

There are 24 schemas which are defined as the top level, meaning that the
actual document files are created in adherence to these 24 schemas. The
rest of the schemas are included by other ones and participates in creating
a hierarchy of complex XML datatypes which has elements that in turn
have other datatypes and so on until the lower levels that consist of simple
datatypes. This hierarchy of schema files the defines the many datatypes
in use is a valuable resource for an ontology that is to be able to handle
WITSML data. The simplest part to start with is the definitions of these
datatypes starting from the lower levels. For actual measurement data the
schema files define relatively simple types such as string and numbers at
the bottom and elaborate upon them creating complex datatypes that have
both a value and a denominator. This datatype is then used in a particular
place in a schema file3.

An example of this among many is obj_cementJob which has an element
mdHole that has type measuredDepthCoord. This type in turn is a
complex type consisting of a value content with type abstractMeasure and
denominator which is the unit of measure MeasuredDepthUom. This
unit of measure is an enumerated data type with the possible value m,

Low-level data means most information that can be expressed easily using common
numerical and textual datatypes and which are largely atomic in that they cannot be
subdivided. It mostly refers to numerical measurements/calculations and simple strings.

2High-level knowledge is in contrast to low-level data information about relations
between concepts that can either be physical or abstract entities. Not to be confused
with upper ontology!

3An important consideration to make here is that even though everything in XSD
are defined as datatypes, we want to make a distinction between types that describe
measurement data and types that describe the documents which contains these data.
Unfortunately this distinction is non-existent in WITSML
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ft, ftUS. The type abstractMeasure is created as a common type for
all types that have some unit of measure, and the value is defined to be
abstractDouble which in turn is defined as the XSD double where the
empty value is disallowed.

As is apparent from this example, the type hierarchy in WITSML is complex
and very many similar cases like this exist. Apart from the datatypes of the
measured values themselves, enumerated datatypes also are an important
part. Not only in the definition of units of measure as seen in the example,
but also many other kinds such as types of material, types of tubular
components and type of risk subcategory. All of these will have to be
represented in the ontology for it to handle all of WITSML properly.

High-level

When it comes to high-level knowledge WITSML is not nearly as rich as
when it comes to low-level data. Since WITSML is built upon XML it
per definition describes a format for a specific document structure with
content. As such it does not distinguish between low-level data and high-
level descriptions. Since everything in XML schema are datatypes there is
no conceptual difference between any low and high level of knowledge. But
for an ontology this is a much more interesting question. What we then
need to do is try to extract knowledge about what the documents describe
implicitly. There are two distinct cases of higher-level knowledge I have been
able to extract; one related to physical structures and components, and one
related to a process<->object distinction.

Physical structures and components

There are several references to physical structures and components in
WITSML. This is the kind of information that will help put the
measurement data in a broader context. For instance the manner of how
drillstrings/tubulars are composed is extensively described. This is done
through large sets of enumerations of different types of components, which
are in turn used in complex datatypes to create a representation of a partOf
relationship. To illustrate what such a partOf hierarchy can look like:

Tubularil
TubularComponentl.1
Jarl.1.1
Connectionl.1.2
TubularComponentl.2
Connectionl.2.1
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This just shows how each entity is part of a larger whole. All of them
of course many other attributes as well. The various type of tubular
components are listed in an enumeration, and each tubular component
element has to specify what type it is. This differs from the parts that
a tubular component in turn can have. In the example above Jar and
Connection are already “atomic” entities in that they have no further
specialization in the form of a type. A few differences in representation like
this exist in WITSML, and will have to be handled properly when creating
the ontology. Also, there unfortunately is no information in WITSML
that indicates what kind of parts a certain kind of tubular component has.
Meaning that the person or computer that creates a WITSML document
receives little feedback on what is allowed and not.

Process-Object distinction

Some of the 24 schemas describe objects at a certain time x, while other
describe processes lasting from time x to time y. Thus there is a distinction
here that should be made, but this is not clearly stated in any way in the
WITSML standard*. From observing in which fashion each document uses
elements with the type timeStamp, I have come up with the following
grouping of documents:

Object
fluidsReport
log
message
mudLog
opsReport
realtime
rig
surveyProgram
trajectoryStation
wbGeometry
well
wellbore
welllLog

Process
bhaRun
cementJob
convCore
risk

4as far as I have been able to find out

56



4.1. SOURCE CONTRIBUTIONS

sidewallCore
trajectory

Neither
dtsInstalledSystem
dtsMeasurement
formationMarker
target
tubular

Note that the documents that ended up in “Neither” often also have some
associated time, but this does not mean they necessarily describe processes
or objects. Many of them are simply aggregations of data values that relates
to some other document which in turn have a proper reference point in time.
The same is true for many of the documents put in “Object”, however they
themselves have a fixed time reference so they are at least initially put among
objects. All the documents grouped under “Process” have defined clearly a
start time and end time.

The grouping done above only reflects how the documents deal with time,
which in itself is a difficult thing to handle in ontologies, but there are other
aspects to what constitutes an object and a process as well. The section
above concerning physical structures will have relevant to what constitutes
a proper object in an ontological sense. In the case of documents such as log,
message and mudLog they do not describe any objects which exist outside
of the documents themselves. They are simply collections of measurement
data gathered at a certain time. In contrast, things like tubular and well
are clearly physical objects, yet the documents do not provide a time value
for them. When considering this, it is clearly necessary to create a more
detailed grouping of the document.

PhysicalObject
rig
trajectoryx*
tubular
wbGeometry*
well
wellbore

AggrevativeQObject
fluidsReport
log
message
mudLog
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opsReport
realtime
surveryProgram
trajectoryStation
wbGeometry*
welllLog

Process
bhaRun
cementJob
convCore
risk
sidewallCore
trajectoryx*

Neither
dtsInstalledSystem
dtsMeasurement
formationMarker
target

* is explained below

Even though the grouping above expresses what the documents describe in
a better way, that does not mean the ontology can be created on the basis
of this alone. Some of the documents can be interpreted in ways that are
not specified clearly in WITSML, but can nonetheless be correct ways of
viewing them. For instance the wbGeometry document describes physical
casings that are placed inside wellbores to protect them from collapse, but
from the criteria concerning the use of time and data that are examined
here they fit just as well among aggregative objects. Another such case
is trajectory, which from the WITSML documents is described as having
measurements starting and stopping at certain points in time. A bit of
insight into the domain would however indicate that a trajectory is not a
process but an object/entity describing in this case the path which drilling
follow. Ambiguities like this cannot be solved simply by examining the
documents, but is dependant upon WITSML and domain experts.

Continuing on the topic of distinguishing objects from processes, I will
present an example from WITSML that illustrates both the difference
between the two, and also some interconnectiveness between documents.
Many of the document types must refer to which well and which wellbore
they belong to, these wells and wellbores being defined in some other
document. But other than this, documents of a certain schema are mostly
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independent from the rest. If we now have a well, a wellbore, a tubular
and a bhaRun, the schema files defines how these must refer to each other.

e The well is on the top in that it has no references to other documents.
e The wellbore must refer to a well

e The tubular must refer to both a well and a wellbore

e The bhaRun must refer to one of each of the above.

This is interesting because it shows a relationship between physical objects
and a process. Such relationships are valuable for an ontology that is going
to describe the domain on both a low and a high level. Unfortunately there
are not many other similar relational structures in WITSML.

Connecting the low and high level

So in what way does the measurement data and other low-level information
relate to the considerations made concerning what the documents describe?
In the example above we can see that there is at least some references
between documents. But there is not nearly enough to create an expressive
ontology. This means that linking low-level data vertically to the entities
above it will be fairly easy, but connecting data from different documents
that may be related is going to be more difficult. There are often references
to well and wellbore, and in the case above from bhaRun to tubular. But
that is basically all there is, and how the data from the various documents
relate is not handled at all. This small amount of interdependence between
documents is one of the weaknesses in WITSML, which is largely felt when
querying databases of WITSML data. It implies that information about
connections between data from different documents will have to be gathered
elsewhere.

Summing up

To sum up, what WITSML provides is an extensive set of low-level data
descriptions. This is done through hierarchy of datatypes to describe all
the various kinds of measurements, as well as enumerations on types of
components, states, denotations and so on. It then gives these types some
context by linking them to element values in the many documents types
that WITSML defines. The strength of WITSML lies clearly in the low-
level data. There are links between these data and higher-level abstractions
as well, but WITSML does not distinguish between any low and high level
of representation, since in the XSD formalism used to define WITSML
everything is defined as either simple or complex datatypes. Also between
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the entities of high-level information there are implied very few relations.
There is for instance nothing that restricts what data elements a tubular
component must have with regards to the type of the component.

WITSML offers much when it comes to data representation, which is an
important part of integration, but other sources will have to provide the
bulk of the higher-level relationships.

4.1.2 ISO 15926

The POSC Caesar life-cycle ontology standardized in ISO 15926 is being
more and more actively used in the gas and oil business. This makes it
interesting to see what it might contain concerning drilling.

ISO 15926 is a huge structure with thousands of classes, and is as such
difficult to navigate through. Finding relevant knowledge about drilling have
proven difficult, either because it is not there or because it is represented
in non-obvious ways. One of the things that it does contain, is much
information from WITSML. This will be more closely examined in the next
section.

As for any relevant information in ISO 15926 not from WITSML, there seems
to be many concepts that relate to oil drilling. The problem when it comes
to ontologies, is that the many concepts that are interesting are not related
to each other. They are just placed into the general ISO 15926 hierarchy,
e.g. saying that “well casing” is subclass of “lining” and has classification
“mechanical equipment class”. We would like to have some information
regarding how “well casing” relates to other classes, but no such information
is provided. When it comes to domain knowledge ISO 15926 has something
to offer when it comes to the subclass hierarchy, but not much else as of yet.

Another aspect where ISO 15926 has more to offer is as an higher or upper
ontology. Connecting the concepts in the drilling ontology to the ISO 15926
part2 as a higher/upper ontology is beneficial if it is to be compatible with
all the knowledge outside of the drilling domain that ISO 15926 contains.
Also, as application based on ISO 15926 are created, compliance with part2
assures that the drilling ontology is in some way compatible with these
applications. However the formalism used to express the ISO 15926 part2 is
different from the description logics that OWL is based on. It will therefore
not be easy to achieve compliance. The drilling ontology does not require
ISO 15926 to function, so it is in any case something which can be added at
a later point.

The new version of part 2 that is being written in OWL is a different
matter however. The formalism is of course compatible, so what remains
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to see is whether or not the upper ontology modelling can be used with the
drilling ontology. Unfortunately this ISO 15926 OWL version did come into
existence until quite late in the work on this thesis, so I have not been able
to investigate whether it can be used or not.

4.1.3 ISO 15926 and WITSML

ISO 15926 might rather prove useful at the very low level, beginning
with datatypes and data from various sources such as sensors and other
measurements. As a part of the I[IP-project WITSML data was shuffled into
ISO 15926. All datatypes, things that are defined as XML schema simple or
complex types, have been added to ISO 15926. There has however, not been
done much work trying to properly integrate the WITSML types with the
existing ISO 15926 datatypes. Some work has been done, such as redeeming
WITSML low-level types with the existing EXPRESS® based ISO 15926

types.

Unfortunately when adding WITSML types to ISO 15926, hierarchical
information has been lost. It appears that only some of the low-level
datatype information is “properly” included. From what I can see, the
enumerated datatypes are added so that all the enumerated values are
included. Also, all the units of measures from WITSML are included.
In both these cases though, the references to extensions are lost (sub-
types/supertypes). For instance, the WITSML datatype “massConcentra-
tionMeasure”, which is the datatype actually being referenced for use in an
XML document is not included at all. Rather “massConcentrationUom”,
a unit of measure, is what is added to ISO 15926. It is correctly classi-
fied as a unit of measure and has been added to the ISO 159265 hierarchy.
The problem is that there is no reference to how it fits in the WITSML
hierarchy. The WITSML schema states that “massConcentrationMeasure”
has a unit of measure “witsml:massConcentrationUom” and has supertype
“witsml:abstractMeasure” which has supertype “witsml:abstractDouble”
which has supertype “xsd:double”. All this information is lost. This means
that even if the low-level xsd and witsml datatypes are properly aligned with
ISO 15926, there will be no relation to the more complex types of WITSML.

Now what does this mean for the creation of an ontology based on WITSML
and ISO 159267 This means that using the WITSML parts of ISO 15926
directly is probably not a good idea. Relations are crucial to an ontology,
and with so few relationships from WITSML added to ISO 15926, much
potentially useful information is lost. When not even the explicit relational
information from WITSML is added to ISO 15926, looking for the implicit

®http://en.wikipedia.org/wiki/EXPRESS_(data_modeling_language)
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relations will most likely be even harder. The WITSML data added to
ISO 15926 might however be useful for an ontology based on WITSML to
interface against ISO 15926. At least there will exist a starting point for
further integration.

4.1.4 Schlumberger Oilfield Glossary

This is an online repository, freely available, that contains much information
about Oilfields operations and equipment. Within this repository there
is a large section concerning drilling http://www.glossary.oilfield.slb.
com/search.cfm?Discipline=Drilling that contains much useful information
that can be utilized when creating an ontology. Each entry in the glossary
describes the term and also links to documents describing similar terms and
related terms. For instance Rig links to mud, derrick, mast, topdrive
and others. These links can be used to get an idea of how a term relates
to other terms, which is essential when creating an ontology. It is however
limited in the way that we seldom get any additional information about what
sort of relation we have. From the text one can perhaps in certain cases
assume that there is a structural “part-whole” relation, and in other cases
some sort of “uses/utilizes” relation. Also we get no bounds and restrictions
on the relations. Without an domain expert to explain further just what
kind of relationship we are dealing with it is difficult to get high quality
knowledge.

But the glossary still is a valuable source of gaining intuition and
understanding necessary for building a good ontology. And with the
cooperation of a domain expert ontology building can be conducted at a
faster pace with resources like this handily available.

4.1.5 AKSIO

AKSIO with its 235 classes contains much useful information that the other
sources presented do not deal with. Much of this information is about events
and states. But there is also information about equipment, operations, and
other relevant concepts. It is however mostly a taxonomy and while it does
include 17 relations that are used to a varying extent, there is not much
information about relationships. But in return the relationships it does
contain are quite useful to build upon and use as a basis. Especially relating
events to states is one of the strengths of AKSIO. An example of such a
relationship is:

Pack0Off causes LostCirculation or StuckPipe
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where PackOff is an event and LostCirculation and StuckPipe are
states. In a similar fashion there are relationships between equipment and
operations:

Casing implementsBarrier Drilling or Intervention or Production

Where Casing is equipment and Drilling, Intervention and Production
are operations. Contrary to the previous example however, this time
the meaning of the relation is not obvious. While causes is easy to
understand and pretty much unambiguous, implementsBarrier, which is
not explained in any way in AKSIO, is more cryptic. This again shows the
need for domain experts to guide and advice whenever difficulties arise.

I have also done a IOHN deliverable on the conversion of the AKSIO ontology
to OWL-DL, that is located in http://heim.ifi.uio.no/larsove/master/
IOHN/IOHN_deliv_aksio_merged.pdf.

4.1.6 Domain Experts

Domain experts differ from the other kinds of sources of knowledge, in the
obvious way that they are not documents and repositories, but actual people.
This naturally make them a different source to relate to. But it also mean
they are potentially the most valuable source, since the communication in
this case is going both ways. As opposed to written documents where the
ontology engineer can only read and try to understand, when a domain
expert is available anything that is unclear can be resolved simply by
asking the right questions. Besides helping with refining and correcting the
modelling done on the ontology, they also can provide much new information
according to the needs of the ontology engineer.

There are various ways of extracting good knowledge from domain experts.
An obvious way is to work closely with the expert when building the ontology
and this way get continuous input on important modelling decisions. But
often, as is the case for me in this thesis, the access to experts is limited.
In this case other ways of efficiently getting good knowledge need to be
attempted. With limited time available for meetings and such, the ontology
engineer needs to be well prepared to ask the right questions that are difficult
to figure out. For this reason it is prudent that the ontology engineer
has gotten some insight into the domain through other sources even before
meeting with the domain expert for the first time.

Another way of extracting information that is not in real-time is by asking
very simple but precise questions that the expert can answer at his/her own
leisure. I have described such a method in further detail in the appendix
A.1 with an example of use included.
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4.2 Overall ontology structure

When working to combine sources into an ontology, it is helpful to have a
goal and purpose of the knowledge gathered in mind. With a clear goal and
perhaps even a rough path there, we can more naturally discard unwanted
information and focus on what we want from all the sources.

In the case of this thesis the overall goal is to create a drilling ontology
and our sources are the ones mentioned above. Simply having the goal of
creating an ontology is still a difficult and open problem. A general drilling
ontology, or a general ontology in any domain, that can be used for anything
concerning drilling seems quite difficult, as we can never anticipate all the
uses people might have for the ontology. This means that having a few
concrete uses for the ontology will make it easier to combine the sources in
a meaningful manner and construct the ontology.

As have already been presented earlier in this thesis, arguably the most
important use for the drilling ontology is data integration and conversion.
This means that when designing the ontology this particular purpose should
be considered throughout the entire process. But at least some degree of
generic knowledge representation of the drilling domain is also interesting
to be able to capture. Both to get an extensive ontological structure of
the domain and to accommodate for future uses of the ontology. As has
been discussed in the previous chapter, OWL comes in several variants with
varying degree of expressivity and complexity. Just as data integration is
largely dependent upon a less complex and quite efficient ontology, other uses
may need a more comprehensive or altogether different way of formalising
parts of the domain.

In light of these considerations, I have after several iterations of trial and
error in building a drilling ontology arrived at the conclusion that a modular
design based on a common core with appropriate extensions is best. The
modules that the drilling ontology will consist of is in its current iteration
are:

e A Core module that largely consists of a taxonomy of the most
important classes for representing the drilling domain. Exactly what
classes should belong here is something that may change, and smaller
modules may be separated out of the core. In addition to having a
taxonomy, the core should have the most general relations that are
universal for the domain. It is important that the axioms of the
core are no more expressive that DL-Lite can handle, or else the DL-
Lite module that extends the core would not actually be in DL-Lite.
Chapter 3 describes exactly what is allowed in DL-Lite.

e A DL-Lite module that has the purpose of being a data integration
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ontology. Other than the fact that QuOnto uses DL-Lite ontologies,
it is an efficient OWL variant that can be used in tools similar to
QuOnto. This module will mostly add axioms using the existential
quantifier to relate classes to each other through relations.

e A Universal quantifiers module that is not inhibited by the DL-
Lite restrictions. This module is free to use any OWL2 constructs
available. As the name of the module implies, it adds axioms using
universal quantifiers to further enrichen the domain ontology. Since
this module does not use any existential quantifiers, it is meant to
be possible to create an additional ontology which includes both the
DL-Lite module and this module for an even richer ontology.

Although this approach seems like a good direction to move in, the best level
of modularity is perhaps not yet reached. The split into modules described
here partly reflects the purposes presented in the thesis. But especially the
core could yet be split into smaller parts. It might be prudent to create an
own module for low-level data representation, and keep the core at generally
a higher level. This could be tackled in later derivative/similar work.

I also have done a IOHN deliverable on this ontology structure more aimed
specifically at WITSML. It is to be found at http://heim.ifi.uio.no/
larsove/master/I0OHN/IOHN_deliv_witsml_superstructure_merged.pdf.

4.3 Combining the sources

In this section I will first regard the overall combining of sources needed for
creating the modules in the ontology, and then say a few things about each
of the modules and how they differ.

Finding the sources and describing them one by one is one thing, combining
them is another. Different sources often have different ways of representing
the knowledge we are after, in such a way that the same information may
reside in two sources and yet we are not immediately able to tell that they
are the same. Also pieces of information that are to related to each other
must be identified properly. So a considerable part of the work has to go
into normalizing the sources; finding out when two different sources are
describing the same thing, and finding out when they complement each
other. In some cases two sources may approach the domain of interest in
completely different ways, potentially making this job more difficult.

Common for most of the sources described above is that they provide large
amounts of information, but they don’t say much explicitly about relations
between the various instances of information. This means that in part
the combining can be done by taking concepts from the different sources
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and creating a taxonomy simply based on the meaning of the concepts
themselves. In the cases where concepts relate to other concepts from
other sources this relational context must also be carefully considered when
combining. Also the fact that there may be similar information represented
in different ways among the sources should be expected.

As WITSML is the only source providing large amounts of low-level
information, it will be the most important source for a considerable portion
of the ontology. It does not provide much in the higher levels however, so
there the Schlumberger repository and AKSIO will have much more to offer.
ISO 15926 will have some significance both at the highest and at the lowest
level. The sources will roughly contribute in the following manner:

e WITSML : low-level data/formalism, some physical equipment and
facilities, document data

e ISO 15926 : low-level formalism, upper ontology contributions

e Schlumberger : higher level concepts with relations, generic
knowledge and understanding

e AKSIO : event, states, some equipment, processes and various other

e Domain experts : refining all the above, relationships, classifica-
tions, specializations

Combining low-level information

At the low level WITSML and partially ISO 15926 are providing the
information we have to work with. In previous sections both WITSML and
ISO 15926 have been presented. WITSML low level data types are based
on XSD types, while ISO 15926 low level data types are based on Express.
Also in RDF and OWL, datatypes based on XSD types are possible to
use®. Because of this I have decided to disregard the ISO 15926 datatype
representation in this iteration of the drilling ontology. As a consequence,
the datatype model of the drilling ontology is built solely upon WITSML.
This reverbes well with the case of data integration, as much of the data to
be integrated is most likely stored in WITSML.

Since WITSML contains quite much low-level information, the ontology
presented in this thesis is not including all that information. I have basically
extracted some parts of WITSML and showed how they can fit into the
ontological structure. Perhaps the most important of these are the units of
measure. They give units to every kind of data value that are expressed
in WITSML. For the purpose of data integration, such information is

Shttp://www.w3.org/TR/swbp-xsch-datatypes/
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paramount to keep intact. Examples of such units of measure in WITSML
are meter, foot, ampere, meterPerSecond.

Combining high level information

At the high level, WITSML is of less significance than on the low level.
It does provide some key concepts though that are central to the drilling
domain. Some of these are bhaRun, Tubular, Well, Wellbore. From
AKSIO there are various concepts that should fit together with these
WITSML concepts nicely. When it comes to states and events there is no
common concepts between WITSML and AKSIO so there should be no clash
occurring. Also with the equipment descriptions in AKSIO, the number of
concepts is much higher than what WITSML provides, and in the few cases
where there are common concepts, there is not enough relational context
given for there to be a problem. Examples of this are:

e Casing from AKSIO and wbGeometry from WITSML. As was
discussed briefly in the section about WITSML, wbGeometry is the
WITSML way of representing the casing of wellbores, so it is safe
to say that the two casing concepts are talking about the same thing.
Although the WITSML casing provides much low level data as context,
AKSIO has simply a relation that points to what oil-related operation
it belongs to (in this case Drilling, Intervention, Production). While
this on the large scale is important to know, there is no clash with the
WITSML representation.

e Drillstring from AKSIO and Tubular from WITSML. In this case it
is actually less clear whether or not the two concepts mean exactly the
same thing. Some things seems to indicate they are the same, while
others indicate that Drillstring is a specialization/subclass of Tubular.
I have gotten the same signals from domain experts as well, so it would
seem that this is somewhat ambiguous. In the drilling ontology I have
decided that Drillstring is a subclass of Tubular, and don’t see any
apparent problems with this.

One important thing to notice is that common for these examples is that the
naming of the concepts are different in AKSIO and WITSML even though
they are talking about the same or closely related things. This goes to show
that it is impossible to get anywhere in combining these sources properly
without some degree of domain knowledge.

For this purpose firstly the Schlumberger Oilfield Glossary is a good resource.
It provides the ontology designer short and often good descriptions of various
concepts that are relevant. This way some context is made known to the
designer of the ontology, making it much easier to handle cases such as those
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above. In addition the glossary entries also introduce new concepts to the
designer that may prove important to include in the ontology.

This alone is often not enough though, and domain experts then are the
ultimate source of knowledge. They both clarify difficulties that the designer
has no chance of doing by himself, and can provide a context for the concepts
that are not expressed anywhere else, as much of this is implicit in the other
sources. An example of this is the Tubular-Drillstring case explained
above, where eventually with the help of domain experts I eventually decided
that Drillstring is a subclass of Tubular. Apart from clarifications, domain
experts certainly also can provide many new concepts as well as relations
between those already existing.

Combining the low and high level

WITSML is the source of domain knowledge that has had the greatest
impact of all the sources I have utilized. It provides the main foundation for
processing of actual data in the ontology. With a focus on data integration
this is quite important. As has also been made apparent there aren’t
much higher level knowledge in WITSML. It does however provide some
of the necessary connections between the low level and the high level. As
was introduced in the section about WITSML, there are certain elements
of physical structures such as rig, tubular, tubularComponent, well,
wellbore, and processes such as bhaRun, cementJob, risk. These few
classes are important and central in that they obviously have a strong
connection to the low level of WITSML. As the low level of the ontology is
decided to be more or less identical to the low level of WITSML, this means
that the rest of the ontology is dependant upon this link between high and
low that the WITSML concepts provides. This also reverbes nicely with
the fact that these WITSML concepts are among the most important in the
drilling domain.

So for the parts of the ontology’s high level that are not derived from
WITSML; for them to be able to access low level data, they are dependant
upon the establishment of relationships either directly with the low level,
or through connections with the WITSML concepts. Which one of these
two approaches is best varies from case to case. But as most of the data in
WITSML is describing the higher level concepts, it seems natural to most
often connect other concepts to these WITSML concepts rather that directly
to the low level data. This is again a task that would benefit greatly from
domain expert guidance, as such connections between concepts are most
likely not explicitly stated in any of the other sources.
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4.4 Standardized Ontologies

Part of the vision behind semantic technology and the semantic web is the
idea of reusability of ontologies. An important part in realizing this is to
establish standardized and upper ontologies as common references. This
section will go into more detail on the “whys” and “hows” of this topic.

4.4.1 Upper ontologies

As was introduced in chapter 1, having an upper ontology above the domain
ontology is sometimes necessary and often helpful. In the case of the drilling
ontology, it is strictly not necessary for representing the domain of interest
by itself. But to be able to connect to other ontologies through the common
ground that upper ontologies provide is a great strength. And it is indeed
helpful to have the formal specifications of an upper ontology to at least
partially guide the construction of the ontology.

With the drilling ontology I have decided to use parts of BFO and DOLCE
as my upper ontology. The reason for not using the entirety of an upper
ontology is that they are quite large so it would be a too big task to
try to create a drilling ontology based on an entire upper ontology. In
addition, these upper ontologies are created mostly by people who do
not really consider reasoning and computability very closely, so reasoning
with these upper ontologies is bound to be in the range of difficult to
impossible. Nonetheless, some important parts have been included in the
drilling ontology.

Objects and Processes

This is a distinction that has been hinted at earlier in this chapter. In
the introduction I presented them in the context of upper ontologies and
DOLCE as endurants and perdurants. They are defined as such:

e endurants : These are entities that do not have temporal parts, but
they exist in time. This means that when an endurant exists, the
entirety of it exists at any time. The entity is not spread out over
time. And yet they are dependant upon time, as they (at least physical
entities) begin to exist and cease to exist at some time. This property
means that ideally any relationship with such entities must have a
time factor to make sure that the entity actually exists at the time
we want the relationship to be valid. DOLCE describes endurants as
“participating” in perdurants, such as for instance a person participates
in a discussion. Perdurants do not have this property.
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e perdurants : These are entities that do have temporal parts. This
means that they are not present in their entirety at any moment in
time, but are rather pieced together by parts occurring at different
points in time. These parts are not necessarily explicitly stated in the
ontology because such a level of detail may not be interesting, but
this does not alter the fact that perdurants are not related to time in
the way endurants are. They can perhaps be thought of as a chain of
events, where an event is on the time axis the smallest endurant entity
possible.

Everything that can be described as objects are designated as endurants,
while processes are perdurants. To illustrate with some examples from the
drilling domain:

e bhaRun is a process and thus a perdurant because it describes an
operation on an oilrig that lasts from point x to point y in time. In
further detail a bhaRun is defined as an operation lasting from when
a drilling is inserted into the wellbore until it is extracted.

e wellbore is an object and thus an endurant because its existence is not
spread out over time. Even though a wellbore is increasing in size over
time because of drilling performed, this can be seen as the size property
of the wellbore increasing. The wellbore will not be identical to how it
was at a previous time, but in the manner DOLCE describes endurants
by participation, we have already stated that wellbores participate in
bhaRun operations.

Unfortunately OWL does not handle time in any built-in fashion so if this
is needed it must either be modelled manually, or a time ontology must
be imported/referred to. For this reason I have decided not to tackle the
time issue in any complete fashion, but the ontology simply stores the time
low-level data from WITSML as regular datatype values when they occur.
I do however anticipate that it will not be too difficult to add complete
time-modelling at a later point, as this would in some sense be like taking
snapshots of the ontology at different points in time and reasoning over the
set of snapshots’.

4.4.2 Ontological context

As has been explained in section 3.2.1, URIs do not in fact by themselves
refer uniquely to a single entity, contrary to what URLs do and contrary
to what many people seem to think. This actually carries great relevance
to the use of upper ontologies and other standardized ontologies. If it were

"This is my current understanding of how time can be handled. It might turn out quite
different!
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so that an URI would uniquely identify a single entity in the real world,
then there would be no doubt among people what each and every resource
of an ontology means. This is however not the case, since even though we
might give classes and relations describing names, this is alone not always
enough to properly define what we are trying to describe. For the purpose
of reasoning these names of course are irrelevant, as the computer that does
the computations has no way of understanding or even being "aware” of any
link between ontology resources and real-world entities. The reasoner does it
job solely based on the ontologies that humans gives the computer as input.

For understanding the meaning of the classes and relations for us humans the
situation is different. It is important to realize that ontologies only describe
subsets of reality at a certain level of abstraction. Resources in the ontology
can only refer and relate to real-world entities through human interpretation.
This interpretation is heavily dependent upon the surrounding context.
When building an ontology we are of course interested in keeping it as
unambiguous as possible®?. This means not just unambiguous in logical
interpretation that is crucial to reasoners, but also unambiguous in human
interpretation. The difficulties here lies in the wide variety of knowledge
each person might possess. Human knowledge is not as clearly defined as
computerized knowledge in ontologies, so there can be an infinite number
of ways to interpret a single class name without any context. People have
different experiences and have their very own personal context connected to
concepts that make such simple context-less representation ambiguous.

Of course in an ontology, no class is completely without context, as the
domain ontology itself provides context that greatly limits the possibilities
of interpretation. But this would often mean that large portions of the
ontology will have to be examined and understood to achieve the intended
interpretation. So instead of leaving everything up to the domain ontology,
having standardized ontologies that provide well-known context is a very
helpful tool.

Aside from upper ontologies which are meant to provide high level and
abstract descriptions and context, other standardized ontologies also exist
that provide context closer to the actual domain ontology.

Examples of such standards that are actually in use are:

e Friend of a Friend (FOAF), a social relationship vocabulary, at http:
//www.foaf-project.org/

e Dublin Core, a more general metadata vocabulary, at http://

dublincore.org/

8exceptions to this perhaps exist?
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e SKOS, a knowledge organization vocabulary, at http://www.w3.org/
2004/02/skos/

4.5 Ontology engineering methodology

This section will describe some methodology that can be applied to creating
ontologies for specific domains. At first when I started on this thesis I had
no knowledge on how to proceed with creating an ontology, so what this
section describes has been acquired over a long period of time. This fact is
also partially reflected in how the drilling ontology turned out, which will
be further discussed in section 4.6.

4.5.1 Proposed methods

An ontology consists of a set of axioms, and the process of building an
ontology is that of creating axioms that describe our domain of interest,
often with a specific purpose in mind. One such specific purpose is data-
integration, which is highly relevant for this thesis.

Unstructured textual knowledge

The most straightforward and easiest way to get this done is to translate
textual definitions into axioms by simple methods such as having nouns
become classes and verbs become roles. Since things that are nouns often
are a good match for classes, and verb a good match for roles, this appears
to be a good approach. An example of this could be the statement

e A car has four wheels

We can see that this sentence has the structure car (noun) has (verb) four
wheels (noun). This we would then translate into the axiom

Car T = 4 hasW heel W heel

Other similar cases can also be devised to extract axioms from more complex
sentence structures.

This simple way of transforming definitions to axioms depends on that the
text used as ontology source consists of precise statements such as the one
above. With natural language in normal pieces of text there are bound
to be many sentences that are not at all relevant as sources for axioms.
Sifting through whole texts and extracting just the relevant sentences is in
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itself potentially a huge job. But with a good method that automates the
conversion from text to axioms the effort might just be worth it.

A problem that quickly can arise from using such methods, is that the
vocabulary in use gets really large really fast. If the large number of different
words in use in normal language is directly included in the axioms, we might
end up with an ontology full of terms that should be related to each other,
but are not because of synonyms?, homonyms'® and polysemes''. In many
cases this may be fixed trivially by replacing all occurrences of one term
with the other that means the same. But often it will not be as simple. The
domain being described has much to do with what meaning lies in every
word. This domain context must be considered for the axioms to turn out
correctly. This brings us again to domain experts.

The job domain experts can do in the creation of ontologies as already been
handled in section 4.1.6. I also describe how asking them direct questions in
the form of statements in the appendix A.1. But domain experts also have
an important role if methods as described in this section are to be utilized.
They are absolutely necessary when there is doubt about the exact meaning
of a term in the domain of interest. Such knowledge must be provided to
work out problems of synonyms, homonyms, and polysemes as described in
the previous paragraph.

Structured knowledge

Besides textual knowledge, there are sources for creating ontologies that
are already on a structured format. Such formats can be everything from
XML to SQL. Common for any structured format is that they, contrary to
unstructured textual knowledge, are easy to parse. The key difference is
that normal text is in natural languages that is a result of generations of
evolutionary development. This means that only descriptive rules can be
applied, and there are many exceptions to these rules that make parsing
difficult. And there is of course the problem of synonyms, homonyms and
polysemes described above. Structured knowledge however is normatively
defined, and as such there is (ideally) a single way to understand the
structure. Regularity and lack of exceptions also makes it easy for computers
to work with knowledge on such formats. A text in appendix A.3 goes into
detail on the difference between descriptive and normative ontology building.

I will illustrate by using a piece of WITSML data.

<tubular>

Different spelled words with same or similar meaning.
10yords that share spelling and pronunciation but have different meaning.
"Words with the same spelling and related meanings.
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<tubularComponent>
<typeTubularComp>DrillPipe</typeTubularComp>
</tubularComponent>
</tubular>

In this piece of XML it is obvious that tubular and tubularComponent
are somehow related. And as the latter is below the former in the structure,
it is a fair assessment that in this case tubularComponent is a part of
tubular. And furthermore tubularComponent is of the type DrillPipe.
Such formalised knowledge is much easier to extract automatically by a
computer than unstructured textual knowledge.

There are however difficulties here as well. Although less of a problem
than with textual knowledge, there are bound to be information that is
not relevant for the ontology we are building. The choice whether or not
a particular piece of information should be axiomatized must be made by
someone with domain knowledge. Here again the domain experts are crucial
parts of the process. They are also necessary for filling out missing pieces of
the puzzle. In the WITSML example above there was no actual explicitly
stated information that said anything about what kind of relationship there
was between tubular and tubularComponent. Since I myself possess
some domain knowledge I know that there should be a partOf relationship
between the two, but generally domain experts must provide this kind of
knowledge.

Another important part of ontology building is creating explicit descriptions
with axioms based on implicit domain knowledge. This means extracting
information that is not expressed directly either in structured or unstruc-
tured format. An expert in any particular domain has presumptions about
the meaning of terms and knowledge that is regarded as obvious. For an
ontology engineer this knowledge is difficult to extract alone. In the case of
WITSML which is defined by a set of XML schemas, finding the implicit
axioms is hard since there are no nouns or verbs to use as hooks. Most of
the modelling conventions and methods used are in the heads of the people
who created the schemas and the domain experts who provided input. In
these cases we cannot do much without access to the same people or other
domain experts with similar knowledge.

The recently published book on semantic technology, “Foundations of
Semantic Web Technologies” [15], describes in chapter 8 methodologies
for constructing ontologies. It is much more extensive than my short
description here, but many of the approaches, such as the extraction of
textual information and the use of domain experts, seem similar. Although
late in the process, I have tweaked this section slightly as a result of the
contents of that book.
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4.6 The Drilling Ontology

4.6.1 Early design experiences

The most influential sources of domain knowledge have been presented
earlier in this chapter. Among them WITSML has had the biggest impact
on the building of the ontology. Especially early on in the process WITSML
was used to obtain a core of important concepts to expand on. The main
focus was on the processes involved in drilling and on the equipment used
to drill wellbores.

Initially I had little knowledge on how to build an ontology and did not have
the proposed methods above clearly in my mind nor on paper, so I simply
started out by trying to arrange concepts extracted from WITSML and
Schlumberger in a reasonable taxonomy'? and then add whatever relations I
might extract from the domain knowledge context. Even with this seemingly
simplistic approach, it was useful to have an idea of what I was trying to
achieve building the ontology.

I did not have a real goal for building the ontology at first, which turned
out quite problematic. The initial thought was to capture the entire drilling
domain in an ontology which could then be used for any purpose in this
domain. The problem with this is that the lack of direction in the ontology
engineering makes every design decision excruciatingly difficult. Since for
such an ontology every possible use ought to be considered, the process of
building the ontology becomes really slow and tedious. And there is really
no way to anticipate every possible use for an ontology.

In hindsight I can now see that I should have prepared much better a
methodology from the start before starting on creating the actual drilling
ontology. It turned out to be a much more difficult process than expected.
What I tried to do was to start out with very little domain knowledge
(and also relatively little ontology knowledge) and create an ontology from
scratch. This was a much harder task than anticipated. Much time went
into reading and comprehending sources of domain knowledge. Trying to
implement this into the ontology without having a specific method at hand
proved to be very difficult!

Lessons learned

As I gained understanding of both the domain and of ontology engineering,
I achieved a more systematic approach to building the ontology. It seems

25ubclass hierarchy
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clear to me now that when creating an ontology, at least one of the following
overall strategies should be applied:

1. There must be a specific purpose in mind for the ontology when
creating it. This allows the creators to focus on what is necessary
to express in the ontology. The purpose will thus serve as a reference
to check the ontology against to see if it fulfills its purpose. This
process will work even better if a sort of weighting function or fitness
function is specified with regards to the purpose of the ontology. If
one can regularly check to see if the ontology is able to express/solve
what is intended, the creation of the ontology should work much more
smoothly. An example of such a specific purpose is data integration,
which is a key topic in this thesis. For data integration speed and
the ability to handle large amounts of data are important, so that is
something that should guide the construction of the ontology.

2. There must be a common method of creating ontologies that describe
specific domains. Such a method should be devised as a general way
of creating ontology that describes a specific domain. Many kinds of
criteria are possible to include in such a method. But common for them
should be that they give concrete ways of adding domain knowledge
in the form of axioms to the ontology. This can be expressed e.g. as
a sentence of “Noun verb noun” that should be added to the ontology
in a specific way. But other possibilities surely exist. This could be
investigated further to create a whole toolbox of such methods.

3. A simpler variant of the previous could alternatively be devised. This
means a simple method consisting of a few design principles. These
should describe what a class might be used for and what a property
might be used for and so forth. This method should definitely be
combined with a specific purpose so that the ontology construction
can proceed smoothly.

If such rigorous principles of design aren’t employed, the ontology
construction can become much more of a tedious and difficult process than is
necessary. This I have experienced early on during the process of designing
the drilling ontology. It should also be possible to use the strategies in
combination as well for even more strict design principles, e.g. combining
specific purpose with general methods. However whether or not this could
cause unforeseen problems will have to be investigated properly'3.

B not done in this thesis
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Combine with specific methods

When such strategies and principles are properly established, they should
be combined with the methods introduced in section 4.5. Having principles
and overall goals as a guideline when starting the actual construction will
be very helpful in deciding which axioms are necessary and which ones are
irrelevant.

4.6.2 My application of engineering methods

For the drilling ontology, the principle that turned out to be the most
important was the one concerning specific purpose. Even though I lacked
such a clear purpose for the ontology early on, eventually data integration
became the use case for the ontology to focus on. This gave a sense of
direction in the ontology building.

Using unstructured textual definitions as described above is partially what I
have done by using the definitions from the Schlumberger Oilfield Glossary
described in section 4.1.4. An example of this is the definition of casing
collar:

e The threaded collar used to connect two joints of casing. ...

From this we can create the axiom:

CasingCollar C = 2 connects.CasingJoint

Likewise for structured definitions, such as WITSML, this was explained in
detail above in the section on structured knowledge.

The value of domain experts

I had some access to domain experts who gave valuable input both in the
form of explanations on how processes work in the domain, and more direct
input to the ontology. At one point I tested a way of extracting domain
knowledge from experts by presenting them a set of statements that should
either be confirmed or rebutted. This was introduced in section 4.1.6 about
domain experts. The details of this experiment is in the appendix section
A.1. What I got out of this was that while my understanding of many parts
of the domain got clearer by a simple answer, there were also some of the
statements that did not have such a simple solution. The comments I got on
those could even lead to more confusion, which had to be inquired further
upon to reach a satisfactory answer.
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Just as helpful was sitting down with domain experts and getting firsthand
help when actually building the ontology. Even though this time was limited
compared to the time spent alone working on the ontology, much of the
ontology was created just in such close collaboration with domain experts.
This just goes to show that proper domain understanding is difficult for
the ontology engineer to acquire, and that such knowledge is paramount to
efficient and correct ontology construction.

Modularization of the ontology

As said, the ontology was at first created without any specific purpose in
mind. This also meant that even though modularity was considered a topic
of interest, there was no plans how to use efficiently. This gradually changed
however as specific uses for the ontology appeared. The specifics of the
modularization I decided upon has already been introduced in section 4.2.
Now I will say more about what each of the three modules contain.

The process of splitting up and modularizing the ontology happened rather
late, so the distribution of axioms is somewhat skewed in favor of the core
module. This is however natural for in many cases where the extending
module only refines certain parts of the core vocabulary. As it appears at
this time, the entire taxonomy is contained in the core module, meaning
that none of the other two modules adds any new classes. What they do
add however are a few axioms to test the limits of expressivity. The core is
of course contained in DL-Lite also, but the specific DL-Lite module adds
some axioms that aren’t needed in the core. These axioms are intended for
use in data integration, and shows how similar axioms can be added later
on. The same is true for the module with universal quantifiers. It shows
how such axioms may be added. This module is however not suited for data
integration at all, and has as of now no concrete applications.

I will here simply present a limited version of the taxonomy, as well as
the relation hierarchy. For details, the files themselves should be viewed in
an ontology tool/editor such as Protege!*. The ontology module files are
located in http://heim.ifi.uio.no/larsove/ontology/.

Taxonomy

This shows the class hierarchy to a certain level of granularity.

Thing
Endurant

“http://protege.stanford.edu/
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Object
NonPhysical
GeometryType
JobResponsibility
JobTitle
KnowledgeResource
Quantity
Service
Survey
SurveyStation
Trajectory
TrajectoryStation
UnitOfMeasure
WellDatum
Physical
Annulus
BoreHole
CirculationSystem
Company - could fit better under NonPhysical
CoreSample
Cuttings
Facility
Field
Formation
GeographicArea
Hydraulics
Lease
Location
Oilfield
Rig
RigEquipment
Slot
Substance
Tubular
TubularComponent
TubularSection
Well
Wellbore
WellboreGeometry
Wellpath
Perdurant
Event
BlowQOut
CasingCollapse
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CollisionWithOtherWell
DamagedBit
DroppedObjectFromSurface
Kick
PackOff
StuckEquipment

Process
RigActivity
Run

State

Relation hierarchy

topObjectProperty
hasUnitOfMeasure
belongsToField
belongsToRig
belongsToWell
followedByActivity
hasActivity
hasContractor
hasDevelopmentStatus
hasDrillString
hasDrillingActivity
hasFacility
hasField
hasGeometryType
hasJobResponsibility
hasJobTitle
hasLocation
hasOffsetWell
hasOperator
hasPart
hasBit
hasBitNozzle
hasTubularComponent
hasTubularSection
hasBHA
hasProductionType
hasSlot
hasSurvey
hasSurveyStation
hasTrajectory
hasTrajectoryStation
hasWellDatum
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hasWellPath
hasWellbore
hasWellboreGeometry
involvesRotatingEquipment
isPart0fCirculationSystem
isPerformedByServiceCompany
liesInGeographicArea
liesInArea
liesInBlock
liesInCountry
liesInField
performsActivity
worksOnFacility
worksOnWellbore
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Chapter 5

Application of the drilling
ontology

I will in this chapter present two cases in which the drilling ontology can be
used for data conversion and integration. The first case describes an ontology
framework called QuOnto that makes use of the OWL2 QL profile’s DL-Lite
ontology language for efficient data integration. I will not go into detail of
QuOnto', but rather give a general description of what it does and how it
works.

In the second case I will aim at creating a piece of prototype software that
converts data from XML (therein WITSML) to RDF. There is no actual data
integration done, but the data conversion facilitates easier data integration
by presenting the data in RDF.

5.1 QuOnto

QuOnto is a Java ontology representation and reasoning tool? that is
well suited as a framework for integrating data using ontologies, which is
explained in detail in [37]. Specifically through the use of DL-Lite ontologies
that were introduced in section 3.3.1. The reason for using DL-Lite instead
of OWL2 has to do with efficiency. As has been established also in chapter
3, OWL2 does not handle large amount of data efficiently. DL-Lite however
has much better performance when it comes to handling data. This fact
is an important part of what makes QuOnto with DL-Lite viable for data
integration.

!There is a concurrent thesis done by another student that deals specifically with
QuOnto
*http://www.dis.uniromal.it/~quonto/
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Figure 5.1: This graph illustrates the architecture of QuOnto.
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Another important aspect of QuOnto, is that it is able to gather data from
any kind of source through the use of mappings. These mappings connect
e.g. SQL databases with QuOnto and the ontology it uses. Queries can then
be performed on the combination of the ontology and the SQL data. This
powerful real-time mapping conversion makes it fairly simple to accomplish
data integration through the use of QuOnto. The overall architecture of
QuOnto is illustrated in figure 5.1.

The particular use case that the drilling ontology might prove useful in,
is the integration of DDR (Daily Drilling Report) data. DDR, which was
introduced in section 2.1.2, is based upon and has a lot in common with
WITSML. Therefore it should be relatively easy to use the drilling ontology
together with DDR data since the ontology is also heavily influenced by
WITSML. The DL-Lite restriction set by QuOnto limits the expressivity of
the ontologies that can be utilized, but as that is taken into consideration
when constructing the drilling ontology, that particular aspect should not
pose any problems.

5.2 Data from WITSML/XML to RDF

An important aspect of being able to use WITSML data in an ontology is
of course the ability to convert WITSML data to a format directly usable
by OWL. RDF which OWL is built upon is the natural choice for such a
semantic data format. This both enables ABox reasoning to be performed
on the converted data and it facilitates for data integration by using a
common ontology with multiple data sources. The task is then set to create a
prototype where some WITSML test data is to be converted to RDF triples.

Here in this section I will describe first the thoughts I had on how to
proceed with converting WITSML data to RDF, and the go on to present
the implementation.

In addition appendix A.4 contains more background information and
thoughts on the conversion of XML data.

5.2.1 Two approaches to XML — RDF conversion

As a general overview I will present two overall approaches to XML-RDF
data conversion that includes programming and some testing. One is a
bottom-up approach where only the XML data is considered by itself. The
other is more of a hybrid between top-down and bottom-up where there must
be provided a template in the form of an ontology that guides the conversion.
I will first give a list of steps involved in each of the two approaches using
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an example with WITSML tubular data, and then explain more in detail.
Even though this describes conversion from XML, I believe these methods
apply to any source of data.

The following two lists present each of the approaches to converting data
from XML to RDF. Each step in the list has in parentheses a suggestion for
tools or software that can aid in fulfilling the task. The entries that have
a "+ prefix are the ones that are absolutely necessary, while the rest are
mainly for improving quality and testing.

Approach 1 - hybrid top-down

1. + Create ontology from tubular-data OR expand the drilling ontology
(Protege)

. + Convert data (XSLT or Java/Jena)

. Improve ontology based on converted data (Protege)

. Connect tubular ontology to drilling ontology (Protege)

2
3
4. Queries on data and ontology (SPARQL, DL Query)
5
6. Improve ontologies (Protege)

7

. Test Queries (SPARQL, DL Query)

This first approach involves creating an ontology as a template before
converting data to RDF. This ontology can either be created from scratch
in cases where there is no existing semantic context for the XML data to
be converted; or in other cases, like here with the drilling ontology, there
exists an ontology that is to use the data after it has been converted. In this
case, the template ontology can either be a small part of the whole existing
ontology, or it can be created as an extension that shares key resources with
the whole. It is thought that the templates for WITSML to RDF conversion
should be based on the drilling ontology (which is quite natural as the drilling
ontology itself is based largely on WITSML).

After the template ontology has been created, the data conversion can
be performed. The details of this will be explained in the next section
that present the implementation, but an important part of the conversion
is a set of tags in the template ontology that link XML elements with
ontology resources. These tags are what enable the conversion to proceed
automatically and hopefully without errors.

The remaining steps from the list above are optional. They help with
improving quality of the conversion and discovering errors, but extra manual
work has to be done. There may be cases where results from the data
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conversion show us that the template ontology should be altered. The whole
ontology, in our case the drilling ontology, may also need updating due to
feedback from the conversion. In any case, test queries on the converted
RDF data should be conducted to ensure the results are as expected.

Approach 2 - bottom-up

1. 4+ Convert tubular-data to RDF-triplets (XSLT, Java/Jena)
. Improve triples (Manual editing, some RDF editor)
. Queries on RDF-data (SPARQL, DL Query)

2
3
4. Connect RDF-data to drilling ontology (Java/Jena, Protege)
5. Improve (Protege)

6

. Test Queries (SPARQL, DL Query)

The second approach looks solely at the XML data. Compared to the
first approach, the meta-information in the XML documents is now more
important. Since we will not have any reference for conversion in the
form of a template, the RDF is created by observing the XML-structure,
element/attribute names and the values themselves. This means that no
additional knowledge or context, other than what the XML document
contains, is added.

All of the remaining steps are similar to in the previous approach meant for
testing and improving quality. After the RDF-triples has been created, we
may want to ensure that the automated conversion worked well. This can
for instance be done by giving feedback to the conversion software about
changes we want to the structure we desire. The conversion will then have
to be carried out once more in an iterative process. This is just a suggestion,
and other methods may work. Such processes is easier in this approach since
the conversion itself is quite simple.

The fact that this approach does not provide any semantic context means
that the converted RDF data must be connected more or less manually to
ontologies for it to be used in larger settings®. The difference between this
and the first approach is that the data may be of a very different structure
than what the ontology is prepared for. By using a small ontology in between
in the first approach, we ensure that the converted data will be compatible
or close-to-compatible with the drilling ontology. This approach will in
general require much more work to have the RDF-triples connect to the
whole drilling ontology.

3such context can of course be added in the conversion process, but then simplicity is
lost and we get an approach more similar to the first one

87



5. APPLICATION OF THE DRILLING ONTOLOGY

The approaches compared

Which of these two approached is best probably varies. I however suspect
that having some semantic context in the form of an ontology is of great
help when using the RDF data further. If the bottom-up approach is used,
there must eventually be added some context that give the converted data
more meaning. Without such context, the whole process of converting data
to the semantic RDF format seems rather pointless.

The implementation presented in the next section facilitates both approaches
so they can be compared on a case-by-case basis if necessary.

5.3 Implementation of XML — RDF converter

This XML to RDF converter is a simple java application that aims at doing
semi-automated conversion from XML data to RDF triples. It is not fully
automated because it ideally needs a template ontology that provides a
guideline on how the conversion is to be done. It is however also possible
to map the XML data directly into RDF, but in this case no surrounding
structure and meaning will be introduced. My work was done in Java with
Jena handling the RDF-specific parts, but any language can potentially be
used.

The conversion process will now be explained step-by-step with references
to the configuration file whenever it is relevant (the format of config files is
that of Java Property files, which is more or less the same as Windows .ini
files). While the XML parsing only has one possible way of execution, the
RDF conversion can be done in two ways. One is by simply converting the
XML into RDF without any extra context being introduced, and the other
is converting the XML using a template ontology that serves as a guide for
the program. How this template must be created will be explained.

As opposed to XML, in RDF there is a stronger ID requirement for all
resources, since the structure is a general graph and not a tree. In a
tree structure the location in the structure by itself restricts the relations
possible, while in a general graph any resource can relate to any other
resource. This poses a potential problem when converting data from XML
to RDF. In this converter there is not yet a good solution to this. What is
done is that a incrementing number is added to the tail of each XML-tag
name so that pseudo-uniqueness in naming is guaranteed (combined with
namespaces it should be fairly safe). It is then up to the related data to
distinguish one occurrence of an XML-tag from another. In WITSML this
can partially be done thanks to various ID attributes to many of the tags.
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Whether or not these IDs can be used to create a good enough RDF name
is something that needs further inquiry.

5.3.1 XML Parsing

When parsing the XML documents, the program searches for and handles 3
different cases. This can be exemplified by the following piece of WITSML:

<tubular>
<tubularComponent>
<typeTubularComp>DrillPipe</typeTubularComp>
<id uom="m">0.1087120026350020</id>
<typeMaterial>Steel</typeMaterial>
<vendor>199</vendor>
</tubularComponent>
</tubular>

Case 1

XML elements that have no values, but only other elements as children. The
element can also have attributes. The following from the example above is
handled by case 1:

<tubular>
<tubularComponent>

Case 2

XML elements that have values, but no attributes. This often can be a
realization of XML simple datatypes. The following from the example above
is handled by case 2:

<typeTubularComp>DrillPipe</typeTubularComp>
<typeMaterial>Steel</typeMaterial>
<vendor>199</vendor>

Note that the parent element, which in this case is <tubularComponent>,
also is is important in the way this will be converted.

Case 3

XML elements that have values and attributes. This often can be a
realization of XML complex datatypes. The following from the example
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above is handled by case 3:
<id uom="m">0.1087120026350020</id>

Also here the parent element is important in the conversion.

5.3.2 RDF conversion

As stated before, a version with and one without template ontologies is
possible to use. In both of them I will explain how they handle input from
the XML parser split into each of the 3 cases introduced there.

e config reference : the variable "templateOntology” must be "true” to
use template ontologies.

e config reference : the variable "namespace” defines the namespace of
all the RDF resources created during the conversion.

e config reference : the variable "outputFile” must contain the path and
name of the output file.

e config reference : the variable "outputFormat” must contain the format
for outputting the data to file. Possible values are RDF/XML |,
RDF/XML-ABBREV , N-TRIPLE , TURTLE, N3

e config reference : the variable "verbose” should be either true or false
and decides whether or not to give a verbose conversion output, mostly
for debugging.

5.3.3 RDF conversion without template ontology

This conversion is as simple as it gets. It uses the XML element names
to create suitable RDF resources, which are connected according to the
structure in the XML documents.

Case 1
The element and their child elements are connected by creating triples such
as:

Element has ChildElementl..n

Where "has” is a property created using the same namespace as the data,
while the attributes are added such as:

Element attrNamel..n attrValuel..n
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From the WITSML example above:

tubularl has tubularComponent2

Case 2

The parent element is connected to the element’s value using triples such as:
parentElement element elementValue
where “element” is acting as a property. From our WITSML example above:

tubularComponent2 vendor 199

Case 3

The parent element is connected to an anonymous RDF node, which is then
connected to both the value and the attributes.

parentElement element anonl..n
anonl..n attrNamel..n attrValuel..n
anonl..n hasValue elementValue

From our WITSML above:

tubularComponent2 id anonl
anonl uom "m"
anonl hasValue 0.1087120026350020

5.3.4 RDF conversion with template ontology

What this conversion process does is to simply do exactly the same thing
to the XML data as has been done by the template ontology. Every XML
element should have a corresponding resource in the ontology so that the
program knows exactly how the data should be converted. Any missing
XML element reference in the ontology results in warning messages when
converting.

The conversion is done by querying the ontology using SPARQL and
extracting the necessary information relevant to the XML data currently
being converted. Two pieces of information is crucial in this process. One
is the template instance of whatever class is relevant, the other is the
annotation property marker that connects the RDF resource to a specific
XML tag. Again an example from our WITSML:
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The annotation property used as a marker is called "witsml element”. In
the ontology there are two classes "Tubular” and "TubularComponent”. We
have in the ontology the triples,

Tubular witsml_element "tubular"
TubularComponent witsml_element "tubularComponent"

meaning that the two ontology classes are both linked to their re-
spective XML tag counterpart. Also the two classes have template
instances “template_tubular” and “template_tubularComponent” respec-
tively.It is paramount that the naming of the templates is done such as:
template_<XML-tag> Note that only classes in the ontology that refers to
XML elements which has other elements as children need to have template
instances. Any connection between the template instances is also important
to show. From the WITSML example there is a triple:

template_tubular hasPart template_tubularComponent

This shows that tubulars has tubular components as parts; so if any tubulars
appear in a WITSML document with tubularComponent child elements,
they will be given the same kind of relationship.

e config reference : the variable "templateOntologyX”, where X is a
number from 1...n must contain the location (either local file or URL)
of the files containing the template ontology (ies).

e config reference : the variable “templatelnstanceNamespace” must
contain the namespace of the template instances used in the
conversion.

e config reference : the variable "ontologyXMLmarker” must contain
the name of the annotation property that shows what XML tag the
ontology resource is linked to.

e config reference : the variable "ontologyXMLmarkerNamespace” must
contain the namespace of the marker above.

e config reference : the variable “outputOntology” should either be
blank or contain a unique URI. In the case of containing a URI, it
means that the output file will be not just an RDF file, but an OWL
ontology (although the only triple added is ontology-URI rdf:type
owl:Ontology).

e config reference : the variable "outputOntologyText” provides a
comment text for the output. Only applicable if "outputOntology”
is not blank.

e config reference : the variable "importOntology” must be either true
or false, and makes the output file import the template ontologies for
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added context. Only applicable if "outputOntology” is not blank.

Case 1

This case dictates a need for marker annotation properties on ontology
classes that corresponds to XML-tags and markers on the properties used
for the XML attributes. Template instances are needed for the classes, and
connections between the instances and also from instances to attribute values
are necessary. Illustrating using the WITSML example:

<tubular>
<tubularComponent>

As described above, these two should in the template ontology have corre-
sponding instances “template_tubular” and “template_tubularComponent”.
They are also connected using a "partOf” object property. From this we get
the new RDF triple:

tubularl hasPart tubularComponent2

using the incrementing numbers for unique naming as described in x.y.z

Case 2

This case dictates a need for marker annotation properties on ontology
properties that corresponds to XML-tags. Illustrating using the WITSML
example:

<typeTubularComp>DrillPipe</typeTubularComp>
<typeMaterial>Steel</typeMaterial>
<vendor>199</vendor>

By using the marker annotation property “witsml_element”, we find that
the corresponding ontology resources for the elements are "hasTypeTubu-
larComponent”, "hasMaterial Type” and "hasVendor”. "hasMaterial Type” is
an object property, which in this case means that it signifies an enumerated
datatype. The other two are datatype properties and there is no restrictions
on the value range. From this we get the new RDF triples:

tubularComponent2 hasTypeTubularComponent "DrillPipe"
tubularComponent2 hasMaterialType Steel
tubularComponent2 hasVendor 199
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Case 3

This case dictates a need for marker annotation properties on the classes
corresponding to the XML-tags. These classes will have anonymous
instances generated, which in turn connect to the data in the value and
attributes from the XML. The XML attribute names also needs marker
annotation properties. Illustrating using the WITSML example:

<id uom="m">0.1087120026350020</id>

In the ontology, we find that the corresponding ontology resources for ”id”
and "uom” are "InnerDiameter” and "hasUOM”. "hasUOM?” is here an object
property which signifies an enumerated datatype, but that is not necessary.
The new RDF triples are:

tubularComponent2 hasInnerDiameter anon2
anon2 hasUOM "m"
anon2 hasValueFloat 0.1087120026350020

5.3.5 Possible improvements and changes

The software prototype created has not been extensively tested so there
might still be bugs in the code. Likewise the conversion process have some
limitations that could become an obstacle to certain XML files, but this will
be possible to improve on. Template ontologies now have to be created by
hand, but it should be possible to semi-automatically create this ontology
if the XML data is accompanied by XSD schema files (which is just what
WITSML provides).

There are also many things that can be done to improve user friendliness,
such as a more interactive user interface, better documentation.
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Chapter 6

Conclusion

6.1 Summary

The main focus of this thesis has been on semantic technologies and
ontologies in general, and their use in the oil and gas drilling domain in
particular. I have attempted to create a prototype for a drilling ontology
that captures much of the core concepts in the domain. This ontology was
then used partially in the conversion of XML to semantic RDF data, which
is an important step in accomplishing data integration. I have also explained
how this ontology can be used in the ontology framework QuOnto for actual
data integration. This is however not attempted by me, as another thesis
parallel to mine is dealing with the actual use of QuOnto.

To be able to construct this ontology, an important task was to gather and
present sources for domain knowledge that might be useful in the creation
of a drilling ontology. These sources are:

e WITSML

e DDR - Daily Drilling Report
ISO 15926

e Schlumberger Oilfield Glossary

e AKSIO
e Domain Experts

Out of these, WITSML and the Schlumberger Oilfield Glossary were two
of the most contributing sources, especially early on in the process. In
addition to these two, domain experts were the most enlightening source
of knowledge. Such experts helped to add and refine knowledge to the
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ontology that would have been impossible for myself from just examining
textual sources.

While building the actual drilling ontology, I also presented various aspects
of the technologies that form the foundation that makes ontologies possible.
These are:

¢ RDF

SPARQL

OWL2 / OWL-DL

DL-Lite, which is formalism of the OWL2 profile OWL2 QL

In addition to presenting the most relevant technologies, difficulties and
limitations inherent in these were examined. The most important of these
were:

e The use of partOf relations
e Consequences that cannot be expressed directly in OWL
e Modularity

The sources for domain knowledge are not in their original format suited
directly for use in ontologies. Therefore the relevant information must
be extracted from them depending on how the knowledge is represented.
A large portion of the thesis deals with this problem, and presents some
specifics of extracting relevant knowledge from all of the sources presented
earlier, including domain experts.

When the domain knowledge has been compacted and made better suited
for ontology construction, methods and principles for actual ontology
engineering should also be established. This was also done while keeping
focus on the drilling domain.

With both the domain and technological contexts established, the actual
drilling ontology was then presented. This drilling ontology is a prototype
that contains core concepts in the domain, as well as specifics into some areas
to illustrate how the continued construction can be conducted. Through a
number of iterations the ontology ended up as a set of three modules, where
the parts are:

e A Core module that largely consists of a taxonomy of the most
important classes for representing the drilling domain.

e A DL-Lite module that has the purpose of being a data integration
ontology.
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e A Universal quantifiers module that is not inhibited by the DL-
Lite restrictions. This module is free to use any OWL2 constructs
available.

Although the two extending modules can contain a large number of axioms,
the prototype ontologies currently has only a few axioms. As most of the
axioms do not influence the complexity in any way that puts it outside of
DL-Lite, the Core module is by far the largest module. Whether or not it
should be smaller and more axioms should be separated into another module
is something that will have to be considered more closely in the future.

The final part of the thesis introduced two specific uses for the ontology.
These uses are closely linked to data integration. The first case is that of
the ontology representation and reasoning framework QuOnto. It is able to
use DL-Lite ontologies specifically for the purpose of data integration. As
such the drilling ontology with the DL-Lite module was created with QuOnto
utilization in mind. However, as there is another concurrent thesis working
specifically on QuOnto use, I simply presented QuOnto at an abstract level.

The second use for the ontology was in a data conversion tool that I created
using Java and Jena'. This tool handles converting XML data to semantic
RDF data. It can do so either without any connection to an ontology, but
also with an ontology as a template for the conversion. This latter case
is the most interesting one, as it gives the converted data valuable context
that will surely be useful in data integration. As such this tool, while not
conducting any data integration by itself, facilitates for it.

6.2 Future work

There are a number of areas this thesis touches upon where more work can be
done. I will present some of the most important ones that I have identified.

Improve and extend the drilling ontology

The drilling ontology as it currently appears is a prototype for what such
an ontology could look like. There are certainly parts of it that can be
improved, both with regards to the domain knowledge representation, but
also in the technological aspect when it comes to modelling and engineering,.

'http://jena.sourceforge.net/
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Further modularization of the drilling ontology

The three modules that the drilling ontology currently consists of are not
as developed as they could have been. The core module is rather extensive,
and parts of it could perhaps be extracted in separate modules; one such
candidate that I have identified is the part with units of measure. Meanwhile
the two other modules can be expanded with more axioms to better fulfill
their potential. This should however be done in correlation to actual use
cases.

Do more work on investigating ontology engineering principles

As much innovative work is being done in general when it comes to
ontologies, the engineering of them is also a field where progress is constantly
made. Methodologies and principles are bound to appear that makes the
ontology construction process easier than it is today. Work to help improve
on this is paramount to a future commercial success of ontology based
systems.

More theoretical work on OWL2 and beyond

This is also an area where much research is being conducted. The topics
presented in this thesis are but a few of the challenges that exist. And as I
did not give definitive answers to them, much work can be done to improve
the quality of ontology languages.

Extend the use cases and do a full-scale data integration test

The use cases presented in this thesis were not large projects that properly
show the capabilities of ontology based data integration, but rather small
tests that establish that there is potential inherent in ontologies. The
next step should then be to do a larger scale test where data integration
is conducted. QuOnto is probably the best candidate for a system to be
implemented with relative ease, as this is already working framework while
my Java solution is still a simple converter.
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Terms and Acronyms

AKSIO Active Knowledge Management for Integrated Operations. Project
for semantic search through documents

Class OWL term meaning the same as Concept
Concept DL term for unary predicate

DL Description Logic , family of logic languages that OWL and its variants
are based on

DL-Lite Subset of DL that focuses on efficient data handling and querying
10 Integrated Operations
IOHN Integrated Operations in the High North

OLF Oljeindustriens Landsforening (The Norwegian Oil Industry Associa-
tion)

OWL Web ontology language , W3C recommendation for ontology
language

Property In OWL this is the same as Relation in DL

RDF Resource Description Framework
semantic described data/resources

RDFS RDF Schema

, W3C recommendation for

Relation DL term for binary predicate

Role OWL term meaning the same as Relation

SPARQL SPARQL Protocol and RDF Query Language

WITSML Wellsite Information Transfer Standards Markup Language
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File locations

ZIP-file with all of the files below at http://heim.ifi.uio.no/larsove/

master/masterALL.zip

The pdf file of this document at http://heim.ifi.uio.no/larsove/master/
master.pdf

The core module of the drilling ontology at http://heim.ifi.uio.no/
larsove/ontology/Drilling_ontology_core.owl

The DL-Lite module athttp://heim.ifi.uio.no/larsove/ontology/Drilling_
ontology_DL-Lite.owl

The universal quantifier module at http://heim.ifi.uio.no/larsove/
ontology/Drilling_ontology_UniQuant.owl

The AKSIO ontology converted to OWL-DL at http://heim.ifi.uio.
no/larsove/ontology/aksio_converted-2009-01-16.0owl

The first test ontology for compositions that works fine at http://
heim.ifi.uio.no/larsove/ontology/siblingsister.owl

The second test ontology for compositions that does not work properly
at http://heim.ifi.uio.no/larsove/ontology/siblingsister2.owl

The third test ontology for compositions at http://heim.ifi.uio.no/

larsove/ontology/uncle.owl

A collection of the files needed for XML to RDF conversion athttp:
//heim.ifi.uio.no/larsove/master/XMLtoRDF.zip

IOHN AKSIO conversion deliverable at http://heim.ifi.uio.no/larsove/
master/I0HN/IOHN_deliv_aksio_merged.pdf

IOHN Drilling ontology deliverable at http://heim.ifi.uio.no/larsove/
master/I0HN/IOHN_deliv_witsml_superstructure_merged.pdf

IOHN XML to RDF converter deliverable at http://heim.ifi.uio.
no/larsove/master/I0OHN/IOHN_deliv_xml2rdf_converter_merged.pdf
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Appendix A

Bonus Material

A.1 Statements

The problem of acquiring domain knowledge about the system he is creating
always exists for any kind of system designer. This is no less true for ontology
design. If the designer himself is to learn everything he knows about the
domain to be able to create a good enough system, he will have to study
long and a lot more than he probably has time for. This is clearly not a
realistic scenario. The domain experts have in many cases years of valuable
experience which is not easily acquired by someone new to the field. On the
other hand, having the domain experts learning how to create the system
themselves is equally difficult, and will require them to study lots as well.
This should all be well-known facts to people designing systems of any kind.
When a systems is to be made, certainly much time will be spent in meetings
and sessions between the system designers and the domain experts. This
often takes a lot of time, as acquiring sufficient amounts of knowledge to be
able to make a satisfiable system is not an easy task. Many iterations of
prototyping, which the experts then look at and discard are bound to occur.

While this is often a necessary process, I believe it can be made more
efficient. When time is sparse for some of the parties involved, arranging
actual meetings or workshops may be difficult and time-consuming, thus
there aren’t nearly enough of them to achieve the progress we would want.
I believe this is the case in many projects, where the system designers are
fully committed, while the domain experts have their normal schedule and
have to squeeze in the correspondence and meetings dealing with the project
whenever they can. What can be fruitful in these scenarios is having the
designers read some material upfront and learn things about the domain
before even meeting any of the experts. This I see as a natural way of
approaching a new domain, and is surely done in real projects. Reading up
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on the domain, they will most likely fail to grasp properly it at first, and
have questions about a great many things. Indeed, early on they might not
even know what they don’t know, an undesirable state of confusion. Meeting
the domain experts and engaging in dialogue is most certainly fruitful for
getting a clearer picture of the domain. But as mentioned, chances for this
might be sparse.

What I believe is a good substitute is a form of questioning. This might
sound obvious, but in my experience often the way questions are asked is
too complicated and unstructured. Even though normal questions through
email or phone conversations takes less time than having actual meetings, it
appears inefficient as the questions might be unclear and the domain expert
will perhaps not understand the question properly, or will explain the answer
in a way that is difficult to understand for the engineer. Compared to actual
meetings where a higher degree of conversation back and forth can occur,
the benefit will certainly be a lot lower as well, so the cost-efficiency might
turn out even lower than spending the time for actual meetings!

So what I propose is to structure the questioning a lot better. Not in
content but in form and complexity. And instead of actual questions, make
elementary statements. These can be statements that the designer believes
either to be true or false, but that belief should not be conveyed to the
experts when presenting the statements to avoid influencing the answers.
Having many simple elementary statements which the designed believe either
to be true or false, the domain experts can then quickly read each statement
and declare them true or false. Also the option of additional commenting on
the statement should be available. This way I believe the domain experts
can run through a list of lots of statements fairly quick, giving the designer
valuable input to work on. This can be repeated, and through each iteration
the designer should be able to state more and more relevant things getting
to the core difficulties of the domain, and this way getting good knowledge.
Of course, this alone is probably not enough, and should be combined with
regular meetings and other activities (like reading documentation, tutorials,
books, ...). But whenever designing a system, opinion and input from the
domain experts with years of experience should in most cases be the best
way of quickly understanding the domain.

One important prerequisite for this method to work, is that the designer
has a concrete goal when making the statements. He should be aiming for
somewhere: a particular design, model, function, or something else. If the
designer is only interested in general knowledge about the domain as a whole,
only relying on these statements may not give the big picture that he aims
for. There will always be things and relations the designer haven’t thought
about, which can best be explained by the experts. This is also the reason
why the most efficient way is to start by acquiring overall knowledge and
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the big picture, and then combine statements with other correspondence to
narrow down on the problem at hand (such as creating an ontology).

When it comes to creating ontologies, they are somewhat special since good
design of them will require a much better understanding of the domain
than with many other applications. But it still is a concrete goal, where
statements can be useful. For instance for determining class-names, subClass
relations and other relations and their naming. An important part of
ontology design is determining what level of abstraction we want, and also
where to divide the TBox from the Abox (higher abstraction means most
likely a smaller TBox with instances at a “high” conceptual level. Compare
having Car instances to having instances of a VW Golf). This decision
however should be carefully reached in discussion with the domain experts
and the users of the systems being created. Statements may be useful here
also though!

It boils down to reduction in complexity compared to normal questioning. If
the statements all are short propositions, then they should be easy and quick
to comprehend and give an answer to. Especially since the answer is either
true or false. However since the answer is so simple, actually extracting
useful information might require a lot more statements than you would
need with other forms of questioning. And there will be more work for
the designer to combine the answers to the statements and consider their
relevance. But as the designer is assumed to have much more time available
than the domain expert, the amount of work should be balanced out with
regards to time. I will present some methodology aimed at getting as much
and as correct knowledge out of the statements and their answers as possible.

A.1.1 Methodology

As to what kind of statements should be stated, there are certain methods
that might be followed:

e Redundancy! Make rephrased statements more than once, especially
the ones you feel are important. Alter details if necessary, but be aware
of the changes made to statements. Also when they are rephrased the
meaning may change.

e Make a statement that you think is true, and then later make an op-
posite statement (perhaps rephrased) trying to create contradictions.
If the experts answers true or false on both, you know that some-
thing is fishy and should be more carefully inquired, either with more
statements or as a good question for the next actual meeting.

e Try to have a “path/graph/tree of statements” such that many of the
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statements are connected in a way. This will happen naturally if you
start with complex statements/questions and break them into smaller
parts. Thinking this way in a e.g. hierarchy and having a model of
how to fit together the answers may be a good idea. So, starting
with general statements, break them into parts down to “atomic”
statements. This of course requires much work, perhaps way too much.
But it could also be a general method applicable to many different
domains, so adaption could turn out easy once developed.

Having the domain experts agreeing to such an approach, such that they
answer properly each statement is required of course, and persuasion will

not be addressed here.

A.1.2 Test case

I have had the opportunity to test this theory on a domain expert from NOV
(National Oilwell Varco) and got some interesting results.

Statement: casing is a process
True/False: True
Comment : Can also be a steel pipe inserted into a well bore

to seal off

fluids and keep the hole from caving in.

Statement: a run is a process
True/False: True
Comment: Can also refer to a specific run with a drill

string - a

run would then be given a run number.

Statement: cementing is a process

True/False: True

Comment :

Statement: an operation is a process

True/False: True

Comment :

Statement: a Run is any operation that puts a string down a
borehole

True/False: True

Comment :

Statement: a Run lasts from when the string is inserted until

it is extracted

True/False:

True
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Comment :

Statement:

True/False:

Comment :

Statement:

True/False:

Comment :

a WITSML-bhaRun is the same as a Run
False
A WITSML-bhaRun is a type of run.

all Runs must use a string
False
Can also be a Coiled Tubing Run. (Not a string, but

rather a Wire)

Statement:

the tip of the string is always a bottomhole

assembly (BHA)

True/False:

Comment :

Statement:

True/False:

Comment :

False
I.e. When running a Casing Run - There is no BHA.

string is the same as drillstring
False
I.e. Casing String. A drillstring is a complete

string incl. BHA.

Statement:

True/False:

Comment :

Statement:

True/False:

Comment :

Statement:

True/False:

Comment :

Statement:

True/False:

Comment :

wellbore is the same as borehole
True

a Run does not always use a string down the borehole
True

Ref, Coiled tubing.

a drillstring is a tubular

True

a rig only drills one borehole at a time;

Depends how rig is defined. If Rig is defined as the

Derreck (the drilling tower) then this is true. If Rig is
defined as a drilling facility, then this would be false,
since drilling rig can have multiple Derricks.

Statement: WITSML-wbGeometry describes one casing

True/False: False

Comment : Describes a well (annular) section given a certain
geometry/diameter.
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Statement: only Runs uses drillstrings
True/False: True
Comment :

Statement: a Run has a trajectory and a target

True/False: False

Comment : A run follows a certain trajectory, or makes one in
case of drilling run.

Statement: a borehole has a trajectory and a target
True/False: True
Comment :

Statement: casing is not a Run
True/False: False
Comment : Casing run exists.

Statement: casing is not tubular
True/False: False
Comment :

Statement: cementing is a Run
True/False: True
Comment :

Statement: cementing is only done right after casing
True/False: False
Comment : Can also be done to strengthen well sections.

Statement: trajectory is a wellpath
True/False: True
Comment :

Statement: a drillstring always uses a bottomhole assembly
True/False: True
Comment :

Statement: all operations that insert something into the
borehole are Runs
True/False: True

Comment :

Statement: there are Runs that aren’t WITSML-bhaRun
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True/False: True
Comment :

Statement: all stages of casing are done in the same way
True/False: True
Comment : Fist casing is not necessarily cemented in place.

Statement: cementing is always done right after casing
True/False: True
Comment :

Statement: a WITSML-tubular is only made out of
WITSML-tubularComponents

True/False: True

Comment :

Statement: WITSML data is not a continuous stream of live data

True/False: True

Comment : Some of the documents (i.e realtime data) is sent
frequently, and some (I.e. well) are sent infrequently.

Statement: WITSML data are sent as XML documents and stored on

a server
True/False: False
Comment : WITSML data are sent as XML documents, but they are

not always stored as documents, rather the information
contained in them is extracted and inserted into other
systems / databases.

Statement: WITSML documents are sent from drilling-rigs
sporadically, and not necessarily often.

True/False: True

Comment :

Statement: some type of WITSML documents are sent more often
than others (which ones?)

True/False: True

Comment : RealTime, Log, WellLog are sent often.

Statement: an actual XML document file is described by one of
the schemas with the obj_ prefix

True/False: True

Comment :
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The feedback contain much good information, but the answers were not as
simple as I expected. Many of the answers were not just true or false, but
had further comments. I expected that some of the statements would get
comments in addition to a simple true or false, but as many as I got. This is
however still useful since the amount of insight into domain increases, and
the bases for ontology design decisions improve.

A.2 DMore on Mereology

One important distinction to make design-time is whether the ontology
is meant only for use when actually drilling, or if it is to be more of a
general life-cycle ontology. In the case of just actual drilling, things can be
much more explicit and detailed. This is because everything that is true
when drilling can be directly expressed. In the second case a more general
approach must be made. Many things that are true when drilling aren’t
necessarily true at other times, so these things cannot be expressed (at least
in the core ontology). To illustrate using an example:

Having the class DrillBit and the class BottomholeAssembly, we know that
there is a connection between those two. Wohile drilling, a bottomhole
assembly must always have a part that is a drillbit, and a drillbit is always a
part of a bottomhole assembly. These two statements can then be explicitly
made as restrictions in the ontology if we are only concerned with drill-
time. However, when not drilling e.g. the equipment in storage, things
are different. It will still be true that a bottomhole assembly always has a
part that is drillbit, but it will not be true that a drillbit must be part of
a bottomhole assembly. The distinction here is that a drillbit is a defining
part of a bottomhole assembly; a bottomhole assembly is not whole without
a drillbit. The same is not true about drillbits. They are full-worthy drillbits
without being part of any bottomholeassembly. A meronomy! runs one way
only, from the parts up towards the whole. Meaning that the parts define
the whole, while the whole says less about its parts. Drillbits are in this
context atomic parts (leaf nodes in a meronomy) and will thus always be
a full-worthy drillbit in any conceivable use for the ontology. Bottomhole
assembly however is a “complex object” (inner nodes in a meronomy) defined
by its parts, one of them being drillbit. We cannot say anything beyond this
for sure if we make no assumptions as to how the ontology will be used. It
is up to the scenarios where the ontology is used to dictate any additional
restraints made on the description of the part-whole relationship of drillbit
and bottomhole assembly, as well as other similar cases.

Mereology: the theory of part-whole relationships. Meronomy: a set of concepts
classified in a part-whole structure.
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One must also take care when using inverse roles for mereology. “hasPart”
and “partOf” should be made inverse, but they may certainly have different
uses, again dependent upon context. A particular bottomhole assembly may
only be part of one drillstring at a time, but if we set out to model what
happens during time-elapse, that one bottomhole assembly may become part
of different drillstrings. This particular problem may however be remedied
by having each bottomhole assembly be a whole for the sole purpose of
one drillstring. And reuse of its parts would then create a different whole
for another drillstring. This does not eliminate the problem however, as
atomic parts such as “Drillbit” still retain the potential problem. However,
as discussed above. the context may dictate how many restrictions we may
want to put on a class. In a specific context it may very well be prudent to
say that a drillbit be part of only one bottomhole assembly, and likewise a
bottomhole assembly be part of only one drillstring.

A.3 Normative vs Descriptive

In any kind of knowledge representational(KR) system?, there are intro-
duced biases and assumptions about the world represented. Traditionally
most computer based KR systems have been strictly defined by rules® and
the data entered must fit these rules perfectly. Within these rules lies the
biases and assumptions. Whenever the creators defined the system in ques-
tion, they carried along with them their own experiences, wishes and agendas
for the system, as well as the same for the actual users of the system to the
best of their ability (herein lies an obvious challenge in communicating the
users’ requirements properly, but that is a different discussion).

What essentially is done in such systems, is that a closed defined system
of representation is created. Whether this be a relational database at the
bottom with middleware and software on top, or any other incarnations,
this is mostly true today. Altering the representation of certain data or
knowledge can range from fairly easy on small systems to difficult or nearly
impossible within larger more complex systems. Problems linked to altering
representation in existing systems should not arise where the domain is
more or less static or where the purpose of the system does not change.
However many systems, especially nowadays with the advent of so many

2The word “system” is in this text given the meaning of “computer based collection
of software that works together in achieving a given purpose/purposes”. In this context
this purpose is most often knowledge representation, but should be clearly stated when it
differs.

3The word “rule” here can be any kind of schema or statement that in collections/sets
clearly define what is expressible and not by the system. Not to be confused with logic
based rules, nor general ways of axiomatizing.
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web-communities and socially based websites. Places such as facebook,
myspace, flickr, youtube and many others are generating huge amounts
of data that is not static by nature but changes as the demands of users
change and websites struggle to keep up with these. Whereas clearly defined
small company databases can remain unaltered over long periods of time,
huge databases that interact across organizations are much more sensitive
to change and are incredibly expensive to alter.

The core of the problem lies in the assumption implicit in the rules that
defines a normative system. In such systems, the extent of expressivity is
defined solely by the rules. If something is not expressible with regards
to the rules, then that something is by definition not part of the system.
If we still wanted to facilitate adding this particular something, then we
would either have to alter the rules and thereby endangering all of the data
already in the system; or we would have to create some ad hoc exception to
the rules and handle that appropriately throughout the software. This is the
old-fashioned and computer-friendly approach to representational systems.

In contrast to this we have what we can call a descriptive system. This is
fundamentally different in that it does not create a system defined solely by
some ruleset, but rather tries to describe a certain domain of interest that
already exists (whether it be in the “real” world or in “cyberspace”). The
advantage of this is that we aren’t bound by any self-imposed restrictions
to our domain, but are free to expand and improve our representation to a
much greater extent (as far as our representational formalism allows). This
has certain drawbacks however. In our search for regularity in information
and ease of representation, which must be conducted to some extent in
a formalized computer system, the nature of such descriptive approaches
entails the existence of exceptions.

A resource can be a class, an instance or even a property in different contexts.
This makes it so hard to create a general descriptive ontology of a certain
domain, even if that domain is really simple. A normative ontology would
however not have these problems, since it by nature is meant to dictate
exactly how things are to be interpreted.

But another problem with descriptive ontologies lies just in this potential
misalignment with reality. The logics behind the ontologies are there for
the purpose of giving unambiguous meaning to resources, but in reality
things are often ambiguous. For example, homonyms are words that are
spelled the same way but have different meanings. They cannot be expressed
as simply themselves, as this would mean that the different meanings of
the words are part of the same ontology resources. In a small ontology
for a specific purpose, we are able to avoid this problem to a fair extent,
since homonyms have nothing to do with each other and are thus parts of
unrelated domains. However the more general the purpose of the ontology
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gets, the more ambiguities from the real world appear. This in by nature
inherent in everything human, and cannot be avoided when dealing with
trying to describe the real world.

An obvious way of dealing with this is simply to specify the exact purpose of
the ontology, without any built-in support for other uses. It will certainly be
possible to use the ontology for other purposes, but many assumptions with
regards to how resources are handled may not fit. In this way of specifying
a purpose what is really done is to make the ontology more normative, in
that it dictates clear meaning.

A descriptive ontology in ambiguous domains will not be able to express as
much as a normative ontology. Many axioms which clearly defines specific
meaning will potentially exclude uses for the ontology that are interesting.
This can be solved partially by modularizing the ontology, where there is a
core set of axioms that is purely descriptive and excludes no purposes for
use. Each specific purpose must in this case create a specific ontology which
can import the core ontology. At least some level of reuseability will be
accomplished by doing so, but instead of having a single domain ontology,
there will be many that can possibly create confusion.

It is important to note that this distinction between descriptive and
normative ontologies has to do with how the ontology designer(s) approach
the problem of creating an ontology. It is not something that necessarily
yields different ontologies. If the domain of interest is unambiguous as it
is, the resulting ontology may turn out the same regardless of whether the
descriptive or the normative approach is used. The two extreme cases can
be described as such:

e 100% descriptive - The ontology is designed with any conceivable
purpose in mind. This extremity can result in an ontology that to be
able to accommodate every conceivable purpose says almost nothing,
and is thus useless.

e 100% normative - The ontology is designed with one single purpose
in mind. This extremity is not as fateful as the descriptive one. The
rigidity obtained here assures full compliance with the use the ontology
is designed for, but other purposes may also be able to use the ontology
without much trouble.
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A.4 WITSML/XML to RDF/OWL conversion
and problems concerning this

This section goes more into the difficulties and problems that arose when
creating the converter for XML data to RDF/OWL. The text is not as
polished as section 5.2, but contains more detail in certain areas. Some of
the text overlaps with other parts of the thesis, which is natural as many
topics for the converter are important for the whole thesis.

A.4.1 Structured datatypes in RDF and OWL

This section contains pros and cons on different approaches for representing
low level drilling data in RDF / OWL; mainly concerning predicate =
property (binary only) or predicate = class. In the first case, we have a very
simple representation which should be fast to process and easy to convert to
and from. In the second case we have a more complex representation which
potentially could prove slower and more difficult to use.

To illustrate using an example:

<Person id="Peter">
<Height unit="cm">180</Height>
</Person>

Now we show the RDF conversion using the two approaches. A simple
representation, only one RDF triple per tag is needed:

Peter rdf:type Person .
Peter hasHeight_cm 180 .

Pros
e casy to convert
e casy to process
Cons
e might lose semantic content
e cannot have n-ary relations
e implicit structure of properties

Peter rdf:type Person .
Peter hasHeight anonl
anonl hasValue 180 .
anonl hasUnit cm .
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(anonl rdf:type Height .)

A complex representation, several RDF triples needed:
Pros

e no implicit structure

e retains semantic content
Cons

e more difficult to convert automatically

e SPARQL queries are more difficult to formulate

Note that when using the simple approach, there is little doubt what the
name of the property should be. In our example, “hasHeight_cm” or similar
variations are natural. When using the complex approach, this is not as
easy. Since there is no longer a single property from subject to object (from
Peter to 180), many possibilities arise. The conversion showed above is
just one suggestion for a naming scheme. There are considerations to be
made concerning how much we want to express, and if we get problematic
redundancy.

The instance “anonl”, which can be made of type “Height”, represents the
complex property. Saying “Peter hasHeight anonl” is then similar to saying
that Peter has a height that is a Height. This sounds like redundant
information. Perhaps it is enough to say that “Peter has anonl” or even
“Peter _ anonl”, making the property anonymous. These are questions to
which I have no immediate answer. As for the properties from “anonl”, they
seem more sure. “hasValue” and “hasUnit” are reasonable names for those
properties, but these too are open to discussion.

Another problem that needs addressing is the different scenarios of use for
the results concerning structured datatypes above. There are two extremes
and a middle ground to consider. The two extremes are using simple
representation for all properties, and the other using complex representation
for all properties, while the middle ground is somewhere between (thus most
likely more difficult to implement and use).

The complex representation for all demands that all XML elements are to
be transformed into RDF nodes (OWL instances), while element values
are RDF literals (OWL concrete domains connected through datatype
properties). The RDF predicates (properties) in this case would either be
the same for all relationships (say, a single “has” property), or something
more complex e.g. each relationship has its own RDF predicate (property).
This approach makes it easy to simulate n-ary relations as described above.
It does however also mean that relations that can be expressed simply with
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a single triple becomes unnecessary complex. Creating restrictions in the
OWL ontology on top may also become more cumbersome, but this must
be more carefully investigated.

The simple representation for all ensures few triples and easy conversion from
XML. This also means that the pros and cons from above will be true for
the structured datatypes. Whether or not simple representation is enough
must be evaluated on a case-by-case basis.

The middle ground assures that structured datatypes are properly expressed,
while simple datatypes are expressed with a single triple like “subject
datatype-property value”. This approach makes it necessary to treat the
two variants differently. We will add to our Person Peter:

<Person id="Peter">
<Height unit="cm">180</Height>
<Occupation>Journalist</Occupation>
</Person>

This will then yield these RDF triples:

Peter rdf:type Person .

Peter hasHeight anonl

anonl hasValue 180 .

anonl hasUnit cm .

(anonl rdf:type Height .)

Peter hasOccupation "journalist"

The potential problem here is that through “hasOccupation” we get the
value “journalist” directly, while through “hasHeight” we get an anonymous
instance, which itself has a property to both the value “180” and to the
unit “cm”. These are two different ways to get information about Peter,
which may not always be obvious. If this middle ground method is to be
used, it must be made clear which properties use a simple representation
and which properties use a complex one. Maybe this can be helped through
naming conventions and such as well. It must in any case be more carefully
investigated.
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