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Summary 
This thesis reports the results from a literature review conducted on the topic of code smells 

and refactoring. Code smells are segments of the source code that display potential design 

issues. Refactoring is the process for modifying source code to improve its quality (e.g. 

maintainability) without affecting its functionality. Improving the code design is important for 

reducing costs involved in maintenance projects. Thus, refactoring has become an integral 

part of developer’s everyday work, yet effects of refactoring on software quality are not well 

understood. I believe that an overview of the available empirical evidence on the effects of 

code smells and refactoring in software projects, as well as methods and tools available for 

supporting refactoring activities, will contribute significantly to the current practices in 

industry and at the same time, will provide a constructive stance towards scientific work 

within this field. This review was conducted on the three major databases related to software 

engineering: IEEE Xplore, ACM Digital Library and ISI Web of Knowledge, based on most 

of the features of a systematic literature review protocol. The main findings from this review 

are: A relatively small portion of the identified work reported empirical studies (24% of the 

articles) as opposed to design research contributions (61% of the articles), the latter includes 

both methods and tools for code smells detection and refactoring support. Only 13.8% of 

these design contributions reported any type of validation or evaluation in an industrial setting 

and of these, only half of them reported a thorough validation in a realistic setting (i.e. 

industrial). Most of the design contributions (22 out of 28) were partly or wholly concerned 

with the detection of code smells. The literature review identified several tools available to 

help developers detect and remove some code smells, but no significant evaluation was 

reported that could help to select the most suitable tool for a given context. The review found 

a significant increase in the number of publications on code smells and refactoring since 

2005. Nevertheless, the review found in general a lack of empirically sound evidence that 

could help developers and architects interpreting, analyzing, and choosing the best refactoring 

strategies for improving maintainability. This leaves substantial areas for improvement within 

this area, mainly development of: (1) better and more concrete refactoring guidelines that are 

based on sound empirical evidence, and (2) better evaluation frameworks that could enable 

practitioners to choose the adequate tools and methods that would fit their specific needs in a 

given context. 
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1 Introduction 

1.1 Motivation and current state 
Software maintenance projects are very costly. The total maintenance costs of a software 

project are estimated to 40%-70% of the total cost of the lifecycle of the project [1]. 

Consequently, reducing the effort spent on maintenance can be seen as a natural way of 

reducing the overall costs of a software project. This is one of the main reasons for the recent 

interest in concepts such as refactoring and code smells. Refactoring is to “improve the design 

after it has been written” [2]. Doing this will increase the understandability of code, make it 

easier to implement new features and debug the code [2]. Code smells are symptoms or 

indicators in the code suggesting that something may need to be refactored [2].  

Refactoring does not add functionality, but is done under the assumption that it will make the 

code easier to work with. This premise focuses on “effectively spending time and money in 

order to save time and money in the future”. It is difficult to judge which areas of the code 

and what kind of refactoring to use without measureable evidence on the effects of 

refactoring. Empirical evidence could make these decisions easier. The field of code smells 

and refactoring is fairly young, and consequently, it seems that empirical evidence is scarce. 

The purpose behind this thesis is to investigate what type of research exists within this field 

and to present an overview of the current state of the art with respect to code smells and 

refactoring research. More specifically, what has been the output from the research 

community that might help programmers to detect code smells, decide when to refactor, and 

actually perform the different refactorings? In order to have a comprehensive view on the 

different types of contributions, this review covered empirical contributions, design research 

contributions, theoretical contributions and summarizing contributions. 

1.2 Objective of Research and Research Questions 
This thesis consists of a review of relevant literature in the software engineering field 

concerned with refactoring and code smells. The main objective of the review is to examine 

the current research work and present the most relevant and interesting contributions that 

might be useful for practitioners working with these concepts. At the same time, a systematic 

and comprehensive overview of the research could constitute a contribution for the research 

community since it can facilitate an evaluative and strategic stance and discussion of the 

future directions within the field. 
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The main objective of this thesis is to get an overview of research related to each of the stages 

of the refactoring process: Detecting code smells, making decisions on which refactorings to 

choose, and performing the refactoring. The review also attempts to identify which methods 

and tools have been created to support these different stages of refactoring. The following 

questions (divided in Research Question and Sub-Questions) were formulated as a basis for 

identifying, analyzing and discussing the existing literature:  

RQ: What is the state of art in SE research to support analysis and detection of code smells 

and refactoring decisions?   

SQ1: What is the state of art in SE research with respect to investigating empirically the 

effects of code smells in development and maintenance projects?   

SQ2: What is the state of art in SE research with respect to investigating empirically the 

effects of refactorings in development and maintenance projects?  

SQ3: Which tools and methods have been developed to support code smell analysis and 

detection or refactoring decisions?   

1.3 Research Method 
A literature review was chosen as a suitable methodology to answer the research questions. A 

protocol for systematic literature review [3] was used as a guide to achieve a structured 

process and robust evidence for the validity of the results, although the protocol was not 

followed in details, which means the review reported here is not a systematic one. At the same 

time, certain level of flexibility was prioritized due to the exploratory nature of the study, 

bearing in mind that this is a relatively new topic, which may lack a standard terminology 

(many features of a systematic literature review could be extremely time consuming, thus 

more likely to be out of the scope for an MSc thesis period). 

1.4 Overview of the Thesis 
The rest of the thesis is organized as follows: Section 2 introduces the context by presenting 

relevant background information and related work. The research methodology for this review 

is presented in Section 3. Section 4 presents the results and findings from the literature review 

and a summary of the identified contributions. Section 5 discusses some of the findings under 

the light of the research questions. Section 6 discusses threats to validity of this study. Section 

7 presents the conclusions of this study, finalizing with Section 8, which presents future work.  
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2 Background and Related Work 
This section explains briefly the history and nature of code smells and refactoring, and 

introduces related work on literature reviews conducted in the field.  

2.1 Refactoring 

“Refactoring is the process of changing a software system in such a way that it does not alter 
the external behavior of the code yet improves its internal structure. It is a disciplined way to 
clean up code that minimizes the chances of introducing bugs. In essence when you refactor 
you are improving the design of the code after it has been written.” [2] 

The term refactoring precedes the code smell definition, but is still fairly young. Refactoring 

code has been done informally before the term was coined, but was first formally described 

by William Opdyke in his Ph.D. dissertation ([2], [4], [5]). Opdyke was also the researcher 

that coined the term, together with Ralph Johnson [4]. It is, however, after Fowler’s book [2] 

that the term and practice started gaining popularity. Refactoring is a practice that has gained 

an increasing popularity and usage the last years and has been a common topic on large 

software practitioner conferences, such as DevWeek [6], JavaOne [7], JavaZone [8], and 

Scandinavian Developer Conference [8].  

An example of a refactoring could be extract method: If a method is too long, it should be 

decomposed, using this refactoring. Find a clump of code (within the long method) that goes 

well together, create a new method with a descriptive name and move the code into the new 

method. If local variables are being used, they need to be passed as parameters. The last step 

is to add a call to the new method and test the code. [2] 

void printOwing() {    
  printBanner();     
  //print details    

System.out.println ("name: " + _name);  
 System.out.println ("amount " + getOutstanding()); 
 } 
 
should be refactored to: 
 
void printOwing() {   
 printBanner();      
 printDetails(getOutstanding());  
}   
void printDetails (double outstanding) {    
 System.out.println ("name: " + _name);  
 System.out.println ("amount " + outstanding);   
} 
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2.2 Code Smells 
A code smell is a symptom or indicator in the source code that indicates potential problems. 

This is not to be confused with compiler errors or warnings or other signs of code that is not 

working properly. Code smells only indicate that the maintainability of the specific code 

might not be as good as its potential, or to put it in the words of Fowler, “Any fool can write 

code that a computer can understand. Good programmers write code that humans can 

understand” (p 15 [2]). The importance of writing code that computers understand is obvious, 

but lately the importance of writing understandable code, has got more focus and acceptance. 

It is believed that even small efforts could lead to improve the understandability of the code, 

and this may decrease the developers’ effort on understanding and localizing relevant 

information for their tasks. This reduction of effort can lead to considerable reductions in 

maintenance costs. If one was able to get 1% reduction in effort needed for maintenance, this 

would count up to quite a lot of money if the project costs is estimated to $50 000 000.  

The metaphor of code that smells was made popular in Fowler’s book as “bad smells in 

code”. It is now known as code smells and is described in Kent Beck and Martin Fowler’s 

words as “certain structure in the code that suggests (sometimes they scream for) the 

possibility of refactoring” (p 75 in [2]). Some examples of these smells are: 

• Long method – a method that has grown too large. 

• Lazy class – a class that is not doing enough. 

• Comments – comments might suggest that the commented code is bad. 

• Feature envy – a method that is more interested in a class other than the one it actually is in. 

The identifications of code smells are useful in the sense that they might constitute 

prescriptive guidance for performing certain types of refactoring. An example of this is 

illustrated in Figure 1, where in order to eliminate the Feature Envy smell, a potential 

refactoring could be Move Method. 

 

Figure 1. UML diagram describing an example of the Move Method refactoring [2] 
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2.3 Related Work 
In this section, work related to the thesis topic is presented. The related work includes both 

early work on code smells and refactoring and other reviews and summarization work.  

Van Emden and Moonen [9] provided the first formalization of code smells and described a 

tool that could detect them. Marinescu [10] further formalized the definition of code smells 

and extended the detection to a wider range of code smells and a number of design principle 

violations. Fowler introduced formalized refactoring in his book [2] and Kerievsky build upon 

that work when he introduced more refactorings and code smells in his book on refactoring 

[11] in 2004. Summarizing contributions to the field includes Mens and Tourwé [12]. They 

present a survey on refactoring, which mainly discusses different aspects of the refactoring 

process: general ideas, refactoring activities, various formalisms and techniques, 

considerations and how refactoring fits the software development processes.  

In addition to work thematically related to this thesis, it would be meaningful to address some 

work that is related in terms of methodology. The usage of literature reviews in the software 

engineering field is relatively scarce and thus it is relevant to look into related research work 

for inspiration. Kitchenham proposed guidelines for systematic literature reviews appropriate 

for software engineering researchers [3], and Brereton et al. [13] presented lessons learned 

from performed systematic literature reviews within the software engineering domain. Holt 

[14] and Dybå [15] both performed systematic reviews within this domain.  
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3 Research Methodology 
This chapter has two main purposes. First, it is meant to describe and argument for the 

choices of the methodological strategies followed in the review. Second, it documents the 

process followed to arrive to the results. By describing the methodological steps and 

documenting the data collection process, this review can be replicated and this will support 

the internal validity of the study. 

Literature review was selected as the research method in this thesis work, since investigating 

the published work within this specific area was assumed to be sufficiently comprehensive to 

provide substantial information to answer the research questions. A literature review is a text 

that aims to gather relevant information in a specific field. Kitchenham [3] describes it as ‘‘a 

means of evaluating and interpreting all available research relevant to a particular research 

question or topic area or phenomenon of interest’’. While Kitchenham describes a systematic 

review, the purpose remains the same for the literature review reported in this thesis. It was 

decided to use some of the features of a systematic literature review, but at the same time 

keep a certain level of flexibility on the method, due to the exploratory nature of the study and 

the fact that the topic is relatively new and involves non-standardized terminology.  

 
Figure 2: The main stages of the literature review. 

 
Within this chapter, the steps used from the systematic review method will be reported 

alongside with each of the stages of the review, its inputs and corresponding outputs. Figure 2 

presents the steps of the data collection part of the review and is inspired by Dybå and 

Dingsøyr’s work [15], which will be used as subsections in the remainder of this chapter. 
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3.1 Create Queries and Search Databases 
Databases 
Since the review topic consists of code smells and refactoring, the focus was placed in the 

main scholar research databases that specialize on computer and software research. The three 

largest and most commonly used databases in the software engineering field are ACM Digital 

Library[16], IEEE Xplore [17] and ISI Web of Knowledge [18]. Google Scholar was initially 

considered as a source, but it was excluded since it become clear that it would be out of scope. 

The first query created for the Google Scholar search (See Table 1) gave 8820 results in 

Google Scholar. The vast majority of these results were outside the field of software 

engineering. The query was modified to include only material from the year 2000 and 

onwards, and that specifically mentioned the keyword “software”. This reduced the results to 

657, but it was still 5 times bigger than the aggregated resulting set from all the three other 

databases. By manually inspecting the first 20 results, it was not possible to find any relevant 

article that did not already exist in the results from the other databases. This does not imply 

that the 657 results from Google Scholar would not contribute to the review. However, it 

indicated that the effort that would have to be spent, manually going through these results 

would probably outweigh the impact of these, presumably “grey”, contributions. Grey 

literature is a term used when referring to a body of materials that is not present in research 

databases or published through conventionally scientific channels. The Grey Literature 

Network Service, which facilitates distribution and access to grey literature, defines it as 

“Information produced on all levels of government, academics, business and industry in 

electronic and print formats not controlled by commercial publishing i.e. where publishing is 

not the primary activity of the producing body” [19]. Such contributions are not necessarily 

thoroughly scientific in its form and will often not document their claims sufficiently and are 

by nature rarely peer-reviewed. Using grey literature in a scientific thesis may subsequently 

lead to problems with the validity of the work, especially concerning to empirical 

contributions.  

Table 1: The initial query tested for Google scholar. 
("code smell*" OR "bad smell*" OR "design 

principle violation*" OR "structural symptom*") 
AND (“tool” OR “method” OR “technique” OR 

“knowledge” OR “decision”) 
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Queries 
The queries required for the literature review were mainly based on the research question: 

What is the state of art in SE research to support analysis and detection of code smells and 

refactoring decisions?  

Initially, a generic query was constructed in order to adapt it to different databases and their 

specific syntax. All the information needed in order to answer the research questions was 

related to term “code smell” (i.e., detecting and analyzing code smells, performing refactoring 

to remove code smells, and refactoring decisions on which smells to remove). Neither of these 

topics would be meaningful to discuss or analyze without mentioning code smells. For this 

reason, the term “code smell” was central to the query. In order to filter out the non-relevant 

results, an additional restriction was added to specify that the contributions on code smells 

should be limited to knowledge, methods or tools. The resulting preliminary query is: 

“code smell” and (tool or method or knowledge) 

To decrease the chance of missing out results due to different wordings, the query included 

the most used synonyms of the term code smell.  The phrases included wildcard characters to 

include plural forms. This resulted in the following query: 

("code smell*" OR "bad smell*" OR "design principle violation*" or "structural symptom*") 

and (tool or method or technique or knowledge) 

Some databases allowed limiting the results to time periods. The term “code smell” gained 

popularity only after it was documented in [2], which was released the last half of 1999. For 

this reason the queries were limited to contributions made from 2000 and onwards. 

Data extraction 

A preliminary data extraction sheet in Excel was made to prepare for further steps in the 

review, (i.e., applying the exclusion and inclusion criteria on the dataset). Tools used in this 

process were Zotero [20], Firefox, EndNote and Excel. Zotero is a plug-in for Firefox, which 

is used for managing references, both for academic and grey literature. Zotero has built in 

support for the most used research databases, including the ones used in this review: ACM 

Digital Library, IEEE Xplore and ISI Web of Knowledge. Running the queries in each of the 

search engines of the databases would result in a number of web pages with results.  
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Table 2: The specific queries and their corresponding databases 

ACM Digital Library: 

 

("code smell*" or "bad smell*" or "design 
principle violation*" or "structural 
symptom*") and (tool or method or technique 
or knowledge) 

IEEE Xplore: 
 

(((code smell* <in> metadata) or (bad smell* 
<in> metadata) or (design principle 
violation* <in> metadata))) <and> (pyr >= 
2000 <and> pyr <= 2009) <and> ((knowledge* 
<in> metadata) or (tool* <in> metadata) or 
(method* <in> metadata) or (decision* <in> 
metadata 
 
Time: 2000 – present 
 

ISI Web of knowledge: 
 

TS=("knowledge" OR "tool*" OR "method*" OR 
"technique*" OR "decision*") AND TS=("Code 
smell*" OR "Bad Smell*" OR "Design principle 
vi*" OR "Structural symptom*") 
 
Timespan=2000-2009. Databases=SCI-EXPANDED, 
CPCI-S, CPCI-SSH 

 

Zotero provides functionality to import all results on a web page into a built in reference 

library (as shown in Figure 3). The queries were executed in each of the search engines from 

the databases and the results were saved as a “library” in Zotero. Where available, a PDF-

document of the contribution would be saved as well. If no PDF were found, a HTML page 

with the title and abstract of the contribution would be saved instead. The PDF-documents 

were saved in the following format: <authors – year – name of article>. The complete list or 

references from Zotero were exported to Excel via Endnote (See Figure 4, which displays 

Zotero functionality for storing the reference list including the PDF files of the articles).  

 
Figure 3: Screenshot showing a list of articles extractable from the search result. 
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Figure 4: Screenshot showing the references with PDF-articles and data in Zotero. 

 
The following information was found to be adequate to be included in the first extraction 

sheet: Name of article, Author(s), Year of publishing, Publisher, Link to the actual article. 

The reminder of this section will describe how this information was extracted from the 

reference list and registered in the extraction sheet. 

Name of article, Author and Year of publishing 

These were all present in the references imported into Excel, for all contributions. Columns 

with this information were identified and labeled accordingly. 

Publisher 

The publisher (research database) of each document was not given for every reference, but 

was obtainable through some of the other columns of information. ISI Web of Knowledge 

entries were the only ones provided with an “accession number”. Some data manipulation on 

the excel sheet was done (i.e., sorting the sheet on this column and set the publisher for every 

row with this number to ISI). All articles from ACM Digital Library had the page number 

column formatted in a reminiscent way and could be separated and marked this way. The 

articles not marked as either ACM or ISI were subsequently marked as IEEE.  

Link to article 

Two Java-programs were developed for this purpose. The first program created a file system 

data structure for the downloaded PDF-documents. This structure stored the directory name 

where the PDF file was downloaded and the name of the file (besides other additional 

information). The PDF files and web pages were stored in a SVN repository. Another java-
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program was made to create the links to the files so it will print out links in the same order as 

the list of articles in the extraction sheet. This list was subsequently copied into the extraction 

sheet. This was done in order to facilitate the access of the actual articles from the extraction 

sheet. 

3.2 Exclusion Criteria 
The exclusion criteria were used in order to filter out irrelevant articles. These criteria should 

be rather clear and straightforward. In case there is a doubt about excluding something or not, 

it should be kept. Material on the borderline for exclusion will rarely pass the inclusion 

criteria and therefore would be assumed to not “pollute” the result set anyway. The exclusion 

criteria used in this review are the following: 

a) Articles not related to software development or maintenance of software (e.g. biology) 

b) Articles not written in English  

c) Articles not applicable to object-oriented (OO) programming languages 

d) A position paper, an editorial, preface, discussion, article summary, or summary of tutorials, 

workshops, panels, poster sessions, book reviews, and conference companions 

e) Articles already in the resulting set of articles 

To apply the exclusion criteria, the initial set of articles from the queries was screened. All 

contributions listed in the extraction sheet were marked as either excluded or not. For many 

contributions, reading the title of the paper would be sufficient, while for some cases it was 

required to examine the abstract. When the content of neither the title nor the abstract would 

give enough information whether the article meets the exclusion criteria, the article was 

included for the second stage screening (the application of the inclusion criteria). The 

contributions marked as “excluded” were double-checked and then removed from the 

extraction sheet. Some contributions would be found by more than one database and so the 

initial result set had several duplicated entries. These were also marked and all but one 

version were removed from the extraction sheet. 

3.3 Inclusion Criteria 
The inclusion criteria are the last filtering mechanism that separates the list of possibly 

relevant articles from the final result set. Articles were only included if they met at least one 

of the inclusion criteria. An article was included if one of the following were met: 
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a) An article that reports empirical results on code smell detection or analysis or on refactoring 

decisions  

b)  An article that reports a tool or method which could be used for code smell detection/analysis 

c)  An article that reports a tool or method which could be used for refactoring decisions 

These initial inclusion criteria were made for the inclusion stage, but when starting to apply it 

to the preliminary set of articles, it was found to be slightly insufficient. Some topics were 

borderline cases such as: 

• UML-refactorings and related smells 

• Refactoring of unit-tests and related smells 

• Aspect-oriented refactorings and related smells 

• Architectural (high impact) refactorings and smells 

• Software visualizations that were made for other reasons but that could still be used for code 

smells as an supportive method/tool 

• Other articles that can be used as a part of decision making or smell detection (like deletion 

patterns, evolution patterns, OO-ontology) 

The phrases “code smell” and refactoring were found to be applied to domains outside the 

object oriented software domain, where it was coined.  This was not taken into consideration 

when the inclusion criteria were formulated initially, so another criterion was included in 

order to include other domains that seemed relevant to answer some of the research questions 

posed in this review. The final resulting criteria are as follows:  

a) An article that reports empirical results on code smell detection or analysis or on refactoring 

decisions  

b) An article that reports a tool or method which could be used for code smell detection/analysis 

c) An article that reports a tool or method which could be used for refactoring decisions 

d) An article that reports the usage of code smells or refactoring in closely related domains 

 
These criteria were applied to the output from the exclusion stage and the result was the 

primary list of articles. The list of contributions in the extraction sheet was examined by 

reading the abstract of each contribution to decide whether it met one or more of the inclusion 

criteria. After screening each contribution and marking those that met the inclusion criteria, 

all articles not marked for inclusion were removed. The final list of articles is presented in the 

appendix.  
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3.4 Data Extraction  
The data extraction step consisted of examining closely the contributions and extracting all 

the relevant data required to answer the research questions. As topics for categorizing the 

contributions emerged from the screening performed during the inclusion and exclusion 

stages, these were used as input to the build the categorization schema. The final 

categorization schema is shown in Figure 5, and is based on several types of contributions: a) 

empirical, b) methods, c) tools, d) theoretical, and e) summarizing contributions. For each 

main category of contribution, the information considered to be the most relevant and 

available was included in the schema in an iterative fashion. In order to extract all the relevant 

information, abstracts, results and conclusion sections were examined from each of the 

articles for most of the cases. In other cases, the entire article was examined. 

 
Figure 5: The categorization schema used in the data extraction stage 
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In the following sections the different categories for contributions included in the schema are 

explained in detail, as they are of vital importance for the rest of the extraction process. Five 

main types were defined and all contributions were categorized using these definitions.  

a) Empirical contribution. Empirically validated knowledge related to code smells, 

refactorings or refactoring decisions. Empirically contributions can include case studies, 

surveys, experiments or other type of studies.  

b) Methodological contribution. A proposed way for performing some activity related to 

refactoring or code smell detection/analysis: For instance counting the number of lines of 

code in a method in order to identify the large method code smell or using certain types of 

code visualization in order to make refactoring decisions. 

c) Tool contribution. Either as a standalone program or as an extension to an integrated 

development environment (IDE) for detecting code smells, performing refactorings or support 

the process of making refactoring decisions (it can be used for one or more of these purposes). 

Some examples of such tools include: a visualization tool which focuses on visualizing code 

characteristics useful when making refactoring decisions, an IDE-plug-in for detecting the 

shotgun surgery code smell or a plug-in that would suggest a refactoring-order when 

performing several extract method refactorings in a project.  

d) Theoretical contribution. Consists of a contribution that alters or adds to the theoretical 

framework of the field. Proposing new code smells or transferring the paradigms of code 

smells and refactorings to fields like aspect oriented programming or UML-modeling would 

be examples of such contributions. 

e) Summarizing contribution. Consists of a survey, literature review, or other article where 

the collection of information itself is a major part of the contribution. An example of this can 

be a survey of refactoring tools or a literature review on code smells. 

After categorizing all contributions into these groups, the extraction for additional relevant 

data was completed. For each main type of contribution the following information was 

extracted and added into the extraction sheet: 

a) Empirical contribution: Data extracted from empirical contributions relate to the way the 

empirical data is collected itself. Firstly the type of study conducted was derived (i.e., case 
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study, experiment, action research or another kind of research). The second kind of data 

extracted from these contributions consisted of the setting in which the study was conducted 

in order to assess the external validity of the findings (e.g., were the given code or subjects 

part of an industrial project or a classroom setting?). 

b) Methodological contribution: The first piece of information gathered for the 

methodological contributions was the purpose of the method. Was it made to detect code 

smells, perform refactoring or to help make refactoring decisions? The contribution was also 

examined to determine whether the method was evaluated and in which setting (academically 

or in an industrial setting). Data on the level of automation for the different methods where 

collected as well (some methods/tools only present suggestions on different refactorings while 

others were created to automatically perform refactorings). The domain in which the 

methodology could be applied was also noted (e.g., some methods were created under the 

Aspect Oriented Programming paradigm). Although methods in different domains are 

interesting, the main focus was kept for methods compatible with OO software domain. 

c) Tool contribution: The information collected on articles reporting tool contributions were 

rather similar to the methodological contributions.  

d) Theoretical contribution: The theoretical contributions do not share as much relevant data 

as methods and tools and only type of theoretical contribution was gathered from these types 

of contributions. 

e) Summarizing contribution: These contributions are not as directly linked to the research 

question and so only the type of summarizing contribution was registered for them. 

Figure 6 displays a fragment of the extraction sheet where all the relevant data according to 

the categorization schema was introduced per each article. 
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Figure 6: Screenshot of the data extraction sheet. It shows some of the data gathered and how it was organized. 

 

3.5 Data Analysis 
This section describes how the results from the extracted data material were analyzed. The 

data used for this part included the extraction sheet and PDF-files of the contributions. To be 

able to answer the main research question, it is required to answer the three sub-questions 

formulated at the beginning of the thesis. Sub-questions SQ1 and SQ2 focus on the empirical 

evidence to understand the effects of code smells and refactorings respectively, thus all the 

empirical contributions were examined and summarized. The empirical work was then 

grouped according to a set of topics that emerged during reading process. These topics 

emerged from informal coding done on the content of the articles, which consequently were 

sorted following a somewhat similar approach to grounded theory [21]. The topics were 

created based on the focus of the contributions and how they related to the research questions. 

Research sub-question SQ3 relates to method and tool contributions in a similar way and thus 

these contributions were also summarized and grouped based on the purpose of the method or 

tool (which was already available in the data extraction sheet). A meta-analysis on the 

resulting primary list of articles was performed through descriptive statistics (in the form of 

charts, summarizing tables and diagrams). The focus topics of the contributions and the data 

gathered in the extraction sheet were used as the main data sources to generate the graphs and 

tables. 
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4 Results 
This section reports the findings from the literature review. Figure 7 displays the output from 

the different stages of the review. The initial queries yielded a total of 134 contributions. This 

did, however, comprise both duplicates and irrelevant material. After applying the exclusion 

and inclusion criteria, only 46 articles remained.  

 
Figure 7:Output from the previously defined stages. 

4.1 Overview of the Studies 
Table 3 presents the distribution of the contributions according to the categorization 

previously described in the methodology section. The majority of the contributions (61%) are 

design research. This includes both methods and tools – which is a difference that only 

occasionally will cause them to be separated when I discuss these contributions in the 

remainder of this thesis. The difference is mainly whether the method is implemented as a 

tool or not, and this difference is often not important. Detailed results on the design 

contributions are presented in Section 4.3. The second most represented type of contribution 

is empirical research (24%). These contributions are further grouped and summarized in 

Section 4.2. Summarizing and theoretical research were the least represented contribution 

types with only a total of 7 contributions (15%). These types of contributions are not directly 

relevant for any of the research questions but could obviously provide input to answer the 

main research question on the state of the art in SE research, and are both summarized in 

Section 4.4.  
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Table 3: Classification according to type of contribution 

Type of research Contribution Number Percent 
Empirical research - 11 24% 

Method 13 28.5% 
Tool 6 13  % 
Method + tool 9 19.5% 

Design research  

Subtotal 28 61% 
Summarizing research - 3 6.5% 
Theoretical research - 4 8.5% 
Total   46 100% 

 

Figure 8 shows the number of contributions published each year starting from 2000. The 

contributions within this research filed were relatively scarce until 2004. The number of 

contributions from 2009 does not include the last few months because the data was collected 

in the autumn 2009.  

 
Figure 8: Number of relevant contributions published each year starting from 2000 

 
The remaining subsections will summarize the articles according to the categories in which 

each of them were grouped into. The articles are numbered and for the remainder of the 

thesis, they will be referred to as S1-S46. The complete list of primary articles and authors is 

included in Appendix A. 
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4.2 Empirical Contributions 
The list of articles reporting empirical studies on code smells and refactoring is shown in 

Table 4 together with their corresponding topics. The topics for the different contributions in 

the empirical field were not given when the work started. The primary goal for categorizing 

the empirical contributions into different topics is to describe them in a structured and 

understandable way, which may enable to answer the main research question: What is the 

state of art in SE research to support analysis and detection of code smells and refactoring 

decisions? The focus on the different topics in the result section is derived from the topics 

identified within the contributions. This is opposed to having a predefined categorization and 

forcing them upon the data, which may result in a less descriptive and understandable 

reporting of results. 

Table 4: List of empirical contributions and topics 

Nr. Name of contribution Category 
S35 Is the Need to Follow Chains a Possible Deterrent to Certain 

Refactorings and an Inducement to Others? 
Evidence – help 
refactoring decisions 

S36 Size and Frequency of Class Change from a Refactoring 
Perspective, in Software Evolvability 

Evidence – help 
refactoring decisions 

S37 The Effectiveness of Refactoring, Based on a Compatibility Testing 
Taxonomy and a Dependency Graph, 

Evidence – help 
refactoring decisions 

S38 Common Refactorings, a Dependency Graph and Some Code 
Smells: an Empirical Study of Java OSS 

Evidence – help 
refactoring decisions 

 S3 Leveraging Code Smell Detection With Inter-Smell Relations Evidence – help identify 
code smells 

S33 Relation of Code Clones and Change Couplings Evidence – help identify 
code smells 

S40 Impact of Metrics Based Refactoring on the Software Quality: a 
Case Study 

Impact of refactorings 

S45 An Empirical Study of the bad smells and class error probability in 
the post-release object-oriented system evolution 

Effects of code smells 
 

S14 Code Smell Eradication and Associated Refactoring Effects of code smells 
S23 An experiment on subjective evolvability evaluation of object-

oriented software: explaining factors and interrater agreement 
Subjective evaluation 
 

S24 Subjective evaluation of software evolvability using code smells: An 
empirical study 

Subjective evaluation 
 

S41 Object-oriented cohesion subjectivity amongst experienced and 
novice developers: an empirical study 

Subjective evaluation 
 

 

The empirical contributions were summarized and studied to extract the main claims, purpose 

and results. These articles were especially relevant to the research sub-questions SQ1 and 

SQ2 and as such were given additional attention. The sub-categories of the empirical 

contributions were created after the summary of the articles was finished and were based on 

the stated purpose and results of the individual contributions. Figure 9 shows the distribution 
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of the contributions. The rest of this sub-chapter will present the emerged topics of the 

empirical contributions and how they relate to the research questions, as well as a short 

summary of each article.   

 
Figure 9: Distribution of the topics for all empirical contributions 

 

4.2.1 Evidence for Supporting Refactoring Decisions 
Empirical results that might help practitioners making refactoring decisions are obviously 

interesting from several points of view. Practitioners that are to make such decisions and 

researchers that are working on refactoring methods and tools would possibly be interested in 

such research. These are contributions that do not look at how refactoring directly affect the 

code. They do, however, investigate various other implications of refactoring as cost ([S38] 

and [S35]), impact on tests [S37]), and when or under which situations refactoring tend to 

occur [S36]). 

Common Refactorings, a Dependency Graph and Some Code Smells: An Empirical Study 
of Java OSS 
Counsell et al. [S38] report results from a tool whose purpose was to identify and extract 

refactorings from seven open-source Java systems to be able to get data on how frequent they 

were used. They chose to include 15 refactorings thought to be the most commonly employed 

and most interesting. Counsell et al., coined a “Gang of Six”, which represented the six most 

common refactorings (in ascending order of frequency): Pull Up Method, Move Method, Add 

Parameter, Move Field, Rename Method, and Rename Field. Most of these refactorings had a 

high in-degree and low out-degree impact. They also found that inheritance and 

encapsulations-based refactorings were applied relatively infrequently.  

0 1 2 3 4 

Subjective evaluation 

Effect of code smells 

Impact of refactoring 

Evidence for supporting detection/analysis of CS 

Evidence for supporting refactoring decisions 
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Is the Need to Follow Chains a Possible Deterrent to Certain Refactorings and an 
Inducement to Others? 
In [S35], Counsell et al. investigate how refactorings relate to each other. They analyzed 14 

refactorings and a dependency graph was created based on description of code refactorings in 

Fowler’s book [2]. A dependency graph is a directed graph that represents the dependencies 

between objects. Arrows mark objects that are dependent on the object to which the arrow 

points. Figure 10 shows an example of a dependency graph. A depends on B and C, and B 

also depends on D, making A depends on B, C and D. 

 
Figure 10: Example of a dependency graph 

 
The refactoring dependency graph was used as a basis for analyzing 7 open source systems 

(OSS). The head version of each system was analyzed in addition to several previous 

versions. They found that refactorings inducing long chains tended to be utilized less by 

developers than refactorings with short chains. Encapsulate Downcast (0 occurrences), 

Extract Subclass (6 occurrences) and Extract Superclass (23 occurrences) did not occur often. 

Hide method had also few (9) occurrences despite of being a relatively simple refactoring. 

Results also suggest that the complexity of long refactoring chains may be a real 

consideration prior to refactoring.  

Size and Frequency of Class Change from a Refactoring Perspective 
In [S36], Counsell and Mendes investigate whether the number of changes to a class is a 

sufficiently good indicator that the class needs refactoring. The data material consisted of 

code changes from 161 Java classes from the Gnu GCC libjava library. The baseline for this 

research was the assumption that the number of changes to classes is a good indicator that a 

class might need refactoring. Counsell and Mendes claimed that combining this aspect with 

the number of lines added, would improve this approach. They concluded that an increase in 

Lines of Code is a better indicator than number of changes. They also investigated the claim 

that large classes are more change-prone than smaller classes, but found only limited support 

for this.   
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The Effectiveness of Refactoring, Based on a Compatibility Testing Taxonomy and a 
Dependency Graph 
Counsell et al. [S37] investigate how refactorings affect the repeatability of tests. They 

identified four categories of refactorings, ranging from semantic-preserving to incompatible. 

These groups were applied to the empirical data from the 7 OSS previously mentioned in S37. 

The most relevant result shows that 4 out of the 5 most used refactorings all belong to the 

same group – refactorings that change the old interface, but can be made compatible by 

adding the old interface as a wrapper. They also conclude that semantic-preserving 

refactorings can have hidden ramifications despite their advantages. Counsell et al. postulate 

that the choice of refactorings must take into consideration the inter-relatedness of 

refactorings. Developers should not pick refactorings based on superficial characteristics, but 

look into the in-depth mechanics of the different refactorings. 

4.2.2 Evidence for Supporting Detection/Analysis of Code Smells 
Two contributions present empirical knowledge that could support the process of detecting 

and analyzing code smells. While SQ3 focuses on actual tools and methods to help with 

detecting and analyzing code smells, results from empirical studies could be used in order to 

assist in the creation of such tools and methods. 

Leveraging Code Smell Detection With Inter-Smell Relations 
Pietrzak et al. [S3] present different viewpoints on how code smells affect each other. Instead 

of looking into the resolution order, they investigate how already detected and rejected smells 

can be used as a factor (in addition to already utilized sources as metrics, code behavior or 

changes in code) for detecting new smells. Six inter-smell relations are identified as useful for 

smell detection. This theory is supported with empirical evidence from an experiment 

performed on classes from the Apache Tomcat codebase [22]. One example of such a relation 

is Data Class and Feature Envy. Of the 26 Data Classes found, 24 of them were referenced 

by methods identified as Feature Envious. 

Relation of Code Clones and Change Couplings 
Geiger et al. [S33] use the concept of Change Couplings, which is defined as “files which are 

committed at the same time, by the same author, and with the same modification”, and the 

more familiar Code Clones. It is, however, reasonable to assume that they are related to 

Fowler’s concepts of Shotgun Surgery and Duplicated Code. Geiger et al. examine the 

relation between these smells and try to validate and quantify this relation. The data is drawn 

from the Mozilla project [23]. Regression analysis was applied on the clone coverage and 
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coupling coverage data. They did, however, find that the correlation is too complex to be 

expressed easily and that the judgment of the software engineer is still needed. In addition to 

these results, they presented a framework to examine this relationship further on, which 

consists of a set of metrics and visualization techniques to spot where the correlation between 

cloning and change couplings exists.  

4.2.3 Effects of Refactorings 
Only one empirical contribution was identified that investigates the direct effect refactorings 

have on software quality.  

Impact of Metrics Based Refactoring on the Software Quality: A Case Study 
Shrivastava and Shrivastava [S40] report a case study in which an inventory application was 

considered and efforts were made to improve the quality of the system by refactoring. Code 

metrics were used before and after sets of refactorings to describe the impact. The code in 

question was from the open source application Inventor Deluxe and the Eclipse plug-in 

Metrics 1.3.6 was used to assess the code. The following metrics were used to measure 

quality: Number Of Attributes in class (NOA), Number Of Classes (NOC), Number of 

Methods in class (NOM), Depth of Inheritance Tree (DIT), Cyclomatic Complexity (CC) and 

Total Lines of Code in class (TLOC). The refactorings were applied sequentially (Extract 

Class, Extract Method and Extract Subclass). Average NOA, NOM, and CC were reduced 

throughout the refactorings while NOC, TLOC and DIT increased. They concluded that 

refactoring was found to have a positive impact on the software quality.  

4.2.4 Effects of Code Smells 
Two contributions that focus on the effects of code smells were identified, but they have 

different perspectives. Li and Shatnawi [S45] investigate how the presence of code smells 

affects error rate while Hamza et al. [S14] investigate the effort required to remove code 

smells from code. They are both interesting in terms of answering SQ1: What is the state of 

art in SE research with respect to investigating empirically the effects of code smells in 

development and maintenance projects?  

An Empirical Study of the Bad Smells and Class Error Probability in The Post-Release 
Object-Oriented System Evolution 
In [S45], Li and Shatnawi present results from an empirical study that investigates the 

relationship between six code smells (Data Class, God Class, God Method, Refused Bequest, 

Shotgun Surgery and Feature Envy), and class error probability in an industrial-strength 
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system. The code base studied was the Eclipse project. In addition to data extracted from the 

code base, relevant bugs and errors were extracted from Bugzilla [24] and divided into three 

error-severity levels. Code smells were detected in the code using Borland Together and the 

connection between code smells and errors were investigated. Multivariate Logistic 

Regression and Multinomial Multivariate Logistic Regression were used to study the 

association between code smells, error proneness and error severity. The results showed a 

(significant) positive linkage between the Shotgun Surgery, God Class and God Method code 

smells and class error probability. They also suggest that refactoring may reduce the chance 

that a class will have errors in the future. 

Code Smell Eradication and Associated Refactoring 
Hamza et al. [S14] look at the dependencies between the refactorings of Kerievsky [11] and 

Fowler [2] in the context of Fowler’s 22 code smells. This was done to analyze the difference 

in effort required for each code smell in order to eradicate them. Extract Class (required to 

eradicate 6 code smells). Move Method (6 code smells), Extract Method (4 code smells), and 

Move Field (4 code smells) are the refactorings used to remedy the most smells. Only 5 code 

smells did not require one of these four refactorings. The results also suggest several code 

smells would be relatively expensive to eradicate and that Fowler’s code smells are less 

complex to eradicate and induces fewer refactorings on average, compared to those of 

Kerievsky. This because Kerievsky’s code smells often induces a set of design pattern 

refactorings as well as relatively large numbers of refactorings. Primitive Obsession can be 

seen as the most complex code smell because it induces a total of 200 Fowler refactorings. 

Large Class and Duplicated Code each induce a total of 163 refactorings. 

4.2.5 Subjective Evaluation 
The three articles on subjective evaluations all share the focus on how the subjective nature of 

code smells may affect the results of code evaluations. The two contributions by Mäntylä 

([S23] and [S24]) both target code smells specifically, whiles Counsell et al. [S41], target the 

code attribute of cohesion – which in turn is commonly thought to signal that a code might 

need refactoring – much like a code smell [25]. 

An Experiment on Subjective Evolvability Evaluation of Object-Oriented Software: 
Explaining Factors and Interrater Agreement 
Mäntylä [S23] reports two experiments on software evolvability evaluations where agreement 

of evaluators was studied. The participants were 88 MSc students and the code analyzed 

consisted of 1000LOC of Java code. The participants were asked to answer whether certain 
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code smells (Long method, Long parameter list or Feature Envy) existed in the code and 

whether it should be refactored or not. In experiment 2, participants were simply asked 

whether the code should be refactored or not. The results show that the interrater agreement 

was high for simple code smells, but low for refactoring decisions. Demographics and source 

code metrics were analyzed to account for the different evaluations. Code metrics could 

explain over 70% of the variations regarding simple code smells, but only about 30% for the 

refactoring decisions. Demographics did not seem to be useful predictors, neither for 

evaluating code smells nor refactoring decisions. Mäntylä states that the low agreement for 

the refactoring decisions may indicate difficulty in building tool support simulating real-life 

subjective refactoring decisions. He adds that code metric tools, however, should be effective 

in highlighting straightforward problems, as simple code smells.   

Object-Oriented Cohesion Subjectivity amongst Experienced and Novice Developers: An 
Empirical Study 
Counsell et al. report results on how software engineers rates cohesion in [S41]. They had a 

group of twenty-four subjects from IT-experienced and novice groups and asked them to rate 

ten classes sampled from two industrial systems in terms of their overall cohesiveness. The 

subjects were presented the classes in random order and asked to rate them on a scale of 1 – 

10 how cohesive they thought that class was. They were also asked to give some comments 

on why they had given the various cohesion ratings. The time frame for this task was 15 

minutes. The cohesive values were then grouped by experience level and by metrics as 

Number of Method in Class, Number of Associations (defined as the number of unique 

classes to which the class under consideration is coupled), Coupling Between Objects and 

Number of Comment Lines. The results suggest that class size (by number of methods) only 

influenced the perception of cohesion by novice subjects. Well-commented classes were rated 

more cohesive amongst IT experienced than novice subjects. Thirdly, results suggest strongly 

that cohesion comprises a combination of various class factors including low coupling, small 

number of attributes and well-commented methods, rather than any single, individual class 

feature per se. 

Subjective Evaluation of Software Evolvability Using Code Smells: An Empirical Study 
Mäntylä et al. [S24] report the result of an empirical study on the subjective evaluation of 

code smells. They propose to use the word software evolvability to describe the ease of further 

developing a piece of software. Furthermore, they elaborate thoroughly the differences 

between human evaluations and program analysis based on metrics. The empirical evidence 
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presented is drawn from a case study performed in a Finnish software product company. The 

authors asked 12 participants for the degree of presence of 23 code smells in 16KLOC to 

83KLOC-sized modules. The same code was also analyzed programmatically. Results show 

that lead developers reported more Parallel Inheritance Hierarchies, while regular developers 

reported more Duplicated Code. Developers with less experience with the modules reported 

more code smells than developers more familiar with the modules. Yet another result shows 

that Large Class, Long Parameter List and Duplicated Code finds conflicted with the program 

analysis. The authors conclude that organizations should combine subjective evaluations and 

metrics when making decisions on improving the code. The results also suggest that 

experienced developers are better at detecting more advanced code smells. 

4.3 Design Research Contributions 
As previously stated, design contributions add up to the majority of the overall contributions. 

The design contributions are here divided in three main categories according to their purpose, 

namely: detecting code smells, performing refactorings and refactoring decisions. Figure 11 

shows the total number of contributions for each category. In this figure, contributions that 

have several purposes, will count towards the total for each of its purposes. Of the 28 design 

research contributions, only 10 of them could show to an available tool. Some tool 

contributions were using novel or prototype-tools, while other contributions did not state 

whether the tool presented was available or not. Another trend is that very few contributions 

seem to have been tested or validated in an industrial setting. Only 4 of the 28 design 

contributions were industrially validated. These few contributions also includes a tool 

contribution which were academic, but were going to be released commercially and had been 

tested for some time in this context [S7] and another tool contribution that was validated by 

one independent designer [S30]. The rest of the 28 design contributions were not validated at 

all, validated on example code from books, or validated by the researchers on code taken from 

various open source projects.  
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Figure 11: Summary of design research contributions by purpose 

 

4.3.1 Detecting And Analyzing Code Smells 
A total of 22 design contributions to fully or partially focus on detecting code smells were 

identified. Some methods and tools have code smell detection as their only focus, while other 

contributions both detect smells and try to remove them. This section includes every 

contribution related to detecting code smells and categorizes them into 7 groups: (1) 

Visualization tools, (2) Metrics, (3) Specification of code smells, (4) Various detection 

methods, (5) Pinpoint methods/tools (6) Early code smell detection tools and (7) Generic 

defect detection. In Table 5, the list of contributions is presented, where Type denotes the type 

of design contribution where T = tool, M = method and M/T = a combination of tool and 

method. 

Table 5: List of contributions for detecting/analyzing code smells 

Nr. Name of contribution Approach Type 

S6 A Catalogue of Lightweight Visualizations to Support Code Smell 
Inspection Visualization T 

S20 Comprehensive Software Understanding with SEXTANT Visualization T 

S22 Product Metrics for Automatic Identification of "Bad Smell" Design 
Problems in Java Source-Code Metrics M/T 

S11 Metrics Based Refactoring Metrics M/T 

S18 Dependency Oriented Complexity Metrics to Detect Rippling Related 
Design Defects Metrics M 

S26 A Domain Analysis to Specify Design Defects and Generate Detection 
Algorithms Specification M 

S27 Automatic Generation of Detection Algorithms for Design Defects Specification M/T 

S28 DECOR: A Method for the Specification and Detection of Code and 
Design Smells Specification M/T 

S43 Identifying Refactoring Opportunities Using Logic Meta Programming Various 
detection M 
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S1 Detecting Bad Smells in Object Oriented Design Using Design Change 
Propagation Probability Matrix 

Various 
detection M 

S3 Leveraging Code Smell Detection with Inter-Smell Relations Various 
detection M 

S13 Discovering Unanticipated Dependency Schemas in Class Hierarchies Various 
detection M 

S4 Multi-Criteria Detection of Bad Smells in Code with UTA Method Various 
detection M 

S21 JDeodorant: Identification and Removal of Feature Envy Bad Smells Pinpoint T 
S31 JDeodorant: Identification and Removal of Type-Checking Bad Smells Pinpoint T 
S39 Source Code Enhancement Using Reduction Of Duplicated Code Pinpoint M 
S44 Using Concept Analysis to Detect Co-Change Patterns Pinpoint M 

S7 Java Quality Assurance by Detecting Code Smells 
Early code 

smell 
detection 

M/T 

S4 
Beyond the Refactoring Browser: Advanced Tool Support for Software 
Refactoring 
 

Early code 
smell 

detection 

 
T 

S16 A Flexible Framework for Quality Assurance of Software Artefacts 
with Applications to Java, UML, and TTCN-3 Test Specifications 

Generic 
defect 

detection 
M/T 

S5 Mining Software Repositories with iSPARQL and a Software Evolution 
Ontology 

Generic 
defect 

detection 
M/T 

Visualization tools: Parnin et al. [S6] propose specific visualizations that would benefit the 

process of inspecting code – both in terms of assessing code in general and for the detection 

of code smells. Eichberg et al. [S20] on the other hand use visualizations as one of several 

comprehension techniques and argues that a combination of this technique plus several other 

techniques is required to successfully understand software systems.  

Metrics: Munro [S22], Simon et al. [S11] and Reddy and Rao [S18] use existing and new 

metrics to identify code smells and opportunities for refactoring. They are similar in their 

approaches since they rely on various metrics to detect code smells, but differ in which types 

of smells they focus on and how they use metrics to detect them. The study reported in [S22] 

is from 2001 and the earliest contribution in this review. It focuses on 4 refactorings: Move 

Method, Move Attribute, Extract Class and Inline Class, which are all based on use relations. 

They calculate the distance between methods and classes by investigating the usage of 

attributes and methods. Simon et al. in [S11] investigate 2 smells, namely Lazy Class and 

Temporary Field. These smells are then characterized and described more informally and 

interpreted in terms of logic and metrics, as can be seen in Figure 12 (NOM = Number Of 

Methods, LOC = Lines Of Code, WMC = Weighted Methods per Class, CBO = Coupling 

Between Objects. DIT = Depth of Inheritance Tree, IVMC = number of methods that 

reference each instance variable defined in a class). 
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Interpretation of Lazy Class Interpretation of Temporary Field 

 

 

Figure 12: Formal interpretation of the code smells Lazy Class and Temporary Field [S11]. 
  

 
Reddy and Rao [S18] introduce new metrics to describe changes over time, in order to detect 

Shotgun Surgery and Divergent Change. This contribution is different from [S22] and [S11] 

because it does not only look at one specific state of the code. Shotgun Surgery and Divergent 

Change both need data on changes over time to be detected. The metrics introduced in this 

contribution by Reddy and Rao are tailored for this purpose – to describe dependencies 

between objects over time.  

Specification of code smells: The studies reported by Moha et al. [S26, S27, S28], all address 

the issue of lack of formal descriptions of code smells. They work towards the goal of a 

unified way to formally describe them. They demonstrate how software engineers can specify 

code smells at a high-level of abstraction using a domain-specific language for automatically 

generating detection algorithms based on these specifications.  

Various detection methods: [S43], [S1], [S3], [S13], and [S4] explore different techniques to 

detect code smells. Using code metrics to detect code smells has been one of the major 

approaches for refactoring as seen in [S11], [S22], [S18]. The contributions presented here all 

use different approaches for detecting code smells. One example is the approach by Pietrzak 

and Walter [S3], which uses data from previously deleted and rejected code smells to help 

detect other code smells. They also document how code smells relate to each other in other 

situations. Arévalo et al. [S13] use concept analysis to detect hidden dependencies in class 

hierarchies. They focus on detecting bad smells in design, but do not refer to any of the code 

smells defined in Fowler [2]. Reddy and Rao [S1] investigate an approach called Change 
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Propagation Probability Matrix, as a technique to detect the Shotgun Surgery and Divergent 

Change code smells. This technique investigates how change propagates between objects – 

making it suit the requirements of a tool to detect these dynamic smells. Tourwé and Mens 

[S43] report preliminary but promising results on using logic meta-programming to detect 

smells. This is one way of performing logical computation on code in another language. They 

propose the SOUL meta-language and show how the Obsolete Parameter and Inappropriate 

Interface smells can be detected using this technique. Walter and Pietrzak [S4] try to combine 

several approaches by using several data sources to detect code smells. They identify the 

following six distinct sources useful for smell detection:  

a) Programmer's intuition and experience 
b) Metrics values 
c) Analysis of a source code syntax tree 
d) History of changes made in code 
e) Dynamic behavior of code 
f) Existence of other smells 

 
The programmers subjective intuition and metrics values are probably the most used sources 

as of now. But at least 5 of the 6 sources are represented in contributions present in this 

review. Walter and Pietrzak describe dynamic behavior of code as smells that are hard to 

detect. The authors claim that these smells require the code to run to be detected. They 

suggest writing unit tests to better be able to detect these smells. They also mention Data 

Class as an example of a code smell of this type. Data Class should, however, be a relatively 

easy code smell to detect [S3, S22]. The other 5 sources for detecting code smells are 

represented in this review. Walter and Pietrzak evaluate their approach by verifying that they 

are able to detect instances of Large Class in an open source system by using several sources 

as input for the detection algorithm.  

Pinpoint methods/tools: Tsantalis et al. [S21], Fokaefs et al. [S31], Nasehi et al. [S39], and 

Gîrba et al. [S44] are all relatively new design contributions (all published in 2007 or 2008) 

that target one specific code smell or design problem. This can be described as a depth-first 

approach on refactoring research. As previously showed, several other contributions 

investigate techniques for detecting several code smells with more general approaches. By 

narrowing the scope to one specific code smell, the contributions in this category are able to 

deliver tool support in a much greater extent than the average contribution. The two tools 

described in [S21] and [S31] are released and available as plug-ins to the popular Eclipse 
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IDE, while the studies reported in [S39] and [S44] investigate troublesome aspects of 

programming – duplication of code and the closely related topic of co-change (parts of code 

that change at the same time), respectively. The main contributions from these articles will 

obviously have to be the specific method to remove the chosen code smell, because using a 

new tool for each code smell is not very efficient.  

Early code smell detection tools: Van Emden and Moonen [S7] give an early contribution 

(from 2002), a code smell detection tool in Java. Another early article [S42] (from 2003) 

suggest and demonstrate that refactoring tools should use code smells to suggest refactorings. 

These two contributions are historically interesting because they present early efforts to use 

code smells in refactoring tools. They are, however, not very relevant for developers of today 

except for as background information. The approaches can be seen as proof of concept tools, 

concepts that already are further developed into available and refined tools.  

Generic defect detection: Nodler et al. [S16] present a framework for analyzing code, 

presenting metrics and detecting code smells. It is, however, not only applicable to software 

code, but also to other languages like UML-diagrams and the TTCN-3 test specification. 

Kiefer et al. [S5] present several tools and frameworks for mining software repositories. This 

could quite possibly be used to improve code smell detections, but the code smell aspect is 

not evaluated in the contribution.  

4.3.2 Performing refactoring 
Tools and methods that perform the actual refactoring are the least represented ones with only 

6 contributions. Nevertheless, this category is interesting because 5 of the 6 contributions 

have available tools. [S30], [S29], [S21] and [S31] by Tsantalis et al. have present tool 

support in the JDeodorant plug-in for Eclipse. Steimann et al. [S12] also present tool support 

in an Eclipse plug-in and present a new refactoring technique to help with creating small 

context-specific interfaces to lower the coupling between classes. The study reported by Pérez 

and Crespo [S17] both consists of a survey on existing tools and a presentation of a method 

for supporting behavior-preserving refactoring.  

Table 6: List of design research contributions for performing refactoring 

Nr. Name of contribution Type of 
contribution 

S30 Identification of Extract Method Refactoring Opportunities T 
S29 Identification of Move Method Refactoring Opportunities T 
S21 JDeodorant: Identification and Removal of Feature Envy Bad Smells T 
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S31 JDeodorant: Identification and Removal of Type-Checking Bad Smells T 
S12 Decoupling classes with inferred interfaces T 
S17 Perspectives on automated correction of bad smells M 

 

4.3.3 Making refactoring decisions 
It was found through the review that design contributions for supporting refactoring decisions 

follow very different strategies. The approach used in [S21] and [S29] calculates a “score” for 

each refactoring by summing up relevant metrics and presents a list of proposed refactorings 

rated by this score. This score is meant to rate the state of the code after each suggested 

refactoring. The tool presented in [S30] uses the same approach, but as demonstrated by the 

researchers, the resulting order does not correlate well with a developer’s opinion. Trifu and 

Reupkes [S2] do not only recommend refactorings. They use a combination of several 

symptoms to identify targets for refactoring. They state that “by conception, design flaws can 

be put in a one-to-one relation with semantically meaningful refactoring solutions” [S2]. 

Table 7: List of design research contributions to help with making refactoring decisions 

Nr. Name of contribution 
S21 JDeodorant: Identification and Removal of Feature Envy Bad Smells 
S29 Identification of Move Method Refactoring Opportunities 
S30 Identification of Extract Method Refactoring Opportunities 
S2 Towards Automated Restructuring of Object Oriented Systems 
S20 Comprehensive software understanding with SEXTANT 
S16 A Flexible Framework for Quality Assurance of Software Artefacts with Applications to Java, 

UML, and TTCN-3 Test Specifications 
S46 Code Evaluation Using Fuzzy Logic 
S15 Facilitating Software Refactoring With Appropriate Resolution Order of Bad Smells 
S8 Representing Refactoring Opportunities 

 

The tools presented by Eichberg et al. [S20], Nodler et al. [S16] and Avdagic et al. [S46] 

support refactoring decision making since their contribution attempts to analyze and visualize 

the code to give a broader understanding of its properties. Code smells are vaguely described 

and thus it can be fruitful to be able to look at many different aspects of the code through 

analyzing and visualizing it. Liu et al. [S15] investigate the relationship between different bad 

smells and propose a resolution order based on this. They demonstrate that resolving a set of 

code smells could have different results, depending on the resolution order. Piveta et al. [S8] 

propose a unified way of describing conditions of which applications of refactoring can be 

advantageous.  
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4.4 Summarizing and Theoretical Research Findings 
In addition to the empirical research and design contributions, there are three summarizing 

and four theoretical contributions amongst the primary articles. They are not relevant to any 

of the specific sub research questions, but are included to provide input for the main research 

question on state of the art in the research.  

4.4.1 Summarizing Contributions 
The three summarizing contributions stem from language specific tool surveys to a historical 

review on code smells. Lerner [S34] presents “metric_fu”, which is a tool suite for analyzing 

code in the Ruby programming language. The contribution is summarizing the different tools 

present in the suite. [S19] is a survey on java refactoring tools for the big IDEs, namely: 

Eclipse (version 3.1) IntelliJ IDEA (version 4.5) and Netbeans (version 4.0); and focuses on 

refactoring as a way of developing, not only maintaining code. The results from this survey 

show that Netbeans severely lacks refactoring abilities compared to the other IDEs, such as 

Eclipse and IntelliJ, which both support around 30 refactorings. It is, however, noted that 

IntelliJ 5.0 is a better refactoring tool because it includes code analysis that can be used to 

detect code smells. The conclusion of the survey is that there are very good tools that could 

help developers to perform refactorings rather painlessly 

Table 8: List of summarizing contributions 

Nr. Name of contribution 
S34 At the Forge: Checking Your Ruby Code With Metric_Fu 
S19 Refactoring Tools and Complementary Techniques 
S17 Perspectives on Automated Correction of Bad Smells 

 
Pérez and Crespo [S17] present a historical review on the field of refactoring and code smells. 

They summarize the origin of code smells and refactorings and investigate some of the most 

prominent contributions in the field. The article also presents a short section on Evolution of 

research on bad smells’ related activities. The material studied in this contribution seems to 

be exclusively based on books and PhD theses. The bottom line of the article is that one can 

separate the work on code smells and refactoring in three parts as illustrated in Figure 13. The 

bad smell catalogs and specifications have corresponding work in refactoring research, while 

the effort to automate smell detection has yet to be mirrored by research on refactoring.  
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Figure 13: History of research on code smells and refactoring as presented by Pérez and Crespo [S17]. 

 

4.4.2 Theoretical Contributions 
Murphy-Hill [S9] and Murphy-Hill et al. [S10] discuss properties of code smell detection 

tools. The focus of these contributions is a top-down approach where attributes of the tool, 

and not implementation details, are discussed. The contributions are very similar to each 

other, and since [S10] resulted the most recent and elaborated contribution, this is was the 

article investigated further in the review. 

Table 9: List of theoretical contributions 

Nr. Name of contribution 
S10 Seven Habits of a Highly Effective Smell Detector 
S9 Scalable, Expressive, and Context-Sensitive Code Smell Display 
S25 Towards a Catalog of Aspect-Oriented Refactorings 
S15 Facilitating Software Refactoring With Appropriate Resolution Order of Bad Smells 

 
Murphy-Hill et al. [S10] postulate 7 habits that code smell detection tools should pay extra 

attention to:  

Availability – Rather than forcing the programmer to frequently go through a series of steps 

in order to see if a tool finds any code smells, a smell detector should make smell information 

as available as soon as possible, with little effort on the part of the programmer. 

Relativity – A tool should place more emphasis on smells that are more difficult to recognize 

without a tool. 
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Scalability – A proliferation of smells in code should not cause the tool to overload the 

programmer with smell information.  

Unobtrusiveness – A smell detection tool should not block the programmer while gathering, 

analyzing and displaying information about smells.  

Expressiveness – A smell detector should go further than simply telling the programmer that 

a smell exists; it should help the programmer find the source(s) of the problem by explaining 

why the smell exists.  

Context-Sensitivity – A smell detector should first and foremost point out smells relevant to 

the current programming context. Fixing smells in a context-insensitive manner may be a 

premature optimization.  

Relationality – A smell detection tool should be capable of showing relationships between 

code fragments that give rise to smells. 

Monteiro and Fernandes [S25] reviewed code smells from an aspect-oriented programming 

perspective. New code smells concerning aspect orientation were also introduced in this 

contribution. Investigating how code smells and refactoring relate to the paradigm of aspect 

oriented programming is interesting, but out of scope for this thesis, so it will not be discussed 

further. Liu et al. [S15] propose a resolution order for when removing code smell. They 

postulate the necessity to arrange resolution order of code smells and describes how both the 

result and the cost of removing code smells can vary depending on resolution order. The 

evaluated code smells are: Duplicate Code, Divergent change, Long Method, Large Class, 

Long Parameter List, Feature Envy, Useless Field, Useless Method, Useless Class and 

Primitive Obsession. For each pair of these smells the following situations are investigated:  

a) Will different resolution orders lead to different resulting systems?  

b) Will the resolution of a bad smell ease the detection of the other?  

c) Will the resolution of a bad smell complicate the detection of the other?  

d) Will the resolution of a bad smell ease the modification (resolution) on the other bad smell?  

e) Will the resolution of a bad smell complicate the modification on the other?  
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5 Discussion 
 
This section discusses the main findings from the literature review as presented in Section 4. 

Initially the 3 sub-research questions will be recaptured and results will be summarized in 

order to get a more clear view of the state of the art in the field. Subsequently, general 

tendencies within the research will be discussed. Finally, the knowledge gap identified in the 

state of the art will be discussed. 

5.1 The Effects of Code Smells (SQ1) 
The results relevant for SQ1 are the contributions summarized under the topic Effects of code 

smells in the section on empirical contributions in Chapter 4. The section does, however, only 

include two contributions. Hamza et al. [S14] investigates the effect of code smells in the 

context of removing them and the cost related to that. Li and Shatnawi [S45] have positively 

linked Shotgun Surgery, God Class and God Method to increased error rate in software 

projects in their 2007-analysis of the Eclipse code base and bug reports. Using Fowler’s 22 

initial code smells as reference, it leaves us with 19 code smells lacking of evidence that their 

presence have a negative and perceivable impact on error rate or other quality related 

properties. The overall goal of empirical articles on effects of code smells should be to have 

several sources documenting the effects in several contexts relevant for practitioners. 

Furthermore, an increase in error rate is only one interesting aspect to investigate within a 

wide range of possible aspects within a maintenance project. Some other quality aspects that 

the presence of code smells could affect are: 

• Time/cost needed to implement additional functionality in an existing system 

• Time/cost needed to make changes or to fix bugs to an existing code 

• Time/cost needed to understand the code for people unfamiliar with it 

Moreover, practitioners also need additional information such as the impact size of code 

smells if any tradeoffs need to be taken during development or maintenance. How worried 

should I be about the presence of certain code smells and under which circumstances? 
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5.2 The Effects of Refactoring (SQ2) 
The only result directly relevant to answer this question is the single contribution under the 

topic Effects of refactoring. Shrivastava and Shrivastava [S40] presented a case study in 

which several steps of refactorings were applied to an application and metrics were used to 

measure the quality between and after each step. They present metrics that show an increase 

in some values and a decrease in other values. However, it is possible to see that there is no 

attempt to operationalize any relevant maintainability concept or other software quality by 

using these metrics. It could be true that most developers would find the application in 

question to have a higher quality after the refactorings were applied, but empirical evidence 

such as reduction in effort or defect rate is not present in the study. It would be more helpful 

to other developers and researchers if the work could illustrate the advantages of refactoring 

by associating them to measures more directly relevant to a maintenance project (e.g., a 

decrease in defect rates or effort needed to add features to the product). Showing changes in 

code metrics is only valuable if you can further link those metrics directly to more concrete 

quality aspects.  

This leads us to the conclusion that empirical evidence of the effects of refactoring is a wide-

open research area. There is an increasing interest in refactoring research, there is 

considerable support for refactoring in the most popular IDEs, and there seems to be much 

interest in this topic within the major practitioner conferences in combination with new 

practices and processes such as TDD and XP. Could putting significant effort into refactoring 

activities be justified from a manager’s point of view with this provided information? [S10] 

states that root canal refactoring (the process of intensively refactoring code) is left to 

managers’ decisions, as opposed to floss refactoring [S10], which is a decision left to the 

individual developer. In both contexts, neither the manager will pay for work that doesn’t add 

any value (empirically validated) nor a developer would find it easy to justify the time spent 

in refactoring if they are just required to deliver code in time. Nonetheless, Martin Fowler 

suggests how to handle schedule driven managers:  

“Of course, many people say they are driven by quality but are more driven by schedule. In 
these cases I give my more controversial advice: Don’t tell! Subversive? I don’t think so. 
Software developers are professionals. Our job is to build effective software as rapidly as we 
can. My experience is that refactoring is a big aid to building software quickly. If I need to 
add a new function and the design does not suit the change, I find it’s quicker to refactor first 
and then add the function. If I need to fix a bug, I need to understand how the software works 
– and I find refactoring is the fastest way to do this. A schedule-driven manager wants me to 
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do things the fastest way I can; how I do it is my business. The fastest way is to refactor; 
therefore I refactor.” [2] 

Developers are refactoring, and will probably continue to do this, regardless of empirical 

evidence. It would, however, be of vital importance to validate its effects in order to enable 

managers and customers to perform tradeoffs during product maintenance and acceptance, 

whether it is in the form of floss refactoring or time-consuming root canal refactoring. 

5.3 State of the art in methods and tool availability (SQ3) 
Section 4 displayed a wide set of tools and methods for detecting code smells. Of the 28 

design contributions, 22 related to code smells detection, 8 related to performing refactorings, 

and 13 related to the process of making refactoring decisions (each article can span several 

purposes). The review found 15 contributions presenting tools, but only 10 of these 

contributions could show to an available tool (a tool that was available for developers and 

researchers to test out, either commercially or open source). Some contributions stated that 

the tool used in the contribution was only a prototype or a novel tool, while other 

contributions never mention whether the tool in question was available or not. This could be 

an indicator that the implementation of the methods into tools is not getting enough attention. 

Within the available tools, it is still required to use a number of different tools since they are 

tailored to one or a few code smells. This again means that there might be a lack of 

integration with respect to tools supporting different code smells as well as amongst different 

refactoring activities that belong together.  

The state of the art when it comes to commercial tool support for refactoring is, however, not 

as bad as one can get the impression of from the numbers and summaries in this review. This 

claim is partly based on my experience as developer, but also backed by the 2006-survey of 

refactoring tools presented by Drozdz et al. [S19]. The most used IDEs have advanced 

refactoring support and can perform many different refactorings including: Extract Method, 

Move Method, Extract Superclass, Encapsulate Field, Introduce Parameter Object, Remove 

Middle Man, Replace Inheritance with Delegation, and Replace Constructor With Factory 

Method [26-28]. This shows well-developed refactoring support for developers, as opposed to 

code smell detection tools. The reasons for this could be many, but the lack of formalized 

descriptions of code smells is most likely to be the cause of this.  

This literature review has identified several methods for detecting several code smells, but 

many of these techniques lack tool support. Others have tool support but as independent tools 
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or IDE plug-ins. A comprehensive and functional smell detector seems far away, and thus the 

existing IDE refactoring support is expected to be mainly usable within floss refactoring, as 

explained by Murphy-Hill and Black [S10]:  

“It appears that programmers refactor frequently to maintain healthy code, interleaving 
refactoring with other tasks such as adding features. We call this floss refactoring, and 
contrast it with root canal refactoring, where a programmer refactors code intensively and 
exclusively once it has become unhealthy”  

5.4 Gap between Refactoring Tools and Code Smell Detection Tools 
This review found that there is a large compendium on code smell tools research, but nearly 

no tools. The opposite is true for refactoring: There exist a lot of available tools, but hardly 

any research on such tools. The nature of refactoring and code smells, as described by Fowler 

[2], could account for this difference. Refactorings are well formalized and procedural in its 

form. They have a step-by-step explanation on how to proceed forth and the relatively early 

tool support in the popular IDEs might also indicate that the work of making these tools were 

simpler than those for detecting code smells. The process of presenting refactoring 

opportunities is, however, not as straightforward and this is also a subject with more research 

efforts, although maybe not as much as could be desired. It is understandable that industrial 

IDEs as IntelliJ and Visual Studio aren’t broadcasting their algorithms. But it is potentially 

dubious that researchers are spending a lot of time researching on the detection of code smells 

and IDE developers are implementing refactoring support, without any evident 

communication or cooperation between each other.  

5.5 The Current Focus on Design Contributions 
As shown in Section 4, 61% of the contributions were methods and tools. Improvements of 

existing tools and methods and the addition of new tools are valuable. These tools are, 

however, only helping people that already are refactoring. If every developer were refactoring 

and waiting for such tools, they would be very beneficial. If nobody were refactoring, these 

tools would be useless. The truth is obviously somewhere in-between. Some developers are 

using refactoring tools and actively looking for code smells either manually or with existing 

tools, other developers are not. The bottom line is that as long as there is little evidence for the 

effects of code smells and refactoring, a substantial part of developers (and researchers) will 

await with the embracement of these techniques. Some effort (24%) has been focused on 

conducting empirical studies, but as discussed, only a small segment addresses the effects of 

code smells and refactoring. When looking on the contributions from this perspective, the 
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field might have been better off with less emphasis on finding new innovating methods and 

tools. It is not to say that the work is uninteresting or not valuable, it might, however, be a bit 

early to focus on the details until the most basic evidence is available.  

There is no obvious answer to why research has been so heavily focused towards making 

design contributions, but there are some elements that might contribute to this. Empirically 

validating the impact of code smells and refactoring is difficult. You would need an industrial 

relevant software project and be able to separate the impacts of code smells and refactoring 

from all the other influencing factors. Proving that it was indeed the refactoring effort that 

improved the quality of the system and not one of the near endless other factors is both time 

consuming and difficult. Another possible factor when doing research in the field is economy. 

Comprehensive empirical studies could be more expensive than design research. 

Development of tools on the other hand, would imply a greater commercial gain than 

empirical research. Producers of commercial IDEs could integrate them into their own 

product and companies that spend a lot of effort on maintaining software systems could 

potentially save a lot of money on such tools and could also be interesting in paying for it. 

5.6 General Tendencies within the Current research on this Topic 
It is worth noting that although there has been written nearly 50 articles in the field relevant to 

this topic, rather few groups of researchers have been the main contributors. Mäntylä et al. is 

responsible for most of the material on the subjective evaluations, and the detection of code 

smells is, at least for now, heavily dependant on these subjective evaluations. Groups of 

authors leaded by Counsell, Moha and Tsantalis are important contributors within this topic. 

They have contributed with a total of 15 articles. Without those teams, only 31 contributions 

would be left in the review. However, of the 31 contributions then left, only four would be 

empirical. Counsell is the author or co-author of six contributions, all empirical, while 

Mäntylä has authored two empirical contributions. It might be a weakness for the field that 

one group of researchers is behind half of the empirical contributions. Another trend worth 

mentioning is the geographic variations. Several contributions have authors from different 

countries and continents, and this kind of information is rarely explicitly mentioned. Research 

institutions are, however, usually mentioned and e-mail addresses are also usually a good 

indicator as the top domains of these addresses usually correspond with the country of origin 

for a given researcher or research center. The one observation I would like to address based 

on the impression I’ve got from the review process, is what seems to be a lack of 
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contributions from America. The clear impression I’ve got after the review work is that 

majority of the contributions stems from Europe, with Asia as the second most productive 

continent.  

5.7 Limitations Found in the Current State of Art 
Throughout the review it was possible to observe that very few contributions are evaluated or 

used in an industrial setting. The vast majority of the methods are either validated on test code 

crafted by the researchers or on open source projects. The four contributions noted as being 

industrial validated include the study reported by Tsantalis in  [S30], where one independent 

designer assessed “the soundness of the […] refactoring opportunities” and the study reported 

by Van Emden and Moonen in [S7], in which the studied code was a tool that was developed 

in an academic setting, but was being prepared to be released as commercial software. 

Experiences from using these methods in an industrial setting certainly would improve the 

quality of the evaluations performed in the tools and methods, which in turn may identify the 

usefulness or feasibility of such techniques or practices in different industrial settings.  

Of all collected articles, very few of them were empirical studies, whereas the focus seems to 

be on extending/confirming existing theories/claims and to create new methods and tools 

based on these. As scientific research in the field of software engineering is fairly young, it 

has probably not come as far as in fields like medicine or social sciences. It is for example not 

trivial to sort the empirically based articles into groups of case studies, surveys or 

experiments. Research method is rarely explicitly mentioned and is often “something in 

between”. Glass et al. [29] describe software engineering researchers’ approach to research 

methods as: “SE researchers tend to analyze and implement new concepts, and they do very 

little of anything else”. When researching on the properties of code smells and refactoring 

(i.e. refactoring chains or consequences of code smells), most of the data will come from 

looking into code repositories, code metrics and output from mining tools.  This could be one 

of the reasons for not stating a specific research method. Analyzing different sets of data to 

draw conclusions lacks the variables of experiments but will often not fully qualify as a case 

study. 
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5.8 Potential Avenues for Future Research 
What kind of empirical validated knowledge should researchers in the field aim for? Research 

on refactoring needs to validate the effect of refactoring. Some research sub-areas the 

community could address are: More concrete and visible effects of different refactorings on 

different product/process quality aspects, Measurement and evaluation of the impact (type and 

size) of refactoring/code smells in a realistic yet feasible way. Studies aiming at investigating 

the costs and benefits of refactoring, Studies aiming at investigating/identifying potential risks 

represented by the presence of certain code smells, 

The development of unified, flexible and extensible frameworks for defining code smells and 

detecting them in a variety of contexts could constitute another area of work. Furthermore, the 

development of more concise evaluation frameworks could aid comparable evaluations of 

tool contributions and improve their quality and increase their adoption within industry. 
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6 Threats to Validity  
This chapter discusses the most important threats to the validity of the results obtained from 

this literature review.  

6.1 Choice of Research Databases 
The selection of ACM Digital Library, IEEE Xplore and ISI Web of Knowledge as the only 

sources for contributions could be seen as a limitation. However, by going beyond the three 

major research databases in the SE field, it would be required to spend a lot of effort in 

identifying the most relevant additional databases 

6.2 Construction of Queries 
The query used for searching the research databases for contributions could be more 

comprehensive. It could have included more keywords as refactoring and restructuring. The 

query was focused towards code smells because the thesis was mainly interested in 

refactoring as part of a strategy to remove code smells. Refactoring in this sense is usually 

motivated by noticing a code smell [2] and thus the absence of refactoring in the query would 

help to remove irrelevant articles.  

6.3 Application of the Inclusion- and Exclusion Criteria 
The criteria for inclusion and exclusion were well formalized, but the process of applying 

these criteria was still subjective and performed only by one person.  In order to reduce 

threats to internal validity when categorizing the contributions, several persons should ideally 

perform the categorization individually and the inter-rater agreement should be observed. 

Inter-rater agreement is the extent to which evaluators agree. High inter-rater agreement is a 

positive indication of the reliability of the subjective evaluations. Lack of inter-rater 

agreement can mean that some of the evaluators are mistaken in their evaluation [30]. 

6.4 Data Extraction 
During the final data extraction, 46 contributions were analyzed and different pieces of 

information were gathered. Due to the high variability on the quality, location and level of 

detail of the information that was provided in the contribution, (findings, research methods 

and other type of information) identifying the different pieces of data within the documents 

was highly difficult. This situation may have lead to missing information due to the fact that 

only one person performed the data extraction.  
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7 Conclusions 
This thesis reported a literature review conducted on the topic of code smells and refactoring, 

using most of the techniques of a systematic literature review.  

The review found a significant growth of publications on the topic of code smells and 

refactoring in the last five years, which indicates the increasing popularity of the topic within 

the research community. Nevertheless, the review found in general a lack of empirically 

sound evidence that could be used to guide practitioners on choosing the best refactoring 

strategies for improving maintainability. 

Relatively few articles reported empirical studies (24%) as opposed to design research 

contributions (61%). Only 13.8% of these design contributions reported any type of 

experiences from its usage in industry. In addition to empirical and design contributions, a 

few articles summarized and provided theoretical contributions. One of the summarizing 

articles presented an overview of the state of the art of refactoring support for the most 

popular IDEs.  

The direct effects of code smells were only investigated in one article. A total of six code 

smells were investigated. Among those, Shotgun Surgery, God Class, and God Method were 

positively correlated with an increase in the error probability in the code. In addition to this, 

one study investigated another effect of code smells: The number of refactorings required to 

eradicate the 22 code smells described by Fowler [2]. The review also only found one study 

that empirically validated the effects of refactoring. Extract Class, Extract Method, and 

Extract Subclass were applied sequentially and metrics were used to measure the quality of 

the code before and after each stage of applying refactorings. The authors found several 

changes in the metrics and claimed that the code had improved. They did however not state 

how much the code had improved or for which quality aspects. Nor did they provide sound 

evidence for the claim.  

This review identified several methods that target the detection of one or more code smells. 

However, there is no unified way of describing code smells or the eradication of code smells. 

This is probably the main reason for the number of different, often overlapping, approaches to 

detecting code smells. At some point, work must be done to establish a form of 

standardization or formalization of the process of detecting and analyzing code smells. 
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According to all the various contributions on code smell detection methods and tools, the best 

approaches for detecting the different smells varies greatly depending on smell and context. If 

the effort needed to create effective and efficient detection tools is as significant as the 

presence of this plethora of contributions suggests, it might not be feasible for any team of 

developers and researchers to create one comprehensive tool. A formalized way of gathering 

and analyzing and presenting information on code smells and a framework for displaying the 

different code smells is one flexible solution to this problem.  

The research on refactoring tools is limited. The review found six contributions related to 

performing refactorings, but five of them also focused on either the detection of code smells 

or providing help with the refactoring decision, or both of these, in addition to performing the 

refactoring. Nonetheless, the main IDEs have heavy refactoring support [S19]. The reason for 

this could be that while code smells are informally described, there exist more precise 

formalizations of the various refactorings [2].  
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8 Future work 
This section elaborates on potential work that could be done to achieve a deeper 

understanding on the research questions presented in this thesis.  

8.1 Elaborating on the Research Questions 
Identifying relevant work from the references found in the primary studies could possibly 

increase the result set of the data. This involves going through the references in the primary 

studies and applying the exclusion and inclusion criteria on the referenced articles. As a 

relevant article references these articles, the chance for them to also be relevant is fairly high. 

Most of the relevant articles should hopefully already be present in the result set, but articles 

not present in any of the chosen databases, or not returned by the queries could exist. 

Increasing the result set would benefit the review in that it would increase the body of 

knowledge contained in the review and could return more interesting findings.  

Another way to increase the amount of data would be to look into the area of the grey 

literature. There is most probably not a great amount of scientific empirical research within 

the grey contributions, but tools and methods would be present. One example of this is the 

refactoring tools embedded in modern IDEs. Eclipse has had refactoring support for quite 

some time. Details on the implementation and possible empirical support for these would be 

interesting in an extended review. The inclusion of grey literature in the review would, 

however, bring implications both in terms of internal validity and considerations regarding the 

weighing of contributions. Should grey research impact aggregated results in the same way as 

validated and empirically sound evidence? 

8.2 Research Method Suggestions 
This research has shown that there are great differences in what information are being 

provided with respect to validation and availability of tools. Making this information easily 

available to developers and researchers should increase the possibility of taking the given 

research into account. Elaborating on evaluation frameworks that can rank or categorize the 

usefulness and applicability of methods and tools in an industrial setting constitutes another 

area for future work.  
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