

UNIVERSITY	
 OF	
 OSLO	

Department	
 of	
 informatics	

	

	

	

	

	

	

A	
 Literature	
 Review	
 on	
 Code	

Smells	
 and	
 Refactoring	
 	

	

	

	

Master	
 thesis	

60	
 credits	

	

	

	

	

Ruben	
 Drøsdal	
 Wangberg	

	

	

	

18.	
 May	
 2010

II

© Ruben Drøsdal Wangberg

2010

A Literature Review on Code Smells and Refactoring

Ruben Drøsdal Wangberg

http://www.duo.uio.no/

Trykk: Reprosentralen, Universitetet i Oslo

III

Summary
This thesis reports the results from a literature review conducted on the topic of code smells

and refactoring. Code smells are segments of the source code that display potential design

issues. Refactoring is the process for modifying source code to improve its quality (e.g.

maintainability) without affecting its functionality. Improving the code design is important for

reducing costs involved in maintenance projects. Thus, refactoring has become an integral

part of developer’s everyday work, yet effects of refactoring on software quality are not well

understood. I believe that an overview of the available empirical evidence on the effects of

code smells and refactoring in software projects, as well as methods and tools available for

supporting refactoring activities, will contribute significantly to the current practices in

industry and at the same time, will provide a constructive stance towards scientific work

within this field. This review was conducted on the three major databases related to software

engineering: IEEE Xplore, ACM Digital Library and ISI Web of Knowledge, based on most

of the features of a systematic literature review protocol. The main findings from this review

are: A relatively small portion of the identified work reported empirical studies (24% of the

articles) as opposed to design research contributions (61% of the articles), the latter includes

both methods and tools for code smells detection and refactoring support. Only 13.8% of

these design contributions reported any type of validation or evaluation in an industrial setting

and of these, only half of them reported a thorough validation in a realistic setting (i.e.

industrial). Most of the design contributions (22 out of 28) were partly or wholly concerned

with the detection of code smells. The literature review identified several tools available to

help developers detect and remove some code smells, but no significant evaluation was

reported that could help to select the most suitable tool for a given context. The review found

a significant increase in the number of publications on code smells and refactoring since

2005. Nevertheless, the review found in general a lack of empirically sound evidence that

could help developers and architects interpreting, analyzing, and choosing the best refactoring

strategies for improving maintainability. This leaves substantial areas for improvement within

this area, mainly development of: (1) better and more concrete refactoring guidelines that are

based on sound empirical evidence, and (2) better evaluation frameworks that could enable

practitioners to choose the adequate tools and methods that would fit their specific needs in a

given context.

IV

V

Acknowledgements
The person who says that writing a master thesis is easy is either a very silly person or
extremely talented. I am neither and would not have managed to survive this process without
help from a bunch of extraordinary people.

I would like to thank my supervisor Aiko Yamashita for invaluable feedback and discussions
throughout the work with this thesis and Dag Sjøberg for a thorough review and good help. I
would also like to thank the Employees of Simula Research Laboratory for providing me with
an inspiring work environment. Other grateful remarks go to Alexander Teinum and
Oddmund Strømme for providing me with valuable feedback and to Håvard Tegelsrud and
Jørgen Frøysadal for providing me with coffee, time wasting and spiritual guidance the last 5
years.

Last but not least I would like to thank my mother and father for the amazing genes and
moderate support and Line for putting up with me throughout the last year of grumbling,
refactorings and bad smells.

Oslo, May 2010
Ruben Drøsdal Wangberg

VI

VII

Table of contents
1 Introduction.. 1

1.1 Motivation and current state ... 1
1.2 Objective of Research and Research Questions ... 1
1.3 Research Method .. 2
1.4 Overview of the Thesis... 2

2 Background and Related Work .. 3
2.1 Refactoring ... 3
2.2 Code Smells .. 4
2.3 Related Work.. 5

3 Research Methodology .. 7
3.1 Create Queries and Search Databases... 8
3.2 Exclusion Criteria ... 12
3.3 Inclusion Criteria .. 12
3.4 Data Extraction ... 14
3.5 Data Analysis.. 17

4 Results.. 19
4.1 Overview of the Studies ... 19
4.2 Empirical Contributions ... 21

4.2.1 Evidence for Supporting Refactoring Decisions ... 22
4.2.2 Evidence for Supporting Detection/Analysis of Code Smells 24
4.2.3 Effects of Refactorings.. 25
4.2.4 Effects of Code Smells .. 25
4.2.5 Subjective Evaluation.. 26

4.3 Design Research Contributions .. 28
4.3.1 Detecting And Analyzing Code Smells .. 29
4.3.2 Performing refactoring .. 33
4.3.3 Making refactoring decisions .. 34

4.4 Summarizing and Theoretical Research Findings .. 35
4.4.1 Summarizing Contributions .. 35
4.4.2 Theoretical Contributions.. 36

5 Discussion .. 39
5.1 The Effects of Code Smells .. 39
5.2 The Effects of Refactoring ... 40
5.3 State of the art in methods and tool availability ... 41
5.4 Gap between Refactoring Tools and Code Smell Detection Tools 42

VIII

5.5 The Current Focus on Design Contributions .. 42
5.6 General Tendencies within the Current research on this Topic.................................. 43
5.7 Limitations Found in the Current State of Art.. 44
5.8 Potential Avenues for Future Research .. 45

6 Threats to Validity ... 47
6.1 Choice of Research Databases.. 47
6.2 Construction of Queries.. 47
6.3 Application of the Inclusion- and Exclusion Criteria ... 47
6.4 Data Extraction ... 47

7 Conclusions.. 49
8 Future work .. 51

8.1 Elaborating on the Research Questions .. 51
8.2 Research Method Suggestions.. 51

Appendix .. 55
A - Studies included in the review ... 55

IX

List of figures

FIGURE 1. UML DIAGRAM DESCRIBING AN EXAMPLE OF THE MOVE METHOD REFACTORING4
FIGURE 2: THE MAIN STAGES OF THE LITERATURE REVIEW...7
FIGURE 3: SCREENSHOT SHOWING A LIST OF ARTICLES EXTRACTABLE FROM THE SEARCH RESULT........10
FIGURE 4: SCREENSHOT SHOWING THE REFERENCES WITH PDF-ARTICLES AND DATA IN ZOTERO.11
FIGURE 5: THE CATEGORIZATION SCHEMA USED IN THE DATA EXTRACTION STAGE14
FIGURE 6: SCREENSHOT OF THE DATA EXTRACTION SHEET ..17
FIGURE 7:OUTPUT FROM THE PREVIOUSLY DEFINED STAGES...19
FIGURE 8: NUMBER OF RELEVANT CONTRIBUTIONS PUBLISHED EACH YEAR STARTING FROM 200020
FIGURE 9: DISTRIBUTION OF THE TOPICS FOR ALL EMPIRICAL CONTRIBUTIONS22
FIGURE 10: EXAMPLE OF A DEPENDENCY GRAPH ..23
FIGURE 11: SUMMARY OF DESIGN RESEARCH CONTRIBUTIONS BY PURPOSE.................................29
FIGURE 12: FORMAL INTERPRETATION OF THE CODE SMELLS LAZY CLASS AND TEMPORARY FIELD31
FIGURE 13: HISTORY OF RESEARCH ON CODE SMELLS AND REFACTORING36

List of tables

TABLE 1: THE INITIAL QUERY TESTED FOR GOOGLE SCHOLAR. ..8
TABLE 2: THE SPECIFIC QUERIES AND THEIR CORRESPONDING DATABASES10
TABLE 3: CLASSIFICATION ACCORDING TO TYPE OF CONTRIBUTION ..20
TABLE 4: LIST OF EMPIRICAL CONTRIBUTIONS AND TOPICS..21
TABLE 5: LIST OF CONTRIBUTIONS FOR DETECTING/ANALYZING CODE SMELLS..............................29
TABLE 6: LIST OF DESIGN RESEARCH CONTRIBUTIONS FOR PERFORMING REFACTORING33
TABLE 7: LIST OF DESIGN RESEARCH CONTRIBUTIONS TO HELP WITH MAKING REFACTORING DECISIONS34
TABLE 8: LIST OF SUMMARIZING CONTRIBUTIONS ..35
TABLE 9: LIST OF THEORETICAL CONTRIBUTIONS ...36

X

1

1 Introduction

1.1 Motivation and current state
Software maintenance projects are very costly. The total maintenance costs of a software

project are estimated to 40%-70% of the total cost of the lifecycle of the project [1].

Consequently, reducing the effort spent on maintenance can be seen as a natural way of

reducing the overall costs of a software project. This is one of the main reasons for the recent

interest in concepts such as refactoring and code smells. Refactoring is to “improve the design

after it has been written” [2]. Doing this will increase the understandability of code, make it

easier to implement new features and debug the code [2]. Code smells are symptoms or

indicators in the code suggesting that something may need to be refactored [2].

Refactoring does not add functionality, but is done under the assumption that it will make the

code easier to work with. This premise focuses on “effectively spending time and money in

order to save time and money in the future”. It is difficult to judge which areas of the code

and what kind of refactoring to use without measureable evidence on the effects of

refactoring. Empirical evidence could make these decisions easier. The field of code smells

and refactoring is fairly young, and consequently, it seems that empirical evidence is scarce.

The purpose behind this thesis is to investigate what type of research exists within this field

and to present an overview of the current state of the art with respect to code smells and

refactoring research. More specifically, what has been the output from the research

community that might help programmers to detect code smells, decide when to refactor, and

actually perform the different refactorings? In order to have a comprehensive view on the

different types of contributions, this review covered empirical contributions, design research

contributions, theoretical contributions and summarizing contributions.

1.2 Objective of Research and Research Questions
This thesis consists of a review of relevant literature in the software engineering field

concerned with refactoring and code smells. The main objective of the review is to examine

the current research work and present the most relevant and interesting contributions that

might be useful for practitioners working with these concepts. At the same time, a systematic

and comprehensive overview of the research could constitute a contribution for the research

community since it can facilitate an evaluative and strategic stance and discussion of the

future directions within the field.

2

The main objective of this thesis is to get an overview of research related to each of the stages

of the refactoring process: Detecting code smells, making decisions on which refactorings to

choose, and performing the refactoring. The review also attempts to identify which methods

and tools have been created to support these different stages of refactoring. The following

questions (divided in Research Question and Sub-Questions) were formulated as a basis for

identifying, analyzing and discussing the existing literature:

RQ: What is the state of art in SE research to support analysis and detection of code smells

and refactoring decisions?

SQ1: What is the state of art in SE research with respect to investigating empirically the

effects of code smells in development and maintenance projects?

SQ2: What is the state of art in SE research with respect to investigating empirically the

effects of refactorings in development and maintenance projects?

SQ3: Which tools and methods have been developed to support code smell analysis and

detection or refactoring decisions?

1.3 Research Method
A literature review was chosen as a suitable methodology to answer the research questions. A

protocol for systematic literature review [3] was used as a guide to achieve a structured

process and robust evidence for the validity of the results, although the protocol was not

followed in details, which means the review reported here is not a systematic one. At the same

time, certain level of flexibility was prioritized due to the exploratory nature of the study,

bearing in mind that this is a relatively new topic, which may lack a standard terminology

(many features of a systematic literature review could be extremely time consuming, thus

more likely to be out of the scope for an MSc thesis period).

1.4 Overview of the Thesis
The rest of the thesis is organized as follows: Section 2 introduces the context by presenting

relevant background information and related work. The research methodology for this review

is presented in Section 3. Section 4 presents the results and findings from the literature review

and a summary of the identified contributions. Section 5 discusses some of the findings under

the light of the research questions. Section 6 discusses threats to validity of this study. Section

7 presents the conclusions of this study, finalizing with Section 8, which presents future work.

3

2 Background and Related Work
This section explains briefly the history and nature of code smells and refactoring, and

introduces related work on literature reviews conducted in the field.

2.1 Refactoring

“Refactoring is the process of changing a software system in such a way that it does not alter
the external behavior of the code yet improves its internal structure. It is a disciplined way to
clean up code that minimizes the chances of introducing bugs. In essence when you refactor
you are improving the design of the code after it has been written.” [2]

The term refactoring precedes the code smell definition, but is still fairly young. Refactoring

code has been done informally before the term was coined, but was first formally described

by William Opdyke in his Ph.D. dissertation ([2], [4], [5]). Opdyke was also the researcher

that coined the term, together with Ralph Johnson [4]. It is, however, after Fowler’s book [2]

that the term and practice started gaining popularity. Refactoring is a practice that has gained

an increasing popularity and usage the last years and has been a common topic on large

software practitioner conferences, such as DevWeek [6], JavaOne [7], JavaZone [8], and

Scandinavian Developer Conference [8].

An example of a refactoring could be extract method: If a method is too long, it should be

decomposed, using this refactoring. Find a clump of code (within the long method) that goes

well together, create a new method with a descriptive name and move the code into the new

method. If local variables are being used, they need to be passed as parameters. The last step

is to add a call to the new method and test the code. [2]

void printOwing() {
 printBanner();
 //print details

System.out.println ("name: " + _name);
 System.out.println ("amount " + getOutstanding());
 }

should be refactored to:

void printOwing() {
 printBanner();
 printDetails(getOutstanding());
}
void printDetails (double outstanding) {
 System.out.println ("name: " + _name);
 System.out.println ("amount " + outstanding);
}

4

2.2 Code Smells
A code smell is a symptom or indicator in the source code that indicates potential problems.

This is not to be confused with compiler errors or warnings or other signs of code that is not

working properly. Code smells only indicate that the maintainability of the specific code

might not be as good as its potential, or to put it in the words of Fowler, “Any fool can write

code that a computer can understand. Good programmers write code that humans can

understand” (p 15 [2]). The importance of writing code that computers understand is obvious,

but lately the importance of writing understandable code, has got more focus and acceptance.

It is believed that even small efforts could lead to improve the understandability of the code,

and this may decrease the developers’ effort on understanding and localizing relevant

information for their tasks. This reduction of effort can lead to considerable reductions in

maintenance costs. If one was able to get 1% reduction in effort needed for maintenance, this

would count up to quite a lot of money if the project costs is estimated to $50 000 000.

The metaphor of code that smells was made popular in Fowler’s book as “bad smells in

code”. It is now known as code smells and is described in Kent Beck and Martin Fowler’s

words as “certain structure in the code that suggests (sometimes they scream for) the

possibility of refactoring” (p 75 in [2]). Some examples of these smells are:

• Long method – a method that has grown too large.

• Lazy class – a class that is not doing enough.

• Comments – comments might suggest that the commented code is bad.

• Feature envy – a method that is more interested in a class other than the one it actually is in.

The identifications of code smells are useful in the sense that they might constitute

prescriptive guidance for performing certain types of refactoring. An example of this is

illustrated in Figure 1, where in order to eliminate the Feature Envy smell, a potential

refactoring could be Move Method.

Figure 1. UML diagram describing an example of the Move Method refactoring [2]

5

2.3 Related Work
In this section, work related to the thesis topic is presented. The related work includes both

early work on code smells and refactoring and other reviews and summarization work.

Van Emden and Moonen [9] provided the first formalization of code smells and described a

tool that could detect them. Marinescu [10] further formalized the definition of code smells

and extended the detection to a wider range of code smells and a number of design principle

violations. Fowler introduced formalized refactoring in his book [2] and Kerievsky build upon

that work when he introduced more refactorings and code smells in his book on refactoring

[11] in 2004. Summarizing contributions to the field includes Mens and Tourwé [12]. They

present a survey on refactoring, which mainly discusses different aspects of the refactoring

process: general ideas, refactoring activities, various formalisms and techniques,

considerations and how refactoring fits the software development processes.

In addition to work thematically related to this thesis, it would be meaningful to address some

work that is related in terms of methodology. The usage of literature reviews in the software

engineering field is relatively scarce and thus it is relevant to look into related research work

for inspiration. Kitchenham proposed guidelines for systematic literature reviews appropriate

for software engineering researchers [3], and Brereton et al. [13] presented lessons learned

from performed systematic literature reviews within the software engineering domain. Holt

[14] and Dybå [15] both performed systematic reviews within this domain.

6

7

3 Research Methodology
This chapter has two main purposes. First, it is meant to describe and argument for the

choices of the methodological strategies followed in the review. Second, it documents the

process followed to arrive to the results. By describing the methodological steps and

documenting the data collection process, this review can be replicated and this will support

the internal validity of the study.

Literature review was selected as the research method in this thesis work, since investigating

the published work within this specific area was assumed to be sufficiently comprehensive to

provide substantial information to answer the research questions. A literature review is a text

that aims to gather relevant information in a specific field. Kitchenham [3] describes it as ‘‘a

means of evaluating and interpreting all available research relevant to a particular research

question or topic area or phenomenon of interest’’. While Kitchenham describes a systematic

review, the purpose remains the same for the literature review reported in this thesis. It was

decided to use some of the features of a systematic literature review, but at the same time

keep a certain level of flexibility on the method, due to the exploratory nature of the study and

the fact that the topic is relatively new and involves non-standardized terminology.

Figure 2: The main stages of the literature review.

Within this chapter, the steps used from the systematic review method will be reported

alongside with each of the stages of the review, its inputs and corresponding outputs. Figure 2

presents the steps of the data collection part of the review and is inspired by Dybå and

Dingsøyr’s work [15], which will be used as subsections in the remainder of this chapter.

8

3.1 Create Queries and Search Databases
Databases
Since the review topic consists of code smells and refactoring, the focus was placed in the

main scholar research databases that specialize on computer and software research. The three

largest and most commonly used databases in the software engineering field are ACM Digital

Library[16], IEEE Xplore [17] and ISI Web of Knowledge [18]. Google Scholar was initially

considered as a source, but it was excluded since it become clear that it would be out of scope.

The first query created for the Google Scholar search (See Table 1) gave 8820 results in

Google Scholar. The vast majority of these results were outside the field of software

engineering. The query was modified to include only material from the year 2000 and

onwards, and that specifically mentioned the keyword “software”. This reduced the results to

657, but it was still 5 times bigger than the aggregated resulting set from all the three other

databases. By manually inspecting the first 20 results, it was not possible to find any relevant

article that did not already exist in the results from the other databases. This does not imply

that the 657 results from Google Scholar would not contribute to the review. However, it

indicated that the effort that would have to be spent, manually going through these results

would probably outweigh the impact of these, presumably “grey”, contributions. Grey

literature is a term used when referring to a body of materials that is not present in research

databases or published through conventionally scientific channels. The Grey Literature

Network Service, which facilitates distribution and access to grey literature, defines it as

“Information produced on all levels of government, academics, business and industry in

electronic and print formats not controlled by commercial publishing i.e. where publishing is

not the primary activity of the producing body” [19]. Such contributions are not necessarily

thoroughly scientific in its form and will often not document their claims sufficiently and are

by nature rarely peer-reviewed. Using grey literature in a scientific thesis may subsequently

lead to problems with the validity of the work, especially concerning to empirical

contributions.

Table 1: The initial query tested for Google scholar.
("code smell*" OR "bad smell*" OR "design

principle violation*" OR "structural symptom*")
AND (“tool” OR “method” OR “technique” OR

“knowledge” OR “decision”)

9

Queries
The queries required for the literature review were mainly based on the research question:

What is the state of art in SE research to support analysis and detection of code smells and

refactoring decisions?

Initially, a generic query was constructed in order to adapt it to different databases and their

specific syntax. All the information needed in order to answer the research questions was

related to term “code smell” (i.e., detecting and analyzing code smells, performing refactoring

to remove code smells, and refactoring decisions on which smells to remove). Neither of these

topics would be meaningful to discuss or analyze without mentioning code smells. For this

reason, the term “code smell” was central to the query. In order to filter out the non-relevant

results, an additional restriction was added to specify that the contributions on code smells

should be limited to knowledge, methods or tools. The resulting preliminary query is:

“code smell” and (tool or method or knowledge)

To decrease the chance of missing out results due to different wordings, the query included

the most used synonyms of the term code smell. The phrases included wildcard characters to

include plural forms. This resulted in the following query:

("code smell*" OR "bad smell*" OR "design principle violation*" or "structural symptom*")

and (tool or method or technique or knowledge)

Some databases allowed limiting the results to time periods. The term “code smell” gained

popularity only after it was documented in [2], which was released the last half of 1999. For

this reason the queries were limited to contributions made from 2000 and onwards.

Data extraction

A preliminary data extraction sheet in Excel was made to prepare for further steps in the

review, (i.e., applying the exclusion and inclusion criteria on the dataset). Tools used in this

process were Zotero [20], Firefox, EndNote and Excel. Zotero is a plug-in for Firefox, which

is used for managing references, both for academic and grey literature. Zotero has built in

support for the most used research databases, including the ones used in this review: ACM

Digital Library, IEEE Xplore and ISI Web of Knowledge. Running the queries in each of the

search engines of the databases would result in a number of web pages with results.

10

Table 2: The specific queries and their corresponding databases

ACM Digital Library:

("code smell*" or "bad smell*" or "design
principle violation*" or "structural
symptom*") and (tool or method or technique
or knowledge)

IEEE Xplore:

(((code smell* <in> metadata) or (bad smell*
<in> metadata) or (design principle
violation* <in> metadata))) <and> (pyr >=
2000 <and> pyr <= 2009) <and> ((knowledge*
<in> metadata) or (tool* <in> metadata) or
(method* <in> metadata) or (decision* <in>
metadata

Time: 2000 – present

ISI Web of knowledge:

TS=("knowledge" OR "tool*" OR "method*" OR
"technique*" OR "decision*") AND TS=("Code
smell*" OR "Bad Smell*" OR "Design principle
vi*" OR "Structural symptom*")

Timespan=2000-2009. Databases=SCI-EXPANDED,
CPCI-S, CPCI-SSH

Zotero provides functionality to import all results on a web page into a built in reference

library (as shown in Figure 3). The queries were executed in each of the search engines from

the databases and the results were saved as a “library” in Zotero. Where available, a PDF-

document of the contribution would be saved as well. If no PDF were found, a HTML page

with the title and abstract of the contribution would be saved instead. The PDF-documents

were saved in the following format: <authors – year – name of article>. The complete list or

references from Zotero were exported to Excel via Endnote (See Figure 4, which displays

Zotero functionality for storing the reference list including the PDF files of the articles).

Figure 3: Screenshot showing a list of articles extractable from the search result.

11

Figure 4: Screenshot showing the references with PDF-articles and data in Zotero.

The following information was found to be adequate to be included in the first extraction

sheet: Name of article, Author(s), Year of publishing, Publisher, Link to the actual article.

The reminder of this section will describe how this information was extracted from the

reference list and registered in the extraction sheet.

Name of article, Author and Year of publishing

These were all present in the references imported into Excel, for all contributions. Columns

with this information were identified and labeled accordingly.

Publisher

The publisher (research database) of each document was not given for every reference, but

was obtainable through some of the other columns of information. ISI Web of Knowledge

entries were the only ones provided with an “accession number”. Some data manipulation on

the excel sheet was done (i.e., sorting the sheet on this column and set the publisher for every

row with this number to ISI). All articles from ACM Digital Library had the page number

column formatted in a reminiscent way and could be separated and marked this way. The

articles not marked as either ACM or ISI were subsequently marked as IEEE.

Link to article

Two Java-programs were developed for this purpose. The first program created a file system

data structure for the downloaded PDF-documents. This structure stored the directory name

where the PDF file was downloaded and the name of the file (besides other additional

information). The PDF files and web pages were stored in a SVN repository. Another java-

12

program was made to create the links to the files so it will print out links in the same order as

the list of articles in the extraction sheet. This list was subsequently copied into the extraction

sheet. This was done in order to facilitate the access of the actual articles from the extraction

sheet.

3.2 Exclusion Criteria
The exclusion criteria were used in order to filter out irrelevant articles. These criteria should

be rather clear and straightforward. In case there is a doubt about excluding something or not,

it should be kept. Material on the borderline for exclusion will rarely pass the inclusion

criteria and therefore would be assumed to not “pollute” the result set anyway. The exclusion

criteria used in this review are the following:

a) Articles not related to software development or maintenance of software (e.g. biology)

b) Articles not written in English

c) Articles not applicable to object-oriented (OO) programming languages

d) A position paper, an editorial, preface, discussion, article summary, or summary of tutorials,

workshops, panels, poster sessions, book reviews, and conference companions

e) Articles already in the resulting set of articles

To apply the exclusion criteria, the initial set of articles from the queries was screened. All

contributions listed in the extraction sheet were marked as either excluded or not. For many

contributions, reading the title of the paper would be sufficient, while for some cases it was

required to examine the abstract. When the content of neither the title nor the abstract would

give enough information whether the article meets the exclusion criteria, the article was

included for the second stage screening (the application of the inclusion criteria). The

contributions marked as “excluded” were double-checked and then removed from the

extraction sheet. Some contributions would be found by more than one database and so the

initial result set had several duplicated entries. These were also marked and all but one

version were removed from the extraction sheet.

3.3 Inclusion Criteria
The inclusion criteria are the last filtering mechanism that separates the list of possibly

relevant articles from the final result set. Articles were only included if they met at least one

of the inclusion criteria. An article was included if one of the following were met:

13

a) An article that reports empirical results on code smell detection or analysis or on refactoring

decisions

b) An article that reports a tool or method which could be used for code smell detection/analysis

c) An article that reports a tool or method which could be used for refactoring decisions

These initial inclusion criteria were made for the inclusion stage, but when starting to apply it

to the preliminary set of articles, it was found to be slightly insufficient. Some topics were

borderline cases such as:

• UML-refactorings and related smells

• Refactoring of unit-tests and related smells

• Aspect-oriented refactorings and related smells

• Architectural (high impact) refactorings and smells

• Software visualizations that were made for other reasons but that could still be used for code

smells as an supportive method/tool

• Other articles that can be used as a part of decision making or smell detection (like deletion

patterns, evolution patterns, OO-ontology)

The phrases “code smell” and refactoring were found to be applied to domains outside the

object oriented software domain, where it was coined. This was not taken into consideration

when the inclusion criteria were formulated initially, so another criterion was included in

order to include other domains that seemed relevant to answer some of the research questions

posed in this review. The final resulting criteria are as follows:

a) An article that reports empirical results on code smell detection or analysis or on refactoring

decisions

b) An article that reports a tool or method which could be used for code smell detection/analysis

c) An article that reports a tool or method which could be used for refactoring decisions

d) An article that reports the usage of code smells or refactoring in closely related domains

These criteria were applied to the output from the exclusion stage and the result was the

primary list of articles. The list of contributions in the extraction sheet was examined by

reading the abstract of each contribution to decide whether it met one or more of the inclusion

criteria. After screening each contribution and marking those that met the inclusion criteria,

all articles not marked for inclusion were removed. The final list of articles is presented in the

appendix.

14

3.4 Data Extraction
The data extraction step consisted of examining closely the contributions and extracting all

the relevant data required to answer the research questions. As topics for categorizing the

contributions emerged from the screening performed during the inclusion and exclusion

stages, these were used as input to the build the categorization schema. The final

categorization schema is shown in Figure 5, and is based on several types of contributions: a)

empirical, b) methods, c) tools, d) theoretical, and e) summarizing contributions. For each

main category of contribution, the information considered to be the most relevant and

available was included in the schema in an iterative fashion. In order to extract all the relevant

information, abstracts, results and conclusion sections were examined from each of the

articles for most of the cases. In other cases, the entire article was examined.

Figure 5: The categorization schema used in the data extraction stage

15

In the following sections the different categories for contributions included in the schema are

explained in detail, as they are of vital importance for the rest of the extraction process. Five

main types were defined and all contributions were categorized using these definitions.

a) Empirical contribution. Empirically validated knowledge related to code smells,

refactorings or refactoring decisions. Empirically contributions can include case studies,

surveys, experiments or other type of studies.

b) Methodological contribution. A proposed way for performing some activity related to

refactoring or code smell detection/analysis: For instance counting the number of lines of

code in a method in order to identify the large method code smell or using certain types of

code visualization in order to make refactoring decisions.

c) Tool contribution. Either as a standalone program or as an extension to an integrated

development environment (IDE) for detecting code smells, performing refactorings or support

the process of making refactoring decisions (it can be used for one or more of these purposes).

Some examples of such tools include: a visualization tool which focuses on visualizing code

characteristics useful when making refactoring decisions, an IDE-plug-in for detecting the

shotgun surgery code smell or a plug-in that would suggest a refactoring-order when

performing several extract method refactorings in a project.

d) Theoretical contribution. Consists of a contribution that alters or adds to the theoretical

framework of the field. Proposing new code smells or transferring the paradigms of code

smells and refactorings to fields like aspect oriented programming or UML-modeling would

be examples of such contributions.

e) Summarizing contribution. Consists of a survey, literature review, or other article where

the collection of information itself is a major part of the contribution. An example of this can

be a survey of refactoring tools or a literature review on code smells.

After categorizing all contributions into these groups, the extraction for additional relevant

data was completed. For each main type of contribution the following information was

extracted and added into the extraction sheet:

a) Empirical contribution: Data extracted from empirical contributions relate to the way the

empirical data is collected itself. Firstly the type of study conducted was derived (i.e., case

16

study, experiment, action research or another kind of research). The second kind of data

extracted from these contributions consisted of the setting in which the study was conducted

in order to assess the external validity of the findings (e.g., were the given code or subjects

part of an industrial project or a classroom setting?).

b) Methodological contribution: The first piece of information gathered for the

methodological contributions was the purpose of the method. Was it made to detect code

smells, perform refactoring or to help make refactoring decisions? The contribution was also

examined to determine whether the method was evaluated and in which setting (academically

or in an industrial setting). Data on the level of automation for the different methods where

collected as well (some methods/tools only present suggestions on different refactorings while

others were created to automatically perform refactorings). The domain in which the

methodology could be applied was also noted (e.g., some methods were created under the

Aspect Oriented Programming paradigm). Although methods in different domains are

interesting, the main focus was kept for methods compatible with OO software domain.

c) Tool contribution: The information collected on articles reporting tool contributions were

rather similar to the methodological contributions.

d) Theoretical contribution: The theoretical contributions do not share as much relevant data

as methods and tools and only type of theoretical contribution was gathered from these types

of contributions.

e) Summarizing contribution: These contributions are not as directly linked to the research

question and so only the type of summarizing contribution was registered for them.

Figure 6 displays a fragment of the extraction sheet where all the relevant data according to

the categorization schema was introduced per each article.

17

Figure 6: Screenshot of the data extraction sheet. It shows some of the data gathered and how it was organized.

3.5 Data Analysis
This section describes how the results from the extracted data material were analyzed. The

data used for this part included the extraction sheet and PDF-files of the contributions. To be

able to answer the main research question, it is required to answer the three sub-questions

formulated at the beginning of the thesis. Sub-questions SQ1 and SQ2 focus on the empirical

evidence to understand the effects of code smells and refactorings respectively, thus all the

empirical contributions were examined and summarized. The empirical work was then

grouped according to a set of topics that emerged during reading process. These topics

emerged from informal coding done on the content of the articles, which consequently were

sorted following a somewhat similar approach to grounded theory [21]. The topics were

created based on the focus of the contributions and how they related to the research questions.

Research sub-question SQ3 relates to method and tool contributions in a similar way and thus

these contributions were also summarized and grouped based on the purpose of the method or

tool (which was already available in the data extraction sheet). A meta-analysis on the

resulting primary list of articles was performed through descriptive statistics (in the form of

charts, summarizing tables and diagrams). The focus topics of the contributions and the data

gathered in the extraction sheet were used as the main data sources to generate the graphs and

tables.

18

19

4 Results
This section reports the findings from the literature review. Figure 7 displays the output from

the different stages of the review. The initial queries yielded a total of 134 contributions. This

did, however, comprise both duplicates and irrelevant material. After applying the exclusion

and inclusion criteria, only 46 articles remained.

Figure 7:Output from the previously defined stages.

4.1 Overview of the Studies
Table 3 presents the distribution of the contributions according to the categorization

previously described in the methodology section. The majority of the contributions (61%) are

design research. This includes both methods and tools – which is a difference that only

occasionally will cause them to be separated when I discuss these contributions in the

remainder of this thesis. The difference is mainly whether the method is implemented as a

tool or not, and this difference is often not important. Detailed results on the design

contributions are presented in Section 4.3. The second most represented type of contribution

is empirical research (24%). These contributions are further grouped and summarized in

Section 4.2. Summarizing and theoretical research were the least represented contribution

types with only a total of 7 contributions (15%). These types of contributions are not directly

relevant for any of the research questions but could obviously provide input to answer the

main research question on the state of the art in SE research, and are both summarized in

Section 4.4.

20

Table 3: Classification according to type of contribution

Type of research Contribution Number Percent
Empirical research - 11 24%

Method 13 28.5%
Tool 6 13 %
Method + tool 9 19.5%

Design research

Subtotal 28 61%
Summarizing research - 3 6.5%
Theoretical research - 4 8.5%
Total 46 100%

Figure 8 shows the number of contributions published each year starting from 2000. The

contributions within this research filed were relatively scarce until 2004. The number of

contributions from 2009 does not include the last few months because the data was collected

in the autumn 2009.

Figure 8: Number of relevant contributions published each year starting from 2000

The remaining subsections will summarize the articles according to the categories in which

each of them were grouped into. The articles are numbered and for the remainder of the

thesis, they will be referred to as S1-S46. The complete list of primary articles and authors is

included in Appendix A.

0

2

4

6

8

10

12

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

21

4.2 Empirical Contributions
The list of articles reporting empirical studies on code smells and refactoring is shown in

Table 4 together with their corresponding topics. The topics for the different contributions in

the empirical field were not given when the work started. The primary goal for categorizing

the empirical contributions into different topics is to describe them in a structured and

understandable way, which may enable to answer the main research question: What is the

state of art in SE research to support analysis and detection of code smells and refactoring

decisions? The focus on the different topics in the result section is derived from the topics

identified within the contributions. This is opposed to having a predefined categorization and

forcing them upon the data, which may result in a less descriptive and understandable

reporting of results.

Table 4: List of empirical contributions and topics

Nr. Name of contribution Category
S35 Is the Need to Follow Chains a Possible Deterrent to Certain

Refactorings and an Inducement to Others?
Evidence – help
refactoring decisions

S36 Size and Frequency of Class Change from a Refactoring
Perspective, in Software Evolvability

Evidence – help
refactoring decisions

S37 The Effectiveness of Refactoring, Based on a Compatibility Testing
Taxonomy and a Dependency Graph,

Evidence – help
refactoring decisions

S38 Common Refactorings, a Dependency Graph and Some Code
Smells: an Empirical Study of Java OSS

Evidence – help
refactoring decisions

 S3 Leveraging Code Smell Detection With Inter-Smell Relations Evidence – help identify
code smells

S33 Relation of Code Clones and Change Couplings Evidence – help identify
code smells

S40 Impact of Metrics Based Refactoring on the Software Quality: a
Case Study

Impact of refactorings

S45 An Empirical Study of the bad smells and class error probability in
the post-release object-oriented system evolution

Effects of code smells

S14 Code Smell Eradication and Associated Refactoring Effects of code smells
S23 An experiment on subjective evolvability evaluation of object-

oriented software: explaining factors and interrater agreement
Subjective evaluation

S24 Subjective evaluation of software evolvability using code smells: An
empirical study

Subjective evaluation

S41 Object-oriented cohesion subjectivity amongst experienced and
novice developers: an empirical study

Subjective evaluation

The empirical contributions were summarized and studied to extract the main claims, purpose

and results. These articles were especially relevant to the research sub-questions SQ1 and

SQ2 and as such were given additional attention. The sub-categories of the empirical

contributions were created after the summary of the articles was finished and were based on

the stated purpose and results of the individual contributions. Figure 9 shows the distribution

22

of the contributions. The rest of this sub-chapter will present the emerged topics of the

empirical contributions and how they relate to the research questions, as well as a short

summary of each article.

Figure 9: Distribution of the topics for all empirical contributions

4.2.1 Evidence for Supporting Refactoring Decisions
Empirical results that might help practitioners making refactoring decisions are obviously

interesting from several points of view. Practitioners that are to make such decisions and

researchers that are working on refactoring methods and tools would possibly be interested in

such research. These are contributions that do not look at how refactoring directly affect the

code. They do, however, investigate various other implications of refactoring as cost ([S38]

and [S35]), impact on tests [S37]), and when or under which situations refactoring tend to

occur [S36]).

Common Refactorings, a Dependency Graph and Some Code Smells: An Empirical Study
of Java OSS
Counsell et al. [S38] report results from a tool whose purpose was to identify and extract

refactorings from seven open-source Java systems to be able to get data on how frequent they

were used. They chose to include 15 refactorings thought to be the most commonly employed

and most interesting. Counsell et al., coined a “Gang of Six”, which represented the six most

common refactorings (in ascending order of frequency): Pull Up Method, Move Method, Add

Parameter, Move Field, Rename Method, and Rename Field. Most of these refactorings had a

high in-degree and low out-degree impact. They also found that inheritance and

encapsulations-based refactorings were applied relatively infrequently.

0 1 2 3 4

Subjective evaluation

Effect of code smells

Impact of refactoring

Evidence for supporting detection/analysis of CS

Evidence for supporting refactoring decisions

23

Is the Need to Follow Chains a Possible Deterrent to Certain Refactorings and an
Inducement to Others?
In [S35], Counsell et al. investigate how refactorings relate to each other. They analyzed 14

refactorings and a dependency graph was created based on description of code refactorings in

Fowler’s book [2]. A dependency graph is a directed graph that represents the dependencies

between objects. Arrows mark objects that are dependent on the object to which the arrow

points. Figure 10 shows an example of a dependency graph. A depends on B and C, and B

also depends on D, making A depends on B, C and D.

Figure 10: Example of a dependency graph

The refactoring dependency graph was used as a basis for analyzing 7 open source systems

(OSS). The head version of each system was analyzed in addition to several previous

versions. They found that refactorings inducing long chains tended to be utilized less by

developers than refactorings with short chains. Encapsulate Downcast (0 occurrences),

Extract Subclass (6 occurrences) and Extract Superclass (23 occurrences) did not occur often.

Hide method had also few (9) occurrences despite of being a relatively simple refactoring.

Results also suggest that the complexity of long refactoring chains may be a real

consideration prior to refactoring.

Size and Frequency of Class Change from a Refactoring Perspective
In [S36], Counsell and Mendes investigate whether the number of changes to a class is a

sufficiently good indicator that the class needs refactoring. The data material consisted of

code changes from 161 Java classes from the Gnu GCC libjava library. The baseline for this

research was the assumption that the number of changes to classes is a good indicator that a

class might need refactoring. Counsell and Mendes claimed that combining this aspect with

the number of lines added, would improve this approach. They concluded that an increase in

Lines of Code is a better indicator than number of changes. They also investigated the claim

that large classes are more change-prone than smaller classes, but found only limited support

for this.

24

The Effectiveness of Refactoring, Based on a Compatibility Testing Taxonomy and a
Dependency Graph
Counsell et al. [S37] investigate how refactorings affect the repeatability of tests. They

identified four categories of refactorings, ranging from semantic-preserving to incompatible.

These groups were applied to the empirical data from the 7 OSS previously mentioned in S37.

The most relevant result shows that 4 out of the 5 most used refactorings all belong to the

same group – refactorings that change the old interface, but can be made compatible by

adding the old interface as a wrapper. They also conclude that semantic-preserving

refactorings can have hidden ramifications despite their advantages. Counsell et al. postulate

that the choice of refactorings must take into consideration the inter-relatedness of

refactorings. Developers should not pick refactorings based on superficial characteristics, but

look into the in-depth mechanics of the different refactorings.

4.2.2 Evidence for Supporting Detection/Analysis of Code Smells
Two contributions present empirical knowledge that could support the process of detecting

and analyzing code smells. While SQ3 focuses on actual tools and methods to help with

detecting and analyzing code smells, results from empirical studies could be used in order to

assist in the creation of such tools and methods.

Leveraging Code Smell Detection With Inter-Smell Relations
Pietrzak et al. [S3] present different viewpoints on how code smells affect each other. Instead

of looking into the resolution order, they investigate how already detected and rejected smells

can be used as a factor (in addition to already utilized sources as metrics, code behavior or

changes in code) for detecting new smells. Six inter-smell relations are identified as useful for

smell detection. This theory is supported with empirical evidence from an experiment

performed on classes from the Apache Tomcat codebase [22]. One example of such a relation

is Data Class and Feature Envy. Of the 26 Data Classes found, 24 of them were referenced

by methods identified as Feature Envious.

Relation of Code Clones and Change Couplings
Geiger et al. [S33] use the concept of Change Couplings, which is defined as “files which are

committed at the same time, by the same author, and with the same modification”, and the

more familiar Code Clones. It is, however, reasonable to assume that they are related to

Fowler’s concepts of Shotgun Surgery and Duplicated Code. Geiger et al. examine the

relation between these smells and try to validate and quantify this relation. The data is drawn

from the Mozilla project [23]. Regression analysis was applied on the clone coverage and

25

coupling coverage data. They did, however, find that the correlation is too complex to be

expressed easily and that the judgment of the software engineer is still needed. In addition to

these results, they presented a framework to examine this relationship further on, which

consists of a set of metrics and visualization techniques to spot where the correlation between

cloning and change couplings exists.

4.2.3 Effects of Refactorings
Only one empirical contribution was identified that investigates the direct effect refactorings

have on software quality.

Impact of Metrics Based Refactoring on the Software Quality: A Case Study
Shrivastava and Shrivastava [S40] report a case study in which an inventory application was

considered and efforts were made to improve the quality of the system by refactoring. Code

metrics were used before and after sets of refactorings to describe the impact. The code in

question was from the open source application Inventor Deluxe and the Eclipse plug-in

Metrics 1.3.6 was used to assess the code. The following metrics were used to measure

quality: Number Of Attributes in class (NOA), Number Of Classes (NOC), Number of

Methods in class (NOM), Depth of Inheritance Tree (DIT), Cyclomatic Complexity (CC) and

Total Lines of Code in class (TLOC). The refactorings were applied sequentially (Extract

Class, Extract Method and Extract Subclass). Average NOA, NOM, and CC were reduced

throughout the refactorings while NOC, TLOC and DIT increased. They concluded that

refactoring was found to have a positive impact on the software quality.

4.2.4 Effects of Code Smells
Two contributions that focus on the effects of code smells were identified, but they have

different perspectives. Li and Shatnawi [S45] investigate how the presence of code smells

affects error rate while Hamza et al. [S14] investigate the effort required to remove code

smells from code. They are both interesting in terms of answering SQ1: What is the state of

art in SE research with respect to investigating empirically the effects of code smells in

development and maintenance projects?

An Empirical Study of the Bad Smells and Class Error Probability in The Post-Release
Object-Oriented System Evolution
In [S45], Li and Shatnawi present results from an empirical study that investigates the

relationship between six code smells (Data Class, God Class, God Method, Refused Bequest,

Shotgun Surgery and Feature Envy), and class error probability in an industrial-strength

26

system. The code base studied was the Eclipse project. In addition to data extracted from the

code base, relevant bugs and errors were extracted from Bugzilla [24] and divided into three

error-severity levels. Code smells were detected in the code using Borland Together and the

connection between code smells and errors were investigated. Multivariate Logistic

Regression and Multinomial Multivariate Logistic Regression were used to study the

association between code smells, error proneness and error severity. The results showed a

(significant) positive linkage between the Shotgun Surgery, God Class and God Method code

smells and class error probability. They also suggest that refactoring may reduce the chance

that a class will have errors in the future.

Code Smell Eradication and Associated Refactoring
Hamza et al. [S14] look at the dependencies between the refactorings of Kerievsky [11] and

Fowler [2] in the context of Fowler’s 22 code smells. This was done to analyze the difference

in effort required for each code smell in order to eradicate them. Extract Class (required to

eradicate 6 code smells). Move Method (6 code smells), Extract Method (4 code smells), and

Move Field (4 code smells) are the refactorings used to remedy the most smells. Only 5 code

smells did not require one of these four refactorings. The results also suggest several code

smells would be relatively expensive to eradicate and that Fowler’s code smells are less

complex to eradicate and induces fewer refactorings on average, compared to those of

Kerievsky. This because Kerievsky’s code smells often induces a set of design pattern

refactorings as well as relatively large numbers of refactorings. Primitive Obsession can be

seen as the most complex code smell because it induces a total of 200 Fowler refactorings.

Large Class and Duplicated Code each induce a total of 163 refactorings.

4.2.5 Subjective Evaluation
The three articles on subjective evaluations all share the focus on how the subjective nature of

code smells may affect the results of code evaluations. The two contributions by Mäntylä

([S23] and [S24]) both target code smells specifically, whiles Counsell et al. [S41], target the

code attribute of cohesion – which in turn is commonly thought to signal that a code might

need refactoring – much like a code smell [25].

An Experiment on Subjective Evolvability Evaluation of Object-Oriented Software:
Explaining Factors and Interrater Agreement
Mäntylä [S23] reports two experiments on software evolvability evaluations where agreement

of evaluators was studied. The participants were 88 MSc students and the code analyzed

consisted of 1000LOC of Java code. The participants were asked to answer whether certain

27

code smells (Long method, Long parameter list or Feature Envy) existed in the code and

whether it should be refactored or not. In experiment 2, participants were simply asked

whether the code should be refactored or not. The results show that the interrater agreement

was high for simple code smells, but low for refactoring decisions. Demographics and source

code metrics were analyzed to account for the different evaluations. Code metrics could

explain over 70% of the variations regarding simple code smells, but only about 30% for the

refactoring decisions. Demographics did not seem to be useful predictors, neither for

evaluating code smells nor refactoring decisions. Mäntylä states that the low agreement for

the refactoring decisions may indicate difficulty in building tool support simulating real-life

subjective refactoring decisions. He adds that code metric tools, however, should be effective

in highlighting straightforward problems, as simple code smells.

Object-Oriented Cohesion Subjectivity amongst Experienced and Novice Developers: An
Empirical Study
Counsell et al. report results on how software engineers rates cohesion in [S41]. They had a

group of twenty-four subjects from IT-experienced and novice groups and asked them to rate

ten classes sampled from two industrial systems in terms of their overall cohesiveness. The

subjects were presented the classes in random order and asked to rate them on a scale of 1 –

10 how cohesive they thought that class was. They were also asked to give some comments

on why they had given the various cohesion ratings. The time frame for this task was 15

minutes. The cohesive values were then grouped by experience level and by metrics as

Number of Method in Class, Number of Associations (defined as the number of unique

classes to which the class under consideration is coupled), Coupling Between Objects and

Number of Comment Lines. The results suggest that class size (by number of methods) only

influenced the perception of cohesion by novice subjects. Well-commented classes were rated

more cohesive amongst IT experienced than novice subjects. Thirdly, results suggest strongly

that cohesion comprises a combination of various class factors including low coupling, small

number of attributes and well-commented methods, rather than any single, individual class

feature per se.

Subjective Evaluation of Software Evolvability Using Code Smells: An Empirical Study
Mäntylä et al. [S24] report the result of an empirical study on the subjective evaluation of

code smells. They propose to use the word software evolvability to describe the ease of further

developing a piece of software. Furthermore, they elaborate thoroughly the differences

between human evaluations and program analysis based on metrics. The empirical evidence

28

presented is drawn from a case study performed in a Finnish software product company. The

authors asked 12 participants for the degree of presence of 23 code smells in 16KLOC to

83KLOC-sized modules. The same code was also analyzed programmatically. Results show

that lead developers reported more Parallel Inheritance Hierarchies, while regular developers

reported more Duplicated Code. Developers with less experience with the modules reported

more code smells than developers more familiar with the modules. Yet another result shows

that Large Class, Long Parameter List and Duplicated Code finds conflicted with the program

analysis. The authors conclude that organizations should combine subjective evaluations and

metrics when making decisions on improving the code. The results also suggest that

experienced developers are better at detecting more advanced code smells.

4.3 Design Research Contributions
As previously stated, design contributions add up to the majority of the overall contributions.

The design contributions are here divided in three main categories according to their purpose,

namely: detecting code smells, performing refactorings and refactoring decisions. Figure 11

shows the total number of contributions for each category. In this figure, contributions that

have several purposes, will count towards the total for each of its purposes. Of the 28 design

research contributions, only 10 of them could show to an available tool. Some tool

contributions were using novel or prototype-tools, while other contributions did not state

whether the tool presented was available or not. Another trend is that very few contributions

seem to have been tested or validated in an industrial setting. Only 4 of the 28 design

contributions were industrially validated. These few contributions also includes a tool

contribution which were academic, but were going to be released commercially and had been

tested for some time in this context [S7] and another tool contribution that was validated by

one independent designer [S30]. The rest of the 28 design contributions were not validated at

all, validated on example code from books, or validated by the researchers on code taken from

various open source projects.

29

Figure 11: Summary of design research contributions by purpose

4.3.1 Detecting And Analyzing Code Smells
A total of 22 design contributions to fully or partially focus on detecting code smells were

identified. Some methods and tools have code smell detection as their only focus, while other

contributions both detect smells and try to remove them. This section includes every

contribution related to detecting code smells and categorizes them into 7 groups: (1)

Visualization tools, (2) Metrics, (3) Specification of code smells, (4) Various detection

methods, (5) Pinpoint methods/tools (6) Early code smell detection tools and (7) Generic

defect detection. In Table 5, the list of contributions is presented, where Type denotes the type

of design contribution where T = tool, M = method and M/T = a combination of tool and

method.

Table 5: List of contributions for detecting/analyzing code smells

Nr. Name of contribution Approach Type

S6 A Catalogue of Lightweight Visualizations to Support Code Smell
Inspection Visualization T

S20 Comprehensive Software Understanding with SEXTANT Visualization T

S22 Product Metrics for Automatic Identification of "Bad Smell" Design
Problems in Java Source-Code Metrics M/T

S11 Metrics Based Refactoring Metrics M/T

S18 Dependency Oriented Complexity Metrics to Detect Rippling Related
Design Defects Metrics M

S26 A Domain Analysis to Specify Design Defects and Generate Detection
Algorithms Specification M

S27 Automatic Generation of Detection Algorithms for Design Defects Specification M/T

S28 DECOR: A Method for the Specification and Detection of Code and
Design Smells Specification M/T

S43 Identifying Refactoring Opportunities Using Logic Meta Programming Various
detection M

0

5

10

15

20

25

Detect code smell Perform refactoring Refactoring decisions

Method

Tool

Total

30

S1 Detecting Bad Smells in Object Oriented Design Using Design Change
Propagation Probability Matrix

Various
detection M

S3 Leveraging Code Smell Detection with Inter-Smell Relations Various
detection M

S13 Discovering Unanticipated Dependency Schemas in Class Hierarchies Various
detection M

S4 Multi-Criteria Detection of Bad Smells in Code with UTA Method Various
detection M

S21 JDeodorant: Identification and Removal of Feature Envy Bad Smells Pinpoint T
S31 JDeodorant: Identification and Removal of Type-Checking Bad Smells Pinpoint T
S39 Source Code Enhancement Using Reduction Of Duplicated Code Pinpoint M
S44 Using Concept Analysis to Detect Co-Change Patterns Pinpoint M

S7 Java Quality Assurance by Detecting Code Smells
Early code

smell
detection

M/T

S4
Beyond the Refactoring Browser: Advanced Tool Support for Software
Refactoring

Early code
smell

detection

T

S16 A Flexible Framework for Quality Assurance of Software Artefacts
with Applications to Java, UML, and TTCN-3 Test Specifications

Generic
defect

detection
M/T

S5 Mining Software Repositories with iSPARQL and a Software Evolution
Ontology

Generic
defect

detection
M/T

Visualization tools: Parnin et al. [S6] propose specific visualizations that would benefit the

process of inspecting code – both in terms of assessing code in general and for the detection

of code smells. Eichberg et al. [S20] on the other hand use visualizations as one of several

comprehension techniques and argues that a combination of this technique plus several other

techniques is required to successfully understand software systems.

Metrics: Munro [S22], Simon et al. [S11] and Reddy and Rao [S18] use existing and new

metrics to identify code smells and opportunities for refactoring. They are similar in their

approaches since they rely on various metrics to detect code smells, but differ in which types

of smells they focus on and how they use metrics to detect them. The study reported in [S22]

is from 2001 and the earliest contribution in this review. It focuses on 4 refactorings: Move

Method, Move Attribute, Extract Class and Inline Class, which are all based on use relations.

They calculate the distance between methods and classes by investigating the usage of

attributes and methods. Simon et al. in [S11] investigate 2 smells, namely Lazy Class and

Temporary Field. These smells are then characterized and described more informally and

interpreted in terms of logic and metrics, as can be seen in Figure 12 (NOM = Number Of

Methods, LOC = Lines Of Code, WMC = Weighted Methods per Class, CBO = Coupling

Between Objects. DIT = Depth of Inheritance Tree, IVMC = number of methods that

reference each instance variable defined in a class).

31

Interpretation of Lazy Class Interpretation of Temporary Field

Figure 12: Formal interpretation of the code smells Lazy Class and Temporary Field [S11].

Reddy and Rao [S18] introduce new metrics to describe changes over time, in order to detect

Shotgun Surgery and Divergent Change. This contribution is different from [S22] and [S11]

because it does not only look at one specific state of the code. Shotgun Surgery and Divergent

Change both need data on changes over time to be detected. The metrics introduced in this

contribution by Reddy and Rao are tailored for this purpose – to describe dependencies

between objects over time.

Specification of code smells: The studies reported by Moha et al. [S26, S27, S28], all address

the issue of lack of formal descriptions of code smells. They work towards the goal of a

unified way to formally describe them. They demonstrate how software engineers can specify

code smells at a high-level of abstraction using a domain-specific language for automatically

generating detection algorithms based on these specifications.

Various detection methods: [S43], [S1], [S3], [S13], and [S4] explore different techniques to

detect code smells. Using code metrics to detect code smells has been one of the major

approaches for refactoring as seen in [S11], [S22], [S18]. The contributions presented here all

use different approaches for detecting code smells. One example is the approach by Pietrzak

and Walter [S3], which uses data from previously deleted and rejected code smells to help

detect other code smells. They also document how code smells relate to each other in other

situations. Arévalo et al. [S13] use concept analysis to detect hidden dependencies in class

hierarchies. They focus on detecting bad smells in design, but do not refer to any of the code

smells defined in Fowler [2]. Reddy and Rao [S1] investigate an approach called Change

32

Propagation Probability Matrix, as a technique to detect the Shotgun Surgery and Divergent

Change code smells. This technique investigates how change propagates between objects –

making it suit the requirements of a tool to detect these dynamic smells. Tourwé and Mens

[S43] report preliminary but promising results on using logic meta-programming to detect

smells. This is one way of performing logical computation on code in another language. They

propose the SOUL meta-language and show how the Obsolete Parameter and Inappropriate

Interface smells can be detected using this technique. Walter and Pietrzak [S4] try to combine

several approaches by using several data sources to detect code smells. They identify the

following six distinct sources useful for smell detection:

a) Programmer's intuition and experience
b) Metrics values
c) Analysis of a source code syntax tree
d) History of changes made in code
e) Dynamic behavior of code
f) Existence of other smells

The programmers subjective intuition and metrics values are probably the most used sources

as of now. But at least 5 of the 6 sources are represented in contributions present in this

review. Walter and Pietrzak describe dynamic behavior of code as smells that are hard to

detect. The authors claim that these smells require the code to run to be detected. They

suggest writing unit tests to better be able to detect these smells. They also mention Data

Class as an example of a code smell of this type. Data Class should, however, be a relatively

easy code smell to detect [S3, S22]. The other 5 sources for detecting code smells are

represented in this review. Walter and Pietrzak evaluate their approach by verifying that they

are able to detect instances of Large Class in an open source system by using several sources

as input for the detection algorithm.

Pinpoint methods/tools: Tsantalis et al. [S21], Fokaefs et al. [S31], Nasehi et al. [S39], and

Gîrba et al. [S44] are all relatively new design contributions (all published in 2007 or 2008)

that target one specific code smell or design problem. This can be described as a depth-first

approach on refactoring research. As previously showed, several other contributions

investigate techniques for detecting several code smells with more general approaches. By

narrowing the scope to one specific code smell, the contributions in this category are able to

deliver tool support in a much greater extent than the average contribution. The two tools

described in [S21] and [S31] are released and available as plug-ins to the popular Eclipse

33

IDE, while the studies reported in [S39] and [S44] investigate troublesome aspects of

programming – duplication of code and the closely related topic of co-change (parts of code

that change at the same time), respectively. The main contributions from these articles will

obviously have to be the specific method to remove the chosen code smell, because using a

new tool for each code smell is not very efficient.

Early code smell detection tools: Van Emden and Moonen [S7] give an early contribution

(from 2002), a code smell detection tool in Java. Another early article [S42] (from 2003)

suggest and demonstrate that refactoring tools should use code smells to suggest refactorings.

These two contributions are historically interesting because they present early efforts to use

code smells in refactoring tools. They are, however, not very relevant for developers of today

except for as background information. The approaches can be seen as proof of concept tools,

concepts that already are further developed into available and refined tools.

Generic defect detection: Nodler et al. [S16] present a framework for analyzing code,

presenting metrics and detecting code smells. It is, however, not only applicable to software

code, but also to other languages like UML-diagrams and the TTCN-3 test specification.

Kiefer et al. [S5] present several tools and frameworks for mining software repositories. This

could quite possibly be used to improve code smell detections, but the code smell aspect is

not evaluated in the contribution.

4.3.2 Performing refactoring
Tools and methods that perform the actual refactoring are the least represented ones with only

6 contributions. Nevertheless, this category is interesting because 5 of the 6 contributions

have available tools. [S30], [S29], [S21] and [S31] by Tsantalis et al. have present tool

support in the JDeodorant plug-in for Eclipse. Steimann et al. [S12] also present tool support

in an Eclipse plug-in and present a new refactoring technique to help with creating small

context-specific interfaces to lower the coupling between classes. The study reported by Pérez

and Crespo [S17] both consists of a survey on existing tools and a presentation of a method

for supporting behavior-preserving refactoring.

Table 6: List of design research contributions for performing refactoring

Nr. Name of contribution Type of
contribution

S30 Identification of Extract Method Refactoring Opportunities T
S29 Identification of Move Method Refactoring Opportunities T
S21 JDeodorant: Identification and Removal of Feature Envy Bad Smells T

34

S31 JDeodorant: Identification and Removal of Type-Checking Bad Smells T
S12 Decoupling classes with inferred interfaces T
S17 Perspectives on automated correction of bad smells M

4.3.3 Making refactoring decisions
It was found through the review that design contributions for supporting refactoring decisions

follow very different strategies. The approach used in [S21] and [S29] calculates a “score” for

each refactoring by summing up relevant metrics and presents a list of proposed refactorings

rated by this score. This score is meant to rate the state of the code after each suggested

refactoring. The tool presented in [S30] uses the same approach, but as demonstrated by the

researchers, the resulting order does not correlate well with a developer’s opinion. Trifu and

Reupkes [S2] do not only recommend refactorings. They use a combination of several

symptoms to identify targets for refactoring. They state that “by conception, design flaws can

be put in a one-to-one relation with semantically meaningful refactoring solutions” [S2].

Table 7: List of design research contributions to help with making refactoring decisions

Nr. Name of contribution
S21 JDeodorant: Identification and Removal of Feature Envy Bad Smells
S29 Identification of Move Method Refactoring Opportunities
S30 Identification of Extract Method Refactoring Opportunities
S2 Towards Automated Restructuring of Object Oriented Systems
S20 Comprehensive software understanding with SEXTANT
S16 A Flexible Framework for Quality Assurance of Software Artefacts with Applications to Java,

UML, and TTCN-3 Test Specifications
S46 Code Evaluation Using Fuzzy Logic
S15 Facilitating Software Refactoring With Appropriate Resolution Order of Bad Smells
S8 Representing Refactoring Opportunities

The tools presented by Eichberg et al. [S20], Nodler et al. [S16] and Avdagic et al. [S46]

support refactoring decision making since their contribution attempts to analyze and visualize

the code to give a broader understanding of its properties. Code smells are vaguely described

and thus it can be fruitful to be able to look at many different aspects of the code through

analyzing and visualizing it. Liu et al. [S15] investigate the relationship between different bad

smells and propose a resolution order based on this. They demonstrate that resolving a set of

code smells could have different results, depending on the resolution order. Piveta et al. [S8]

propose a unified way of describing conditions of which applications of refactoring can be

advantageous.

35

4.4 Summarizing and Theoretical Research Findings
In addition to the empirical research and design contributions, there are three summarizing

and four theoretical contributions amongst the primary articles. They are not relevant to any

of the specific sub research questions, but are included to provide input for the main research

question on state of the art in the research.

4.4.1 Summarizing Contributions
The three summarizing contributions stem from language specific tool surveys to a historical

review on code smells. Lerner [S34] presents “metric_fu”, which is a tool suite for analyzing

code in the Ruby programming language. The contribution is summarizing the different tools

present in the suite. [S19] is a survey on java refactoring tools for the big IDEs, namely:

Eclipse (version 3.1) IntelliJ IDEA (version 4.5) and Netbeans (version 4.0); and focuses on

refactoring as a way of developing, not only maintaining code. The results from this survey

show that Netbeans severely lacks refactoring abilities compared to the other IDEs, such as

Eclipse and IntelliJ, which both support around 30 refactorings. It is, however, noted that

IntelliJ 5.0 is a better refactoring tool because it includes code analysis that can be used to

detect code smells. The conclusion of the survey is that there are very good tools that could

help developers to perform refactorings rather painlessly

Table 8: List of summarizing contributions

Nr. Name of contribution
S34 At the Forge: Checking Your Ruby Code With Metric_Fu
S19 Refactoring Tools and Complementary Techniques
S17 Perspectives on Automated Correction of Bad Smells

Pérez and Crespo [S17] present a historical review on the field of refactoring and code smells.

They summarize the origin of code smells and refactorings and investigate some of the most

prominent contributions in the field. The article also presents a short section on Evolution of

research on bad smells’ related activities. The material studied in this contribution seems to

be exclusively based on books and PhD theses. The bottom line of the article is that one can

separate the work on code smells and refactoring in three parts as illustrated in Figure 13. The

bad smell catalogs and specifications have corresponding work in refactoring research, while

the effort to automate smell detection has yet to be mirrored by research on refactoring.

36

Figure 13: History of research on code smells and refactoring as presented by Pérez and Crespo [S17].

4.4.2 Theoretical Contributions
Murphy-Hill [S9] and Murphy-Hill et al. [S10] discuss properties of code smell detection

tools. The focus of these contributions is a top-down approach where attributes of the tool,

and not implementation details, are discussed. The contributions are very similar to each

other, and since [S10] resulted the most recent and elaborated contribution, this is was the

article investigated further in the review.

Table 9: List of theoretical contributions

Nr. Name of contribution
S10 Seven Habits of a Highly Effective Smell Detector
S9 Scalable, Expressive, and Context-Sensitive Code Smell Display
S25 Towards a Catalog of Aspect-Oriented Refactorings
S15 Facilitating Software Refactoring With Appropriate Resolution Order of Bad Smells

Murphy-Hill et al. [S10] postulate 7 habits that code smell detection tools should pay extra

attention to:

Availability – Rather than forcing the programmer to frequently go through a series of steps

in order to see if a tool finds any code smells, a smell detector should make smell information

as available as soon as possible, with little effort on the part of the programmer.

Relativity – A tool should place more emphasis on smells that are more difficult to recognize

without a tool.

37

Scalability – A proliferation of smells in code should not cause the tool to overload the

programmer with smell information.

Unobtrusiveness – A smell detection tool should not block the programmer while gathering,

analyzing and displaying information about smells.

Expressiveness – A smell detector should go further than simply telling the programmer that

a smell exists; it should help the programmer find the source(s) of the problem by explaining

why the smell exists.

Context-Sensitivity – A smell detector should first and foremost point out smells relevant to

the current programming context. Fixing smells in a context-insensitive manner may be a

premature optimization.

Relationality – A smell detection tool should be capable of showing relationships between

code fragments that give rise to smells.

Monteiro and Fernandes [S25] reviewed code smells from an aspect-oriented programming

perspective. New code smells concerning aspect orientation were also introduced in this

contribution. Investigating how code smells and refactoring relate to the paradigm of aspect

oriented programming is interesting, but out of scope for this thesis, so it will not be discussed

further. Liu et al. [S15] propose a resolution order for when removing code smell. They

postulate the necessity to arrange resolution order of code smells and describes how both the

result and the cost of removing code smells can vary depending on resolution order. The

evaluated code smells are: Duplicate Code, Divergent change, Long Method, Large Class,

Long Parameter List, Feature Envy, Useless Field, Useless Method, Useless Class and

Primitive Obsession. For each pair of these smells the following situations are investigated:

a) Will different resolution orders lead to different resulting systems?

b) Will the resolution of a bad smell ease the detection of the other?

c) Will the resolution of a bad smell complicate the detection of the other?

d) Will the resolution of a bad smell ease the modification (resolution) on the other bad smell?

e) Will the resolution of a bad smell complicate the modification on the other?

38

39

5 Discussion

This section discusses the main findings from the literature review as presented in Section 4.

Initially the 3 sub-research questions will be recaptured and results will be summarized in

order to get a more clear view of the state of the art in the field. Subsequently, general

tendencies within the research will be discussed. Finally, the knowledge gap identified in the

state of the art will be discussed.

5.1 The Effects of Code Smells (SQ1)
The results relevant for SQ1 are the contributions summarized under the topic Effects of code

smells in the section on empirical contributions in Chapter 4. The section does, however, only

include two contributions. Hamza et al. [S14] investigates the effect of code smells in the

context of removing them and the cost related to that. Li and Shatnawi [S45] have positively

linked Shotgun Surgery, God Class and God Method to increased error rate in software

projects in their 2007-analysis of the Eclipse code base and bug reports. Using Fowler’s 22

initial code smells as reference, it leaves us with 19 code smells lacking of evidence that their

presence have a negative and perceivable impact on error rate or other quality related

properties. The overall goal of empirical articles on effects of code smells should be to have

several sources documenting the effects in several contexts relevant for practitioners.

Furthermore, an increase in error rate is only one interesting aspect to investigate within a

wide range of possible aspects within a maintenance project. Some other quality aspects that

the presence of code smells could affect are:

• Time/cost needed to implement additional functionality in an existing system

• Time/cost needed to make changes or to fix bugs to an existing code

• Time/cost needed to understand the code for people unfamiliar with it

Moreover, practitioners also need additional information such as the impact size of code

smells if any tradeoffs need to be taken during development or maintenance. How worried

should I be about the presence of certain code smells and under which circumstances?

40

5.2 The Effects of Refactoring (SQ2)
The only result directly relevant to answer this question is the single contribution under the

topic Effects of refactoring. Shrivastava and Shrivastava [S40] presented a case study in

which several steps of refactorings were applied to an application and metrics were used to

measure the quality between and after each step. They present metrics that show an increase

in some values and a decrease in other values. However, it is possible to see that there is no

attempt to operationalize any relevant maintainability concept or other software quality by

using these metrics. It could be true that most developers would find the application in

question to have a higher quality after the refactorings were applied, but empirical evidence

such as reduction in effort or defect rate is not present in the study. It would be more helpful

to other developers and researchers if the work could illustrate the advantages of refactoring

by associating them to measures more directly relevant to a maintenance project (e.g., a

decrease in defect rates or effort needed to add features to the product). Showing changes in

code metrics is only valuable if you can further link those metrics directly to more concrete

quality aspects.

This leads us to the conclusion that empirical evidence of the effects of refactoring is a wide-

open research area. There is an increasing interest in refactoring research, there is

considerable support for refactoring in the most popular IDEs, and there seems to be much

interest in this topic within the major practitioner conferences in combination with new

practices and processes such as TDD and XP. Could putting significant effort into refactoring

activities be justified from a manager’s point of view with this provided information? [S10]

states that root canal refactoring (the process of intensively refactoring code) is left to

managers’ decisions, as opposed to floss refactoring [S10], which is a decision left to the

individual developer. In both contexts, neither the manager will pay for work that doesn’t add

any value (empirically validated) nor a developer would find it easy to justify the time spent

in refactoring if they are just required to deliver code in time. Nonetheless, Martin Fowler

suggests how to handle schedule driven managers:

“Of course, many people say they are driven by quality but are more driven by schedule. In
these cases I give my more controversial advice: Don’t tell! Subversive? I don’t think so.
Software developers are professionals. Our job is to build effective software as rapidly as we
can. My experience is that refactoring is a big aid to building software quickly. If I need to
add a new function and the design does not suit the change, I find it’s quicker to refactor first
and then add the function. If I need to fix a bug, I need to understand how the software works
– and I find refactoring is the fastest way to do this. A schedule-driven manager wants me to

41

do things the fastest way I can; how I do it is my business. The fastest way is to refactor;
therefore I refactor.” [2]

Developers are refactoring, and will probably continue to do this, regardless of empirical

evidence. It would, however, be of vital importance to validate its effects in order to enable

managers and customers to perform tradeoffs during product maintenance and acceptance,

whether it is in the form of floss refactoring or time-consuming root canal refactoring.

5.3 State of the art in methods and tool availability (SQ3)
Section 4 displayed a wide set of tools and methods for detecting code smells. Of the 28

design contributions, 22 related to code smells detection, 8 related to performing refactorings,

and 13 related to the process of making refactoring decisions (each article can span several

purposes). The review found 15 contributions presenting tools, but only 10 of these

contributions could show to an available tool (a tool that was available for developers and

researchers to test out, either commercially or open source). Some contributions stated that

the tool used in the contribution was only a prototype or a novel tool, while other

contributions never mention whether the tool in question was available or not. This could be

an indicator that the implementation of the methods into tools is not getting enough attention.

Within the available tools, it is still required to use a number of different tools since they are

tailored to one or a few code smells. This again means that there might be a lack of

integration with respect to tools supporting different code smells as well as amongst different

refactoring activities that belong together.

The state of the art when it comes to commercial tool support for refactoring is, however, not

as bad as one can get the impression of from the numbers and summaries in this review. This

claim is partly based on my experience as developer, but also backed by the 2006-survey of

refactoring tools presented by Drozdz et al. [S19]. The most used IDEs have advanced

refactoring support and can perform many different refactorings including: Extract Method,

Move Method, Extract Superclass, Encapsulate Field, Introduce Parameter Object, Remove

Middle Man, Replace Inheritance with Delegation, and Replace Constructor With Factory

Method [26-28]. This shows well-developed refactoring support for developers, as opposed to

code smell detection tools. The reasons for this could be many, but the lack of formalized

descriptions of code smells is most likely to be the cause of this.

This literature review has identified several methods for detecting several code smells, but

many of these techniques lack tool support. Others have tool support but as independent tools

42

or IDE plug-ins. A comprehensive and functional smell detector seems far away, and thus the

existing IDE refactoring support is expected to be mainly usable within floss refactoring, as

explained by Murphy-Hill and Black [S10]:

“It appears that programmers refactor frequently to maintain healthy code, interleaving
refactoring with other tasks such as adding features. We call this floss refactoring, and
contrast it with root canal refactoring, where a programmer refactors code intensively and
exclusively once it has become unhealthy”

5.4 Gap between Refactoring Tools and Code Smell Detection Tools
This review found that there is a large compendium on code smell tools research, but nearly

no tools. The opposite is true for refactoring: There exist a lot of available tools, but hardly

any research on such tools. The nature of refactoring and code smells, as described by Fowler

[2], could account for this difference. Refactorings are well formalized and procedural in its

form. They have a step-by-step explanation on how to proceed forth and the relatively early

tool support in the popular IDEs might also indicate that the work of making these tools were

simpler than those for detecting code smells. The process of presenting refactoring

opportunities is, however, not as straightforward and this is also a subject with more research

efforts, although maybe not as much as could be desired. It is understandable that industrial

IDEs as IntelliJ and Visual Studio aren’t broadcasting their algorithms. But it is potentially

dubious that researchers are spending a lot of time researching on the detection of code smells

and IDE developers are implementing refactoring support, without any evident

communication or cooperation between each other.

5.5 The Current Focus on Design Contributions
As shown in Section 4, 61% of the contributions were methods and tools. Improvements of

existing tools and methods and the addition of new tools are valuable. These tools are,

however, only helping people that already are refactoring. If every developer were refactoring

and waiting for such tools, they would be very beneficial. If nobody were refactoring, these

tools would be useless. The truth is obviously somewhere in-between. Some developers are

using refactoring tools and actively looking for code smells either manually or with existing

tools, other developers are not. The bottom line is that as long as there is little evidence for the

effects of code smells and refactoring, a substantial part of developers (and researchers) will

await with the embracement of these techniques. Some effort (24%) has been focused on

conducting empirical studies, but as discussed, only a small segment addresses the effects of

code smells and refactoring. When looking on the contributions from this perspective, the

43

field might have been better off with less emphasis on finding new innovating methods and

tools. It is not to say that the work is uninteresting or not valuable, it might, however, be a bit

early to focus on the details until the most basic evidence is available.

There is no obvious answer to why research has been so heavily focused towards making

design contributions, but there are some elements that might contribute to this. Empirically

validating the impact of code smells and refactoring is difficult. You would need an industrial

relevant software project and be able to separate the impacts of code smells and refactoring

from all the other influencing factors. Proving that it was indeed the refactoring effort that

improved the quality of the system and not one of the near endless other factors is both time

consuming and difficult. Another possible factor when doing research in the field is economy.

Comprehensive empirical studies could be more expensive than design research.

Development of tools on the other hand, would imply a greater commercial gain than

empirical research. Producers of commercial IDEs could integrate them into their own

product and companies that spend a lot of effort on maintaining software systems could

potentially save a lot of money on such tools and could also be interesting in paying for it.

5.6 General Tendencies within the Current research on this Topic
It is worth noting that although there has been written nearly 50 articles in the field relevant to

this topic, rather few groups of researchers have been the main contributors. Mäntylä et al. is

responsible for most of the material on the subjective evaluations, and the detection of code

smells is, at least for now, heavily dependant on these subjective evaluations. Groups of

authors leaded by Counsell, Moha and Tsantalis are important contributors within this topic.

They have contributed with a total of 15 articles. Without those teams, only 31 contributions

would be left in the review. However, of the 31 contributions then left, only four would be

empirical. Counsell is the author or co-author of six contributions, all empirical, while

Mäntylä has authored two empirical contributions. It might be a weakness for the field that

one group of researchers is behind half of the empirical contributions. Another trend worth

mentioning is the geographic variations. Several contributions have authors from different

countries and continents, and this kind of information is rarely explicitly mentioned. Research

institutions are, however, usually mentioned and e-mail addresses are also usually a good

indicator as the top domains of these addresses usually correspond with the country of origin

for a given researcher or research center. The one observation I would like to address based

on the impression I’ve got from the review process, is what seems to be a lack of

44

contributions from America. The clear impression I’ve got after the review work is that

majority of the contributions stems from Europe, with Asia as the second most productive

continent.

5.7 Limitations Found in the Current State of Art
Throughout the review it was possible to observe that very few contributions are evaluated or

used in an industrial setting. The vast majority of the methods are either validated on test code

crafted by the researchers or on open source projects. The four contributions noted as being

industrial validated include the study reported by Tsantalis in [S30], where one independent

designer assessed “the soundness of the […] refactoring opportunities” and the study reported

by Van Emden and Moonen in [S7], in which the studied code was a tool that was developed

in an academic setting, but was being prepared to be released as commercial software.

Experiences from using these methods in an industrial setting certainly would improve the

quality of the evaluations performed in the tools and methods, which in turn may identify the

usefulness or feasibility of such techniques or practices in different industrial settings.

Of all collected articles, very few of them were empirical studies, whereas the focus seems to

be on extending/confirming existing theories/claims and to create new methods and tools

based on these. As scientific research in the field of software engineering is fairly young, it

has probably not come as far as in fields like medicine or social sciences. It is for example not

trivial to sort the empirically based articles into groups of case studies, surveys or

experiments. Research method is rarely explicitly mentioned and is often “something in

between”. Glass et al. [29] describe software engineering researchers’ approach to research

methods as: “SE researchers tend to analyze and implement new concepts, and they do very

little of anything else”. When researching on the properties of code smells and refactoring

(i.e. refactoring chains or consequences of code smells), most of the data will come from

looking into code repositories, code metrics and output from mining tools. This could be one

of the reasons for not stating a specific research method. Analyzing different sets of data to

draw conclusions lacks the variables of experiments but will often not fully qualify as a case

study.

45

5.8 Potential Avenues for Future Research
What kind of empirical validated knowledge should researchers in the field aim for? Research

on refactoring needs to validate the effect of refactoring. Some research sub-areas the

community could address are: More concrete and visible effects of different refactorings on

different product/process quality aspects, Measurement and evaluation of the impact (type and

size) of refactoring/code smells in a realistic yet feasible way. Studies aiming at investigating

the costs and benefits of refactoring, Studies aiming at investigating/identifying potential risks

represented by the presence of certain code smells,

The development of unified, flexible and extensible frameworks for defining code smells and

detecting them in a variety of contexts could constitute another area of work. Furthermore, the

development of more concise evaluation frameworks could aid comparable evaluations of

tool contributions and improve their quality and increase their adoption within industry.

46

47

6 Threats to Validity
This chapter discusses the most important threats to the validity of the results obtained from

this literature review.

6.1 Choice of Research Databases
The selection of ACM Digital Library, IEEE Xplore and ISI Web of Knowledge as the only

sources for contributions could be seen as a limitation. However, by going beyond the three

major research databases in the SE field, it would be required to spend a lot of effort in

identifying the most relevant additional databases

6.2 Construction of Queries
The query used for searching the research databases for contributions could be more

comprehensive. It could have included more keywords as refactoring and restructuring. The

query was focused towards code smells because the thesis was mainly interested in

refactoring as part of a strategy to remove code smells. Refactoring in this sense is usually

motivated by noticing a code smell [2] and thus the absence of refactoring in the query would

help to remove irrelevant articles.

6.3 Application of the Inclusion- and Exclusion Criteria
The criteria for inclusion and exclusion were well formalized, but the process of applying

these criteria was still subjective and performed only by one person. In order to reduce

threats to internal validity when categorizing the contributions, several persons should ideally

perform the categorization individually and the inter-rater agreement should be observed.

Inter-rater agreement is the extent to which evaluators agree. High inter-rater agreement is a

positive indication of the reliability of the subjective evaluations. Lack of inter-rater

agreement can mean that some of the evaluators are mistaken in their evaluation [30].

6.4 Data Extraction
During the final data extraction, 46 contributions were analyzed and different pieces of

information were gathered. Due to the high variability on the quality, location and level of

detail of the information that was provided in the contribution, (findings, research methods

and other type of information) identifying the different pieces of data within the documents

was highly difficult. This situation may have lead to missing information due to the fact that

only one person performed the data extraction.

48

49

7 Conclusions
This thesis reported a literature review conducted on the topic of code smells and refactoring,

using most of the techniques of a systematic literature review.

The review found a significant growth of publications on the topic of code smells and

refactoring in the last five years, which indicates the increasing popularity of the topic within

the research community. Nevertheless, the review found in general a lack of empirically

sound evidence that could be used to guide practitioners on choosing the best refactoring

strategies for improving maintainability.

Relatively few articles reported empirical studies (24%) as opposed to design research

contributions (61%). Only 13.8% of these design contributions reported any type of

experiences from its usage in industry. In addition to empirical and design contributions, a

few articles summarized and provided theoretical contributions. One of the summarizing

articles presented an overview of the state of the art of refactoring support for the most

popular IDEs.

The direct effects of code smells were only investigated in one article. A total of six code

smells were investigated. Among those, Shotgun Surgery, God Class, and God Method were

positively correlated with an increase in the error probability in the code. In addition to this,

one study investigated another effect of code smells: The number of refactorings required to

eradicate the 22 code smells described by Fowler [2]. The review also only found one study

that empirically validated the effects of refactoring. Extract Class, Extract Method, and

Extract Subclass were applied sequentially and metrics were used to measure the quality of

the code before and after each stage of applying refactorings. The authors found several

changes in the metrics and claimed that the code had improved. They did however not state

how much the code had improved or for which quality aspects. Nor did they provide sound

evidence for the claim.

This review identified several methods that target the detection of one or more code smells.

However, there is no unified way of describing code smells or the eradication of code smells.

This is probably the main reason for the number of different, often overlapping, approaches to

detecting code smells. At some point, work must be done to establish a form of

standardization or formalization of the process of detecting and analyzing code smells.

50

According to all the various contributions on code smell detection methods and tools, the best

approaches for detecting the different smells varies greatly depending on smell and context. If

the effort needed to create effective and efficient detection tools is as significant as the

presence of this plethora of contributions suggests, it might not be feasible for any team of

developers and researchers to create one comprehensive tool. A formalized way of gathering

and analyzing and presenting information on code smells and a framework for displaying the

different code smells is one flexible solution to this problem.

The research on refactoring tools is limited. The review found six contributions related to

performing refactorings, but five of them also focused on either the detection of code smells

or providing help with the refactoring decision, or both of these, in addition to performing the

refactoring. Nonetheless, the main IDEs have heavy refactoring support [S19]. The reason for

this could be that while code smells are informally described, there exist more precise

formalizations of the various refactorings [2].

51

8 Future work
This section elaborates on potential work that could be done to achieve a deeper

understanding on the research questions presented in this thesis.

8.1 Elaborating on the Research Questions
Identifying relevant work from the references found in the primary studies could possibly

increase the result set of the data. This involves going through the references in the primary

studies and applying the exclusion and inclusion criteria on the referenced articles. As a

relevant article references these articles, the chance for them to also be relevant is fairly high.

Most of the relevant articles should hopefully already be present in the result set, but articles

not present in any of the chosen databases, or not returned by the queries could exist.

Increasing the result set would benefit the review in that it would increase the body of

knowledge contained in the review and could return more interesting findings.

Another way to increase the amount of data would be to look into the area of the grey

literature. There is most probably not a great amount of scientific empirical research within

the grey contributions, but tools and methods would be present. One example of this is the

refactoring tools embedded in modern IDEs. Eclipse has had refactoring support for quite

some time. Details on the implementation and possible empirical support for these would be

interesting in an extended review. The inclusion of grey literature in the review would,

however, bring implications both in terms of internal validity and considerations regarding the

weighing of contributions. Should grey research impact aggregated results in the same way as

validated and empirically sound evidence?

8.2 Research Method Suggestions
This research has shown that there are great differences in what information are being

provided with respect to validation and availability of tools. Making this information easily

available to developers and researchers should increase the possibility of taking the given

research into account. Elaborating on evaluation frameworks that can rank or categorize the

usefulness and applicability of methods and tools in an industrial setting constitutes another

area for future work.

52

53

Bibliography
1. Cooling, J., Software maintenance concepts and practice : Armstrong A. Takang,

Penny A. Grubb, International Thompson Publishing Inc., 1996, Softbound £22.95.
ISBN 1-85032-192-2. Microprocessors and Microsystems, 1996. 20(5): p. 311-311.

2. Fowler, M., et al., Refactoring: Improving the Design of Existing Code. 1999:
Addison-Wesley Professional.

3. Kitchenham, B., Procedures for performing systematic reviews, in Technical Report
TR/SE-0401. 2004.

4. Fowler, M. MF Bliki: EtymologyOfRefactoring. [cited 2010 01 March]; Available
from: http://martinfowler.com/bliki/EtymologyOfRefactoring.html.

5. William, F.O., Refactoring object-oriented frameworks. 1992, University of Illinois at
Urbana-Champaign.

6. DevWeek | Conference Sessions. [cited 2010 17 March]; Available from:
http://www.devweek.com/sessions/conference2.asp.

7. My JavaOne Talk on Advanced Refactoring | Java.net. [cited 2010 28 Feb.];
Available from:
http://weblogs.java.net/blog/tball/archive/2007/03/my_javaone_talk_1.html.

8. JavaZone 2008 - Agenda. [cited 2010 28 Feb]; Available from:
http://javazone.no/incogito/session/Clean+Code+III%3A+Functions.html.

9. Van Emden, E. and K. Moonen, Java quality assurance by detecting code smells, in
Working Conf. on Reverse Engineering. 2002. p. 97-106.

10. Marinescu, R. Measurement and quality in object-oriented design. in Intl. Conf. on
Softw. Maint. 2005.

11. Kerievsky, J., Refactoring to Patterns. 2004: Pearson Higher Education.
12. Mens, T. and T. Tourwé, A Survey of Software Refactoring. IEEE Trans. Softw. Eng.,

2004. 30(2): p. 126-139.
13. Brereton, P., et al., Lessons from applying the systematic literature review process

within the software engineering domain. J. Syst. Softw., 2007. 80(4): p. 571-583.
14. Holt, N.E., A systematic review of case studies in Software engineering. 2006,

University of Oslo: Oslo.
15. Dybå, T., et al., Empirical studies of agile software development: A systematic review.

Inf. Softw. Technol., 2008. 50(9-10): p. 833-859.
16. ACM Digital Library. [cited 2010 01 March]; Available from:

http://portal.acm.org/portal.cfm.
17. IEEE Xplore. [cited 2010 01 March]; Available from: http://ieeexplore.ieee.org/.
18. ISI Web of Knowledge. [cited 2010 01 March]; Available from:

www.isiknowledge.com.
19. Service, T.G.L.N. GreyNet. 2010 [cited 2010 29.03]; Available from:

http://www.greynet.org/.
20. Zotero | Home. [cited 2010 01 March]; Available from: http://www.zotero.org.
21. Martin, P.Y. and B.A. Turner, Grounded theory and organizational research. The

Journal of Applied Behavioral Science, 1986. 22(2): p. 141-141.
22. Apache Tomcat - Welcome! [cited 2010 01 March]; Available from:

http://tomcat.apache.org.
23. Mozilla.org - Home of the Mozilla Project. [cited 2009 09 Dec]; Available from:

http://www.mozilla.org.
24. Home :: Bugzilla :: bugzilla.org. [cited 2010 01 March]; Available from:

http://www.bugzilla.org.

54

25. Usha, K., N. Poonguzhali, and E. Kavitha, A Quantitative Model for Improving the
Effectiveness of the Software Development Process using Refactoring. 2009.

26. Help - Eclipse SDK. [cited 2010 01 March]; Available from:
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.jdt.doc.user/reference/ref-
menu-refactor.htm.

27. Refactoring - NetBeans Wiki. [cited 2010; Available from:
http://wiki.netbeans.org/Refactoring.

28. IntelliJ IDEA :: Java refactoring plus sophisticated code refactoring for JSP, XML,
CSS, HTML, JavaScript http://www.jetbrains.com/idea/features/refactoring.html.
[cited 2010 01 March].

29. Glass, R.L., I. Vessey, and V. Ramesh, Research in software engineering: an analysis
of the literature. Information and Software Technology, 2002. 44(8): p. 491-506.

30. Mantyla, M.V., An experiment on subjective evolvability evaluation of object-oriented
software: explaining factors and interrater agreement, in 2005 International
Symposium on Empirical Software Engineering. 2005. p. 10 pp.

55

Appendix
Appendix A - Studies Included in the Review

S1 Rao, A.A. and K.N. Reddy, Detecting bad smells in object oriented design using design
change propagation probability matrix. Imecs 2008: International Multiconference of
Engineers and Computer Scientists, Vols I and Ii, 2008: p. 1001-1007.

S2 Trifu, A. and U. Reupke, Towards Automated Restructuring of Object Oriented Systems, in
Software Maintenance and Reengineering, 2007. CSMR '07. 11th European Conference on.
2007. p. 39-48

S3 Pietrzak, B. and B. Walter, Leveraging code smell detection with inter-smell relations.
Extreme Programming and Agile Processes in Software Engineering, Proceedings, 2006. 4044:
p. 75-84.

S4 Walter, B. and B. Pietrzak, Multi-criteria detection of bad smells in code with UTA method.
Extreme Programming and Agile Processes in Software Engineering, Proceedings, 2005. 3556:
p. 154-161.

S5 Kiefer, C., A. Bernstein, and J. Tappolet, Mining Software Repositories with iSPAROL and a
Software Evolution Ontology, in Proceedings of the Fourth International Workshop on Mining
Software Repositories. 2007, IEEE Computer Society. p. 10

S6 Parnin, C., C. Görg, and O. Nnadi, A catalogue of lightweight visualizations to support code
smell inspection, in Proceedings of the 4th ACM symposium on Software visualization. 2008,
ACM: Ammersee, Germany. p. 77-86

S7 van Emden, E. and L. Moonen, Java quality assurance by detecting code smells, in Reverse
Engineering, 2002. Proceedings. Ninth Working Conference on. 2002. p. 97-106

S8 Piveta, E., et al., Representing refactoring opportunities, in Proceedings of the 2009 ACM
symposium on Applied Computing. 2009, ACM: Honolulu, Hawaii. p. 1867-1872

S9 Murphy-Hill, E., Scalable, expressive, and context-sensitive code smell display, in Companion
to the 23rd ACM SIGPLAN conference on Object-oriented programming systems languages
and applications. 2008, ACM: Nashville, TN, USA. p. 771-772

S10 Murphy-Hill, E. and A.P. Black, Seven habits of a highly effective smell detector, in
Proceedings of the 2008 international workshop on Recommendation systems for software
engineering. 2008, ACM: Atlanta, Georgia. p. 36-40

S11 Simon, F., F. Steinbruckner, and C. Lewerentz, Metrics based refactoring, in Software
Maintenance and Reengineering, 2001. Fifth European Conference on. 2001. p. 30-38.

S12 Steimann, F., P. Mayer, and A. Meißner, Decoupling classes with inferred interfaces, in
Proceedings of the 2006 ACM symposium on Applied computing. 2006, ACM: Dijon, France.
p. 1404-1408

S13 Arevalo, G., S. Ducasse, and O. Nierstrasz, Discovering Unanticipated Dependency Schemas
in Class Hierarchies, in Software Maintenance and Reengineering, 2005. CSMR 2005. Ninth
European Conference on. 2005. p. 62-71

S14 Hamza, H., S. Counsell, and T. Hall, Code Smell Eradication and Associated Refactoring.
Proceedings of the 2nd European Computing Conference - New Aspects on Computers
Reseach, 2008: p. 102-107.

S15 Liu, H., et al., Facilitating software refactoring with appropriate resolution order of bad
smells, in Proceedings of the 7th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software engineering on
European software engineering conference and foundations of software engineering
symposium. 2009, ACM: Amsterdam, The Netherlands. p. 265-268.

S16 Nodler, J., H. Neukirchen, and J. Grabowski, A Flexible Framework for Quality Assurance of
Software Artefacts with Applications to Java, UML, and TTCN-3 Test Specifications, in
Software Testing Verification and Validation, 2009. ICST '09. International Conference on.
2009. p. 101-110.

S17 Pérez, J. and Y. Crespo, Perspectives on automated correction of bad smells, in Proceedings of

56

the joint international and annual ERCIM workshops on Principles of software evolution
(IWPSE) and software evolution (Evol) workshops. 2009, ACM: Amsterdam, The Netherlands.
p. 99-108

S18 Reddy, K.R. and A.A. Rao, Dependency oriented complexity metrics to detect rippling related
design defects. SIGSOFT Softw. Eng. Notes, 2009. 34(4): p. 1-7.

S19 Drozdz, M., et al., Refactoring tools and complementary techniques. 2006 Ieee International
Conference on Computer Systems and Applications, Vols 1-3, 2006: p. 684-687.

S20 Eichberg, M., et al., Comprehensive software understanding with SEXTANT, in Software
Maintenance, 2005. ICSM'05. Proceedings of the 21st IEEE International Conference on.
2005. p. 315-324

S21 Fokaefs, M., N. Tsantalis, and A. Chatzigeorgiou, JDeodorant: Identification and Removal of
Feature Envy Bad Smells, in Software Maintenance, 2007. ICSM 2007. IEEE International
Conference on. 2007. p. 519-520

S22 Munro, M.J., Product Metrics for Automatic Identification of "Bad Smell" Design Problems in
Java Source-Code, in Software Metrics, 2005. 11th IEEE International Symposium. 2005. p.
15

S23 Mantyla, M.V., An experiment on subjective evolvability evaluation of object-oriented
software: explaining factors and interrater agreement, in Empirical Software Engineering,
2005. 2005 International Symposium on. 2005. p. 10 pp.

S24 Mantyla, M.V. and C. Lassenius, Subjective evaluation of software evolvability using code
smells: An empirical study. Empirical Software Engineering, 2006. 11(3): p. 395-431.

S25 Monteiro, M.P. and J.M. Fernandes, Towards a catalog of aspect-oriented refactorings, in
Proceedings of the 4th international conference on Aspect-oriented software development.
2005, ACM: Chicago, Illinois. p. 111-122

S26 Moha, N., et al., A domain analysis to specify design defects and generate detection
algorithms. Fundamental Approaches to Software Engineering, Proceedings, 2008. 4961: p.
276-291.

S27 Moha, N., Y.G. Gueheneuc, and P. Leduc, Automatic generation of detection algorithms for
design defects. ASE 2006: 21st IEEE International Conference on Automated Software
Engineering, Proceedings, 2006: p. 297-300.

S28 Moha, N., et al., DECOR: A Method for the Specification and Detection of Code and Design
Smells. Software Engineering, IEEE Transactions on, 2009. PP(99): p. 1.

S29 Tsantalis, N. and A. Chatzigeorgiou, Identification of Move Method Refactoring Opportunities.
Software Engineering, IEEE Transactions on, 2009. 35(3): p. 347-367.

S30 Tsantalis, N. and A. Chatzigeorgiou, Identification of Extract Method Refactoring
Opportunities, in Software Maintenance and Reengineering, 2009. CSMR '09. 13th European
Conference on. 2009. p. 119-128

S31 Tsantalis, N., T. Chaikalis, and A. Chatzigeorgiou, JDeodorant: Identification and Removal of
Type-Checking Bad Smells, in Software Maintenance and Reengineering, 2008. CSMR 2008.
12th European Conference on. 2008. p. 329-331

S32 Seng, O., J. Stammel, and D. Burkhart, Search-based determination of refactorings for
improving the class structure of object-oriented systems. Proceedings of the 8th annual
conference on Genetic and evolutionary computation, 2006: p. 1909-1916

S33 Geiger, R., et al., Relation of code clones and change couplings. Fundamental Approaches to
Software Engineering, Proceedings, 2006. 3922: p. 411-425.

S34 Lerner, R.M., At the forge: checking your ruby code with metric_fu. Linux J., 2009. 2009(183):
p. 5

S35 Counsell, S., Is the need to follow chains a possible deterrent to certain refactorings and an
inducement to others?, in Research Challenges in Information Science, 2008. RCIS 2008.
Second International Conference on. 2008. p. 111-122.

S36 Counsell, S. and E. Mendes, Size and Frequency of Class Change from a Refactoring
Perspective, in Software Evolvability, 2007 Third International IEEE Workshop on. 2007. p.
23-28.

S37 Counsell, S., et al., The Effectiveness of Refactoring, Based on a Compatibility Testing

57

S37 Counsell, S., et al., The Effectiveness of Refactoring, Based on a Compatibility Testing
Taxonomy and a Dependency Graph, in Testing: Academic and Industrial Conference -
Practice And Research Techniques, 2006. TAIC PART 2006. Proceedings. 2006. p. 181-192.

S38 Counsell, S., et al., Common refactorings, a dependency graph and some code smells: an
empirical study of Java OSS, in Proceedings of the 2006 ACM/IEEE international symposium
on Empirical software engineering. 2006, ACM: Rio de Janeiro, Brazil. p. 288-296

S39 Nasehi, S.M., G.R. Sotudeh, and M. Gomrokchi, Source code enhancement using reduction of
duplicated code. Proceedings of the IASTED International Conference on Software
Engineering, 2007: p. 192-197.

S40 Vasudeva Shrivastava, S. and V. Shrivastava, Impact of metrics based refactoring on the
software quality: a case study, in TENCON 2008 - 2008, TENCON 2008. IEEE Region 10
Conference. 2008. p. 1-6.

S41 Counsell, S., et al., Object-oriented cohesion subjectivity amongst experienced and novice
developers: an empirical study. SIGSOFT Softw. Eng. Notes, 2006. 31(5): p. 1-10.

S42 Mens, T., T. Tourwe, and F. Munoz, Beyond the refactoring browser: advanced tool support
for software refactoring, in Software Evolution, 2003. Proceedings. Sixth International
Workshop on Principles of. 2003. p. 39-44.

S43 Tourwe, T. and T. Mens, Identifying refactoring opportunities using logic meta programming,
in Software Maintenance and Reengineering, 2003. Proceedings. Seventh European
Conference on. 2003. p. 91-100

S44 Gîrba, T., et al., Using concept analysis to detect co-change patterns, in Ninth international
workshop on Principles of software evolution: in conjunction with the 6th ESEC/FSE joint
meeting. 2007, ACM: Dubrovnik, Croatia. p. 83-89

S45 Li, W. and R. Shatnawi, An empirical study of the bad smells and class error probability in the
post-release object-oriented system evolution. Journal of Systems and Software, 2007. 80(7):
p. 1120-1128.

S46 Avdagic, Z., D. Boskovic, and A. Delic, Code evaluation using fuzzy logic. Proceedings of the
9th Wseas International Conference on Fuzzy Systems - Advanced Topics on Fuzzy Systems,
2008: p. 20-25.

