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Abstract

As a solute spreads in a flowing liquid, the interplay between advection and diffusion can
make the macroscopic dispersion order of magnitude larger than what can be predicted
from the molecular diffusivity alone. This has lead to the concept of effective diffusion,
which remains essential for describing the transport of pollutants and chemical agents in
a wide range of natural systems and industrial applications. The aim of this thesis is to
better understand how the macroscopic dispersion is influenced by spatial and temporal
oscillations; that is, by spatial periodic modulations of the confining boundary and tem-
poral oscillations in the driving force of the flow. To do so, we build on Brenner’s theory
of effective diffusion for steady incompressible flow in periodic channels. A discontinuous
boundary roughness leads to recirculation zones at all boundary amplitudes, resulting in
significantly enhanced dispersion for creeping flow. Contrary to previous research, increas-
ing fluid inertia with rough boundaries is found to be able to both increase or decrease the
dispersion depending on the Peclet number; a possible explanation of this phenomenon is
proposed. Brenner’s theory is generalised to time-dependent velocity fields to investigate
single-frequency flow in channels with sinusoidal boundary profiles. A novel resonance
phenomenon between the wavelength of the boundary roughness and the frequency of the
oscillating driving force is found to maximise the dispersion; a physical explanation is
given. Lastly, a reciprocity relation for symmetric transport properties under the reversal
of creeping flow was generalised for the purpose of possible medical applications.
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Chapter 1

Introduction

From a sharp peak to uniformity, a solute injected into a flowing solvent evolves from one
state of simplicity to another. In the irreversible transition between the extremal states,
advection and diffusion work inseparably together to create complex behaviour and pat-
terns. The diffusive spreading arises from the stochastic trajectories of the constituent
particles, originating from microscopic collisions with the surrounding thermal fluid, in-
dependent of the bulk movement. External forces and pressure gradients result in the
complicated dynamics of the encompassing fluid, which advects the solute along with its
motion. After a sufficiently long time, the dispersion reaches its asymptotic regime, where
the positional variance of the solute grows linearly in time. The proportionality is quanti-
fied by the dispersion tensor, which has become the standard for describing solute spreading
in systems where the interplay of advection and diffusion is important, with applications
ranging from the study of transport in blood [1–3] and groundwater systems [4, 5], sugar
transport in plants [6–8], drug delivery [9–12], spreading of plastic in oceans [13–15], to
the highly relevant dispersion of airborne droplets for spreading in disease transmission
[16–18]. Therefore, dispersion has been the focus of much experimental, numerical and
theoretical research. In Taylor’s theory to calculate the effective diffusion [19], and Aris’
[20] generalization, the flow field is assumed to be both stationary and axially invariant.
However, most channels and pores in natural and industrial systems are not perfectly flat
and many flows are unsteady and time-dependent, resulting in significant consequences for
the dispersion [21–24].

The overarching goal of this thesis is to gain a better understanding of dispersion phe-
nomena in complex geometries. In particular, using numerical and theoretical methods,
we will investigate how spatial and temporal inhomogeneities influence the spreading dy-
namics and possibly lead to new mechanisms for dispersion. The goal will be reached by
addressing three main research questions:

1: What is the role of a discontinuous boundary roughness for the dispersion
in channel flow?

Most previous work on the effect of geometry has been done on smoothly varying aper-
ture while neglecting fluid inertia. Bolster et al. [25] studied the dispersion of solutes in



2 Introduction

channels with sinusoidal wall roughness under creeping flow conditions, using the method
of moments. Here, the linearity of Stokes’ equations and the analyticity of the boundary
allowed for a perturbative approximation to the dispersion coefficient. Bouquain et al. [26]
extended this work by investigating the effects of fluid inertia on the effective solute trans-
port. Inertial effects are of both practical and theoretical interest, as they can result in
low-velocity regions with self-connected streamlines, called recirculation zones (RZ). The
RZ can trap the solute, resulting in significant consequences on the asymptotic dispersion.
While RZ can occur in Stokes flow, they become more dominant with increasing fluid iner-
tia and occur for much smaller geometrical constraints. From direct numerical simulations
and experiments, it is well-known that flow behind a backwards-facing step, similar to the
discontinuities of interest here, creates large recirculation zones [27]. Although the smooth
single-wavelength roughness considered in Refs. [25, 26] represent a major step towards
real-world applications, the wall roughness found in both natural rock fractures [28–30],
soil [31, 32], diffusion-limited reactions [33, 34] and microfluidic devices [35, 36], such as
the staggered herringbone mixer [37–39], do not obey the same smoothness, but contain
jumps and often rugged shapes. Yoon et al. [30] recently applied random walk simulations
to investigate the combined effect of a self-similar roughness and fluid inertia for a variety
of advective transport rates, but their investigation never reached the asymptotic regime.
In the absence of advection, smooth boundaries contribute a negative term linear in the
boundary amplitude to the effective diffusion. This is in contrast to rough boundaries,
which contribute quadratically [40]. Despite the ubiquity of rough surfaces, it is unclear
exactly how fluid flow, especially with high inertia, will interplay with the discontinuous
boundary roughness to influence the effective dispersion. The investigation of this research
question is mainly numerical, using the finite element method (FEM) to solve Brenner’s
equations [41, 42], as the discontinuous geometry makes the perturbative approach prohib-
ited. The goal is to find and understand the effective diffusion coefficient’s dependency on
the boundary amplitude, different advective and diffusive transport rates, and fluid inertia,
in a channel with a periodic rough square boundary. The geometry is used as a simplified
representation of generic rough walled channels that contain sharp notches and grooves of
various sizes, e.g. discontinuous jumps in the boundary profile.

2: How does an oscillating driving force and boundary roughness interplay to
influence the dispersion behaviour?

Unsteady flows contain more shear than their steady counterpart, increasing the mass
transfer [43–46], and are therefore commonly applied to e.g. microfluidic devices and lab-
on-a-chip technology [47, 48]. However, little theoretical modelling has been done on the
topic, resulting in a lack of quantitative and physical understanding. Vedel et al. [43]
found a closed-form analytical expression for the effective diffusion coefficient in a straight
two-dimensional channel where the flow could consist of a general spectrum of frequencies,
in agreement with experimental measurements. Pure experimental investigations have
also been made for a broad range of single-frequency flow in flat channels [49]. This
work, together with other research on single frequency flows in the transient regime with
flat boundaries [22, 50, 51], has given a good understanding of dispersion with oscillating
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flow. Still, the combined effect of a pulsating velocity field in a channel with varying
aperture, which on its own is known to have drastic consequences on the dispersion, has
to our knowledge not been studied. An investigation of the consequences of geometry
should therefore be made for such flows. Additionally, dispersion in naturally occurring
systems like transport in the lungs [52], air turbulence-induced oscillating flow in soil [53],
nutrition transport in bone subject to oscillatory mechanical loading [21], and transfer of
mass in polymer solutions [54] can exhibit both a varying boundary and an oscillating
flow. This will be investigated for a sinusoidal boundary, which might result in richer
dynamics, with interactions between the frequency of the fluid, the wavelength of the
boundary, and the molecular diffusivity. The main goal of the investigation is to analyse
and understand the combined effect of a varying boundary and an oscillating flow on the
effective diffusion coefficient, and search for novel phenomena in the dispersion behaviour.
To understand the system, we investigate it both analytically and numerically. A major
stepping stone to this end is that Brenner’s theory, hitherto only valid for steady flows, is
generalised to time-dependent flows for the purpose of our investigation. A perturbative
solution for a sinusoidally varying channel aperture is developed and benchmarked against
a full numerical finite-element solution. This investigation will act as a first step towards
establishing the laws of dispersion for time-dependent flow in rough geometries.

3: Can the reciprocal relation for hydrodynamic dispersion be extended to
account for realistic injection scenarios?

Lastly, a general symmetric transport property on the form of a reciprocity relation for
dispersion is investigated. For reversible creeping flow, the reciprocal relation [55] allows for
the prediction of a concentration at a specific point in the fluid. A generalisation of previous
work [55] on this relationship is investigated analytically and compared with numerical
simulations using the lattice-Boltzmann method (LBM). The relation is relevant for medical
applications, as it can be used to access and optimise the predicted concentration profile of,
for example, chemotherapeutic agents in the context of cancer treatment at an otherwise
inaccessible region [55]. Therefore, the generalisations are made with the goal of extending
the applicability of the relation with such motivations in mind.

The outline of this thesis is as follows. To model hydrodynamic dispersion, the relevant
aspects of fluid dynamics and non-equilibrium statistical mechanics are presented in chapter
2, where they are combined to derive the central equation of this thesis, the advection-
diffusion equation. The lattice-Boltzmann and finite element methods used to model,
simulate, and solve the presented theory are described in the following chapter. In chapter
4, the numerical and analytic results from each area of investigation are presented and
discussed separately before general conclusions are drawn in the last chapter.
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Chapter 2

Theory

This chapter introduces the relevant theoretical background for the thesis. We start with
the continuum theory of fluid dynamics, ultimately deriving the Navier-Stokes equations
and investigating the viscous drag force on a sphere moving through a fluid with a constant
velocity. Throughout the thesis, the Navier-Stokes equations are used for finding the flow
field governing the dispersion and are therefore of central importance. The microscopic
theory of non-equilibrium systems is then discussed, beginning with the stochastic differ-
ential equation called the Langevin equation and its relation to the macroscopic viewpoint
through the Fokker–Planck equation. Lastly, the hydrodynamics of Stokes drag and stat-
istical mechanics of the Langevin and Fokker–Planck equation is combined to ultimately
derive the advection-diffusion equation. Brenner’s theory, which gives a general theoret-
ical framework for calculating the effective diffusion coefficient in periodic environments,
is derived and discussed.

2.1 Fluid dynamics

Fluid dynamics concerns itself with the macroscopic description of fluids. An arbitrary
small volume on the macroscopic scale will always contain a large number of molecules,
such that the fluid can be regarded as a continuum. The infinitesimal volume elements dV
or surface elements dS are therefore not infinitely small, but much smaller than the fluid
under consideration, yet much larger than the distance between the molecules. Hence, the
theory can be derived completely independently from any microscopic description or notion
of atoms, although bottom-up approaches exist. To completely describe a fluid mathem-
atically we need a function describing the fluid velocity u(r, t), and a thermodynamic
quantity spanning the fluid; either the pressure P (r, t) or the density %(r, t). Combining
this with an equation of state fully describes all fluid properties. The fluid is described in
spatial coordinates r, at a time t, where the position r is not following the fluid flow, but
is fixed in a reference frame independent of the fluid.

In this section, the fundamental equations of fluid dynamics, which will be used through-
out the thesis, are derived. For a more detailed description, I refer to the book Fluid
Mechanics by Landau and Lifshitz [56], as their derivation will be followed.
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2.1.1 The continuity equation

The mass contained inside an arbitrary region of space with volume V0 is given by a volume
integral over the density

∫
V0

dV %. Mass flowing out of this region must pass through a small
part of the total surface dS. The magnitude of the surface elements is the infinitesimal
surface area, and direction is the surface norm. The fluid mass passing through this
infinitesimal area per unit time, %u · dS, is positive if the mass is flowing out of the
volume. To find the net mass passing through the total surface area per unit time, we
integrate this quantity over the surface area

∮
∂V0

dS · %u. Mass flux through the volume
surface must result in a change of mass inside the volume, and can therefore be equated
with the time derivative of the total mass

∂t

∫
V0

dV % = −
∮
∂V0

dS · %u, (2.1)

where the sign originates from our convention for the normal vector. By applying Gauss’
law the surface integral is transformed to a volume integral

∂t

∫
V0

dV % = −
∫
V0

dV ∇ · (%u) . (2.2)

We have not specified any properties of the volume, and the equality must therefore hold
for an arbitrary choice of volume. Therefore, the terms inside each integral exactly equal
each other

∂t%+∇ · (%u) = 0. (2.3)

This is the continuity equation, which describes the conservation of mass, and is one of the
fundamental equations of fluid dynamics.

For many fluids, the density is approximately constant throughout the entire fluid
volume during its motion; there is no compression or expansion of the fluid. The continuity
equation then takes the simplified form

∇ · u = 0. (2.4)

Fluids satisfying this relation are called incompressible and equation (2.4) is a good ap-
proximation for most liquids, and even gases when the velocity is much smaller than the
speed of sound [56].

2.1.2 Euler’s equation and ideal fluids

Let us further consider the effects of external body forces f and pressure P on our general
volume V0. The total force F acting on the fluid is given by the volume integral of the
body force, in addition to pressure differences across the volume

F =

∫
V0

dV %f −
∮
∂V0

P dS =

∫
V0

(%f −∇P ) dV, (2.5)
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where the last equality is found from applying Gauss’ law. Applying Newton’s second law
for the fluid element gives

%
du

dt
= −∇P + %f . (2.6)

By performing a volume integral on both sides, the standard form of Newton’s second law
is retrieved. The time derivative of the fluid velocity does not represent the rate of change
at a fixed spatial point, but the rate of change for a specific fluid particle. To express the
quantity in terms of fixed spatial coordinates, the total infinitesimal change is decomposed

du = ∂tudt+ dr · ∇u. (2.7)

The first term gives the change in velocity over time at a fixed point in space. While the
second term represents the velocity difference between two points separated by the distance
dr traveled by the fluid particle during the time dt. Dividing both sides by dt, we find the
material derivative

du

dt
= ∂tu+ u · ∇u. (2.8)

Thus, Newton’s second law for the fluid element takes the form

∂tu+ u · ∇u = −1

%
∇P + f . (2.9)

This is the second fundamental equation of fluid dynamics, known as Euler’s equation.
When deriving the equation, we have not taken the dissipation of energy through friction
into account, which must be included for a complete description of the fluid. The internal
friction arises from adjacent fluid layers moving relative to each other, and is quantified
by the fluid viscosity. Fluids where the internal friction is negligible, meaning a small
viscosity, are called ideal fluids.

In this thesis, we will not cover ideal fluids and therefore continue by deriving the
viscosity’s effect on the equation of motion.

2.1.3 The Stokes equation and creeping flow

Energy dissipation in a moving fluid is a consequence of the thermodynamic irreversibility
of the fluid motion and is always present to some extent. To derive its effect, additional
terms must be included in the equation of motion. By defining the momentum flux density
tensor as the symmetric second-rank tensor

Πik = Pδik + %uiuk, (2.10)

Euler’s equation takes on the simplified form

∂t (%vi) = −∂xkΠik, (2.11)

where the external force fi is excluded, and Einstein notation is implied. This equation
describes the completely reversible momentum flux inside the fluid due to pressure gradients
and mechanical transport of particles. The internal friction causes an additional term
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describing the diffusive transfer of momentum from regions of high velocity to low velocity.
This irreversible viscous transfer of momentum is included by adding a term called the
viscous stress tensor σ′ik to the momentum flux density tensor. From this, we can further
define the stress tensor as

σik ≡ −Pδik + σ′ik, Πik = %uiuk − σik. (2.12)

The stress tensor describes the part of the momentum flux not due to advective transport.
To find the equation of motion, the stress tensor must be established.

The internal friction of the fluid occurs due to different fluid particles, or fluid layers,
moving relative to one another. Hence, the energy dissipation must depend on the spatial
velocity gradients. Assuming small velocity gradients, a Taylor expansion to linear order
can be made. There cannot be any constant terms as the friction must disappear for
a constant velocity field. In addition, it must vanish under uniform rotation of angular
frequency Ω, where u = Ω × r. The most general rank two tensor satisfying the two
criteria is given by

σ′ik = µ

(
∂xkui + ∂xiuk −

2

3
δik∂xlul

)
+ ζδik∂xlul. (2.13)

For an isotropic fluid, the coefficients of viscosity, µ and ζ, become constant and are
assumed to be independent of the fluid velocity. It can further be shown [56] that they are
both positive; µ > 0 and ζ > 0. The strange arrangement of different factors is made such
that the left term of the tensor vanishes upon contracting the indices.

When the viscosity dominates over the inertia of the fluid, as will be explained in more
detail later, we only need to include the stress tensor and external forces in the equation
of motion

∇iσ′ik + fk = 0. (2.14)

Using the most general form of the stress tensor, the equation takes the form

µ∇2u+

(
ζ +

1

3
µ

)
∇ (∇ · u) + f = ∇P, (2.15)

where constant coefficients of viscosity has been assumed. Combined with the incompress-
ability equation (2.4), the above relation reduces to what is known as the Stokes equations

µ∇2u+ f = ∇P, (2.16)

which is another of the fundamental equations of fluid dynamics. The equation is simpler
to solve than Euler’s equation, and still has some interesting properties. Due to the lack
of time derivatives there is no memory in the flow; if you stop pushing, the fluid will
instantaneously respond. In addition, the flow is reversible, due to the fact that a change
of sign in the force results in a sign change of the velocity field

f → −f =⇒ u→ −u. (2.17)

Reversing the evolution of the pressure and forces result in the reversal of the flow, which
can result in difficulties in mixing and swimming. For a further discussion on Stokes flow’s
strange or counter-intuitive properties, see Purcell’s classical paper Life at low Reynolds
number [57].
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2.1.4 The Navier–Stokes equations and the Reynolds number

The full description of the fluid is found by including both Euler’s and Stokes’s contribution
to the equation of motion simultaneously. This results in the Cauchy momentum equation,
which describes all non-relativistic fluid phenomena at the macroscopic scale,

% (∂tu+ (u · ∇)u) = −∇P + µ∇2u+

(
ζ +

1

3
µ

)
∇ (∇ · u) + f . (2.18)

Most fluids, and all the fluids investigated in this thesis, can be regarded as incompressible
[56], simplifying the equation greatly:

% (∂tu+ (u · ∇)u) = −∇P + µ∇2u+ f . (2.19)

The above equation, combined with the continuity equation (2.3), are the Navier–Stokes
equations (NSE). To uniquely determine a solution, the no-slip boundary condition is
employed, meaning the velocity field is stationary on the boundary

u = 0 on ∂Ω, (2.20)

which will be used throughout the thesis. For an incompressible fluid, the density % and
dynamic viscosity µ are the only free parameters of the fluid. The ratio between the two
characterizes the fluid and defines the kinematic viscosity

ν ≡ µ

%
, (2.21)

which shares the units of a diffusion coefficient. The kinematic viscosity represents the
diffusion coefficient for the momentum of the fluid. The NS equation also contains the
two unknowns functions, the pressure P/%, and the velocity field, u, with an average
value U . Additionally, the shape and size of the geometry appear through the boundary
conditions acting on the fluid. Let us suppose that the geometrical shape of the boundary
is given, such that it is quantified by a single characteristic length l. One can show, using
Buckingham’s pi theorem, that there is only one dimensionless quantity that can be formed
using the three parameters, which we call the Reynolds number

Re ≡ %lU

µ
=
lU

ν
. (2.22)

Flows with different viscosities and characteristic lengths that scale to the same Reynolds
number are called similar. Similar flows are identical when written in terms of dimension-
less quantities. This can easily be seen by expressing all factors in the NS equation by
their characteristic value,

Re (∂tu+ (u · ∇)u) = −∇P +∇2u+ f , (2.23)

such that all parameters are dimensionless. Thus, if the Reynolds number is the same,
the flow in its natural units is the same. We see that the Stokes equation is found for low
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Reynolds number and Euler’s equation for large Reynolds number, where the pressure and
force need to be matched in each limit. At large values of the Reynolds number, inertial
effects become important, and different parts of the fluid will move at different speeds
and in different directions. This can ultimately result in parts of the fluid moving in the
opposite direction of the overall flow, creating eddies or recirculation zones, dissipating
kinetic energy. This type of fluid motion is no longer necessarily moving in layers and is
therefore no longer laminar, but chaotic and aperiodic, meaning turbulent. The other limit
exhibits the same properties discussed for the Stokes equation and is called creeping flow.

For non-steady flows, we get a second dimensionless number, in addition to the Reyn-
olds number, called the Womersley number

Wo ≡
√
ωl2

ν
, (2.24)

where ω is now the characteristic frequency of the flow. The Womersley number compares
the time-scale of the external force, to the time-scale of the fluid response through mo-
mentum diffusion. For the velocity field to be similar for such flows, both the Reynolds and
Womersley number must be the same. At low values of the Womersley number, the flow
frequency is small enough for the momentum to diffuse to equilibrium at each time-step,
such that the flow is reversible and in phase with the oscillating pressure gradient. For
flow in channels, this results in Poiseuille flow multiplied by a factor oscillating in time. In
the other limit, the frequency is large compared to the response time of the fluid, making
the flow non-reversible and history-dependent. The flow is now out of phase with the pres-
sure gradient and does not have time to develop fully. From the Womersley and Reynolds
number, one can define the Strouhal number

St ≡ lω

U
, (2.25)

relating the characteristic length to the advection length over a period.

2.1.5 Stokes drag

The Navier–Stokes equations can be exploited to find the velocity field around a spherical
particle moving at a constant velocity relative to the fluid. For low Reynolds number,
one can solve the Stokes equation (2.16) by assuming an incompressible flow (2.4). The
velocity field at the boundary of the spherical particle must be zero (2.20), and the far-field
flow is assumed to be unaffected by the particle, such that it is equal to a constant vector
v, in the particle’s frame. Using the viscous stress tensor from equation (2.13), the total
force acting on the spherical particle can be calculated by solving the surface integral over
the sphere’s boundary

F =

∮
∂V

dS · σ = 6πµav, (2.26)

where a is the radius of the sphere. The velocity vector v can either be interpreted as the
particle’s velocity or the velocity of the fluid in the particle’s frame. The prefactor is often
referred to as the drag coefficient:

γ ≡ 6πµa. (2.27)
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The advection-diffusion equation will later be derived for a particle subject to Stokes flow
with a drag coefficient γ.

2.2 Non-equilibrium systems

The previous section concerned itself with a continuum description of fluids, where the in-
dividual particles and fluctuations are coarse-grained to continuous, non-fluctuating quant-
ities. However, on smaller scales, the fluid can no longer be regarded as a continuum, and
molecular fluctuations of the fluid will affect the dynamics of suspended particles. The
Langevin approach models the fluctuations by adding noise terms in the equation of mo-
tion. Despite the fact that the fluctuating fluid can be described exactly by finding the
trajectories of all the constituent particles, the approach contains too many irrelevant de-
grees of freedom. Therefore, we are not interested in a single realization of the fluctuating
force and the resulting trajectories, but ensemble averages of many different realizations.
The ensemble average can either be interpreted as performing the same experiment mul-
tiple times, or having one experiment with many particles which are far enough apart not
to influence one another. Independently of the interpretation, the statistical properties of
the noise have to be determined to relate the microscopic dynamics to the macroscopic
observables. The Langevin equation and the Fokker–Planck equation give a physical ex-
planation for diffusion phenomena and relate it to macroscopic observables. Combining
both equations with the Navier-Stokes equations, they will later be applied to derive the
central equation in this thesis, namely the advection-diffusion equation.

2.2.1 The Langevin equation

A particle immersed in a fluid will experience a frictional force, which can in its simplest
form be modelled by the Stokes drag,

mv̇ = −γv, (2.28)

where γ is the friction coefficient (2.27). Although this equation is written for a one-
dimensional system, the investigation can be extended to multiple dimensions. The solution
of this equation gives the deterministic behaviour of the particle, whose velocity will be
exponentially damped to zero from its initial value. This description is only valid when
the particle’s mass m is large enough for thermal fluctuations to be negligible. From the
equipartition theorem [58], the thermal velocity is related to the fluid temperature T

1

2
m〈v2〉 =

1

2
kBT, (2.29)

where kB is Boltzmann’s constant. The thermal velocity of
√
kBT/m becomes relevant

when its magnitude is similar to that of the particle’s velocity. For such cases, the de-
terministic description (2.28) is not correct, and the thermal noise must be included in the
model. In the Langevin equation, this is done by including a random force ξ(t) on the
particle

mv̇ = −γv + ξ(t). (2.30)
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For the Langevin equation to be useful, the probabilistic properties of the noise term have
to be determined. To do so, we will give three postulates and argue for why these are
sensible from a physical standpoint. First, ξ is irregular and undetermined, but we can
give definite statements about its ensemble average over many different realizations. It can
therefore be treated as a stochastic process. Secondly, the properties of ξ are independent
of v and act as an external force whose ensemble average vanishes 〈ξ〉 = 0. Lastly, since
the noise originates from collisions with individual fluid molecules, it must be history
independent and vary rapidly,

〈ξ(t)ξ(t′)〉 = Γδ(t− t′), (2.31)

where Γ is a constant. The postulates can be summarized as the collisions being effectively
instantaneous, uncorrelated and with no preferred direction. Here, instantaneous means
much shorter than all other relevant time scales. When ξ satisfies the above properties,
it is called a Langevin force [59]. Equivalently, since the noise results from many inde-
pendent collisions, it follows from the central limit theorem that it must be Gaussian [60].
Additionally, any Gaussian variable is uniquely defined by its first two moments [59], such
that the postulates above uniquely defines a Gaussian distribution.

The Langevin equation (2.30) can be solved exactly by multiplying both sides with eγt,
and integrating over time, yielding

v(t) = v0e
−γt +

∫ t

0
dt′ξ(t′)e−γ(t−t′), (2.32)

where the mass is set to unity without loss of generality. By taking the ensemble average
of v(t), the second term, representing the change in velocity due to the stochastic force
from the fluid, disappears. We are therefore left with an exponential decay of the initial
velocity. Another quantity of interest is the velocity autocorrelation function, found from
squaring the above expression, taking the ensemble average and solving the integral:

〈v2(t)〉 = v2
0e
−2γt +

Γ

2γ

[
1− e−2γt

]
, (2.33)

where we have used the properties of the noise from equation (2.31). After a sufficiently
long time, t� 1/γ, initial conditions become unimportant, and the velocity autocorrelation
function is Γ/2γ. Equating this with the equipartition theorem (2.29) gives a value of the
noise in terms of measurable physical quantities

Γ = 2γkBT. (2.34)

Another quantity of interest is the mean-squared displacement, which we can calculate by
performing a time integral over the velocity correlation function using (2.32)

〈(x(t)− 〈x〉)2〉 =

∫ t

0
dt1

∫ t

0
dt2〈v(t1)v(t2)〉. (2.35)
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Solving this integral and using the value of γ from Stokes drag (2.27), gives a linear
asymptotic time scaling of the positional variance, often referred to as the mean square
displacement,

〈(x(t)− 〈x〉)2〉 ∝ kBT

3πµa
≡ 2Dmt, (2.36)

where we have ignored all exponentially decaying terms. This relation is a fluctuation-
dissipation relation, known as an Einstein relation, which defines the molecular diffusion
coefficientDm. The temperature of the fluid causes fluctuation in its constituent molecules,
which gives rise to the stochastic movement of the particle. The particle then heats the
fluid by dissipating its kinetic energy through fluid friction. The fluctuation-dissipation
relation gives the non-equilibrium steady state between the particle and the fluid heat bath.
Here we found that the mean square displacement grows linearly in time, and the diffusion
coefficient yields the associated proportionality constant. In certain systems, the mean
square displacement instead grows as tα. Processes with α < 1 are called subdiffusive, and
a value of α between one and two are superdiffusive. Exponents larger than two is coined
hyperballistic superdiffusion [61].

2.2.2 The Fokker–Planck equation

The stochastic nature of the Langevin equation emerges solely due to the fluctuating force.
Taking the expectation value can then be interpreted as taking an average over many
different realizations of the force, which we do not want to deal with explicitly. With this
interpretation in mind, one can take the kinetic theory approach, and instead of finding
the mechanical trajectory for a single realization of ξ, one can aim to find the evolution
of a probability distribution function P (x, t). The probability distribution function is
a probability density, such that P (x, t)d3x gives the probability of finding the particle
at a given position x at a time t, within the infinitesimal volume d3x centered at x.
The dynamics of the probability distribution is governed by a transition rate W (x′|x),
which represents the transition probability from x to x′ per volume per unit time. The
instantaneous collisions with the fluid occur on too short time scales to be observed in the
probabilities, and one expects the probability density to vary smoothly. The derivation
performed here will follow a combination of standard literature on the topic: The Fokker–
Planck Equation by Risken [62], Non-equilibrium statistical physics by Livi [63] and a
review article on stochastic processes by Garcia [64].

Fokker and Planck originally proposed that the evolution of P can be written as a
master equation [63], where the change in probability density is given by the difference in
transition rates towards and away from x

∂tP (x, t) =

∫
d3x′

[
P (x′, t)W (x|x′)− P (x, t)W (x′|x)

]
. (2.37)

The integral must be evaluated over the whole accessible space of the variable x, which
does not necessarily represent the particle’s position. Our derivation will be done for a
scalar variable x, but can be extended to vectors, see for example Garcia [64]. We want
a differential equation for the probability density instead of its current integro-differential
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form. To do so, we perform a Taylor expansion of the transition rates. Since the transition
rates over large distances should be infrequent, it is reasonable to assume that the trans-
ition rates decay rapidly to zero, from a non-zero value close to the initial position. This
expansion can be performed in the parameter ∆ ≡ x−x′, and is called the Kramers–Moyal
expansion [63]. To simplify the notation, we define

W (x|x′) = W (x′ + ∆|x′) ≡W∆(x′) and W (x′|x) = W (x−∆|x) ≡W−∆(x), (2.38)

such that the master equation takes the form

∂tP (x, t) =

∫
d3∆P (x′, t)W∆(x′)− P (x, t)

∫
d3∆W−∆(x). (2.39)

We have limited our derivation to the case where the boundary terms are irrelevant, and
vanish upon our coordinate transformation. With our assumption we can Taylor expand
the transition probabilities of the first integral in our equation∫

d3∆P (x′, t)W∆(x′) = P (x, t)

∫
d3∆W∆(x) +

∞∑
n=1

(−1)n
1

n!
∂nx

[
a(n)P

]
(x). (2.40)

Where the a(n)’s are the Moyal coefficients, sometimes referred to as jump moments

a(n) ≡
∫

d3∆W∆(x)∆n. (2.41)

The first integral term of our expansion will cancel with the last term in the master
equation upon a coordinate transformation, by changing the sign of ∆, and again using
that the boundary terms vanish. This results in the Kramer-Moyal expansion of the master
equation

∂tP (x, t) =
∞∑
n=1

(−1)n
∆n

n!
∂nx

[
a(n)P

]
(x). (2.42)

Currently this description is completely equivalent to the the master equation. The Pawula
theorem [62] states that if the Kramers-Moyal expansion continues further than to second
order, infinitely many terms have to be included for the solution to satisfy the properties
needed of a probability density. It is therefore a natural to choose to truncate the expansion
at the second order, resulting in the celebrated Fokker–Planck equation

∂tP (x, t) = −∂x
[
a(1)P

]
(x, t) +

1

2
∂2
x

[
a(2)P

]
(x, t). (2.43)

The first and second term is called the drift and diffusion term, with a(1) and a(2) being
respectively called the drift and diffusion coefficients. To solve for the evolution of the
probability density, the coefficients must be determined. We do this by expressing the
integral in equation (2.41) in terms of the coordinates instead of the relative distance

a(n) =

∫
dx′W (x′|x)

(
x′ − x

)n
. (2.44)
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For short timesteps τ , the transition probability density can approximately be written as
[64]

P (x′, t+ τ |x, t) = δ(x′ − x)
(

1− a(0)(x, t)τ
)

+W (x′|x, t)τ +O(τ2), (2.45)

where the first term gives the probability of the transition not taking place during the time
interval τ , and the second term that it does take place. This rewrite can be solved for the
transition probability W (x′|x), such that the Moyal coefficient can be written as

a(n) =
1

τ

∫
dx′P (x′, t+ τ |x, t)

(
x′ − x

)n
. (2.46)

Thus one can write the coefficients, for small timesteps τ , as conditional averages over the
n’th moment of x

a(n) =
1

τ
〈(x(t+ τ)− x(t))n〉. (2.47)

With an equation of motion, for example the Langevin equation, the conditional averages
can be calculated and used to find the Kramer-Moyal coefficients.

2.3 Advection-diffusion and effective diffusion coefficients

In the two previous sections, we have looked at the continuum description of fluids and
processes outside of equilibrium. In this section, we combine the theory derived so far to
study the combined effect of advection along streamlines found from solving the Navier-
Stokes equations and the irreversible non-equilibrium spreading due to diffusion.

2.3.1 Deriving the advection-diffusion equation

For a particle subject to a stochastic force while moving through a viscous fluid with a
relative velocity field u, the Langevin equation takes the form

mv̇ = −γ (v − u) + ξ(t). (2.48)

Taking the overdamped limit, meaning inertial forces are vanishingly small compared to
the frictional forces, the equation becomes

v = u+
1

γ
ξ(t). (2.49)

It is assumed that the particle is small enough to have a negligible influence on the fluid
flow, such that u is independent of the particle’s position or momentum. The above
equation can trivially be integrated to find the position at a time t+ τ

x(t+ τ)− x(t) = τu+
1

γ

∫ t+τ

t
dt′ξ(t′). (2.50)

The second term disappears upon taking the ensemble average over this quantity, resulting
in the first order Kramer-Moyal coefficient a(1) = u. A similar calculation for the second
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moment yields a(2) = 〈ξ2/γ2〉 = 2kBT/γ = 2Dm [62]. Using the derived forms for the
Kramer-Moyal coefficients in the Fokker–Planck equation, and letting ∂x → ∇ we find the
advection-diffusion equation

∂tP (x, t) = −∇ · (uP ) +∇2 (Dm P ) . (2.51)

Overdamped particles subject to a stochastic force in a moving fluid exhibiting Stokes drag
satisfy the advection-diffusion equation.

The terms in the advection-diffusion equation have a clear physical interpretation, as
the equation can be written as a continuity equation of advective and diffusive transport

∂tP = −∇ · jdiff −∇ · jadv. (2.52)

The diffusive current is from Fick’s law, representing the fact that concentration gradients
result in a flux of particles to even out concentration differences. The second term is an
advective transport current from the passive probability following the streamlines of the
fluid. The terms can be indentified as:

jdiff = −Dm∇P, jadv = Pu. (2.53)

If we further assume a constant molecular diffusion coefficient and incompressible flow, the
advection-diffusion equation simplifies to

∂tP (x, t) = −u · ∇P +Dm∇2P. (2.54)

By rescaling the probability density for the position of a single particle, it can be con-
verted to a particle or heat concentration C. Performing this rescaling is done under the
assumption that the concentration is dilute, such that interactions between particles are
rare and will not affect the collective dynamics of the particles. Writing this equation on
dimensionless form, we find

∂tC(x, t) = −Peu · ∇C +∇2C, (2.55)

where the ratio of advective and diffusive transport is quantified by the dimensionless
Peclet number

Pe ≡ aU

Dm
. (2.56)

Dividing the Peclet number by the Reynolds number (2.22), we find another dimensionless
number, the Schmidt number

Sc ≡ ν

Dm
, (2.57)

which relates the diffusion of momentum, through the kinematic viscosity, with the diffu-
sion of mass, through the molecular diffusion coefficient. For most cases, the diffusion of
momentum is more efficient than diffusion of mass, creating a large value of the Schmidt
number. The last dimensionless number used in this thesis acts as a Womersley number
for the diffusion of mass instead of momentum

WoD ≡

√
ωl2

Dm
= Wo

√
Sc, (2.58)
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where it is expressed as a product between the two dimensionless numbers already defined.
In addition to being without dimension, it is to our knowledge without a name. Therefore,
we will refer to it as the diffusive Womersley number. At large values of WoD, particles do
not have time to diffusive before the velocity field changes, making them follow the same
streamline for a full period. Thus the advective transport over a period is always zero, and
diffusion becomes the main transport mechanism. At small values, on the other hand, the
diffusing particles can sample the velocity field at all points before the velocity changes.

2.3.2 Reciprocal relation for advection-diffusion

The reciprocal relation for advection diffusion can be derived from the advection-diffusion
equation (2.54) itself [55]. To do this, we let the initial condition, of a Dirac-delta injection
at xA of a mass mA at t = 0, be written directly in our differential equation

∂tCA(x, t) = −uA · ∇CA +D∇2CA +mAδ(x− xA)δ(t). (2.59)

The concentration originating from an injection at xA with the velocity field uA is labeled
CA. For a stationary velocity field, we can take the time Fourier transformation of the
equation

iωC̃A = −uA · ∇C̃A +D∇2C̃A +mAδ(x− xA), (2.60)

where the tilde denotes the concentration in Fourier space. For an injection at xB, we
would find the same equation with all the subscripts changed from A to B. Multiplying
the above equation with the concentration originating from xB in Fourier space C̃B, we
find

iωC̃BC̃A = −C̃BuA · ∇C̃A +DC̃B∇2C̃A +mAδ(x− xA)C̃B. (2.61)

The same can be done for the equation with A and B interchanged. By subtracting the
two from one another the left hand side cancels, yielding

mAδ(x− xA)C̃B −mBδ(x− xB)C̃A = C̃BuA · ∇C̃A −DC̃B∇2C̃A

− C̃AuB · ∇C̃B +DC̃A∇2C̃B.
(2.62)

Manipulating this expression by using the product rule backwards for the nabla operator,
assuming an incompressible velocity field (2.4), we find

mAδ(x− xA)C̃B −mBδ(x− xB)C̃A = ∇ ·
(
DC̃A∇C̃B −DC̃B∇C̃A − C̃BC̃AuB

)
+ uAC̃B∇C̃A + uBC̃B∇C̃A.

(2.63)

For creeping flow, the velocity field from the Stokes equation (2.16) can be completely
reversible, such that changing the sign of the external force also changes the sign of the
velocity field. Hence, for creeping flow, the two velocity fields can satisfy

uA = −uB. (2.64)
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Figure 2.1: For a straight two-dimensional channel exhibiting Poiseuille flow, the evolution of a
vertical line initial injection is illustrated. In the transient regime, the particles follow the parabolic
flow profile. When the particles have vertically crossed the channel multiple times, t� a2/Dm, the
asymptotic regime where Taylor–Aris dispersion holds is reached. In this regime, the concentration
profile is a Gaussian around the mean displacement, with a standard deviation σ. The effective
diffusion coefficient measures the slope of the linear time increase in σ2.

For cases where this equality is satisfied, the last two terms of equation (2.63) will cancel,
and we are left with

mAδ(x−xA)C̃B −mBδ(x−xB)C̃A = ∇ ·
(
DC̃A∇C̃B −DC̃B∇C̃A − C̃BC̃AuB

)
. (2.65)

For materially closed systems, the right hand side vanishes upon volume integration, and
on the left hand side the Dirac-delta functions make the integrals trivial. Performing the
inverse Fourier transform, we find what we will refer to as the reciprocal relation:

1

mA
CA(xB, t) =

1

mB
CB(xA, t). (2.66)

Thus, the concentration measured at xB, resulting from a concentration injected at xA,
will have the same value as a concentration measured at xA, resulting from a concentration
injected at xB, if the velocity field is reversed between the two events. The relation is only
valid for incompressible and creeping flow, where the non-linear term in the Navier-Stokes
equations (2.23) can be ignored. Its connection to the well known Onsager symmetries can
be seen by deriving the same relation (2.66) from a microscopic viewpoint, where the time
reversibility at the microscopic scale and the fact that average spontaneous fluctuations
obey linear macroscopic laws [63] is exploited, similar to Onsager’s original derivation [65].

2.3.3 Taylor–Aris dispersion

For pure diffusion, the spatial variance of the concentration scales linearly with time, with
a proportionality factor 2Dm. With the addition of advection, the dispersive interplay
between the diffusive and advective motion can be captured in an effective diffusion coef-
ficient for the variance of the concentration parallel with the mean flow direction

〈(x− 〈x〉)2〉 = 2D‖t. (2.67)
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For pure diffusion, the parallel diffusion coefficient is equal to the molecular one. G.I.
Taylor derived the first description of an effective diffusion coefficient on his seminal paper
Dispersion of soluble matter in solvent flowing slowly through a tube [19]. For adequately
narrow and long tubes, the molecular diffusion of the solute will even out concentration
differences across the tube while still exhibiting differences along it. Due to molecular
diffusion, the tracer particles will collectively move in the flow direction with the average
flow speed, with a spreading around this average resulting in an effective diffusion coefficient

D‖ =
a2U2

48Dm
, (2.68)

where a is the radius of the pipe. At first glance, this result might seem surprising, as the
effective diffusion coefficient is inversely proportional to the molecular diffusion coefficient.
This can be understood with an analogy to driving on a road with many lanes with different
driving speeds. If all the cars change lane often, they will arrive at close to the same time,
but if they very rarely change lanes, some will arrive long before the others, resulting in a
larger spread. The above equality holds when vertical concentration differences are slowly
equilibrated compared to the horizontal advection Dm/a � U , meaning a large Peclet
number.

Taylor’s result was later generalized by Aris [20], who derived an effective spreading for
unidirectional flow in an arbitrary axially invariant channel. Aris did so by identifying the
Peclet number (2.56) and found that for such geometries, the effective diffusion is given by

D‖ = Dm

(
1 + κPe2

)
. (2.69)

The κ is a geometrical factor determined by the flow geometry and boundary conditions.
For a circular pipe, it takes the value of 1/48, in agreement with Taylor’s result in the
high Peclet limit, where the constant of 1 becomes negligible. For the flow in a straight
two-dimensional channel, κ takes the value of 2/105, when a is the channel half-width.
An illustration of the evolution from the initial distribution to the transient regime for
Poiseuille flow is displayed in figure 2.1 on the facing page. In the frame of reference
following the mean flow, the cross-sectionally averaged solute concentration will, in the
asymptotic regime, obey a one-dimensional diffusion equation, where the effective diffusion
replaces the molecular diffusion coefficient.

2.3.4 Brenner’s theory

Brenner further generalized Aris’ result to arbitrary spatially periodic porous media [41].
His general theoretical framework gives a consistent way to calculate the effective diffusion
coefficient for infinitely periodic repeating unit cells in an arbitrary number of dimension.
The advantage of Brenner’s theory is that one only needs to work inside a single unit cell,
but, similar to Aris, comes with the disadvantage that the information in the transient
regime is lost.

The geometry now consists of infinitely many connected periodic unit cells, labeled by
the index n. We let P (Rn, r, t|Rn′ , r

′) represent the probability density for a Brownian
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particle to be located at position r inside unit cell n at a time t, given that it was located
at position r′ inside unit cell n′ at a time t = 0. The capital Rn denotes the global
position of unit cell n, while the letter case r denote the local position within that unit
cell. Without loss of generality, we can let the initial concentration be located at the zeroth
unit cell for t = 0, such that Rn′ = 0, at the position r′ = 0, simplifying our notation to
P (Rn, r, t). The probability density is by definition normalized to one, and must converge
asymptotically to zero at a sufficiently fast. The probability density must also satisfy both
the continuity equation and the advection-diffusion equation. Assuming that the boundary
is impenetrable to both the fluid and the flux of particles, it must satisfy the boundary
condition

n̂ · ∇P = 0 on ∂Ω, (2.70)

where n̂ is the boundary normal vector, and ∂Ω is the geometric boundary. Brenner
continues by defining the local moments

µm(r, t) ≡
∑
n

Rm
n P (Rn, r, t), (2.71)

acting as a coarse-grained positional moment, for a specific local position r within the unit
cell at a time t. The m’th moment is constructed from m vectors without any operation
between them, making the moments a scalar, vector, rank two tensor, and so on. Since
the differential operators commute with the unit cell position vectors, the local moments
must satisfy the advection-diffusion equation

∂tµm = −∇ · (uµm) +Dm∇2µm + δm0δ(r)δ(t), (2.72)

where the last term describes the initial injection of a unit mass at t = 0. At the boundary
between two neighbouring unit cells, n and n∗, the probability density can equally be
described as P (Rn + r), or P (Rn∗ + r∗), as the two spatial coordinates represent same
point. If we let lj denote the spatial difference between the two neighbouring unit cells,
we see that the probability density must satisfy

P (Rn∗ , r + lj) = P (Rn, r). (2.73)

Considering the continuity of u and the flux J over the cell boundary, we also find the
same relation for the probability density’s gradient:

∇P (Rn∗ , r + lj) = ∇P (Rn, r). (2.74)

By performing a sum over n∗ and n on the left and right hand side of equation (2.73)
respectively, one can derive jump conditions for each of the local moments. The jumps,
denoted by JaK, give the change of the given quantity a across the opposite boundary of
the unit cell. The first three jumps in the local moments can then be shown to be given
by:

Jµ0K = 0, Jµ1K = − Jrµ0K , and Jµ2K = −
s
µ1µ1

µ0

{
. (2.75)
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Using equation (2.74) the jump conditions on the gradients are found to be:

J∇µ0K = 0, J∇µ1K = − J∇rµ0K , and J∇µ2K = −
s
∇µ1µ1

µ0

{
. (2.76)

This set of partial differential equations, jump conditions and boundary conditions can in
principle be solved recursively to determine µm uniquely [66], starting with m = 0. This
approach would be equivalent to solving two advection-diffusion equations, and is therefore
much more demanding than solving Brenner’s final set of equations, which we will se in
the following. The jump moments of a quantity a is related to the surface integral over
the unit cell ∫

∂τ
dS · a =

d∑
j=1

∫
sj

ds · JaK , (2.77)

where d represents the number of spatial dimensions for which the jump conditions must
be calculated, and ∂τ is the unit cell boundary.

Brenner goes on to define the total moments as a volume integral of the local moments
over the fluid volume of a unit cell:

Mm(t) =

∫
Ω
µm(r, t) d3r. (2.78)

From the definition of the local moments (2.71), we see that the total moments are coarse-
grained positional moments for the concentration, which does not deal with the probability
of being at a specific position within the unit cell, only the probability that each unite cell
is occupied. Taking the time derivative of the total moments, and applying equation (2.72),
we find that the total moments must satisfy the equation

dMm

dt
= −

∫
Ω

d3r ∇ · (uµm) +Dm

∫
Ω

d3r ∇2µm + δm0δ(t). (2.79)

By applying Gauss’s theorem, turning the volume integral into a surface integral, we can
write the equation in terms of the jump moments using equation (2.77)

dMm

dt
= −

d∑
j=1

∫
sj

ds · u JµmK +Dm

d∑
j=1

∫
s+j

ds · J∇µmK + δm0δ(t). (2.80)

An essential consequence of this rewrite is that the second-order total moment can be calcu-
lated solely from the information of the jump conditions for the local moments. Applying
the jump conditions above (2.75) and (2.76), we see that the total moment of second-
order can be expressed as the jump conditions of zeroth and first-order local moments,
independent of the second order.

To continue we must find the local moments, and use these to calculate the total
moments. Brenner shows that in the long-time regime, meaning Dmt/l

2 � 1, the zeroth
moment is given by µ0 = 1/Ω, where we have ignored the decaying exponentials completely,
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granting M0 = 1. For m = 1, the jump conditions makes the second term of (2.80)
disappear, and the first term can be rewritten to the form

dM1

dt
=

1

Ω

∫
Ω

d3r u = 〈u〉, (2.81)

where we have assumed an incompressible flow, and defined the notation of a unit cell
average in terms of brackets. With this equation for M1 we perform an a priori guess
which satisfies the above equation, with an additional term B containing the possible
spatial dependence, which would disappear upon taking the time derivative,

µ1 = 〈u〉t+B(r). (2.82)

Plugging our guess into equation (2.72), we find that the new unknown B is the solution
of the equation

〈u〉 = −u · ∇B +Dm∇2B, (2.83)

and has to satisfy the boundary condition

n̂ · ∇B = 0 on ∂Ω. (2.84)

Using equation (2.75), we find it is subject to the jump conditions JBK = − JrK and
J∇BK = 0. Performing a volume integral of the first order local moment (2.82) over the
unit cell gives us the first order total moment

M1 = 〈u〉t+ 〈B〉. (2.85)

With our expression for µ0 and µ1, in addition to the jump condition of µ2 being expressed
in terms of these, we can plug everything into equation (2.80), to find

dM2,ij

dt
= 2〈ui〉〈uj〉t+ 〈ui〉〈Bj〉+ 〈Bi〉〈uj〉+ 2Dm 〈∇kBi∇kBj〉 , (2.86)

As mention earlier, the total moments are closely related to the positional moments on a
macroscopic scale. A macroscopic scale is here meant to mean a Darcy scale where the local
position r is irrelevant, compared to the global position vectors. The mean displacement
in the asymptotic time limit can then be written as

〈Ri〉 =

∫
Ωtot

Ri P (Ri) dV =

∫
Ω

∑
n

Rn,iP (Rn,i, r, t) d3r = M1,i ∝ 〈ui〉t, (2.87)

where we have changed from an integral over the total fluid volume, to an integral over
the unit cell volume, by including a sum over the unit cells. This result agrees with our
intuition that the mean position of the solute should travel with the average fluid velocity.
The mean square displacement can likewise be calculated from the second order moment

〈(Ri − 〈Ri〉) (Rj − 〈Rj〉)〉 =

∫
Ωtot

RiRj P dV − 〈Ri〉〈Rj〉 = M2ij −M1iM1j . (2.88)
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We have recognized the definition of the first and second total moment, similarly as above.
From its definition (2.67), this quantity must be proportional to the dispersion tensor Dij ,
which we can now define as

Dij =
1

2
lim
t→∞

d

dt

(
M2ij −M1iM1j

)
= Dm 〈∇kBi∇kBj 〉 . (2.89)

Here we have used our known expressions of the first (2.85) and second (2.86) order total
moment to find the final form. The dispersion tensor can be calculated by solving (2.83),
and plugging the solution in to the equation above. For a two-dimensional channel with
horizontal flow in the x̂ direction, we are only interested in the dispersion tensor for
i = j = 0, which in this case becomes a scalar field and can be written as the effective
diffusion coefficient

D‖ = Dm 〈∇B0 · ∇B0 〉 . (2.90)

To get the final result on a form similar to that of Aris, we redefine the component of B
parallel to the flow, to

B0 = B − x. (2.91)

The parallel diffusion coefficient in the flow direction is then found from calculating

D‖ = Dm

〈
1− 2∇xB + |∇B|2

〉
. (2.92a)

With this redefinition (2.91), the scalar field B is the solution of the equation

Dm∇2B − u ·∇B = −x̂ · (u− 〈u〉) , (2.92b)

which must satisfy the boundary condition on the geometry

n̂ ·∇B = −n̂ · x̂. (2.92c)

Additionally, we may remove the gauge freedom in B by requiring 〈B〉 = 0. The three
equations above gives a closed set of equations and boundary conditions, to find the effective
diffusion coefficient by only working within the unit cell. With the redefinition of B0

performed above, we see that the standard Aris result is retrieved for axially invariant
channels, where B becomes independent of x.
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Chapter 3

Numerical Methods

This chapter briefly introduces the two main numerical methods used in this thesis, the
lattice-Boltzmann method (LBM) and the finite element method (FEM). The two methods
differ fundamentally from one another, with their own set of advantages and disadvantages.
The LBM is a bottom-up approach, where one simulates rule-based particle collisions on
a mesoscopic lattice, which gives rise to the correct hydrodynamics equations on the mac-
roscopic scale. The FEM, on the other hand, is a more mathematically rigorous approach,
where one tries to approximate the solution to a given partial differential equation using a
set of basis functions. For our purpose, these methods will solve the Navier-Stokes equa-
tions (2.4, 2.19), the advection-diffusion equation (2.54), and Brenner’s equations (2.92b,
2.92c). The non-linearity of the Navier-Stokes equations, complex boundary conditions and
coupled equations can make analytical solutions difficult or impossible to find. Therefore,
the numerical methods presented here serve as a toolbox for finding results that would
otherwise be inaccessible. Another important aspect is that analytical results can be com-
pared against numerical simulations, either to verify the calculation or to find the validity
of perturbative or approximate analytical answers. Therefore, numerical and analytical
results go hand in hand and supplement each other throughout the thesis. All of the code
used in this thesis is accessible through a dedicated Git repository1 and can be used for
reproducibility and a better understanding of how to implement the numerical methods
described in this section.

3.1 The lattice-Boltzmann method

In the 1980’s a new paradigm for simulations of hydrodynamics began with the introduction
of lattice gas models [60]. Previously, a top-down approach was used, where one starts
with the macroscopic equations and works downward by discretizing them. In this new
paradigm, a bottom-up approach was used, where one starts with a rule-based particle
simulation algorithm on a lattice, and from the rules derive their corresponding macroscopic
equations. The first example of such a model was the lattice gas cellular automata [60],
which was a predecessor of the lattice Boltzmann models, which we will discuss here. The

1https://github.com/ivarhaugerud/master

https://github.com/ivarhaugerud/master
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notation and definitions will follow The Lattice Boltzmann Method: Principles and Practice
by Krueger et al. [67], which I refer to for a more detailed introduction to the LBM.

3.1.1 Fundamentals

While the original lattice gas models used a fixed number of particles on each lattice
site, the LBM uses occupation probabilities fi(x, t); one for each of the discrete velocity
directions i. This function is called the particle population number, and represents the
density of particles with velocity ci at a lattice point x at a time t. From the particle
populations we can define the mass density

ρ(x, t) =
N∑
i=1

fi(x, t), (3.1)

where we are using natural units where the mass of each particle is set to 1. Here the number
N denotes the number of velocity directions, matching the number of neighbouring sites.
Using the discrete velocity vectors, one can define the momentum density

ρu

∣∣∣∣
(x,t)

=
N∑
i=1

cifi(x, t) +
1

2
∆tF , (3.2)

where F is the body force acting on the fluid. Between each timestep an occupation fi(x, t)
moves with a velocity ci to a neighbouring lattice site x + ci∆t, where it will be acted
upon by a collision operator Ωi, which redistributes all the fi’s among the other velocity
directions of that lattice site

fi(x+ ci∆t, t+ ∆t) = fi(x, t) + Ωi(x, t)∆t. (3.3)

The collision operator gives the time dependence of the occupation number, and must
satisfy conservation of both mass and momentum, as they are conserved in the macroscopic
equations (2.3, 2.23). There are many possible operators which satisfy these conditions,
but we will use the BGK (Bhatnagar, Gross and Krook) model, which takes the almost
intuitive form of

Ωi(f) = −
fi − feqi

τ
∆t. (3.4)

This operator relaxes the particle population at a specific lattice point towards the local
equilibrium value, with a characteristic time τ . At equilibrium the collisions operator van-
ish, and a steady state is reached. A collision operator on this form for lattice-Boltzmann
simulations was first introduced by Qian [68], and further analyzed by Chen and Doolen
[69]. This collision operator uses the local equilibrium particle occupation

feqi (x, t) = ωiρ

(
1 +

u · ci
c2
s

+
(u · ci)2

2c4
s

− u · u
c2
s

)
, (3.5)

where the number ωi weights the different velocity directions of the velocity set, and must
sum to one. The equilibrium distribution depends only on the density (3.1) and the
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momentum (3.2) of the given lattice point, and has the important property of making the
collision operator (3.4) conserve mass

∑
i Ωi = 0 and momentum

∑
i ciΩi = 0. In the

equilibrium occupation the speed of sound in the media was introduced

c2
s =

1

3

∆x2

∆t2
. (3.6)

It is common to use natural units, where ∆x = ∆t = 1, such that cs = 1/
√

3.
Through Chapman–Enskog theory, one can relate the equilibrium occupations to the

Navier-Stokes equations by performing a series expansion of the occupation probabilities
fi in terms of their equilibrium value feqi in powers of what is known as the Knutsen
number, a dimensionless number defined by the mean free path divided by the characteristic
macroscopic length scale. The mean free path is ∆x = 1, and the characteristic macroscopic
length scale will depend on the number of lattice points included in the simulation. To
retrieve a velocity field equivalently to that found with the Navier-Stokes equations, one
needs enough lattice points to ensure a small Knutsen number, such that truncating the
expansion at second order is satisfactory. For a more comprehensive discussion, see Flow
in Porous Media [60] or The Lattice Boltzmann Method [67]. Following this procedure, one
finds the kinematic viscosity of the fluid to be

ν = c2
s

(
τ − ∆t

2

)
. (3.7)

A large viscosity is therefore associated with a quick convergence towards the local equi-
librium.

Not all discretization methods will retrieve a solution of the Navier-Stokes equations
on a macroscopic scale. For example, a square lattice with only horizontal and vertical
connections will not suffice. In this thesis, we will use the D2Q9 lattice, meaning a two-
dimensional lattice where each lattice point has nine neighbours, including itself. The
velocity vectors are defined as

c0 = 0 c1,3 = (±1, 0) c2,4 = (0,±1) c5,6,7,8 = (±1,±1). (3.8)

An illustration of the lattice with the velocity vectors, is displayed in figure 3.1 on the next
page. Each velocity direction is associated with a weight ωi, which for the D2Q9 lattice
takes the values

ω0 =
4

9
ω1,2,3,4 =

1

9
ω5,6,7,8,9 =

1

36
. (3.9)

Other common velocity sets include D1Q3, D3Q15, D3Q19 and D3Q27 [67]. For numerical
efficiency, it is common to simplify the expression for the equilibrium occupation numbers
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13

2

47

56

8

Figure 3.1: The unit cell for a D2Q9 square lattice is displayed. Each lattice point has 8 labeld
neighbours to which the distribution is propagated after the collision step, in addition to propagat-
ing onto itself. In natural units the distance to first four lattice points is 1, and

√
2 to the angeld

points.

(3.5), for the lattice you are working with. For the D2Q9 lattice these take the form

feq0 =
2ρ

9

(
2− 3u2

)
(3.10)

feq1 =
ρ

18

(
2 + 6ux + 9u2

x − 3u2
)

feq5 =
ρ

36

(
1− 3 (ux − uy)− 9uxuy + 3u2

)
feq2 =

ρ

18

(
2 + 6uy + 9u2

y − 3u2
)

feq6 =
ρ

36

(
1− 3 (ux − uy)− 9uxuy + 3u2

)
feq3 =

ρ

18

(
2− 6ux + 9u2

x − 3u2
)

feq7 =
ρ

36

(
1− 3 (ux + uy) + 9uxuy + 3u2

)
feq4 =

ρ

18

(
2− 6uy + 9u2

y − 3u2
)

feq8 =
ρ

36

(
1 + 3 (ux − uy)− 9uxuy + 3u2

)
,

where the density and velocity field is calculated for the relevant lattice point, and u2 =
u · u. Using the above expression reduces the number of floating point operations, due to
the orthogonality of different components being precalculated.

3.1.2 Initialization and boundary conditions

To initialize the system at t = 0, a value must be set for fi at each lattice point. We
use the equilibrium distribution of occupations (3.10) with a density ρ = 1 and a velocity
u = 0. This gives us the initial mass distribution needed to start the algorithm.

The Navier-Stokes equations are solved with no-slip boundary condition (2.20). To
achieve the no-slip boundary condition, one can employ what is known as the half-way
bounce-back boundary condition. Half-way bounce back returns the occupation numbers
that have entered the boundary to its previous lattice site, with the velocity direction
reversed in a single time step. An illustration is displayed in figure 3.2 on the facing page,
where the wall is located at an intermediate point between the fluid and solid node.

3.1.3 Updating scheme

The simulation is done by evolving the system with equation (3.3), which can be decom-
posed in two different steps performed in succession. First the collision operator must be
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t
streaming

t+ ∆t/2

collision

t+ ∆t/2t+ ∆t
streaming

Figure 3.2: For the half-way bounce-back boundary condition, the wall is located half-way between
the two lattice points. The occupations are initially streamed onto the solid node, where their
directions are flipped and streamed back onto their original fluid node. This process is done during
a single time step, contrary to the full-way bounce back where the particles stay one time step on
the solid node before being streamed back.

calculated, called the collision step, then the resulting particle occupations are moved to
their corresponding neighboring sites, called the streaming step. From equation (3.3) and
(3.4), the distribution function after collision, f?i , takes the form of

f?i (x, t) = fi(x, t)−
∆t

τ
(fi(x, t)− feqi (x, t)) . (3.11)

To reduce the number of floating point operations, it is efficient to write the equation on
the form

f?i (x, t) =

(
1− ∆t

τ

)
fi(x, t)−

∆t

τ
feqi (x, t), (3.12)

where the numerical prefactors can be calculated outside the time evolution. Once the
distribution after collision is calculated, one performs the streaming step, according to

fi(x+ ci∆t, t+ ∆t) = f?i (x, t). (3.13)

A visualization of the streaming step for the D2Q9 lattice is displayed in figure 3.3 on the
next page. After initializing the system, the full LBM algorithm can be summarized in the
following steps:

• From the occupation probabilities fi(x, t), calculate the density ρ (3.1) and velocity
u (3.2) at each lattice point.

• Write the macroscopic variables you are interested in to a file.
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Streaming Collision Redistribution

Figure 3.3: In the streaming step, one fi from each neighbouring lattice site is streamed towards
the same point, where they collide according to Ωi and is redistributed between the 9 orientations.
This occurs for each time step of the algorithm, where the collision and redistribution conserve
both mass and momentum.

• Calculate the equilibrium distribution feqi (3.5) .

• Perform the collision step (3.12).

• Propagate the distribution to the neighbouring nodes (3.13).

• Propagate the particle occupations at the boundary.

• Increase the timestep and go back to step one.

Implementing the above scheme gives a second-order solver in both space and time for the
weakly compressible NSE [67]. When searching for steady-state flows, the relative L2 norm
is used to test if the flow field has converged, where the relative L2 norm is defined as

L2 ≡

√∑
s (u(xs, t)− u(xs, t−∆t))2∑

s u
2(xs, t)

, (3.14)

where we sum over all lattice sites s, and perform the dot product when squaring. If the
L2 norm is smaller than a threshold value, for us set to 10−9, we say that the velocity
field has converged to the steady state. Checking if the velocity field has converged can be
added as the last step of the algorithm described above.

3.1.4 Simulating the advection-diffusion equation

The lattice Boltzmann method can also be used to simulate the advection-diffusion equa-
tion. Since the NSE can be viewed as an advection-diffusion equation for the fluid mo-
mentum density ρu, the LBM is easily adaptable to solving the advection-diffusion equa-
tion. The particle propagation can be written on the exact same form

g?i (x, t) = gi(x, t)−
∆t

τg
(gi(x, t)− geqi (x, t)) +Qi(x, t), (3.15)

now g is the particle or heat occupation and Q describes the sinks and drains of the solute.
The time constant τg gives the molecular diffusion coefficient of the simulation

Dm = c2
s

(
τg −

∆t

2

)
, (3.16)
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which shows the close connection to the dynamic viscosity of the fluid (3.7). The equilib-
rium concentration takes the exact same form

geqi (x, t) = ωiC

(
1 +

u · ci
c2
s

+
(u · ci)2

2c4
s

− u · u
2c2
s

)
. (3.17)

To find the macroscopic concentration at a lattice point, one takes the sum over the gi’s,∑
i gi = C. The two algorithms are close to identical, only differing in the initialization, as

it will depend on the initial condition for the concentration profile of interest. The bounce-
back boundary condition is used for solute transport, displayed in figure 3.2 on page 29.
For heat transport, where the wall has a fixed temperature value T , the anti-bounce back
boundary condition is used, where the post-collision occupation at a boundary node xb is
given by

gi(xb, t+ ∆t) = −g∗i (xb, t) + 2ωiT. (3.18)

The wall’s temperature is now fixed to a constant and does not change when interacting
with the diffusing temperature concentration.

When the concentration field does not influence the motion of the fluid, the concen-
tration field is called passive. For passive dispersion, one can first solve the Navier-Stokes
equations to find the velocity field and then perform the advection-diffusion simulation.
For concentration-dependent flows, on the other hand, the Navier-Stokes and advection-
diffusion time steps must be performed in succession throughout the whole simulation.
The passive assumption is also made for the diffusion of temperature density, where the
viscosity and density are assumed to be independent of the temperature.

3.2 The finite element method

The finite element method (FEM) is a computational method for solving partial differential
equations, where the domain is discretized into a finite number of elements. By writing
the equation in its variational form, the solution is found from minimizing some residue,
using the calculus of variations, over the elements. The collection of equations from all the
elements results in a set of linear algebraic equations that approximates the solution to
the partial differential equation in question. The FEM produces an approximate solution
by discretizing the space where we look for solutions, and therefore the solution itself.
This is in contrast to finite difference methods, where the equations are approximated
by discretizing the operators. Furthermore, it contrasts finite volume methods, where
the volumes are discretized and the equations are written in terms of fluxes across the
boundaries of the discretized cells. Although both of these are often used in computational
fluid dynamics, they will not be used in this thesis. While the FEM is often derived in
a mathematically rigorous way, with a strong emphasis on functional spaces, variational
formulations and the approximation properties of piecewise polynomials, it will not be
discussed in further detail here, but I refer to the textbook by Larson and Bengzon [70] or
Süli and Mayers [71]. Instead, we will analytically go through the method for a simple case
before discussing more complicated equations and how to implement them numerically.
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3.2.1 Simple example

A simple example of the FEM is found from setting ourselves the realistic goal of solving
the second order ordinary differential equation

d2u(ξ)

dξ2
− k2(ξ)u(ξ) = f(ξ), (3.19)

where the unknown function u is called the trial function. The Neumann boundary condi-
tions at the edges of our one-dimensional system, defined on the interval ξ ∈ [0, l], are

du

dξ

∣∣∣
ξ=0

= α,
du

dξ

∣∣∣
ξ=l

= β. (3.20)

We write the equation on its variational form by multiplying both sides with a general
function v(ξ), known as the test function, and integrating over our domain∫ l

0
v

d2u

dξ2
dξ −

∫ l

0
k2vudξ =

∫ l

0
vfdξ. (3.21)

The double derivative can be removed through integration by parts, where the boundary
terms are fixed from the Neumann boundary conditions (3.20)∫ l

0
∂ξv∂ξudξ +

∫ l

0
k2vudξ = −

∫ l

0
vfdξ + v(l)β − v(0)α. (3.22)

As we see, the Neumann boundary conditions are naturally included in the equation itself.
To continue, we let the trial function be written in terms of n basis functions φj with a
constant unknown coefficient aj ,

u =
n∑
j=0

ajφj . (3.23)

The functions φj make up a finite set of linearly independent functions, often referred to as
the Galerkin basis functions. Writing the solution in terms of the Galerkin basis functions
is the only approximation done in the FEM. Our test function v was an arbitrary function,
and can therefore be chosen to be any of the basis functions, an aribtrary φi,

aj

∫ l

0
φ′iφ
′
jdξ + aj

∫ l

0
k2φiφjdξ = −

∫ l

0
φifdξ + φi(l)β − φi(0)α. (3.24)

This equation can be written as a vector-matrix multiplication equation

Aa = b, (3.25)

where b is the known source vector, sometimes referred to as the load vector, a is the
vector of unknown coefficients, and A is the stiffness matrix. To solve the equation, we
choose, as an example, the hat functions displayed in figure 3.4, as the bases functions φi.
There are many different possible basis functions, where the hat functions are the simplest
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φn−1 φn φn+1φ0 φ1

x

y

1

x1 x2 xn−2 xn−1 xn xn+1 xn+2

Figure 3.4: An illustration of the chosen basis functions φi, known as hat functions. The extremal
value of φi is located at xi with a value of 1, and is zero at all points beyond xi±1. At the boundary
of the parameter space only half of the basis function is used, and elsewhere all basis functions
overlaps with neighbouring basis function φi±1. With increasing number of hat functions used to
approximate the solution, the error decreases.

case. One can increase the polynomial degree of the basis, which imparts increasing the
number of coefficients per element. The elements, giving rise to the name of the method,
are the combination of both the spatial interval for the basis functions and the type of
basis function used. The hat functions chosen here are zero everywhere, except on the
interval [xi−1, xi+1], where they change linearly to a maximum value of 1 at the point xi.

We see that φi(0) = δi,0φ0 and φi(l) = δi,nφn, such that the Neumann boundary
conditions act only on the first and last element of the source vector,(∫ l

0
φ′iφ
′
jdξ +

∫ l

0
k2φiφjdξ

)
aj = −

∫ l

0
φifdξ + βφnδin − αφ0δi0. (3.26)

Due to the overlapping nature of the basis functions we can immediately see that A will be
a tri-diagonal matrix. If we assume a constant step length xi − xi−1 = ∆, and a constant
coefficient k, we find that the matrix A, for a (5× 5) case is

A =
∆

6


2 1 0 0 0
1 4 1 0 0
0 1 4 1 0
0 0 1 4 1
0 0 0 1 2

+
k2

∆


1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

 . (3.27)

Here we have approximated all the integrals using the trapezoidal rule, with an error
estimate of O(∆3). The matrix representing the double derivative is identical to the one
used in a finite difference method, when one discretizes the double derivative and writes
it on a matrix form. The differential equation has now become an algebraic matrix-vector
equation for the unknown coefficient of the vector a. To find the coefficient, one has to
invert the A-matrix, and the approximate solution can be represented in the original form
through equation (3.23).

When solving a set of N coupled equations, which we will do later, the unknown vector
will contain the n unknown coefficients for all N functions, making it Nn long. Likewise,
the matrix will become an Nn×Nn-matrix, where the tridiagonal elements give the terms
from the stiffness matrix, and the non-tridiagonal elements will determine the coupling
between the equations. To find the form of the equation, the same procedure as above can
be followed.
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3.2.2 More complicated equations

The FEM is more general than the example given. For partial differential equations, the
procedure remains the same, as the variational formulation of the equation must be found
by multiplying the equation with a test function and performing a volume integral over
the domain, where double or higher-order derivatives are removed through integration by
parts. The only difference is the number of dimensions for the basis functions, which must
then match the number of dimensions of the trial function. Instead of hats, one works with
Pyramids, with an arbitrary number of corners matching the mesh. An example of such
a basis is displayed in figure 3.5, where we see that a single scalar value still defines the
basis function for each element, but it spans a two-dimensional grid.

The equations we will solve in this thesis are all two- or three-dimensional, and slightly
more complicated than the one presented above. The variational form of the dimensionless
Navier-Stokes equations (2.3,2.23), is

Re

∫
Ω
vu̇i + Re

∫
Ω
vuj∇jui +

∫
Ω
∇jui∇jv −

∫
Ω
P∇iv =

∫
Ω
fiv +

∫
∂Ω
vn̂j∇jui. (3.28)

Where the no-slip Dirichlet boundary condition (2.20) for ui must be stated explicitly
through the polynomial space where we look for solutions, and the arbitrary boundary
condition for the pressure is chosen to be the no-flux boundary condition. The incompress-
ibility of the fluid (2.4) has to be solved simultaneously, with the test function q∫

Ω
q∇iui = 0. (3.29)

For Brenner’s equation (2.92b, 2.92c) the Neumann boundary conditions (2.92c) are in-
cluded naturally into the variational form

Pe

∫
Ω
vui∇iB +

∫
Ω
∇iB∇iv = Pe

∫
Ω
u′xv +

∫
∂Ω
n̂ix̂iv, (3.30)

where x̂i is the basis vector in the x direction, and n̂i is the normal unit vector of the
boundary. For the above equations numerical implementation using the FEM is more
complicated, and numerically expensive to run, and we will therefore use the numerical
framework FEniCS.

3.2.3 FEniCS

FEniCS simplifies the numerical implementation of the FEM through a high-level Python
package interface, which runs the more heavy computational tasks in C++. As input,
one needs to define the mesh, the variational form of the equation, Dirichlet boundary
conditions, and the problem’s geometry. FEniCS takes this problem and rewrites it to a
linear matrix equation, which is efficiently solved in the C++ back-end using optimized
linear solver libraries. FEniCS also allows for simple parallelization through MPI, such
that the code can be run in parallel on clusters. The equation to solve is implemented
numerically by writing it on the form

a(u, v) = L(v), (3.31)
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Figure 3.5: The basis function for the two-dimensional hat functions are displayed to the left, and
to the right an example of a solution once the coefficients of the basis functions are found. The
1D-line of triangles has become six-sided pyramids with corners on a triangular lattice.

where the problem is to find u in a function space V , for all v in a function space V̂ . The
form of a and L is seen from the equations, and are referred to as bi-linear and linear form,
respectively. For a more in-depth description and tutorial for FEniCS, I refer you to the
standard textbooks on the topic [72, 73].

3.2.4 Time dependent equations

For the time-dependent NS, we will solve the spatial equation for each time step using
the FEM, but solve the temporal evolution using a finite difference method. The time
derivative is then approximated using Newton’s definition of the derivative

∂tui =
uki − u

k−1
i

∆t
. (3.32)

The superscript denotes the velocity field at two different time steps k and k−1, separated
by a time ∆t. To solve the problem, one must have an initial state for the t = 0 velocity
field, which is then used to solve for the next time step using the FEM. To avoid non-
linearity in the time evolution, we combine an implicit and an explicit method for the
uj∇jui term in the NS equations, which can be done while still achieving stability [74].
This is done by writing one of the velocity factors in an implicit way using Crank-Nicolson
(CN) discretization, and the other factor in an explicit way using Adams-Bashforth (AB)
discretization, defined as

uk,CNi =
1

2

(
uki + uk−1

i

)
uk,ABi =

1

2

(
3uk−1

i − uk−2
i

)
. (3.33)

The NS-equations then takes the form

Re

(
uki − u

k−1
i

∆t
+ uk,ABj ∇juk,CNi

)
= ∇2uk,CNi −∇iP k. (3.34)
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This does not have to be taken care of for the ui∇iB term in Brenner’s equation, as
the velocity field is known before solving for B. We will also work with time-dependent
Brenner theory, summarized in section 4.2.1 on page 54, and derived in appendix A on
page 101, which contains a time derivative on the same form as equation (3.32). When
implementing this equation numerically, the same procedure as above will be followed, but
since the equation (4.10) is linear in the unknown B, the combination of Crank-Nicolson
and Adams-Bashforth does not have to be used.

3.2.5 Structure of program

Naturally, all known parameters must be defined, like the external force, geometry, and
the spatial resolution of the mesh. With the dolfin package, the mesh is constructed,
periodic boundaries are defined, and a boolean function to know if a mesh point is on the
boundary or not must be written. Furthermore, dolfin is used to define the functional
space for the trial function on the mesh, V , and the function space for the test function
V̂ . For our investigation, n-th degree piecewise polynomials called Lagrange elements are
used, where the hat functions used above would be a particular case for n = 1, in one
dimension. When solving the NS equations, third degree polynomials have been used for
the velocity and second degree has been used for the pressure. It is necessary to have a
higher degree polynomial for the velocity to satisfy the Babuska-Brezzi condition, such that
the linear system is non-singular and stability is achieved [75]. Similarly, the Brenner field
is found with second-order polynomials. With the possible Neumann boundary conditions
included, the variational equation is defined in terms of the trial and test function. Possible
Dirichlet boundary conditions are not naturally included in the variational form and must
therefore be stated explicitly. The FEniCS package contains a built-in solver for both
linear and non-linear variational problems, where the Dirichlet boundary conditions and
possible Jacobians are given as arguments, in addition to the variational equation and the
unknown to solve for. The unknown is then found from calling the solver and saved to a
file. For a more detailed description, I again refer you to the Git2 repository of this thesis,
where all code is included.

3.2.6 Comparison between the LBM and the FEM

The LBM differs fundamentally from the FEM and most other numerical methods. Instead
of starting with the Navier–Stokes equations and discretizing them, one simulates particle
collisions on the mesoscopic scale and find that the macroscopic averaged quantities satisfy
the Navier–Stokes equations. No discretization is performed, and all boundary conditions
must be implemented in particle-collision rules. With such a fundamentally different ap-
proach compared to other methods, such as finite difference, element or volume, comes
both advantages and disadvantages.

An advantage of being based on the Boltzmann equation, instead of the equations of
fluid mechanics, is that the method is fully explicit, with only local interactions, making
it easy to parallelize. In addition, the boundary conditions are implemented by defining

2https://github.com/ivarhaugerud/master

https://github.com/ivarhaugerud/master
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the rules for boundary nodes, which makes complex geometries easy to implement. While
this could also be said for the FEM, its implementation becomes very difficult without
relying on established numerical frameworks. Thus, with the LBM it is simpler to write
code at competitive speeds independently from scratch. Additionally, since each collision
at each lattice point conserves both momentum and mass, they are excellently conserved
throughout the simulation. A disadvantage with the LBM is that one cannot perform
simulations at zero Reynolds number or infinite Peclet number, which can often act as a
bench-marking limit. The LBM performs more FLOPS and consumes more memory per
time step compared to the FEM [67]. Additionally, it is naturally time-dependent, making
it less efficient for solving stationary flows [67], but it is easier to parallelize to compensate
for this drawback.

An extensive part of our work is done on advection-diffusion in long periodic geometries,
where the LBM for advection-diffusion would be expensive. If one were to use the LBM
for this purpose, one would have to collide and stream particles at thousands of nodes in
hundreds of unit cells for each time step, where most lattice points would be approximately
zero. This problem is avoided by using RW simulations on the velocity field instead, where
the periodicity allows us to only work inside a single unit cell.

An advantage of the FEM is that it can easily be extended to different equations than
the Navier-Stokes equations. While it might be possible to solve Brenner’s equations using
the LBM, it is not trivial what collision rules must be used to retrieve the correct equation,
especially the boundary conditions, and one has to perform a Chapman-Enskog analysis
to verify the rules. Therefore, the process of implementing it is much more tiresome than
it is for the FEM, where one only needs to find the equation on its variational form.

With this in mind, the FEM is always used when working with Brenner theory, and
combined with RW simulations on the velocity field found with the finite element method.
Hence, the LBM is only used when studying the reciprocal relation, but is then used to
solve the Navier-Stokes equations and the advection-diffusion equation. In this part of the
work, the periodicity of the unit cell is not of importance, and one is generally working in
a smaller spatial domain, which makes the LBM method highly suitable.

3.3 Random walks to simulate the advection-diffusion equa-
tion

Random walk (RW) methods are intuitive and direct ways to simulate diffusive processes.
Their main advantage is their simplicity; they are easy to implement, and therefore work
well as a relatively simple and fully independent way to verify theoretical predictions
based on a continuum description. In RW simulations, the diffusive movement is modelled
through a stochastical term which changes the particle positions by a random number in
each direction at each time step, similar to the Langevin-equation (2.30). To include the
advection of a background velocity field, one has to include the velocity field in the equation
of motion. This can be written mathematically by performing a short-time integration of
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the Langevin equation with stokes drag (2.49), from t to t+ dt (2.50), yielding

x(t+ dt) = x(t) + u(x, t)dt+ dW (t). (3.35)

The vector W , called a Wiener process, is an uncorrelated stochastical noise term in our
equation. There are two main discretization methods when implementing this equation
numerically, Itô and Stratonovich discretization. We will use the Itô discretization method,
which is a fully explicit discretization method, where we evaluate the Wiener vector at the
current time step when finding the next position

xi,n+1 = xn + ui(xi,n, tn)∆t+ ∆Wi(tn), (3.36)

where i is a component of the position vector, and n is the time index, separated by a short-
time interval ∆t to neighbouring index values. The Stratonovich discretization, on the
other hand, is an implicit discretization method, where the Wiener vector will be evaluated
at an intermediate time step. The difference between the two discretization methods
becomes relevant when the Wiener vector is spatially dependent, as the two discretization
methods then produce different steady states. This is called the Itô-Stratonovich dilemma
and is a general problem when dealing with discretization in stochastical calculus; see the
review article by Manella and McClintock [76] for further discussion. As we will not deal
with spatially dependent diffusion coefficients, the dilemma is of no inconvenience. The
Wiener vector can be regarded as a short-time integral over a Langevin force, and its
ensemble averages must therefore equal those defining a Langevin force (2.31)

〈∆Wi(tn)〉 = 0, 〈∆Wi(tn)∆Wj(tm)〉 = σ2δjkδnm. (3.37)

Assuming the collisions are independent events, the Wiener process must be Gaussian,
and is therefore defined by its first two moments [59]. For a Gaussian variable ξ, with zero
mean 〈ξ〉 = 0 and unity variance 〈ξ2〉 = 1, we define the Wiener vector as

∆Wi(tn) =
√

2Dm∆t ξi(tn), (3.38)

which achieves the correct diffusion coefficient when comparing with theory. The number
ξi(tn) is drawn from a Gaussian distribution with the above properties at each time step
for each particle and dimension.

For passive Brownian particles, one can first find the velocity field using the LBM or
FEM and then perform the updating scheme for the random walkers by interpolating the
velocity field over the lattice points. We use a bounce-back boundary condition for the
random walkers, similar to what we defined for the LBM, where they move back to their
previous position if they move out of the domain.



Chapter 4

Results and Discussion

With the theoretical background and numerical methods established, we continue by
presenting the results of this thesis. The results from the three areas of investigation
will be presented and discussed separately, with an overall conclusion in the next chapter.

4.1 Dispersion in channels with rough square boundary

Following the result from Aris [20], among others [25, 26], we look for an effective diffusion
coefficient on the form

D‖ = Dm

(D‖(b)
Dm

+ κPe2g (Pe,Re, b)
)
. (4.1)

The geometric factor g measures the flow’s effect on the asymptotic spreading as a function
of the Peclet number, Reynolds number and roughness amplitude b. The constant κ is the
geometric factor from the Taylor-Aris result, which for a two-dimensional straight channel
takes the value of 2/105, such that g (Pe, 0, 0) = 1. We have also defined D‖ as the effective
diffusion coefficient for pure diffusion at a roughness b, such that one retrieves the correct
value in the limit of zero Pe. The effective dispersion has therefore been decomposed
into one term, D‖, representing the effect of horizontal purely diffusive transport which is
important at small Peclet numbers, and another term representing the effect of flow, where
a scaling of order Pe2 similar to Taylor-Aris, is expected.

An illustration of the two-dimensional rough channel is given in figure 4.1 on the next
page, which is solely defined by the boundary square length b, with an average channel half-
width of 1. To understand dispersion phenomena in rough channels, the velocity field is
found by numerically solving the incompressible time-independent Navier–Stokes equations
for various boundary amplitudes and Reynolds numbers. The average velocity is always
normalised to 1, and increasing the Reynolds number, defined as Re ≡ U/ν, is therefore
done by varying the kinematic viscosity ν. Different transport rates are investigated in
a wide range of Peclet numbers, defined as Pe ≡ U/Dm, where the diffusion coefficient
Dm is varied. By varying the diffusivity of momentum and mass, the Reynolds and Peclet
numbers are changed independently. The investigation is therefore for various Schmidt
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numbers, defined as Sc ≡ Pe/Re. The range of parameters investigated should represent
the values of the Schmidt number similar to that found in nature [37, 77]. The study is
purely numerical, using the finite element method described in section 3.2 on page 31, and
convergence is verified by ensuring the average velocity and effective diffusion coefficient
changes by less than 1% by doubling the spatial resolution of the finite element mesh.

b

b

b

2 + b

Unit cell

Figure 4.1: Illustration of the two-dimensional square rough channel, consisting of infinitely many
repeated unit cells. The parameter b characterizes the roughness and solely defines the geometry.
For b = 0 one finds Aris’ channel, and for b = 2.0 the channel is completely closed.

4.1.1 Velocity field

In figure 4.2 the lower half of the velocity field is visualised for a set of roughnesses b = 0.4,
0.8 and 1.6, and Reynolds number of 0 and 31 in the left and right column, respectively. For
b = 0.4, the recirculation zones (RZ) are close to filling the whole cavity area, independent
of the Reynolds number. The flow profile in the centre of the channel takes the form
of Poiseuille flow, with something similar to a lid-driven flow [78] for the cavity. With
increasing roughness, the central streamlines move further into the cavities, reducing the
relative size of the RZ compared to the cavity area. For a Reynolds number of 31, this is
no longer the case, as the RZ fills to whole cavity area independent of the roughness. The
increase in RZ area with Reynolds number is the largest at the largest roughness, where
even additional RZ are observed in the form of Moffat eddies [79] in the corners of the
cavity. A consequence of the discontinuous geometry is that recirculation zones appear
even at small roughnesses, independently of the Reynolds number, filling the whole cavity.

4.1.2 Validation of Brenner solver

To validate our Brenner equation solver, the asymptotic effective diffusion coefficient from
Brenner’s equation is compared with the one found by performing random walk simulations
and the well established Taylor-Aris result [20] for a flat channel. The effective diffusion
coefficient found using the two different methods agree well and are displayed as a function
of the roughness b without and with flow in figure 4.3 and 4.4 respectively. From the
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Figure 4.2: Visualization of the lower half of the velocity fields at different roughness and Reynolds
number. For each sub-figure the spatial axis are scaled equally, and the average velocity is norm-
alised to 1. The left and right columns have a Reynolds number 0 and 31 respectively. At the top
row, with b = 0.4, the flow does not change notably with the change in Reynolds number, and the
flow profile can be separated into a Poiseuille flow in the central channel, and something similar to
a lid-driven flow [78] inside each cavity. At zero Reynolds number we see that increasing the rough-
ness to 0.8, middle, and 1.6, bottom, makes the unit cell wider, such that the central streamlines
go further inside the cavity, reducing the relative area of the RZ. This behaviour is not observed
for higher Reynolds number, where the RZ almost fills the whole cavity for all roughnesses.
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Figure 4.3: A comparison between the effective diffusion coefficient found by numerically solving
Brenner’s equation and RW simulation in the absence of advection is displayed. In the left figure,
the average of the last third of the datapoints are used to measure the effective diffusion coefficient,
resulting in the constant line displayed in the same figure. The values of the effective diffusion
coefficient found using the two methods are in excellent agreement, and decreases linearly until
around b = 1 with a slope of −0.42, and approaches zero when the channel is closed.
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Figure 4.4: A comparison between the effective diffusion coefficient found by numerically solving
Brenner’s equation and RW simulation in the presence of advection is displayed. In the left figure,
the constant line is the value found using Brenner’s theory, and the average of the last third of the
RW data points are used to measure the effective diffusion coefficient. The values of the effective
diffusion coefficient found using the two methods are in excellent agreement and agree with the
Taylor-Aris result (2.69) at b = 0. The agreement extends to the case with a varying boundary of
b = 1.5.
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Figure 4.5: In the left figure, all of the curves are approximately linear with some oscillation around
the straight line. Increasing the roughness size makes the spreading more efficient, while an increase
in the Peclet number results in a decrease. The dependency on Peclet number is weak for small
roughnesses, but increases with larger roughnesses. For the largest Peclet numbers, g moves closer
to 1, meaning more similar to the Taylor-Aris result. To the right, we see that for small Peclet
numbers, the geometric factor scales as e2.85b but begins to decrease with larger roughness. The
slopes eventually decrease for all curves, with a larger decrease with larger Peclet numbers.

excellent agreement, we conclude that the Brenner equation solver is correct, and it will
therefore be used for the following results, as it is much more efficient than performing RW
simulations.

4.1.3 Effective dispersion for creeping flow

With a working solver of Brenner’s equation, the effective diffusion coefficient at zero
Reynolds number is calculated as a function of both the Peclet number and roughness,
the resulting geometric factor (4.1) is displayed in figure 4.5. The effective dispersion is
independent of the Peclet number at small roughnesses where a scaling of e2.85b is seen, and
begins to decrease with the Peclet number at larger boundary amplitudes. The effective
dispersion is monotonically increasing with the roughness except for at the largest Peclet
number and roughness, where a slight decrease is found.

Even though the geometric factor is always larger than 1, the effective dispersion is not
necessarily larger than the Taylor-Aris result (2.69). In figure 4.6 on the following page, the
relative change in the effective dispersion from Poiseuille flow to our geometry is displayed.
A slight decrease is observed when both transport methods are of equal importance, Pe = 1,
due to the horizontal diffusive spreading being limited by the varying boundary amplitude.
This decrease is not monotonic and becomes positive at b = 1.25. The relative change is
maximised for an intermediate value of Pe = 31. Except for Pe = 103, the relative change
is the largest for the largest boundary amplitude.
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Figure 4.6: The relative change in the effective diffusion in our geometry, in comparison to the
Taylor-Aris result, is positive for almost all curves except Pe = 1, which is negative for b < 1.25.
Additionally, the relative change is maximized for an intermediate value of Pe = 31. The relative
change is always at its maximum for the largest boundary amplitude, except for the Pe = 1000
curve.

4.1.4 Effective dispersion for inertial flow

In figure 4.7, the relative change in D‖ when increasing the Reynolds number is displayed.
For each sub-figure, the Peclet number is constant while varying the flow parameters of
roughness and Reynolds number. For all Peclet numbers, the curves are independent of
the Reynolds number until around b = 0.5. Assuming that RZ are the main mechanism
determining the asymptotic dispersion, the result agrees with the relative RZ area being
independent of the Reynolds number at these values of the boundary amplitude. Addi-
tionally, no relative change is seen for small values of the Reynolds number, as one would
expect. The dependence on the Reynolds number becomes more complicated for larger
roughness. Larger Reynolds numbers can result in the dispersion increasing or decreasing,
depending on the Peclet number. When the advective and diffusive transport is similar,
the additional RZ from an increase in Reynolds number always amplifies the dispersion and
further increases for larger roughnesses. When advective transport dominates, the same
change in flow results in a decrease in the effective diffusion coefficient. The maximum
decrease for Pe = 100 is almost 50%, while the largest positive increase is observed to be
around half that, at 25%.

4.1.5 Random walk analysis

By analysing the positions and trajectories found from random walk simulations, a physical
explanation for the behaviour observed above can be found. We are especially interested in
understanding how an increase in Reynolds number can increase or decrease the effective
dispersion, depending on the Peclet number. Therefore, the simulations are performed for
a small value of the Reynolds number, zero, and a large value, 31, which are the same values
for which the streamlines in figure 4.2 are displayed. Three different orders of magnitudes
of the Peclet number are also investigated, 1, 10 and 100, corresponding to the left column
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Figure 4.7: For small boundary amplitudes, b < 0.5, there is no noticeable relative change in the
effective dispersion, independent of both the Peclet and Reynolds number. When the advective
and diffusive transport rates are similar, the dispersion increases with the Reynolds number, and
is further increased at larger roughnesses. When increasing the Peclet number, the relative change
in D‖ starts to decrease at the largest roughnesses. The negative values are found for smaller
roughnesses when further increasing the Peclet number. For Pe = 102 the relative change is almost
strictly negative, with a maximum decrease of 50%, much larger than the maximum relative increase
observed for Pe = 1. When transport by flow dominates over diffusive transport, an increase of
the Reynolds number reduces the effective dispersion.
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Figure 4.8: The average number of particles in RZ is found to flatten out with an increase in
the roughness for Re = 0 (left), while increasing linearly for Re = 31 (right). This behaviour is
consistent with the behaviour of the RZ area, inferred from figure 4.2 on page 41. For both cases
the effect of changing the Peclet number is negligible compared to the fluctuations around the
averaged values.

in figure 4.7 on the previous page.
By finding the shape of the RZ, the average number of particles in the RZ is measured

and displayed in figure 4.8. The proportion of particles always increases for creeping flow,
although the slope decreases for the largest boundaries. For a Reynolds number of 31, on
the other hand, the linear increase matches the fact that the RZ fills the whole cavity area,
which is b/2 of the total unit cell area. Additionally, the proportion reaches a value of 0.72,
compared to 0.50 reached for creeping flow. For both figures, the results are approximately
independent of the Peclet number. The error bars give the standard deviation around the
average occupation number.

By calculating a histogram for the occupation time in the RZ and the central channel
(CC), one finds an exponential decay on the form exp{−t/τ}. This is displayed for the RZ
occupation times for Re = 0 and Re = 31 at Pe = 10 in figure 4.9 on the next page, where
the characteristic occupation time is measured from the slope of the straight line. For
the set of Peclet numbers, Reynolds number and roughness investigated above, we want
to find the behaviour of the characteristic occupation time τ both within and outside of
the RZ. The characteristic occupation time in the RZ and CC is displayed respectively in
figure 4.10 and 4.11. Starting with the RZ occupation times, we see that increasing the
Peclet number or roughness results in an increase of τ . Since the transport mechanism to
enter and leave RZ is diffusion, it makes sense that increasing the Peclet number results
in transitions from one region to the other being less frequent. The scaling, on the other
hand, seems to be proportional to the Peclet number with an exponent slightly smaller
than one. The characteristic occupation time in the channel, on the other hand, tends
to decrease with the roughness but increase with the Peclet number. This effect is more
apparent at Pe = 100, where τ goes from 12 to 4 for the roughness values investigated
here.
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Figure 4.9: The histogram of occupation times in the RZ follows an exponential decay, where the
characteristic time is given by the best fit slope, displayed as the straight line. Both figures have
a Peclet number of 10, with creeping flow to the left, and a Reynolds number of 31 in the right.
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Figure 4.10: The probability of staying in a RZ follows an exponential decay, where the character-
istic occupation time is seen to increase with both the Peclet number and the roughness, for both
creeping flow (left) and inertial flow with Re = 31 (right), meaning the RZ are more difficult to
escape.
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Figure 4.11: The probability of staying in the central channel (CC) follows an exponential decay,
where the characteristic occupation time is seen to increase with the Peclet number and decrease
with the roughness, for both creeping flow and inertial flow with Re = 31 (right). Although the
behaviour is similar, the occupation times are more sensitive to changes in the roughness for inertial
flows.

4.1.6 Discussion

Different contributions to the effective dispersion

The geometric factor g measures the deviation in asymptotic spreading relative to a straight
channel, and therefore captures the effect of flow with a varying boundary amplitude on the
dispersion. Phenomenologically, a varying boundary amplitude has four main consequences
on the effective dispersion. The first consequence is larger velocity differences, hence more
shear, inside the unit cell. Particles following streamlines close to the wall move much
slower than those at the centre. Thus, the particles having stayed closer to the wall will
have travelled much shorter than the latter, increasing the effective dispersion. In the limit
of no shear in a straight channel, the effective dispersion is equal to the molecular one,
independent of the Peclet number. Additionally, compression of streamlines at the pore
throats makes vertical diffusive transport between streamlines more efficient. This, in turn,
results in less efficient dispersion, as particles will deviate less from the mean velocity, as
they are sampling the different velocities over the unit cell more efficiently. The effects are
already explained in the established Taylor-Aris result (2.69), where an increase in shear
increases the dispersion. In contrast, an increase in the diffusion coefficient, or decrease
in the channel height, increases the vertical switching of streamlines through diffusive
transport, thus reducing the effective dispersion. Depending on the magnitude of the two
effects, the boundary can either increase or decrease the effective dispersion. The third
consequence of a varying boundary on the effective dispersion is a reduction in horizontal
diffusive transport. Previous work on the topic finds that small and smoothly varying
boundaries reduce the effective dispersion quadratically with the boundary amplitude and
linearly for discontinuous geometries, in the absence of advection[40]. This effect is only
relevant when the transport rates are of a similar order, meaning a Peclet number of
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order unity. The fourth and last consequence of a varying boundary is the appearance
of recirculation zones. Particles in recirculation zones have no net advective transport
along the channel. RZ, therefore, act as large zero-velocity regions, similar to the no-slip
boundary layer of the fluid. Recirculation zones increase the effective dispersion drastically,
as they can be hard to escape, contrary to the boundary layers of the fluid. In addition to
appearing for larger boundary amplitudes, recirculation zones appear with fluid inertia at
larger Reynolds number. The four contributing terms to the effective diffusion coefficient
can be summarised in the following way: to maximise the dispersion, the average auto-
correlation time for the advected horizontal velocity should be maximised, with a broad
distribution in advection speed between particles. The effective dispersion will depend on
all of the four competing effects, and each of them will contribute differently at different
Peclet numbers, geometric roughness and Reynolds number.

Dispersion in creeping flow

The four different effects have been studied earlier for smoothly varying boundary amp-
litudes [25, 26]. For such geometries, accumulation of streamlines occurs at the pore throat,
while the boundary amplitude is not large enough for recirculation zones to appear. If the
additional shear is not enough to compensate, the effective dispersion can decrease rel-
ative to a straight channel [25]. The decrease in the geometric factor at small boundary
amplitudes does not occur for the discontinuous boundaries studied here, as recirculation
zones are present at all boundary amplitudes. Another consequence of the rough boundary
is that the contraction of streamlines at the pore throat is small for low boundary amp-
litudes. From inspecting the streamlines in figure 4.2 on page 41, the flow is seen to be
separated into a Poiseuille flow in the central channel and a lid-driven flow in the cavity.
With increasing boundary amplitude and width of the unit cell, the two regions become
more connected as the central streamlines go further into each cavity. Adding the negative
contribution from the slight contraction of streamlines at the pore throats, and the positive
contribution from recirculation zones and additional fluid shear, the effective dispersion in-
creases monotonically with the roughness in this region of the parameter space. However,
the full change decrease for Pe = 1 due to the horizontal diffusion being limited by the
varying boundary. This effect is more prominent for discontinuous boundaries due to D‖
being linear in the boundary amplitude [40]. Therefore, the competing effects for creeping
flow are the negative contribution from the less efficient horizontal diffusion and the pos-
itive contributions from RZ and shear. Naturally, the latter becomes more important at
larger Peclet numbers, and the change compared to Poiseuille flow is positive. The relative
change in D‖ becoming positive at b = 1.25 for Pe = 1 is due to increased fluid shear and
larger RZ. In figure 4.6 on page 44, the relative change is not maximised by maximising
the Peclet number. It is maximised for an intermediate value of Pe = 31, giving a factor
of 27 more effective dispersion than Taylor-Aris dispersion with the same Peclet number.
This is understood from figure 4.4 on page 42, where the scaling is similar for large Pe, and
the constant offset is reached around Pe = 31. The same fact was observed in sinusoidal
channels with Stokes flow by Bolster et al. [25], without an explanation.

We observe that increasing the Peclet number reduces the geometric factor for creeping
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flow, as seen in figure 4.5. The effect occurs at all roughnesses, but is magnified at larger
values. This result can seem surprising, as the Peclet number magnifies the shear and
importance of the flow field, which is highly dependent on the geometry. An explanation for
this behaviour can be that the negative contribution from the accumulation of streamlines
in the pore throats contributes more when the vertical diffusive transport rate is small
compared to the advective transport rate. Additionally, both values of τ for creeping flow
does not scale linearly with Pe, but with Peα with some exponent α slightly smaller than
one, as seen in figure 4.10 and 4.11. For creeping flow, it seems as if data collapse can be
made if one multiplies by Pe0.9, or some similar exponent, although three different values
of the Peclet number are insufficient to state this definitively. While the geometric factor
g decreases with the Peclet number, we must remember that the effective dispersion still
increases as a factor of Pe2 that has been factorised out.

Occupation times

By mapping all particle positions to the same unit cell, the non-equilibrium steady state
will be a uniform distribution. This explains the first-order total moment in Brenner theory
being Ut (2.85). Therefore, the relative occupations of the RZ in figure 4.10 on page 47 is
a measure of the relative RZ area, which can be inferred from figure 4.2 on page 41. For
small roughnesses with creeping flow, RZ fills the entire cavity, such that a linear increase
of the relative RZ area with b is expected. When b increases further, the dipping of the
streamlines into the cavity will reduce the slope with b. For Re = 31, the RZ fills the
cavity area for all roughnesses, such that a linear increase should persist for all b. This is
consistent with the occupation numbers measured. There is an uncertainty in the average
number of particles, quantified by the error bars, which gives one standard deviation away
from the mean. There is an uncertainty of the separation between the CC and the RZ,
resulting in further uncertainty in the occupation number.

With creeping flow, we find that the occupation times in the central channel decrease
with b, while the occupation times in the RZ increase with b. A lower channel height makes
it more likely for a particle to be close to the separation line between the two regions,
reducing the occupation time in the central channel. Additionally, it is more difficult to
escape RZ because the total RZ area increases. This effect might be slightly reduced since
the contact length between the two regions also does increase with the roughness.

When increasing the Reynolds number, the occupation time in the RZ are almost
unchanged. The characteristic occupation time in the central channel, on the other hand,
decreases much more with increasing boundary roughness than at creeping flow. This
large decrease with b can be understood from looking at figure 4.2 on page 41 for b = 1.6.
For a particle located at the centre of the channel, the diffusive distance to reach a RZ
is much shorter for inertial flow due to the streamlines not moving into each cavity. To
enter a recirculation zone at creeping flow with a large Peclet number, the particle must
be located along the wall at the end of the pore throat to be advected along with the
boundary layer between the two regions. This makes it less likely to enter than for inertial
flow. This explanation also agrees with the slope being more negative at larger roughnesses
and Peclet numbers.
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Effective dispersion with inertial flow

Bolster et al. [25] argues that increasing recirculation area increases the effective dispersion.
In our geometry, increasing the Reynolds number keeps the velocity difference the same
and increases the recirculation area. According to Bolster et al. [25], this would necessarily
increase the effective dispersion. The same is also said by Bouquain et al. [26], who argue
for a direct relation between the recirculation area and the effective dispersion coefficient;
if the recirculation area increases, so must the effective dispersion. These statements
contradict the relative change in the effective dispersion with Reynolds number, displayed
in figure 4.7 on page 45, where an increase in the Reynolds number can both result in an
increase or a decrease, depending on the Peclet number. Here, the relative decrease is the
most interesting aspect of the figure, as it has not been observed previously and contradicts
explanations from the literature [25, 26].

We aim to give an explanation of this decrease with Reynolds number, by investigating
the change in characteristic occupation times for Pe = 100 and b = 1.5, through RW ana-
lysis displayed in figure 4.8, 4.10 and 4.11. For this combination of parameters, increasing
the Reynolds number does not change the characteristic occupation time of RZ, which is
around 11 for both cases. At the same time, it increases the likelihood of entering a RZ
significantly, as the characteristic time spent in the channel decreases from around 12 to 4.
Increasing the Reynolds number makes it easier to enter and equally difficult to leave the
RZ, such that on average, three-quarters of the particles are inside RZ and stay there three
times longer than in the central channel. Furthermore, the mean position of the solute is
dominated by particles stuck in RZ with zero horizontal velocity. The variance in position
will increase slowly due to the majority of particles having zero effective horizontal velocity.
Furthermore, the particles in the central channel quickly return to the recirculation zone.
The decrease is due to the characteristic occupation time of the channel decreasing and
most particles having zero net horizontal velocity. Following the summarised statement
on maximising the effective dispersion, the above arguments can be formulated as follows:
the autocorrelation time is the same for particles in RZ but decreases for particles in the
CC. Additionally, the variance in velocity differences between particles is decreased due
to 3/4 of the particles experiencing the same zero velocity in RZ at any given time. The
two effects combined is ultimately believed to be the reason for the measured decrease.
When visually inspecting the motion of the random walkers, their behaviour agrees with
the explanation provided here. This explanation prompts the question of why one finds a
relative increase in the effective spreading for low values of the Peclet number, as the RZ
occupation is approximately the same as for Pe = 100.

Although RZ contributes positively to the effective dispersion at low Peclet numbers,
the contribution is much smaller than at larger Peclet numbers, simply due to the flow
being a less prominent transport method. This is apparent in figure 4.6 on page 44,
where the change in effective dispersion compared to the Taylor-Aris result is negative due
to the varying boundary reducing horizontal diffusive transport, until RZ and additional
fluid shear contribute enough to make the change in effective dispersion positive. Since
diffusion is an equally important transport method, the reduced occupation time in the
central channel does not limit the horizontal transport of the particles as much as it did for
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Pe = 100. Instead, the contributions competing with the inefficiency of horizontal diffusive
transport is enhanced, resulting in an increase.

Relation to other work

A recent publication by Yoon et al. [30] focused on dispersion under the combined effect of
self-similar rough surfaces and fluid inertia. Their investigation was in the transient regime
and focused on first passage times and transition times of their finite channels. Their
investigation found that the increase of roughness and Reynolds number can increase or
decrease the transport, depending on the Peclet number. When advective transport was
dominating, Pe = 105, their channel is flushed efficiently due to RZ not being entered by
the RW. The RZ are not entered at this Peclet number due to the region separating the
RZ and the CC acting as a slip boundary moving at a large velocity. In our geometry, the
roughness is larger, and the Peclet number is smaller than in their investigation. Therefore,
their maximal RZ occupation is less than 25%, much less than what is observed here.
Furthermore, RZ will be entered in the asymptotic regime, their findings are therefore only
valid in the transient regime. The dynamics behind the transport efficiency increasing or
decreasing depending on the Peclet number found here is different from the one in their
investigation.

For creeping flow with small boundary amplitudes, or a Reynolds number of 31 with
any boundary amplitude, the central streamlines do not move into the cavities, and there-
fore has a profile similar to that of Poiseuille flow in the central channel. In this regime,
RZ are believed to be the primary mechanism affecting the dispersion. Therefore, much
of the dynamics might be captured by modelling the RZ as absorbing boundaries with a
characteristic waiting time. The exact shape of the RZ is not of importance, only their
accessibility and characteristic occupation time. Levesque et al. [80] found an analytic ex-
pression for the effective dispersion in a two-dimensional channel with absorbing boundary.
Their closed analytic form expressed the effective dispersion in terms of adsorption and de-
sorption rates, similar to what we measured in figure 4.10 and 4.11. It is not trivial to map
the characteristic occupation times measured for this model to the quantities used in their
expression, but it could act as an interesting starting point for an analytic investigation.

Outlook

The geometry studied here is a prototype for a more general investigation into dispersion
with a rough geometric profile, and more research on similar geometries is necessary to
further understand its effect on dispersion. One starting point is turning the square rough-
ness into rectangles, defined by two different length scales, as more parameters to vary
might give a better understanding of the competing contribution to the effective disper-
sion. Dispersion with a sawtooth or triangle boundary, with the top and bottom boundary
either in or out of phase, might exhibit some new and some similar properties as the square
geometry, and should be explored, to give a broader understanding of rough surfaces. A
geometry exhibiting both a smoothly varying and a discontinuous boundary, similar to
what has been done for pure diffusion [40], could be used to investigate dispersion in dif-
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ferent geometries transitioning from smooth to rough. Another aspect could be a unit cell
that is not symmetric along the vertical axis, such that the effective dispersion would de-
pend on the flow direction at non-zero Reynolds numbers. The perfect periodicity studied
here is a simplification of naturally occurring rough surfaces, which are often statistically
self-affine [81–83]. The effect on dispersion of a self-affine channel would give greater insight
into dispersion phenomena in nature.

The Reynolds number studied here was relatively small compared to fully developed
turbulence, typical for many real-world systems with rough boundaries. When increasing
the Reynolds number further, the time derivative in the NS equations cannot be ignored,
and the flow is no longer steady and laminar. The time-dependent Brenner theory, derived
in appendix A on page 101, would allow the same method used here to be extended to higher
Reynolds numbers. Even though Taylor dispersion at larger Reynolds number has been
studied [84, 85], and was even investigated by Taylor himself [86], it is to our knowledge
lacking in rough channels, and the geometry studied here can be further investigated. How
the decrease in effective dispersion with Reynolds number behaves for larger values of both
the Peclet and Reynolds number is hitherto unknown.

The geometry can be made self-similar by superimposing a smaller boundary of the
same shape. A square with length b/3 can be placed at the bottom of the cavity and
removed at the pore throats. This process can be repeated indefinitely, with the squares of
the next fractal generation having lengths of b/9. Each new fractal generation will leave the
total unit cell area unchanged but add additional discontinuities and RZ. This geometry
was slightly investigated, but required larger numerical resolution to achieve convergence,
especially with flow, a mesh with varying resolution would be needed. Hopefully, this
investigation would result in the effective dispersion coefficient converging to a fixed value
with increasing fractal generation to give insight into channels with roughness at all length
scales.

Investigations in two-dimensional channels can seem artificial, but do provide insight
into systems where the geometric variation in one direction is sufficiently larger than in
the third direction. This could be applied to rock fracture and slickenline patterns [30,
87] and microfluidic devices [35, 47, 88], to mention some possibilities. Still, extension
to three-dimensional geometries can provide additional effects, like vortices and crossing
streamlines, which are known to impact the dispersion properties significantly [89, 90].
Therefore, the investigations performed here should be extended to the third dimension to
give a broader understanding of dispersion phenomena in these geometries.



54 Results and Discussion

λ = 2πa
κ

ε

a

Unit cell

Figure 4.12: An illustration of the channel geometry with height a, boundary amplitude ε and
wavelength λ in the untransformed coordinates.

4.2 Dispersion with an oscillating force in channels with si-
nusoidal boundary

Having investigated the effects of a discontinuous boundary roughness, we continue by
letting the boundary vary smoothly along the flow direction and impose a time-dependent
oscillating force to drive the flow. Here we present the perturbation method used, the gen-
eralisation of Brenner’s theory to time-dependent flows, and its verification and application
to our geometry.

4.2.1 Perturbation theory and time-dependent Brenner equations

To analytically investigate the interactions between an oscillating external body force on
the fluid, and the resulting hydrodynamic dispersion in a channel with a smoothly varying
boundary amplitude, we perform a coordinate transformation from the physical coordinates
into dimensionless and rescaled coordinates. In the physical coordinates, the horizontal
position is given by x, and the vertical position by y, with the boundary located at y =
a (1± ε sin (2πx/λ)). An illustration of the channel in the physical coordinates is displayed
in figure 4.12. The coordinates are rescaled to the vertical and horizontal coordinates, ξ
and η, defined as

ξ ≡ y/a

1 + ε sin
(

2π
λ x
) and η ≡ x/a. (4.2)

In the transformed coordinates the boundary is located at ξ = ±1, and all lengths are
measured in units of the channel height a. Additionally, the dimensionless wavenumber is
defined as κ ≡ 2πa/λ. To be able to find analytic expressions, the geometry is perturbed
in the boundary amplitude ε,

1

1 + ε sin (κη)
=
∞∑
n=0

(−ε sin (κη))n ≈ 1− ε sin (κη) + ε2 sin2 (κη). (4.3)
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Due to the unit cell being invariant in the transition −ε → ε, only even powers of ε
will contribute to the spatial averages. We therefore need to perform the perturbation to
second-order, with the advantage that our estimated error for spatially averaged quantities
are of the order ε4. All operators, boundary conditions, integrals and unknowns will be
expanded in ε, identically to how the velocity field is written here:

u = u(0) + εu(1) + ε2u(2) +O(ε3). (4.4)

With this rewrite, one has to solve the equation for each matching order of ε, turning
the difficult unperturbed problem into infinitely many easier problems, that increase in
complexity with each power in epsilon. For more reading on perturbation theory I refer
you to the book by Bender and Orszag [91].

The incompressible Navier–Stokes equations are solved in their complex form, such
that the full solution of the equation is found by adding its complex conjugate,

1

ν
∂tu−4u = −∇P +

1

2
x̂F0e

iωt, ∇ · u = 0, (4.5)

with the no-slip boundary conditions (2.20), where we have defined 4 ≡ ∇2. The body
force F0 is a redefinition of the physical force f0 per unit volume, to be per density % and
kinematic viscosity F0 ≡ f/(ν%), the same scaling is performed on the physical pressure p,
such that P ≡ p/(%ν). In this approximation, we are assuming low Reynolds number flow
and therefore neglecting the non-linear term. Since we are including the time derivative
we still allow for large frequencies compared to the diffusion of momentum, producing
non-reversible flows. The zeroth-order NS equations, meaning a flat channel, is

1

ν
∂tu

(0) −4(0)u(0) =
1

2
x̂F0e

iωt, ∇(0) · u(0) = 0. (4.6)

Using the zeroth order incompressability, we find a gauge freedom in the pressure, that
has been used to set it to zero. The first-order NSE is slightly more complicated

1

ν
∂tu

(1) −4(0)u(1) + ∇(0)P (1) = 4(1)u(0), ∇(1) · u(0) +∇(0) · u(1) = 0, (4.7)

as the first-order pressure is now non-zero. The second, and final, equation to solve is

1

ν
∂tu

(2) −4(0)u(2) + ∇(0)P (2) = 4(2)u(0) +4(1)u(1) −∇(1)P (1), (4.8)

where the incompressability is given by

∇(2) · u(0) +∇(1) · u(1) +∇(0) · u(2) = 0. (4.9)

Since the form of the Navier–Stokes equations used here is linear, we can superimpose
solutions with different frequencies to obtain a solution for an arbitrary forcing signal
which can be decomposed into a sum of frequencies. A result of this work is therefore an
analytic approximate velocity for low Reynolds number flow in a two dimensional channel
with sinusoidal boundary, for an arbitrary sum of body force frequencies.
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Brenner theory, presented and discussed in section 2.3.4 on page 19, is only valid for
stationary flow, and was therefore generalised for the purpose of this investigation. This
procedure provides a new theoretical framework for calculating the dispersion tensor in
arbitrary periodic environments for time-dependent incompressible flow in any dimension.
The full derivation is shown in appendix A on page 101, but will be summarised here.

The only change, in comparison with the previously known Brenner equation (2.92b),
is a time derivative acting on the Brenner field,

∂tB + u ·∇B −Dm4B = u′x, with n̂ ·∇Bx = n̂x, (4.10)

where u′x is the velocity field relative to the average unit cell velocity u′x = ux−〈ux〉. Since
the Brenner field is time-dependent the dispersion matrix must be redefined by including
a time-average for the limit to be well defined

Dij = lim
t→∞

1

τ

∫ t+τ

t
Dij(t

′)dt′, (4.11)

where the bar denotes the time-averaged quantity and τ is some characteristic time, for
example the period of the flow. The effective dispersion tensor can be calculated from the
Brenner field

Dij = lim
t→∞

Dm

〈[
δij −∇jBi −∇iBj +∇kBi∇kBj

]〉
. (4.12)

The non-linearity in B when calculating the dispersion tensor means that we cannot super-
impose different solutions of Dij to find the effective diffusion for a specter of frequencies,
and are therefore only calculating the effective dispersion for single frequency flow.

To calculate the dispersion tensor, we must first find the Brenner field, by solving
the time-dependent Brenner equation (4.10). In our perturbation parameter, we find the
zeroth order equation

∂tB
(0) + u(0) ·∇(0)B(0) −Dm4(0)B(0) = u′(0)

x with ∂ξB
(0) = 0 on ∂Ω. (4.13)

The equation is complicated further at the first-order:

∂tB
(1) + u(0) ·∇(0)B(1) −Dm4(0)B(1)

= Dm4(1)B(0) + u′(1)
x − u(1) ·∇(0)B(0) − u(0) ·∇(1)B(0). (4.14)

Here, the boundary condition takes the form ∂ξB
(1)(ξ = ±1) = ∓κ cosκη. Continuing to

the second and final order, we have

∂tB
(2) −Dm4(0)B(2) + u(0) ·∇(0)B(2) = Dm4(1)B(1) +Dm4(2)B(0) + u

′(2)
x (4.15)

+
(
u(1) ·∇(1) + u(0) ·∇(2) + u(2) ·∇(0)

)
B(0) +

(
u(1) ·∇(0) + u(1) ·∇(0)

)
B(1),

with the boundary condition ∂ξB(2) = 0. From studying the above equations, we notice
that overtones of the ground frequency will appear due to the u ·∇B term. The addition
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of a varying boundary therefore results in the effective diffusion coefficient consisting of
infinitely many multiples of the ground frequency.

To arrive at the effective diffusion coefficient, one has to take the spatial average of the
Brenner field over the unit cell. When taking the spatial averages, the Jacobian a2(1 +
ε sinκη)dηdξ, must be included in the integration. While this leaves the total area of the
unit cell unchanged, it can effect the spatial average at second-order. At zero order in ε,
the spatial average of a quantity f is given by

〈f〉(0) =
1

2

∫ 1

−1
dξf (0), (4.16)

where we have used that all zeroth order contributions are independent of η. The first-order
average becomes

〈f〉(1) =
κ

4π

∫ 2π/κ

0
dη

∫ 1

−1
dξ
[
f (1) + sinκηf (0)

]
=

κ

4π

∫ 2π/κ

0
dη

∫ 1

−1
dξf (1), (4.17)

where we again have used that no zeroth order contributions will be independent of η.
Going to second order adds an additional term

〈f〉(2) =
κ

4π

∫ 2π/κ

0
dη

∫ 1

−1
dξ
[
f (2) + f (1) sinκη

]
. (4.18)

The geometry begins to affect the integral at second order, where first order contributions
that are proportional to sin can contribute to spatial averages. Lastly the unit normal
vector, evaluated at the boundary, is given by

n̂(ξ = ±1) = ∓ ŷ + εκ cosκηx̂√
1 + (εκ cosκη)2

≈ ∓ŷ ∓ x̂εκ cosκη ∓ ŷ
ε2

2
κ2 cos2 κη +O(ε3). (4.19)

The x-component of the unit normal vector for the boundary is of interest, as it is needed
to specify the boundary conditions in Brenner’s equations.

4.2.2 Velocity fields and pressure

The velocity fields and pressure is found analytically by solving the zeroth, first and second
perturbative order of the Navier–Stokes equations. The equations are written in complex
and dimensionless form, as in equation (4.5); thus one must add the solution’s complex
conjugate to find the physical description of the fluid. The zeroth order velocity field takes
the form

u(0)
x =

F0

2γ2

(
1− cosh γξ

cosh γ

)
eiωt. (4.20)

For ease of notation, we have defined the Womersley number (2.24), multiplied by a com-
plex phase

√
i, as

γ ≡
√
iWo =

√
iωa2

ν
, (4.21)
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Figure 4.13: The horizontal wavelength is found to bifurcate to one higher and one lower value for
each increase in the power of ε. Additionally, it changes from cos to sin and the other way around.
The horizontal velocity field follows the black line, corresponding to the left vertical axis, while
the pressure and vertical velocity field follow the red line with the right vertical axis.

The physical interpretation of γ, is the length that momentum diffuses over a period of
flow, in units of the channel height. For most fluids and frequencies the Womersley number
is small, such that one can perform a Taylor expansion in γ, resulting in

u(0)
x ≈

F0

4

(
1− ξ2

)
eiωt − F0γ

2

48

(
5− 6ξ2 + ξ4

)
eiωt. (4.22)

Here, the first term is identical to that of Poiseuille flow multiplied by a cos (ωt), and the
second term represents a latency in the fluid’s response of the external force due to the
diffusion of momentum not being instantaneous, reducing the velocity compared to regular
Poiseuille flow. With our gauge freedom in P we choose for simplicity

P (0) ≡ 0. (4.23)

By going to second-order, the velocity field depends on the wavelength of the boundary κ
and the horizontal coordinate η. The pressure is now non-zero and given by

P (1) =
1

2
P1 cosh (κξ) eiωt cos (κη), P1 ≡

γF0 tanh γ
κ coshκ

1− κ′ tanhκ
κ tanhκ′

. (4.24)

Where we have defined a new quantity κ′ ≡
√
κ2 + γ2. The horizontal component of the

velocity is further expressed as

u(1)
x =

[
P1κ coshκ

2γ2

(
coshκξ

coshκ
− coshκ′ξ

coshκ′

)
+
F0 tanh γ

2γ

(
coshκ′ξ

coshκ′
− ξ sinh γξ

sinh γ

)]
eiωt sin (κη),

where we see that it is in phase with the boundary, while the vertical component is out of
phase with the boundary

u(1)
y =

P1κ sinhκ

4γ2

[
sinhκ′ξ

sinhκ′
− sinhκξ

sinhκ

]
eiωt cos (κη). (4.25)

Going to second-order, we find a bifurcation of the spatial frequency, and a change from
cosines to sines, and from sines to cosines, compared to the first-order result. The bifurca-
tions holds for both the velocity field and the pressure, and is illustrated in figure 4.13 on
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the facing page. This is for example seen in the second-order horizontal velocity

u(2)
x =

P1 sinhκ

4γ2

(
κ′2ξ

sinhκ′ξ

sinhκ′
− κ2ξ

sinhκξ

sinhκ
− γ2 coshκ′′ξ

coshκ′′

)
eiωt cos (2κη) (4.26)

+

[
F0

8

(
ξ2 cosh γξ

cosh γ
− coshκ′′ξ

coshκ′′

)
− P2 cosh 2κ

2

(
cosh 2κξ

cosh 2κ
− coshκ′′ξ

coshκ′′

)]
eiωt cos (2κη)

+

[
P1 sinhκ

4γ2

(
κ2ξ

sinhκξ

sinhκ
− κ′2ξ sinhκ′ξ

sinhκ′
+ γ2 cosh γξ

cosh γ

)
+
F0 cosh γξ

8 cosh γ

(
1− ξ2

) ]
eiωt,

where we have defined the new variable κ′′ =
√

4κ2 + γ2, in addition to

P2 =
κ

tanhκ′
P1κ

′′ [κ coshκ tanhκ′ − κ′ sinhκ] + γ2 tanhκ′′ tanhκ′ [F0 + 2P1 sinhκ]

2γ2 (2κ tanhκ′′ cosh 2κ− κ′′ sinh 2κ)
,

(4.27)

which is also contained in the second-order pressure:

P (2) =
1

4

(
P1κξ sinhκξ +

P2γ
2

κ
cosh (2κξ)

)
eiωt sin (2κη). (4.28)

Finally, the vertical second-order velocity is

u(2)
y =

[
P1κ sinhκ

4γ2 tanhκ′

(
κ′ξ

coshκ′ξ

coshκ′
− κ′ sinhκ′′ξ

sinhκ′′
− κtanhκ′

tanhκ

(
ξ

coshκξ

coshκ
− sinhκ′′ξ

sinhκ′′

))

− P2 sinh 2κ

2

(
sinh 2κξ

sinh 2κ
− sinhκ′′ξ

sinhκ′′

)]
eiωt sin (2κη). (4.29)

The expressions above describe the velocity field and pressure of the fluid, where terms
of order ε3 and higher are ignored. Due to the linearity of this form of the Navier–Stokes
equations, any superposition with different frequencies and forces is also a solution.

4.2.3 Comparison with numerical solutions

To verify the analytical solution of the Navier–Stokes equations, they are solved numerically
to compare the averaged kinetic energy

Ekinetic = 〈u2〉, (4.30)

where a factor of the density and a half is omitted. The average kinetic energy gives a single
scalar quantity which can be compared to the one predicted by numerically solving the
Navier–Stokes equations. When solving the equations numerically, we do not perform any
perturbation assumptions and therefore expect a disagreement between the two methods
with increasing boundary amplitude. Additionally, the u ·∇u term is neglected in the
numerical solver, such that the disagreement must be due to the perturbative approach
and the numerical resolution. An agreement for ε = 0, where the velocity field is already
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Figure 4.14: To the left, the second-order kinetic energy found numerically (dots) and analytically
(lines) is seen to agree with each other, with the deviation increasing with ε. For short wavelengths,
the deviation occurs for much smaller values of the boundary amplitude. To the right, the absolute
value of the difference is displayed, where the continuous black line is the expected error of ε4.
Though the difference is larger than the expected error, the error increases with ε4, and we conclude
that the analytic velocity field is correct. The constant offset is likely due to the accuracy of the
numerical solver and numerical integration of the analytic result and will depend on the parameters
used. The parameters used in this plot are ω = 2π/5, F0 = 3, ν = 1.2.

known, is expected. The kinetic energy found numerically and analytically is displayed in
figure 4.14. For long wavelengths, the kinetic energy agrees well for boundary amplitudes
up to around ε = 0.25. For larger wavenumbers, a clear disagreement is seen already at
a value of ε = 0.15. Therefore, a more suitable expansion might be in small gradients,
given by εκ. Notably, the deviation between the two follows the expected error of ε4,
where the constant offset is likely due to numerical inaccuracies in the numerical solver,
integration of the analytic result and most importantly, the value of the chosen parameters.
Furthermore, the analytic results have been verified by putting the solutions back in the
original equation and using a symbolic calculation package, sympy to check if the left- and
right-hand sides agree. With this in mind, we conclude that the perturbed velocity field is
correct.

A visualisation of the perturbed velocity field in the physical coordinates is displayed in
figure 4.15 on the next page for four different points in time. The velocity is maximised in
the pore throats and minimised in the valleys, agreeing with our intuition. Still, a Poiseuille
flow type behaviour is observed when the flow is fully developed, but slightly more complex
behaviour is seen when the average velocity is close to zero. Small recirculation zones
appear along the valley boundary, which then increases in size and moves towards the
channel’s centre, while the velocity field above and below is oriented in opposite directions.
The recirculation zone eventually disappears, and the flow becomes fully developed. For a
different set of parameters, with a larger viscosity, the recirculation zones do not appear,
and the flow profile is close to a Poiseuille flow multiplied by a single cosωt.
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Figure 4.15: Visualization of the flow field, to second-order in the boundary amplitude, with
F0 = 10, ω = 2π/3, κ = 1, ν = 5, and ε = 0.2. With the value of γ used here, the streamlines
become slightly non-reversible, and interesting behaviour, different from regular Poiseuille flow,
occurs when the unit cell average velocity is close to zero. The streamlines are transformed from
the rescaled coordinates back into the physical coordinates through equation (4.2).
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Figure 4.16: From numerical RW simulations with different Womersley numbers the effective
dispersion coefficient is found, and compared with the analytical expression. The time evolution of
the effective diffusion coefficient is seen to quickly approach the theoretical (straight) lines in the
left figure, where the shaded area gives the deviation. Using the last half of the data-points the
average and standard deviation is calculated and compared with the analytical result. The two
methods agree, and we conclude that the analytical result is correct. The RW simulations were
performed with ω = 2π/3, D = 0.25, F0 = 10, while varying ν.

4.2.4 Zeroth-order effective diffusion coefficient

The velocity fields found above can further be used as the source terms for time-dependent
Brenner’s theory (4.10). For a flat channel we find the Brenner field

B(0) =
Λ tanh γ

2ρ2γ3
eiωt +

Λ tanh γ

2γ (ρ2 − γ2)

[
cosh ρξ

ρ sinh ρ
− cosh γξ

γ sinh γ

]
eiωt. (4.31)

For ease of notation, we have defined the diffusive Womersley number, with a phase factor√
i as

ρ ≡
√
iWoD =

√
iωa2

Dm
, (4.32)

with the physically interpretation as the molecular diffusion length over a period, in units of
the channel height. Additionally, a relation between the forcing and diffusivity is defined as
Λ ≡ a3F0/Dm, which can be interpreted as an effective Peclet number with a permeability
K, such that Λ = Pe/K. The value of K will depend on the Womersley number, boundary
amplitude and wavenumber, and can be calculated from 〈u2〉. From the Brenner field, we
calculate the effective diffusion coefficient parallel with the flow, as a special case of equation
(4.12),

D
(0)
‖

Dm
=

〈
1− 2∇(0)

x B(0) +
(
∇(0)B(0)

)2
〉

= 1 +

〈(
∂ξB

(0)
)2
〉
. (4.33)
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Calculating the derivative of the Brenner field, and solving the integral, gives the time-
averaged contribution to the effective dispersion

D‖

Dm
= 1+

Λ2 tanh γ tanh γ∗

4γγ∗ (γ4 − ρ4)

(
1

γ2

[
γ

tanh γ
− γ∗

tanh γ∗

]
− 1

ρ2

[
ρ

tanh ρ
− ρ∗

tanh ρ∗

])
. (4.34)

One can also calculate the oscillations around the time-averaged value, with a frequency
doubling compared to the frequency of the body force

Damp
‖ (t)

Dm
=

Λ2 tanh2 γ

4γ2 (γ2 − ρ2)2 e
2iωt

(
1

ρ tanh ρ
− 1

sinh2 ρ
+

1

γ tanh γ
− 1

sinh2 γ

+
4

γ2 − ρ2

(
ρ

tanh ρ
− γ

tanh γ

))
.

(4.35)

Performing a Taylor expansion in both γ and ρ, meaning the frequency is small in compar-
ison to the diffusion of both momentum and mass, we find that the full effective diffusion
coefficient can approximately be written as

D‖

Dm
= 1 +

2Λ2

105

cos2 (ωt)

9
+O

(
γ2, ρ2

)
. (4.36)

For this flow K takes a value of 1/3, such that the result is identical to the Taylor-Aris
result of 2/105. For small Womersley numbers, the diffusion of momentum is instantaneous
compared to the channel height and flow frequency, making the time derivative in the
NS equations unimportant. Thus, the flow is approximately equal to that of Poiseuille
flow with a factor oscillating in time, as we can see from its Taylor expansion in γ from
equation (4.22). In the limit of small ρ, the frequency is much smaller than the molecular
diffusion coefficient in units of the channel height, such that the particles have time to
diffuse the channel height multiple times over a single period. This results in the solute
reaching an asymptotic effective spreading in a time interval where the velocity field is
almost stationary. Thus, an effective diffusion coefficient equal to that of the Taylor-Aris
result is realized for each time frame, with a body force of F0 cos (ωt). The total effective
spreading is therefore Taylor dispersion for each scaling of the force. Writing this result in
the physical units, we find

D‖

Dm
= 1 +

2

105

a6f2
0 cos2 (ωt)

9%2ν2D2
m

+O
(
ωa2

ν
,
ωa2

Dm

)
, (4.37)

which is completely symmetric in Dm and ν, meaning the diffusion of momentum is equally
important as the diffusion of mass for the effective dispersion. For the case of large ρ and
γ, where the frequency ωa2 is much larger than both Dm and ν, we find the frequency
scaling

D‖

Dm
− 1 ∝ 1

√
νω7/2

1−
√

Dm
ν

1− D2
m
ν2

∝ ω−7/2. (4.38)
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Figure 4.17: When varying the two different timescales, the maximal effective dispersion is found
for large values of the diffusive Womersley number, even though the geometric factor is close to
zero. The complete opposite behaviour is due to the Peclet number increasing with decreasing ρ,
such that the inefficient geometric characteristics is compensated for by the horizontal transport
being primarily advective, with inefficient diffusive vertical transport. The parameters used are
F0 = 3, and ω = 1, while varying both ν and D.

For large frequencies, the effective spreading quickly approaches the molecular diffusion
coefficient. This is due to two different effects. One, particles diffusing slowly compared
to the frequency cannot change streamlines during a single period. Thus each particle
will experience the average speed of their streamline over a period, which always is zero.
Therefore, the spreading should be equal to the value without flow, consistent with the
expression. The second effect is that in the limit of large Womersley numbers, the diffusion
of momentum does not have time to respond to the change in external force, such that
the flow never fully develops. This results in a small average velocity with little shear, and
dispersion is therefore just due to molecular diffusion.

To verify the analytic expression for the effective diffusion coefficient, it is compared
with the one found using random walk simulations. The comparison is displayed in fig-
ure 4.16 on page 62, where we see an excellent agreement when varying the Womersley
number. From this data, we conclude that the zeroth-order result for the effective diffu-
sion coefficient is correct. Our result is also in agreement with previous work [43]. The
generalised Brenner theory is therefore verified for flat boundaries.

The effect on the dispersion from varying the two different time scales, γ and ρ, is
displayed in figure 4.17. To the left, the dimensionless geometric factor g, which measures
the change in effective dispersion compared to the Taylor-Aris result, defined as

D‖

Dm
= 1 +

2Pe2

105

g

2
, (4.39)

is displayed. The factor of 1/2 makes a value of g = 1 retrieve the Taylor-Aris result for
the mean value of the effective dispersion. To compare with the Taylor-Aris result, we
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define the Peclet number for oscillating flows as

Pe ≡
a

√
〈u2〉
Dm

. (4.40)

To reach the saturation value of g = 1, the time scales for diffusion of momentum and mass
relative to the channel height must be larger than the frequency. The threshold value for
the transition from 0 to 1 occurs at a smaller value for ρ than for γ, meaning the diffusion
of momentum is more important than the diffusion of mass to reach a non-zero effective
dispersion. Additionally, if the Womersley number is smaller than 1, it no longer affects the
value of g or the transition interval from 0 to 1 when varying ρ. The dispersion is quickly
saturated, and increasing either of the time scales will no longer affect the dispersion.

The effective dispersion is plotted to the right in the same figure while varying the same
parameters. The almost mirror-symmetric behaviour in the two figures is due to varying
the diffusive Womersley number also affecting the Peclet number, which was factorised out
from g. For large values of ρ, the geometric factor is close to zero, but still results in the
maximal effective dispersion due to the Peclet number compensating. Therefore, the solute
particles are very rarely able to diffuse between streamlines over a single period, decreasing
the effective dispersion. However, if they are able to do so, the advective transport rate is
significantly more effective, causing a larger spread in the horizontal position between the
particles. A large value of the Womersley number always results in the effective dispersion
being equal to the molecular one due to the flow being negligible.

With the zeroth-order solution verified and analysed, we continue our investigation
with the addition of a varying boundary.

4.2.5 Contributing terms to higher-order effective dispersion

The solutions of the higher-order Brenner equations will be used to find the effective disper-
sion, using equation (4.12). Although the higher-order Brenner fields become increasingly
complicated, they are slightly simplified when calculating the effective diffusion coefficient,
as many terms vanish upon taking the spatial average over the unit cell. To simplify the
final expression, we perform the spatial average over η before knowing the exact form of
the Brenner field, such that we need only calculate the terms that end up contributing to
our final result. To do so, we write the n’th order solution of the Brenner field as

B(n) = B
(n)
+ (ξ, t) sin(κη) +B

(n)
− (ξ, t) cos (κη) +B

(n)
0 (ξ, t). (4.41)

The overtones we have observed for the ground wavelength in η will occur at higher orders
in ε, but these will not contribute due to vanishing upon taking the spatial average for ε2.
The term linear in B from equation (4.33), is given to second-order by

∇xB = ∇(0)
x B(0)+ε

(
∇(0)
x B(1) +∇(1)

x B(0)
)

+ ε2
(
∇(2)
x B(0) +∇(1)

x B(1) +∇(0)
x B(2)

)
.

(4.42)
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Employing the decomposition scheme from above (4.41), and taking the horizontal unit
cell average, the end contribution simplifies greatly

− 〈2∇xB〉 = ε2κ〈(1 + ξ∂ξ)B
(1)
− 〉⊥, (4.43)

where⊥ represents the vertical average. The term proportional to the Brenner field squared
in equation (4.41) becomes more complicated

(∇B)2 =
(
∇(0)B(0)

)2
+ε2

(
∇(0)B(1) +∇(1)B(0)

)2

+2ε2
(
∇(2)B(0) +∇(1)B(1) +∇(0)B(2)

)
·
(
∇(0)B(0)

)
.

(4.44)

Following the decomposition from earlier (4.41), and calculating the spatial average in η,
we find〈

(∇B)2
〉

=

〈(
∇(0)B(0)

)2
〉

+ ε2

〈
1

2

(
1 + κ2ξ2

) (
∂ξB

(0)
)2
− ∂ξB(0)

[
∂ξ + κ2ξ

]
B

(1)
+

+ 2∂ξB
(0)∂ξB

(2)
0 +

1

2

[(
∂ξB

(1)
+

)2
+ κ2B

(1)2

+ +
(
∂ξB

(1)
−

)2
+ κ2B

(1)2

−

]〉
⊥

. (4.45)

Combining the two contributions, we find that the effective diffusion coefficient is calculated
from taking the vertical average of

D‖ = D
(0)
‖ +Dmε

2

〈
κ (1 + ξ∂ξ)B

(1)
− +

1

2

[(
∂ξB

(1)
+

)2
+ κ2B

(1)2

+ +
(
∂ξB

(1)
−

)2
+ κ2B

(1)2

−

]

+ ∂ξB
(0)
[
2∂ξB

(2)
0 − ∂ξB

(1)
+ − κξ2B

(1)
+

]
+

1

2

(
1 + κ2ξ2

) (
∂ξB

(0)
)2
〉
⊥

. (4.46)

The important detail to notice from this expression is that it is only the η-independent
part of the second-order Brenner field which contributes to the effective dispersion. Thus,
the second-order calculation of the Brenner field is greatly simplified.

4.2.6 First-order Brenner field

With the known velocity field, and the zeroth order Brenner field, the first-order Brenner
field is found by solving equation (4.13). The known right hand side can be decomposed
into the different horizontal phases, with different frequencies

RHS = cosκη

(
κξu(0)

x ∂ξB
∗(0) + κξu∗(0)

x B(0) − u
(1)
y

Dm
∂ξB

∗(0) − u
∗(1)
y

Dm
∂ξB

∗(0)

)

+ sinκη

(
κ2ξ∂ξB

(0) − 2∂2
ξB
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u

(1)
x

Dm

)
eiωt + c.c (4.47)

+ cosκη

(
κξu(0)

x ∂ξB
(0) − u

(1)
y

Dm
∂ξB

(0)

)
e2iωt + c.c.
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To arrive at this form, we have factorised the η and t dependence out of the velocity and
Brenner fields, such that they are only dependent on ξ. The horizontal phases of cos(κη)
have even temporal frequency, while the horizontal phases of sin(κη) have an odd temporal
frequency. When investigating the left-hand side of equation (4.13), we see a new term,
u · ∇B, compared to the zeroth-order equation. This additional term adds an interaction
between the first-order solutions of different frequencies. This is made clear by writing our
solution on the form

B(1) =
∞∑

n=−∞
eiωnt (Sn(ξ) sinκη + Cn(ξ) cosκη) . (4.48)

Plugging this into the left hand side of equation (4.13), we end up with

LHS = cosκη

(
ρ2
nCn − ∂2

ξCn +
κu

(0)
x

Dm
Sn−1 +

κu
∗(0)
x

Dm
Sn+1

)
eiωnt (4.49)

+ sinκη

(
ρ2
nSn − ∂2

ξSn −
κu

(0)
x

Dm
Cn−1 −

κu
∗(0)
x

Dm
Cn+1

)
eiωnt, (4.50)

where we have defined ρ2
n = nρ2 + κ2. We see that the solution proportional to cos(κη),

with a frequency n, will depend on the solution proportional to sin(κη) with frequency n±1.
Likewise the soution proportional to Sn will interact with Cn±1. The full solution consists
of two completely independent infintely large sets. One has even temporal frequencies
proportional to cos (κη), and odd temporal frequencies proportional to sin (κη). The other
solution will be the opposite; even temporal frequencies proportional to sin (κη), and odd
temporal frequencies proportional to cos (κη). The solution has gone from one of a single
frequency, to infinitely many frequencies, where we have to solve two independent infinite
sets of ordinary differential equations. Additionally, the solution must satisfy the boundary
condition

n̂
(0)
± ·∇(0)B(1) = ∂ξB

(1) = ∓κ cosκη on ∂Ω. (4.51)

Which in our decomposition can be written as

∂ξC0

∣∣
ξ=±1

= ∓κ, (4.52)

while all other terms must have a zero derivative at the boundary. By investigating the
source terms (4.47), we see that they only contribute to one of the independent solutions, as
the horizontal phase of cos(κη) in the source term have even temporal frequency, while the
horizontal phases of sin(κη) have an odd temporal frequency. In addition, the boundary
condition (4.52) will only influence the same set of solutions. Without any source terms or
boundary conditions, we must conclude that the connected solutions of S0, C±1, S±2 and
so on, must all be identically equal to zero. We therefore only have to solve one infinite set
of ordinary differential equations, C0, S±1, C±2, . . ., instead of two. An illustration of this
coupling is displayed in figure 4.18 on the following page. While this is a simplification, as
we now require only half the number of solutions, we still need infinitely many.
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Figure 4.18: An illustration of the coupling between different terms in the analytic first-order
Brenner field is displayed, where the horizontal axis gives the different frequencies, while the vertical
axis gives the spatial phase, representing Sn and Cn. The black and red terms are completely
independent of one another. The source terms and boundary conditions act on the terms with
crosses and therefore only contribute to the black terms. Without any source terms or boundary
conditions, we conclude that the red terms are zero. The black terms without crosses will still be
non-zero due to their coupling.

4.2.7 Second-order Brenner field

We have the same left-hand side for the second-order Brenner field as for the first-order,
but with a more complicated source term (4.15). Luckily, it is only the η independent part
of B(2) that contributes to the effective dispersion coefficient, as seen in equation (4.46).
Thus, we will guess on a solution independent of η, on the form

B(2) =
∞∑

n=−∞
eiωntβn(ξ). (4.53)

This also simplifies the source term Q, as it is only the η independent terms that will
contribute to the right hand side. This rewrite allows the equation (4.15) to be written as

d2βn
dξ2

= nρ2 βn −Qn, (4.54)

which is a great simplification compared to what we had for B(1), as coupling between
frequencies of the unknown solutions no longer appears, such that each n can be solved
separately. The loss of coupling at second-order is due to the coupling term being propor-
tional to the horizontal derivative ∂η. This will create a coupling between the cos(κη) and
sin(κη) terms, never affecting the η-independent parts. Performing a calculation on the
source term, we find that many terms cancel, yielding

Q =
1

2
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2
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)
,

where the decomposition was applied (4.41). The boundary condition for the second-order
is given by

∂ξβn = 0 ∀ n. (4.56)

While the second-order Brenner field is simpler to solve than its first-order counterpart,
it relies on the analytical expressions of the first-order solution. Hence, the difficulty of
finding an analytical expression is to solve the first-order equations, not the second-order.
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Figure 4.19: The effective diffusion coefficient is calculated from the average of the variance found
from RW simulations (left), resulting in the dots in the right figure. This is compared with the
predicted dispersion from solving the time-dependent Brenner equation (lines), and is seen to be in
good agreement. A systematic disagreement is seen for κ = 0.2, which is believed to be due to the
size of the unit cell increasing such that a longer simulation time is necessary to reach convergence.
When varying ε and κ, the other parameters are fixed to ω = 2π/3, ν = 1.2, D = 0.1 and F0 = 10,
in the left figure κ is held constant at 1.4.

4.2.8 Numerical solutions of Brenner’s equations

To find the effective diffusion coefficient beyond the regime where perturbative solutions are
admissible, the time-dependent Brenner equation is solved numerically with the finite ele-
ment method. This is done to validate the perturbative approach and extend our analysis
to the regime where our perturbative approach is no longer valid. To validate the imple-
mentation of the FEM and the time-dependent Brenner equation with a varying boundary,
we compare the numerical solution of this equation with RW simulations. The two methods
are seen to agree for different combinations of boundary amplitude and wavenumber shown
in figure 4.19. A systematic disagreement is seen for the shortest wavenumber, which is
believed to be due to the size of the unit cell requiring a longer simulation time to reach
convergence in the RW simulation.

With the Brenner solver verified, we extend our investigation to other parameters. In
figure 4.20 on the following page, the effective diffusion coefficient is displayed as a function
of the geometry parameters. With increasing wavenumber and boundary amplitude, the
effective dispersion is found to decrease. The decrease is not only due to the Peclet number
decreasing with larger geometrical variations, as its value relative to the Taylor-Aris result
for the same Peclet number is also reduced. For the same velocity field, a more interesting
behaviour is seen by increasing the molecular diffusion, resulting in |ρ| = 1.45 and O(Pe) =
1, displayed in figure 4.21 on the next page, where a local maximum is observed when
varying the wavenumber. The maximum is both in the measured dispersion and relative
to the Taylor-Aris result. The combination of frequency and wavenumber that interact to
maximise the dispersion will be referred to as resonance. For the combination of parameters
considered in the figure, the effective dispersion is maximised at around κ = 1.0.
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Figure 4.20: The absolute and relative effective dispersion is found to decrease when varying both
the boundary amplitude and wavenumber for |ρ| = 4.6 and O(Pe) = 10. The dispersion is less
than half as efficient as in the Taylor-Aris result with the same Peclet number. When varying ε
and κ, the other parameters are fixed to ω = 2π/3, ν = 1.2, and F0 = 10, with D = 0.1.
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Figure 4.21: With the diffusive Womersley number, |ρ| = 1.45, similar to the wavenumber of
the geometry, a resonance behaviour is observed. Both the shape of the resonance peak and its
position seems to be independent of the boundary amplitude. While a local maximum is reached,
the effective dispersion is lower than the zeroth order dispersion and slightly smaller than the
Taylor-Aris result. When varying ε and κ, the other parameters are fixed to ω = 2π/3, ν = 1.2,
D = 1.0 and F0 = 10.
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Figure 4.22: The resonance wavenumber is found to increase with the diffusive Womersley number,
producing a larger effective dispersion than its flat boundary counterpart for small values of ρ. The
position found from the numerical data points (left) is tested versus the real value of ρ in the right
figure. While the two curves are not exactly matching, their behaviour is similar, with a maximum
relative difference of approximately 10%. The analytically predicted resonance wavelength seems
to give an approximately correct value, but it is unknown if this relationship continues to hold at
even larger and smaller wavenumbers, and for other external forces and viscosities. While ω and
κ are varied, the other parameters are fixed to ε = 0.3, D = 1.0, ν = 1.2, F0 = 10.

The resonance wavelength changes for different values of the diffusive Womersley num-
ber, as displayed in figure 4.22. With longer diffusive transport over a period, the resonance
wavelength increases and can even result in a larger effective dispersion compared to a flat
boundary. The resonance wavenumber scales approximately as the real part of ρ, as dis-
played to the right of the same figure. The range of parameters scanned in this figure is
relatively narrow, as the numerical investigation is expensive to run. From figure 4.22 and
4.23, we can conclude that the position of the resonance wavelength depends both on the
frequency ω, and the molecular diffusivity Dm.

For figure 4.20 and 4.21, the velocity field was the same, while the molecular diffusivity
is varied. To find the velocity field, the inertial term was neglected from the Navier–Stokes
equations in the numerical solver. This assumption is verified in figure 4.23 on the next
page, where the effective dispersion for this flow field, with the addition of the inertial term,
is found to have minimal effect on the dispersion. The relative change by including the
non-linear term is found to vary less than one per cent for a Reynolds number around one.
Importantly, the resonance behaviour is not an artefact of ignoring the non-linear term in
the Navier–Stokes equations. Although the velocity field in figure 4.22 is different, it is
calculated at similar values of the Reynolds number, and the assumption should therefore
hold. In addition to increasing with larger Reynolds numbers, the difference is expected
to increase with steeper boundary gradients.

By varying the external force, the Reynolds and Peclet number is increased for a fixed
value of both γ and ρ. Due to inertia no longer being negligible, the non-linear term
in the NSE is included. The effective dispersion is found to be somewhat larger than
the Taylor-Aris result for large Peclet numbers, displayed in figure 4.24 on the following
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Figure 4.23: The validity of ignoring the non-linear term in the Navier–Stokes equations is verified
by the small change in the effective dispersion with the term included (lines), compared to when it
is ignored (dots). The difference in the left figure is used to calculate the relative change displayed
in the right figure. For a Reynolds number of up to 1.7, the approximation appears valid for the
geometries investigated here. When varying ε and κ, the other parameters are fixed to ω = 2π/3,
ν = 1.2, D = 1.0 and F0 = 10.
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Figure 4.24: The effective dispersion is found to be larger than the Taylor-Aris result for large
Peclet and Reynolds numbers. The wavenumber transitions from decreasing to increasing the
effective dispersion, with larger Peclet numbers. For an intermediate value of the Peclet number
close to one, the resonance behaviour is observed. While varying F0 and κ, the other parameters
are fixed to ω = 2π/3, ν = 2.25, D = 1.0 and ε = 0.4. The Peclet number given in the right legend
is the mean value for all wavenumbers.
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Figure 4.25: Recirculation zones are seen to appear in the velocity field for a Reynolds number of
25, with κ = 1 and ε = 0.4, when including the non-linear term in the Navier–Stokes equations.
Recirculation zones appear when the flow is developing, and persists until it reversed. The velocity
field is found for ω = 2π/3 and ν = 2.25, note the different scales of the axis.
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Figure 4.26: The effective dispersion appears to reach a saturation value for large diffusive Womers-
ley numbers, where the Peclet number is around 10 (left), but does not reach the same saturation
value when the Peclet number is around 100 (right). The behaviour with respect to the wavenum-
ber is the same in both figures. The wavenumber and molecular diffusion coefficient is varied, while
keeping the other parameters fixed: ω = 2π/3, with F0 = 1 and ν = 2.25 in the left figure, and
F0 = 10 and ν = 1.2 in the right figure, to create a larger Peclet number.

page. In the transition from small to large Peclet numbers, the effective dispersion changes
from decreasing to increasing with the wavenumber. At the intermediate point of a Peclet
number around one, the resonance behaviour is observed and displayed to the right in the
same figure. When varying the Peclet number, the Reynolds number is implicitly changed
and is for this dataset half the value of the Peclet number. The corresponding velocity
field is displayed in figure 4.25 on the previous page, where recirculation zones appear.
The recirculation zones appear while the flow is developing and persists until the velocity
is reversed.

The molecular diffusion coefficient can be reduced to increase the Peclet number at a
fixed value of the Reynolds number, increasing the diffusive Womersley number. How this
affects the dispersion is displayed in figure 4.26, where, to the left in the figure, a saturation
value appears in the limit of a large diffusive Womersley number. In this limit, the Peclet
number is of order 10, but due to the diffusing particles slowly changing streamlines, their
net advection over a period is close to the average velocity of zero. In this limit, the
effective dispersion seems to approach a value slightly larger than the molecular value,
likely due to the slight differences in advection between particles. To the right in the same
figure, the Peclet number is of order 100, and the saturation point is never reached. The
saturation value might still exist, just that it has moved to larger values of the diffusive
Womersley number. The change in dispersion between the two graphs is around a factor
of two, though the Peclet numbers differ by over a factor of 10. The diffusive Womersley
number reduces the effectiveness of the Peclet number by limiting the advected distance
per period.
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Figure 4.27: The numerical solution of the analytic equations are in good agreement with the full
numerical solution. The difference follows the expected order of magnitude of ε4. To compare the
effect of the boundary, the zeroth order contribution to the effective dispersion has been subtracted
from the expressions. The non-linear term is neglected from the Navier–Stokes equations, and the
parameters are set to ω = 2π/6, γ = 0.45, and F0 = 50, with the circles for ρ = 0.20 and crosses
for ρ = 0.51.

4.2.9 Semi-analytic solutions for the effective diffusion coefficient

Solving the set of equations for the first (4.50) and second (4.54) order Brenner field
analytically proved to be a challenge. In the analytical analysis of the first and second-
order equations for the Brenner field, the three-dimensional partial differential equations
become ordinary differential equations, making them much easier to solve numerically.
Using the procedure given as a simple example of the finite-element method in section 3.2.1
on page 32, the first and second-order Brenner fields are solved numerically. While not
yielding an analytical result, the numerical solver is less numerically expensive than solving
the complete partial differential equation, at the cost of being a perturbed solution. The
Brenner field is calculated using a frequency spectrum from −16ω to 16ω, beyond which
the solution is truncated due to the amplitude being vanishingly small.

The solution for the effective diffusion coefficient, using the non-perturbed numerical
method and semi-analytical method, are compared against each other in figure 4.27, with
the difference displayed to the right. The semi-analytic solution agrees well with the direct
numerical solution of Brenner’s equation and follows the expected error of ε4. A deviation
is seen for small ε due to the spatial and temporal accuracy of the complete numerical
solver and performing numerical integrals.

With the semi-analytical approach verified, it is used to effectively scan the parameter
space to understand the resonance wavelength. The resonance behaviour previously ob-
served has occurred for Reynolds number of order 1. To be certain that the semi-analytic
approach produces the correct result, the parameter space is scanned for a large value of the
kinematic viscosity, producing a small Reynolds number. In this regime, the assumption
of ignoring the non-linear term in the Navier–Stokes equations are valid. The resonance
wavelength is measured for various frequencies, diffusion coefficients and external forces.
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Figure 4.28: The resonance wavelength shows a linear relationship with the inverse Strouhal number
for a variety of external forces and diffusion coefficients. A larger value of the diffusion coefficient
is found to increase the resonance wavelength. The second-order effective diffusion coefficient is
used to calculate the value of κ resulting in the maximal dispersion, when varying Dm, F0, ω and
κ, with ν = 1000.

The resonance wavelength is displayed in figure 4.28, where a linear relationship is ob-
served with relation to the inverse Strouhal number. Since the average velocity U depends
on both the boundary amplitude and wavenumber, the zeroth-order average velocity is
used to approximate the average velocity, despite slightly overestimating the value. The
average advected distance over a period is generally larger than the resonance wavelength.
Increasing the molecular diffusion coefficient results in a positive shift of the resonance
wavelength.

4.2.10 Discussion

Verification of time-dependent Brenner theory

From the comparison with RW simulations displayed in figure 4.16 and 4.19, the gener-
alisation of Brenner’s theory to time-dependent flow is believed to be correct, both with
a flat and varying boundary amplitude. The generalised theory, derived in appendix A,
represents a new method for calculating the dispersion tensor in periodic environments,
in any dimension, of incompressible time-dependent flow. As the original Brenner theory
[41, 42] has proven to be a solid basis for calculating the dispersion tensor [25, 66, 92],
the generalisation of the theory will extend its applicability to more systems. Possible
areas of applicability are the effective dispersion in multi-phase or turbulent flow, which
are generally time-dependent.

Velocity field

In figure 4.15 on page 61 the velocity field is displayed for four points in time at a specific
combination of parameters. When the flow is fully developed, it takes a form similar to
that of Poiseuille flow, with an increased velocity in the pore throats and a decrease in the
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valleys. When the average velocity is close to zero, more interesting behaviour is observed.
A small recirculation zone appears in the deepest valleys close to the boundary, which
then slowly drifts upwards to the centre of the channel before it disappears once the flow
is fully developed. Whereas the velocity profile has some interesting aspects at this point
in time, the slight velocity differences in the unit cell are unlikely to significantly impact
the effective dispersion. For smaller values of the Womersley number, the velocity profile
is Poiseuille-like at all points in time, and no interesting behaviour is seen.

The analytic velocity field neglects the non-linear term in the Navier–Stokes equations.
Based on figure 4.23 on page 72, the assumption appears to hold for at least Reynolds
numbers of order one. This assumption will decrease in validity for larger values of the
Reynolds number and steeper boundary gradients. Further studies on this system should
systematically investigate its effect at larger values of the Reynolds number.

For some applications, e.g. transport of solutes in blood flow, there is an overall pre-
ferred direction due to a constant body force, in addition to the oscillating one investigated
here. When the flow has a preferred direction, the effect of an oscillating flow and a varying
boundary might be completely different, as the channel is no longer vertically symmetric.
A natural question for further investigations is whether, and to which extent, the resonance
behaviour persists under such conditions. Additionally, a constant body force would result
in additional fluid share, likely resulting in a larger effective diffusion coefficient [43]. The
generalised Brenner theory developed here would act as an excellent theoretical framework
for this investigation.

Zeroth order diffusion coefficient

Analytic expressions for the effective dispersion at flat boundaries with an oscillating flow
are already well established in the literature [43]. In this work, this geometry was in-
vestigated to verify the generalised Brenner theory for flat boundaries and produce the
zeroth-order Brenner field necessary to continue to higher orders. While this system has
been studied previously, some interesting behaviour should be discussed.

There are two relevant time scales for diffusion in our system, the Womersley number
and the diffusive Womersley number. These parameters appear naturally in our equations
and contain a complex scaling of

√
i, quantifying a phase difference. For the Womersley

number, the phase difference is between the external force F0 and the fluid response in
terms of velocity. The parameter γ only appears with even powers, therefore contributing
a phase difference of 90◦. For large values of γ, therefore, the fluid reaches its maximum
velocity at the point when the external force becomes zero. For small values, on the other
hand, the fluid has no phase difference with the force and responds immediately to the
external changes. The equation containing the diffusive Womersley number (4.10) does
not depend on the body force acting on the fluid directly, only indirectly through the
velocity field u. Thus, ρ measures the phase difference between the fluid oscillations and
the resulting solute dispersion. In the limit of large values of ρ, the effective dispersion
has a phase difference of 90◦ compared to the fluid velocity. Hence, if the particles are
not able to diffuse between streamlines over a single period, their maximal displacement
will be 90◦ after the maxima of the velocity field is reached. When the particles are able
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to cross the channel height multiple times in a single period, the phase difference with
the flow is zero, meaning the maximal displacement is reached when the average velocity
is at its maximum. This is consistent with equation (4.36), where the dispersion follows
the oscillating force in the limit of small values of both ρ and γ. Therefore, the frequency
doubling of the dispersion is due to the variance increasing the most when the magnitude
of the velocity field is large, independent of direction, resulting in two maxima for each
period. The diffusive Womersley number proves to be an essential characteristic of the
dispersion behaviour, in agreement with experimental measurements on the same system
[49]. It characterises the saturation value of the geometric factor g, gives the transition
interval from zero to non-zero effective dispersion, and governs the phase difference between
the flow and the dispersion.

In figure 4.17 on page 64, the geometric factor and the effective diffusion coefficient is
displayed as a function of both the time scales, γ and ρ. A surprising feature of this figure
is the opposite dependency of ρ for g and D‖. The diffusion length over a period is short
compared to the channel height for large values of ρ, such that the particles are advected
along a single oscillating streamline each period. For the flow investigated here, the average
velocity for any streamline over a period is zero, such that the advected distances for the
particles are zero. Therefore, one would expect the effective diffusion coefficient to be
equal to the molecular diffusion coefficient. This would be correct if the Peclet number
is held constant when varying ρ. In the figure, advective transport dominates when the
diffusive Womersley number is large. This results in the small diffusive distance over a
period resulting in a larger horizontal displacement. There are two competing effects when
varying the molecular diffusion coefficient, one increasing D‖ and one decreasing it. When
comparing the numerical values of the effective dispersion in figure 4.17 on page 64, they
are drastically smaller than for Poiseuille flow. For example is the smallest value of Dm

used in this figure 10−6, which would typically give an effective diffusion coefficient on the
order of 1010 without the oscillating force. Therefore, the two competing effects are in
a very close fight, as their product ends up being so close to 1. This behaviour extends
to varying boundaries, as seen in figure 4.26 on page 74, where decreasing the diffusion
coefficient results in a saturation value for the effective dispersion for a Peclet number of
10, but not for a Peclet number of 100. There are two competing effects when decreasing
the diffusivity, an increase in Peclet number and an increase in the diffusive Womersley
number. A dimensionless number to maximise the dispersion might therefore be the Peclet
number over the diffusive Womersley number, as the Peclet number should be maximised
while minimising the Womersley number

δ =
U√
ωDm

. (4.57)

This dimensionless number gives the advection speed relative to the characteristic diffusion
speed over a period. The dimensionless number might better capture the Peclet number’s
role for oscillating flows.
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Effective diffusion coefficient with varying boundary

In figure 4.20 the effective dispersion is found to decrease with increasing boundary amp-
litude and wavenumber. A similar decrease is found in the same geometry with stationary
flow, but only for Peclet numbers larger than 10 at large boundary amplitudes and long
wavelengths [25]. Their behaviour is explained by the fact that for large Peclet numbers,
the varying boundary makes vertical diffusive transport across streamlines more efficient,
and in the long wavelength regime the additional shear is not enough to compensate. By
reducing the wavelength in this geometry, the amount of shear increases, and eventually,
the change in effective dispersion becomes positive. The decrease measured here occurs for
a Peclet number of order 10, and decreases both for short and long wavelengths, contrary
to what is previously observed [25]. By displaying the change in effective dispersion relative
to the Taylor-Aris result, we can verify that the decrease is not just due to the average
velocity of the fluid decreasing with more prominent boundaries, but is a consequence of
interactions between the solute and the flow in the presence of a varying boundary. The
data suggests that the effective dispersion for oscillating flows with varying boundaries is
more dependent on the contraction of streamlines at the pore throats than the additional
fluid shear. The amplitude around the average might increase with shear, as different
particles move with greater speeds relative to each other. This increase in variance is re-
duced when the velocity field is reversing, therefore contributing less to the period average
dispersion. Additionally, more particles pass through the pore throat each period at larger
values of κ, allowing them to reduce their spread in velocity more efficiently. The tentative
explanation explains the observed data, but should be investigated further. One might
expect the tentative explanation to be invalid in the limit of large values of the diffusive
Womersley number and large Peclet numbers due to the difficulty of switching stream-
lines suppressing the effective dispersion in this regime. In light of the data displayed in
figure 4.26 on page 74, where larger values of κ result in smaller values of the effective
dispersion, it appears that the tentative explanation holds in this regime as well.

Outside of the resonance phenomena, increasing the wavenumber always decreases the
dispersion, except in the large Peclet and Reynolds regime, displayed in figure 4.24 on
page 72. In the limit of small Peclet numbers, a large value of κ reduces the effective
dispersion as it limits horizontal diffusive transport. In the other limit, a shorter wavelength
increases the effective dispersion by a factor of five compared to the Taylor-Aris result.
The explanation behind the significant increase is seen in figure 4.25 on page 73, where
recirculation zones are found. Recirculation zones act as large regions with no effective
transport in either direction, creating a considerable difference in the horizontal velocity
between particles stuck in the recirculation zones and those travelling along the high-speed
streamlines. This results in a significant increase in the effective dispersion for stationary
flow [25, 26], but it is not obvious whether this extends to oscillating flows. For oscillating
flows, the net advection of a particle moving along a streamline is zero over an entire period,
which is the same net advection it would experience in a recirculation zone. Still, based
on the significant increase in dispersion found in figure 4.24, it appears as if recirculation
zones add a large positive contribution to the effective dispersion, even for oscillating flows.
In fact, the relative increase is similar to what is found for stationary flows in the same
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geometry [26]. With increasing wavenumber, the area of the recirculation zones increases
and explains the behaviour observed in figure 4.24.

Resonance

The resonance observed in figure 4.21, 4.22, 4.23, 4.24, and 4.28, has significant con-
sequences on the effective dispersion, and can even result in a larger effective dispersion
than for a flat boundary, as seen in figure 4.22. Importantly, the resonance behaviour
occurs both for the effective dispersion and its value relative to the Taylor-Aris result. The
decrease in the dispersion found for values of the wavenumber larger than the resonance
value is not due to a decrease in the Peclet number, but due to interactions between the
solute and the flow. Additionally, there are no RZ appearing in either the full numerical
or perturbative analytical solution of the velocity field, and there is not a local maximum
in terms of shear. This hints at a new mechanism for increasing the effective dispersion,
limited to oscillating flows and varying boundaries, which has to the best of our knowledge,
not before been observed.

From the above figures, we can conclude that the value of the resonance wavelength
decreases with ω and increases with Dm. Therefore, one might expect that the diffusive
Womersley number determines the value of the resonance wavelength, which seems plaus-
ible based on figure 4.22. The result found in figure 4.28, where an increase in the average
velocity results in an increase in the resonance wavenumber, shows that the underlying
dynamics are more complicated than first imagined. Still, an explanation for this new
method of maximising the dispersion will be made.

A significant difference in the average horizontal velocity between particles over a period
should be achieved to maximise the effective dispersion for an oscillating flow. To achieve
this, not all particles should pass through the pore throat each period, as this makes the
distribution of horizontal advected distance over a period narrower. The same occurs if
no particles are able to pass through the pore throats over a period. Therefore, the ideal
scenario is that around half of the particles pass through the pore throat each period, while
the rest do not pass through. This way, the distribution of advected distance over a period
is broad. Therefore, there exists an optimal wavelength of the boundary satisfying the
above criteria, where making it longer results in fewer particles passing through the pore
throat, and making it shorter results in too many particles passing through the pore throat.
For even shorter wavelengths, particles can pass through multiple pore throats over a single
period. This argument implies that a longer advected distance over a period will result in
a linear increase in the resonance wavelength, consistent with the data in figure 4.28 on
page 76. Additionally, the explanation implies that a larger value of the diffusion coefficient
must increase the resonance wavelength to limit the number of particles reaching the pore
throat, which is again consistent with the figure. Furthermore, it implies that the resonance
will only appear when the two transport methods are of a similar order. A small Peclet
number will result in the oscillations being unimportant for the transport, and a large
Peclet number will make all or none of the particles pass through the pore throat. This
tentative explanation of the observed resonance phenomena does explain all the observed
effects. Further investigation should be made to falsify or verify the proposed explanation.
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A simplified model for the resonance behaviour is a discrete one-dimensional random-
walk-like system, where a proportion α of all particles perform a jump to the right each
even time step, and a proportion α take a step to the left every odd time step. Performing
a jump is in this model equivalent to passing through the pore throat, and two time-steps
are equivalent to one period. Calculating the effective dispersion for this updating rule
produces an effective diffusion coefficient of α2(1 − α)2/2, capturing that if all particles
move in unison, the variance is zero. A local maximum in the effective dispersion is found
for the intermediate value α = 1/2, corresponding to half of the particles passing through
the right pore throat, and half passing through the left, each period. In this model,
an optimal choice for the probability of moving to the next unit cell is able to produce
a local maximum in the effective dispersion, similar to the behaviour argued for in our
more complicated system. Our explanation might be verified by performing random walk
simulations and counting how many particles pass through the pore throat each period.

From figure 4.28 on page 76, we can conclude that the resonance phenomenon can
occur for creeping flow, where the flow is entirely reversible. In addition, it can occur for
Schmidt numbers of order 103 to 104, which are typical values found in nature [30]. It is
therefore realisable for a variety of real-world systems. One could speculate as to whether
the resonance behaviour is exploited in naturally occurring systems where optimising the
dispersion is of importance. If this is the case, it would be an interesting discovery. With
the intricate dependence of the resonance wavelength on the diffusion coefficient, frequency
and average velocity, it is difficult to make definitive statements about the typical values
needed to achieve resonance. However, the resonance wavelength should be of the same
order as the inverse Strouhal number, with a Peclet number close to one. From the two, one
finds that the resonance wavelength should approximately be λ = Dmτ/a, with U = Dm/a.

Outlook

The system investigated has a large parameter space, with many dimensionless numbers,
which can be reduced to only three independent ones. To limit the parameter space,
further investigation should focus on values typical to real-world systems. For example is
the Schmidt number commonly around 103, meaning that the diffusive Womersley number
is usually 31 times larger than the Womersley number. Additionally, one dimensionless
variable should be varied while keeping all others fixed to understand the role of different
dimensionless numbers better.

Although a tentative explanation of the novel resonance behaviour is provided, many
aspects are still unknown. Further research should investigate if the resonance behaviour
persists to larger values of the Reynolds numbers. An essential next step is to systemat-
ically investigate under what conditions the resonance behaviour produces more efficient
dispersion than for a flat boundary, as it might be exploitable for industrial applications,
such as microfluidic mixing.

Even though the time-dependent dispersion tensor contains integer overtones of the
ground frequency, their amplitudes are close to zero. The interaction coefficient between
solutions of κu(0)

x /Dm is seemingly too small for the set of parameters investigated in this
study. An extended study for larger boundary amplitudes and shorter wavelengths with
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large Peclet numbers would give an interesting insight into the behaviour of the overtones.
In theory, an arbitrary smooth periodic function can be written as a discrete Fourier Series,
and different behaviour of the dispersion might be achievable.

This thesis limited itself to the asymptotic regime where the initial conditions no longer
relevant. Numerical random walk simulations show a behaviour similar to that of chaotic
mixing in the transient regime at large Peclet numbers. New insight into the mixing
dynamics might be aided by the analytic velocity field derived.

Analytically, the equations proved challenging to solve. Further Taylor approximations,
or perhaps boundary layer theory [91], might make the first-order Brenner field solvable,
which in turn should make the effective diffusion coefficient possible to find analytically.
This can result in a better understanding of the role of different physical parameters, as
numerical investigations are expensive to run, with many free parameters. The oscillation
amplitude of the dispersion tensor was not investigated in this thesis, as we focused on the
period average value. A varying boundary might have interesting effects on the dispersion
amplitude, and the generalised Brenner theory will serve as a solid foundation in this
investigation.
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Figure 4.29: An example of a velocity field used in the investigations of this section. With peri-
odic boundary conditions and randomly placed disks, the two-dimensional velocity field is found
using the LBM. Placing an injection and receptor point, the LBM is further used to simulate the
advection-diffusion equation on the velocity field, to investigate the reciprocal relation.

4.3 Reciprocal relation for reversible flow

Having studied dispersion in two specific geometries, we close this chapter with an invest-
igation of a general relation, which holds true in all geometries. For the numerical study
in this section, the lattice-Boltzmann method is used, and the geometry is chosen to be
oblong with periodic boundary conditions in both directions. The two-dimensional geo-
metry includes randomly placed disks with a random radius to obtain a non-trivial velocity
profile. An example of such a geometry for a 128× 512 lattice is displayed in figure 4.29.
To study the reciprocal relation, the LBM is used to simulate the advection-diffusion equa-
tion, where an arbitrary point is chosen as the injection point, and a secondary point along
the flow direction is chosen as the receptor point. The solution of the NSE is unit tested
to conserve both mass and momentum, and the velocity profile is verified with Poiseuille
flow in figure 4.30 on the next page. The conservation of mass is satisfied for simulating
the ADE, which is further verified on the original reciprocal relation [55]. To verify the
derived generalisations, the velocity field will be exactly reversed to validate the derivation
for completely reversible flow, as complete creeping flow cannot be achieved exactly with
the LBM. The Reynolds number found are of order 10−5, and the reversibility is therefore
satisfied.

4.3.1 Diffusion of matter versus diffusion of heat

The total solute mass, i.e. the concentration field integrated over the domain, is conserved,
as the no-flux boundary condition does not allow solute to leave or enter the system. For
the temperature field, this is not necessarily the case. Diffusion of temperature interacts
with the boundary such that the total temperature is no longer conserved. Due to the
total temperature not being conserved, the reciprocal relation previously derived does
not necessarily hold for the diffusion of temperature. To the left in figure 4.31 on the
following page, the reciprocal relation for the diffusion of temperature at the injection and
receptor point are shown to be in excellent agreement. The simulation was performed in a
general geometry, where the solute must interact with the boundary to reach the receptor
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Figure 4.30: The deviation between the average velocity found numerically and analytically for
Poiseuille flow follows the inverse square of the number of vertical lattice points. The horizontal
axis can be interpreted as the inverse Knutsen number, which must be small to reproduce a solution
of the Navier–Stokes equations. From the measured decrease, we believe the LBM is implemented
correctly.
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Figure 4.31: The reciprocal relation is tested for the diffusion of temperature instead of mass. To
the left, we see that the relation holds when temperature is diffusing both ways. To the right, mass
is diffusing one way and temperature the other. Here we see a clear deviation, where the diffusing
temperature is always smaller than the mass. This is due to the absorbing boundary conditions
not conserving the fluid’s total temperature.
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point. Based on the result, we conclude that the reciprocal relation holds for the diffusion
of temperature and matter. In the derivation of the reciprocal relation, one assumes a
materially closed system where the surface integrals containing the concentration vanishes
(2.65), and should therefore not hold for heat diffusion when the boundary temperature is
fixed. Nevertheless, based on the numerical simulation, it seems as if the relation still holds.
When injecting matter one way and temperature the other, we find the curve displayed
to the right of the same figure. Here, the curves do not overlap, although their shape is
very similar. Due to the total temperature not being conserved, some of it is lost when
interacting with the porous media in which the simulation is performed, resulting in a
smaller quantity reaching the receptor point. The relation, therefore, holds approximately
true when comparing the concentration profile originating from mass and temperature,
compared to injecting mass or temperature at both points.

From the above figure, one can measure the deviation between the two concentration
profiles as an integral over the absolute difference

Error =

∫ T
0

∣∣∣CAmatter(xB, t)− CBheat(xA, t)
∣∣∣dt∫ T

0 CAmatter(xB, t)dt
, (4.58)

where T is the total simulation time. With this definition, a value of zero would be achieved
for the case of matter diffusing both ways for completely reversible flow, but will take a
non-zero value when heat is diffusing one way and matter the other, as we saw in figure
4.31. If most of the temperature has been absorbed by the boundary, its value will approach
1. How this error function depends on the Peclet number is displayed in figure 4.32 on
the next page, for three different distances between the receptor and injection point. For
large values of the Peclet number, the concentration reaches the receptor point in a shorter
amount of time, with a narrower distribution. Since the main mechanism behind the
deviation is believed to be due to absorption of the temperature when interacting with the
boundaries, a large Peclet number should decrease the error, as it allows for less boundary
interaction on the journey from injection to receptor point. This explains the behaviour
observed in the figure, where the error approaches one in the limit of low Peclet numbers,
meaning the heat concentration is approximately zero at the receptor point. The error
approaches zero in the limit of large Peclet numbers, where the boundary interaction is
negligible. With increasing distance between the receptor and injection point, the solute
spreads out more before reaching its target, thus interacting more with the boundaries.
This makes a larger Peclet number necessary to reach a lower error value compared to
the shorter diffusion distance, as seen in the figure. Additionally, an error of 1 is reached
for larger values of the Peclet number when the distance is larger, but some fluctuation is
observed around this saturation value.

4.3.2 Optimizing injection method

For possible applications of the reciprocal relation, one might want to maximise the con-
centration reaching the receptor point relative to the total injected mass. To test different
injection methods, we implement a line of measurements along the channel width in our
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Figure 4.32: The reciprocal relation does not hold exactly when matter is diffusing one way and
temperature the other, due to absorption of the temperature with the boundary. This deviation,
quantified by the error function (4.58), reduces with an increasing Peclet number until it satur-
ates close to zero. In the limit of small Peclet numbers, the error approaches one, as the entire
temperature field has been equilibrated with the boundary. With increasing distances between the
injection and receptor point, given by the legend, a larger Peclet number is necessary to achieve
the same error value.

numerical simulation. The concentration from the initial injection is measured along this
line, and is injected along the same line with reversed flow to maximise the concentration
at the original injection point. For all the injection methods, the first-in, last-out method
is employed. With this method, the first concentration to reach the receptor point will be
the last one injected with reversed flow. The different injection methods are tested numer-
ically and are defined by their cutoff value; for a cutoff value of 1/2, one only injects the
concentration with the reversed flow if the value was larger than 1/2 of the maximal meas-
ured value along the line. The measured concentration with the reversed flow is displayed
in figure 4.33 on the facing page. An additional injection method, labelled max for each
pos, injects the maximal concentration at each position along the line using the first-in,
last-out method. From the figure, we see that a single injection, only at the maximal value
measured along the receptor line, will result in the maximal concentration of the initial
injection point. This result appears intuitive, as the advection-diffusion equation is linear,
and the sum of multiple different injections cannot give rise to a higher relative concen-
tration than the maximal value found for the spatial point of extremal concentration. To
achieve a sharp peak, one should employ a single injection at the point along the line where
the total maxima was measured.

4.3.3 General injection methods

The original derivation of the reciprocal relation [55] was carried out assuming a Dirac-
delta point injection in both space and time. Performing a similar calculation, one can
derive an equivalent reciprocal relation for an injection IA(t) at point xA, and IB(t) at xB.
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Figure 4.33: Different injection methods are tested to find the method which maximises the concen-
tration at the initial injection point. The concentration originates from injections along a vertical
line. The simulation shows that the answer one would intuitively expect, a single injection at the
point where the maximal concentration was measured along the line, is the one that maximises
the concentration at the receptor point.

The derivation then yields the relationship∫ t

0
CA(xB, τ)IB(t− τ)dτ =

∫ t

0
CB(xA, τ)IA(t− τ)dτ, (4.59)

which reduces to the standard reciprocal relation if both injections are Dirac-delta distri-
butions. We investigated the theoretical prediction numerically for a Heaviside injection
at xB, and a Dirac-delta at xA, resulting in the theoretical prediction∫ t

0
CA(xB, τ)dτ = CB(xA, t). (4.60)

One can take the integral of the concentration measured at CA(xB, t) to predict the con-
centration at CB(xA, t), or likewise take the derivative of CB(xA, t) to find CA(xB, t).
The theoretical prediction is tested versus simulation in figure 4.34 on the next page. To
the left, the measured concentrations are displayed, and to the right, the integrated pulse
injection is seen to be in excellent agreement with the measured concentration resulting
from the step injection. Over both simulations, the total injected concentration amount to
the same mass, and the integral is performed with respect to a time array varying from 0
to 1 over the simulation period. From the measurements, we conclude that the theoretical
prediction of equation (4.60) is correct.

For a Dirac-delta injection in time with a general spatial dependence δ(t)f(x), the
reciprocal relation can be expressed in terms of volume integrals∫

Ω
fB(x)CA(x, t)d3x =

∫
Ω
fA(x)CB(x, t)d3x. (4.61)

Information regarding the exact concentration value at different positions is lost for spa-
tially dependent injections, but the integrated amount is still equal.
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Figure 4.34: The theoretical prediction for the generalization of the reciprocal relation for time-
dependent injection (4.59) is verified by a numerical simulation for a heavy-side and Dirac-delta
function injection (4.60). The measured concentrations are displayed in the left figure, and the
integrated concentration originating from the pulse injection, where they are shown to be in good
agreement. If one were to perform an integral over the concentration originating from the pulse
injection, a similar agreement would be observed.

4.3.4 Reciprocal relation for different transport scaling

The reciprocal relation is known to hold when the molecular diffusion coefficient is the
same for both injections. Here we investigate if a change in the diffusion coefficient can be
compensated by a change in the average velocity U , such that the reciprocal relation still
holds. By performing a rescaling with a factor α of both the average velocity U and the
diffusion coefficient Dm, the Peclet number remains the same, and the advection-diffusion
equation takes the form

∂C

∂t
= αDm∇2C − α∇ · (uC) +mδ(x− x0)δ(t). (4.62)

By additionally scaling the time by the inverse of the same constant, t/α, and using
properties of the Dirac-delta function, we find that all the α’s cancel each other. The
regular advection-diffusion equation is obtained, which is the starting point of deriving
the reciprocal relation. Thus, the reciprocal relation should hold with a different diffusion
coefficient, as long as the Peclet number takes the same value, and the time is scaled by
the inverse of the factor change of the diffusion coefficient. This is verified numerically in
figure 4.35 on the facing page, where the two concentration profiles overlap after performing
a rescaling of the time, agreeing with the theoretical prediction.

4.3.5 Reciprocal relation for time-dependent flow

The original derivation of the reciprocal relation [55] assumes a time-independent flow.
Performing a similar derivation, but allowing the velocity field to depend on time, the
same relation can be achieved by performing a Laplace transform instead of a Fourier
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Figure 4.35: The reciprocal relation is shown to hold for a rescaling of the equation, where the
Peclet number is the same, but the diffusive and advective transport rates are each scaled by a
factor α. The measured concentration is displayed to the left, and displayed to the right with
rescaled time. Here we arbitrarily chose α = 1/2. The concentration in the right figure is in good
agreement, and the reciprocal relation holds true as long as the Peclet number is the same for the
two different injections.
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Figure 4.36: The reciprocal relation is tested for oscillating time-dependent forces, where the
analytic calculation (4.63) predicts the crossing of the two concentrations at the points highlighted
by the green vertical lines. This prediction is in excellent agreement with the simulation.
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transform. If the velocity satisfies the equality∫ t

0
dτ uB(x, t− τ) = −

∫ t

0
dτ uA(x, τ), (4.63)

we will still end up with the standard form of the reciprocal relation

1

mA
CA(xB, t) =

1

mB
CB(xA, t). (4.64)

Sadly, the convolution in equation (4.63) cannot be satisfied for all times t for a given
solution of the NS equations. We can still make the velocity fields satisfy equation (4.63)
for specific points in time. This theoretical prediction is tested with an oscillating body
force

fA = f0 cos (ωt), fB = −f0 sin (ωt). (4.65)

With this choice of forces at low Reynolds numbers, the convolution integral (4.63) will
be satisfied for specific points in time. This is tested in a simulation and displayed in
figure 4.36 on the previous page. The green vertical lines, representing the predicted
crossing using (4.63), agree excellently with the crossing found numerically. Therefore,
the reciprocal relation remains true for time-dependent flow, as long as the convolution is
satisfied. The behaviour of the two concentrations does not appear similar, likely due to
the difference in geometry around the measurement point. The analytic prediction only
lets us say something about the concentration at single points in time for a single spatial
position, and the behaviour outside of these points is entirely unknown.

4.3.6 Symmetry of dispersion tensor under reversal of flow

From studying Brenner’s equations (2.92b) one cannot immediately determine how the
interchange of u → −u will effect the dispersion tensor. The velocity field occurs both
independently, and as a product with the Brenner field, in addition to the solution of
the equation appearing both linearly and quadratically in the expression for the effective
dispersion tensor (2.92a). It is therefore not trivial if the effective dispersion tensor will stay
invariant under inversion of the velocity field. The derivation of Brenner theory, described
in section 2.3.4 on page 19, begins with the definition of the local moments (2.71)

µm(r, t) ≡
∑
n

Rm
n P (Rn, r, t|Rn′ , r

′) =
∑
n

Rm
n′+n P (Rn′+n, r, t|Rn′ , r

′), (4.66)

where the sum was shifted to be relative to the unit cell of injection. The probability P is
the conditional probability of being at the local position r in a unit cell with position Rn

at a time t, given an injection at position r′ within a unit cell with the position Rn′ .
For an injection fA(r)δ(t), resulting in the probability density PA, and likewise for the

probability density PB, the reciprocity relation takes the form∫
Ω

d3rP−B (r, t)fA =

∫
Ω

d3rPA(r, t)fB, (4.67)
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where the minus sign superscript denotes the probability density with reversed velocity
field. This equality can be written in the notation of Brenner theory∑

n

∫
Ω

d3rP−B (Rn, r, t)fA(Rn, rA) =
∑
n

∫
Ω

d3rPA(Rn, r, t)fB(Rn, rB). (4.68)

For a unity injection over the whole unit cell, we can write fA = δnA, and likewise for B,∫
Ω

d3rP−B (RA, r, t|RB) =

∫
Ω

d3rPA(RB, r, t|RA). (4.69)

The index of the unit cell can be written in terms of their distance B −A = N∫
Ω

d3rP−B (RB−N , r, t|RB) =

∫
Ω

d3rPA(RA+N , r, t|RA). (4.70)

The position of the initial injections A and B are fixed for a single measurement, but with
a periodic unit cell the equality must hold for any value of their distance N . One can view
this as performing the experiment with increasing distances between the unit cell, and
finding that the integrated probabilities agree for each distance seperately. We therefore
include a sum over N on each side of the equation, and multiply with the m’th moment
of the unit cell position∫

Ω
d3r

∑
N

RmNP
−
B (RB−N , r, t|RB) =

∫
Ω

d3r
∑
N

RmNPA(RA+N , r, t|RA). (4.71)

Inverting the axis on the left hand side, the equality becomes

(−1)m
∫

Ω
d3r

∑
N

RmNP
−
B (RB+N , r, t|RB) =

∫
Ω

d3r
∑
N

RmNPA(RA+N , r, t|RA). (4.72)

The terms inside the unit cell integral are identical to the definition of the local moments
(4.66). The unit cell integral of the local moments define the total moments (2.78), such
that

(−1)mM−
m = Mm. (4.73)

Therefore, the even moments are the same with the reversed velocity field, while the odd
moments change sign. This agrees with the first total moment being Ut, and must therefore
change sign when reversing the velocity field. The total moments are used to calculate the
dispersion tensor (2.89), where the second-order total moment appears linearly, and the
first-order moment appears quadratically. Therefore, the sign change of odd moments is
irrelevant, making the dispersion tensor invariant under the reversal of the velocity field

Dij = D−ij . (4.74)

This result has been verified on the parallel diffusion coefficient for two-dimensional chan-
nels without vertical axial symmetry. For a velocity field satisfying the time-dependent
convolution integral (4.63), the above arguments still hold, but now only limited to specific
points in time. It is therefore not evident whether the time-averaged dispersion tensor is
invariant.
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4.3.7 Discussion and possible applications

There are two interesting aspects of the reciprocity relation. Firstly, a meaningful notion
of reversibility of the irreversible process of dispersion can be made. This reversibility is
independent of the Peclet number, as long as the flow is reversible. The second aspect is
that if a point can initially be made an injection point, the measured concentration from
this injection can perfectly predict the concentration at the injection point from a second
injection elsewhere in the system. Therefore, a downside of this method is that the position
where one wants to predict the concentration must be accessible for injection. If one desires
a concentration at that point, it would be much simpler and more efficient to inject the
desired concentration directly at the point. For cases where the point is inaccessible to any
form of injection, the reciprocity relation is no longer applicable.

To this end, a part of this investigation is motivated by generalising the reciprocity
relation to cases where one cannot access the point directly for the injection of matter.
With the theoretical generalisations derived in this section in mind, one can heat the
inaccessible point with a sharply focused laser. This represents an injection of increased
temperature, which will diffuse with the flow. By performing temperature measurements
in the accessible region, one can use equation (4.59) with the temperature measurements
and the known form of the laser injection to decide which of the measurement points will
result in the maximised arrived concentration at the inaccessible point. In general, heat
will diffuse faster than a solute. By reversing the flow, scaled to some factor to keep
the Peclet number unchanged, the concentration arriving at the inaccessible point can
be determined. Other laser injections can also be made to avoid heating the region to
dangerous temperatures. This process is much more complicated than simply performing
pulse injections of matter at both points, and some errors will most likely accumulate at
each step. In theory, one can now apply the reciprocal relation to predict the concentration
at a point inaccessible to the injection of matter.

More work is necessary to investigate if the reciprocal relation can be applied to medical
prediction and placement of a solute in tissue. An obvious continuation of the investigation
would be to characterise diffusion coefficients of varying solutes of medical interest and
the Peclet numbers possible while still being in the creeping flow regime. To maximise the
amount of solute reaching the desired target, the Peclet number should be maximised. The
system already sets the length scale, but the distance between the injection and receptor
point should be minimised. The diffusion coefficient is somewhat fixed but can be altered
by changing the temperature and viscosity of the surrounding liquid (2.36). Therefore,
the problem is equivalent to maximising the Schmidt number, ideally at low temperatures,
satisfying Re < 0.01 [55]. The process of accurately measuring concentrations and reversing
velocity profiles must also be investigated experimentally.

While the extension of the reciprocal relation to time-dependent flow increases its ap-
plicability beyond the original result, it is hard to imagine its applications. The convolution
requirement (4.63) is challenging to satisfy, and if satisfied, it only holds for single points
in time. Still, situations where the concentration of a single position at a single point in
time might be used in reaction systems or to extract information about the system. More
complicated injection methods should also be employed to further verify the analytic pre-
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diction of equation (4.60). An interesting continuation of the reciprocal relation would be
to study its applicability to compressible flow. For compressible flow, the entropy produc-
tion of the solute can be reduced compared to that of incompressible flow [93], and the
reciprocal relation might apply to minimising the net entropy production of the solute.

How the reciprocal prediction breaks down at larger Reynolds number has already
been studied numerically [55]. Analytical approaches were made to quantify the measured
deviation, but the expressions, even for small non-zero Reynolds numbers, proved chal-
lenging to make definitive statements from. A Reynolds number of 0.01 is large enough
for the non-linear term in the Navier–Stokes equations to create significant differences in
the measured concentration in the injection and receptor point [55]. This somewhat strict
limit for the applicability of the reciprocity relation is satisfied for many small scale natur-
ally occurring systems [57], especially for the placement and prediction of a concentration
within biological tissue.

The symmetry of the dispersion tensor under reversal of the flow is, to our knowledge,
neither discussed nor derived in the literature. This may be due to the result being intuitive
and assumed to hold true. Nevertheless, the derivation proposed here gives a quantitat-
ive argument for why it holds true and under what conditions. Following the result from
Flekkøy [55], one would expect the symmetry to break at around Re = 0.01. Although the
result has only been verified in two-dimensional channels, the analytic expression indic-
ates that the symmetry should persist to multiple dimensions. Investigating whether the
inversion symmetry of the dispersion tensor holds true for time-dependent flows would be
a natural starting point for future work.
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Chapter 5

Conclusion

The spreading of a solute is enhanced by the fluid shear of the background velocity field,
making it essential for various industrial applications and for describing the transport
properties of pollutants and chemical agents in natural systems. This thesis aimed to
extend the understanding of dispersion by investigating solute transport in flows with
complex geometric confinement. Two important geometrical properties have been found
to result in novel phenomena of the dispersion tensor; a decrease with Reynolds numbers for
discontinuous geometries and a resonance phenomena in oscillating flows with a sinusoidal
boundary. Additionally, Brenner’s theory of effective diffusion in spatially periodic porous
media [41, 42] has successfully been generalised to time-dependent flows, and a reciprocity
relation [55] extended to different types of flow, injections and diffusion. Areas for further
investigations have been proposed, with a particular focus on understanding and predicting
the resonance wavelength for a broader set of parameters and geometries.

Despite the ubiquity of rough surfaces, it was unknown how fluid flow, especially with
high inertia, interplay with the discontinuous boundary roughness to influence the effective
dispersion. Both industrial [33, 36, 38] and natural systems [29, 30, 32] can often contain
jumps and rugged shapes resulting in reticulation zones, which are known to have a large
impact on the effective dispersion [25, 26]. Contrary to what has previously been found for
smooth boundaries, recirculation zones were found to appear for all boundary amplitudes in
our geometry, resulting in a large increase in the effective dispersion compared to a straight
channel, even for small boundary amplitudes. The addition of fluid inertia could either
decrease or increase the effective dispersion depending on the Peclet number, where the
relative decrease was at its largest 50%. Increasing fluid inertia was believed to increase
the effective dispersion [26], in clear contradiction to the measured decrease. Based on
random walk simulations, the behaviour can be explained by recirculation zones being
more accessible and difficult to escape with increasing Reynolds number, resulting in less
spread between particles in the high Peclet regime.

Unsteady flows are routinely applied to microfluidic devices and lab on a chip tech-
nology [47, 48] to increase the dispersion [43, 44], and occur in a variety of naturally
occurring systems [21, 52–54]. However, the combined effect of a varying boundary and an
oscillating flow had to our knowledge not been studied. Brenner theory [41, 42] assumes a
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stationary velocity field, and was therefore generalised for the purpose of this investigation.
The derived theory agrees with random walk simulations and represents a new theoretical
framework for calculating the effective dispersion tensor in any periodic environment with
an arbitrary time dependence of the incompressible velocity field. The increase of both
boundary amplitude and wavenumber were found to solely decrease the effective disper-
sion, except around the resonance peak and with the appearance of recirculation zones,
which resulted in a large increase in the effective dispersion. The addition of a varying
boundary has shown to produce novel phenomena compared to previous work. One new
aspect is that the effective dispersion consists of overtones of the ground frequency, though
vanishingly small for the parameter space scanned. The novel appearance of a resonance-
like behaviour between the wavelength of the boundary and the oscillating driving force
has not been previously observed, and allows for tuning of the dispersion. A physical ex-
planation for the resonance wavelength was provided, although an extended, systematic
investigation serves as a natural continuation of the work presented here.

The reciprocity relation allows for a notion of reversibility and the prediction of the
concentration profile at a specific position within the system, independent of the magnitude
of molecular diffusion [55]. Combining the results allows for the measurement of an initial
time-dependent temperature injection, at a point inaccessible to the injection of matter,
to be used to predict the resulting concentration profile with the reversed velocity for the
diffusion of matter with a different diffusivity. The generalization can, in principle, be
used to access an otherwise inaccessible point and maximize the amount of concentration
at that point. While theoretically possible, successful implementation of this procedure in
practical settings first requires experimental validation.

The results presented in this thesis opens up new questions and avenues of research.
Specific theoretical research directions have been proposed for each system, but more in-
vestigations are also necessary to further understand the effect of geometry, not only on
dispersion, but on mixing in general. This is particularly relevant to the transient re-
gime. For small values of the molecular diffusion coefficient, the asymptotic regime is
only reached after a long time t� a2/Dm, and for processes with exceedingly high Peclet
number, the relevance of asymptotic dispersion coefficients may even be questionable [94].
In the transient regime, solute filaments undergo successive stretching and folding events,
and the mixing is classified as chaotic if the filament elongations grow exponentially in
time. These properties cannot be captured by the dispersion tensor and must therefore
be understood independently. The geometries studied here can potentially achieve chaotic
mixing by extending the geometric variations to three dimensions, adding a second fluid
phase, or breaking time-invariance, as already done in this work. A stretching-and-folding
behaviour was observed in random walk simulations with the perturbed expression for non-
reversible oscillating flow with a varying boundary, but it was not investigated whether
the mixing dynamics were actually chaotic. The perturbed analytic velocity field might
aid in further research on chaotic mixing. Additionally, a reaction term can be included in
the advection-diffusion equation, where chaotic mixing can result in much faster reactions
than what can be predicted from Taylor dispersion.

Experimentally, the results provided here can potentially be verified in Hele-Shaw cells.
The systems can be made quasi-two-dimensional by having no spatial variations along the
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cell’s width, with the shortest side giving the channel height, similarly to the work by Roht
et al. [49, 95]. Measurements of the evolution of an initial line injection of concentration
can verify the resonance behaviour by including a sinusoidal boundary. The sinusoidal
boundary might only be included at one side of the channel height to make measurements
of the concentration’s evolution from the opposite side possible. Discussions on how to
realise this system experimentally are already underway with experimentalists at PoreLab.
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Appendix A

Derivation of time-dependent
Brenner theory

The goal of this derivation is to find a general set of equations which can be solved to
produce an expression for the dispersion tensor in an arbitrary geometry, valid for both
stationary and time dependent flow. The main aspects and definitions in this derivation
are equal to Brenner’s original derivation, which is summarized in section 2.3.4 on page 19.
For example are the local moments defined in the same way (2.71), and must still satisfy
an advection-diffusion type equation (2.72). The jump conditions are still defined as in
equation (2.73) and (2.74), making the jump in the local moments the same as well:

Jµ0K = 0, Jµ1K = − Jrµ0K , and Jµ2K = −
s
µ1µ1

µ0

{
. (A.1)

The jump conditions on the gradients of the local moments also take the same form:

J∇µ0K = 0, J∇µ1K = − J∇rµ0K , and J∇µ2K = −
s
∇µ1µ1

µ0

{
. (A.2)

With the total moments of order m being expressed in the jump conditions of the local
moments of order m, we find

dMm

dt
= −

d∑
j=1

∫
sj

ds · u JµmK +D
d∑
j=1

∫
s+j

ds · J∇µmK + δm0δ(t). (A.3)

The total moment of second-order can therefore be expressed in terms of the jump con-
ditions of the first order local moments, using equation (A.1) and (A.2). When the local
moments are known, the dispersion tensor can be calculated using

Dij =
1

2

d

dt

(
M2ij −M1iM1j

)
. (A.4)

In principle, we can solve these equations in time. This is equivalent to solving two linear
advection-diffusion equations, but is much more demanding than the procedure that dir-
ectly gives us the asymptotic dispersion coefficient from Brenner’s approach. Therefore,
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we will look for solutions to the above equations in the asymptotic regime, setting all
exponentials and other decaying terms to zero.

So far, nothing has changed compared to the derivation of the original Brenner theory.
Therefore, we will begin to solve for the local moments and allow the velocity field to be
time dependent. The zeroth-order solution, representing the conservation of mass, is the
same with and without time-dependent flows,

µ0 =
1

Ωf
. (A.5)

The first order total moments takes the same form as in the earlier derivation in equation
(2.81), but is not time dependent:

dM1i

dt
=

1

Ω

∫
Ω

d3r ui(t) = 〈ui(t)〉. (A.6)

Integrating both sides with respect to time gives the time-dependent part of the first order
total moments

M1i(t) =

∫ t

0
〈ui(t′)〉dt′ ≡ χi(t) (A.7)

M2
1ij (t) =

∫ t

0

∫ t

0
〈ui(t′)〉〈uj(t′′)〉dt′dt′′ (A.8)

To satisfy the above differential equation (A.6), we guess on a solution on the form

µ1 =
1

Ωf
[χ(t) + B(r, t)− r] (A.9)

The jump condition of the spatialy constant term χ is trivial zero JχK = 0, thus using
equation (A.1) fixes the jump condition on the unknown Bi to vanish. Additionally we
can use the Gauge freedom in Bi to make it’s unit cell average vanish. Using our guess as
input to equation (2.72) gives the auxiliary problem

∂tBi + uj∇jBi −Dm∇2Bi = ui(x, t)− 〈ui(t)〉 (A.10)
n̂j∇jBi = n̂i. on ∂Ω. (A.11)

Comparing this expression to the original (2.92b), we see that the only difference is an
additional time derivative on the left hand side. We therefore retrieve the original Brenner
theory for time-independent flows.

To find the dispersion tensor we calculate the derivative of the second order total
moment using equation (A.3). The jump condition in the first term takes the form
s
µ1iµ1j

µ0

{
=

1

Ωf
J(χi(t) + Ci(r, t)) (χj(t) + Cj(r, t))K = − 1

Ωf
(χi JrjK + JriKχj − JCiCjK) .

(A.12)
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Where we have defined the spatial part of the first order local moment as

Ci ≡ Bi(r, t)− ri. (A.13)

With a jump condition JCiK = − JriK. The jump condition in the second term of equation
(A.3) is calculated using the product rule

s
∇k

µ1iµ1j

µ0

{
=

1

Ωf
(J(∇kCi)CjK + J(∇kCj)CiK) . (A.14)

Rewriting the jump conditions to surface integrals and using the divergence theorem, the
time derivative is given by

dM2ij

dt
= χi〈uj〉+ χj〈ui〉 − 〈uk∇k(CiCj)〉+Dm 〈∇k (Cj∇kCi +∇kCjCi)〉 . (A.15)

Using equation (A.4) the dispersion tensor can be found. The first two terms in the time
derivative ofM2 cancel with theM1 terms, and the third term inM2 is zero. The resulting
terms are

Dij = lim
t→∞
〈Dm (δij −∇iBj −∇jBi +∇kBi∇kBj)〉 . (A.16)

Exactly the same as for stationary flows (2.92a). This limit is not clearly defined when the
velocity is time dependent. We define instead a time averaged dispersion tensor:

Dij = lim
t→∞

1

τ

∫ t+τ

t
Dij(t

′)dt′, (A.17)

where the bare denotes the time averaged quantity. Hence, the dispersion tensor can be
written as

Dij = lim
t→∞

〈
Dm

[
δij −∇iBj −∇jBi +∇kBi∇kBj

]〉
. (A.18)

For a channel or pipe, Dxx is the interesting part of the dispersion tensor, which gives the
effective diffusion coefficient parallel with the flow. The auxiliary problem, for which we
seek time-dependent solutions, then becomes

(∂t + u ·∇−Dm∇2)Bx = u′x, n̂ ·∇Bx = n̂x on ∂Ω. (A.19)

And is used to calculate the xx component of the dispersion tensor, which is equal to the
effective diffusion coefficient:

D‖ = lim
t→∞

〈
Dm

[
1− 2∂xBx + (∇Bx)2

]〉
. (A.20)

The change compared to the already established Brenner theory, is therefore only the time
derivative in equation (A.10), and the time average when calculating the dispersion tensor
(A.17). The more general theory derived here therefore trivally reduces to Brenner theory
for stationary flows. Although the change seems small, the addition of a new dimension in
which to solve the partial differential equation makes it significantly more difficult to solve
analytically, and expensive to solve numerically.
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