
UNIVERSITY OF OSLO
Department of Informatics

Ant-Inspired
Approach for
Resource
Localization in
Mobile Ad-Hoc
Networks

Master’s Thesis

Maren Feragen

May 3, 2010

Abstract

Computer networks are constantly emerging, and in today’s world, we see
new needs and new kinds of networks addressing these needs. Situations such
as emergency and rescue operations present a demand for mobile ad-hoc net-
works, a kind of networks with fundamentally different characteristics than
traditional wired networks. Scarce resources and possibly low connectivity
call for new techniques and approaches to traditional problems.

Where possible, resource localization tools will probably be included in
the applications needing it, enabling them to tune the search to the ap-
plications needs and characteristics. However, such needs are not always
possible to predict a priori, and we then need a system enabling nodes to au-
tonomously localize needed resources that are not present in the node itself.
In this thesis, we propose a general-purpose resource localization solution for
mobile ad-hoc networks.

Nodes in mobile ad-hoc networks should function autonomously with
as little outside intervention as possible, preserving the self-* properties.
Such systems are common in nature, and may be used as inspiration when
designing computer systems. In this thesis, we look at how stigmergy — the
foraging behavior of ants — may be used to localize resources in a mobile ad-
hoc network. When walking between their nest and a food source, ants leave
pheromone trails on the ground, and by probabilistically choosing branches
with the most pheromone, they are able to find the shortest path between
their nest and the food. This behavior has inspired a lot of solutions to
optimization problems like routing.

We have designed and implemented a system exploiting what we call op-
posite stigmergy, where artificial ants are released from a resource-requesting
node and at each intermediate node probabilistically choose the least recently
used neighbor as next hop. This makes ants search every nook and cranny of
the network, as opposed to regular ant-inspired algorithms, where ants are
concentrated on one or a few most optimal paths.

Our preliminary performance tests show that our ant-inspired approach
has, if tuned correctly, the potential to outperform the much simpler flooding-
based solution in certain scenarios. The ant solution has shown to be able to
localize resources with less sent and received messages if more than one node
requests the same (or similar) resources. For scenarios where nodes have a
high number of neighbors, however, we see that the ant approach requires
a lot of time and resources to localize a resource. We also suggest a few
potential fixes that may be able to lower both the response time as well as
the resource consumption, enabling the ant solution to perform even better.

Acknowledgements

First and foremost, I want to thank my supervisor, Ellen Munthe-Kaas, for
giving me excellent support, guidance, ideas; and not least for introducing
me to the somewhat out of the ordinary — but very intriguing — topic for
this thesis. I also want to thank Matija Pužar and Piotr Kamisinski for
helping me out during the test phase and for patiently assisting me all those
times my code or computer didn’t do what I wanted it to. Finally, I thank
my friends and family for their support and encouragement during the work
with this thesis.

Maren Feragen
University of Oslo

May 3, 2010

Contents

1 Introduction 1
1.1 Background . 2

1.2 Motivation . 3

1.2.1 Rescue Operations — A Case Study 3

1.2.2 Application Domain 4

1.3 Problem Description . 5

1.4 The SIRIUS Project . 6

1.5 Outline . 6

2 Mobile Ad-Hoc Networks and Autonomic Networking 9
2.1 Mobile Ad-Hoc Networks . 9

2.1.1 Characteristics of Mobile Ad-Hoc Networks 9

2.1.2 Issues in Mobile Ad-Hoc Networks 10

2.1.3 Routing in Mobile Ad-Hoc Networks 12

2.1.4 Applications . 16

2.2 Autonomic Networking . 17

2.2.1 Autonomic Networks 17

2.2.2 Self-*: Properties of an Autonomic Network 17

2.2.3 Autonomy in MANETs 20

3 A Bug’s Life 21
3.1 Communication . 21

3.2 Stigmergy and Ant Colony Optimization 22

3.2.1 Pheromones . 23

3.2.2 Ants and Their Pheromones 23

3.2.3 Ant Colony Optimization 25

4 ACO Approaches to Some Traditional Problems 27
4.1 The Ant Colony Optimization Metaheuristic 27

4.2 The Traveling Salesman Problem 29

4.2.1 Solving the TSP with ACO Algorithms 29

4.2.2 AntSystem . 30

4.3 The Routing Problem . 31

vi Contents

4.3.1 AntNet — Routing in Traditional Networks 32
4.3.2 AntHocNet — Routing in Mobile Ad-Hoc Networks . 35

5 Design 39
5.1 Goal . 39
5.2 Assumptions . 39

5.3 Requirements . 40

5.4 General Idea . 40

5.5 Issues . 42

5.5.1 Scheduling . 42

5.5.2 Communication . 43

5.5.3 Supported Network Topology 45

5.5.4 Resources . 45

5.5.5 Pheromone Traces . 46

5.5.6 Ants . 48

5.6 The Localization Algorithm 52

6 Implementation 55
6.1 Remarks . 55

6.2 Programming Language . 56

6.3 Developing for NEMAN . 56

6.4 The sockaddr_in structure . 56

6.5 Logging . 57

6.6 Neighbor Information . 58

6.6.1 Topology Information Retrieval 58

6.6.2 Neighbor Registry . 59

6.6.3 Topology Changes During Resource Localization . . . 59

6.7 Resources . 61

6.7.1 Local Resource Information 61

6.7.2 Resource Sharing . 61

6.7.3 Resource Location Info 62

6.8 Pheromone Traces . 63

6.8.1 Pheromone Data Structure 63

6.8.2 Pheromone Initialization 65

6.8.3 Pheromone Updates 65

6.9 Ants and Ant Memory . 65

6.9.1 Choosing the Next Hop 66

6.9.2 Loop Elimination . 68

6.9.3 Ant Communication 68

6.10 Resource Localization . 68

6.10.1 Search Initiation . 68

6.10.2 Search Termination . 69

6.11 Utilities . 69

6.12 Program Flow . 70

Contents vii

6.12.1 Threads . 70

7 Test Setup 71
7.1 Evaluation Techniques . 71

7.2 Testing Environment . 73
7.2.1 Simulation vs Emulation 73

7.2.2 ns-2 . 73

7.2.3 NEMAN . 73

7.2.4 OLSR daemon . 74

7.3 Emulation and Analysis Tools 74

7.3.1 setdest . 74

7.3.2 tcpdump . 75

7.4 A Flooding Solution . 75

7.4.1 Issues with Flooding 75

7.4.2 Flooded Requests . 76

7.5 Monitoring . 77

7.6 Metrics . 77

7.6.1 Response Time . 78

7.6.2 Resource Usage and Utilization 80

7.7 Test Scenarios . 83

7.7.1 Chain Scenario . 83

7.7.2 Grid Scenario . 83

7.7.3 Mobility Scenario . 84

7.8 Test Scenario Implementation 85

7.8.1 Static Scenarios . 86

7.8.2 Mobility Scenario . 86

7.9 Workload . 87

7.9.1 Parameters . 89

7.9.2 Scenario Properties . 89

7.9.3 Single Localization . 90

7.9.4 Location Learning . 91

8 Performance Evaluation 95
8.1 Influencing Factors . 95

8.1.1 Topology Initialization and Updates 95

8.1.2 Time Inaccuracy . 96

8.1.3 Average Neighborhood Size 96

8.2 Results — Response Time . 97

8.2.1 Single Localization . 97

8.2.2 Location Learning . 100

8.2.3 Conclusion . 102

8.3 Results — Bandwidth Usage 103

8.3.1 Single Localization . 103

8.3.2 Location Learning . 105

viii Contents

8.3.3 Conclusion . 107

8.4 Results — Processing Power Usage 108

8.4.1 Single Localization . 109

8.4.2 Location Learning . 109

8.4.3 Conclusion . 110

8.5 Results — Processing Power Utilization 110

8.5.1 Single Localization . 111

8.5.2 Location Learning . 111

8.5.3 Conclusion . 112

9 Conclusion and Further Work 113
9.1 Contribution . 113

9.2 Performance Evaluation . 114

9.3 Critical Assessments . 115

9.4 Further Work . 116

9.4.1 Resource Localization in Sparse Networks 116

9.4.2 Resource Goodness . 117

9.4.3 Further Implementation, Testing and Analysis 118

Bibliography 120

Appendices 127

A A Sample Scenario File 127
A.1 Chain Scenario . 127

B The Flooding Solution 129
B.1 Data structures . 129

B.1.1 Logging . 130

B.1.2 Program Flow . 130

C Source Code 131
C.1 Program Layout — Ant Solution 131

C.2 Program Layout — Flooding Solution 131

C.3 Building the Source Code . 132

C.4 Running the Source Code . 132

D Code Examples 133
D.1 send_forward_ant() . 133

D.2 receive_ants() . 134

D.3 handle_received_ant() . 135

D.4 handle_forward_ant() . 136

D.5 handle_backward_ant() . 136

Contents ix

E CD Contents 139
E.1 /implementation . 139

E.1.1 /implementation/ant_solution 139
E.1.2 /implementation/flooding_solution 139

E.2 /test_setup . 139
E.2.1 /test_setup/scenarios 140

E.3 /analysis . 140

List of Figures

2.1 A simple MANET . 10

2.2 Sample MANET before and after partitioning 11

2.3 Message forwarding in LSR versus OLSR 14

2.4 Epidemic routing in a MANET with two partitions 15

3.1 Two kinds of trail-leaving ants 24

3.2 Ant colony is unable to converge to shortest path 25

4.1 Pseudo-code for the ACO metaheuristic 29

5.1 The disadvantage of backward ants depositing pheromones . . 47

5.2 Allowing ant loops increases network utilization 51

5.3 Pseudo-code for the ant solution 53

6.1 C code for binding a socket to a specific device 57

6.2 sockaddr_in structure . 57

6.3 Neighbor structure . 59

6.4 Backward ant — neighbor lost 60

6.5 Forward ant — neighbor lost 60

6.6 A sample resource file . 61

6.7 Resource structure . 62

6.8 Resource info structure . 62

6.9 Two-dimensional linked list structure 64

6.10 Pheromone structure . 64

6.11 Ant structure . 66

6.12 Neighbor probability structure 67

6.13 Loop elimination . 68

6.14 Doubly linked list structure 70

7.1 Response time metric . 78

7.2 Different interpretations of the response time metric 78

7.3 Chain topology . 83

7.4 Grid topology . 84

7.5 Mobility topology . 85

xii List of Figures

7.6 Chain topology NEMAN screenshot 86
7.7 Grid topology NEMAN screenshot 87
7.8 Mobility topology NEMAN screenshots 88
7.9 Chain topology with one requesting node 90
7.10 Grid topology with one requesting node 91
7.11 Mobility topology with one requesting node 92
7.12 Grid topology with three requesting nodes 93
7.13 Mobility topology with five requesting nodes 94

8.1 Number of neighbors per second in the mobility scenarios . . 98
8.2 Response time in grid scenario with location learning 101
8.3 Response time in M-dense scenario with location learning . . 101
8.4 Response time in M-sparse scenario with location learning . . 102
8.5 Message sizes for flooding and ant solutions 105
8.6 Utilization in each single location scenario 110
8.7 Utilization in each location learning scenario 111

B.1 Flood_package structure . 129
B.2 Node_seq structure . 130
B.3 Request_answer structure . 130

List of Tables

8.1 Neighbors in the mobility scenarios 98
8.2 Number of hops used in each scenario 99
8.3 Time spent in each scenario 99
8.4 Messages sent and received in single localization scenarios . . 104
8.5 Bytes sent and received in single localization scenarios 104
8.6 Messages sent and received in location learning scenarios . . . 106
8.7 Bytes sent and received in location learning scenarios 106

List of Abbreviations

ACO Ant Colony Optimization

AODV Ad Hoc On Demand Distance Vector

AS AntSystem

CSMA/CA Carrier Sense Multiple Access / Collision Avoidance

CTS Clear To Send

DCF Distributed Coordination Function

DMMS Distributed Multimedia Systems

IEEE Institute of Electrical and Electronics Engineers

LSR Link-State Routing

MANET Mobile Ad-Hoc Network

MPR Multi-Point Relay

OLSR Optimized Link State Routing

RREP Route Reply

RREQ Route Request

RTS Ready To Send

SIRIUS Sensing, Adapting and Protecting Pervasive Information Spaces

TCP Transmission Control Protocol

TSP Traveling Salesman Problem

UPD User Datagram Protocol

WAN Wide Area Network

Chapter 1

Introduction

”I’m not afraid of computers taking over the world. They’re

just sitting there. I can hit them with a two by four.”

— Thom Yorke

In mobile ad-hoc networks, nodes should function autonomously, and
they should be able to adapt to their environment and any changes in it
without any external intervention. For nodes to be able to adapt to their
environment, they obviously need to have a certain knowledge about their
environment and to somehow be aware of any changes within this environ-
ment.

The environment of a node in a mobile ad-hoc network is made up of the
nodes in the network, and how these are placed, their mobility, speed and
any other characteristics that a node may enclose, such as what resources are
present at which nodes in the network. One kind of environmental changes
is thus changes in the network topology, which may occur frequently because
of node mobility. Another possible environmental change is changes to the
resource situation at one node.

As we are dealing with mobile ad-hoc networks, it is important that nodes
are able to monitor their environment and perform any required adaptations
without any external intervention — they need to function autonomously.
Autonomous, self-adapting systems are common in nature, and have been
used as inspiration for solutions to a lot of computer-related problems, es-
pecially optimization problems. The most common source of inspiration is
ants and their foraging behavior. A lot of research has been done on ant-
inspired approaches to optimization problems like the routing problem, both
in traditional, wired networks as well as in mobile ad-hoc networks.

With this thesis, we want to look at how ants and their behavior may be
used as inspiration for other kinds of problems, and to find out if such ap-
proaches may be feasible also in other scenarios than the typical optimization

2 Chapter 1

problems. As our application domain we have chosen resource localization in
mobile ad-hoc networks. The purpose of the resulting solution is to enable
nodes to search for any resource at any time without the need for any prior
knowledge about which resources will be requested or when requests may be
issued beforehand. This way, nodes may issue searches for a given resource
whenever they discover a need for knowledge about the resource situation
within the network.

1.1 Background

Over the last few decades, there has been a shift from the more traditional
way of networking, with a static, wired infrastructure connecting relatively
few and homogeneous nodes, to a more widespread, dynamic and thus more
complex infrastructure. We now see large networks, a mix of wired and
wireless infrastructure, connecting a large number of more heterogeneous
nodes. However, we also see a need for networks in places that networking
has before been unthinkable, as there exists no infrastructure, nor, perhaps,
any plans of ever making one. Examples of places like this may be sparsely
populated, desolate regions and third world countries, but also in more urban
settings like in tunnels, where outside signals would have a small chance of
reaching in.

For this purpose, a new kind of networks, called Mobile Ad-Hoc Networks
(MANETs) have been introduced. A MANET is an autonomous network of
mobile, wireless nodes. In a MANET, there is no fixed infrastructure, and
all nodes in the MANET thus need to be able to work both as an end system
and a router, in order to make it possible for nodes not within range of each
other to communicate with each other via other nodes in the MANET.

In situations like emergency and rescue operations, it is of great impor-
tance to set up a well functioning network as fast as possible, in order to be
able to exchange information about the emergency and potential victims be-
tween the rescue workers as fast as possible. Because no fixed infrastructure
is needed for establishing MANETs, they can quickly be established, and are
thus thought of as a good solution in such situations.

Nodes in a MANET may be highly mobile, and the topology within the
network may thus change rapidly, as nodes move in and out of range of
each other. Also, nodes in a MANET typically have scarce resources, such
as bandwidth, battery power and CPU. These characteristics put harder
requirements on the algorithms used to maintain this kind of networks.

Typical for the more traditional networks is a human network adminis-
trator running the network, making sure everything works as desired, doing
the necessary adjustments and repairs. As networks are growing larger and
more complex, along with the introduction of MANETs, the workload on
the human administrator increases or becomes unfeasible, as there might

Introduction 3

not be an obvious candidate for the network administrator role. It is also
getting harder and harder to anticipate when implementing systems what
optimizations and adaptations will be needed at runtime. Thus, with to-
day’s new networking world, it is desired to automate these processes: To
let the network itself do the necessary adaptation and optimization, to make
the necessary changes on itself when needed, to protect itself from threats,
and to repair itself when needed.

1.2 Motivation

As mentioned above, MANETs may be used where there is no fixed infra-
structure. The lack of infrastructure may be due to remote location, and
thus few or no possible users, restricted economy and thus the power to
build the needed infrastructure, but also unforeseen incidents such as a fire,
an earthquake or some other natural disaster.

In many of these settings, such as in rural locations, networking is not a
prerequisite. However, situations may arise where being able to communicate
efficiently would be highly advantageous. Examples of such situations are
emergency operations, both in rural locations as well as more urban locations
such as tunnels, and during battlefield operations. MANETs may also be
used in less critical situations, for example in wildlife tracking [19].

1.2.1 Rescue Operations — A Case Study

In April 1998, the personnel on a metro train with several hundred persons on
board discovered a fire in Majorstutunnelen, a 1790 metre long metro tunnel
in the center of Oslo [12]. The personnel tried contacting their supervisors,
but with no luck, and let their passengers off inside the tunnel, hoping they
would get out safely without supervision. At the same time, there was also
another train inside the same tunnel. As no one was able to contact anyone
on the outside, the personnel in the other train knew nothing about the
fire until they saw people walking towards them along the tracks inside the
tunnel. Luckily, the driver was able to stop the train, avoiding to hit any of
the passengers from the other train.

In such a scenario, the ability to communicate, both with someone on the
outside as well as with the personnel on board other trains nearby, is crucial.
In our scenario, luckily, no one was physically hurt, and everyone managed
to get out of the tunnel. The fire turned out to be small, and was shortly
after extinguished by fire personnel. However, it is not hard to imagine a
less happy ending: The fire could have been worse, the driver of the other
train could have been unable to stop his train in time, people could have
been hurt by the electric current in the railway tracks. In such a scenario,
the amount of rescue personnel involved in the rescue operation might get
very high, as both fire fighters, police personnel and medical personnel may

4 Chapter 1

need to enter the tunnel to contribute. With such an amount of personnel
in action, the need for efficient communication is even greater: Who is doing
what, how many victims are located where, who needs help first, who has
got what equipment where, and so on.

If all rescue workers carried with them a small device with the ability to
communicate with other devices, they would be able to set up a MANET
without much effort, enabling them to exchange messages, pictures, maps,
resource information and all other kinds of information useful to the rescue
operation. They might also place sensors on their patients, enabling them to
monitor moderately hurt people without being physically close to them. The
sensors could trigger an alarm if the patient’s condition gets worse, telling
medical personnel to go check up on the patient.

Other sensors and cameras might monitor the tunnel environment with
respect to for example temperature and the amount of poisonous gases in the
air inside the tunnel, making sure it is safe to continue the rescue operation
inside the tunnel, again giving alerts to the appropriate personnel whenever
the conditions get worse.

Many of these tasks could be accomplished with the help from existing
systems or even plain communication between the rescue personnel. How-
ever, one rescue worker may carry certain kinds of equipment or even knowl-
edge that other workers may benefit from. If the resource holder could answer
to resource requests without actually having to pick up his or her device and
type an answer, this rescue worker would be free to work with other tasks
for more of the time, making this worker more efficient, possibly saving more
lives or in some other way minimizing damage. Thus, we would like a system
where one could send a message ”I need resource X”, and the system would
locate this resource within the MANET without any human intervention.

1.2.2 Application Domain

A rescue operation is of course not the only domain where such a system
might be helpful. Any system where one node might need resources not
present within the node itself would benefit from such a system. However,
there are a few characteristics that are common for the kind of application
domains the work in this thesis is targeted at. These characteristics put
some restrictions on the solutions developed:

• As resources in a MANET are typically scarce, we would like a solution
with a high utilization of the present resources: We want as little waste
as possible of both bandwidth as well as processing power.

• MANET node characteristics include frequent joins and leaves as well
as partitioning.

• No other system for sharing and dissemination resource information

Introduction 5

is already present within the system, or the existing solution is not
adequate.

The actual consequences of the first two restrictions will be further dis-
cussed in later sections, but we do already state that these restrictions
severely complicate both the design and implementation of systems targeted
at MANETs.

If it is possible to predict beforehand what kind of resources might be
present in the network and what resources may be requested, resource dis-
semination and localization tools will probably be included in the system,
and may then be tailored to fit the needs and characteristics of the system in
question. However, it is not always possible to foresee the exact needs and
development of a system. Thus, what we aim to develop in this thesis is a
solution for use either when no such tools are available, or as an addition to
any existing tools. Thus, we try to develop a general purpose tool that may
be used to look for any resource at any time in any MANET.

1.3 Problem Description

A lot of research has been done on how well biologically inspired algorithms
apply to computer network problems, both in traditional networks as well
as MANETs. These approaches look at how we can make computer systems
simulate behavior seen in the nature. Self-organizing systems exist naturally
in nature, where they function without any external interference or central
control. They adapt to changes around them, making them more robust to
environmental changes and increasing their own survivability. One example
of such biological systems is insects, like ant colonies, termites or bees, who
communicate through stigmergy. The term stigmergy was introduced by
Grassé in 1959 [26]. Grassé defined stigmergy as

”Stimulation of workers by the performance they have achieved.”
Dorigo et al. [9]

In other words, stigmergy describes insects’ indirect communication medi-
ated by changes to the environment. This phenomenon is also referred to as
swarm intelligence. In the case of termites and ants, stigmergy is ensured
by depositing the chemical substance pheromone in the environment [36].

Another example is autopoiesis, or self-production, which refers to sys-
tems of components that are able to reproduce themselves, and in this way
self-maintain the system [36]. Other such examples exist, such as decrease of
entropy [36], and these natural systems may all be used as inspiration when
designing autonomous computer systems and networks.

In this thesis, we look at some of the algorithms from the Ant Colony
Optimization [10] research field, and try to map these techniques to our
problem: Locating a given resource within a MANET. More specifically, we

6 Chapter 1

will look at the behavior of ants during their search for food, and try to
exploit the characteristics of their movement in our own search for resources
in a MANET.

1.4 The SIRIUS Project

This thesis is written as part of the SIRIUS (Sensing, Adapting and Pro-
tecting Pervasive Information Spaces) project at the Distributed Multime-
dia Systems (DMMS) research group. The project mainly focuses on three
challenges:

• Sensing/monitoring as a high-level service for applications.

• Adaptation through a framework supporting autonomous adjustments
of all objects in such systems, minimizing unwanted side effects from
individual adaptations.

• Protection through a tool for identifying and detecting normal as well
as abnormal behavior in the system, perform analysis and carry out
counter efforts demanding a minimal amount of manual intervention.

The project aims to provide concepts and mechanisms for system devel-
opers, enabling them to create large-scale pervasive systems. In addition
to this, a platform shielding the application developer from the underlying
complexities is needed, as one cannot expect every developer to understand
and address all issues introduced by the new turn in networking.

This thesis is a contribution to the second point above; adaptation. Re-
source localization is to be done autonomously, and nodes holding and seek-
ing resource information need to be able to adapt to any changes in their
environment, such as node mobility, which may lead to resource-holding
nodes moving or even leaving the MANET. Also, by gathering resource in-
formation, nodes may get information about the status of the network, and
may thus be able to adapt to any changes without any outside intervention.

1.5 Outline

The rest of this thesis is organized as follows: Chapter 2 provides a thor-
ough explanation of Mobile Ad-Hoc Networks and autonomic networking.
In Chapter 3, we look at ants and stigmergy, the biological phenomenon
that is the inspiration of our resource localization system. Chapter 4 takes
a deeper look at how ant behavior may be exploited to make solutions to
some traditional computer network problems.

Our resource localization design is explained in Chapter 5, whereas the
more technical details of our implementation are provided in Chapter 6.

Introduction 7

The test setup used in our experiments, along with a presentation of some
of the most important tools used during the testing, is provided in Chapter
7. The test results and system evaluation follows in Chapter 8. At last, we
conclude and present further work in Chapter 9.

The thesis also includes four appendices. Appendix A contains a sam-
ple NEMAN scenario file with additional comments and explanations. In
Appendix B, we explain some of the details of the flooding solution used
for comparison during the performance analysis, whereas Appendix C pro-
vides an overview of the source code of both the ant solution as well as the
flooding solution. Appendix D lists some of the most important parts of the
source code for our application. The final appendix, Appendix E explains
the content of the CD appended to this thesis.

Chapter 2

Mobile Ad-Hoc Networks and

Autonomic Networking

”Never underestimate the bandwidth of a station wagon full

of tapes hurtling down the highway.”

— Andrew S. Tanenbaum

In this chapter, we will go through a few topics relevant for the under-
standing of the rest of the thesis. First, we provide a detailed explanation of
mobile ad-hoc networks, some issues, their applications and a few relevant
routing protocols. Then we also give an overview on autonomic networking
and self-* systems.

2.1 Mobile Ad-Hoc Networks

2.1.1 Characteristics of Mobile Ad-Hoc Networks

A Mobile Ad-Hoc Network (MANET) is a collection of mobile, autonomous
nodes, together forming a network without using any fixed infrastructure and
without any outside intervention [13, 38]. Typically, there is no centralized
control, and the network is thus dependent of node cooperation to function
properly.

Because of the lack of fixed infrastructure, each node is acting as both an
end node as well as a router, cooperating on the task of getting each message
from source to destination. This means that every node needs to run the
(same) routing protocol, which puts a bit of extra load on the nodes.

Each node will have a neighborhood, meaning a set of neighbors, which
are the nodes that are within range of the node and thus may be reached
with direct communication. All other nodes are outside range, and may thus
only be reached with the help from indirect communication, meaning that

10 Chapter 2

A
B

C D

E

F

Figure 2.1: A simple MANET.

all communication needs to happen via one or more other nodes within the
MANET. This is shown in Figure 2.1, where node A has two neighbors which
may be reached directly, namely nodes B and D, whereas node C may be
reached either via node B or node D.

2.1.2 Issues in Mobile Ad-Hoc Networks

Because of the characteristics of MANETs, some issues that we do not usually
see in regular networks arise.

Node Heterogeneity

Nodes in a MANET may vary from regular laptops to small PDAs and even
smaller sensing devices. Thus, the resources available in a MANET may be
scarce: Small devices typically have less resources, such as CPU and memory.
Also, the transmission range may vary from device to device, possibly leading
to asymmetric connectivity.

Mobility

Nodes in a MANET are typically mobile. As nodes are moving, they need
to run on battery power. Mobile nodes may be placed anywhere, and their
movements may not be human controllable. Thus, we do not want to have
to change their batteries every day or even every week or month; We want
their batteries to last as long as possible.

Higher mobility also leads to more frequent topology updates, as con-
nectivity between nodes changes, leading to more load on the network as
topology updates need to be disseminated throughout the network.

Partitioning

MANETs may also be classified as either sparse or dense. The density of
a MANET is determined by measuring the average number of neighboring
nodes in the MANET [25]. A sparse MANET is a MANET where each node

Mobile Ad-Hoc Networks and Autonomic Networking 11

A
B

C D

E

F

(a) Before partitioning.

A

B

C

D

E

F

(b) After partitioning.

Figure 2.2: Sample MANET before and after partitioning

has few neighbors and thus low connectivity, typically because of few nodes
per area unit, whereas a dense MANET is a MANET where nodes have a
high number of neighboring nodes and thus a high connectivity.

Partitions may occur in the MANET if there are two or more groups
of nodes with no link between them, i.e. none of the nodes in one group is
within range of any of the nodes in the other group. The more sparse a
MANET is, the bigger the probability of partitioning.

When a network is partitioned, no communication is possible between
nodes in different partitions, as it is impossible to establish a path between
the two nodes. This is shown in Figure 2.2. In Figure 2.2a, we see a MANET
consisting of only one partition, and we thus have a path between nodes A
and F. After partitioning, shown in Figure 2.2b, the large partition has
been split into two smaller partitions, one containing node A and the other
containing node F, thus we no longer have a path between nodes A and F.

By allowing delivery to take an arbitrary large amount of time, this
problem may be solved by using special routing techniques. These will be
further explained in Section 2.1.3.

Wireless Communication

Communication within a MANET is based on wireless communication using
the IEEE 802.11 standard. With wireless transmission comes a few issues,
one of which is collisions. If several nodes within the same area transmits
a message at the same time, a collision will occur. The more nodes and
thus traffic in the MANET, the higher the probability of packets colliding.
Colliding packets cause nodes to retransmit, which implies a higher load on
both the nodes themselves as well as the network.

The basic access method for IEEE 802.11 is the Distributed Coordination
Function (DCF) [45]. The DCF uses Carrier Sense Multiple Access with
Collision Avoidance (CSMA/CA). In this scheme, all nodes ready to send
a message listens on the channel to hear if anyone else is transmitting, a
technique also referred to as physical carrier sense. If the channel is free,

12 Chapter 2

the node may send. If not, the node must wait until it is, and then enter
a random back off procedure where it waits for a random period of time.
The random back off procedure is used to make sure several nodes don’t
start transmitting at the same time immediately after the previous trans-
mission was done. Because of this, however, in a dense network with a large
amount of transmissions, nodes will often have to wait before they may send
messages.

However, this approach assumes that all nodes are within range of each
other, a rather unrealistic assumption. To solve this problem, often referred
to as the hidden node problem, a carrier sense mechanism called virtual car-
rier sense is also used. In order to avoid collisions, a node wanting to send
something must reserve the medium for a specified amount of time by trans-
mitting a ready to send frame. If the destination node is ready to receive, it
replies with a clear to send frame. All nodes within range of either sender
or receiver will hear at least one of these two, and will thus know that the
medium is occupied for the reserved time period.

This procedure makes the probability of a collision smaller, as collisions
will only happen if two nodes decide to send a message at the exact same
point in time. However, it might also make nodes wait quite some time
before they get to send their messages.

2.1.3 Routing in Mobile Ad-Hoc Networks

Nodes in a MANET may move rapidly and unpredictably. This, together
with the restricted resources within a MANET, puts higher restrictions on
a MANET routing protocol than on a regular routing protocol designed for
traditional networks:

• The protocol must not use too much bandwidth on route establishment
and maintenance.

• The protocol must adapt fast to topology changes as well as traffic and
propagation changes.

A wide extent of protocols for routing in MANETs have been developed.
These may be classified according to several criteria [13]:

• Communication model: Decides if the protocol is designed for sin-
gle channel or multi-channel communication. Multi-channel protocols
combine channel assignment and routing functionality, whereas in sin-
gle channel protocols, nodes communicate over the same logical wireless
channel. This is the most common communication model.

• Structure: Distinguishes between uniform protocols, where all nodes
play an equal role in the network, and non-uniform protocols, where

Mobile Ad-Hoc Networks and Autonomic Networking 13

only some nodes participate in route computation. As less nodes par-
ticipate in route computation, non-uniform protocols may achieve bet-
ter scalability than uniform protocols.

• State information: Distinguishes between topology-based and desti-
nation-based protocols. In topology-based protocols, which include
link state protocols, all participating nodes maintain large-scale topol-
ogy information. In destination-based protocols, on the other hand,
nodes maintain only some local topology information. This class of
protocols includes distance-vector protocols, in which nodes maintain
distance and next hop information for all destinations.

• Scheduling: Routing protocols may be either proactive or reactive. A
proactive protocol keeps routing information for all destinations at all
times, whereas reactive protocols only compute routes for a destination
upon request. Proactive protocols thus minimize delay in obtaining a
route, but may use significantly more network resources, as routes may
be computed for destinations that no message will ever be destined
for. The dissemination of route requests in on-demand protocols, on
the other hand, requires a significant amount of flooding, which puts
heavy load on the network. Also, as nearby nodes are bound to re-
broadcast a message more or less at the same time, there is a great
chance of contention and collisions occurring.

In addition to this, MANETs may also, as mentioned in Section 2.1.2,
be classified as either sparse or dense. Routing in dense MANETs is more
similar to traditional routing than in sparse networks, as network partitioning
and merging are fairly infrequent events and thus there is one only partition
that needs to be considered. With sparse networks and several partitions,
however, there is an additional problem regarding how to send messages
from one partition to another and how to manage partition merging. In
the following we will first go through a couple of routing protocols for dense
networks, before we give a few examples on routing in sparse MANETs.

Routing in Dense MANETs

Optimized Link-State Routing Optimized Link State Routing (OLSR)
is a non-uniform, neighbor selection based, proactive routing protocol, mean-
ing that not all nodes participate in the route computation, and that only
information about a node’s neighbors is disseminated throughout the net-
work [13].

OLSR is, as the name implies, an optimized version of link-state rout-
ing (LSR), one of the main classes of routing protocols in traditional wired,
packet-switched networks. In regular link-state routing, link state informa-
tion from each node is distributed to all other nodes in the network upon

14 Chapter 2

(a) Regular link-state routing. (b) Optimized link-state routing.

Figure 2.3: Message forwarding in LSR versus OLSR. Link-state information
from the white middle node is broadcast. Light gray nodes forward messages,
black nodes do not.

topology changes. The optimization introduced by OLSR imposes distribu-
tion of link-state information to only a subset of a node’s neighbors, called
the node’s multi-point relay (MPR) set. The MPR set for a node is the
minimal subset of the node’s neighbors which must re-broadcast a message
for it to reach all of the node’s two-hop neighbors.

A node’s link-state information is broadcast to all its neighbors, but only
those in the node’s MPR set re-broadcasts the information, minimizing the
number of messages sent during route discovery and maintenance. Also, only
the link-states of the neighbors in a node’s MPR set is advertised, as opposed
to the entire set of neighbors. This is sufficient, as each of the node’s two-hop
neighbors is a one-hop neighbor of some node in the MPR set [13].

The effect of this optimization is shown in Figure 2.3. Figure 2.3a
shows the message forwarding in LSR, where every node re-broadcasts all
received link-state messages, while Figure 2.3b shows the message forwarding
in OLSR, where only members of a node’s MPR set re-broadcasts a link-state
message.

Ad-Hoc On Demand Distance Vector Routing Ad-hoc On-demand
Distance Vector (AODV) is, as opposed to OLSR, a uniform, destination-
based, reactive routing protocol [13]. Whenever a node needs a route to a
certain destination, it broadcasts a route request (RREQ). The RREQ is
re-broadcast at every node until it reaches the correct destination. Then,
a route reply (RREP) is sent back towards the source. On the way back,
a forward destination vector is created at each intermediate node. Data
destined for the located node then follows the path stated in the forward
destination vector.

Mobile Ad-Hoc Networks and Autonomic Networking 15

A

B
C

D

E

F

(a) Initial state.

A

B

C

D

E

F

(b) Node B has moved towards the
second partition.

Figure 2.4: Epidemic routing in a MANET with two partitions and one node
moving from the sending partition to the receiving partition. The messages
sent from A towards F follows the arrows.

Routing in Sparse MANETs

If the application can tolerate it, one might use delay tolerant techniques to
support routing. These techniques are designed to handle partitioning and
the lack of a path between two nodes by trying to find a time-space path
between the sender and the receiver. A time-space path is a path which does
not exist at one single point in time but rather over a time interval.

These solutions follow the store — carry — forward principle, which
means that when a node receives a message that cannot immediately be
delivered, it is stored, carried around with the node and then, whenever
possible, forwarded, either to another carrier or to the destination. Messages
may be stored for an arbitrary amount of time, but by allowing the time
between sending and receiving data to be arbitrary large, the probability of
correct delivery gets very close to one.

Epidemic Routing Epidemic routing is a reactive approach, in which
messages are distributed to carriers. The carriers are responsible for dis-
tributing the message throughout the network [41]. The approach relies on
the carriers to, at some point in time, get within range of other partitions so
that the messages they carry may be forwarded to nodes in these partitions.
The approach is illustrated in Figure 2.4, showing a network consisting of
two partitions. In Figure 2.4a, node A, located in the first partition, is ready
to send a message to node F, located in the second partition. Node A then
forwards its message to the nodes within range, B and C, which then carry
this message with them whereever they go. In Figure 2.4b, node B has moved
towards the second partition, and may thus exchange carried messages with
node D. Node D may now forward the message to its neighbor, node F.

Message Ferrying Message Ferrying is a proactive routing protocol. In
message ferrying, special nodes, called message ferries or just ferries, are
used to deliver messages. Ferries move along a non-random path, picking
up and delivering messages to the regular nodes it passes [44]. The message

16 Chapter 2

ferrying scheme may be either node initiated or ferry initiated. In a node
initiated scheme, the ferry path is known to all nodes. Whenever a node
wants to send something, it moves towards the ferry and delivers its messages
to the ferry when the ferry is within the node’s range.

In the ferry initiated scheme, the ferry moves according to the nodes’
needs. Long range radio is used by nodes to inform the ferry that they are
ready to transmit, instructing the ferry to move towards these nodes.

2.1.4 Applications

The term ad-hoc comes from Latin and means for this purpose. A MANET
is a network which may be set up anywhere in a short time, thus being able
to satisfy a demand at short notice. A MANET is set up when no infrastruc-
ture is present, thus a MANET is the only possibility for communication, or
whenever the use of present infrastructure is unwanted, for example for se-
curity reasons or simply because the existing infrastructure is too expensive
to use.

As there is no centralized control within a MANET, there is no single
point of failure. This, together with easy setup and self-organizing nodes,
makes MANETs robust to errors and topology changes in terms of entering
and leaving nodes.

MANETs may be suitable in a wide variety of settings. Some typical
applications include:

• Rescue operations, as illustrated in the motivation for this thesis in
Section 1.2.

• Vehicular environments: MANETs may be used in vehicular environ-
ments, for example to share information between vehicles. If an acci-
dent or some other obstacle has occurred, passing cars may transmit
information about this to other vehicles on their way to this area, mak-
ing them aware of the situation.

• Wildlife monitoring: When monitoring animals in their natural habi-
tat, the monitoring should not interfere with the animals’ natural be-
havior. Thus, animals should be able to move as usual and should not
be bothered by the sensing device in any way, as this might affect their
behavior. To achieve this, small sensing devices may be used. These
run on battery power, and a sensor on one animal may communicate
both with sensors on other animals as well as with base stations or
nearby researchers. An example of such a use is ZebraNet [19], which
tracks animal data such as animal location in an area of hundreds or
thousands of square kilometers in Kenya.

• Military operations: Military operations often take place in areas where
infrastructure is non-existing or not suitable to use because of security

Mobile Ad-Hoc Networks and Autonomic Networking 17

issues. The use of a MANET is such scenarios would enable military
personnel to communicate, track friendly and enemy forces, and pin-
point hazards like minefields. This field is the originator of the basic
ad-hoc network techniques [38]. MANETs have been used for this pur-
pose by the American forces in Iraq [32].

• Home networking and personal entertainment: MANETs may be set up
in personal homes, classrooms and public areas to enable for example
file sharing and gaming.

2.2 Autonomic Networking

2.2.1 Autonomic Networks

As stated in the introduction, what we want is for networks to have the
ability to organize themselves, and to adapt to the changes in themselves
and their environment. This kind of networks may also be called Autonomic
Networks. Schmid et al. [34] propose the following definition of autonomic
systems:

”An Autonomic System is a system that operates and serves its
purpose by managing its own self without external intervention
even in case of environmental changes.”

In other words, an autonomic network should be able to detect changes
and to react upon them.

2.2.2 Self-*: Properties of an Autonomic Network

An autonomic network should be self-organizing. This means that the nodes
in the network should organize themselves, and cooperate to form a commu-
nity through dynamic role assignment and joint decision making.

Exactly what properties are needed in an autonomic network is discussed
in the literature. Schmid et al. state in [34] that all autonomic systems need
to exhibit the following minimal set of properties to be able to actually
function autonomically:

• Automatic: The system, here the network nodes, needs to self-control
its internal functions and operations, including bootstrapping, without
any manual intervention.

• Adaptive: The system needs to be able to change its operation to be
able to cope with temporal and spatial changes in its context.

• Aware: At last, the system needs to be able to monitor its context as
well as its internal state.

18 Chapter 2

Serugendo [35], as well as Kephart and Chess [20] identify four funda-
mental principles that characterize an autonomic network. These principles
are often called the self-* properties, and are stated as follows:

• Self-configuration:

”Automated configuration of components and systems fol-
lows high-level policies. Rest of system adjusts automatically
and seamlessly.” [20]

This is the first step of self-management within an autonomous net-
work. It includes adjusting to new and updated components, as well
as leaving components. For example, the nodes in a network need to
adapt to new nodes connecting to the network, as well as nodes leaving
the network.

• Self-optimization:

”Components and systems continually seek opportunities to
improve their own performance and efficiency.” [20]

It is important that all nodes cooperate to keep the network in a state
that is feasible not only for one node, but for the network as a whole.
Self-optimization in a network needs to be done at both node and
network level. On node level, this means for the node to adapt to the
current conditions both in the node’s environment, meaning the rest
of the network, as well as in the node itself. On network level, this
includes global optimization through joint decision making.

For example, a node needs to adjust its own resource usage, both ac-
cording to its own needs and to the needs of the other nodes in the
network. If not, we risk having one node using all the available band-
width, leaving all other nodes starving.

• Self-protection:

”System automatically defends against malicious attacks or
cascading failures. It uses early warning to anticipate and
prevent system wide failures.” [20]

As networks and computer systems in general are getting more and
more complex, the probability of some problem occurring also in-
creases. Such problems may be both malicious attacks and normal
software and/or hardware failures. To prevent the system or network
from complete failure, it is important for the nodes in the network to
be able to protect themselves against these threats.

• Self-healing:

Mobile Ad-Hoc Networks and Autonomic Networking 19

”System automatically detects, diagnoses and repairs local-
ized software and hardware problems.” [20]

Self-healing needs, as self-optimization, to be performed at both node
level as well as network level. On node level, each node can recover from
failure by re-configuring itself, e.g. by replacing a failed component with
an equivalent, well-functioning component. On network level, recovery
may be accomplished by re-organizing the network, e.g. by replacing
failing nodes with other nodes capable of conducting the same tasks.

For the network nodes to be able to fulfill these four self-* properties,
they obviously need quite some knowledge, both about their own state as well
as the network state. Thus, each node also needs a fifth property, namely
self-monitoring — it needs to be able to monitor both itself and the rest of
the network.

• Self-monitoring: Nodes need to monitor themselves to make sure they
fulfill their objectives. Exactly what to monitor depends on the needs
of the node and of the network. Also, the nodes somehow need to
monitor their environment to be able to cooperate with the other nodes
in a best possible way. In other words, they need to be context-aware.
In [7], Dey gives the following definition of context:

”Context is any information that can be used to characterize
the situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction between
a user and an application, including the user and applications
themselves.”

In [39], metadata, more specifically profiles and policies, are viewed as
an emerging approach to support context-awareness. Profiles represent
data concerning users, devices, system components and the surround-
ing environment. ”Data” may include information like user preferences,
device capabilities (available disk space, available memory, installed
software) and network conditions. Policies, on the other hand, express
system behavior, in terms of the actions subjects can or must operate
upon resources. In [37], Sloman distinguishes between two kinds of
policies: Authorization policies and Obligation policies. The former
describes which actions are allowed and which are not, while the latter
describes which actions are mandatory and which are not.

Monitoring is also important when trying to detect problems, or when
recovering from already occurred problems.

We see that the properties stated in [34] cover mostly the same as those
proposed by [35, 20]. Schmid’s automatic property corresponds well to the

20 Chapter 2

self-configuration property, while the adaptive property covers both self-
optimization, self-protection and self-healing. At last, the aware property
and the self-monitoring property are equivalent.

2.2.3 Autonomy in MANETs

We have already stated that a MANET is a collection of, amongst other
things, autonomous nodes. For a MANET to be able to fulfill its pur-
poses, nodes need to be autonomous. The network should be easy to set
up, requiring self-organizing node properties. The MANET also needs to
be able to maintain itself, requiring self-configuration, self-optimization and
self-protection, along with self-healing if anything should go wrong.

Chapter 3

A Bug’s Life

Calvin: ”That’s the problem with nature. Something’s always

stinging you or oozing mucus on you. Let’s go watch TV.”

— Bill Watterson

A lot of self-organizing systems exist in nature. These function without
any external or central control, and thus resemble the autonomous systems
we are striving to develop for MANETs.

A lot of complicated computing problems concern optimization - how to
choose the best alternative from a set of possible solutions to a given problem.
Some practical problems include time tables and scheduling, telecommuni-
cation network design and shape optimization [3]. In computer networking,
the probably most well known problem is routing - to find paths between
nodes within a network. We do not want any path, we want the best path.

Many such problems have been simplified in order to obtain scientific test
cases. An example of such a simplified test case is the traveling salesman
problem.

In this chapter, we dive into the world of biology and take a look at
ants and how they manage to co-operate and organize their flock without
any direct communication. Such animal behavior may be used as inspiration
when designing computer systems such as our resource localization system.
To understand how, however, we need to know how the animals function
themselves. In the next chapter, we take a deeper look at the computer
science aspect, and will see some example solutions to some well known
optimization problems.

3.1 Communication

Before we start our discussion of ants and stigmergy, a few terms and def-
initions need to be clarified. Central in this topic is communication, or

22 Chapter 3

interaction between individuals.

”Communication: A process by which information is exchang-
ed between individuals through a common system of symbols,
signs, or behavior <the function of pheromones in insect com-
munication>; also : exchange of information”
(Merriam-Webster OnLine Dictionary)

In [14, p. 1], interaction is defined as ”the ongoing two-way or multiway
exchange of data among computational entities, such that the output of one
entity may causally influence the outputs of another”.

We may further divide into direct and indirect interaction. Direct in-
teraction happens via messages, or message passing, where the recipient’s
identification is included in the message. However, as we shall see in this
chapter, some individuals rather communicate via indirect interaction, which
is ”interaction via persistent, observable state changes” [14, p. 1]. The re-
cipients of this kind of ”messages” are any individuals observing these state
changes. This kind of communication may exhibit a lot of characteristics
not present in message passing [14]:

• Late binding of recipient: The identity of the recipient is not necessarily
known at the time of the state change.

• Anonymity: The identity of the recipient is not necessarily known to
the originator of the state change.

• Time decoupling (asynchrony): State changes may be persistent in the
environment, and there may thus be a delay between the state change
and state change observation.

• Space decoupling: The state change originator and observer need not
be co-located - They only need to visit the same spot at some point in
time.

• Non-intentionality: The state change originator does not necessarily
have the intention to communicate.

• Analog nature: The medium of the indirect interaction may be the real
world.

When explaining the design of our ant solution in Chapter 5, we will
revisit these characteristics and look at how they relate to our approach.

3.2 Stigmergy and Ant Colony Optimization

As stated in section 1.3, the term stigmergy was introduced by Grassé in
1959 and defined as

A Bug’s Life 23

”Stimulation of workers by the performance they have achieved.”
Dorigo et al. [9]

Grassé studied the social behavior of termites, and found that these co-
operate on performing different tasks without any direct interaction. Indi-
rect communication may be performed through for example environmental
changes, more specifically by depositing pheromones.

3.2.1 Pheromones

”A chemical substance that is usually produced by an animal
and serves especially as a stimulus to other individuals of the
same species for one or more behavioral responses.”
(Merriam-Webster OnLine Dictionary)

The term semiochemicals, which is derived from the Greek word semeion
- sign, is used for chemicals involved in animal communication. Pheromones
are a subclass of semiochemicals used in intraspecific communication [42].

The term ”pheromone” is derived from the Greek words pherein, which
means ”to bear” and hormōn, which means to excite or stimulate. The term
was introduced in 1959 by Peter Karlson and Martin Lüscher, who were
working on identifying the chemicals that maintain the caste system of ter-
mites [27].

According to Wyatt [42], pheromones were originally defined by Karlson
and Lüscher as ”substances secreted to the outside by an individual and
received by a second individual of the same species in which they release
a specific reaction, for instance a definite behavior [releaser pheromone] or
developmental process [primer pheromone]”.

As stated in the above definition, pheromones may be used by animals
to attract other individuals of the same species. For example, animals like
cats and dogs leave territorial marking pheromones; The cat by rubbing its
cheek on a human leg, and the dog by urinating. Alarm pheromones are
left by aphids whenever an individual gets crushed, making other nearby
aphids flee. Some species leave kin-recognition pheromones to help each
individual recognize which other individuals are family and which are not.
Other species, for example the Aphaenogaster rudis ants, leave recruitment
pheromones to lead nest mates to a food source. (All examples fetched from
[6]).

3.2.2 Ants and Their Pheromones

For us humans, sight and hearing are the most important senses. For many
ant species, however, the sight sense is only rudimentary developed, and
some ant species are even completely blind [10]. Thus, ants can not neces-
sarily rely on this sense when communicating with each other. Instead, they

24 Chapter 3

(a) Lasius Niger, from http://

harrierpestprevention.info/about

(b) Iridomyrmex humilis, from
http://www.terro.com/guide-ants.

php

Figure 3.1: Two kinds of ants leaving pheromone trails

communicate indirectly with pheromones. Ants make use of different kinds
of pheromones, but particularly important is the trail pheromone used by
some ant species, such as Lasius niger (black garden ant), shown in Figure
3.1a and Iridomyrmex humilis (Argentine ant), shown in Figure 3.1b. These
ants use pheromones to leave trails on the ground, which in turn may be
used for example to record the path to a food source. Other ants may later
smell these trails and walk the same path, and are thus lead to the food
source.

What makes the pheromone trails particularly useful, is that ants tend
to probabilistically choose the paths with the highest pheromone concentra-
tions. Initially, ants will walk a random path, as no pheromone traces are
present. Ants walking leave pheromones along the path they are walking.
The pheromone concentration along one path will decrease with time because
of diffusion. The speed of this diffusion is such that over time, shorter paths
will get a higher pheromone concentration, as these paths take a shorter time
for an ant to walk. The higher concentration makes more ants choose this
particular path, again leading to an even higher concentration of pheromones
on this path. After a while, the same, shortest path will be used by most
ants. There will, however, always be a chance for another path to be chosen.

Pheromones evaporate over time. Pheromone evaporation enables a form
of forgetting in the sense that too rapid convergence towards a suboptimal
region is avoided. Also, if the food situation should change, old and outdated
information will disappear with time.

However, studies with real ants have shown that in some cases, ants are
unable to converge to the shortest path [10]. In the study, the ants were
offered only one path from their nest to a food source. Thus, all ants walked
this path to get to the food. After 30 minutes, a shorter branch was added,
as shown in Figure 3.2. One would think that now, the ants would move
from the longer path to the new and shorter path. However, only a small
number of ants chose the shorter branch, and the colony was never able to
converge to using the new path. This happens due to the characteristics of

http://harrierpestprevention.info/about
http://harrierpestprevention.info/about
http://www.terro.com/guide-ants.php
http://www.terro.com/guide-ants.php

A Bug’s Life 25

Figure 3.2: Experiment setup where ants are unable to converge to the
shortest path. Figure copied from [10, p. 5].

pheromone evaporation: Evaporation on the longer branch happens too slow
for high pheromone concentration to decrease, and the longer branch is still
reinforced after the shorter path was introduced.

At least one ant specie, namely the Monomorium pharaonis (pharaoh
ant), also leaves repellent pheromones when they find that a path does not
lead to a food source. This kind of pheromone will work as a ”no entry” signal,
marking the unrewarding branch with a signal which greatly increases the
probability of other ants selecting a different branch or making a U-turn [33].

3.2.3 Ant Colony Optimization

From the above discussion, we see that the ants do not only find a path from
their nest to the food source, they actually tend to find the shortest path
to the food source. This fact has inspired computer scientists to develop
algorithms to solve optimization problems. The first such attempts were
done in the early 1990s, and one of the outcomes of this research is ant
colony optimization (ACO). ACO algorithms are now ”the most successful
and widely recognized algorithmic technique based on ant behaviors” [10, p.
ix].

An example of an ACO application area is network management, such
as routing and load balancing. How ACO algorithms work and may be used
to solve such problems will be further discussed in Chapter 4.

Chapter 4

ACO Approaches to Some

Traditional Problems

”The system of nature, of which man is a part, tends to be self-

balancing, self-adjusting, self-cleansing. Not so with technology.”

— E.F. Schumacher

This chapter will give some samples on how ACO algorithms may be used
to solve some traditional computing problems, namely the traveling salesman
problem and the routing problem, both in traditional, wired networks as well
as in MANETs.

Note that the contents in this chapter are partly based on the book ”Ant
Colony Optimization” by Dorigo and Stützle [10], and the contents in Section
4.3.2 are also partly based on the article ”Anthocnet: an ant-based hybrid
routing algorithm for mobile ad hoc networks” by Di Caro, Ducatelle, and
Gambardella [8].

4.1 The Ant Colony Optimization Metaheuristic

A metaheuristic is ”a set of algorithmic concepts that can be used to define
heuristic methods applicable to a wide set of different problems” [10, p.
25]. In [10], Dorigo and Stützle define the ant colony optimization (ACO)
metaheuristic, inspired by the behavior of real ants. In this metaheuristic,
artificial ants cooperate on finding good solutions to discrete optimization
problems. In the following, we will provide a short summary of the ACO
metaheuristic. Please note that, for simplicity, a lot of details and formalities
have been left out.

In ACO, an artificial ant is ”a stochastic procedure that incrementally
builds a solution by adding opportunely defined solution components to a

28 Chapter 4

partial solution under construction” [10, p. 34]. Solutions are built by the ar-
tificial ants, which are moving on the construction graph GC = (C,L), where
the set of arcs L fully connects the components C. Each component ci ∈ C
and connections lij ∈ L can have associated a pheromone trail τ , which may
be associated either with components, then denoted τi, or connections, then
denoted τij, and a heuristic value η (ηi and ηij). The pheromone values
are long term memory about the entire search process, whereas the heuristic
values represent a priori information about the problem instance or run-time
information provided by a source different from the ants.

Each artificial ant k exploits the construction graph to search for optimal
solutions. The ant has a memory Mk where it stores information about the
path it has followed. This memory is used both to build solutions, to compute
heuristic values, to evaluate solutions and to retrace the path to find the way
back.

Each ant has a start state and a set of termination conditions. If at
least one termination condition is satisfied, the ant stops. If no termination
condition is satisfied, the ant moves to a node in its neighborhood. Which
neighbor to move to is decided by applying a probabilistic decision rule,
which is a function of the locally available pheromone trails and heuristic
values, the ant’s private memory and the problem constraints. When a
component is added to the ant’s current state, the ant may update the
pheromone trail τ associated with either the component or the corresponding
connection. When a solution has been built, the ant retraces the traveled
path and updates the pheromone trails of the used components.

As a summary, an ACO algorithm may be imagined as consisting of three
procedures:

• ConstructAntsSolutions: Manages the ant colony. Each ant visits
adjacent states of the considered problem by moving through neighbor
nodes. Neighbor selection is done by stochastically selecting a next
hop according to pheromone trails and heuristic information associated
with each arc or the node as a whole. Each ant evaluates its solution,
either during building or after a complete solution has been built.

• UpdatePheromones: Modifies pheromone trails. Pheromone con-
centration increases when pheromones are ”deposited”, and decreases
with time due to pheromone evaporation.

• DaemonActions: Used to implement central actions which cannot
be performed by single ants, such as activation of a local optimization
procedure or collection of global information.

In Figure 4.1, we reproduce a short, general pseudo-code found in [10, p. 38].
This pseudo-code does not give any information on how the three procedures
should be executed in relation to each other. This issue is completely up to
the system designer.

ACO Approaches to Some Traditional Problems 29

procedure ACOMetaheuristic
ScheduleActivities

ConstructAntsSo lut ions
UpdatePheromones
DaemonActions % opt iona l

endScheduleActivities
endProcedure

Figure 4.1: Pseudo-code for the ACO metaheuristic.

In the metaheuristic, as in real life, the ants communicate indirectly via
the pheromone trail values. Thus, this may be viewed as ”a distributed learn-
ing process in which the single agents, the ants, are not adaptive themselves
but, on the contrary, adaptively modify the way the problem is represented
and perceived by other ants” [10, p. 37].

4.2 The Traveling Salesman Problem

The Traveling Salesman problem (TSP) is an NP-hard problem in combi-
natorial optimization. In this problem, a salesman has a set of towns he is
going to visit. He starts from his home town, and wants to find the shortest
possible path such that each city is visited once and only once.

This problem may be represented by a complete weighted graph G =
(N,A) where N is the set of nodes or cities to be visited and A is the
set of arcs connecting the nodes. Each arc (i, j) is assigned a weight dij ,
representing the distance between the two cities i and j. The TSP is then
the problem of finding a minimum length Hamiltonian circuit of the graph,
where the Hamiltonian circuit is a closed walk visiting each node n of G
exactly once. An optimal solution to this problem is thus a permutation π
of the node indices {1, 2, . . . , n} such that the length f(π) is minimal, where
f(π) is given by

f(π) =
n−1
∑

i=1

dπ(i)π(i+1) + dπ(n)π(1) (4.1)

[10, p. 66]. Note that the absolute position of a city in a tour is not important,
only the relative order is, making n permutations map to the same solution.

4.2.1 Solving the TSP with ACO Algorithms

When solving the TSP with ACO, we need to map the characteristics of the
TSP to the ACO metaheuristic. The construction graph is identical to the
problem graph, as the number of components correspond to the set of nodes.

30 Chapter 4

The connections correspond to the set of arcs, and the connection weights
correspond to the distance dij between the two nodes i and j.

The TSP involves only one constraint, namely that all cities must be
visited exactly once. The feasible neighborhood for an ant choosing its next
hop thus comprises all cities that are still unvisited.

Pheromone trails, denoted τij, in the TSP correspond to the desirability
of visiting city i right after city j. The heuristic information ηij is usually
inversely proportional to the distance between city i and city j, for example
1

dij
.

A solution is built by placing each ant on a randomly chosen start city.
At each step, each ant iteratively adds one still unvisited city to its partial
tour. As soon as all cities have been chosen, the solution construction is
terminated.

4.2.2 AntSystem

The TSP has played a central role in ACO, as this was the application
problem chosen for the first proposed ACO algorithm, namely AntSystem
(AS). The TSP has also been used as test system for most ACO algorithms
developed later [10]. AS has been found to be inferior to state-of-the-art
algorithms for the TSP, but has still worked as an inspiration for later, more
efficient systems extending AS, such as MAX −MIN AS, elitist AS and
rank-based AS. However, in this thesis, we choose to focus on AS rather than
the extensions, as this gives the clearest picture of the ACO concepts. The
main difference between AS and the mentioned extensions lies in the way
the pheromone update is performed.

Initially, there were three different versions of AS: ant-density, ant-quan-
tity and ant-cycle. In the two former approaches, pheromone values were
updated directly after a move between two nodes, whereas in the latter
version, pheromone values were updated only after all ants had constructed
the tours, making the amount of deposited pheromone reflect the quality of
the tour. However, AS is now synonym with the latter approach, as this
approach turned out to outperform the other two.

Tour Construction

Initially, m ants are placed on randomly chosen cities. At each construction
step, ant k chooses its next hop by applying a probabilistic action choice
rule, called random proportional rule. The probability p for ant k, currently
located at city i to choose as next hop city j is

pk
ij =

[τij]
α[ηij]

β

∑

l∈N k
i
[τil]α[ηil]β

(4.2)

ACO Approaches to Some Traditional Problems 31

where ηij is a heuristic value that is available a priori, α and β are two
parameters which determine the relative influence of the pheromone trail
and the heuristic information, and N k

i is the feasible neighborhood of ant k
being in city i, meaning the set of cities not yet visited by k. For details on
what values to use for these parameters, see [10, p. 71].

A memory, Mk, is maintained by each ant k. This memory contains
which cities have been visited so far, in the order they were visited. The
memory is used to define the feasible neighborhood N k

i , to find the length
of a tour and to retrace the path to deposit pheromone after construction.

Pheromone Values

An AS heuristic to pheromone trail initialization is to set them to a value
slightly higher than the expected amount of pheromone deposited by the
ants in one iteration. A rough estimate to this value can be estimated by
setting, ∀(i, j), τij = τ0 = m

Cnn , where m is the number of ants and Cnn

is the length of a tour generated by the nearest-neighbor heuristic, which
always chooses the nearest (unused) neighbor as next-hop.

After all tours have been constructed, pheromone values are updated.
Pheromone evaporation is executed first by lowering the pheromone values
on all arcs by a constant factor:

τij ← (1− ρ)τij , ∀(i, j) ∈ L (4.3)

where 0 < ρ ≤ 1 is the pheromone evaporation rate and L is the set of arcs
in the construction graph. After evaporation, all ants deposit pheromones
on the arcs they have crossed:

τij ← τij +
∑m

k=1 ∆τk
ij, ∀(i, j) ∈ L (4.4)

where ∆τk
ij is the amount of pheromone ant k deposits on the arcs it has

visited. It is defined as follows:

∆τk
ij =

{

1/Ck, if arc (i, j) belongs to T k,
0, otherwise;

(4.5)

where Ck is the length of the tour T k, computed as the sum of the lengths
of the arcs belonging to T k. Equation (4.5) gives higher pheromone deposits
the better the tour is.

4.3 The Routing Problem

The routing problem refers to ”the distributed activity of building and using
routing tables” [10, p. 224]. Routing tables are present in each node in the
network, and contains information used by the routing algorithm to make

32 Chapter 4

local forwarding decisions, more specifically which outgoing interface to for-
ward incoming packets on. The characteristics of networks make the routing
problem harder to solve; nodes move, disappear and appear, making links
tentative. Thus, this problem is quite different from the TSP above. The
routing problem is also, however, an optimization problem, as we are always
interested in the most optimal path from A to B. What an optimal path is,
however, may be discussed. This discussion is, however, outside the scope of
this thesis.

4.3.1 AntNet — Routing in Traditional Networks

An example of use of stigmergy in traditional networks is AntNet [4]. AntNet
is an approach to the adaptive learning of routing in communications net-
works. The approach is based on artificial agents, simulating the ants. The
agents are used to conduct repeated simulations, where information collected
from past simulations are used to improve the results.

Problem Description

AntNet is targeted at irregular topology packet-switched data networks with
an IP-like network layer and a very simple transport layer, and focuses on
wide area networks (WANs).

The network instances considered by AntNet can be mapped to directed
weighted graphs with n forwarding nodes. All links between nodes may
be viewed as bit pipes characterized by a bandwidth, measured in bits per
seconds, and a transmission delay, measured in seconds. Packets are divided
between data packets, which are stored in low-priority queues within each
node, and routing packets, which are served in high-priority queues.

The results from [4] state that AntNet shows superior performance and
robustness for most of the experiments conducted. In [10] (published in
2004), Dorigo and Stützle state that AntNet is ”the sole algorithm to have
reached, at least at the experimental/simulation level at which it was tested,
state-of-the-art performance” [10, p. 223].

Algorithm

The algorithm used in AntNet is highly representative for stigmergy-inspired
algorithms, and may be summarized as follows:

1. At regular intervals, from each network node, artificial forward ants, are
sent towards a randomly selected destination node. These agents are
supposed to find the most feasible path from the source to the destina-
tion. In each node along the path, the forward ants share queues with
the data traffic, making the agents experience realistic traffic loads.

ACO Approaches to Some Traditional Problems 33

2. Artificial ants act concurrently and independently, and communicate
indirectly as explained above.

3. Each forward ant searches for a minimum cost path between the source
and destination nodes.

4. Each forward ant moves towards the destination node, hop-by-hop. At
each intermediate node, the next hop is chosen by applying a greedy,
stochastic policy, making use of pheromone values recorded in the cur-
rent node, the ant’s memory and any node-local problem-dependent
heuristic information.

5. All forward ants keep record of their traveled path, the experienced
traffic conditions and time length.

6. When the destination node is reached, the forward ant creates a new
agent, a backward ant, transfers to it all of its memory, and dies. The
backward ant travels back towards the source along the path recorded
by the forward ant.

7. Along the way back, the backward node updates pheromone values
in the nodes along its path with the new information learned by the
forward ant.

Solution Construction

At regular intervals ∆t a forward ant Fs→d is launched from each node s
toward a destination node d to discover a feasible path between the two
nodes, as well as to investigate the load status along the path. Forward ants
are treated as data packets, thus sharing with them a low-priority queue,
which gives them the same experience of network traffic as later data packets
would. Destinations are locally selected according to the data traffic patterns
generated by the local workload: if fsd is a measure (in bits or the number of
packets) of the data flow workload, then the probability of creating at node
s a forward ant with node d as destination is

psd =
fsd

∑n
i=n fsi

(4.6)

This distribution makes ant exploration adapt to the variance in data traffic,
thus looking more often for new paths to often used destinations.

When choosing the next hop, forward ants choose between all neighbors
that have previously not been visited, or all neighbors if all neighbors have
been visited. The probability of choosing node j as next hop is pijd, com-
puted as the normalized sum of the pheromone value τijd with a heuristic

34 Chapter 4

value ηij taking into account the length of the j-th link queue of the current
node i:

pijd =
τijd + αηij

1 + α(|Ni| − 1)
. (4.7)

The heuristic value ηij is a [0, 1] normalized value function of the length qij

(in bits waiting to be sent) on the queue on the link connecting the node i
with its neighbor j:

ηij = 1−
qij

∑|Ni|
l=1 qil

(4.8)

The value of α weighs the importance of the heuristic value with respect
to the stored pheromone values.

If cycles are detected, meaning that the forward ant has returned to an
already visited node, the cycle’s nodes are removed from the ant’s memory.
Forward ants have a max_life parameter telling how many hops a forward
ant may travel. If the destination is not reached within this number of hops,
the ant dies.

Pheromone Values

In this section we give a brief overview of pheromone value updating in
AntNet. Please note that for simplicity, a lot of details have been omitted.

Pheromone values, as well as traffic models, are updated by backward
ants. Pheromone values are updated by incrementing the pheromone τifd′

(the pheromone suggesting to choose neighbor f when the destination is d′)
and decrementing the other pheromones τijd′ , j ∈ Ni, j 6= f . Pheromone
updates depend on a measure of the goodness associated with the trip time
Ti→d′ experienced by the forward ant. In this thesis, we have chosen not to
dig into the details of goodness computation. For more information on this,
see [10, ch. 6].

The reinforcement r ≡ r(T,Mi), 0 < r ≤ 1, whereMi is the local traffic
model, is used to update the pheromones. It is used by the backward ant
Bd→s moving from node f to node i to increase the pheromone values τifd′ :

τifd′ ← τifd′ + r · (1− τifd′). (4.9)

Small pheromone values are thus increased proportionally more than large
pheromone values, favoring a quick exploitation of new, and good, discovered
paths.

Pheromones τijd′ for destination d′ of the other neighboring nodes j,
j ∈ Ni, j 6= f , evaporate implicitly by normalization: Their values are
reduced so that the sum of pheromones on links exiting from node i will
remain 1:

τijd′ ← τijd′ − r · τijd′ , j ∈ Ni, j 6= f. (4.10)

ACO Approaches to Some Traditional Problems 35

4.3.2 AntHocNet — Routing in Mobile Ad-Hoc Networks

As stated in Chapter 2, nodes in a MANET should be capable of working as
routers as well as ”normal” network nodes, as there is no fixed infrastructure
in such a network. A large number of algorithms for routing in MANETs ex-
ist. Common for the existing algorithms is, however, that they require large
amounts of overhead to perform the routing procedure [23]. In MANETs,
resources tend to be scarce, and the amount of overhead is thus wanted to
be as small as possible.

In [23], Mehfuz and Doja argue that ACO algorithms are well suited also
for MANET routing algorithms. They identify four properties of this kind
of algorithms that illustrate why this is the case:

• Dynamic topology: This is one of the major properties of MANETs,
and thus needs to be supported by MANET routing algorithms. As
ant colony optimization algorithms are based on individual agents, or
ants, this allows for a high adaptation to the rapidly changing network
topology.

• Local work: Instead of flooding topology information throughout the
network, these algorithms are based only on local information, giving
a great reduction in the amount of control overhead.

• Link quality: The ants leave traces on the nodes they visit, and these
traces are later used to determine the next hop by other ants. These
traces may contain information about link quality, so that routing de-
cisions may be taken based also on link quality, not only hop count,
which is usual in MANET routing algorithms.

• Support for multipath: All nodes keep ”ant trace” information for all
their neighbors.

AntHocNet [8] is an ACO inspired algorithm for routing in MANETs. In
AntHocNet, ants follow and update pheromone tables in a stigmergic learn-
ing process. Data packets are routed stochastically according to the learned
tables [5]. However, routing in traditional, wired networks is mostly done
proactively. Because of MANET characteristics, AntHocNet exploits a hy-
brid approach: The approach is reactive in the sense that route information
is only gathered when some node actually needs it, while it is also proactive
because nodes try to maintain and, if possible, improve routes for the dura-
tion of the communication between the source and destination. There are
thus two phases: path setup and path maintenance and improvement. The
latter phase is supported by a process called pheromone diffusion, where ob-
tained routing information is spread between the nodes in the MANET in
an information bootstrapping process.

36 Chapter 4

Solution Construction

Like AntNet, AntHocNet uses forward and backward ants. Whenever a
node s needs a path to a destination d and node s has no available routing
information for d, it broadcasts a reactive forward ant. At each intermediate
node, this ant is either unicast or broadcast, according to whether or not
the current node has any pheromone information for d. If no pheromone
information is available, the forward ant is broadcast. If a node receives
multiple broadcast copies of one forward ant, only the first copy is handled.
If pheromone information is present, the next hop n is chosen with the
probability Pnd. This probability depends on the relative goodness, which is
a combined measure of path end-to-end delay and number of hops, of n as a
next hop, expressed in the pheromone variable T i

nd:

Pnd =
(T i

nd
)β

P

j∈N i
d
(T i

jd
)β β ≥ 1, (4.11)

where N i
d is the set of neighbors of i over which a path to d is known, and β

is a parameter which controls the exploratory behavior of the ants.

Proactive Path Maintenance After a path has been set up, source nodes
send out proactive forward ants to update the information about currently
used paths and to try to find new and better paths. These ants follow phero-
mone and update routing tables in the same way as reactive forward ants. To
avoid excessive bandwidth consumption through random walks and broad-
casts, pheromone diffusion is introduced to allow spreading of pheromone
information throughout the network. This is done by periodically and asyn-
chronously broadcasting short messages by the nodes to all their neighbors.
These short messages contain a list of destinations the sending node has
routing information for, including for each of these destinations d the best
pheromone value T d

m∗d,m∗ ∈ N
n
d , which n has available for d. All receiving

nodes may use this information to update their own routing and pheromone
tables, as well as for path exploration. For more details on path maintenance
and exploration, see [5].

Pheromone Values

Each ant maintains a memory of the nodes it has visited. This memory
is used by backward ants to backwards retrace the path followed by the
forward ant. At each node along this path, the backward ant reads a locally
maintained estimate T̂ i

i+1 of the time it takes to reach the neighbor i + 1,

the node the backward ant arrived from. The time T̂ i
d it would take a data

packet to reach d from i over the path from the ants memory is calculated
incrementally as the sum of the local estimates T̂ j

j+1 gathered by the ant

between i and d. This time estimate T̂ i
d is combined with the number of

ACO Approaches to Some Traditional Problems 37

hops h between i and d over the recorded path to calculate the pheromone
value τ i

d by the following formula:

τ i
d =

(

T̂ i
d + hThop

2

)−1

, (4.12)

where Thop is a fixed value representing the time to take one hop in unloaded
conditions. The estimated goodness of going from node i over neighbor n to
reach destination d, T i

nd, is then updated as follows:

T i
nd = γT i

nd + (1− γ)τ i
d, γ ∈ [0, 1]. (4.13)

Chapter 5

Design

”A common mistake that people make when trying to design

something completely foolproof is to underestimate the ingenuity

of complete fools.”

— Douglas Adams

In this chapter, we will derive a design for an ant-inspired algorithm
for locating a resource in a MANET. The first sections state the goal, the
assumptions made and the requirements for our solution, before we start the
description of the issues and design choices made during our work. The final
section provides a short pseudo code summary of the design.

5.1 Goal

As stated in the problem description in Section 1.3, what we want to achieve
is an algorithm for locating a resource within a MANET. Certain nodes may
contain resources useful to other nodes. In some situations, there is no exist-
ing framework for spreading such information, or there is no way to predict
what kind of information needs to be spread when designing applications.
In such situations, interested nodes need a way to find these resources them-
selves whenever they need them. As nodes should function autonomously,
the resource localization should take place without any outside intervention.

5.2 Assumptions

We assume random placement of both resource-requesting nodes as well as
resource-holding nodes within the MANET. Thus, our nodes have no initial
knowledge about the resource location. Also, we assume that a node’s re-
sources are independent of the node’s physical location, thus, the fact that
a node may be mobile does not inflict with its resources.

40 Chapter 5

5.3 Requirements

There are some absolute requirements that our solution needs to fulfill. These
reflect the purpose of the system, and the environment in which the system
is designed to run:

• If a requested resource is located within the network, it should even-
tually be found.

• Due to MANET characteristics, a major requirement for our system
is that it utilizes the network resources in a sensible way. A resource
localization should be completed with a minimal cost.

We obviously want the resource localization to finish within a reasonable
amount of time, but consider this a less important requirement than good
resource utilization. We are thus willing to sacrifice localization speed in
order to save network and processing resources.

5.4 General Idea

We want to exploit the characteristics of stigmergy, as explained in Sec-
tion 3.2, to locate resources and spread information on available resources
throughout the network. This is done by releasing searching agents, or ants
from the resource-requesting nodes. Ants operate in two modes: forward
and backward. Forward ants are ants still searching for a given resource,
while backward ants are ants retracing the path walked by the corresponding
forward ant, carrying resource location information back to the requesting
node.

If we consider our MANET as a graph G = (N,A), where N is the
set of nodes within the MANET and A is the set of arcs defining the node
connectivity, two nodes i, j ∈ N are neighbors if there exists an arc (i, j) ∈ A.
Because of node mobility, both N and A may vary over time, as nodes join
and leave the MANET, and nodes move in and out of range of each other.

Forward ants perform resource localization by choosing probabilistically
the next node within the graph neighborhood to which the resource request
should be forwarded. Backward ants move deterministically, retracing the
path traveled by the corresponding forward ant during the resource search.

Agents leave pheromone trails as they move along the graph. These trails
are used to bias the probabilistic choice. As explained in Chapter 3.2, most
ACO approaches use these trails to look for the best path from source to
destination:

• Agents leave pheromone traces on their way back from the destina-
tion towards the source, making it possible to adjust the amount of
pheromone to the goodness of the discovered path.

Design 41

• A few paths, namely the ones with the highest goodness value, are
used by most agents, leaving other paths more or less unused.

The result from these characteristics is that most ants follow the same,
best path between a given pair of source and destination nodes. In our case,
however, walking the same path over and over again looking for the same
resource is not necessarily what we want: We assume that if two ants have
initiated a search for the same resource, the second ant is searching because
the first ant did not find anything. The second ant should thus look some-
where else instead. Thus, we want the opposite: To walk as many different
paths as possible to visit a larger range of nodes and thus increasing the
probability of finding an available resource that matches the search criteria.
To achieve this, we will try to exploit ”opposite stigmergy”, which in principle
implies the following:

• Walk the paths with the lowest pheromone concentration, thus the
paths that are least recently (if ever) walked.

A more thorough motivation for this and explanation of how we apply this
is given in Section 5.5.5.

Above, we made the assumption that the only reason for two ants to
look for the same resource is that the first ant did not find anything. This
assumption may be somewhat unrealistic: There might be several nodes in a
network looking for the same resource. Thus, there is a chance that the first
ant actually found what it was looking for and thus the second ant should
be allowed to locate the same resource. This problem is solved by introduc-
ing location learning, where backward ants leave information about located
resources in intermediate nodes. Location learning is further discussed in
Section 5.5.6.

Given this general idea for a solution, our approach exhibits several of
the characteristics of indirect communication listed in Section 3.1:

• Late binding of recipient: When pheromones are left on a branch,
neither the node or any other entity within the system knows if and
when the trail will ever be used by other subsequent ants.

• Anonymity: When leaving pheromones on a branch, our ants do not
know which other ants (if any) will arrive at this node later and use
the trail to choose a next hop. Neither do ants leave any identification,
thus, it is impossible for subsequent ants to find out who deposited the
pheromone trail.

• Time decoupling (asynchrony): There may be an arbitrary long time
interval between the time an ant leaves a pheromone trail to the time
a subsequent ant arrives and uses the trail to choose a next hop.

42 Chapter 5

• Space decoupling: Ants using pheromone trails deposited at a node do
not need to have been located at the node at the time a preceding ant
left the trail.

For our system, the non-intentionality and analog nature characteristics do
not apply, as our artificial ant do leave pheromones in order to enable com-
munication and cooperation only, and the medium of communication may
not be the real world — this approach will only work for computer networks
and artificial ants.

5.5 Issues

5.5.1 Scheduling

As described in Section 2.1.3, routing protocols may be either reactive or
proactive. The same applies to our application: In a proactive approach,
nodes might periodically release agents to localize resources, even though
these resources aren’t necessarily needed at the moment. In this case, we
need to decide which resources to look for beforehand, which is a rather
unrealistic assumption. Another, more realistic, proactive possibility is that
resource holders periodically broadcast their current resource situation. The
drawback with this approach is the same as with proactive routing protocols:
One risks wasting resources on disseminating and storing location informa-
tion for resources that no one will ever look for. The advantage is of course
very low response time.

In a reactive approach, nodes release agents when a specific resource is
needed. This leads to less dissemination overhead, but also a higher initial
delay:

• All nodes would have to search for the resources they need themselves.

• If a resource disappears (resource holder goes down), a new search is
needed.

A combination of these two is also possible. In this approach, the al-
gorithm would initially be reactive, and after this phase, it would exploit
proactive maintenance:

1. Nodes release agents when a specific resource is needed.

2. Nodes keep looking for the resource as long as it is needed.

This approach combines the advantages of the proactive and reactive ap-
proaches:

• Only information relevant to some node(s) is stored.

Design 43

• If a resource holder goes down, we can (if the application allows it)
switch to another, already known, resource holder (if there exists one)
without initiating a new search.

This approach is similar to that of AntHocNet[8], which was described in
Section 4.3.2.

The strictly proactive approach is ruled out, as our main requirement is
low resource usage, and not low response time. Which of the two remaining
approaches to use, depends somewhat on the application and the network
characteristics: If resource-holding nodes may disconnect frequently, or the
requested resources are unstable or perhaps may dry out, the combination
approach may be considered. If node connectivity and resource presence are
more constant, a pure reactive approach should be sufficient, as the cost of
initiating new searches when needed will be lower than that of maintaining
all resource locations.

For this first prototype we begin with the simplest approach, and have
thus chosen a pure reactive approach for our solution. When this prototype
is done and has been thoroughly tested, we may consider trying a more
complex approach such as the combination approach to see how that affects
the solution’s performance.

5.5.2 Communication

Choice of Transport Protocol

In the TCP/IP model, the Transport Layer is responsible for end-to-end
transfer by connecting applications to service ports. This layer is the lowest
layer in the model to offer any reliability, such as flow control and congestion
control. The two most common transport layer protocols are UDP and TCP.

UDP The User Datagram Protocol (UDP) [28] provides best-effort, end-
to-end datagram delivery. Delivery is not guaranteed, no ordering is done
upon arrival, and nothing is done to avoid network congestion. However, the
low level of reliability makes transmission cheap, resulting in fast delivery.
UDP is thus suitable for real-time systems and systems with scarce network
resources.

TCP The Transmission Control Protocol (TCP) [29] provides reliable, or-
dered end-to-end stream delivery. Reliable and ordered delivery means that
TCP guarantees that all sent packets will arrive correctly at the destination.
If some packets are lost, they will be resent, and if packets arrive out of or-
der, they will be reordered. TCP also includes tools for network congestion
avoidance.

However, guaranteed delivery does introduce a cost: TCP is a connection-
oriented protocol, using a three-way handshake to establish its connection.

44 Chapter 5

In a three-way handshake, the client sends a synchronize packet (SYN) to
the server, which replies with a synchronize-acknowledgement (SYN-ACK).
Finally, the client answers with an acknowledgement (ACK), and the con-
nection between the client and the server is established. Thus, there is an
overhead for each connection that is set up. To ensure delivery, overhead
is introduced in terms of acknowledgements, meaning an extra load on the
network. Delivery might also be delayed, as one packet can not be delivered
to higher layers before all previously sent packets have been delivered.

In addition to introducing a substantial amount of transmission overhead,
which is something we want to avoid, TCP is extensively tuned to give good
performance in traditional, wired networks [11]. When a packet is lost, TCP
assumes this is due to congestion and invokes its congestion control mech-
anisms. However, in a MANET, the packet loss did not necessarily occur
because of congestion. The mobility in MANETs often results in frequent
route changes, and a route loss may lead to packet loss. Packet loss due to
connectivity changes should be handled differently than congestion, and as
TCP does not differentiate between these two situations, it is less suitable
for use in MANETs.

By choosing UDP, we risk that some datagrams get lost, meaning that
we have to re-initiate the resource localization. However, UDP is much more
suitable in MANETs, and we have thus chosen UDP as our transport layer
communication protocol in this solution.

Topology Updates

For nodes to be able to further forward incoming forward ants to one of their
neighbors, they obviously need to know who their neighbors are. They also
need to receive topology updates every time a node either enters or leaves
their neighborhood.

This kind of topology information is kept by the routing protocol, and
may be fetched from it.

Choice of Routing Protocol

In the above discussion, we decided to use a reactive approach to use less
resources on resource localizations. Still, we have chosen the proactive OLSR
as our routing protocol. One main reason for this is that we need up to
date neighbor information at all times to make correct next hop selection
possible. OLSR keeps constant control over the network topology, and is
thus able to notify our application of any topology changes as soon as these
are discovered. AODV, which is one of the most frequently used reactive
routing protocols, does not keep track of the network’s entire topology, but
rather broadcasts a route request whenever a route is needed. Such a protocol
is not able to provide us with the topology information that we need. Thus,

Design 45

in our application, we use OLSR as our routing protocol.

Node Mobility

The aim of this thesis is not to design a new routing protocol. Therefore,
we rely on the underlying routing functionality to handle the mobility of
the nodes. Thus, we only need to know what nodes have which resources,
not the actual position of these nodes. Because of this, it is sufficient that
the resource holder stays within the same network partition — within the
partition it may move wherever it wants, and may still be found by the nodes
targeting its resources.

5.5.3 Supported Network Topology

As explained in Section 2.1.2, MANETs may be either dense or sparse. In
a dense network, partitioning occurs infrequently, whereas in sparse net-
works, partitioning may occur more often. Developing applications for sparse
MANETs is a more challenging task than developing for dense networks, as
one has to consider the arising and merging of partitions. Typically, this
involves keeping the system in a consistent state during partitioning and
merging.

As the goal for this thesis is to see if ant-inspired algorithms are suitable
for our purpose, we have chosen to restrict ourselves to dense networks. If
the approach turns out to function well in dense networks, it should also be
possible to expand to work in sparse networks. This will be further discussed
in Section 9.4.1.

5.5.4 Resources

The purpose of the system is to enable nodes to search the MANET for
a certain resource. A node thus needs information on its own resources in
order to be able to share this kind of information with other nodes.

In our prototype, we have gone for a very simple approach where all nodes
keep a resource file containing information about all present resources. For
each resource the node wants to offer to other nodes in the network, the
file includes one line containing the name of the resource followed by some
integer quality measurement. This quality measurement enables other nodes
to request not only a resource, but a resource satisfying a certain level of
goodness. Alternatively, this value may function as a boolean value where
a quality measurement is not suitable, telling if a certain resource is present
or not.

It is assumed that all nodes have a common way of representing these
quality measurements, and that this representation is known to all nodes
within the network.

46 Chapter 5

5.5.5 Pheromone Traces

In most ACO systems, to each arc of the graph G = (N,A), a value τij

is associated, representing the pheromone trail for the link between nodes i
and j.

In our case, however, the fact that different ants may be searching for
different resources somewhat complicates this matter. For example, say one
node has initiated a search for resource A. Then some node initiates a
search for resource B. The ant searching for resource A has left pheromone
traces along its path telling it has recently used this path to search for a
resource. If we do not differ between different resources, this will give the
ant searching for resource B a higher probability for choosing other next
hop neighbors to prevent the two ants from searching along the same path.
The fact that one ant did not find resource A at one node, however, does
not necessarily mean that the same node does not contain resource B either.
Thus, pheromone values should be assigned to {neighbor, resource} couples,
not only neighbors. Our pheromone trails are thus denoted τijr, where r is
a given resource, and resource is a combination of both resource name and
quality.

Pheromone Depositing

As mentioned in Section 5.4, most ACO systems try to differ between paths
by their goodness, meaning that pheromones need to be deposited by back-
ward ants after estimating the goodness of the chosen path. In our solution,
we want to exploit what we called ”opposite stigmergy”, meaning that in-
stead of walking the best paths or the most used paths, we want to try the
least recently used path to get a better dissemination of our forward ants.

In principle, our ants may leave pheromones on their way back, even
though the usage of our pheromone trails is somewhat different from the
traditional usage. However, as already stated, we do want our searching ants
to spread as much as possible. If ants should leave their pheromones on their
way back, we might end up with several ants looking for the same resource
along the same path: Say, two ants, A1 and A2, are looking for the same
resource, resource R, located at node E in the MANET depicted in Figure
5.1. Both ants arrive at node A. The link from node A to node B is the least
recently used path, and is thus probably chosen by the first arriving ant, say
A1. If this ant does not deposit any pheromone before returning, and ant A2
arrives at node A before ant A1 returns, there is a great probability that A2
is also forwarded to node B, as this is, according to the pheromone values
stored at node A, still the least recently used {neighbor, resource} couple.
This, however, does not give a very good dissemination of the ants, which
was what we really wanted. Thus, pheromone values should be deposited as
soon as the link is used, thus by forward ants.

Design 47

A

B C

ED

no resources

resource R

A1

A2

Figure 5.1: A simple MANET where depositing pheromones on the way back
would give a poorer dissemination of the forward ants arriving at node A.

As mentioned above, a slight disadvantage with this approach is that it
assumes that no preceding ant looking for the same resource actually found
it. Every time a node initiates a resource localization and a forward ant is
produced, we try to send this ant along a not recently used path, hoping
this time it will actually find something. What we do not consider is the
possibility that the last ant actually found a resource, meaning that all later
ants should actually try the same path, hoping the resource is still there.

This problem is partly solved by resource location learning, as explained
in Section 5.5.6. However, learned resource locations expire after a while,
and after this point, a new, complete search has to be done. It might,
however, be a good idea to let prior knowledge like this influence the choice
of next hop a bit, as there is a possibility that the node is located nearby
its old position and still has the requested resource. There should still be a
possibility to tailor this according to resource and network characteristics,
though: If nodes or resources tend to come and go, initializing a new search
after every expiry might introduce more load than trying to locate a resource
that is no longer there.

Resource Goodness

In most ACO systems, pheromone values say something about the goodness
of a path — for example, in a routing solution, how smart is it to route
packets destined for node C on the link from node A to node B? To measure
such goodness, one might measure the time it took to send a message along
this route and compare the results to results from routing via other neighbors.
Pheromone values are then updated by the backward ants.

It might be useful to introduce goodness also in our system — perhaps
one resource is located closer to the requesting node than others, or perhaps
there is more left at one node than others, if we are looking for a resource
that a node may run out of. This would, however, complicate our pheromone
value solution, as the goodness of a {neighbor, resource} couple will not be
known before the resource is actually located. This means that pheromones
would have to be deposited both by forward ants as well as by backward

48 Chapter 5

ants. A way of weighting and combining the different kinds of pheromone
values would then also be needed to secure that none of the two had too much
impact on the next hop choice relative to the other. Also, a goodness value
indicates that a resource is actually present, whereas our pheromone values
only indicate which paths have been used to search for the given resource.
How to combine and use these two is thus not trivial.

In order to keep the solution fairly simple, we have thus chosen not to
include this in our solution: If a resource satisfies the demands stated in
the resource request (the forward ant), it is considered ”good enough” and
returned, and the search is thus terminated.

Pheromone Initialization

To be able to assign probabilities according to when a link was last used to
search for a given resource, we need a timestamp telling when each {neighbor,
resource} couple was last used. As initial value, we use the time of startup
for the system, thus favoring links that have never been used to look for the
given resource.

However, as pheromone values are assigned to {neighbor, resource} cou-
ples, no pheromone values may be assigned before we have resources to assign
them to. Thus, no initialization is done before a forward ant with a request
for a not earlier seen resource is received. At this point, we assign pheromone
values to all combinations of known neighbors and the new resource.

Pheromone Updates

Each time a link is used to look for a certain resource, the corresponding
pheromone value is updated with a timestamp showing the time of the latest
use.

Pheromone Evaporation

In real ant colonies, pheromone traces decrease in intensity over time because
of evaporation. In most ACO solutions, this is simulated by applying a
pheromone evaporation rule. As our pheromones are just timestamps, we
get ”built in” pheromone evaporation, as the time since last use increases
when a {neighbor, resource} couple is not used. No additional evaporation
should thus be needed.

5.5.6 Ants

The ants are the agents that are going to search the MANET for resources.
Ants should be made and sent upon request. Like in ACO routing algorithms,
we differ between forward and backward ants. Forward ants are ants that
are still searching for a given resource. Backward ants are ants that have

Design 49

found a resource satisfying the resource demand, and are on their way back
to the requesting node with information about the located resource.

Structure

The solution may be either uniform or non-uniform. The simplest case is a
non-uniform model, where only one or a subset of the nodes in the MANET
may send resource requests. In a uniform model, none of the nodes take
on a distinguished role, thus all nodes may send resource requests. For our
prototype, we see no reason why some nodes should be allowed to search for
resources and some not, and our solution is thus uniform. All nodes are
able both to send as well as receive ants, forward as well as backward.

Ant Information

Some basic information is bound to be included in the ants for them to be
able to fulfill their purpose: For other nodes to know what the ant is looking
for, it needs to contain some resource information. For this simple prototype,
we have chosen to include only a resource name and a quality measurement.

Ant Lifetime

To prevent ants from living forever and wandering endlessly around the
MANET searching for a resource that is not present, each ant is equipped
with a time to live-value. This value tells how many hops an ant may travel.
If a node receives a forward ant with time to live = 0 and the requested
resource is not present within this node, the ant is discarded. The time
to live-value is not used with backward ants, as these should only travel
the path given in the ant. This value should be provided by the user upon
startup, enabling the user to tune this value according to application and
network characteristics.

Ant Memory

Ants need memory about addresses of traversed ants in order to be able to
walk the same path back to the source. At each intermediate node, this
node’s address information should be added to the forward ant. For back-
ward ants, each node should gradually reduce their address information to
avoid transmitting larger messages than necessary.

Handling Incoming Ants

Incoming ants are handled according to their type:

50 Chapter 5

Forward Ants Whenever a forward ant is received, the receiving node
should read the resource information from the ant and check if the requested
resource is present. If it is, a backward ant should be made and sent back
towards the source according to the path included in the forward ant. If the
resource is not present and the time to live is larger than zero, the forward
ant should be forwarded to a new neighbor.

Backward Ants When receiving a backward ant, resource information
should be extracted from the ant and stored at the node. The node should
also check whether the backward ant was destined for itself or some other
node. If it is a reply to the node’s own request, this is reported and the search
is terminated. If not, the backward ant should be forwarded towards the
requesting node according to the path information included in the backward
ant.

Search Termination

Ants may be lost because of transmission errors. Ants may also get ”stuck”
in parts of the MANET where the requested resource is not present, making
the time to live reach zero and thus making the ant die. In either case, the
requesting node will not receive an answer. To handle this, a new search is
initiated if the requesting node does not receive an answer within a certain
period of time. Like the time to live-value, the amount of time the ant
should wait should be given as an argument to the program, making it
possible for users to tune this value to the application needs and the network
characteristics.

To prevent a search for a resource not present in the MANET from going
on forever, there should also be a way to stop a search, either by providing a
maximum number of initiated searches or by user input. The latter is more
adjustable, but does demand user intervention. For simplicity, this has been
excluded from our solution.

Choosing the Next Hop

When a forward ant arrives at a node which does not have the requested
resource or any location information on the requested resource, the ant needs
to be forwarded to one of the node’s neighbors. The pheromone values stored
at this node are used to calculate the probability of choosing each neighbor,
based on the time since it was last used to look for the given resource. The
longer time since last use, the larger probability to be chosen next.

A simple but reasonable way of assigning these probabilities is to look
at the ratio between the elapsed time for one neighbor and the total elapsed
time at all neighbors. If esdr is a measure (in seconds or milliseconds) of the
elapsed time since neighbor d was used as next hop from node s to look for

Design 51

A

B

C D

E

Figure 5.2: A simple MANET where allowing ants to travel in loops might
increase network utilization.

resource r, then the probability psdr of creating at node s a forward ant with
node d as next hop is:

psdr =

{

esdr
Pn

i=0
esir

, if d ∈ Ns,

0, if d /∈ Ns

where Ns is the set of neighbors of node s, excluding the forward ant’s last
predecessor. To help the ant discover as many new nodes as possible instead
of revisiting already visited nodes, we do not allow an ant to get sent directly
back to the last hop if other neighbors are available.

Handling Loops

In the sample network shown in Figure 5.2, we see that we risk that a forward
ant from node A is sent via node B to node E. If we are not allowing loops,
the forward ant would stop here. Terminating the search here would mean
wasting a lot of resources on a search that did not find anything, even though
it might have if we had let it continue. We should thus allow loops, or, in
other words, allow forward ants to be sent back the same way as they came,
if this is the only option.

In traditional ACO systems with pheromone disposal done by backward
ants, loops are a problem because they would lead to pheromones being
deposited several times at the same node by the same backward ant. In
our solution with only forward ants depositing pheromones, this is not a
problem. However, we still don’t want backward ants to travel in loops, as
this would waste unnecessary network resources.

This could be done either in the resource-holding node or by each node on
the path back to the requesting node. In the former approach, the resource-
holding node would remove all loops from the entire path. In the latter
approach, each node would search the list of preceding nodes for their own
address information and thus only remove loops concerning themselves. This
approach spreads the computing on more nodes, but with the size of our
target networks, this is not a costly operation and may thus just as well be

52 Chapter 5

done by one single node alone, simplifying the reception of backward ants at
intermediate nodes.

Thus, when transforming a forward ant into a backward ant, loops should
be removed from the list of visited nodes.

Resource Location Learning

As backward ants travel back to the requesting node the same way as the
forward ant came, an obvious optimization is to store information about all
localized resources at all intermediate nodes. This way, subsequent forward
ants may terminate their search a lot earlier if they reach a node with stored
location information on the requested resource. Also, node mobility may
help move information about resources in one part of the network to other
parts of the same network, further improving search time in later resource
localizations.

In our prototype, when receiving a backward ant, the node will store the
location information carried by the ant if the new information is considered
better than than any existing information on the same resource. At the time,
this decision is taken based on the quality measurements only. However, it
might be a good idea to also consider the age of the old and new information
- the old information may be about to expire, or it may actually be more
recent than the newly arrived information.

When a node receives a forward ant, it first checks if it has got the
resource itself. If not, it checks if it has any recent information about the
location of the resource. If it does, it replies with a backward ant. If not, it
forwards the forward ant as usual.

MANET characteristics may make this kind of information volatile. As
we rely on the underlying routing protocol to find the resource-holding node
after localization, we do not have to handle intra-partition mobility. How-
ever, resource-holding nodes may disconnect or move out of the current parti-
tion, making previously reachable resources unreachable. Also, all resources
may not last infinitely — some nodes may run out of certain resources after
a while.

To handle this, resource location information should expire after a certain
time period. This time period may be tuned to fit the network and resource
characteristics. We have chosen to keep this value equal for all nodes. How-
ever, one might consider setting this individually for each node or even each
resource. The information should then be included in the backward ant.

5.6 The Localization Algorithm

In this section we will summarize the above discussion through a simple
pseudo-code for the final algorithm for resource localization used in our im-
plementation and experiments. The pseudo-code is listed in Figure 5.3.

Design 53

l i s ten f o r incoming ants from ne ighbor ing nodes
l i s ten f o r incoming re source r eque s t s from l o c a l

a pp l i c a t i o n s
l i s ten f o r incoming topo logy updates from o l s r

i f forward ant i s r e c e i v ed :
e x t r a c t reques ted re source in format ion
i f r e s ource i s p r e s ent :

produce backward ant conta in ing own
re source in format ion

else :
i f r e s ource l o c a t i o n i s known :

produce backward ant conta in ing known
re source in format ion

else i f t t l != 0 :
add own addres s in format ion to the forward ant
choose a next hop neighbor
forward the modi f i ed ant to t h i s neighbor

i f backward ant i s r e c e i v ed :
record new re source in format ion
i f backward ant i s r ep ly to own re source r eques t :

r epor t r e s ource as found
else :

p ee l o f f own addres s in format ion from ant
forward ant accord ing to ant memory in format ion

i f r e s ource r eques t i s r e c e i v ed :
i f r e s ource l o c a t i o n in format ion i s known :

r epor t r e s ource in format ion
else :

while r ep ly i s not r e c e i v ed :
produce new forward ant
choose a next hop neighbor
send ant to t h i s neighbor
s l e ep f o r max_search seconds

i f topo logy update i s r e c e i v ed :
i f new neighbor :

add node to l i s t o f ne ighbors
i f neighbor i s l o s t :

remove node from l i s t o f ne ighbors

Figure 5.3: Pseudo-code for the ant solution.

Chapter 6

Implementation

”Vision without implementation is hallucination”

— Benjamin Franklin

In this chapter, we will explain the implementation of the design derived
in Chapter 5. The focus will be on the same parts of the program as those
explained in the design. As C code tends to get long even when doing quite
simple things, we will not show the complete code for the program, but rather
code snippets when appropriate. Some of the most important functions are
listed in Appendix D.

The first sections address some general issues such as choice of program-
ming language and emulator-specific adaptations, before we move on to the
more specific parts of the program and the various data structures used in
Sections 6.6 through 6.11. Finally, Section 6.12 provides an overview of the
program flow and gives program execution instructions.

6.1 Remarks

This implementation is regarded as a prototype only. Our focus has been on
the ant principles rather than the code itself. It should thus be noted that
quite a few simplifications have been made during the implementation. At
several stages other, more elegant or resource utilizing approaches probably
exist. These considerations have, however, been left to a later stage, if the
solution turns out feasible for its purposes.

Also, even if this application is meant to run within a MANET, the code
is not written with this particularly in mind. Thus, in a production imple-
mentation, changes should be made to the code to make it more suitable
for MANETs and their characteristics. For instance, messages sent over the
wireless link should utilize tailored data types to use as little bandwidth as

56 Chapter 6

possible. Also, one might want to tailor other data structures and computa-
tions to use as little computing resources as possible.

6.2 Programming Language

We have chosen to implement the prototype using the C [16] language. C is a
quite small and quite low level, general-purpose programming language [21].
C is not tied to any specific hardware or system, which makes C code highly
portable. In addition to this, C provides low-level memory access as well
as easy but powerful socket and networking facilities, making it especially
suitable for our solution.

Also, we are going to do our testing with the NEMAN emulator. When
running emulations, using a lightweight language such as C may be preferred
over other, more heavyweight languages such as Java, which requires a virtual
machine and thus needs more computing resources per virtual node, as this
enables us to run tests with more nodes on one single computer.

6.3 Developing for NEMAN

Emulating in general and with NEMAN specifically will be explained in
Chapter 7. We do already state, however, that emulator testing requires
very little program code adjustments. The only required adjustment in our
code is that for the application to be able to listen and send messages only
on a specified virtual device, the application, or more specifically an appli-
cation’s sockets, need to be bound to this particular virtual device using the
SO_BINDTODEVICE option. This is needed because all virtual devices
are running on the same machine.

More specifically, this is done in our code by calling the function
bind_socket_to_device() with a socket descriptor as argument. This func-
tion is shown in Figure 6.1.

When using NEMAN, a message sent via one node to another might be
delivered up to the application layer at the intermediate node, even though
it was not actually destined for this node. This behavior is normally not
seen in real life, but to make everything work with NEMAN, we include
information about the actual destination in all messages to make sure no
one handles messages meant for other nodes.

6.4 The sockaddr_in structure

The struct sockaddr_in is a builtin C structure that is heavily used in our
implementation. This structure is used to address remote endpoints, and it
is the structure used with the sendto() and recvfrom() system calls used in
our implementation for sending and receiving messages, respectively.

Implementation 57

int bind_socket_to_device (int sock fd)
{

int rv ;
i f ((rv = se t sockopt (sockfd ,

SOL_SOCKET,
SO_BINDTODEVICE,
i f a c e ,
s t r l e n (i f a c e)+1)) == −1)

{
write_log_error (" so_bindtodevice ") ;

}
return rv ;

}

Figure 6.1: C code for binding a socket to a specific device.

struct sockaddr_in {
short s in_family ;
unsigned short s in_port ;
struct in_addr sin_addr ;
char s in_zero [8] ;

} ;

Figure 6.2: sockaddr_in C structure.

The contents of this structure is shown in Figure 6.2. The fields sin_port
and sin_addr hold the port number and IPv4 address of the remote node
respectively.

6.5 Logging

To maintain a certain structure on the program output, we have chosen
to keep two kinds of logs: One for debugging purposes and one for system
tracking. The debug log is used to ease debugging, and is written to whenever
something unexpected happens within the system. To ease error searching,
we keep only one ”global” file. Obviously, this file will only be global if all
devices are actually running on the same machine, as is the case when testing
with NEMAN. If not, this file will also be local, as the path of the file will
be local to the machine the program instance is running on. In either case,
each line in this file starts with the name of the node reporting the error.
This file is called <program name>.debug, e.g. ant.debug.

For system tracking we keep one log per node. These files contain infor-

58 Chapter 6

mation on what has happened on each node, e.g. what forward and backward
ants have been received, where they have been forwarded and what resource
locations have been learned. These files are called <interface name>.log,
e.g. tap1.log.

When running tests, some additional information is needed. When run-
ning Make with the target test, an additional file, ant_test.log, is made. All
nodes write to this file whenever a request for a present resource is received.

6.6 Neighbor Information

6.6.1 Topology Information Retrieval

Neighbor information is retrieved from the OLSR daemon running on each
device. More specifically, this is done by establishing a TCP connection
to localhost on port 1212, which is listened to by OLSR. After connect-
ing, OLSR will report any topology changes to port number 3458. OLSR
messages are on the following form:

<new/old route>,<to IP>,<via IP>,<no. hops>,<from device>

For example, the following message:

1,10.0.0.2,10.0.0.2,1,tap1

means that there is a new route from node tap1 to the node with IP address
10.0.0.2 via the node with IP address 10.0.0.2. This route is one hop long,
which means that 10.0.0.2 is a neighbor of tap1.

If the message starts with a 0, this means that an old route is lost. The
following message:

0,10.0.0.2,10.0.0.2,1,tap1

means that the old route between tap1 and 10.0.0.2 is lost.

However, if a neighbor moves out of range, but there still exists an al-
ternative path via other nodes to this node, OLSR will report this as a new
route, not a lost route:

1,10.0.0.2,10.0.0.3,4,tap1

In this example, there is still a route from tap1 to 10.0.0.2, but the new
route goes via 10.0.0.3, and is 4 hops long. Thus, if a new route message is
received but the number of hops to this node is more than one, this node
should be removed from the list of neighbors (if present).

Implementation 59

struct neighbor {
struct sockaddr_in ∗ si_n ;
struct d l_ l i s t ∗pheromones ;

} ;

Figure 6.3: Neighbor structure.

6.6.2 Neighbor Registry

Each node keeps a doubly linked list, stored as a global variable called neigh-
bors, of neighbor structures, shown in Figure 6.3. This list is altered as
new topology information is retrieved from OLSR. New neighbor informa-
tion is always inserted at the beginning of the list. If a node loses one of its
neighbors, the entry is removed from the list.

The si_n is a sockaddr_in structure containing the address information
of the neighbor. The list pointer pheromones is a pointer to a list of
pheromone information associated with this particular neighbor. This data
structure will be further explained in Section 6.8.1.

6.6.3 Topology Changes During Resource Localization

Because of mobility and nodes joining and leaving the network, topology
changes may occur during a resource localization. This leads to some issues
that need to be handled by our system.

Lost Neighbors

Neighbors may be lost between the forwarding of the forward ant and the
reception of the corresponding backward ant, as shown in Figure 6.4. In
Figure 6.4a, node A first forwards a forward ant to B. In Figure Figure 6.4b,
B forwards the ant to C and moves out of range of A before the corresponding
backward ant arrives. When the backward ant arrives at B in Figure 6.4c,
A and B are no longer neighbors, and the backward ant needs to be routed
via D to A.

We could check this when forwarding a backward ant, but we have again
chosen to rely on the routing protocol. As long as the backward ant is
received at the requesting node, it is not crucial that all the intermediate
nodes are actually neighbors, as no pheromones are left by backward ants.
They do still, however, need to be located in the same partition for this
forwarding to be possible. If they are not neighbors, we may actually get a
better dissemination of resource locations throughout the MANET.

With this approach, we do risk that an old neighbor has moved out of
the partition or simply gone offline, making it impossible to forward the
backward ant to the requesting node. However, there might be other paths

60 Chapter 6

A
B C

D

(a) Forward ant
moves from A to B.

A
C

D

B

(b) Forward ant
moves from B to
C, B moves outside
range of A but into
range of D.

A
C

D

B

(c) Backward ant has
to travel via D back
to A.

Figure 6.4: Neighbor is lost between forwarding of forward ant and reception
of corresponding backward ant. Arrows show where the ants are moving.

neighbor

physically

lost

neighbor

chosen

as next

hop

topology

update

received

time

Figure 6.5: Neighbor is chosen as next hop before topology update is received
by the ant application.

to this node. Thus, it might be a good idea to, in addition to the backward
ant, send a request reply directly from the resource-holding node to the
requesting node, increasing the possibility that the requesting node actually
gets a reply. This would introduce a slight overhead, but might be worth it
if the node mobility is high enough. However, this has been left as further
work.

Delayed Topology Updates

Topology updates are delivered over a TCP connection from the OLSR dae-
mon. There will always be a slight delay from the actual topology change
occurs to the topology update information is delivered from OLSR to the
ant application. Information on new routes only makes the new neighbor
impossible to select as a next hop until the topology update is received, and
should thus not cause any problems. Delayed route loss updates, however,
make it possible to choose as next hop a node that is no longer a neighbor,
as shown in Figure 6.5.

The chances of choosing a lost next hop neighbor during this very short
interval is of course very small, but it might still happen and should thus be
handled. However, as we are depending on the underlying routing protocol,
a message sent to a lost neighbor should be received at this node as long
as there is an alternative route to this node. Only if the node is completely
outside the partition will the ant not be delivered there. This will make

Implementation 61

cpu 50
memory 70
p r i n t e r 1

Figure 6.6: A sample resource file.

the ant be sent via other nodes towards this ”neighbor”, but this should
not really make a big difference for the localization. As soon as the route
loss information is received, all pheromone information for this node will be
deleted from the system, and this somewhat wrong forwarding decision will
thus not make any long lasting influence on the rest of the system.

6.7 Resources

6.7.1 Local Resource Information

At each node, resource information is stored in a file called <iface>.res,
where iface is the name of the node’s interface, e.g. tap1.res. This file con-
tains one line per local, publicly available resource, each stating the resource
name and quality, as shown in Figure 6.6. The ”printer” quality measure-
ment may be an example of a boolean value - either a printer is present or
it is not. Alternatively, it may say something about what kind of services
the printer is offering. The important thing here is thus that nodes in the
MANET have a common understanding of these quality measurements.

This file is read each time a resource request is received. An obvious
improvement would be to keep this kind of information in memory. This
would require a way of detecting updates to this file, or at least reading the
file periodically to fetch updates. This improvement has been left as further
work.

6.7.2 Resource Sharing

When transmitting and storing resource information a resource structure,
shown in Figure 6.7, is used. This structure contains the information found
in the .res-file; The name of the resource and a quality measurement. The
resource name may be maximum RES_SIZE bytes long. RES_SIZE is a
macro, currently set to 50.

The resource structure also contains a field resource_holder. This field
contains the address information for the resource-holding node, and is used
by all nodes receiving the resource location information through a backward
ant, both the resource-requesting node as well as any intermediate nodes.

62 Chapter 6

struct r e s ource {
char name [RES_SIZE] ;
int qua l i t y ;
struct sockaddr_in resource_holder ;

} ;

Figure 6.7: Resource structure.

struct r e s ource_in f o {
struct r e s ource r e source ;
time_t expiry_time ;

} ;

Figure 6.8: Resource info structure.

6.7.3 Resource Location Info

Gathered resource location information is stored in resource_info struc-
tures, as shown in Figure 6.8. Each node keeps a doubly linked list,
known_best_resources, containing all gathered resource location infor-
mation. A resource info structure contains a resource structure, as explained
in section 6.7.2, as well as an expiry time.

The expiry_time entry tells how long the snooped resource information
is valid, and should be adjusted according to the network characteristics. At
the time, this value is equal for all nodes. Alternatively, it might be set by
the node holding the resource.

At the time, only the best known resources are stored, meaning that we
only store one location per resource name. This eases resource knowledge
lookup and minimizes the storage needed. If a new resource is found, its
quality is compared to the quality of any previously found resource with the
same name. If the quality is better, the old entry is replaced with the new.
If not, the new resource location is not recorded.

Unfortunately, for simplicity, entries are only removed from this list if
the node receives a forward ant looking for the resource and the entry has
expired. There is no automatic removal upon expiry. This may lead to very
long lists and makes the solution less scalable, but for the networks it is
supposed to handle, it should work fairly good. This could be handled by a
”garbage collector” thread that periodically ran through the list and removed
expired entries. However, this has been left as further work.

Implementation 63

6.8 Pheromone Traces

6.8.1 Pheromone Data Structure

Pheromone traces are recorded for each {neighbor, resource} couple. In other
words, we need to store information for each resource and each neighbor. To
be able to do this, we need to record all possible resources. As all possible
resources are not known, we restrict ourselves to all resources ever heard of
by the node. In addition to the list of known best resources, each node keeps
a list all_known_resources, containing all resources the node has ever
heard about. Unlike the list of best resources, this list is add only — there
is no expiry time and no entries are ever removed from this list.

The easiest approach, which is also used by many other ant systems,
would be to use a two-dimensional array with neighbors along one dimension
and resources along the other. However, both the number of neighbors and
the number of resources which someone will look for are unknown, making
it harder to declare a suitable array, although possible with dynamically
allocated arrays. Also, there is no obvious mapping from resource names
and node identifiers to array indices.

Another possibility is to use ”two-dimensional linked lists”. This ap-
proach, however, introduces a lot of redundancy and would require a lot of
work to update.

Better solutions are possible, for example to use some kind of hash map,
where the keys would be the {neighbor, resource} couple and the values
would be the pheromone values. Although independent C libraries for hash-
ing are available, we have chosen to use the list approach, as this introduced
less implementation issues.

When using the two-dimensional list approach, we need to decide what
information should be stored on which list dimension. If the first level list is
the neighbors and the second level is one resource list per neighbor, we only
have to register each neighbor once, which is good. Adding and removing
neighbors from this list is easy and cheap. Resources don’t need to be re-
moved from the lists, so we only need to add these, even though they would
need to be added to every single neighbor when they first appear. How-
ever, summarizing elapsed times for each neighbor for each resource, which
is needed when choosing the next hop for a forward ant, would in the worst
case require looping over the entire list structure.

On the other hand, if the first level list is a list of all resources, we have
to register all neighbors for all resources. As neighbors might come and go,
this might require us to update each of these lists quite frequently, both
adding and deleting entries. Summarizing would be a lot easier, however, as
we only need to loop through the list of neighbors for the requested resource
and sum these, thus we only need to loop through one list, not the entire
two-dimensional data structure.

64 Chapter 6

N1 N2 Nn

R1

R2

Rm

...

...

R1

R2

Rm

...

R1

R2

Rm

...

...

...

...

...

Figure 6.9: Two-dimensional linked list structure. First level list consists of
n neighbors, second level list consists of m resources.

struct pheromone {
struct r e s ource ∗ r e s ource ;
time_t last_used ;

} ;

Figure 6.10: Pheromone structure.

Which approach to choose depends on the usage. What happens most
frequently: Neighbor updates or resource requests? If nodes move around
a lot, this implies a large amount of updates to the neighbor lists, and it
will thus be good to keep only one neighbor list. If resource requests are
more frequent, however, it will be more beneficial to keep only one resource
list. For this system, neighbor updates will probably occur more frequently
than resource requests. Thus, we have chosen the former approach. The
principles of the data structure is shown in Figure 6.9.

As the first level list is the list of neighbors, we may use the existing list of
neighbors also for pheromone value storage. As explained in Section 6.6.2,
each neighbor structure includes a pointer to a list of pheromones. More
specifically, this is a pointer to a list of pheromone structures, as shown in
Figure 6.10.

This structure keeps a pointer to the corresponding entry in the

Implementation 65

all_known_resources list and the actual ”pheromone”: A timestamp
showing when this neighbor was last used to look for this particular resource.

6.8.2 Pheromone Initialization

Whenever a new neighbor is discovered, it is added to the list of neighbors
and a new pheromone list is created and added to the neighbor data struc-
ture. The pheromone list contains all the resources from the
all_known_resources list. The last_used entry is initialized to the boot
time of the application on this node, giving all neighbors the same probabil-
ity of being chosen if none are previously used, and a higher probability of
choosing unused neighbors than previously used neighbors if some are used
and some are unused.

Whenever a node receives a resource request for a resource that is not
stored in the all_known_resources list, it is added to this list and to all
existing neighbor-pheromone lists. The last_used entry is again initialized
to the application boot time.

6.8.3 Pheromone Updates

Whenever a node is used as next hop to search for a given resource, the
corresponding {neighbor, resource} last_used entry is set to the time of
usage.

At the time, if a neighbor is lost, the entire neighbor and its associated
pheromone list is deleted. It might perhaps be a good idea to keep these
lists, at least for a little while, in case the neighbor moves back into range.
In systems with high mobility, nodes may move in and out of range of each
other quite frequently, and thus cause frequent building of new pheromone
lists, as well as re-initializing all timestamps associated with each {neighbor,
resource pair}.

6.9 Ants and Ant Memory

Both forward as well as backward ants consist of an ant structure followed by
a number of struct sockaddr_in structures. These structures were chosen
to ease the forwarding of backward ants, as these may be used unchanged in
calls to sendto(), the function used for sending messages. The address infor-
mation is added by the receiving node, not the sending node. There are two
advantages with this approach: The ant size is increased one step later into
the procedure, putting less load on the network, and the address information
is easily available as this is returned by the call to recvfrom(). The C struct
used for ants is shown in Figure 6.11. The type field must be either ’F’, for
forward ants, or ’B’, for backward ants. preceding_ants is the number of
ants that have previously been sent to look for the same resource. This is

66 Chapter 6

struct ant {
char type ;
int preceding_ants ;
int preceding_nodes ;
short t t l ;
struct sockaddr_in request ing_node ;
struct sockaddr_in next_hop ;
struct r e s ource r e s ;
struct t imeva l time_of_request ;

} ;

Figure 6.11: Ant structure.

needed for testing purposes only, and is further explained in Section 7.6.1.
preceding_nodes gives the number of already visited nodes, and thus the
number of address structures included in the ant. ttl tells how many hops the
forward ant has got left before it has to terminate its search, and is decre-
mented by one for each hop the ant travels. requesting_node contains
the address information for the node that requested the node. next_hop
is included because of NEMAN behavior as explained in Section 6.3. For
forward ants, the res field carries information for the requested resource,
whereas for backward ants, it holds information about the located resource.
Thus, the name field should be equal in corresponding forward and backward
ants, whereas the quality value in a backward ant may be equal or higher
than that in the forward ant. Finally, time_of_request is used for timing
requests when doing performance testing, as will be explained in Chapter 7.

The same structure is at the time used for both forward and backward
ants. Backward ants could probably be slightly smaller, as they shouldn’t
need the ”time to live” field — they strictly follow the path copied from the
forward ant. Also, in future, more sophisticated versions, other differences
may reveal, making it more desireable to differ between the two kinds of ants.
In this prototype we have, for simplicity, chosen to use the same structure
for all ants.

6.9.1 Choosing the Next Hop

When choosing the next hop for a forward ant, we want the probability for
choosing a neighbor to increase with the time since it was last used to search
for the given resource, as explained in Section 5.5.6. If esdr is a measure of
the elapsed time since neighbor d was used as next hop from node s to look
for resource r, then the probability of creating at node s a forward ant with
node d as next hop is:

Implementation 67

struct neighbor_prob {
struct neighbor ∗neighbor ;
struct pheromone ∗pheromone ;

} ;

Figure 6.12: Neighbor_prob structure.

psdr =

{

esdr
Pn

i=0
esir

, if d ∈ Ns,

0, if d /∈ Ns

where Ns is the set of neighbors of node s, excluding the forward ant’s last
predecessor.

The actual choosing is implemented by generating a random number
in the interval [0, 1]. Let’s say we have a list of all neighbors and their
associated probabilities for the given resource, and a variable sum. Then we
loop through the list of neighbors, and for each neighbor add the probability
associated with the neighbor to sum. Then, we check if sum is less than
or equal to the random number. If it is, we choose this neighbor, if not, we
proceed to the next neighbor in the list.

To do this, we use the pheromone data structure explained in section
6.8.1. This structure contains the time of last use for each {neighbor, re-
source} pair available. Because of the choice of primary (neighbor) and
secondary (resource) lists in this two-dimensional list structure, this ended
up getting a bit more ugly that we had hoped: To find all available neigh-
bors and the associated time of last use for the requested resource, we have
to loop through the entire two-dimensional list structure. To avoid loop-
ing over this entire structure more than once, we build a new temporary
structure containing only the appropriate {neighbor, resource} pairs, where
the appropriate pairs are those with same resource name and quality. The
appropriate pairs are stored in a list of neighbor_prob structures, each
representing a neighbor-resource pair. This structure is shown in Figure
6.12. The temporary list is deleted when the next hop has been chosen.

The entire pheromone struct is included instead of just the resource, as
the time of last usage, which is stored in the pheromone structure, needs to
be updated if the neighbor is chosen.

When building the list of appropriate {neighbor, resource} couples, the
last hop neighbor from which the ant arrived is skipped, and thus not added
to the list of available neighbors. This is done to avoid sending the request
back to this node. However, if the list of available nodes is empty after this
phase, meaning that this last hop node is the only neighbor, the request is
sent back to this node. The alternative would be throwing the ant away, but
by doing this, we allow the ant to try another path instead.

68 Chapter 6

A

B

C D

E

B B - C - D

A - B - E - B - C - D

 A - B - C - D

source node

scanning direction

scanning for node B

first occurrence of B

from destination node

Final path

...

Figure 6.13: Loop elimination in backward ants.

6.9.2 Loop Elimination

As backward ants should not travel in loops, all loops are removed from the
backward ant before it is sent from the resource-holding node. This is done
by looping through the list of visited nodes starting at the source node, and
for each node, a reversed search through the same list is used to look for
equal entries. If one is found, every node in between is removed from the
list. The fundamentals of the approach are shown in Figure 6.13. In this
figure, the forward ant has visited node B twice. During loop elimination,
the loop, i.e. nodes B and node E, is removed from the list of visited nodes.

This approach also works if the same node is visited more than twice, as
the occurrences in between first and last visit are removed the first time a
loop is discovered.

The number of preceding nodes is updated correspondingly to match
the length of the path that the backward ant is going to walk back to the
requesting node.

6.9.3 Ant Communication

All nodes are listening for incoming ants on port 3456.

6.10 Resource Localization

In this section, we will explain how a resource localization is initiated and
terminated.

6.10.1 Search Initiation

All nodes listen for incoming resource requests. Resource requests are sent
to a node via UDP segments to port 3457. Resource requests contain in-
formation about the resource, and should be on the form ”<resource name>
<minimum quality>”. We do not check that resource requests are sent from
the same device as the one that received the request, thus, anyone may send
a request for a resource to any node, provided there is a path from the actual
requesting node. The result, however, is only written to file on the node that
received the request.

Implementation 69

Before a forward ant is produced and sent, we check if a suitable resource
localization is already known and listed in known_best_resources. If it
is, it is not necessary to do a search. This check is performed again every
time a new forward ant is about to be sent, as new resource information may
have been snooped since the last ant was sent max_sleep_time seconds
ago.

When a search is initiated, the requested resource is added to a list of
ongoing searches, not_found_resources.

6.10.2 Search Termination

A search is terminated when the requested resource is found. While the
resource is not located, a new search for the same resource is initiated every
max_sleep_time seconds, a value which is provided by the user upon
startup. Currently, there is no possibility to terminate the search in any
other way.

When a backward ant arrives at the requesting node having found a
proper resource, the resource is removed from the list of ongoing searches.
When doing this, all nodes satisfied by the localized resource is removed.

After max_sleep_time seconds, we check if the list of ongoing searches
still includes the requested resource. If it does, the resource was not found,
and we initiate a new search. If not, the resource was found and the search
is terminated.

When a backward ant arrives at the resource-requesting node, the re-
quested resource is removed from not_found_resources. After each se-
arch has had max_sleep_time seconds to terminate, we check if the re-
source is still listed in not_found_resources. If it is, the resource is not
yet found, and a new search is initiated. If it has been removed from the list,
this means that the resource has been localized, and the search is terminated.

6.11 Utilities

As most of the data structures are doubly linked lists, we have made a
”generic” doubly linked list implementation used to handle all these lists.
The structure for the lists is shown in Figure 6.14.

Each list element is thus of this data type. The void pointer entry is
a pointer to the actual entry. This may for example be a neighbor struct
or a resource struct. This approach introduces an extra step to access the
actual information stored in the list, but makes it possible to use the same
functions for adding and deleting entries in lists of any data type.

Along with the structure, we have implemented functions for inserting an
element at the beginning of the list, deleting a specified element and deleting
(with freeing of memory) an entire list.

70 Chapter 6

struct d l_ l i s t {
struct d l_ l i s t ∗prev ;
struct d l_ l i s t ∗next ;
void ∗ entry ;

} ;

Figure 6.14: Doubly linked list structure.

6.12 Program Flow

6.12.1 Threads

As the program should be able to manage several tasks at once, it is divided
into several threads:

• The main process: Listens for incoming ants, forward as well as back-
ward.

• Thread 1: Listens for incoming topology updates and handles the list
of neighbors. Created by the main process shortly after startup.

• Thread 2: Listens for incoming resource requests. Created by the main
process shortly after startup.

• Thread 3: Initiates a new search every max_sleep_time seconds. Cre-
ated by Thread 2 for every incoming resource request.

• Thread 4 and 5: Handles backward and forward ants, respectively.
Created by the main process whenever receiving an ant.

Chapter 7

Test Setup

”Experience is the worst teacher. It always gives the test first

and the instruction afterward.”

— Source unknown

In this chapter we explain the setup used during our tests, including
explanations of the tools used, the network scenarios in which the tests are
performed as well as the setup of the actual experiments done.

When performing a performance analysis, several choices must be made:
Which evaluation technique to use, which environment to perform tests in
and which metrics to evaluate the system on. This chapter gives a gen-
eral overview of some of the available techniques and tools, as well as an
explanation of the specific tests used to analyze our system.

When testing our resource localization solution, we need to perform tests
that reflect the goal and requirements for our solution, stated in Chapter 5.
The tests should verify that the goals for the solution are reached, thus that
nodes looking for a resource are able to locate this resource if it is present
in the MANET. We also test how well the solution performs with regard to
the requirements stated in Section 5.3, thus how well the solution utilizes
the resources present in the network, both in terms of networking resources
and local processing power at each node. We also take a look at how fast
the solution is able to localize a given resource. An explanation of how our
tests are set up and performed in provided in Sections 7.5 through 7.9.

In Section 7.4, we present an alternative to the ant solution, used to get
comparable results for our analysis.

7.1 Evaluation Techniques

Evaluation techniques may be split into three different approaches [17]:

72 Chapter 7

• Analytical modeling: Involves mathematical models and formal proofs,
and requires simplifications and assumptions to make usable models.
Gives quite low accuracy, but requires relatively little time, given that
you are trained in making such models, and also does not require the
system to actually exist when ”testing”.

• Simulation: The system is tested within a controlled and, probably,
somewhat simplified environment. This gives a higher accuracy than
modeling, but requires more time and resources to perform. One may
test only parts of the system, making it possible to perform tests before
a complete running system is made.

• Measurements: Measurements means doing real-world testing, i.e. to
test the system in its natural environment. Performing measurements
requires the system in question to actually exist and be ready for full
testing. Measurements also require a full testing environment, resulting
in a high cost and low repeatability. However, as the system is tested
in the environment it is supposed to run in, this technique may give
very reliable and accurate results. However, environmental parameters
such as system configuration, workload and time of the measurement
may affect the results. The accuracy may thus vary between none and
high [17].

Analytical modeling requires substantial knowledge in areas like math-
ematics and queuing theory, as well as the time to develop good models.
This, along with the potentially low level of accuracy, makes this technique
unsuitable for our testing. As real-world measurements require a lot of time
and resources and provides low repeatability, also this solution is rather
unsuitable for our purposes. Simulation, on the other hand, both gives mod-
erate accuracy and takes relatively short time to perform, and is thus the
evaluation technique chosen to perform our testing.

The techniques listed above may also be used in combination. For ex-
ample, one might use analytical modeling together with simulation to verify
and validate the results obtained from each technique. In [17, p. 32], Jain
states the three rules of validation:

• ”Do not trust the results of a simulation model until they have been
validated by analytical modeling or measurements.”

• ”Do not trust the results of an analytical model until they have been
validated by a simulation model or measurements.”

• ”Do not trust the results of a measurement until they have been vali-
dated by simulation or analytical modeling.”

According to these rules, we should thus not rely only on the results from
our simulations, but have them validated by either analytical modeling or

Test Setup 73

real-world measurements. However, this has, because of time issues, been
left as further work.

7.2 Testing Environment

7.2.1 Simulation vs Emulation

Above, we used the word ”simulation” for testing a system within a con-
trolled and simplified environment. However, this kind of ”simulation” may
be further divided into simulation and emulation. One goal of simulators,
such as GloMoSim [43] and ns-2 [40], is to give a detailed representation
of the physical layer [31]. Simulators are suitable for large-scale networks,
and provide reproducible results [30]. However, code written for a simula-
tor needs to be rewritten before it can be used on a real platform. Also,
simulators take a substantial amount of time to learn to use and program.

In emulators, such as NEMAN [31] and MobiNet [22], parts of the pro-
tocol stack may be simulated while the rest is the real implementation in
question. This code requires very little adjustments to work on a real plat-
form, possibly saving a lot of time during implementing. Like simulators,
emulators produce reproducible results. However, emulators tend to pro-
vide less scalability than simulators, although this depends on the emulator
implementation.

7.2.2 ns-2

ns-2 [40] is a network simulator which for a long time has been used to
perform simulations in the ad-hoc network research area. When using ns-
2, the user specifies a network topology and the movement patterns of the
nodes within this topology, called a scenario. The scenario file provides a
detailed description of all the nodes in the network and their behavior during
the emulation, for example their start position, their distance to all other
nodes in the network and in which direction they are moving at what speed
at different times during the emulation. The simulator is able to ”play”
this scenario, enabling the user to perform measurements and analyses of
implemented applications without having to set up a real life test scenario,
which may be a costly and highly time consuming operation.

7.2.3 NEMAN

NEMAN is a network emulator. Because of the availability of researchers
with high expertise on NEMAN within the research group, we have chosen
to use NEMAN to perform the performance analysis for this thesis.

For NEMAN to be able to emulate a given network topology, this topol-
ogy needs to be specified in a scenario file, just like ns-2. NEMAN uses

74 Chapter 7

standard ns-2 scenario files, which enables us to use any available ns-2 sce-
nario file generator to make scenario files for NEMAN. NEMAN scenario
files also allow scenario files to define messages to be sent to specific nodes
at certain times during the emulation. This may for example be used to
activate certain functionality within the applications.

NEMAN Components

NEMAN consists of three elements [31]:

• User processes: The applications and protocols that are to be tested.

• Topology manager: Manages virtual network interfaces and performs
packet switching according to the topology information at a certain
moment in time.

• Graphical user interface: Provides a graphical interface to the emula-
tor. Visualizes the emulated network, i.e. nodes, node ranges and node
movement. Induces topology information to the topology manager.

The user processes hook to virtual Ethernet network devices called TAP
devices. These may be used together with the classical socket API, enabling
user processes to send and receive data. However, all user processes must
bind to a specific TAP device using the option SO_BINDTODEVICE to
avoid interference with traffic addressed to other processes.

The virtual interface tap0 is reserved as monitoring channel. This inter-
face has an open bidirectional connection to all other virtual interfaces, and
thus hears all traffic in the emulated network.

7.2.4 OLSR daemon

The OLSR daemon olsrd [1] is an implementation of OLSR. olsrd supports
mesh routing for any network equipment with a wifi card with ad-hoc sup-
port, as well as all ethernet devices. In our experiments, we have used olsrd
version 0.4.10.

7.3 Emulation and Analysis Tools

7.3.1 setdest

The scenario files needed by NEMAN and ns-2 may be created by hand, but
there also exists programs that, based on some simple parameters, create
ready-to-use scenario files for you. setdest [15] is an example of such a
program.

setdest exists in two different versions, the original 1999 CMU version
(version 1) and the modified 2003 U.Michigan version (version 2). For our

Test Setup 75

experiments, we will be using the original version. This version takes seven
parameters:

./setdest -v <1> -n <nodes> -p <pause time> -M <max speed>

-t <simulation time> -x <max X> -y <max Y>

This command creates a scenario consisting of nodes nodes, moving with
a maximum speed of max speed meters/second for a time period of length
simulation time seconds, initially placed within the area defined by the max
X and max Y coordinates. setdest nodes move according to the random
waypoint model (RWM) [18]. In RWM, nodes move between waypoints,
which are uniformly distributed over the given area. Nodes may pause for
up to pause time seconds at each waypoint.

7.3.2 tcpdump

tcpdump [2] is a tool for intercepting and displaying the network traffic on
a specified network interface. The output from tcpdump is a description of
all captured packets. This description may, amongst other things, contain
information about source and destination of all packages, tcpdump uses the
libpcap library to capture all packets.

Running tcpdump with the -w flag produces a file containing all packet
data for later analysis. Our tests will be run with this option, enabling us
to use other analysis tools on the data on a later stage.

7.4 A Flooding Solution

The results from the ant solution alone are not enough to say anything about
the quality of the solution. Thus, we need some other system to compare
the performance of the ant solution with.

As a comparative solution, we have implemented a simple flooding solu-
tion. In this solution, instead of sending forward ants, a resource-requesting
node broadcasts a resource request. Each receiving node re-broadcasts the
request if the resource is not present. If the resource is present, a resource
reply is sent directly back to the requesting node.

7.4.1 Issues with Flooding

Flooding is a very efficient solution where one wants quick dissemination of
messages into the network. In our case, we want to find a certain resource
that might be located at some unknown node in the network. By flooding a
resource request, all nodes in the network (partition) will get the request in
a minimal number of hops, and if a resource-holding node exists, it will be
able to reply quickly, thus minimizing the response time.

76 Chapter 7

However, there are also issues with flooding, especially within MANETs.
In a MANET, communication is performed with the CSMA/CA scheme, as
explained in Section 2.1.2. In such a network, flooding comes with several
drawbacks [24]. First of all, not only the resource-holding node receives the
request. So does also all other nodes in the entire network. In the most
basic flooding approach, every node re-broadcasts every single request if the
resource is not present at the node. As broadcast messages will go back and
forth between neighboring nodes, this will lead to endless flooding, again
leading to massive load on the network if the request is not at some point
stopped, for example after a given number of hops.

The same broadcast message will also be picked up by all neighbors at
approximately the same time. Those neighbors that do not hold the resource
will decide to re-broadcast, again approximately at the same time. Chances
are, at least some of these neighbors are within range of each other. Their re-
broadcasts will then most likely contend with each other. The re-broadcast
messages may also collide with each other.

A ”massive load” is not wanted in any network, and certainly not in
a MANET. A lot of adjustments may be made to the basic flooding ap-
proach to make it less resource demanding. An obvious improvement, which
addresses the re-broadcasting problem mentioned above, is to only allow re-
broadcasting of a certain message once at each node. To make this possible,
some sort of message identification is needed, together with registration of
which messages have already been re-broadcast.

Other mechanisms are also available, such as the probabilistic scheme,
counter-based scheme, distance-based scheme, location-based scheme and
cluster-based scheme. Generally, these schemes use different techniques to
reduce the number of redundant re-broadcasts, and thus also contention and
collision. For a review of these schemes, see [24].

7.4.2 Flooded Requests

A node looking for a resource broadcasts a request, currently to its one hop
neighbors (IP address 10.0.255.255). All receiving nodes check if they have
the resource. If they do, they reply to the requesting node. If not, they
re-broadcast the request to all their one-hop neighbors.

In our simple flooding solution, we have used only one load-reducing
technique, namely the one stopping nodes from re-broadcasting the same
resource request more than once. In the ant solution, we kept a maximum
number of hops to keep requests from living ”forever” in case the requested
resource is not present within the network. In the flooding solution, however,
these requests will be stopped by the former technique when all nodes have
received the request once. Thus, such a time-to-live value is not used in the
flooding solution.

Test Setup 77

7.5 Monitoring

A monitor is a tool that is used to observe the activities within a system.
They observe system performance, collect performance statistics, analyze
data and display results, and may also identify problem areas and suggest
remedies [17]. Monitoring is a key step in measuring system performance, as
this is the phase where all data is collected.

Monitors may be placed inside or ”outside” the system in question. To
be able to place a monitor inside a system, we need to have access to and
be able to modify the system’s source code. This approach may give a very
high level of detail, but may also add additional overhead to the system in
question, as the system is modified to make room for the monitor.

A monitor placed outside the system does (probably) not get the same
level of detail, as the only data available to the monitor is the system input
and output. However, no additional overhead is added to the system in
question, giving a high level of result correctness.

In our testing, we use both kinds of monitors: Response time monitor-
ing is implemented in the source code, and is inside the system. Resource
utilization monitoring, however, is performed outside the system.

7.6 Metrics

To be able to measure the performance of our system, we must define a set
of metrics. The metrics are the performance criteria that the system will be
tested upon.

The outcome of a system request may be one out of three [17]: The
service is performed correctly, incorrectly or not performed at all. The metrics
associated with these three outcomes are speed, reliability and availability,
respectively.

During our performance testing, we will only be concerned with the first
kind of outcomes, thus we assume correct performance at all times. Per-
formance analysis of correctly performed tasks may be measured by the
time taken to perform the task (responsiveness), the rate at which the task
is performed (productivity) and the resource consumption while the task is
performed (utilization). These metrics are often referred to as response time,
throughput and utilization, respectively. In this thesis, we will focus on the
response time and the resource utilization achieved by our solution.

Metrics may be further divided into individual metrics, concerning the
utilization experienced by one user only, or global, reflecting the utilization
experienced by the system as a whole.

To get dependable results, experiments should be performed several times.
The final result for one metric will then often be the mean value of the re-
sults from all experiments. However, one should be aware of the variance

78 Chapter 7

response

time

request

response time

Figure 7.1: Response time metric.

time

request

finished

response time (1)

response

started

response

finished

response time (2)

Figure 7.2: Response time ends when the response is started (1) and ended
(2).

in the results, as outliers may affect the result significantly. During our ex-
periments, all tests have been run 10 times in a row. All results are thus
averages from 10 test runs.

7.6.1 Response Time

Response time is the interval between a user issues a request and a response is
given by the system, as shown in Figure 7.1. This interval may be interpreted
in two ways [17]: Either, it may be interpreted as the interval between the
end of a request submission and the beginning of the corresponding response,
or as the interval between the end of a request submission and the end of
the corresponding response. The two different interpretations are shown in
Figure 7.2.

Response time is often an individual metric, as it measures the time it
takes for one single user to get a response, although one might also want to
look at systemwide response time. In this thesis, we will only measure local
response times.

We obviously want a resource localization to be performed as fast as
possible, even though, as stated in the design requirements in Section 5.3,
this is not our primary goal. There are two ways of measuring the speed of
one localization:

• Actual time spent, in seconds. The results may not be too interesting
as all testing is to be done with an emulator only. The time spent by
the ant system relative to the time spent by the flooding system may,
however, be interesting.

• Number of hops. This is straightforward in both systems - the num-
ber of hops used from a request is sent to an appropriate resource is

Test Setup 79

localized.

Measuring the Response Time

In the flooding approach, a resource reply is sent directly from the resource
holder to the requesting node. In the ant solution, however, the backward
ant travels the whole search path back to the requesting node (excluding any
loops).

As mentioned above, there are two different definitions of response time,
where the difference is where the response time measurement is stopped.
When measuring the time spent on one resource localization, we thus need
to define the term ”resource localization” - does this include the reply back
to the requesting node? If the duration of the response is long, the preferred
definition is the latter, where the duration of the system response is included
in the response time. If we use this definition, the ant solution may need
twice as many hops as if we excluded the reply. One might argue that
these hops should be included, as it doesn’t help the requesting node much
that some node out there knows the location of the resource - it needs this
information itself. However, there is an obvious possible improvement to
the ant solution here: The resource holder may, in addition to sending the
backward ant towards the source, also send a direct resource reply like in
the flooding system. This introduces a slight overhead, as the requesting
node will also receive the backward ant at a later point, but will improve the
response time. This improvement is not implemented in our solution, but
makes it possible to exclude the reply from the hop count and use the first
definition - the response time is the interval from the forward ant is sent to
it is received at a resource-holding node.

In the ant system, the requesting node sometimes needs to send more
than one forward ant. During testing, we assume each forward ant that does
not produce a reply has reached the time to live-limit, and thus count time
to live hops times the number of non-returning ants plus the number of hops
traveled by the ant that actually found the resource. Also, the response time
in number of seconds is measured from the first forward ant is sent to search
for a given resource.

Logging

Requesting nodes log the time at which a request is received, righ before the
first forward ant or resource request is sent. Each ant and flooded request
contains a field keeping track of the number of preceding nodes, and forward
ants also how many ants have already tried to localize the resource without
returning. Receiving resource holders log both the time of reception as well
as the number of hops the request (counting ttl hops for every non-returning
forward ant) has traveled. All values are written to the global result log.

80 Chapter 7

7.6.2 Resource Usage and Utilization

The utilization of one resource is the fraction of time the resource is busy
servicing requests [17]. As stated in the design requirements in Section 5.3,
the main requirement for our solution is that a resource localization consumes
as little resources, both local as well as network resources, as possible. Thus,
we divide our resource usage measurements into two parts: Bandwidth usage
and local processing power usage.

Bandwidth Usage

In general, the bandwidth usage should be measured from a search is started
to the requesting node receives a reply. As opposed to the response time
measurements, when measuring the resource usage, the reply traffic may
not be omitted. Thus, for the ant system, the message count includes both
forward as well as backward ants. If a search is initialized and no reply
is received within max_sleep_time seconds, a new forward ant should be
sent, and resource usage monitoring is continued until a reply is received. It
might happen, however, that a new search is started before a backward ant
from a previous search reaches the requesting node. Thus, we need to keep
monitoring until there is no network activity.

The same holds for the flooding solution. The message count consists
of the number of broadcast messages plus the one message needed to reply
to the requesting node. We cannot stop the monitoring when a reply is
received, as the flooding might still be going on in other parts of the network
— other nodes will not know that a resource is already localized. Thus, as
in the ant solution, we need to keep monitoring until there is no activity in
the network.

Message Count To get a view of the bandwidth usage of the two systems,
the number of messages sent in the entire network during one resource local-
ization is measured. By measuring the number of sent messages, a broadcast
message will count as one message, no matter how many nodes receive the
message.

The message count MCbw in a network of n nodes is thus:

MCbw =

n
∑

i=1

(messages sent from n). (7.1)

Byte Count Counting the number of messages may give a good picture
of the resource usage of the two systems, but the resource usage depends
not only of the number of messages sent, but also the size of the messages.
Sending a few large messages might take just as much resources as sending
several smaller messages. Thus, we also measure the number of bytes sent

Test Setup 81

during resource localization. Comparing the number of bytes sent with the
number of messages sent tells us if the message count is accurate enough, or
if the size difference is large enough to affect the results of the two systems.

The byte count for bandwidth usage, BCbw in a network of n nodes is
thus:

BCbw =

n
∑

i=1

(bytes sent from n). (7.2)

Utilization In general, the message count alone is not enough to conclude
on the bandwidth utilization. We need to know how many of the messages
that were sent that were actually used for something.

In the ant system, all messages are either forwarded or replied to, except
for forward ants with ttl = 0. Thus, we expect almost full bandwidth utiliza-
tion. In the flooding system, however, a sent message is regarded utilized,
in bandwidth manner, if at least one of the recipients either re-broadcast it
or answers to it. The utilization Ubw in a network with n nodes is thus:

Ubw =

∑n
i=1(messages replied to at n)
∑n

i=1(messages sent from n)
. (7.3)

However, the ant solution bandwidth utilization should be ≈ 1, as all
received messages should be either answered to, if the resource is present,
or forwarded, if the resource is not present. The only reason for this not to
happen is if the forward ant has a ttl = 0. In this case, the ant dies and the
whole search is wasted, not only the last jump. Thus, we have not conducted
any measurements of the bandwidth utilization.

Local Processing Power Usage

The measured bandwidth usage provides information on the network load.
However, one characteristic of wireless transmission is that all nodes within
range of a transmitter will pick up the message and check if it is destined
for itself. If it is, the resources used to handle this message were not wasted.
However, if the message was not destined for this node and is thus thrown
away, this resource usage was a complete waste.

This characteristic is not very well exploited in the ant solution. Here,
all messages are destined for one specific node. Thus, there is one recipient,
so the message will not be wasted in terms of bandwidth, but all nodes that
pick up the message but find it to be destined for some other node, do waste
some processing power on this message handling.

In the flooding solution, on the other hand, this characteristic is exploited
and used to spread the request as fast throughout the network as possible.
Still, a lot of messages that have already been re-broadcast may be received
again from other sources, and are thus wasted, as each node will only re-
broadcast the same message once.

82 Chapter 7

There is a difference between wasted messages in the ant solution and
wasted messages in the flooding solution, however. In the ant solution,
wasted messages are thrown away at the network layer when the routing
protocol discovers that this message was not destined for this node. In the
flooding solution, however, ”waste” is not discovered before the message is to
the application layer and the application finds out this message has already
been re-broadcast, and thus waste even more resources than those in the ant
application. However, for simplicity, in our analysis, all wasted messages are
regarded equal.

Message Count In this case, we count the number of received messages.
Even if a message is broadcast and is thus only sent once from the source,
every receiving node needs to handle the message.

The message count MClpp in a network if n nodes is thus:

MClpp =
n
∑

i=1

(messages received at n). (7.4)

Byte Count As in the bandwidth measurements, we also look at the num-
ber of bytes sent by the two systems. The byte count for local processing
power usage, BClpp in a network of n nodes is:

BClpp =

n
∑

i=1

(bytes received at n). (7.5)

Utilization As with bandwidth, we want to know how good the local
processing power utilization is. The utilization is the fraction of messages or
bytes that are actually ”used” to the total number of received messages or
bytes. Thus, the utilization Ulpp in a network of n nodes is:

Ulpp =

∑n
i=1(messages replied to at n)
∑n

i=1(messages received at n)
, (7.6)

or alternatively

Ulpp =

∑n
i=1(bytes replied to at n)
∑n

i=1(bytes received at n)
. (7.7)

Topology Update Messages

In the ant system, we communicate with olsr to get topology information. As
this is only communication between two ports on the same (virtual) node, it
only imposes local load on each node, not on the network, and these messages
are thus omitted from message and byte counts.

Test Setup 83

1
n

Figure 7.3: Chain topology.

7.7 Test Scenarios

The test scenarios are the virtual environments in which the solutions are
tested. The scenarios define the network topology and node mobility, as well
as the node behavior, meaning resource localization initialization.

For the tests to give as realistic results as possible, the node mobility
and behavior should be as close to that in real life usage of the system.
The best is to use real world traces to define node mobility. However, real
world traces are not highly available, and are typically quite advanced. In
this thesis we instead use only a few, quite basic scenarios to show and verify
basic functionality and the most important principles. One scenario includes
node mobility, but no node joins or leaves are included in any scenario.

7.7.1 Chain Scenario

The simplest possible topology is a static chain, as shown in Figure 7.3. In
this scenario, every node has minimum one neighbor (the chain ends) and
maximum two neighbors (the middle nodes).

In this scenario, we expect both solutions to behave similarly until a
resource is located, as the only possible path for the forward ant to travel is
straight through the chain, which should also be the path of the broadcast
messages.

7.7.2 Grid Scenario

In the grid scenario, in which we still use static nodes, the number of neigh-
bors per node increases. The four corner nodes have two neighbors, other
edge nodes have three neighbors and the middle nodes have four neighbors,
as shown in Figure 7.4. The number of possible paths for an ant increases
drastically, and so does also the number of re-broadcasting nodes in the
flooding solution.

In this setup, we expect the forward ants to use a longer time to find a
resource, as it needs a bit more luck to find what it is looking for. Depending
on the time to live value, we might also need to issue several forward ants in
order to find the requested resource. However, if several ants are looking for
the same resource, we should see a decrease in the response time over time,
as resource location information is spread throughout the network.

The flooding solution, on the other hand, is expected to give relatively
quick answers, but also to put a lot more load on the network. The response

84 Chapter 7

1

 n

Figure 7.4: Grid topology.

time should also be constant, as no nodes learn anything from previous
resource localizations.

7.7.3 Mobility Scenario

In this scenario we introduce mobility. All nodes are moving according to
the random waypoint model [18].

What we want to do in this scenario, is to exploit the movement of
the middle nodes and the fact that they, when using the ant solution, will
remember the location of the resources that have been located in the near
past. To do this, we use several requesting nodes, initially located a bit apart
from each other in the network (but still in the same partition). The resource
is placed quite close to the first requesting node, but still a few hops away to
make sure we actually have some nodes containing the resource information
after the first search. An example initial setup is shown in Figure 7.5.

What we expect in this scenario is that the average response time and
resource usage decreases with the number of requesting nodes, as these utilize
stored resource information.

The flooding solution will not be able to exploit the mobility of the nodes
in any way, and we thus expect average response time and resource usage to
be more or less constant even if the number of requests increases.

Test Setup 85

1

n

Figure 7.5: Mobility topology.

7.8 Test Scenario Implementation

As stated above, we have used setdest to create our scenario files. To
construct the chain and grid scenarios, however, changes have been made
by hand to achieve the desired topology. In each scenario, the resource-
requesting nodes issue their requests one after one, with a given time interval
in between.

As described in Chapter 6, a resource localization is initialized by sending
a UDP segment to port 3457 on the resource-requesting node. In our tests,
this is done by including the following line in the scenario file:

$ns_ at X "$node_(Y.Y.Y.Y) sendmsg port=Z msg=’name quality’"

where X is the number of seconds into the emulation where the message
should be sent, Y.Y.Y.Y is the IP address of the node the message should be
sent to, Z is the port number of this host and name and quality identifies
the resource to be searched for.

For example, the following line:

$ns_ at 1.0 "$node_(10.0.0.1) sendmsg port=3457 msg=’cpu 10’"

sends the message ”cpu 10” to the node with IP address 10.0.0.1 on port
3457 one second into the emulation, telling the node to initialize a search for
resource cpu with a minimum quality of 10.

86 Chapter 7

Figure 7.6: A screenshot from the NEMAN gui showing the chain scenario.

The actual scenario file for the chain scenario is listed in Section A.1.
Because scenarios tend to grow very large when introducing more nodes and
especially mobility, the scenario files for the grid and mobility scenarios are
not listed. However, the main difference is that these two files include more
link ”definitions” and, in the case of mobility, link and range updates at
certain points in time.

7.8.1 Static Scenarios

A screenshot from the chain scenario as presented by the NEMAN gui is
shown in Figure 7.6. Each node is represented as a penguin, the circles show
the range of each node and the green lines show which links are present
between the nodes in the scenario.

A similar screenshot of the grid scenario is shown in Figure 7.7.

7.8.2 Mobility Scenario

In NEMAN scenario files, there are two kinds of ranges: data-range and
broadcast-range. For the ant solution and the flooding solution to be compa-
rable, these two ranges need to be the same, as the former uses regular data
packets and the latter uses broadcasting. In a scenario file generated by set-
dest, a range of 1 between two nodes means that they are within data-range,
whereas a range of 2 means they are only within broadcast-range. To solve
this issue, we use a script to simply remove all entries from the scenario file
where the range is set to 2. All higher ranges mean that the two nodes are
completely outside the range of each other, and are thus left as they are.

A NEMAN gui-screenshot of the mobility scenario is shown in Figure
7.8. Figure 7.8a shows the initial state of the network, whereas Figure 7.8b
shows the final network state, after 120 seconds of emulation. Note that the

Test Setup 87

Figure 7.7: A screenshot from the NEMAN gui showing the grid scenario.

ranges of the nodes are left out, as for some reason, the ranges generated
by setdest do not always correspond with the physical node locations, also
provided by setdest — sometimes we get a link between nodes that should
have been outside the range of each other.

7.9 Workload

The workload is the load that is put on the system during usage. We may
differ between two kinds of workload: test workload and real workload [17].
The real workload is the workload that the system will be exposed to during
normal operation, whereas the test workload is the workload under which
the system is tested, and which is used to compare different systems. For
the tests to give as realistic results as possible, the test workload should be
similar to the real workload. The test workload may, however, just like test
scenarios, be simplified to ease the configuration of the workload.

In our experiments, the workload is made up by the number of resource-
holding nodes, resource-requesting nodes, number of requests and node lo-
cation and mobility. As stated in the design assumptions in Section 5.2, we
assume that both resource-requesting and resource-holding nodes are ran-
domly placed within the MANET. To reflect this, we should place these at
random positions in our scenarios. However, because we need our tests to

88 Chapter 7

(a) Initial state.

(b) Final state.

Figure 7.8: Screenshots from the NEMAN gui showing the mobility scenario.

Test Setup 89

be repeatable, random placement is not desireable. Instead, we have tried
to place them as ”randomly” as possible. This will be further explained for
each scenario below.

In all scenarios, we have, for simplicity, restricted ourselves to only
one resource-holding node per MANET. The number of resource-requesting
nodes varies, as explained below. Tests are divided between single location,
with only one resource-requesting node, and location learning, where there
are several resource-requesting nodes. In all experiments, the requesting
node is looking for a resource named ”memory” with a quality of at least
90. The resource-holding node holds a resource with name ”memory” and a
quality 100 + its tap number, thus, resource memory at tap number 4 has
a quality of 104. The only reason for this is to make it easier to verify when
reading output files that the resource was located at the correct node — the
only actual requirement is that the quality is ≥ 90.

7.9.1 Parameters

For all tests, we have set the time to live value for all ants and flooded
messages equal to the number of nodes in the network minus one. If this
value is too small, the possibility that an ant actually finds a resource is
small, as it might never get to walk far enough. If the value is too large,
we risk that ants ”get lost” in parts of the network where the resource is not
present. We have chosen to set this value equal to the number of nodes in
the MANET. The ant should then have the possibility to walk the entire
diameter of the network, but still not walk ”forever”.

The expiry time of learned resource location information is set to infinity.
This is a rather unrealistic value, but makes our test cases simpler.

The max_sleep_time for the ant solution is set to 2 seconds.

7.9.2 Scenario Properties

Chain Scenario

As this is a static scenario, the size of the area in which the network is
located is unimportant. The scenario consists of five nodes linked together
in a chain. The purpose of this setup is mainly to show that the algorithm is
sound and the functionality works as expected. Because of the characteristics
of the chain topology, we do not conduct any experiments with more than
one requesting node.

Grid Scenario

Our grid scenario consists of 25 nodes, in a 5 x 5 grid.

90 Chapter 7

1 2 3 4 5

Figure 7.9: A chain topology with requesting and resource-holding nodes at
the ends. A dashed line represents a requester, and a dotted line represents
a resource holder.

Mobility Scenario

This scenario consists of 25 mobile nodes. These move within an area of
size 700m x 700m, with a maximum speed of 15 metres per second and a
maximum pause time of 8 seconds for a duration of 120 seconds.

7.9.3 Single Localization

In these experiments, we use one resource-requesting and one resource-holding
node for all three scenarios.

Chain Scenario

In our simplest experiments, we use a chain with five nodes, where we place
the requesting node at one end of the chain and the requested node in the
other end, as shown in Figure 7.9.

Grid Scenario

There are several possibilities when it comes to placing the requesting node as
well as the resources requested in the grid. With only one available resource,
one possibility is to place the requesting node and the requested resource in
diagonally opposite corners. To obtain a more ”random” placement of these
two nodes, we have placed them one hop into the network, giving them four
instead of two neighbors, as shown in Figure 7.10, which is more likely than
a real corner placement with only two neighbors. Thus, in the figure, node
7 is the requesting node and node 19 is the resource-holding node.

Mobility Scenario

In an experiment with one single localization, we do not really experience
any effects of the mobility. We have still included this experiment for com-
pleteness’ sake. The scenario also provides a picture of how the ant solution
behaves in a network with a more irregular topology, where some nodes have
few neighbors and others may have more neighbors.

Resource-requesting and resource-holding nodes have been chosen such
that intially the shortest path between them is 4 hops, as this gives a large
number of possible paths for the forward ant. Thus, this case is quite similar
to the grid scenario when performing only one localization. The position of

Test Setup 91

1 2 3 4 5

11 12 13 14 15

21 22 23 24 25

Figure 7.10: A grid topology with 25 nodes: One requesting node (node 7)
and one resource-holding node at diagonally opposite ”corners”. A dashed
line represents a requester, and a dotted line represents a resource holder.

these nodes are shown in Figure 7.11, where node 12 is the requesting node
and node 4 is the resource-holding node.

7.9.4 Location Learning

In this range of test scenarios, we introduce several resource-requesting nodes.
These all request exactly the same resource. Thus, in the ant solution, as
soon as the first forward ant has located the resource, the location informa-
tion starts spreading throughout the network.

Grid Scenario

To show the real effect of the ant approach and resource location learning,
we use a grid with three different requesting nodes. These are placed in near-
”corners” (nodes 7, 9, and 17) except for the one holding the resource-holding
node (node 19), as shown in figure 7.12. The shortest path from these nodes
to the resource-holding node is thus 4, 2 and 2 hops, respectively.

The requesting nodes issue their requests in numerical order, starting
with the lowest numbered node. Requests are issued every 15 seconds, giving
each node up to 8 tries to locate the given resource before the next node
starts. If the first node does not locate the resource in 8 tries, the requesting
nodes will continue resource localization simultaneously.

92 Chapter 7

Figure 7.11: A mobility topology with 25 nodes; One resource-requesting
node (node 12) and one resource-holding node (node 4). A dashed circle
represents a requester, and a dotted circle represents a resource holder.

Test Setup 93

1 2 3 4 5

11 12 13 14 15

21 22 23 24 25

Figure 7.12: A grid topology with 25 nodes; Three resource-requesting nodes
(nodes 7, 9 and 17). one resource-holding node (node 19). A dashed line
represents a requester, and a dotted line represents a resource holder.

Mobility Scenario

Initially, the resource-requesting nodes are placed around the edge, and
the resource-holding node in the ”middle”. We use five different resource-
requesting nodes, each requesting a resource with 25 seconds in between.
This gives nodes time to move a bit around between each search, and thus
spreading any learned location information. However, even if requesting
nodes were initially placed around the edge, this may have changed be-
fore they actually get to issue a request. The scenario with requesting and
resource-holding nodes in their initial positions is shown in Figure 7.13.

Like in the grid scenario, nodes receive the initial resource requests in
numerical order, starting with the lowest numbered node. To give nodes time
to move around a bit between each initiated resource localization, requests
are issued by different requesting nodes every 25 seconds.

94 Chapter 7

Figure 7.13: A mobility topology with 25 nodes; One resource-holding node
(node 22) and five resource-requesting nodes (nodes 4, 5, 6, 10 and 25). A
dashed circle represents a requester, and a dotted circle represents a resource
holder.

Chapter 8

Performance Evaluation

”Software and cathedrals are much the same — first we build

them, then we pray.”

— Sam Redwine

In this chapter we present the results from our performance tests. We
start by explaining some factors that may have an impact on the tests results.
Then we compare the results from the ant and flooding solutions, and look
at which solution performs best in each test scenario and analyze why the
solutions perform as they do. We also give a few suggestions to what may be
done differently to address some of the problems observed when analyzing
the test results.

8.1 Influencing Factors

8.1.1 Topology Initialization and Updates

During our testing, we have experienced some problems with OLSR using
a very long time to get all topology information and set up routes. In the
very simple chain scenario with only five nodes, it took up to 15 seconds
to establish a route between nodes 1 and 5. For the ant solution, this is
not a problem, as ants move between neighbors, and neighbor information
appears much faster than longer distance routes. However, for the flooding
solution’s resource replies to get delivered from the resource-holding to the
resource-requesting nodes, we need several hops-routes to be established.

To solve this, we have introduced a delay between the time a scenario
is started and the first resource request is sent from the scenario file to a
resource-requesting node. In the stationary scenarios this is trivial, as the
network looks the same after 30 seconds as it did when the scenario was
started. In the mobility scenario, however, the node positions may be very

96 Chapter 8

different after 30 seconds. In the single localization mobility scenario, this is
not a problem, as we still do not exploit the mobility. Note, however, that
the topology when the resource request is sent is not the same as the initial
topology shown in Figure 7.11.

In the location learning mobility scenario, however, we ”loose” 30 seconds
of mobility, leaving less time to allow nodes to move in between resource
localizations. To avoid this, we have added 30 seconds of non-mobility to
this scenario file between the node range initialization and the first range
updates. Thus, this scenario actually lasts for 150 seconds instead of 120,
but only the last 120 seconds are exploited by the ant and flooding solutions.

In Section 7.6.1, we stated that during performance testing, we will only
be concerned with successful tests. In Section 6.6.3, we stated that node
mobility should not be a problem for the ant solution, as any lost neighbors
would be handled by the routing protocol. It turns out, however, that at
some occasions, topology updates are too slow, and some ants are thus lost
when a node tries to forward it to a newly lost neighbor. Unfortunately,
time issues inhibited us in adjusting the code to this. During our testing,
this happened in around 2 out of 10 single test runs. The experiments where
this occurred do not count as ”successful”: If an ant is lost, a new forward
ant will be sent by the requesting node, so a resource will still eventually
be found if present. However, the system will count the lost ant as an ant
reaching time to live = 0 and assume it has traveled its maximum number
of hops, which may not be correct. To get as correct performance results as
possible, we have thus left out those experiments where an ant is lost. We
have thus run more than 10 experiments in these cases, and left out those
where an ant was lost due to transmission errors. Making the ant solution
more robust to such transmission errors is thus left as further work.

8.1.2 Time Inaccuracy

The timing of one resource localization has been performed by using the
gettimeofday() function. This is possible without any clock synchroniza-
tion as the whole system is running on the same machine. However, due to
differences in the ant and flooding solution source code, it is not possible
to start and stop these measurements at the exact same position in both
systems. Thus, these are approximate times.

8.1.3 Average Neighborhood Size

For the chain and grid scenarios, the number of neighbors per node is con-
stant, as there is no mobility or link changes. In the chain scenario, the
average number of neighbors per node is 1.6, and in the grid scenario the
average number of neighbors per node is the double, namely 3.2. In the
mobility scenarios, however, the number of neighbors per node varies over

Performance Evaluation 97

time.
As our ant solution is targeted at MANETs consisting of only one parti-

tion, we need our mobility scenario to stay completely connected during the
entire emulation. This does not correspond with the random movement of
the nodes, and as far as we are concerned, there is no easy way to automat-
ically generate a scenario with mobility and with the guarantee that nodes
always stay within the same partition. Thus, when making the mobility
scenario, we had to set the area small enough that partitioning was highly
unlikely. The result was a scenario file with only one partition, but with a
very high connectivity, meaning a very high number of neighbors per node.
Later in this chapter we will see that this has a negative impact on the ant
solution. Basically, this is because a high number of neighbors decreases the
possibility that an ant choosing a next hop neighbor to move to actually
makes a ”clever” choice, meaning a next hop that moves the ant closer to the
requested resource.

Because of these problems, we have made an alternative mobility sce-
nario. Initially, this scenario was a copy of the original scenario. However,
we have made a simple script that loops through all lines in the scenario file,
and whenever a line setting the range between two nodes to one is discov-
ered, this line is removed from the file with a probability of 0.7. Thus, a
lot of links from the original scenario are removed, making the scenario less
connected. For the rest of this thesis, this new scenario will be denoted a
”sparse mobility scenario”, whereas the original scenario is denoted a ”dense
mobility scenario”. Figure 8.1 shows the average number of neighbors per
node per second into the emulation for the two mobility scenarios. Note that
the data from the scenarios have been discretized by rounding all timestamps
down to the nearest whole second. In the dense scenario, we see that the
number of neighbors increases from around 4 to between 12 and 14, which is
a very high number in a network with only 25 nodes. In the sparse scenario,
the number of neighbors is relatively constant.

For all location learning scenarios, we have run all tests both for the
sparse and the dense mobility scenario. For the single localization scenarios,
however, we have only used the dense mobility scenario.

In the mobility scenarios with location learning, five different nodes re-
quest a resource with 25 seconds between. Table 8.1 shows how many neigh-
bors nodes have, on average, when each of the nodes initialize its search.

8.2 Results — Response Time

8.2.1 Single Localization

In the single localization experiments, all program instances were completely
restarted for each experiment, so no resource information is learned between
two resource localizations. The average number of hops per resource local-

98 Chapter 8

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 0 20 40 60 80 100 120

N
um

be
r

of
 n

ei
gh

bo
rs

Seconds into emulation

Dense scenario Sparse scenario

Figure 8.1: Average number of neighbors per second into the simulation in
the mobility scenarios.

Request number 1 2 3 4 5

Dense scenario 5.52 9.36 12.0 12.4 12.48
Sparse scenario 5.52 6.32 6.4 6.4 6.4

Table 8.1: Average number of neighbors per node in the dense and sparse
mobility scenarios when requests are issued.

Performance Evaluation 99

Solution Chain Scenario Grid Scenario Mobility

ant 4.0 21.0 51.8
flood 4.0 4.0 2.0

Table 8.2: Average number of hops used in one resource localization in each
scenario.

Solution Chain Scenario Grid Scenario Mobility

ant 13.02 848.8 3130.0
flood 1.5 14.3 13.2

Table 8.3: Average time in milliseconds spent on one resource localization in
each scenario.

ization for each scenario is shown in Table 8.2, and the average time spent
per resource localization for each scenario is shown in Table 8.3.

Chain Scenario

As we expected, the two solutions use the same number of hops in the very
simple chain scenario. This scenario consists of five nodes that all need to
be visited to find the resource in the other end, giving four hops. This fits
perfectly with the observed results.

For the time spent, however, we see that the flooding solution uses less
time than the ant solution: The ant solution uses almost nine times more
time than the flooding solution. This is probably due to the fact that the
ant solution requires quite a lot more processing in each intermediate node
than the flooding solution, which only re-broadcasts received messages. The
ant solution also handles incoming topology updates, and thus simply has
more to do than the flooding solution.

Grid Scenario

For the grid scenario, the difference in the response time for the two solutions
really starts to show. The response time in number of hops is 7.7 times as
large in the ant solution as in the flooding solution. As expected, the flooding
solution still uses 4.0 hops, which is the length of the shortest path from
the resource-requesting to the resource-holding node, in average to localize
a resource. The ant solution uses almost 60 times as much clock time to
localize a resource as the flooding solution.

100 Chapter 8

Mobility Scenario

In these scenarios, the difference between the response time in the ant so-
lution and the flooding solution gets even more significant. The flooding
solution, which always reaches the resource-holding node in the shortest
possible number of hops, has a response time of 2 hops in the dense scenario,
whereas the ant solution uses on average 51.8 hops, or almost 26 times more
hops than the flooding solution. In the sparse scenario, the flooding solution
uses 3.2 hops, whereas the ant solution uses 105.67 hops, approximately 33
times as many as the flooding solution. The same is shown by the measured
times: In the sparse scenario, the ant solution uses a whooping 381.69 times
longer to locate the given resource.

This is a scenario with mobility. However, as we are only performing
one resource localization, the duration of an experiment is too short for the
mobility to make a difference on the results. However, there is a possibility
that the topology changes between two subsequent forward ants if more than
one is needed. The network topology might thus be different when the last
forward ant is sent than it was during the resource localization in the flooding
solution, making the minimum number of hops smaller or larger.

8.2.2 Location Learning

Grid Scenario

Figure 8.2 shows the average response time against the number of requesting
nodes in the grid scenario with location learning. The response time as
number of hops is shown in Figure 8.2a, and the response time in milliseconds
is shown in Figure 8.2b. Response times are plotted per resource-requesting
node, thus the first pair of columns shows average response time for the
first requesting node, the second pair of columns shows the average response
time for the second requesting node and so on. Note also that the response
times in both figures are plotted with base 2 logarithmic scale. This is done
because of the large span in response time results: When using a linear
scale, most results do not show on the plot because of the large difference in
response time from the first resource-requesting node in the ant solution to
all subsequent resource-requesting nodes in the ant solution and all flooding
solution results.

From the plot, we see that for the ant solution, the tendency in this
scenario is quite clear: The response time, both in number of hops as well
as in milliseconds, decreases drastically from the first, with 40.2 hops, to
the second requesting node, with 3.5 hops. From the second to the third
requesting node, there is little difference, and we actually see a small increase
in number of hops, but a small decrease in number of seconds.

For the flooding solution, however, we get the expected results: The
first requesting node uses more hops, but this is due to the fact that the

Performance Evaluation 101

 1

 2

 4

 8

 16

 32

 64

1 2 3

N
um

be
r

of
 h

op
s

us
ed

Requesting node number

Ant solution
Flood solution

(a) Number of hops.

 0.25
 1
 4

 16
 64

 256
 1024
 4096

1 2 3

T
im

e
us

ed
 (

se
co

nd
s)

Requesting node number

Ant solution
Flood solution

(b) Number of milliseconds.

Figure 8.2: Average response time per resource-requesting node in grid sce-
nario with location learning. Note: y-axis plotted with base 2 logarithmic
scale.

 0.25

 1

 4

 16

 64

1 2 3 4 5

N
um

be
r

of
 h

op
s

us
ed

Requesting node number

Ant solution
Flood solution

(a) Number of hops.

 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048
 4096
 8192

1 2 3 4 5

T
im

e
us

ed
 (

se
co

nd
s)

Requesting node number

Ant solution
Flood solution

(b) Number of milliseconds.

Figure 8.3: Average response time per resource-requesting node in dense
mobility scenario with location learning. Note: y-axis plotted with base 2
logarithmic scale.

first requesting node is located 4 hops away from the resource-holding node,
whereas the second and third are only two hops away. In one of the flood
experiments, one flooded package from the second requesting node reached
the resource-holding node via a longer path before the one traveling the
shortest path. The flooding solution only handles the first incoming copy
of the same message, thus, there is a slight difference between the average
number of hops for the second (2.2 hops) and the third (2 hops) requesting
node.

Mobility Scenario — Dense

In Figure 8.3, we see how the average response time per resource localization
changes with the number of nodes requesting the same resource. Figure 8.3a
shows the response time in number of hops, whereas Figure 8.3b shows the
number of milliseconds spent.

We see here the same tendency as we saw in the grid scenario: There
is a dramatic decrease in the response time from the first to the second

102 Chapter 8

 0.25

 1

 4

 16

 64

1 2 3 4 5

N
um

be
r

of
 h

op
s

us
ed

Requesting node number

Ant solution
Flood solution

(a) Number of hops.

 4
 8

 16
 32
 64

 128
 256
 512

 1024
 2048
 4096

1 2 3 4 5

T
im

e
us

ed
 (

se
co

nd
s)

Requesting node number

Ant solution
Flood solution

(b) Number of milliseconds.

Figure 8.4: Average response time per resource-requesting node in sparse
mobility scenario with location learning. Note: y-axis plotted with base 2
logarithmic scale.

requesting node. However, here we see that the response time continues to
decrease when introducing more requesting nodes.

In this scenario, we also see a slight decrease in the response time for
the flooding solution. The differences here are, however, a lot smaller, and
appear mainly because the scenario goes from being quite ”stretched” in
the beginning, to being more tightly connected towards the end. Thus, the
minimum distance between two nodes decreases slightly over time.

Mobility Scenario — Sparse

Figure 8.4 shows the average response time per resource localization per
resource-requesting node in the sparse mobility scenario. Figure 8.4a shows
response time in number of hops, whereas Figure 8.4b shows the response
time in milliseconds.

Like in the dense mobility scenario, the response time for the flooding
solution is relatively constant. For the ant solution, however, we see the
same drastic decrease in response time from the first to the subsequent re-
questing nodes. Measured in milliseconds we see a peak for requesting node
number three, but this is due to the max_sleep_time, which is relatively
long compared to the time it takes for a forward ant to walk its maximum
number of hops. Measured in number of hops, we only see a slight increase
for the same requesting node.

8.2.3 Conclusion

For both scenarios we see that the flooding solution always gives a shorter
response time than the ant solution. However, the difference between the
two decreases with the number of requesting nodes.

On average, one localization in the mobility scenario using the ant solu-
tion takes 3.13 seconds. In a scenario of this size, the ant solution is likely

Performance Evaluation 103

to need more than one forward ant to locate a resource because an ant’s
time to live-value reaches 0. The response time in milliseconds is thus highly
dependent on the size of max_sleep_time, the time before a forward ant
is considered unsuccessful by the requesting node and a new forward ant
is sent. As the max_sleep_time between two forward ants in our tests is 2
seconds, this tells us that in this scenario, the ant solution on average needed
more than one forward ant to locate the resource (it is highly unlikely that
the first ant used such a large amount of time to move the maximum of
25 hops). Thus, had the max_sleep_time been different, then the response
time would be equally different.

Another observation is that the ant solution performs particularly bad
in the mobility scenarios, especially in the single location case but also in
the location learning case, there especially for the first requesting node. In
Section 8.1.3, we saw that the number of neighbors per node is a lot higher
in the dense mobility scenario than in the other two scenarios, and also a
bit higher in the sparse mobility scenario. For a forward ant, this means
that when standing in a node selecting which neighbor to use as next hop,
it has a high number of neighbors to choose from. With only one resource-
holding node present in the entire network, the chance of making a clever
choice in this situation decreases with the number of neighbors. From the
tcpdump files from the mobility scenario, we see that in many cases, the
first requesting node may have to send up to six forward ants to look for the
same resource before it is actually located. The reason for this is that there
are too many available neighbors and thus too little chance of making the
”right” choice — the forward ant needs a bit of luck to be able to locate the
resource fast. The node needs more tries to find out which paths lead to the
resource and which paths do not.

This is also reflected by the difference between the two mobility scenarios:
For the first requesting node, the number of hops is 69.7 and 50.1 for the
dense and sparse scenarios respectively. There is thus a decrease in the
number of hops needed in the sparse scenario. The much smaller number of
neighbors in the sparse scenario increases the possibility that a forward ant
makes a ”smart” choice when choosing a next hop. As soon as the location
learning kicks in, there is little difference between the sparse and the dense
scenario.

8.3 Results — Bandwidth Usage

8.3.1 Single Localization

The results from our bandwidth experiments are shown in Tables 8.4 and
8.5, under ”Messages Sent” and ”Bytes Sent”. These show the total number
of messages and bytes that were, in some way, sent from all nodes in the
scenario during the different scenarios. By ”sent”, we mean both from our

104 Chapter 8

Scenario Solution Messages Sent Messages Received Utilization

Chain
Ant 8.0 14.0 57.14

Flood 8.0 14.0 57.14

Grid
Ant 26.7 91.7 29.12

Flood 35.0 92.0 38.04

Mobility
Ant 56.6 660.1 8.57

Flood 40.0 271.0 14.76

Table 8.4: Messages sent and received and message utilization for both so-
lutions in each single localization scenario.

Scenario Solution Bytes Sent Bytes Received Utilization

Chain
Ant 1216.0 2128.0 57.14

Flood 524.0 1400.0 57.14

Grid
Ant 6584.0 22440.0 29.34

Flood 3604.0 9680.0 37.23

Mobility
Ant 15940.8 186308.8 8.56

Flood 4064.0 28852.0 14.09

Table 8.5: Bytes sent and received and message utilization for both solutions
in each single localization scenario.

application as well as those messages that were only forwarded to other nodes
on the transport layer.

Note that as a neighbor may be lost between the forwarding of a forward
ant and the reception of the corresponding ant, as explained in Section 6.6.3,
the number of sent messages may be slightly larger than the actual number
of nodes visited by the forward ant, as the backward ant may need to be
forwarded via other nodes to reach the lost neighbor.

If we look at the number of bytes sent, we see that in each scenario, the
flooding solution performs significantly better than the ant solution, even
though the ant solution nodes sent less messages in the grid scenario. This
is due to the large message size in the ant solution: A forward ant is initially
128 bytes large, whereas a flood solution resource request is only 108 bytes.
In addition to this, the size of a forward ant increases for every hop as address
information for the last hop is appended. The size of one unit of address
information is 16 bytes. Thus, the size of a forward ant increases linearly
with 16 bytes per hop, whereas the size of a flood request is constant. Figure
8.5 shows the relationship between ant and flooding solution message sizes
during resource search (backward ant/resource reply not included). The size

Performance Evaluation 105

 0

 100

 200

 300

 400

 500

 5 10 15 20

M
es

sa
ge

 s
iz

e

Number of hops

Ant solution
Flooding solution

Figure 8.5: Message size during resource search in both solutions plotted
against the number of hops traveled.

of a backward ant is the same as a forward ant, as these use the same data
structure. The only difference is that the size of the backward ant decreases
with the number of hops. A flood resource reply, on the other hand, is only
92 bytes.

Note also that these sizes are including some information needed for
testing purposes, and may be removed during normal system use.

8.3.2 Location Learning

Tables 8.6 and 8.7, columns ”Messages Sent” and ”Bytes Sent” respectively,
show the number of messages and bytes sent in each of the location learning
scenarios. Again, we see that the ant solution benefits from the introduc-
tion of location learning, as in all three scenarios, the ant solution performs
significantly better than the flooding solution with respect to the number of
messages sent: The flooding solution nodes send approximately 61% more
messages than the ant solution nodes in the dense scenario and 88% more
messages in the sparse scenario. However, like in the single localization sce-
narios we see that the large size of the ant still makes the ant solution send
a significantly higher number of bytes than the flooding solution.

When comparing the results from the two mobility scenarios, we see that
the sparse scenario gives better performance than the dense scenario: Nodes
in the ant solution send approximately 18% more messages in the dense than
in the sparse scenario. This is probably due to the difference in number of
neighbors: Fewer neighbors increases the possibility of choosing the ”correct”
neighbor as next hop. For the flooding solution, the numbers are more or
less equal.

106 Chapter 8

Scenario Solution Messages Sent Messages Received Utilization

Grid
Ant 57.0 195.2 29.2

Flood 88.1 258.8 34.04

M-Dense
Ant 91.9 763.1 12.04

Flood 148.4 1316.0 11.28

M-Sparse
Ant 77.7 553.0 14.05

Flood 146.0 813.6 17.94

Table 8.6: Messages sent and received and message utilization for both so-
lutions in each location learning scenario. M-dense and M-sparse are dense
and sparse mobility scenarios, respectively.

Scenario Solution Bytes Sent Bytes Received Utilization

Grid
Ant 14291.2 48908.8 29.22

Flood 9257.2 27457.6 33.71

M-Dense
Ant 24612.8 193644.8 12.71

Flood 15572.4 140800.0 11.06

M-Sparse
Ant 19454.4 137593.6 14.14

Flood 15352.0 86867.2 17.67

Table 8.7: Bytes sent and received and message utilization for both solutions
in each location learning scenario. M-dense and M-sparse are dense and
sparse mobility scenarios, respectively.

Performance Evaluation 107

8.3.3 Conclusion

What the bandwidth tests show us is that the ant solution has the potential
to outperform the flooding solution when the network size and/or the number
of requesting nodes increase. Increasing network size causes a higher degree
of flooding, whereas the number of nodes requesting nodes has an impact
on how much we get out of the resource location learning. However, in all
test scenarios, the large ant size causes the ant solution to behave poorly
with respect to the number of bytes sent. As stated in Chapter 6, the ant
data structure is not optimized with respect to size, and it should thus be
possible to decrease the size of the ants. However, there will always be a
need of appending address information to forward ants for the corresponding
backward ant to be able to retrace its path. Thus, the size of a forward ant
will always have to increase with the number of hops traveled. However, one
might consider other, better scalable ways to store this information than the
16 bytes large sockaddr_in structure that is currently used.

Also, in our experiments, the ant time to live was equal to the number
of nodes in the network minus one. This means that our ants are allowed to
grow from 128 bytes to 496 bytes, or almost four times its own size, in the
grid and mobility scenarios consisting of 25 nodes. From our results, we see
that the time to live-value should probably be set to a smaller number. By
doing this, we limit the maximum size of a forward ant. However, we also
make it harder for a forward ant to find the resource during its search, as it
is allowed to visit a smaller number of nodes.

Another interesting observation is that if we compare the results from
the ant solution response time measurements in number of hops with the
corresponding number of sent messages, we see that the latter numbers are
only slightly smaller than the former. Remember that the response time is
measured from a forward ant is sent from the resource-requesting node to
the resource-holding node is reached, whereas the number of sent messages
also includes the backward ant. If we did not eliminate loops traveled by
the forward ant before sending the corresponding backward ant, we would
expect the number of sent messages to be approximately twice as large as
the number of hops traveled by the forward ant. However, as any loops
are eliminated, the number of hops traveled by the backward ant, and thus
the number of sent messages, may be lower than that of the corresponding
forward ant.

If we look at the chain scenario with a single requesting node, we see that
the number of hops is 4.0 and the number of sent messages is 8.0, exactly
twice as much. This fits well with what we expect for this scenario, as the
characteristics of the chain scenario makes it impossible for the forward ant
to travel in loops. For the grid scenario, however, the number of hops is
21.0, whereas the number of sent messages is 26.7, only approximately 21%
larger. Thus, the length of the path traveled by the backward ant back to

108 Chapter 8

the requesting node is drastically reduced. The reason for this is that the
forward ant traveled in a long loop, which was later eliminated. The same
holds for the mobility scenario, where the number of sent messages is only
approximately 9% larger than the number of hops.

This will have an impact on the results we get from location learning. The
gain from this concept is highly dependent of the learned location information
spreading to as many nodes as possible, rising the possibility for subsequent
ants searching for similar resources reaching nodes with resource location
information. However, by decreasing the length of the path traveled by
the backward ant, we limit the number of nodes picking up the new location
information. Thus, from these results, we see that one might want to consider
allowing also backward ants to travel in loops.

Loops were eliminated because we wanted to use as little bandwidth and
processing power as possible to get the backward ant to the requesting node.
Thus, we are dealing with a tradeoff: We can either spend less resources, or
we can get a good location information spreading. Which approach to use
depends on the application: If it is likely that several subsequent ants look
for similar resources, a good location information dissemination could weigh
up for the expensive first localization. If, in most cases, only one node will be
requesting a certain resource, however, most requests will be expensive first-
time requests, and we do not get to utilize the well-disseminated location
information.

8.4 Results — Processing Power Usage

Processing power usage is measured in the number of received messages,
thus the number of messages that, in some way, need to be handled by the
receiving node. This includes both messages that are delivered all the way up
to the application layer as well as those that are received but only forwarded
or discarded at the transport layer.

In the ant solution, we expect the number of sent messages from the
application level to be equal to the number of received messages, as all nodes
receiving an ant should either re-forward it or, if the ant is a forward ant and
the resource is present: Reply with a backward ant. An intuitive thought is
that if a forward ant ”dies” because of a too low time to live-value, there will
only be a received message, not a sent message. However, this will lead to
the requesting node sending a new forward ant. This node will only get one
reply back, though, thus the extra sent message from the requesting node
”eliminates” the extra received message at the node receiving the forward
ant with time to live = 0.

However, as mentioned above, these results contain both application layer
and network layer messages. As stated earlier, the ant solution does not ex-
ploit the fact that all nodes within range of a transmitting node will overhear

Performance Evaluation 109

the transmitted package and have to check if it is destined for itself or some
other node. In the flooding solution, however, all nodes hearing a message
pick it up, but only retransmit if an equal message has not already been
received and retransmitted.

8.4.1 Single Localization

The results from our single localization experiments are shown in Table 8.4,
column ”Messages Received” and 8.5, column ”Bytes Received”.

Chain Scenario

As expected, the number of received messages is equal for both solutions in
the chain scenario, as all messages follow the exact same path. As observed
in the above bandwidth experiments, the number of bytes is quite a bit larger
for the ant solution than for the flooding solution, again because of the much
larger ant solution message size.

Grid Scenario

In the grid scenario, the two solutions perform approximately equally; the
ant solution receives on average 0.3 messages less than the flooding solution.
As the network size and number of hops needed increases, the number of
bytes also increases, and the difference between the ant solution and the
flooding solution is even larger than in the chain scenario.

Mobility Scenario

In the mobility scenario, however, the number of received messages in the
ant solution increases dramatically, and is approximately 2.4 times higher
than that of the flooding solution. This is also shown in the number of bytes
received, and in this scenario, the nodes in the ant solution receives approx-
imately 6.5 times as many bytes as the nodes in the flooding solution. The
large increase is due to the large number of neighbors receiving everything
transmitted from their neighbors.

8.4.2 Location Learning

The results from the location learning experiments are listed in Table 8.6
and 8.7 under the columns ”Messages Received” and ”Bytes Received” re-
spectively.

Grid Scenario

The flooding solution here uses approximately 32.6% more messages to lo-
calize the requested resources. When measuring in number of bytes, the

110 Chapter 8

 0
 20
 40
 60
 80

 100

Chain

Grid
M

obility

P
er

ce
nt

ag
e

Scenario

Ant solution
Flood solution

(a) Message utilization

 0
 20
 40
 60
 80

 100

Chain

Grid
M

obility

P
er

ce
nt

ag
e

Scenario

Ant solution
Flood solution

(b) Byte utilization

Figure 8.6: Total utilization percentage in each scenario.

ant solution is still outperformed by the flooding solution, as the ant solu-
tion nodes receive approximately 78% more bytes than the flooding solution
nodes.

Mobility Scenario

In the dense scenario, the flooding solution nodes receive 72.5% more mes-
sages than the ant solution, but still the ant solution nodes receive 37.5%
more bytes. In the sparse scenario, the difference is smaller, but the flooding
solution still receives approximately 47% more messages. We also see the
same as in the bandwidth usage experiments: The ant solution performs
better in the sparse scenario than in the dense: Nodes in the dense scenario
receive approximately 38% more messages than nodes in the sparse scenario.

8.4.3 Conclusion

In these experiments, we see the same tendency as in the bandwidth exper-
iments: When introducing more requesting nodes, the ant solution localizes
the requested resource using less resources than the flooding solution, given
that we measure in number of messages. Still, the ant size makes the ant
solution perform quite a bit worse than the flooding solution with respect to
the number of bytes received. We also see that the ant solution benefits from
having a low number of neighbors, as for local processing powers, a lower
number of neighbors means a lower number of overheard messages.

8.5 Results — Processing Power Utilization

The local processing power utilization is the ratio of sent messages to received
messages, and expresses the percentage of received messages that a node
found worth either forwarding or replying to, meaning the messages that the
node received and actually used to contribute to the resource localization.

Performance Evaluation 111

 0
 20
 40
 60
 80

 100

Grid
M

-dense

M
-sparse

P
er

ce
nt

ag
e

Scenario

Ant solution
Flood solution

(a) Message utilization

 0
 20
 40
 60
 80

 100

Grid
M

-dense

M
-sparse

P
er

ce
nt

ag
e

Scenario

Ant solution
Flood solution

(b) Byte utilization

Figure 8.7: Total utilization percentage in each location learning scenario.
M-dense and M-sparse are dense and sparse mobility scenarios, respectively.

8.5.1 Single Localization

Figure 8.6 shows utilization of messages (8.6a) and bytes (8.6b). The actual
percentages are also listed in Tables 8.4 and 8.5.

In the single localization scenarios, we see that the flooding solution
generally performs equal to (chain scenario) or better (grid and mobility
scenarios) than the ant solution. The difference in the message utilization
percentages is not very large, however: 8.92% and 6.19% in the grid and mo-
bility scenarios respectively. The byte utilization results are very similar to
the corresponding message utilization percentages, which is natural because
we are dealing with the same actual messages in both cases.

This corresponds well with what we expected, as nodes in the ant solu-
tion receive all messages sent from neighboring nodes, but only utilize those
addressed to themselves. In the flooding solution, however, all messages are
handled if previously not received and utilized.

8.5.2 Location Learning

Figure 8.7 shows utilization of messages (8.7a) and bytes (8.7b). Percentages
are also given in Tables 8.6 and 8.7.

For the grid scenario, we see the same tendency as in the single localiza-
tion scenarios: The flooding solution achieves a higher utilization percentage
than the ant solution. This is also the case for the sparse mobility scenario.
In the dense mobility scenario, however, the ant solution performs slightly
better than the flooding solution and achieves a 0.76 percent higher message
utilization.

We also see that the utilization of local processing resources is slightly
higher in the sparse than the dense mobility scenario, especially for the
flooding solution. Again, this is due to the lower number of neighbors in the
spare scenario — fewer nodes receive messages that are not meant for them
(ant solution) or that have already been received from other nodes (flooding
solution).

112 Chapter 8

8.5.3 Conclusion

The differences in local processing power utilization are not very large, and
seem to decrease with the size of the network and number of neighbors. This
is natural, as the number of flooded messages will increase drastically when
the total number of nodes and the number of neighbors per node increases.
Under such circumstances, it will be harder for the forward ant to actually
locate the requested resource in a larger network, but the mere fact that
the network grows will not have an impact on the utilization, but only the
number of hops needed to localize a resource, and thus also the number of
sent and received messages. However, if the average number of neighbors
per node increases, more messages will be unnecessarily overheard, lowering
the utilization.

Chapter 9

Conclusion and Further Work

”A conclusion is simply the place where someone got tired of

thinking.”

— Arthur Block

In this last chapter we provide a summary of this thesis and its contribu-
tion. We also give a summary of the performance analysis and observations
done during performance testing and analysis and discuss some possible so-
lutions and improvements to some of the observed problems and flaws. We
also take a step back and look at the entire process from beginning to end.
At last, we look at how our work may be continued, both in terms of further
testing, to learn more about the solution’s performance, as well as how the
solution may be extended.

9.1 Contribution

The purpose for this thesis has been to design and develop a system enabling
nodes in need of a resource to autonomously localize this resource if present
within the same partition of a MANET. The system is proposed as a so-
lution if no other framework for resource location information sharing and
dissemination is present, and is thus a general-purpose solution, not tailored
to function with any specific applications. When a node in the MANET
finds that it needs a certain resource not present within the node itself, it
uses our solution to issue a resource request. If the resource is present at
some node within the same network partition, the requesting node should,
eventually, get a resource reply from this node.

The characteristics of MANETs make design and implementation harder,
as one always needs to consider the low availability of resources, such as
bandwidth and processing power, as well as the (possibly) ever-changing

114 Chapter 9

network topology. Our aim has thus been to develop a system that required
as little of these resources as possible rather than lowering the system’s
response time.

Our system should be able to function autonomously, and should thus
preserve the self-* properties, such as self-organizing, self-configuration, self-
optimization, self-protection and self-healing. Systems with such character-
istics have always existed in nature, and may be used as inspiration when
designing computer systems. In this thesis we have looked at stigmergy —
the foraging behavior of ants, who communicate indirectly with one another
by leaving pheromone trails on the ground. These trails, together with the
fact that ants tend to prefer paths with high pheromone concentration, are
used to make most ants walk the same, most optimal path between their
nest and a food source when gathering food.

The difference between our system and ants, is that we want our artificial
ants to spread out through the network to be able to search every corner for
the requested resource. To do this, we have turned ants’ behavior around and
designed a system using what we call opposite stigmergy. In this approach,
instead of walking the most used, or most recently used, path from a resource-
requesting node, we choose the least recently used path.

In addition to the ant solution, we have designed and developed a very
simple flooding-based solution. The goal for this solution is the same as
for the ant solution: To localize a given resource — if present — within
the MANET partition. However, the characteristics of flooding makes this
approach behave and perform quite different from the ant approach. What
we expected was low response times but high resource usage. The aim of
this solution was to provide alternative performance results for comparison
with the ant solution.

We have tested our two solutions in a range of test scenarios and analyzed
their performance in terms of response time, bandwidth usage and local
processing power usage and utilization.

9.2 Performance Evaluation

The ant solution is designed according to two requirements. The first is an
absolute requirement:

• If a requested resource is present within the network, it must eventually
be found.

The other requirement reflects the desired performance and relates to the
environment in which the solution is designed to run, namely MANETs:

• The solution should consume as little resources, network wide as well
as node local, on one resource localization.

Conclusion and Further Work 115

• The solution should have a good resource utilization, both with respect
to transmissions and local processing power.

Although low response time is also an advantage, this is, because of MANET
characteristics, considered less important than good resource utilization.

Metrics were developed according to these requirements, and all results
from the ant solution have been compared to the corresponding results from
the flooding solution to see if the ant solution is actually worth using over
other, simpler solutions.

From our test results we see that in many cases, the flooding solution
both has a lower response time as well as a lower resource usage. However,
we also see that when introducing more than one resource-requesting node,
both the response time and the number of sent and received messages for
the ant solution decreases drastically. As expected, the ant solution did
not perform better than the flooding solution in any of the response time
test cases, but some of this is due to the much larger amount of processing
needed on each node in the ant solution. Data structures and algorithms can
probably be optimized to lower this delay somewhat, but there will always be
a need for more extensive processing in the ant solution than in the flooding
solution.

If we look at the number of messages sent (bandwidth usage) and received
(local processing power usage) in the two location learning test scenarios, we
see that the ant solution outperforms the flooding solution, thus, in number
of messages, we have managed to get a lower resource usage than that of
a flooding system, which was our primary goal. If we measure in number
of bytes, however, the large size of the virtual ants makes the ant solution
perform worse than the flooding solution. Again, it it possible to optimize
the data structures used, and thus lowering the amounts of bytes sent and
received. As stated in Section 8.2.3, this also tells us that our time to live-
limit was too high — using a lower limit might have helped, but might of
course also cause the need of more tries to be able to locate a resource. Thus,
more tests are needed to figure out how small we may set this value without
introducing this new problem instead.

From the mobility scenario test cases, we also learned that a too high
number of neighboring nodes makes it too hard for the ant to choose the
”correct” way — it needs too many tries to choose the set of neighbors that
actually leads to the resource.

9.3 Critical Assessments

When we first started the work with this thesis, a lot of time was spent
searching for information regarding similar work. A lot of information is
available on how stigmergy may be used for routing, both in traditional,

116 Chapter 9

wired networks as well as in MANETs, and also for a handful of other prob-
lems related to optimization.

In the beginning, we imagined that our approach would be fairly simi-
lar to the existing ACO approaches. The deeper into the problem we dove,
however, the more we realized that our problem was, in some senses, funda-
mentally different from that of the algorithms and approaches we had studied
to gather background information. We realized that what we were looking
for was the opposite of anything we had seen — we wanted our artificial ants
to spread throughout the network, not to gather themselves on one path. In
some areas, this lead to a lot of thinking, experimenting, failing and more
thinking, whereas in other areas, it simplified things a lot. For example, our
pheromones are, at least at this stage, reduced to a timestamp, providing
built-in pheromone evaporation. The hardest part was thus in many cases
to realize the solutions and to see, and also to accept, their simplicity, not
the actual implementation of the system.

The test setup and actual test phases were cumbersome. The lack of ex-
perience with emulators such as NEMAN, together with a somewhat unruly
test computer, slowed the process down a bit, but we did manage to run
the most important test cases, although we would have liked to get a more
complete set of test results.

We see from our performance analysis that there are a handful of things
that probably could have been done better another way. We also see that
our results do not paint the whole picture — more tests are needed to clarify
exactly which scenarios may benefit from our solution and which will proba-
bly not. However, we do see a clear tendency and a potential that in certain
scenarios and under certain circumstances, an ant approach to the resource
localization problem in MANETs is feasible.

Had we known when we started what we know now, a lot of problems
and design choices would obviously have been a lot easier and less time
consuming. However, this is part of the process: Designing, implementing,
testing, analyzing and then starting all over again, trying to address the
problems discovered when analyzing.

9.4 Further Work

9.4.1 Resource Localization in Sparse Networks

The solution developed in this thesis only works for dense networks, i.e.
consisting of one partition only. However, MANETs are often sparse. In
some situations, the network may consist of more than one partition. Our
solution will then only search for a requested resource within the partition
containing the requesting node.

If a resource satisfying the demand is located within the partition, there
is probably no reason to start searching in other partitions. It is probably

Conclusion and Further Work 117

much easier for the requesting node to utilize the resource if it is located in
the same partition. However, the requesting node may be able to adapt if
the only available resource is located in another partition, for example by
moving to that partition itself, or by utilizing delay tolerant techniques as
described in Section 2.1.3.

A natural expansion of our system is thus to enable searching in other
partitions. To do this, we need a way to get the request and any replies to
other partitions and back. We imagine an approach inspired by for example
epidemic routing, where nodes could carry forward ants for a while, and if
no corresponding backward ant is received, the request could be forwarded
if the node should meet new nodes. The difficult part here is figuring out
which new nodes to forward the request to and not, as it is not necessary to
forward the request to nodes in the same partition as the requesting node.
Also, we need a way to stop the whole process if a resource is found, which
is difficult when nodes in several partitions may be working on solving the
same problem, but are unable to (easily) communicate with each other.

9.4.2 Resource Goodness

The existing solution does not differ between resource qualities as long as
they fulfill the demands of the requesting node. The ”goodness” of a resource
can reflect the quality measurement of the resource, but also for example
how close to the requesting node the resource holder is currently placed, how
stable the resource is, both in terms of resource concentration (if appropriate
for the given resource), node mobility and node up-time, or perhaps the load,
both on the path between requesting and holding nodes and on the actual
resource on the holding node. If several nodes hold the requested resource,
it might thus be good to locate several resource-holding nodes and pick the
one that best satisfies the needs of the requesting node.

Locating several resources will put a higher load on the network, and
should thus only be done in MANETs that can deal with this extra cost.
However, choosing for example the resource-holding node closest to the re-
questing node might save resources if the requesting node decides to actually
utilize the located resource in some way.

If we introduce some sort of goodness, this needs to be reflected in the
pheromone values, so that subsequent ants can use this information when
looking for a given resource. As mentioned in Section 5.5.5, there is a funda-
mental difference in the information given by our pheromone values and the
information provided by a goodness value: A goodness value is information
on a resource that has actually been localized, whereas our pheromone values
provide information about where ants have looked for a resource. One thus
needs to find a way to combine these two values.

One should also consider keeping track of every located resource, not
only the best like the current solution does. It is then possible to for example

118 Chapter 9

return the lowest quality matching resource if several are available, saving
better resources for those that actually demand such high quality.

9.4.3 Further Implementation, Testing and Analysis

The tests and analyses from Chapter 8 give an indication of how the ant
solution works, but are not enough to finally conclude on the performance
of the system. More tests are needed, and in addition to this, from the
performance analysis we have learned a few things about which changes
should be made to the system in order to increase its performance.

• In our grid and mobility scenarios, there are 25 nodes, one of which
is the node holding the requested resource. The very low resource
density makes the probability that an ant stumbles upon this node
quite low — the ant needs quite a bit of luck to locate the resource.
This is reflected by our test results, where we see that a forward ant
needs a very high number of hops to locate a resource in the two larger
scenarios. More resource-holding nodes increases the possibility that a
forward ant stumbles upon a satisfying resource. Tests should thus be
performed with more than one resource-holding node to see how this
impacts the performance of the system.

• There are several parameters that may be tuned to the network charac-
teristics, such as forward ant time to live-values and sleep time between
two subsequent forward ants. Extensive testing may be needed to find
out the best ways to set these values. For example, it might be a good
idea to start with a quite low time to live-value, and if no resource is
located, increase this value incrementally until a resource is found.

• As stated in Section 8.3.3, one should consider allowing loops to get a
better resource location information dissemination. An alternative is
allowing for example loops up to a certain length to avoid wasting too
much resources on very long loops.

• Tests should be performed to see how many neighbors nodes may have
on average before this lowers the system performance.

• We should consider keeping pheromone lists for a neighbor for a while
after it is lost in case it comes back.

• Implement an alternative ant solution which combines a reactive and
proactive approach to scheduling as explained in Section 5.5.1.

• We should consider making the ant solution more robust to trans-
mission errors, as explained in Section 8.1.1. However, if such error
handling introduces too much overhead to the system, it might be best

Conclusion and Further Work 119

to skip this. As long as the resource-requesting node does not get a
backward ant back, it will continue searching, so the resource will still
eventually be found. Whether this should be handled or not also de-
pends on the level of mobility in the MANET — with relatively low
node mobility, the chance of sending a forward ant to a very recently
lost neighbor is quite small.

Bibliography

[1] olsrd - an adhoc wireless mesh routing daemon. Available [online]
http://www.olsr.org/ (Retrieved 22.03.2010).

[2] TCPDUMP/LIBCAP public repository. Available [online] http://www.
tcpdump.org/ (Retrieved 22.03.2010).

[3] Christian Blum and Xiaodong Li. Swarm intelligence in optimization. In
Christian Blum and Daniel Merkle, editors, Swarm Intelligence, Natural
Computing Series, pages 43–85. Springer, 2008.

[4] G. Di Caro and M. Dorigo. Antnet: Distributed stigmergetic control
for communications networks. J. Artif. Intell. Res. (JAIR), 9:317–365,
1998.

[5] Gianni Di Caro, Frederick Ducatelle, and Luca Maria Gambardella.
Swarm intelligence for routing in mobile ad hoc networks. In In Pro-
ceedings of the 2005 IEEE Swarm Intelligence Symposium (SIS, 2005.

[6] Daily News From Cornell University Cornell Chronicle Online.
Chemical helps ants remember where they left their food, shows
promise for alzheimer’s disease, cornell scientists report, 1998.
Available [online] http://www.news.cornell.edu/releases/Feb98/

antpheromone.hrs.html (Retrieved 31.03.2010).

[7] A. K. Dey. Understanding and using context. Personal Ubiquitous
Computing, 5(1):4–7, 2001.

[8] Gianni Di Caro, Frederick Ducatelle, and Luca Maria Gambardella.
Anthocnet: an ant-based hybrid routing algorithm for mobile ad hoc
networks. In Parallel Problem Solving from Nature - PPSN VIII, volume
3242 of LNCS, pages 461–470, Birmingham, UK, 18-22 September 2004.
Springer-Verlag.

[9] M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algorithms and stig-
mergy. Future Gener. Comput. Syst., 16(9):851–871, 2000.

[10] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. The MIT
Press, 2004.

http://www.olsr.org/
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.news.cornell.edu/releases/Feb98/antpheromone.hrs.html
http://www.news.cornell.edu/releases/Feb98/antpheromone.hrs.html

122 Bibliography

[11] Thomas D. Dyer and Rajendra V. Boppana. A comparison of TCP
performance over three routing protocols for mobile ad hoc networks.
In MobiHoc, pages 56–66. ACM, 2001.

[12] Erling Falck-Ytter. Brannen i majorstutunnelen. Available [on-
line] http://arkiv.brannmannen.no/?cid=11&aid=44980/ (Retrieved
04.03.2010).

[13] Laura Marie Feeney. A taxonomy for routing protocols in mobile ad
hoc networks. Technical Report T99-07, Swedish Institute of Computer
Science, November 1, 1999.

[14] Dina Q. Goldin and David Keil. Toward domain-independent formal-
ization of indirect interaction. In WETICE, pages 393–394. IEEE Com-
puter Society, 2004.

[15] Marc Greis. Marc greis’ tutorial for the UCB/LBNL/VINT net-
work simulator ”ns”, Chapter XI: Generating traffic-connection and
node-movement files for large wireless scenarios. Available [on-
line] http://www.isi.edu/nsnam/ns/tutorial/nsscript7.html (Re-
trieved 24.03.2010).

[16] International Organization for Standardization. Programming Language
– C. ISO/IEC 9899.

[17] R. Jain. The Art of Computer Systems Performance Analysis. John
Wiley & Sons, Inc., New York, NY, 1991.

[18] David B. Johnson and David A. Maltz. Dynamic source routing in ad
hoc wireless networks. In Mobile Computing, pages 153–181. Kluwer
Academic Publishers, 1996.

[19] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li-Shiuan
Peh, and Daniel Rubenstein. Energy-efficient computing for wildlife
tracking: design tradeoffs and early experiences with zebranet. In AS-
PLOS, pages 96–107, 2002.

[20] J. O. Kephart and D. M. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41–50, 2003.

[21] B. W. Kernighan and D. M. Ritchie. The C Programming Language,
2nd edition. Prentice-Hall, 1988.

[22] Priya Mahadevan, Adolfo Rodriguez, David Becker, and Amin Vahdat.
Mobinet: a scalable emulation infrastructure for ad hoc and wireless
networks. In WiTMeMo ’05: Papers presented at the 2005 workshop on
Wireless traffic measurements and modeling, pages 7–12, Berkeley, CA,
USA, 2005. USENIX Association.

http://arkiv.brannmannen.no/?cid=11&aid=44980/
http://www.isi.edu/nsnam/ns/tutorial/nsscript7.html

Bibliography 123

[23] S. Mehfuz and M. N. Doja. Swarm intelligent power-aware detection of
unauthorized and compromised nodes in manets. J. Artif. Evol. App.,
2008:1–16, 2008.

[24] Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheu. The
broadcast storm problem in a mobile ad hoc network. In MobiCom ’99:
Proceedings of the 5th annual ACM/IEEE international conference on
Mobile computing and networking, pages 151–162, New York, NY, USA,
1999. ACM.

[25] Hean Kuan Ong, Hean Loong Ong, Elok Robert Tee, and
R. Sureswaran. Scalability study of ad-hoc wireless mobile network rout-
ing protocol in sparse and dense networks. In Distributed Frameworks
for Multimedia Applications, 2006. The 2nd International Conference
on, pages 1 –8, may 2006.

[26] Grassé P. La reconstruction du nid et les coordinations inter-
individuelles chez Bellicostitermes natalensis et Cubitermes sp. La
théorie de la stigmergie: Essai d’interpretation du comportement des
termites constructeurs. Insectes Sociaux, 6:41–81, 1959.

[27] Margie Patlak, Thomas Baker, May Berenbaum, Ring Cardé, Thomas
Eisner, Jerrold Meinwald, Wendell Roelofs, and David Wood. Insect
pheromones: Chemicals of communication. Beyond Discovery, 2003.

[28] J. Postel. RFC 768: User datagram protocol, August 1980.

[29] J. Postel. RFC 793: Transmission control protocol, September 1981.

[30] Matija Pužar. Towards Secure and Reliable Information Sharing in
Emergency and Rescue Operations. PhD thesis, University of Oslo,
2010.

[31] Matija Pužar and Thomas Plagemann. NEMAN: A network emulator
for mobile ad-hoc networks. Technical report, Department of Informat-
ics, University of Oslo, 2005.

[32] David Rising. Battlefield internet helps forces in iraq, April 2003.
Available [online] http://www.redorbit.com/news/technology/

705/battlefield_internet_helps_forces_in_iraq/index.html

(Retrieved 04.03.2010).

[33] Elva J.H. Robinson, Duncan Jackson, Mike Holcombe, and Francis L.W.
Ratnieks. Insect communication: ’no entry’ signal in ant foraging. Na-
ture, 438(7067):443, 11 2005.

http://www.redorbit.com/news/technology/705/battlefield_internet_helps_forces_in_iraq/index.html
http://www.redorbit.com/news/technology/705/battlefield_internet_helps_forces_in_iraq/index.html

124 Bibliography

[34] S. Schmid, M. Sifalakis, and D. Hutchison. Towards autonomic net-
works. In Autonomic Networking, First International IFIP TC6 Confer-
ence, AN 2006, Paris, France, September 27-29, 2006, Proceedings, vol-
ume 4195 of Lecture Notes in Computer Science, pages 1–11. Springer,
2006.

[35] G. Di Marzo Serugendo, J. Fitzgerald, A. Romanovsky, and N. Guelfi.
Dependable self-organising software architectures - an approach for self-
managing systems. Technical report, School of Computer Science and
Information Systems, Birkbeck College, London, 2006.

[36] G. Di Marzo Serugendo, M. P. Gleizes, and A. Karageorgos. Self-
organisation and emergence in MAS: An overview. Informatica (Slove-
nia), 30(1):45–54, 2006.

[37] M. Sloman. Policy driven management for distributed systems. Journal
of Network and Systems Management, 2:333, 1994.

[38] Jun-Zhao Sun. Mobile ad hoc networking: An essential technology for
pervasive computing. In Proc. International Conferences on Info-tech
& Info-net, Beijing, China.

[39] A. Toninelli. Semantic-Based Middleware Solutions to Support Context-
Aware Service Provisioning in Pervasive Environments. PhD thesis,
Università di Bologna, 2008.

[40] USC/ISI UC Berkeley, LBL and Xerox PARC. The network simulator
- ns-2. Available [online] http://www.isi.edu/nsnam/ns/ (Retrieved
06.04.2010).

[41] Amin Vahdat and David Becker. Epidemic routing for partially-
connected ad hoc networks, May 08 2000.

[42] Tristram D. Wyatt. Pheromones and Animal Behaviour: Communica-
tion by Smell and Taste. Cambridge University Press, 2003.

[43] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. Glomosim: a library
for parallel simulation of large-scale wireless networks. SIGSIM Simul.
Dig., 28(1):154–161, 1998.

[44] Wenrui Zhao, Mostafa H. Ammar, and Ellen W. Zegura. A message
ferrying approach for data delivery in sparse mobile ad hoc networks.
In Jun Murai, Charles E. Perkins, and Leandros Tassiulas, editors, Mo-
biHoc, pages 187–198. ACM, 2004.

[45] Jim Zyren and Al Petrick. IEEE 802.11 Tutorial, 2002.
Available [online] http://www.techonline.com/learning/techpaper/
193101922 (Retrieved 04.03.2010).

http://www.isi.edu/nsnam/ns/
http://www.techonline.com/learning/techpaper/193101922
http://www.techonline.com/learning/techpaper/193101922

Appendices

Appendix A

A Sample Scenario File

This chapter provides a quite simple sample scenario file. The different
components of the scenario file is explained in comments within the file.
Please note that, for aesthetic purposes, some lines have been split. This,
however, would not be accepted by NEMAN.

A.1 Chain Scenario

The following is a simple chain scenario file where the node with IP address
10.0.0.1, port 3457, is instructed to search for a resource with name memory
and quality 90 at 10 seconds into the emulation.

#
nodes : 5 , pause : 0 . 00 , max speed : 0 . 00 ,

max x : 300 .00 , max y : 300 .00
#

Set node l o c a t i o n s :
$node_ (0) s e t X_ 10.000000000000
$node_ (0) s e t Y_ 10.000000000000
$node_ (0) s e t Z_ 0.000000000000
$node_ (1) s e t X_ 60.000000000000
$node_ (1) s e t Y_ 10.000000000000
$node_ (1) s e t Z_ 0.000000000000
$node_ (2) s e t X_ 110.000000000000
$node_ (2) s e t Y_ 10.000000000000
$node_ (2) s e t Z_ 0.000000000000
$node_ (3) s e t X_ 160.000000000000
$node_ (3) s e t Y_ 10.000000000000
$node_ (3) s e t Z_ 0.000000000000
$node_ (4) s e t X_ 210.000000000000
$node_ (4) s e t Y_ 10.000000000000

128 Appendix A

$node_ (4) s e t Z_ 0.000000000000

Set which nodes are with in range o f each other :

$god_ set−d i s t 0 1 1
$god_ set−d i s t 1 2 1
$god_ set−d i s t 2 3 1
$god_ set−d i s t 3 4 1

Needed to make the t e s t l a s t f o r 20 seconds
$ns_ at 20 .0 "$god_ set−d i s t 0 1 1"

Send a reques t f o r r e s ource memory o f qua l i t y 3 to tap1 :
$ns_ at 10.000000000000 "$node_ (1 0 . 0 . 0 . 1)
sendmsg port=3457 msg=’memory 3 ’"

Set broadcas t range to get a
co r r e c t view in the NEMAN gui :
broadcast_range : 75 .00
data_range : 75 .00

Appendix B

The Flooding Solution

The basics of the flooding solution were explained in Section 7.4. This chap-
ter provides a more detailed explanation of parts of the source code and
functionality of the flooding solution.

B.1 Data structures

Most of the flooding solution program is built on the same code as the
ant system. Resources are the same, although the parts not needed by
the flooding solution have been removed. However, a couple of new data
structures have been added:

The flood_package structure, shown in Figure B.1, is the structure
holding the resource request. The resource structure is the same as the one
used in the ant system, described in Section 6.7.2. The seq_nr field is used
to make sure no node broadcasts the same resource request more than once.
hop_count and time_of_request are used for performance testing purposes
only.

Each node keeps a list sequence_numbers consisting of {node, se-
quence number} couples, more specifically node_seq structures, as shown

struct f lood_package {
char type ;
struct r e s ource r e s ;
struct sockaddr_in request ing_node ;
short seq_nr ;
short hop_count ;
struct t imeva l time_of_request ;

} ;

Figure B.1: Flood_package structure.

130 Appendix B

struct node_seq {
struct sockaddr_in ∗node ;
short highest_seen_seq ;

} ;

Figure B.2: Node_seq structure.

struct request_answer {
char type ;
struct r e s ource r e s ;
struct sockaddr_in request ing_node ;

} ;

Figure B.3: Request_answer structure.

in Figure B.2. The list contains one entry for every other node this node
has ever heard of and the highest seen sequence number for this node. If
a request with sequence number less than or equal to this number for the
corresponding node, it is thrown away. If requests should, for some reason,
appear out of order, this functionality may make a node throw away requests
that should have been re-broadcast. In this very simple solution, however,
we have chosen not to handle this, as this should not happen very often.

The last new structure is the request_answer structure, shown in Figure
B.3. This structure is used for answers to requests.

B.1.1 Logging

Logging is done as in the ant solution, see Section 6.5 for details.

B.1.2 Program Flow

Threads

As the program should be able to manage several tasks at once, it is divided
into several threads:

• The main process: Listens for incoming resource requests and resource
replies.

• Thread 1: Listens for incoming resource requests. Created by the main
process shortly after startup.

• Thread 2: Initiates a resource search. Created by Thread 1 for every
incoming resource request.

Appendix C

Source Code

This chapter will go through some of the source code for the ant solution.

C.1 Program Layout — Ant Solution

The source code is divided into a number of files with respect to each func-
tions purpose. These files are:

• main.c Initialization, reception of incoming resource requests and se-
arch initiation.

• ant.[ch] The ant structure, all functions regarding ant sending, receiv-
ing and handling.

• neighbor.[ch] The neighbor and neighbor_prob structures, topology
update reception and neighbor adding/deleting.

• resource.[ch] The resource and resource_info structures, resource in-
formation registry and lookup.

• pheromone.[ch] The pheromone structure, building and updating of
pheromone lists.

• communication.[ch] All functions used to handle sockets, establish-
ing connections and own address information retrieval.

• util.[ch] Type definitions and various utility functions, such as list op-
erations, log file operations and uniformly distributed random number
generation.

C.2 Program Layout — Flooding Solution

This program is quite a bit smaller than the ant solution, but is still divided
into several files:

132 Appendix C

• flood_main.c Initialization, reception of incoming resource requests
and search initiation.

• flood.[ch] The resource request and resource reply structures, all func-
tions regarding request sending, receiving and handling.

• resource.[ch] The resource and resource_info structures, resource in-
formation registry and lookup.

• communication.[ch] All functions used to handle sockets, establish-
ing connections and own address information retrieval.

• util.[ch] Type definitions and various utility functions, such as list
operations and log file operations

Most of the code, unless the code in flood_main.c and flood.[ch] is more
or less identical to the corresponding ant solution code. Redundant functions
and variables have, however, been removed.

C.3 Building the Source Code

In addition to the source code, there are also makefiles (one for each solu-
tion) which may be used to compile the source code. There are two options
when building the solution: Running make with the default target and with
the ”test” target. Building with the test target makes the system produce
an additional log file when run, namely the ant_test.log/flood_test.log file.
This file is written to whenever a request for a resource either present at the
receiving node or with a known location is received. The information logged
includes receiving node, requesting node, time spent on localization (in mil-
liseconds, requiring synchronized clocks) and the number of hops traveled by
the forward ant/resource request, loops included.

C.4 Running the Source Code

The ant application may be run with the following command:

./ant <device> <ant_ttl> <max_sleep_time>

where device is the name of the network interface the program should use,
ant_ttl is the number of hops one ant should be allowed to travel, and
max_sleep_time is the time one search may last before a new search is
initiated.

The flooding application is run with the following command:

./flood <device>

where device is the name of the network interface the program instance
should use.

Appendix D

Code Examples

This chapter shows the source code of some of the most important parts of
the ant solution, namely the sending and receiving of ants. Please note that
all code concerned with test information and debug information has been
left out from this listing.

D.1 send_forward_ant()

send_forward_ant() is the function that is used to send forward ants from
neighbor to neighbor. It takes a ready made ant structure as argument,
registers the requested resource in the list of all resources ever heard of,
chooses a next hop neighbor and sends the forward ant there.

/∗ This func t ion takes a forward ant as argument , p i c k s a neighbor and
∗ forwards the forward ant to t h i s neighbor ∗/

void send_forward_ant (struct ant ∗ f_ant)
{

int sock fd = get_unbound_udp_socket (i f a c e) ;

r e g i s t e r_re s ou r c e ((f_ant)−>re s) ;

struct sockaddr_in ∗ ant_source = NULL;
i f (f_ant−>preceding_nodes > 0)
{

ant_source = (struct sockaddr_in ∗) (((char ∗) f_ant)
+ s izeof (struct ant)
+ (f_ant−>preceding_nodes − 1)
∗ s izeof (struct sockaddr_in)) ;

}
/∗ Find a neighbor to forward the ant to ∗/
struct neighbor ∗n = get_neighbor (&(((struct ant ∗) f_ant)−>re s) ,

ant_source) ;
i f (n == NULL)
{

f r e e (f_ant) ;
c l o s e (sock fd) ;
return ;

}
struct sockaddr_in ∗ s i_des t = n−>si_n ;

134 Appendix D

memcpy(&f_ant−>next_hop , s i_dest , s izeof (struct sockaddr_in)) ;
s i_dest−>sin_port = htons (a to i (ANT_PORT)) ;

/∗ Calcu la t e s i z e o f new ant and forward ∗/
int ant_size = s izeof (struct ant)

+ ((struct ant ∗) f_ant)−>preceding_nodes
∗ s izeof (struct sockaddr_in) ;

int s ent = sendto (sockfd ,
f_ant ,
ant_size ,
0 ,
(struct sockaddr ∗) s i_dest ,
(s izeof (struct sockaddr_in)) ;

i f (s ent == −1)
{

c l o s e (sock fd) ;
f r e e (f_ant) ;
return ;

}

c l o s e (sock fd) ;
f r e e (f_ant) ;

}

D.2 receive_ants()

receive_ants() listens for incoming ants and calls new functions for further
handling:

/∗ This func t ion l i s t e n s f o r incoming ants ,
∗ forward as we l l as backward ∗/

void ∗ rece i ve_ants ()
{

struct sockaddr_in s i_src ;
s i ze_t addr_len = s izeof (s i_s rc) ;
socklen_t ∗ __res tr i c t a l ;
a l = (socklen_t ∗)&addr_len ;

char ant [MAXANTLEN] ;

while (1)
{

int rv = recvf rom (receive_ants_sockfd ,
ant ,
MAXANTLEN,
0 ,
(struct sockaddr ∗)& s i_src ,
a l) ;

i f (rv == −1)
{

continue ;
}

/∗ Check t ha t ant i s a c t u a l l y l a r g e enough
∗ to contain an ant ∗/

struct ant ∗ rcvd_ant = (struct ant ∗) ant ;
i f (rv >= s izeof (struct ant) &&

Code Examples 135

rv >= (s izeof (struct ant) +
rcvd_ant−>preceding_nodes ∗ s izeof (struct sockaddr_in)))

{
/∗ Check i f ant was des t ined f o r t h i s node .

∗ Only needed during NEMAN emulation . ∗/
i f (rcvd_ant−>next_hop . sin_addr . s_addr !=

get_own_addr () . sin_addr . s_addr)
{

continue ;
}

handle_received_ant (rcvd_ant , s i_s rc) ;
}

}
c l o s e (rece ive_ants_sockfd) ;

}

D.3 handle_received_ant()

handle_received_ant() is called by receive_ants(). It checks the type
of the incoming ant and calls functions for further handling based on the ant
type. This function is also responsible for appending the address information
for the last hop source to the forward ant (if the ant is actually a forward
ant).

{
/∗ This func t ion checks i f t he incoming ant was a forward or backward
∗ ant , and c r ea t e s a new thread to f u r t he r handle the incoming ant ∗/

void handle_received_ant (struct ant ∗ant_to_handle ,
struct sockaddr_in s i_src)

{
pthread_t t i d ;

i f (ant_to_handle−>type == ’F ’)
{

/∗ Get new thread sa f e ant wi th updated address i n f o ∗/
struct ant ∗ ts_f_ant =

(struct ant ∗) add_prev_address_info (ant_to_handle , s i_s rc) ;
pthread_create(&tid , NULL, handle_forward_ant , (void ∗) ts_f_ant) ;

}
else i f (ant_to_handle−>type == ’B ’)
{

/∗ Make t h r eadsa f e copy of the ant ∗/
struct ant ∗ts_b_ant = mal loc (s izeof (struct ant)

+ (ant_to_handle−>preceding_nodes
∗ s izeof (struct sockaddr_in))) ;

memcpy(ts_b_ant ,
ant_to_handle ,

(s izeof (struct ant) + (ant_to_handle−>preceding_nodes
∗ s izeof (struct sockaddr_in)))) ;

pthread_create(&tid , NULL, handle_backward_ant , (void ∗) ts_b_ant) ;
}

}

136 Appendix D

D.4 handle_forward_ant()

handle_forward_ant() is called by handle_received_ant(). It checks
if the requested resource is present. If not, it checks if any resource informa-
tion for the requested resource is present. If not, the ant’s time to live value
is checked. If more hops are still allowed, send_forward_ant() is called
for forwarding to a neighbor.

/∗ This f unc t i on t ak e s a forward ant as argument and checks i f
∗ e i t h e r the reques t ed resource i s present , l o c a t i on informat ion
∗ i s pre sent or the node should be forwarded to a neighbor ∗/

void ∗ handle_forward_ant (void ∗ant)
{

struct ant ∗ f_ant = (struct ant ∗) ant ;
struct r e s ou r c e ∗ r e s = lookup_resource (f_ant−>re s) ;

i f (r e s != NULL)
{

produce_backward_ant(res , f_ant) ;
f r e e (r e s) ;

}
else

{
struct r e s ou r c e ∗ r e s = lookup_resource_locat ion_info (f_ant−>re s) ;
i f (r e s != NULL)
{

produce_backward_ant(res , f_ant) ;
}
else

{
i f (f_ant−>t t l == 1) /∗ No more hops a l lowed ∗/
{

f r e e (f_ant) ;
return NULL;

}
/∗ Forward the forward ant to one neighbor ∗/
send_forward_ant (f_ant) ;

}
}
return NULL;

}

D.5 handle_backward_ant()

handle_backward_ant() is called by handle_received_ants(). It ch-
ecks whether the backward ant was a reply to itself or if it should be for-
warded according to the address information in the ant.

void ∗ handle_backward_ant(void ∗ant)
{

struct ant ∗ b_ant = (struct ant ∗) ant ;
r e g i s t e r_re s ou r c e_ l o ca t i on_ in f o (b_ant−>re s) ;

i f (b_ant−>preceding_nodes == 0)
{

reg i s te r_resource_as_located (b_ant−>re s) ;

Code Examples 137

}
else

{
/∗Forward ant according to ant informat ion ∗/
forward_backward_ant (b_ant) ;

}
return NULL;

}

Appendix E

CD Contents

This chapter describes the contents of the CD appended to this thesis. The
CD consists of three folders as described below.

E.1 /implementation

The implementation folder contains the C source code for both solutions.

E.1.1 /implementation/ant_solution

This folder contains the entire C code for the ant solution. The code is
organized as explained in Section C.1, and may be compiled as explained in
Section C.3 and run as explained in Section C.4.

E.1.2 /implementation/flooding_solution

This folder holds the entire source code for the flooding solution. The organi-
zation of the code is explained in Section C.2. The code is built as explained
in Section C.3 and run as explained in Section C.4.

E.2 /test_setup

The test_setup folder contains the tools used during the test phase. The
root folder contains the following files:

• change_range.py: Removes all links with range 2 from a given sce-
nario file, as explained in Section 7.8.2.

• delay_mobility.py: Delays all mobility in a given scenario file for 30
seconds, as explained in Section 8.1.1.

• remove_links.py: Removes links from a given scenario file with a
probability of 0.7, as explained in Section 8.1.3.

140 Appendix E

• run_neman.sh: Runs a given scenario in NEMAN with the -no-gui
option.

• run_nodes_ant.sh: Runs the ant solution with the given start and
end nodes (tap device number), time to live value and max_sleep_time.

• run_nodes_flood.sh: Runs the flooding solution with the given
start and end nodes (tap device number).

• run_tests.sh: Runs a complete set of tests for a given solution. Han-
dles running of the three other run_*-scripts. Takes the following pa-
rameters: number of repeated tests, name of scenario file, number of
nodes in scenario, name of output folder, and if ant solution also time
to live-value and max_sleep_time.

• tunnel.py: Needed when running emulations to tunnel control mes-
sages from the NEMAN gui to the nodes.

E.2.1 /test_setup/scenarios

This folder contains the scenario files used during testing. The scenarios are:

• chain.sim: Chain scenario with one resource-requesting and one re-
source-holding node.

• grid.sim: Grid scenario with one resource-requesting and one resour-
ce-holding node.

• grid_3.sim: Grid scenario with three resource-requesting nodes and
one resource-holding node.

• mobility.sim: Mobility scenario with one resource-requesting and one
resource-holding node.

• mobility_5_dense.sim: Dense mobility scenario with five resource-
requesting nodes and one resource-holding node.

• mobility_5_sparse.sim: Sparse mobility scenario with five resour-
ce-requesting nodes and one resource-holding node.

E.3 /analysis

The analysis folder contains the scripts used for analyzing the data output
from the tests. The following files were used:

• find_avg_hops.py: Parses a given <solution>.log file and prints the
average number of hops and milliseconds used to localize a resource in
tests with only one resource-requesting node.

CD Contents 141

• multiple_find_avg_hops.py: Parses a given <solution>.log file
and prints the average number of hops and milliseconds per requesting
node used to localize a resource in tests with several resource-requesting
nodes.

• find_connectivity.py: Parses a given scenario file and computes the
adjacency matrix and average number of neighbors per node per second
into the scenario. Output is written to a file, and each line of the file
is on the format ”time number_of_neighbors”.

• parse_tcpdump.py: Crawls the test output directory and parses
all nodes’ tcpdump files. Computes the number of sent and received
messages as well as the resource utilization.

The gnuplot-files for making plots from the output from these scripts are
not included.

	Introduction
	Background
	Motivation
	Rescue Operations --- A Case Study
	Application Domain

	Problem Description
	The SIRIUS Project
	Outline

	Mobile Ad-Hoc Networks and Autonomic Networking
	Mobile Ad-Hoc Networks
	Characteristics of Mobile Ad-Hoc Networks
	Issues in Mobile Ad-Hoc Networks
	Routing in Mobile Ad-Hoc Networks
	Applications

	Autonomic Networking
	Autonomic Networks
	Self-*: Properties of an Autonomic Network
	Autonomy in MANETs

	A Bug's Life
	Communication
	Stigmergy and Ant Colony Optimization
	Pheromones
	Ants and Their Pheromones
	Ant Colony Optimization

	ACO Approaches to Some Traditional Problems
	The Ant Colony Optimization Metaheuristic
	The Traveling Salesman Problem
	Solving the TSP with ACO Algorithms
	AntSystem

	The Routing Problem
	AntNet --- Routing in Traditional Networks
	AntHocNet --- Routing in Mobile Ad-Hoc Networks

	Design
	Goal
	Assumptions
	Requirements
	General Idea
	Issues
	Scheduling
	Communication
	Supported Network Topology
	Resources
	Pheromone Traces
	Ants

	The Localization Algorithm

	Implementation
	Remarks
	Programming Language
	Developing for NEMAN
	The sockaddr_in structure
	Logging
	Neighbor Information
	Topology Information Retrieval
	Neighbor Registry
	Topology Changes During Resource Localization

	Resources
	Local Resource Information
	Resource Sharing
	Resource Location Info

	Pheromone Traces
	Pheromone Data Structure
	Pheromone Initialization
	Pheromone Updates

	Ants and Ant Memory
	Choosing the Next Hop
	Loop Elimination
	Ant Communication

	Resource Localization
	Search Initiation
	Search Termination

	Utilities
	Program Flow
	Threads

	Test Setup
	Evaluation Techniques
	Testing Environment
	Simulation vs Emulation
	ns-2
	NEMAN
	OLSR daemon

	Emulation and Analysis Tools
	setdest
	tcpdump

	A Flooding Solution
	Issues with Flooding
	Flooded Requests

	Monitoring
	Metrics
	Response Time
	Resource Usage and Utilization

	Test Scenarios
	Chain Scenario
	Grid Scenario
	Mobility Scenario

	Test Scenario Implementation
	Static Scenarios
	Mobility Scenario

	Workload
	Parameters
	Scenario Properties
	Single Localization
	Location Learning

	Performance Evaluation
	Influencing Factors
	Topology Initialization and Updates
	Time Inaccuracy
	Average Neighborhood Size

	Results --- Response Time
	Single Localization
	Location Learning
	Conclusion

	Results --- Bandwidth Usage
	Single Localization
	Location Learning
	Conclusion

	Results --- Processing Power Usage
	Single Localization
	Location Learning
	Conclusion

	Results --- Processing Power Utilization
	Single Localization
	Location Learning
	Conclusion

	Conclusion and Further Work
	Contribution
	Performance Evaluation
	Critical Assessments
	Further Work
	Resource Localization in Sparse Networks
	Resource Goodness
	Further Implementation, Testing and Analysis

	Bibliography
	Appendices
	A Sample Scenario File
	Chain Scenario

	The Flooding Solution
	Data structures
	Logging
	Program Flow

	Source Code
	Program Layout --- Ant Solution
	Program Layout --- Flooding Solution
	Building the Source Code
	Running the Source Code

	Code Examples
	send_forward_ant()
	receive_ants()
	handle_received_ant()
	handle_forward_ant()
	handle_backward_ant()

	CD Contents
	/implementation
	/implementation/ant_solution
	/implementation/flooding_solution

	/test_setup
	/test_setup/scenarios

	/analysis

