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Abstract

With the advent of Industry 4.0, Predictive Maintenance (PdM) has garnered
a lot of interest, both academically and in the industry. This thesis will be
developing and using machine learning methods for PdM, using real world event-
log data gathered from hybrid marine vessels, equipped with electric propulsion
systems. The methods that will be used were chosen for their abilities to
solve particular problems, such as data imbalance through the use of Balanced
Random Forest, weakly labelled data through the use of Multiple Instance
Learning, and maintaining interpretability through the use of interpretable
pre-processing techniques, such as window aggregation.
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CHAPTER 1

Introduction

In this thesis, the goal is to predict future failures on board ships equipped
with Electrical Propulsion Systems (EPSs), using Machine Learning (ML)
methods on historical event-log data. We will be trying to predict a particular
class of failures in the variable speed drives on these ships. The industry is
currently going through what is referred to as the ‘4th Industrial Revolution’, or
‘Industry 4.0’. Predicting failures to perform maintenance is known as Predictive
Maintenance (PdM), and is one of the main points of interest in this revolution.

Until recently, there were two major maintenance strategies; Run-to-Failure
(R2F) and Preventive Maintenance (PvM). As the name would suggest, a R2F
strategy consists of not conducting repairs on the system until a part breaks.
This strategy is not optimal, as unexpected breakdowns of a system can result
in major economic losses because of the resulting downtime. PvM involves
replacing parts regularly before they reach the end of their Remaining Useful
Life (RUL). While it is generally a superior strategy to R2F, parts are often
replaced while still usable, resulting in increased part costs. Components can
also potentially break earlier than expected, resulting in the same downtime as
would be experienced as with R2F. PdM aims to solve these problems by only
replacing parts when they are nearing the end of their life, by predicting when
they are going to fail.

PdM is an important field because of the many benefits of being able to
detect when a failure may occur. Predicting and preventing a failure can reduce
system downtime, and hence provide economical benefits, but also in some
cases protect from environmental damage and loss of life. While the current
revolution is mainly happening within the manufacturing industry, numerous
other industries could also benefit from PdM, like the marine industry. For
vessels equipped with EPS, an electrical failure can lead to the drives turning
off, resulting in loss of control of the vessel. In a worst case scenario, this can
lead to the vessel running aground, or a collision, potentially leading to loss of
the entire ship. Alternatively a fuel spill can occur, damaging the environment
significantly.

The PdM field is currently experiencing increasing interest, with the number
of yearly publications growing each year, especially when used in combination
with ML (Çınar et al. 2020). The field is not only experiencing academic interest
however, more and more companies are performing work related to PdM (Scully
2019).

The scope of the thesis is limited in the sense that the main focus is to
accurately predict the time of failure. The optimal time of maintenance would
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depend on the specific part and on board maintenance regime, and falls outside
the scope of this thesis. This simplification is common between most academic
papers on PdM methods.

The work presented in this thesis will use categorical event-log data from
four vessels equipped with EPSs. This data will be pre-processed and used to
train ML models. Importance will be placed on interpretable methods to ensure
that the cause (event type, unit generating the event, time window) of a future
failure is known, such that preventive actions can be taken. It is difficult to
augment expert knowledge into the data sets, as such the causes of each failure
are unknown, because of this the data sets are unlabelled aside from the time
of the failure. Methods that attempt to uncover the underlying labels of which
samples containing events that cause the failures will therefore be developed.

There are some common problems facing the PdM field, and a few of these
will be the main focus of this thesis. An important component of the vast
majority of PdM applications is that the results must be interpretable. This is
necessary to ensure that proper actions can be taken to prevent the potential
future failure. Because of this, an interpretable pre-processing method using
window aggregation will be designed, and Random Forest (RF) will be the
model of choice.

The lack of expert knowledge leads to the data sets only being partially
labelled. While the data sets contain information about when failures have
occurred, they do not contain any information about what sequence of the
events caused the failures. Uncovering the true labels of the data sets will be
accomplished using an algorithm known as Multiple Instance Learning (MIL).
The data sets heavily imbalanced due to the fact that failures are rare. This is
a common problem within the PdM field, particularly for those using ML, as
failures are generally rare. Because of this, an extension to RF called Balanced
Random Forest (BRF) will be employed in an attempt to work around this.

In this thesis, a novel approach to PdM will be described, with improved
ability to handle the challenges described above, related to lack of labelling
and imbalanced data. The novel approach will be tested on operational data,
and its performance will be compared to previously described methods. A final
goal is to be able to effectively predict future failures, in order to produce an
algorithm that has future usage in a real operational system.

Structure

The structure of this thesis will be as follows;

• As a start, a general introduction to alarm systems and maintenance
strategies will be given in Chapter 2. The current trends within the
PdM field will be discussed, along with the major challenges the field
is currently facing. The different PdM approaches will also be also be
introduced, as well as some common ML algorithms that are used within
the field.

• In Chapter 3, the data sets will be introduced, together with a high
level description of the ships that produced the data. The pre-processing
techniques that are applied on the data will also be described in this
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chapter. These techniques are window aggregation and Random Indexing
(RI).

• Then, in Chapter 4, an introduction to Classification and Regression Trees
(CARTs) will be given, before diving into RF in particular. Here, RF and
its benefits over other methods will be discussed, and the motivation for
choosing this particular method will be given.

• After which, in Chapter 5, the concept of imbalanced data will be described
along with different ways of handling this problem. BRF in particular,
will then be focused on as a solution to this problem. The chapter will
continue by discussing weakly labelled data and how the problem can be
solved using MIL. BRF and MIL will then be combined into a method
that will be referred to as Multiple Instance Learning through Balanced
Random Forest (MIL-B-RF).

• Finally, in Chapter 6, the models resulting from using the discussed
techniques for training will be presented. Additionally, comparisons
between models trained on subsets of the data sets will be conducted, as
well as comparisons with the results presented by other related papers.

3



CHAPTER 2

Predictive maintenance

Overview and motivation

This chapter will introduce alarms systems and events, before discussing the
major challenges that these systems are facing currently. It will be shown how
some of these can be alleviated through data automation. Second, a comparison
between Predictive Maintenance (PdM) and other maintenance strategies will
be explained. The main challenges that the current state of the art PdM
implementations are facing will be outlined. Third, a few classes of algorithms
used for PdM will be evaluated. Finally, some of the recent trends within the
predictive maintenance field will be discussed. This will lay the foundations for
the work that will be presented in the later chapters of the thesis.

2.1 Alarm management and event data management

Alarm systems are an important component of industrial systems, they track
numerous events and signals within the system, and they are designed such
that a human operator can take action at the appropriate time to maintain the
operation and functionality of the system. An event is a general term that refers
to any information about the happenings in the system at a given time, and
can belong to one of three different types, these are referred to as information,
warnings and alarms.

Information, as the name implies are strictly informational events that
primarily describe the termination of tasks or changes of setpoints in the system.
Warnings signify that while there is no problem yet, there may be indications
of a future issue in the system. Unlike warnings and information, alarms are
events that require an action to be taken by the operator monitoring the system.
When an alarm turns on it is said to be active, and an active alarm event is
generated. When the alarm turns off it is said to be inactive, and an inactive
alarm event is generated. An alarm is generally activated when a measured
condition or estimated state exceeds a preset value, and remains active for the
time between the generation of these two events. Alarm activation is illustrated
in Figure 2.1, here a measured condition exceeds a given threshold, resulting in
the alarm becoming active.

Alarms are generally assigned one of multiple severities. Their definitions
depends on the alarm implementation, but they are commonly categorized into:
low, medium and high (DeltaV 2016) (Goel, Pistikopoulos et al. 2019), or into:
warning, serious, fatal (European Southern Observatory (ESO) 2007). An alarm
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2.1. Alarm management and event data management
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Figure 2.1: An alarm becoming active when a measured condition reaches some
preset threshold, and becoming inactive after falling below the threshold again.

with a low severity means that something anomalous has happened, but the
system can continue to function. A medium severity means that the system
cannot perform properly, but a full shutdown is not required and recovery can
be attempted. If an alarm has a high severity, the system is unable to recover
and loss prevention must be performed to reduce potential economic losses and
potential loss of human lives (DeltaV 2016).

Each alarm has an acknowledgement status stating whether or not the
operator has acknowledged that the alarm is active (Goel, Pistikopoulos et al.
2019) (European Southern Observatory (ESO) 2007). When an alarm first
activates, it has an acknowledgement status of unacknowledged and therefore
enters a state of ‘Active Unacknowledged’. If the operator notices the alarm,
they will acknowledge the alarm resulting in its state changing to ‘Active
Acknowledged’. When the operator has taken action and the alarm becomes
inactive it enters its final state of ‘Inactive Acknowledged’. If however, the alarm
either goes inactive without the operator taking any action or the operator takes
action without acknowledging the alarm first, it will enter a state of ‘Inactive
unacknowledged’, the operator might then acknowledge the alarm after it has
become inactive, changing its state to ‘Inactive acknowledged’.

An alarm can have multiple levels explaining why it has become active. The
level of an alarm can be either ‘low’ or ‘high’, this refers to whether the alarm is
active because the monitored value or condition is lower or higher than a preset
threshold or safety limit, e.g., whether the temperature of a piece of equipment
is too low or too high. Alarms can be divided into multiple levels to describe
how far outside the normal bounds the current value is, e.g., ‘low-low’, ‘low’,
‘high’, ‘high-high’, etc. (Goel, Pistikopoulos et al. 2019).

Using the concepts of alarm- severity, acknowledgement and levels, one way
of defining an event is,

E = (p, t,m, v, c, l). (2.1)
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2.1. Alarm management and event data management

p is the type of the event,

p ∈ {Information,Warning,Alarm}.

t is the timestamp of the event, and m is the event message, this can be a string
containing various details about what has happened. The rest are only used if
p = Alarm, v is the severity of the alarm,

v ∈ {Severity1, . . . ,SeverityV },

where V is the number of different severities. c is the acknowledgement of the
alarm, either unacknowledged or acknowledged. l is the level of the alarm,

l ∈ {Level1, . . . ,LevelL},

where L is the number of alarm levels for the alarm.
There are many challenges facing current alarm systems, one of the most

important is known as alarm flooding (Goel, Datta and Mannan 2017). Alarm
flooding is a scenario where the amount of alarms becoming active at the same
time is too high for the human operator to respond to. A human performance
model study by Reising, Downs and Bayn (2004) showed that the amount
of alarms an operator can respond to in a 10 minute window is around 10.
This highlights the importance of good alarm system design to ensure that the
operator is never presented with more alarms than he or she can reasonably
respond to in a short amount of time.

This leads to another crucial part of an alarm management system, that is
the human-machine interface (Goel, Datta and Mannan 2017). For the operator
to be able to properly maintain the system and quickly respond to alarms, the
alarms and other events must be presented in a way that allows him or her
to understand the cause of the current system state. If too much information
is presented at once without the ability for the operator to filter out other
unrelated events, they will be unable to quickly resolve the issue potentially
increasing damage costs.

The tuning of alarm variables and settings is another important task when
designing an alarm system (Goel, Datta and Mannan 2017). Process setting
values are generally set by the licensor or engineering company, but over time
these values may require tweaking because of changes in the operation or
maintenance operations. Poorly calibrated alarms can result in both false
positives and false negatives, with false positives contributing to the alarm
flooding problem.

Other issues are often encountered in alarm systems, one example being
a lack of comprehensive documents which describe the philosophy behind the
alarm design. Inadequate operating procedures can be caused by the operator
being unaware of how to manage specific situations. Lack of resources can
occur, because justifying the costs of a proper alarm system implementation to
stakeholders can be an issue (Goel, Datta and Mannan 2017).

With the enormous amounts of data now becoming available from industrial
systems, both in the form of numerical signal data and event logs, the
opportunity to use data mining and analysis techniques to make more informed
decisions about these systems is emerging (Goel, Pistikopoulos et al. 2019). The
use of these techniques can result in discovering previously unknown connections
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2.2. Reactive, preventive and predictive maintenance

in the system which can lead to better prediction of future failings of the system.
This data can also be used to perform intelligent maintenance on parts of the
system that are at risk of failing in the future, which will be the main point of
discussion for the rest of the chapter.

2.2 Reactive, preventive and predictive maintenance

The way maintenance is performed on equipment in industrial systems can
have major economic implications based on the length of the resulting downtime
and cost of repairs. For a long time there were only two prevalent maintenance
strategies, reactive maintenance also known as Run-to-Failure (R2F) wherein
parts are only replaced after they break and Preventive Maintenance (PvM)
where parts are replaced at regular intervals to minimize downtime of the system.
In recent years however, with the increase in available data and computational
power, a third maintenance strategy using Machine Learning (ML) algorithms
has become of both industrial and academic interest, which is called Predictive
Maintenance (PdM) (Susto et al. 2015) (Sakib and Wuest 2018). PdM is a
method relying on statistical methods and data analysis to predict when a part
is nearing failure or the end of its Remaining Useful Life (RUL).

R2F is the simplest maintenance strategy, and for this reason it is still
frequently used. This strategy does not require any maintenance scheduling in
advance or estimation of when a part requires repairs or replacement. While
this saves money upfront by using parts for their entire lifespan, the economic
losses from increased downtime of equipment and immediate scheduling of
maintenance generally outweighs this benefit (Susto et al. 2015).

If the expected lifetime of a part is known, PvM can be implemented as
an alternative. With a PvM strategy, parts are regularly replaced based on
knowledge of how long a given part is likely to last before requiring repairs or
replacement, this maintenance strategy is therefore also commonly referred to
as scheduled maintenance (Carvalho et al. 2019). PvM has a higher upfront
cost than R2F as replacement parts must be bought more often, because they
are often replaced before the end of their RUL. The downtime of the system
is however shorter because it only remains down while the maintenance is
performed, unlike R2F where the system might have to stay down from the time
of the part breaking until the maintenance is started as well. Occasionally a part
can however break earlier than expected, due to unforeseen events, resulting in
the same downtime and economic costs as using R2F.

With increasing amounts of available signal-, event-, maintenance data, and
computing power, PdM with ML, statistical inference methods can be used to
accurately predict when a part will require maintenance (Ran et al. 2019). If
properly implemented, PdM saves money by reducing both replacements of
healthy parts and the number of unexpected failures that occur. PdM does
however come with a few challenges that need to be overcome in order to have
a well-functioning maintenance strategy.

• The PdM strategy for any single system generally has to be tailored for
that particular system, requiring expert knowledge, which increases the
upfront cost of implementation (Susto et al. 2015). For ML methods,
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2.3. Predictive maintenance approaches

expert knowledge may also be required to avoid unlabelled data, because
an expert may be required to determine what caused a failure.

• Modelling the health of a part using quantitative indicators to determine
whether maintenance is currently required based on operating costs and
failure risk (Susto et al. 2015).

• Many systems rarely fail, even with a R2F strategy, a PvM strategy makes
failures an even rarer occurrence, as parts are generally replaced before
they break. This results in a lack of maintenance data, leading to the data
being very imbalanced. The data being imbalanced means that there is
significantly more sensor/event data for normal operation than for failures
(Susto et al. 2015).

• If ML methods are used, insufficient data can be detrimental to the
accuracy of predicting when maintenance is required.

• The interpretability behind the reason the system requires maintenance can
be important. Many ML methods, while providing accurate predictions,
cannot be easily interpreted such that a human can understand the reasons
maintenance may be required.

2.3 Predictive maintenance approaches

There are many approaches for predicting the likelihood of failure. These
approaches can be grouped in many ways, however this thesis will be classifying
them based on the work of Schmidt and L. Wang (2015).

• Physical-based model approaches require the modelling of the system as a
whole using e.g. differential equations and comparing the simulated model
to the real system. If the observed state of the real system diverges from
the simulated model, there may be signs of maintenance being necessary.

• Knowledge-based (also referred to as Rule-based) approaches that are
designed by an expert knowledgeable about the system, its failures
mechanics and failure modes. The expert(s) set rules that let the model
predict failures. This is generally either a list of manually designed ‘IF-
THEN’ statements that determine if the system has entered an abnormal
state. The use of fuzzy systems also falls under this type of approach,
these use fuzzy logic to determine the current state of the system using
potentially noisy or imprecise measurements.

• Data-based model approaches involve modelling the system using
stochastic, statistical or ML algorithms with the data generated from the
system (generally sensor- and/or event data) to determine when main-
tenance is required. These approaches can be further divided into two
sub-approaches:

– Condition-based approaches (Sakib and Wuest 2018) (also commonly
referred to as Condition-Based Maintenance (CBM)) monitor
different system states, these can either be sensor data, or more
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Figure 2.2: A flowchart showing a general overview of maintenance approaches
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2.4. Common PdM algorithms

complex states estimated by other algorithms, such as the health of
a part.

– Event-log based approaches (J. Wang et al. 2017) rely only on
analyzing the raw event-log data generated from these systems.
These event data generally include information, warnings and alarms,
as described in Section 2.1.

• Hybrid model approaches combine multiple of the above-mentioned
approaches, e.g. using a combination of knowledge-based models and
data-based ones.

Physical-based model approaches do not require any data from the system
to be implemented and used effectively, thus avoiding the issues of imbalanced,
unlabeled, and insufficient data (Ran et al. 2019) (Lughofer and Sayed-
Mouchaweh 2019, p. 5) (Tinga and Loendersloot 2019, pp. 331–332). However
the models used in these approaches require expert knowledge to be constructed,
often resulting in high costs, they also need to be tailored to the specific system,
and can be difficult to create for large complex systems.

Knowledge-based approaches also have the benefit of not requiring any data
to be collected before their use (Ran et al. 2019) (Maciel and Ballini 2019,
p. 406). In addition these approaches are very interpretable, because for one
can simply look at which strict- or fuzzy ‘IF-THEN’ statements have led to the
model determining that maintenance is required. As with physical-based model
approaches, these approaches can be expensive to implement because of the
expert knowledge required in their creation, they can also be difficult to extend
when new failure types are encountered.

Both condition- and event-log based approaches do not necessarily have to
be completely tailored to the individual system, as they rely on data generated
by the system, rather than expert knowledge, and can therefore be cheaper to
design and implement (Peng, Dong and Zuo 2010). These approaches also scale
easily to large systems with thousands of components and failure modes, as
using a physical-based or knowledge-based approach in these scenarios may not
be feasible. Data-based approaches do however rely on the availability of large
amounts of data generated from the system to train models that are able to
reliably predict the likelihood of failure. Interpretability, unlabelled data and
imbalanced data can all be issues depending on the choice of algorithm.

Hybrid model approaches’ advantages and disadvantages depend completely
on which other approaches are combined to create the hybrid model (Tinga and
Loendersloot 2019, p. 332). They are generally more complex to design and
implement than just using a single model approach, but often provide superior
results.

An overview of the maintenance strategies and approaches discussed so far
in this chapter is provided in Figure 2.2.

2.4 Common PdM algorithms

When using data-based model approaches for PdM, numerous statistical
and ML algorithms were reported in the literature for various PdM approaches
over the recent years. These all have their advantages and disadvantages,
and can be grouped into classes of similar algorithms. The most important

10



2.4. Common PdM algorithms

distinguishing factors between different algorithm classes are whether they are
used for regression or classification, their interpretability, and whether they are
robust to imbalanced data sets. Algorithms can also be distinguished by how
prone they are to overfitting. Some algorithms can model unlabelled data, and
they are called unsupervised, algorithms that require labelled data are similarly
referred to as supervised.

Support Vector Machines

Traditionally a supervised algorithm, Support Vector Machines (SVMs) are
a class of algorithms that can be used for either classification or regression.
The standard SVM is used for binary classifications, but the algorithm can be
extended for use in multi-class problems via Multiclass SVM and for regression
as well via Support Vector Regression (SVR). This algorithm attempts to find a
hyper-plane or other non-linear border that divides the classes in the data set
with the largest margins. SVMs are widely used within PdM because of their
good prediction ability, even if they struggle with interpretability.

SVM was used by Praveenkumar et al. (2014) for binary classification of
whether or not a failure was likely to occur in an automobile gearbox, using
vibration sensor data. Faults were successfully predicted with a high precision
rate of > 90% for every gear in the gearbox. A modified version of SVR was
also used by Mathew, Luo and C. K. Pang (2017) on simulated time-series data,
in an attempt to estimate the RUL of a component.

Neural Networks

Another class of algorithms are the Neural Networks (NNs). These
algorithms are generally used for condition-based maintenance and are known
for their good prediction ability, even with high-dimensional data, but often
require large amounts of available data, they have poor interpretability, and take
a long time to train. They also rely heavily on randomized initial weights leading
to the algorithms converging locally, but rarely globally (Leite 2019). Artificial
Neural Networks (ANNs) are some of the most commonly used ML algorithms
for PdM and are generally used for complex systems without requiring expert
knowledge (Carvalho et al. 2019). Deep Neural Networks (DNNs) is a term used
for more complex NNs, where the features are automatically extracted through
multiple hidden layers. Convolutional Neural Networks (CNNs) are a type of
DNN which are traditionally used primarily for image analysis, but they have
shown success when used with sensor data for PdM, e.g., in Silva and Capretz
(2019) and Janssens et al. (2016). Recurrent Neural Networks (RNNs) are a
type of NN that are well suited for processing time-series data, Long Short-Term
Memory Neural Network (LSTM) in particular is an RNN algorithm that is well
suited for PdM because of its ability to make connections between temporally
distant inputs, which other RNN algorithms generally struggles with.

In Scalabrini Sampaio et al. (2019), an NN was compared to the Random
Forest and SVM algorithms for regression, to predict the time until failure
using sensor data. While the other algorithms used for comparison, performed
roughly equivalent to the NN in short term predictions, the NN performed
noticeably better for long term predictions.
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A comparison between a CNN, an ANN, a Random Forest (RF) and a SVM,
for classification, was conducted in Silva and Capretz (2019), by predicting
whether a failure in the near future is likely or not. Because CNNs are most
commonly used for image analysis, the input data was transformed to be two-
dimensional first. In 3 out of 4 metrics presented, the CNN outperformed the
other algorithms, with the ANN performing the best in the last metric.

LSTM was used for predicting the likelihood of failure in Wu, Huang
and Sutherland (2020), and it was compared with SVM. The two algorithms
performed similarly for predicting that the system was operating as normal, but
LSTM outperformed SVM for predicting the ‘warning state’ and ‘failure state’.

Clustering

Clustering algorithms are a class of commonly used unsupervised algorithms.
As the name suggests these algorithms attempt to group similar instances
in the data set into clusters without knowing their labels. Many of these
algorithms suffer from the curse of dimensionality, this refers to the fact that
the average distance between instances increases as the dimensionality of the
data set increases. This leads to difficulties for clustering algorithms because
many of then cluster instances based on their distance from each other. One
such algorithm is K-Means, one of the more popular clustering algorithms, it
attempts to cluster the data set into k clusters, where k has to be determined
by the user. This algorithm is easy to implement and generally provides good
results even on large data sets as long as k is not too large (Carvalho et al.
2019).

In Langone et al. (2015), a novel approach to clustering using a form of SVM
called Least Squares SVM with Kernel Spectral Clustering (KSC), was applied
in order to distinguish between normal and abnormal operating conditions. The
presented method was compared to the K-means algorithm and obtained better
results than this more common clustering algorithm. Clustering was also used
by Uhlmann et al. (2018), who used the K-means algorithm to cluster sensor
data from a ‘Selective Laser Melting machine tool’.

Classification and Regression Trees

Another class of common supervised algorithms commonly used for PdM are
the Classification and Regression Trees (CARTs) algorithms. These algorithms
can be used for both regression and classification. They are all based on Decision
Trees (DTs), this algorithm splits the feature space using one single feature. This
results in an algorithm with high interpretability because every decision can be
interpreted as a set of boolean logic terms. DT algorithms are however prone
to overfitting if allowed to run until each node only has a single data instance,
A standard single-DT algorithm is rarely used for PdM, but other CART are
common. Gradient Boosted Tree (GBT) is an ensemble algorithm that combines
multiple DTs through a process called Gradient Boosting. Random Forest (RF)
is another ensemble algorithm that combines multiple DTs. This algorithm
samples both the data instances and the features of the data sets randomly
and trains each DT on these random samples. This results in an algorithm
that is very resilient towards overfitting. Both GBT and RF maintain some
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interpretability even if the decisions are not as easy to follow as with a single
DT.

A comparison between DT, RF and GBT for classification using maintenance
logs, was conducted by Allah Bukhsh et al. (2019). In this paper, an attempt
to predict both, whether maintenance was necessary and the type of the
maintenance was made. The GBT performed best for the former problem and
RF for the latter. This paper also highlighted the interpretability of tree-based
algorithms by demonstrating their ability to generate the feature importance
for each algorithm. Another comparison was conducted by Binding, Dykeman
and S. Pang (2019). Here a simple logistic regression, RF and a GBT algorithm
called Extreme Gradient Boosted Trees, were compared for prediction of failures
using real-world operational sensor data. Both RF and GBT outperformed the
logistic regression, and each perform the best in different metrics.

A combination of condition-based and event-log approaches using discretized
time-series- and event data with RF was used by Naskos et al. (2020), to predict
stops in a cold forming press. Both a supervised and an unsupervised approach
to prediction was demonstrated, with another algorithm being used to label data
based on when failures occurred. Canizo et al. (2017) also used a combination
of condition-based and event-log approaches, in an attempt to classify failure
types using both alarms and operational data, again using RF.

2.5 Recent trends in PdM

In recent years the industry has been going through what is referred to
as the fourth industrial revolution, or Industry 4.0. This revolution has been
sparked by the growing digitization of many industrial systems, as well as the
internet of things. One of the largest trends that has come about with Industry
4.0 is PdM. With the growing amount of digitization via networked sensors,
big data, advanced analytics and machine learning, it is becoming possible to
perform PdM, especially using data-based models (Bradbury et al. 2018). This
has lead to both growing industrial and academic interests in the topic over the
past few years.

According to Scully (2019), the number of companies explicitly working
within different sectors of PdM has doubled from 2017 to 2019, and estimates
that the global PdM market will grow from $3.3 billion in 2018 to $23.5 billion in
2024. This report also found more than 180 companies within different industry
segments that explicitly state that they offer services related to PdM. It divides
the industry into four major segments: Hardware, Connectivity, Storage &
Platform and Analytics. The last of which is further divide into nine types
depending on which type of analytics they perform, e.g. data visualization,
data mining and statistical analysis. This shows that there is already a large
market providing services for all the components necessary to perform PdM.

In academia there has also been a growing interest in the PdM field. In the
early 2000s the number of publications within the PdM field was around 100
per year, but this number has since grown significantly to more than 500 per
year by 2017 (Lughofer and Sayed-Mouchaweh 2019).

Much of the focus on PdM is taking place in the manufacturing industry,
but there are many other industries that could potentially benefit from this
new trend. One of the industries that has been slower to adapt to changes in
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maintenance strategies is the marine industry. Shorten (2012) noted that at the
time only 17% of ships used any maintenance strategy more advanced than R2F,
and that only 12% of these (roughly equivalent to 2% of all) used PdM. This
statistic depends on the classification of PdM strategies, and could consist of
mostly condition-based approaches, as was discussed in Section 2.3. Allen (2005)
found that 71% of component failures in submarines are not age-related, but
occur randomly. This shows that even PvM is not a particularly good strategy
for maintenance of marine vessels, as the useful life of a component can often
not be reliably estimated (Knutsen, Manno and Vartdal 2014). The marine
industry could therefore benefit greatly from the adoption of PdM strategies.

In this chapter the concept of alarm management and events were first
introduced. Then the three major maintenance strategies were introduced, R2F,
PvM and PdM. The different approaches that can used to when performing
PdM were briefly described, along with which ML algorithms are commonly
used for data-based approaches. Finally PdM’s role in Industry 4.0 has been
introduced and discussed. The major challenges the field is currently facing,
along with how different approaches and algorithms alleviate these has been
explained.

One of the industries that has been slow to adapt to this new trend is the
marine industry, particularly for maintenance of ships. This will be the building
block for the work that will be done in this thesis, as in the next chapters the
data sets, coming from multiple vessels will be introduced.
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CHAPTER 3

Log events based PdM in Electric
Propulsion Systems

Overview and motivation

In this chapter, the definitions of alarms and events introduced in the
previous chapter will be applied to the data sets from four different ships. First,
a brief introduction to the ships will be given, the sources of data on board the
ships will be listed. A slightly different mathematical representation of events,
than the one introduced in Chapter 2, will also be defined, as it will be more
relevant for these particular data sets. The data set pre-processing process
will then be described, using two separate methods: window aggregation and
Random Indexing (RI). The window aggregation will solve the problems of
interpretability and uneven periods between sample, while the RI will represent
the events based on the context they commonly appear in. After these methods
are presented, they will be combined into one method developed specifically for
event-log based data. This pre-processing will allow for the use of the methods
that will be presented and developed in Chapters 4 and 5.

3.1 System description and data description

This thesis is based on real world data collected from four Liquefied Natural
Gas Carriers (LNGCs) equipped with Electrical Propulsion Systems (EPSs),
these vessels will be referred to as ‘vessel 1’, ‘vessel 2’, ‘vessel 3’ and ‘vessel 4’ for
the rest of the thesis. On board each vessel, the data cover sensor measurements
as continuous numerical variables and logged events as structured categorical
(nominal) data. The combined data monitor the overall operation across all
interconnected equipment such as the Propulsion Control Unit (PCU), variable
frequency drives, generators and transformers in the propulsion plant, and
propulsion motors in addition to the cooling systems, auxiliary units, and
protective devices. The data therefore originate from multiple locations, and
they are collected in multiple sources categorized based on event logging software
and their intended use.

Figure 3.1 shows a general overview of the structure of the electrical
propulsion plant and propulsion drives. The generators convert fuel to
electrical energy and they power all the vessel units, including the propulsion
system, through the High Voltage Main AC SwitchBoard (HVMACSBD). For
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reliability and redundancy benefits, the switchboard is divided symmetrically
into sections through the even number of generators where the loads are arranged
symmetrically through sections of the bus bar. Supply transformers are used to
step up/down current/voltage as needed. The frequency-controlled propulsion
drives consist mainly of AC to DC power rectifiers connected to a common DC
bus and the inverter. At the end, the Electrical Propulsion Motors (EPMs) are
connected to the propeller through gearboxes.

G G G G

HVMACSBD 1 HVMACSBD 2

Transformer Transformer Transformer Transformer

AC BUS

Other AC Loads

AC BUS

Other AC Loads

Rectifiers Rectifiers
DC BUS

Other DC Loads

DC BUS

Other DC Loads

=
∼↗Inverter

=
∼↗ InverterDrive 1 Drive 2

EPM 1 EPM 2

Gear Gear

Propeller Propeller

Figure 3.1: Example of an EPS vessel as described in Section 3.1

Because of the vessels’ large size and numerous units, data dimensionality
easily increases drastically, to the level of thousands of features, especially due
to the various events aspects such as types, severity, and levels explained in
Section 2.1.

There is approximately 1.5-2 years of data for each vessel, these data are
divided into two types: numerical data in the form of continuous signals and
event logs, an example of such signal data is the motor speed as shown in
Figure 3.2. This thesis will focus on using the rich event data for predicting
failures. The raw event data are stored in individual tables for each source with
one column for index, one for the timestamp and one for the event message, as
illustrated in Table 3.1.

It is worth noting that the events occur irregularly, because the vessels do
not run in regular patterns. This is unlike the machinery in some other fields,
such as in manufacturing, where the equipment operate continuously.

The concept of an event has previously been defined in Equation (2.1), but
that definition is not entirely suitable for these data sets, let us therefore define
the ith event as

Ei = (ti, si,mi), 1 < i < N. (3.1)
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ti is the timestamp when the ith event was logged, measured in seconds with a
particular reference datetime with resolution in milliseconds; si is the source on
the vessel where the ith event was logged,

si ∈ {Source1, . . . ,Sourcek, . . . ,SourceK},

where k indicates the kth source, K is the number of sources on the vessel. mi

is the message of the ith event,
mi ∈ {Message1, . . . ,Messagem, . . . ,MessageM},

and m indicates the mth message, M is the number of different messages
per vessel, note that the same message can be logged in multiple different
sources e.g. E100 = (983462.842, Drive1_raw_data, INU_Stp_Cmd) and E101 =
(983462.843, Drive2_raw_data, INU_Stp_Cmd). N is the total number of events
on each vessel ranging from 340 thousand to 1.187 million.

Index Timestamp Event message
1 91707658.474 Message A
2 91707658.474 Message B
3 91707747.913 Message C
4 91707747.913 Message D
5 91708001.286 Message B
...

...
...

4757 146774247.429 Message B
4758 146775573.940 Message C
4759 146775573.940 Message D

Table 3.1: Table of event data from one source on a vessel, each row is an event
with a timestamp in seconds and an event message

While there are multiple different types of failures that can occur on the
vessels, the failures of interest for this thesis are trips in the inverter unit inside
the drives. This failure will cause the drives to halt and the vessel will lose
propeller control. Because all the electrical appliances on board the vessels are
powered by the same generators as the drives, electrical failures in other parts
of the system can propagate up through the system and into the engines which
can result in the inverter unit tripping, therefore it is crucial to use all the event
data. The number of occurrences of the inverter trips are very limited, ranging
from 36 failures in 340 thousand events to 14 failures in 580 thousand events.

Unfortunately, while the vessels are all equipped with EPSs, they are not
identical. The vessels can have differing number of equipment, software versions,
etc. Therefore, while the same methods will be used to model all the vessels,
it is not a straight forward process to combine the data from all four vessels
to train and test one single model, the vessels will therefore have separate
prediction models.

3.2 Pre-processing

As mentioned in Section 3.1, the event data were originally logged in separate
tables for each source on the vessels. For the methods that will be introduced
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Figure 3.2: Motor speed in rpm for one of the vessels, timestamps offset with a
particular reference datetime

in Section 3.3 and Section 3.4, and later developed in Section 3.5, the data sets
are easier to work with if they are in chronological order. To distinguish events
with the same event message and different sources, the concept of event types
(Vasquez Capacho et al. 2017) is introduced. An event type e is defined as a
unique combination of a source and an event message, where the event message
contains information about the unit, severity (warning, serious, fatal), level
(low-low, high-high, . . . ), acknowledgement (unacknowledged, acknowledged),
and activation status (active, inactive) (see Section 2.1 for more information
about events and alarms),

e ∈ {Type1, . . . ,Typey, . . . ,TypeY },

where y indicates the yth event type and Y is the number of event types. The
definition of an event that will be used for the rest of this thesis is changed to

Ei = (ti, ei). (3.2)

the source and event message are combined into an event type ei, the event
type of the ith event. An example of some events following this new event
definition are E100 = (983462.843, {Drive1_raw_data, Message A}), where
{Drive1_raw_data, Message A} is the event type.

Table 3.2 lists general information about each vessel’s data set. The table
compares multiple properties of each vessel’s data set; the number of events
and event types, the difference in time between the first and last event logged
(the timespan), the number of sources logging events on the ship, and the
number of failures (trips in the inverter unit as mentioned in Section 3.1). The
timespans of each vessel’s data set only differ by a maximum of 2 months, but
the amount of events logged varies significantly with ‘vessel 3’ logging more
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than 3 times the number of events produced by ‘vessel 1’. The failure to event
ratio is defined as NF

N , where NF is the number of failures and N is the number
of events. This failure ratio also differs significantly between vessels; with ‘vessel
1’ experiencing a failure ratio of 1 to 9, 431, while ‘vessel 4’ experiences a ratio
of 1 to 41, 494. These failure ratios show a large imbalance between the two
classes that represent the system status of operation in the data sets.

Vessel Events Event types Timespan Event sources Failures
1 339,521 1,737 638 days 16 36
2 443,624 3,232 690 days 36 40
3 1,187,118 3,331 697 days 26 48
4 580,914 2,308 675 days 24 14

Table 3.2: Table summarizing the number of events and event types, time
between first and last event, number of sources, and number of failures of
interest for each vessel.

Using the event definition in Equation (3.2) all the original data tables
(e.g. Table 3.1) from the different sources are combined into one large table,
Table 3.3. This new table now contains the event index i, the timestamp ti and
the event type index y as nominal representation of the event type, for each
event Ei. The raw data were stored with each event message as a string, this
representation is easier for manual analysis by human operators, but is both
memory- and computationally inefficient, resulting in the full data set being
multiple GB in size. The new data format with a nominal representation of the
event type and a separate lookup table is between 9 and 31 MB in size for each
vessel, making for both easier storage and operation on the data. The code for
this process is found in Chapter 7.

Index Timestamp Event type index
0 91666107.283 159
1 91666107.283 160
2 91666107.283 147
3 91666107.283 156
4 91666107.284 155
...

...
...

339518 146775573.940 9
339519 146775574.302 146
339520 146775574.302 154

Table 3.3: Final output table containing one event per row in the format
(i, ti, ei), timestamps offset with a particular reference datetime

3.3 Aggregating over windows

To train a model using the data sets from the EPS equipped vessels the
data must first be transformed in a way that maintains the event context of the
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events. An event context will be defined as a set of events occurring within a
certain short time frame of each other, e.g., all the events that occur within a
10 minute window. One way of transforming the data to take into account the
event context is the approach proposed in Gutschi et al. (2019), by aggregating
over short non-overlapping Time Windows (TWs) of a fixed time duration.
These TWs represent event contexts and they are then used to create sequences
of contexts. This is done by aggregating with various aggregation functions
over the TWs using Rolling Windows (RWs), as visualized in Figure 3.3. This
algorithm can be broken down into two main steps:

1. First the data are split into non-overlapping TWs of a fixed time duration
TwL. For each TW the number of occurrences of each event type is
counted, the TWs are thus represented by the number of times each event
type occurred during that TW.

2. To get a sequence of contexts, these TWs are then aggregated over using a
RW of size RwL. While the TWs merely count the number of occurrences
of each event type, the RWs aggregate using various aggregation functions
on the event type counts from the TWs.

TW1 TW2 TW3 TW4 TW5 TW6 TW7 TW8

· · ·

TwL TwLRW1

RW2

RW3

RW4

RW5

...
time

Figure 3.3: An example of window aggregation. The thin, faded lines are
timestamps of events, split into TWs of fixed length TwL, then aggregated over
with RWs of size 4.

For this project three aggregation functions are chosen,

• The minimum is chosen because the absence of a particular event type
can explain higher predictive confidence that the RW does not predict a
failure.

• The mean is chosen because the number of occurrences of an event type
being consistently high over time could be an important predictor of an
imminent failure.

• The maximum is chosen because a high number of occurrences of a
particular event type could be an indicator for a failure.
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The full algorithm is described in Algorithm 1.

Algorithm 1: Aggregating over time windows and rolling windows
Data: Event data E
Result: Matrix of RW vectors, RW
TR = RwL/TwL − 1 // Number of TWs per RW
NT = (tn − t0)/TwL // Number of time windows
NR = NT − TR // Number of rolling windows
TW ∈ RY×NT = Empty time window matrix;
RW ∈ R3Y×NR = Empty rolling window matrix;
for tw = 0 : NT do

foreach i do
if tw · TwL + t0 <= ti < (tw + 1) · TwL + t0 then

y = The event type index of event ei;
[TW ]tw,y+ = 1;

for tw = 0 : NT − TR do
for y = 0 : Y do

[RW ]tw,3e = min([TW ]tw,y : [TW ]tw+T R,y);
[RW ]tw,3e+1 = mean([TW ]tw,y : [TW ]tw+T R,y);
[RW ]tw,3e+2 = max([TW ]tw,y : [TW ]tw+T R,y);

3.4 Random indexing

Random Indexing (RI) is an incremental method for both representing
context based data and dimensionality reduction. The method was originally
developed for word space models, but can be generalized to other context based
data (Sahlgren 2005). RI is based around representing each unique data point
(word, event, etc.) as the context it appears in. Examples of usage for the
method are: Failure prediction based on log files (Fronza et al. 2013), automatic
text summarization (Chatterjee and Sahoo 2015) and enhancing web proxy
caching (Pernabas, Fidele and Vaithinathan 2019).

The RI process consists of two main steps:

1. Choose a vector of length NRIL smaller than the number of event types
Y in the data set. Assign each event type an empty index vector of length
NRIL and sparsely populate it with 1s and −1s in random locations.
Additionally, assign each event type an empty context vector of the same
length.

2. Loop through each event in the data set, every time an event occurs add
the index vectors of a preset number of preceding and succeeding events’
types to the context vector of the event type. These context vectors are
the new representation of each event.

The event data obtained from the EPS equipped vessels share multiple
similarities with word based data. The data has a set number of unique
words/event types that occur successively in common contexts. The use of

21



3.4. Random indexing

co-occurrence matrices, which describe how commonly different words appear
next to each other, is common when making word space models. This is because
they are both theoretically attractive and experimentally successful (Sahlgren
2005), but they quickly become computationally impractical as the amount
of data increases. This is because the size of the co-occurrence matrix scales
with the number of unique words in the data set, however the vast majority of
words rarely occur (Zipf’s law) (Zipf 1949) resulting in a large, but very sparse
co-occurrence matrix. This similarly holds true for the data obtained from the
EPS equipped vessels where only a handful of event types occur the majority of
the time, as illustrated in Figure 3.4. This problem is usually solved by applying
some forms of dimensionality reduction like singular value decomposition or
principal component analysis (Sahlgren 2005), this however is computationally
expensive and must be done every time new data is acquired.
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Figure 3.4: Number of times each event type occurred on ‘vessel 1’ .

RI has a number of advantages over these method. It is inherently
incremental and it is therefore possible to look at the context of an event
type without analyzing the entire data set. This is especially useful for huge
data sets which take a long time to process. This also means that the context
vectors can be updated later if more data is acquired, without having to reprocess
the original data again, as would be necessary with methods like taking the SVD
of the co-occurrence matrix. Because the dimensionality of the context vectors
is fixed, RI can also easily be expanded on with new event types whenever they
are introduced, without increasing the dimensionality of the data. Also since
the dimensionality of the context vectors is lower than the number of event
types, there is an implicit dimensionality reduction depending on the selected
context vector length NRIL.

The implementation of RI used for this project requires a slight modification
from the usual algorithm. The context vectors are usually calculated iteratively
with the following equation
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Cei
= Cei

+
i+V∑

j=i−V

Iej
, j 6= i, (3.3)

for all i. Cei
and Iei

are the context vector and index vector of the event type
ei of the ith event Ei, and V is the number of events before and after event
i to take the sum of. While the events from the EPS vessel data are ordered
by timestamp, the events come from different sources on the vessel, therefore
the timestamps may be slightly shifted at the order of milliseconds which can
result in ordering of some events being wrong. There are also occasionally long
gaps between events, these can be hours, days or sometimes even weeks long.
Because of this, a slightly modified version of the algorithm is developed. The
way context vectors are created is changed from taking the sum of the index
vector of a certain number of preceding and succeeding events, to taking the
sum of the index vectors of the events in a time based window centered around
the given event

Cei
= Cei

+
∑

Ej∈W

Iej
, (3.4)

for all i. Cei
and Iei

are the context vector and index vector of the event type
ei of the ith event Ei, and W is the set of events that occur within a time
frame centered on the timestamp ti of event Ei. This eliminates two problems,
the problem of ordering for events with close timestamps mattering, and the
problem of two neighbouring events counting as being in a context even if a
long time has passed between them. The algorithm for this modified version of
RI can be seen in Algorithm 2. The python code for this process is found in
Chapter 7.

Algorithm 2: Modified Random Indexing algorithm for use with time
based data
Data: Event data E
Result: Matrix of context vectors, C
NRIL = cv length;
N = Number of events in E;
Y = Number of event types in E;
S = Number of non-zero values in each index vector, even number;
W = Context window size;
I = Empty index matrix of size Y ×NRIL;
C = Empty context matrix of size Y ×NRIL;
for j = 1 : Y do

pos = Generate S/2 random integers between 1 and Y ;
neg = Generate S/2 random integers between 1 and Y , excluding
those in pos;

[I]j,pos = 1;
[I]j,neg = −1;

for i = 1 : N do
Calculate Cei iteratively using Equation (3.4).
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3.5 Overall feature engineering approach

The data for each of the four vessels are pre-processed separately as explained
in Section 3.2. Then the window aggregation- and RI methods introduced
in Sections 3.3 and 3.4 respectively must combined, such that the window
aggregation samples contain the RI features. To accomplish this, a method that
incorporates the context vectors from RI into the window aggregation method
is developed.

When constructing the TWs in the window aggregation, the context vectors
corresponding to the event type of each event inside the TW will be summed
to create the TW context for each window. When creating the RWs, the TW
contexts are summed with exponentially decaying weights w, with the last TW
context in each RW being assigned the largest weight. The modified window
aggregation algorithm incorporating RI is shown in Algorithm 3. The python
code for this process is found in Chapter 7.

Algorithm 3: Overall approach combining window aggregation and
Random Indexing
Data: Event data E, Matrix of context vectors C
Result: Matrix of RW vectors, RW
TR = RwL/TwL − 1 // Number of TWs per RW
NT = (tn − t0)/TwL // Number of time windows
NR = NT − TR // Number of rolling windows

TW ∈ R(Y +NRIL)×NT = Empty time window matrix;
RW ∈ R(3Y +NRIL)×NR = Empty rolling window matrix;
w = Vector of decaying weights;
for tw = 0 : NT do

foreach i do
if tw · TwL + t0 <= ti < (tw + 1) · TwL + t0 then

y = The event type index of event ei;
[TW ]tw,y+ = 1;
[TW ]tw,Y :Y +NRIL

+ = Cy;

for tw = 0 : NT − TR do
for y = 0 : Y do

[RW ]tw,3e = min([TW ]tw,y : [TW ]tw+T R,y);
[RW ]tw,3e+1 = mean([TW ]tw,y : [TW ]tw+T R,y);
[RW ]tw,3e+2 = max([TW ]tw,y : [TW ]tw+T R,y);

[RW ]tw,3Y :3Y +NRIL
= w × ([TW ]tw,Y :Y +NRIL

:
[TW ]tw+T R,Y :Y +NRIL

);

Combining the time aggregation and RI as shown in Algorithm 3 results in
the samples and features for each vessel, which will be used for training and
testing in later chapters. The samples from one of the vessels are presented in
Table 3.4, the RWs are the samples, and the features are a combination of the
window aggregations and context vectors from the RI. There are three features
per event type, each corresponding to one of the aggregation functions discussed
in Section 3.3: min, mean and max. This results in 3× 1737 = 5211 features.
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3.5. Overall feature engineering approach

In addition to these, there are NRIL features corresponding to the length of
the context vector from the RI method.

RW1 min(e1)1 mean(e1)1 max(e1)1 · · · max(eNe
)1 C1,1 · · · CNRIL,1

...
...

...
... . . . ...

... . . . ...
RWn min(e1)n mean(e1)n max(e1)n · · · max(eNe

)n C1,n · · · CNRIL,n

...
...

...
... . . . ...

... . . . ...
RWN min(e1)N mean(e1)N max(e1)N · · · max(eNe

)N C1,N · · · CNRIL,N

Table 3.4: Data set resulting from Algorithm 3. N is the number of samples
for the vessel, Ne is the number of event types, and NRIL is the length of the
context vector.

Now, the vessels equipped with EPSs have been described in detail to provide
a better understanding of the vessels the data relevant to this thesis originate
from. The size of the raw data sets have been introduced and the mathematical
definition of an event has been given. The data set pre-processing has been
described and the concept of an event type has been explained along with a re-
definition of an event using this new concept. Two methods of data preparation
have been introduced; aggregating over windows using TWs and RWs, and
RI using index vectors and context vectors. The use of the combined method
presented in Algorithm 3 has resulted in data sets with lower dimensionality
than the raw data, while the majority of the features remain explainable (the
aggregation function features are easily explainable while the context vector
features are not.)

There are however still some issues with the data sets that will be important
address when discussing which methods to use for analysing the data sets further.
The dimensionality of each data set is still large, with ‘vessel 1’ having more
than 5, 000 features (shown in Table 3.4), and the data are still very imbalanced
as mentioned in Section 3.1, with the failure ratio being between 1 failure to
9, 431 events and 1 failure to 41, 494 events for the different vessels. The data
are also not properly labelled, the timestamps of the failures are known, but it
is unknown which of the samples cause each failure, as there is no guarantee
that the last sample before a failure is the one that resulted in it. These issues
will be further discussed in Chapters 4 and 5.
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CHAPTER 4

PdM through Random Forest

Overview and motivation

This thesis will present a purely event-log based approach to predict failures
and time to failure. The lack of easily accessible expert knowledge and difficulty
of augmenting this into the data and models, will lead to some issues which
will be solved in this chapter and Chapter 6.

In this thesis, failure prediction models are developed through extensions
to Random Forest (RF). To discuss RF, Classification and Regression Trees
(CARTs) will first be introduced and explained in detail, along with important
definitions. These definitions will then be used to explain RF predictions, the
training process, their benefits, and introduce important concepts that will be
extended on in later in the thesis.

The reasons for choosing RF are to tackle the many difficulties presented
when using event-log data for prediction, some of which were presented at the
end of the last chapter. These include RFs’ resilience to noise features, and
their ability to determine feature importance. Towards the end of this chapter
these reasons will be explained thoroughly.

4.1 Classification and Regression Trees

Classification and Regression Trees (CARTs) are simple, yet powerful
methods for predictive modelling, and as the name suggests they can be used
for both regression and classification. These methods are well known for their
interpretability, and for being able to handle a mix of both numerical and
categorical data. They are recursive algorithms that model the data by dividing
the data set into N -dimensional boxes (where N is the number of features)
called nodes, using binary axis-parallel splits. The method starts by making
one large node containing the entire training set, then both a feature and a
value are chosen to split the data into two new nodes. This process is repeated
for the new node, and is referred to as growing a tree. The growing of the tree
continues until one of several stopping criteria are met, which will be discussed
later. After the tree is fully grown, the final obtained nodes are called leaf nodes,
while the ones that have been split are called internal nodes. An example of
the regions obtained from growing such a tree is seen in Figure 4.1.

Predicting yi, corresponding to either the numerical value or class label of a
sample Xi using a CART is simple after the tree is grown. Both regression- and
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4.1. Classification and Regression Trees

t1

X1

t2

X
2

t3

Figure 4.1: A data set with 2 features modelled by a tree with 4 leaf nodes,
after performing 3 splits.

classification trees predict in the same way, by assigning a predicted numerical
value or class label ŷi to Xi based on which leaf node Xi belongs to. For
regression trees, ŷi is generally estimated to be the mean of the values y of the
other samples X in the same leaf node. For classification trees, ŷi is usually
the majority class y in the leaf node.

To grow a CART, a cost function must first be chosen, to later measure the
quality of a split. In a regression setting, the cost is often defined as (Murphy
2012):

cost (D) =
∑
i∈D

(yi − ȳ)2
, (4.1)

where D is the set of data pairs {Xi, yi} belonging to the node being split, and
ȳ = 1

|D|
∑

i∈D yi.
For classification however, there are multiple cost functions to choose from.

Their definitions depend on the class-conditional probabilities of the node
(Murphy 2012, p. 548)

π̂c = 1
|D|

∑
i∈D

I (yi = c) , (4.2)

which is the ratio of number of samples belonging to class c ∈ Y (where Y is
the set of all possible classes) to the total number of samples across all classes
in the set of data pairs D belonging to the node. Some common cost functions
for classification include (Hastie, Tibshirani and Friedman 2009, p. 309):

• Misclassifcation error:
cost (D) = 1− π̂ŷ, (4.3)

where ŷ is the argmaxc (π̂c)
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4.1. Classification and Regression Trees
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Figure 4.2: Node impurity for two-class classification with the introduced cost
functions. The horizontal axis corresponds to the probability of one of the
classes. Cross-entropy has been normalized to have a maximum point of 0.5.
Based on Figure 9.3 in Hastie, Tibshirani and Friedman (2009, p. 309).

• Gini index:

cost (D) =
C∑

c=1
π̂c (1− π̂c) , (4.4)

where C is the number of classes.

• Cross-entropy or deviance:

cost (D) = −
C∑

c=1
π̂clogπ̂c. (4.5)

These cost functions are visualized in Figure 4.2.
All three of these cost functions have their own use cases, but they have a

few notable differences between them. Firstly the misclassification error is not
differentiable, this can easily be observed in Figure 4.2. The Gini index and
cross-entropy put more weight on the class-conditional probability than the
misclassification error does, this means that they assign a lower cost to nodes
with higher purity. The purity of a node is determined by how homogeneous
it is, as an example say node A contains 10 samples belonging to class 1, and
5 belonging to class 2, while node B contains 5 samples belonging to class 1,
and 0 belonging to class 2. While both node A and B contains 5 more samples
from class 1 than from class 2, node A is less homogeneous and therefore has a
higher impurity than node B.

After a cost function is chosen the tree can be grown. For every leaf node,
three choices have to be made; which feature can be used for the split, which
value the feature can be split at, and if this split is worth performing. For
numerical features, the feature to split and where to split it are determined by

28



4.1. Classification and Regression Trees

(Murphy 2012, p. 545):

(j∗, t∗) = arg min
j∈{1,...,N}

min
t∈Tj

cost ({Xi, yi|Xij ≤ t}) + cost ({Xi, yi|Xij > t}) ,

(4.6)
where t ∈ Tj is the splitting value in the set of values the jth feature can have,
and j ∈ {1, . . . , N}. This expression must be modified slightly for splitting
categorical features:

(j∗, k∗) = arg min
j∈{1,...,N}

min
k∈Kj

cost ({Xi, yi|Xij = k}) + cost ({Xi, yi|Xij 6= k}) ,

(4.7)
where k ∈ Kj is a value in the set of values the jth feature can have.

To prevent overfitting, there are usually multiple criteria to stop splitting, if
any of these criteria are met, the node in question will not be split further and
will therefore remain a leaf node. Common stopping criteria include (Murphy
2012, p. 546):

• Is there a significant enough reduction in cost? This is determined by the
gain, which is generally defined as:

∆ , cost (D)−
(
|DL|
|D|

cost (DL) + |DR|
|D|

cost (DR)
)
, (4.8)

where DL and DR are the data sets of the two newly created nodes after
an optimal split, as determined by Equation (4.6) or Equation (4.7).

• Is the tree at its pre-determined maximum depth?

• Do the new data sets DL and DR have sufficiently low costs, cost (DL)
and cost (DR)?

• Is the number of samples in the new data sets DL and DR too small?

A few terms whose use will become apparent in later chapters must be
introduced. The prediction confidence of a sample in a classification tree is
the class-conditional probability of the leaf node containing the sample, π̂c

(Leistner, Saffari and Bischof 2010). The classification confidence of a sample is
defined very similarly (Leistner, Saffari and Bischof 2010):

Fc (X) = 1
|D|

∑
i∈D

I (yi = c)− 1
C

= π̂c −
1
C
, (4.9)

where C is the number of classes.
In certain scenarios where the gain from performing a split is low even early

on, a CART may not be able to grow properly. A solution to this problem is
by loosening the stopping criteria and allow the tree to fully grow. This results
in overfitting, to fix this, a process called pruning (Murphy 2012, p. 549) can
be used. Pruning is the process of combining nodes again after a tree is grown.
A tree can thus be fully grown until a single sample remains in each leaf node,
and then pruned to combine some of the nodes again. Sub-trees are pruned in
the order of lowest increase in error.

CARTs have multiple benefits compared to other methods, such as their
interpretability as mentioned earlier. Another major benefit is the ability
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4.2. Random Forest

to easily determine the feature importance of a trained model. One way of
determining the importance of a feature is (Hastie, Tibshirani and Friedman
2009, p. 368):

I2
j (T ) =

L−1∑
`=1

∆`I (v(`) = j) , (4.10)

where j indicates the feature, T is the tree, L − 1 is the number of internal
nodes, ` is an internal node, v(`) is the feature used for splitting node `, and
∆` is the estimated gain from splitting node `.

One of the major flaws of CARTs are their instability (Hastie, Tibshirani
and Friedman 2009, p. 312). This is because CARTs are inherently greedy
algorithms, as they split each node using the feature and value that minimizes
the cost at the time of the split. If the training set changes slightly, either
by removing or adding some samples, one of the earliest splits may change,
resulting in that entire sub-tree changing drastically as well.

A common method that alleviates this problem is Gradients boosted trees.
Gradient boosted trees is a method that predicts by combining the prediction
of multiple trees, and therefore belongs to a group of methods called ensemble
learners. These methods combine multiple weaker learners (called base learners)
to give one prediction, often providing better results than a single learner, but
at the cost of interpretability.

4.2 Random Forest

Another ensemble learner that can alleviate the instability problems of
CART methods is Random Forest (RF), first introduced by Breiman (2001).
As an ensemble learner, RF combines the predictive power of multiple trees to
give one stronger predictions.

Like CARTs, RF can be used for both regression and classification.
Predicting using RF consists of aggregating the predictions of the base learners
(see Figure 4.3), for regression this commonly is accomplished by taking the
average prediction (Hastie, Tibshirani and Friedman 2009, p. 589)

f̂B
rf (X) = 1

B

B∑
b=1

f̂b(X), (4.11)

where, B is the number of trees in the forest, and f̂b(X) is the predicted value
y of sample X by tree b. For classification trees, one way of aggregating, is by
taking a majority vote (Hastie, Tibshirani and Friedman 2009, p. 588)

f̂B
rf (X) = majority vote

{
f̂b (X)

}B

1
. (4.12)

This is not necessarily the best approach however. Another way of aggregating
the predictions is via the classification confidence. The classification confidence
of CARTs (Equation (4.9)) can be extended to RF by taking the mean confidence
of all the trees (Leistner, Saffari and Bischof 2010):

Fc (X) = 1
B

B∑
b=1

(
π̂c −

1
C

)
= 1
B

B∑
b=1

(π̂c)− 1
C
. (4.13)
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4.2. Random Forest

The prediction aggregation for a classification tree can then be calculated as
the class with the highest classification confidence (Leistner, Saffari and Bischof
2010):

f̂B
rf (X) = argmax

c∈Y
Fc (X) . (4.14)

This method of aggregating the predictions can be superior in certain scenarios.
As an example, imagine a binary classification problem with a forest consisting
of only 3 trees, here the classification confidence for a given class would be
Fc(X) ∈ [−0.5, 0.5]. The trees each assign a classification confidence for whether
a sample Xi belongs to class 1 or class 2, (0.01, 0.01,−0.5) for class 1, and
(−0.01,−0.01, 0.5) for class 2. Equation (4.12) would predict sample Xi to
belong to class 1, even though the classification confidence for class 1 as
calculated using Equation (4.13) would be −16%. While Equation (4.14) would
predict class 2, as it has a higher classification confidence of 16%.

T1

· · ·

Tb

· · ·

TB

Random Forest

Equation (4.11), Equation (4.12), or Equation (4.14)

Prediction

Figure 4.3: Illustration of the way Random Forests predict, by aggregating the
predictions of the base tree learners.

If the trees were completely uncorrelated, taking the average would be
equivalent to taking the average of B i.i.d. random variables. This would result
in a variance of 1

Bσ
2 for the prediction of the forest, compared to a variance

of σ2 for each individual tree. Unfortunately this is not the case as the trees
are trained on the same data set and are therefore only i.d. (not independent),
resulting in a variance of (Hastie, Tibshirani and Friedman 2009, p. 588):

σT = ρσ2 + 1− ρ
B

σ2, (4.15)

where σT is the variance of the whole forest, and ρ is the positive pairwise
correlation between the trees. This shows that reducing the correlation between
the trees is necessary, which is why RF uses a technique called bootstrap

31



4.3. RF-Based approach for PdM

aggregation. Bootstrap aggregation is a technique that involves fitting models
on different subsets of the training data. In RF this is accomplished by using a
random subset of the training data to grow each individual tree in the forest. To
further decrease the correlation between the trees, a subset of both the samples
and the features is used.

This bagging results in RF being very robust against both overfitting and
noise features. Hastie, Tibshirani and Friedman (2009, p. 596) demonstrated
that even with only 6 relevant features, and 100 noise features, RF can still
produce satisfactory results.

Another benefit of using RF is its use of Out-of-Bag (OOB) samples. Because
only a subset of the trees in the forest is used to train on any given sample, the
error rate of the forest can be estimated by predicting on each sample using only
the trees that did not use that sample for training. This OOB error estimate
is almost identical to the N -fold cross-validation error (Hastie, Tibshirani and
Friedman 2009, p. 593).

As with CARTs, the feature importance of RF can easily be calculated, as
the mean importance of a given feature among all the trees in the forest

I2
j = 1

B

B∑
b=1
I2

j (Tb) , (4.16)

where I2
j (Tb) is the importance of feature j for tree b, as calculated using

Equation (4.10). Again it can be observed that this results in reduced variance
compared to CART as long as the correlation between the trees is low, because
of the inherent variance reduction from taking the mean.

One potentially major issue with RF for some applications is its computation
time. Because RF is an ensemble learner, whenever a prediction is made, every
tree in the forest needs to predict. Thus if making predictions very quickly
is necessary, RF may not be the ideal predictive method, particularly if the
number of trees in the forest is high, fortunately, this is not the case for this
thesis.

4.3 RF-Based approach for PdM

RF is one of many algorithms commonly used for PdM, as discussed in
Section 2.4. This is because of its numerous benefits, such as the ones described
in Section 4.2. This includes its generally low variance, resilience to overfitting
and noise features, ability to determine feature importance, and its ease of
use and implementation compared to more complex algorithms like neural
networks. This is why RF will be the algorithm used for prediction in this thesis.
The full PdM process that will be used in this thesis can thus be observed
in Figure 4.4. The MIL-B-RF algorithm shown in the ‘model’ box will be
introduced in Chapter 5.

After the pre-processing of the data in Chapter 3, there is now one data
set for each vessel. For each data set, the first 3Ne features, where Ne is the
number of event types for a given vessel, are the 3 aggregation features for every
event type on that vessel, as calculated in Section 3.3. In addition the next
NRIL features are from the from the RI algorithm in Section 3.4, representing
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Raw Data from:
• EPS LNGCs

Events:
• Alarms
• Warnings

• Information

Feature engineering:

• Pre-processing

• Window Aggregation

• Random Indexing

Model:
• MIL-B-RF
• RF Regression

Predicting Failures:

• Predicting Failures

• Predicting Time-to-Failure

Performing Maintenance

Figure 4.4: Visualization of the full Predictive Maintenance process, as presented
in this thesis. Gray boxes are part of the process, but they are outside the
scope of this thesis.

the event contexts. Each sample Xi can be expressed as

Xi = [X1,i, X2,i, . . . , X3Ne,i, X3Ne+1,i . . . , X3Ne+NRIL,i] , (4.17)

and they represent a rolling window of length RwL, rolling TwL at a time, as
presented previously in Table 3.4. As an example, if RwL is set to 60 minutes,
and TwL is set to 10 minutes, then sample X1 represents the vessel operation
during the time period 6:00-7:00, X2 represents 6:10-7:10, etc.

The main goal of the predictions in this thesis is to perform predictive
maintenance, whether maintenance is required or not is a binary classification
problem, yi ∈ {0, 1}:

0. A failure in the inverter unit is unlikely to occur within the next BL days,
the vessel therefore does not require maintenance.

1. A failure in the inverter unit is likely to occur within the next BL days,
the vessel therefore requires maintenance.
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4.3. RF-Based approach for PdM

This will be accomplished by predicting which samples may cause a failure.
One major issue however, is that the causes of the past failures are completely
unknown, and it is also unknown if it is even possible to find the causes within
the data sets at all. Determining the failure cause exactly would require expert
knowledge, which is out of the scope for this thesis, and also very difficult to
determine by a human for data sets of this size. Because of this, the labels
must somehow be estimated. Suppose a naive approach is performed, where
every sample within a certain time frame before a failure is labelled 1, and these
samples are then used to train a RF model. This does not provide satisfactory
results, likely because many of the samples labelled 1 in this way are samples
from normal operation and may therefore be similar to some of the samples
labelled 0. The resulting confusion matrix from a naive approach on one of
the data sets can be observed in Table 4.1. A more intelligent approach to
automatically labelling the data sets is clearly necessary.

0 1
0 13,391 377
1 7,887 1,236

Table 4.1: Confusion matrix from prediction using naive labelling of the data.
Predicted labels along the horizontal axis, true labels along the vertical axis.
With NRIL = 100, TwL = 10 minutes, and RwL = 60 minutes. RF model with
100 trees, and all trees fully grown.

The time-to-failure will also be estimated from the samples which have
predictive power that can be used to indicate a failure, where yi ∈ {0, 1, 2, . . . }
hours. As this is a regression problem, this will be done using a regression RF.
Given the small amount of failures in each data set, this may be challenging to
predict accurately.

The large number of features in each data set is one of the main reasons for
the choice of RF as the ML algorithm for this problem. It is unknown if all,
or only a subset of the features can be used to predict failures in the inverter
unit, there is therefore potentially a large amount of noise features, which RF
is robust against.

While the step from individual events to RWs has reduced the number of
samples, these data sets are still very imbalanced. The data set for each of the
vessels contain 30 or less failure samples out of close to 100 thousand samples
in total.

As mentioned earlier, RF is one of the most common algorithms used in
PdM. Therefore, some examples of previous use cases and methodologies for
RF in PdM will be looked at.

In Allah Bukhsh et al. (2019), maintenance logs and condition data from
railway switches were used to predict maintenance needs and failure types, in
a supervised learning problem. The maintenance data was unbalanced, with
79% of the logs indicating that some maintenance has been performed, while
only 21% were from maintenance not being performed. To mitigate the data
imbalance, the majority class was under-sampled.

In a smaller problem focusing only on one piece of machinery, Binding,
Dykeman and S. Pang (2019) used sensor data from an industrial printing
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machine to determine either if a failure is likely to occur in the near future (a
classification problem), or to determine the RUL (a regression problem). The
printer was supposed to report sensor values every minutes, but some values
were missing due to failures in the data collection and/or transmission process.
This problem was solved through the use of linear interpolation of the sensor
data. The data had been collected historically to understand the machine’s
operational status, and not for the explicit purpose of PdM, this is similar
to the data sets presented in this thesis. In this paper, a prediction horizon
of 30 minutes was used. The labelling of the data sets came from an event
logging system, this was used to label the data depending on whether or not a
failure occurs within the next 30 minutes. The features engineered from the
sensor data was then used to train a linear regression, RF, and extreme gradient
boosted trees.

In an on-line failure prediction approach, Canizo et al. (2017) used RF to
predict if a failure is imminent for several wind-turbines, at 10 minute intervals.
This prediction was done using 448 different alarm types and 104 operational
data parameters. The RF parameters used for the final model were obtained
through a grid search using a few selected values for the number of trees in the
forest, and for the maximum depth of the trees. In that case, the number of
trees did not have a large effect on the prediction ability of the model, but the
maximum depth of the trees did have a significant impact.

Using a combination of event-log data and sensor data, Naskos et al. (2020)
attempted to predict failures in a cold forming press, and proposed both
supervised and unsupervised approaches. The sensor data was used to create
artificial events, using a method called Matrix Profile, and the prediction
horizon was set between one and several hours. To counteract the problem
of imbalanced data, the samples close to each failure were over-sampled. The
supervised learning approach uses a method called Multiple Instance Learning
(MIL), in an attempt to determine which sample leading up to a failure caused
it. While the unsupervised approach used a clustering based outlier detection
algorithm.

The implementations of RF that will be used in this thesis are the Random-
ForestClassifier (with some slight modification which will be discussed later
in Section 5.2) and RandomForestRegressor classes in the scikit-learn
(Pedregosa et al. 2011) library for Python. It is worth noting that the Random-
ForestClassifier implementation aggregates the prediction of the base
learners using the classification confidence as described in Equation (4.14),
and not via majority vote. The RandomForestRegressor simply takes the
mean prediction of the base learners as described in Equation (4.11).

As explained in this section, there are still some major problems with the
data sets that need to be addressed. There is an extreme imbalance between
the failure samples and non-failure samples. It is currently unknown how many
of the features obtained in Chapter 3 are noise features that do not contribute
to describing failures. Because of the difficulty of augmenting expert knowledge
into the data and models, the data are not labelled properly. While the samples
that contain failures are known, which samples caused these failures remain
unknown. The problems of labelling and of data imbalance will be further
discussed in the next chapter.
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CHAPTER 5

Multiple Instance Learning
through Balanced RF

Overview and motivation

While RF is a method well suited for the objectives of this thesis, it is unable
to deal with the two crucial challenges presented at the end of the previous
chapter: imbalanced and unlabeled data. Firstly, a solution must be found to
the problem of imbalanced data. A more detailed discussion of the problem, as
well as solutions related to RF will be discussed in Sections 5.1 and 5.2.

Secondly, labelled data is needed for doing predictions with RF, as it is
a supervised method. Section 5.3 contains an in-depth investigation of this
challenge, and introduces the concept of weakly supervised learning. A proposed
solution to the data-labelling issue will be presented in-depth in Section 5.4.

Finally, in Section 5.5 it will be shown how the proposed algorithms can be
combined into a framework that can be used for predictions in Chapter 6. Also
the general usefulness of this new combined method for PdM will be discussed.

5.1 Imbalanced Data Classification and Cost Sensitive
Approaches

Imbalanced data is a major issue for many classification algorithms, as
many of them assume that the data are roughly balanced (Sun, Wong and
Kamel 2011). RF is no exception to this (Chen, Liaw and Breiman 2004), as
the method attempts to minimize the cost, which is generally defined equally
for all classes. This can present some issues, because in many cases, such as
in this thesis, the minority class is of most interest, which is often the class
corresponding to an abnormal state. As explained back in Section 2.2, this is
particularly common in PdM because of the widespread use of PvM strategies.
If only the misclassification rate is used to determine the quality of a model for
the data sets in this thesis, near 0% misclassification rate could be achieved by
simply predicting that every sample belongs to class yi = 0.

The imbalanced data problem is commonly divided into two different
categories; between-class imbalance, and within-class imbalance (He and Ma
2013, p. 16). Between-class imbalance, as the name suggests is the imbalance
between the number of samples of different classes, which is a very prevalent
problem in the data sets presented in this thesis. The other category, within-
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class imbalance refers to the fact that samples of the same class may not be
similar. While this has not been looked at for the data set presented in this
thesis yet, it could be that the failures in the inverter unit are caused by different
sequences of events, and the samples may therefore not be entirely similar.

While the obvious solution to imbalanced data sets is to acquire more data,
this is usually not feasible. For PdM, acquiring more data would require the
system to experience a significant amount of failures, resulting in prohibitively
high economic costs. Therefore, working with very imbalanced data sets requires
methods that are designed specifically to handle this problem.

One common way of making methods more robust against imbalanced data
sets, is to use weighted or cost-sensitive (Kaur, Pannu and Malhi 2019) methods.
These techniques attempt to compensate for the data imbalance by assigning
a higher cost to misclassifying samples belonging to the minority class. This
is commonly accomplished by assigning a weight to each class, with a higher
weight being assigned to the minority class.

In Chen, Liaw and Breiman (2004), two solutions to the imbalanced data
problem are presented for RF. One of these methods is a weighted approach
to RF, called Weighted Random Forest (WRF). Standard RF tends to be
biased towards the majority class, which is why WRF assigns a higher cost to
misclassifying the minority class, by slightly modifying Equations (4.3) to (4.5).
This is accomplished by weighting the classes differently, by assigning the
minority class a higher weight. The weights are used at two stages in the WRF
algorithm, they are used when calculating the cost of a given split, and in the
leaf nodes when performing predictions. An alternative WRF method is to
weight the predictions of each individual tree f̂b(X) in the forest, based on
weights determined by performance on a separate test set (Winham, Freimuth
and Biernacka 2013).

While WRF does have its benefits, the method also has its downsides. A
notable one of these is determining the weights of each class. To prevent
overfitting, the weights should ideally be determined using separate test sets,
unfortunately this results in the training set becoming even smaller, which can
be an issue if there are already very few samples belonging to the minority class.
Another issue is that because the minority class is weighted more heavily, more
samples of the majority class will likely be misclassified as the minority class.

Still, WRF has been shown to perform well in many imbalanced data
scenarios. WRF was used to analyze sinkholes in J. Zhu and Pierskalla (2016).
Using a standard RF method a 91.55% accuracy rate was achieved, but only
70.72% of true sinkholes were predicted to be sinkholes (true positive rate).
The best results were obtained with the minority class being assigned a weight
4 times higher than the majority class. With WRF using these weights, a
lower accuracy of 89.07% was obtained, but the true positive rate increased
substantially to 91.09%.

In Winham, Freimuth and Biernacka (2013), the latter of the two mentioned
WRF methods was used to model genes using real-world data. Here the
predictions of the individual trees were weighted to increase the contribution of
the trees that predict the minority class better. WRF performed at least as
well as standard RF in all measures, with a slight improvement in prediction
performance being observed in certain scenarios.
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5.2 Balanced RF

One of the major issues with using RF for learning from imbalanced data,
especially when the degree of imbalance becomes large, is that each tree in the
forest only trains on a bootstrap sample of the original data. If the number of
samples in the minority class is low enough, each tree’s bootstrap sample may
only contain a few, or even no samples from the minority class. This will result
in some trees being unable to predict the minority class well or at all.

One way of solving this is to either oversample the minority class, or to
undersample the majority class. The other RF method presented in Chen, Liaw
and Breiman (2004), uses undersampling of the majority class and is called
Balanced Random Forest (BRF). This algorithm can be broken down into three
steps for binary classification problems:

1. Draw a random bootstrap sample from the minority class, then randomly
draw the same number of samples from the majority class with
replacement.

2. One CART in the RF is trained on this sample from the original data set,
as described in Section 4.2.

3. Steps 1. and 2. are then repeated until the desired number of trees in the
RF are trained.

Both WRF and BRF were shown experimentally to provide superior results
to standard RF for imbalanced data sets in Chen, Liaw and Breiman (2004).
Unlike WRF however, BRF does not normally require any more parameters to
estimate than a normal RF. This makes the model slightly easier to use, and
removes the need for a separate test set just to estimate this new parameter,
like WRF requires with its weights. Because of the undersampling, BRF is also
less computationally complex.

One downside with BRF however, is that depending on the size of the
minority class, large parts of the majority class may not be used for training.
This can result in loss of information, because a part of the data set is not used
at all, resulting in worse prediction of the majority class.

BRF has been used to success in multiple imbalanced data problems. In
Kobyliński and Przepiórkowski (2008), BRF was used in a natural language
processing classification problem. The paper attempted to classify whether a
given Polish sentence was definitional or not. The ratio between positive and
negative samples was roughly 20:1, and it was noted that just classifying every
sentence as non-definitional would achieve approximately 95% accuracy. The
results of the classification show that switching from RF to BRF improved the
results significantly. This paper compared its results with a previous paper
analyzing the same data set, and an increase in the precision of the minority
class from 17% to 21.4% when using BRF instead of RF was observed. A
different feature selection strategy was also used compared to the previous
paper however.

BRF was used for analysis of gene data in Achawanantakun et al. (2015).
The paper compares a method using BRF to a logistic regression based method.
When trained on the imbalanced data set, BRF had a slightly lower specificity
(3.46% lower) than the regression, but a much higher sensitivity was observed
(26.28% higher).
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In this thesis BRF will be used for failures prediction. This is mainly
because WRF would require the estimation of weights. This makes BRF easier
to use, while both methods produce similar results according to Chen, Liaw
and Breiman (2004).

The BRF implementation that will be used is the BalancedRandomForest-
Classifier class from the python library imbalanced-learn (Lemaître,
Nogueira and Aridas 2017), which is an extension to the RandomForest-
Classifier class implemented in the scikit-learn (Pedregosa et al. 2011)
library.

5.3 Weakly Labelled Data

The methods for training a model usually falls within one of three different
common categories, depending on how the data set is labelled. Supervised
learning is the term used when the label of every sample is known. Unsupervised
learning is used when none of the samples’ labels are known. And semi-
supervised learning is when the labels of some samples are known, while others
are unknown. The data sets presented in this thesis however, do not fit into
any of these categories.

Unlabelled data is not an uncommon problem in ML, especially in practical
applications when working with real-world data. This problem is often
circumvented through the use of unsupervised learning methods, which do not
require labelled data to train models, e.g. clustering algorithms. In this thesis
however, the goal is to predict failures, which is not feasible using unlabelled
clustering, as this only helps in determining which samples are similar. The
information present in the data sets must therefore be used somehow. The time
of each failure is known, which is valuable information for determining which
samples caused a failure. This type of data is referred to as weakly labelled data,
and the problems relating to it is solved through the use of methods designed
for weakly supervised learning.

Weakly labelled data refers to data where partial or inaccurate information
about the label of each sample is known, but not the exact labels. Note that
this is different from the case of semi-supervised learning where some samples
are labelled completely, and other not at all. Weakly labelled data is generally
split into two categories: inaccurate weakly labelled data, and inexact weakly
labelled data (Zhou 2017).

In an inaccurate supervision problem, each sample has a true class label
probability for each class. These probabilities are defined as:

pi,c = p(yi = c|Xi). (5.1)

An example of true class label probabilities for two samples in a three-
class classification problem could be; (p1,1, p1,2, p1,3) = (0.63, 0.21, 0.16) and
(p2,1, p2,2, p2,3) = (0.35, 0.01, 0.64). This may be the case in certain scenarios
when dealing with noisy data, where there is some uncertainty in what class a
sample belongs to.

Inexact supervision problems are slightly different. In these problems,
samples belong to groups of arbitrary size, referred to as bags, and the bag as a
whole has a label, based on whether or not at least 1 sample in the bag belongs to
a certain class. An example of two such bags could be; B1 = {X1, X2, . . . , Xi}
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and B2 = {Xi+1, Xi+2, . . . , Xk}, where each bag Bj is also assigned a label. In
a binary classification setting with possible sample labels y = 0 and y = 1, each
bag is assigned one of two possible labels, negative or positive, expressed as B−
and B+. Three conditions are imposed on each individual sample in the bags,

∑
i s.t. Xi∈B−

yi = 0

∑
i s.t. Xi∈Bj

yi > 0,∀j s.t. Bj is B+

∑
c∈C

pi,c = 1,∀i,

(5.2a)

(5.2b)

(5.2c)

where C is the set of all classes. Negative bags B− do not contain any samples
with a label y = 1, and all the samples in these bags therefore have a label
y = 0. Each positive bag B+ contains at least one sample with a label y = 1,
but how many, or which ones are unknown. The final condition will become
useful in Section 5.4.

An overview of the two different forms of weakly supervised learning, and
more common learning methods are shown in Figure 5.1. The question marks
indicate that the true label is unknown, while a label followed by a question
mark indicates that some information is known about the label, but that the true
label is unknown. The boxes grouping the samples in the inexact supervision
indicate the bags. Combinations of these learning types are also possible.

Supervised
X1 → 0
X2 → 1
X3 → 0
X4 → 1
X5 → 1

X6 → 1
X7 → 0
X8 → 0
X9 → 1
X10→ 0

Semi-Supervised
X1 → 0
X2 → ?
X3 → 0
X4 → ?
X5 → ?

X6 → ?
X7 → 0
X8 → ?
X9 → ?
X10→ 0

Unsupervised
X1 → ?
X2 → ?
X3 → ?
X4 → ?
X5 → ?

X6 → ?
X7 → ?
X8 → ?
X9 → ?
X10→ ?

Inexact Supervision
X1 → ?
X2 → ?
X3 → ?
X4 → ?
X5 → ?

X6 → ?
X7 → ?
X8 → ?
X9 → ?
X10→ ?

Inaccurate Supervision
X1 → 0?
X2 → 1?
X3 → 0?
X4 → 1?
X5 → 1?

X6 → 1?
X7 → 0?
X8 → 0?
X9 → 1?
X10→ 0?

→ 1

→ 1

→ 0

→ 1

Figure 5.1: An overview of learning with different forms of supervision. Inspired
by Figure 1. in Zhou (2017).

Getting properly labelled data for PdM can be very expensive, and sometimes
nearly impossible. To determine the cause of a failure, expert knowledge is
usually required. These experts must analyze the data collected from around the
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time of the failure to determine the cause exactly, which can be both expensive
and require a lot of time. If the system is large and complex enough, this may
even be an unfeasible task.

Modelling the data sets presented in this thesis can be expressed as an inexact
supervision problem. As explained in Section 3.5, each sample represents a time
window containing multiple events, and while the samples containing the events
that cause the failures are unknown, the samples containing the failures are. If
it is assumed that the sample or samples containing the events that caused a
specific failure occurred within a certain time period before the failure, then all
the samples in this time period can be put into a positive bag B+ indicating
that at least one sample in the bag caused the failure. This can be done for
each failure in the data set, and all the samples that do not belong to any of
these bags can be put into a negative bag B−, indicating that no samples in the
bag caused a failure, as it is known that no failures resulted from these samples.

5.4 Multiple Instance Learning

One way of uncovering labels for samples in a weakly supervised learning
scenario, is through the use of an iterative learning approach known as Multiple
Instance Learning (MIL). This approach uses the described bags for inexact
supervision to assign labels to each individual sample in the bags. MIL is an
iterative approach that attempts to solve an optimization problem that consists
of both labelling the data and training a model with good prediction power.
During the iterations, models are trained and used to update the probability of
every sample belonging to each class. This process is repeated until the final
labels and a trained model are obtained. This process can also be extended to
non-binary classification, where the bag label indicates that at least one sample
has the same label as the bag, while the other samples in the bag can have any
label.

From here on, a superscript j will indicate the jth bag, and a subscript i will
indicate the ith sample in a bag. Let the jth bag be denoted as Bj , j = 1, . . . , n,
with corresponding label yj ∈ Y = {0, 1}. Bags containing only samples with a
label of ŷj

i = 0 are assigned a bag label of yj = 0 and are referred to as negative
bags B−, while bags containing at least one sample with a label of ŷj

i = 1 are
assigned a bag label of yj = 1, and are referred to as positive bags B+. Each
bag contains nj samples {Xj

1 , X
j
2 , . . . , X

j
i , . . . , X

j
nj} with corresponding, but

unknown labels {ŷj
1, ŷ

j
2, . . . , ŷ

j
i , . . . , ŷ

j
nj}. MIL aims to optimize both the loss

function of the model, and the sample labels. The optimization problem can be
expressed as (Leistner, Saffari and Bischof 2010):

({ŷ},G) = arg min
{ŷ},G(·)

L(Fc(X))

s.t.∀yj 6= 0,
nj∑

i=0
I(yj = argmax

c∈Y
Fc(Xj

i )) ≥ 1,

∀yj = 0,
nj∑

i=0
I(yj 6= argmax

c∈Y
Fc(Xj

i )) = 0

(5.3)
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where

L(Fc(X)) =
n∑

j=1

nj∑
i=0

`(Fc(Xj
i )), (5.4)

G is the model, and Fc(Xj
i ) is the classification confidence of the model for

sample Xj
i belonging to class c, this is defined in Equation (4.13) for RF. ` is a

loss function, one such function that can be used is the negative classification
margin. The margin of a sample is defined as (Xia, Q. Zhu and Wei 2015):

MG(Xj
i , ŷ

j
i ) = Fŷj

i
(Xj

i )−max
c∈Y
c 6=ŷj

i

Fc(Xj
i ), (5.5)

where MG is the margin of model G for one sample Xj
i with label ŷj

i . The
margin is 1 if the model has 100% confidence in the right label, and -1 if it has
100% confidence in the wrong label. The margin is positive as long as the model
is predicting the correct label. The conditions in Equation (5.3) simply ensure
that the conditions of Equations (5.2a) and (5.2b) hold. This optimization
problem attempts to solve for the optimal parameters of the model while also
uncovering the true labels of the data, which is a non-convex optimization
problem. Because of this, a technique called Deterministic Annealing (DA) is
generally employed to solve the problem. The label of each sample is either 0 or
1, this is therefore also an integer optimization problem, a solution to this is to
instead look at the true class label probabilities of each sample, Equation (5.1).

The settings discussed so far have been for general multi-class problems,
this thesis focuses primarily on binary classification, therefore this will be
the focus from here on. To calculate the true class label probability of each
sample using DA, an entropy term is added to transform the problem into a
convex optimization problem. To find the true class label probabilities one must
therefore calculate (Leistner, Saffari and Bischof 2010),

pj∗
i,c = argmin

p∈P
Ep(L)− TH(p), (5.6)

where P is a set of probability distribution, F(ŷ) is the objective function
described in Equation (5.3), T is the temperature which is used to regulate
the effect of the entropy term H. This temperature decreases each iteration t
and is generally determined using a cooling function, T = C(t). This ensures
that the optimization problem approaches the original problem as the number
of iterations t increased. The new loss function in Equation (5.6) can be
re-formulated as (Leistner, Saffari and Bischof 2010):

LDA =
n∑

j=1

nj∑
i=1

1∑
c=0

pj
i,c`(c)− T

n∑
j=1

nj∑
i=1

1∑
c=0

pj
i,clog(pj

i,c). (5.7)

By inserting the negative margin −MG for the loss `, and then taking the
derivative of Equation (5.7) with respect to p and setting it equal to 0, the
optimal choice of pj

i,c is obtained (Xia, Q. Zhu and Wei 2015):

pj∗
i,c = exp (MG(Xj

i , c)− T )/T , (5.8)
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Algorithm 4: Multiple Instance Learning, inspired by Algorithms 1
and 2 in Xia, Q. Zhu and Wei (2015).
Data: Bags Bj containing samples Xj

i , and bag labels yj

Result: Sample labels ŷj
i and trained model G(Xj

i )
t = 0;
T = C(t) A cooling function must be chosen, for example C(t) = e−t;
c is some pre-determined minimum temperature, used as a stopping
criteria;
Set all ŷj

i to the label yj of the bag Bj containing Xj
i ;

Train model G(Xj
i ) on samples and labels (Xj

i , ŷ
j
i );

while T > c do
t = t+ 1;
T = C(t);
for j = 1 : n do

for i = 1 : nj do
pj

i,c is calculated using Equation (5.9);
ŷj

i chosen randomly with probability pj
i,c,∀c;

ŷj
i is adjusted to ensure at least one sample Xj

i in each positive
bag B+ has a label of ŷj

i = 1 using Equation (5.10)
Train a new model using the samples and adjusted labels (Xj

i , ŷ
j
i )

This is then used to assign a probability of sample Xj
i belonging to class c,

taking into account Equation (5.2b):

pj
i,c =


pj∗

i,c/Ψ
j
i if yj = 1

1 if yj = 0, c = 0
0 if yj = 0, c = 1

(5.9)

where Ψj
i =

∑1
c=0 p

j
i,c∗ is simply the normalization factor, which is required

to satisfy the third condition in Equation (5.2c). Then, a new label for each
sample is assigned randomly, with a probability pj

i,0 for label ŷj
i = 0 and pj

i,1
for label ŷj

i = 1. The sample with the highest true class label probability pj
i,yj

of having a label equal to the bag label yj , must be labelled as that class if no
other samples in the bag are:

∀j :
nj∑

i=1
I(ŷj

i = yj) = 0⇒ ŷj
i∗ = yj , i∗ = argmax

i
pj

i,yj . (5.10)

This is to satisfy the conditions in Equations (5.2a) and (5.2b).
Each sample Xj

i has been assigned a new label ŷj
i , and a new model is trained

using the updated labels. This process of updating the sample labels and a new
model being trained is then repeated for the desired number of iterations, or
until the temperature T = C(t) reaches a pre-set minimum temperature. The
full algorithm as we have implemented it is described in Algorithm 4. The full
MIL process for a single bag is also visualized in Figure 5.2. The algorithm
forms a loop, which is the iterations the algorithm goes through.
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Instance L0 density L1 density

Xj
1 pj

1,0 pj
1,1

Xj
2 pj

2,0 pj
2,1

...
Xj

i pj
i,0 pj

i,1
...

Xj
nj pj

nj ,0 pj
nj ,1

G(x, θ)

MG,0 MG,1 Prediction

MG,0(Xj
1) MG,1(Xj

1) ŷj
1

MG,0(Xj
2) MG,1(Xj

2) ŷj
2

...
MG,0(Xj

i ) MG,1(Xj
i ) ŷj

i
...

MG,0(Xj
nj ) MG,1(Xj

nj ) ŷj
nj

pj∗
i,.

Figure 5.2: The iterative MIL process of a single bag visualized. A model is
trained on the samples Xj

i from all bags, the marginMG of this model G is used
to update the true class label probability pj

i,. of each sample. These updated
probabilities are then used to update the sample labels ŷj

i .

MIL has been used or mentioned occasionally for use in PdM problems,
generally in relation to event-log based approaches. Naskos et al. (2020)
performed PdM using event-log data, using a more simple version of MIL.
In this paper a saturation function was used to label a certain number of
samples, closest in time, to the failure as causing the failure without any
optimization. Here, the samples were assigned weights, not probabilities, this
may be useful in certain cases where it is known that the cause of a failure is
always observed right before the failure, but this is not always the case.

MIL was used in a similar PdM problem to the one presented in this thesis
in Sipos et al. (2014), which looked at event logs from some mining equipment.
Here the samples were placed into bags, with each bag having a binary label.
The same assumptions as in this thesis are made, where it is assumed that
within a certain time window before a failure, at least one sample caused the
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failure. Unlike the work in this thesis however, this paper only aimed to label
the bags themselves, not the individual samples in each bag.

With some slight modifications, MIL can also be used for inaccurate
supervision problems. Instead of bagging the samples, they are simply labelled
using their already known true class label probabilities.

5.5 Novel Approach: Multiple Instance Learning through
Balanced Random Forest

Here, we will propose a new method that combines MIL and BRF, this
new method will be referred to as Multiple Instance Learning through Balanced
Random Forest (MIL-B-RF). The name of this method simply refers to the
use of BRF as the model that is trained during the iterations and returned at
the end of the MIL. This new method attempts to solve both the problems
of imbalanced data, and weakly labelled data, which standard RF struggles
with. It is worth noting that with this method the imbalanceness of the data
changes depending on how the MIL labels the samples. To our knowledge, a
combination like MIL-B-RF has not been suggested before.

As discussed back in Section 2.2, both weakly labelled (referred to as
unlabelled at the time) and imbalanced data are common problems in the PdM
field. The weakly labelled data problem can potentially be solved by having
access to expert knowledge, but this may become prohibitively expensive, or
unfeasible if the system is too complex. Data imbalance will always be present
in PdM problems, because the up time of any system will always be higher
than the down time, resulting in very few failures in comparison to standard
operational data. MIL-B-RF has potential to be useful in other PdM problems
as well.

A simplified view of the what the nodes in a single trained tree in the
MIL-B-RF algorithm may look like, is shown in Figure 5.3. In reality however,
the model would consist of an entire forest of trees. The data sets presented
in this thesis have thousands of features, not just two. They have much more
extreme imbalanceness than presented in the figure, with class imbalance rate in
the range of 1000s. The bags are also much larger, containing 100s of samples.

The solution to the joint challenge of imbalance and weakly labelled data
is obtained by combining solutions to the two separate challenges. The novel
method MIL-B-RF combines the solution to the imbalance, BRF, with the
solution to the weakly labelled data problem, MIL. This method will be used
for the predictions in Chapter 6, on the data sets presented back in Section 3.5.
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t1

C1

t2

C
2

t3

Negative bags
Positive bags

Figure 5.3: A demonstration of the results of MIL-B-RF for imbalanced, weakly
(inexactly) labelled simulated data with only two features and a single tree, for
simplicity. The ellipses are separate bags, each containing its own set of samples.
Red, dashed bags are negative, and blue, solid bags are positive. While the true
labels of the sample are unknown, they are shown here for illustration purposes.
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CHAPTER 6

Results, discussion and analysis

Overview and motivation

In this chapter, the methods introduced in Chapters 3 to 5, will be used
to analyze the data sets introduced back in Chapter 3. In Section 6.1 the
pre-processing of the data sets will be explained, along with the parameter
values that were used for the window aggregation (Section 3.3) and RI (see
Section 3.4). After that, in Section 6.2, the hyperparameters that will used for
the model training using MIL-B-RF (see Section 5.5) will be explained along
with why the different values were chosen. With the data sets pre-processed
and the hyperparameters chosen, Section 6.3 will present and discuss the results
obtained using the MIL-B-RF method. Finally, in Section 6.4 the obtained
results will be compared with both the results obtained from using the same
methods on subsets of the features, and with the results from the most related
papers that studied similar problems.

6.1 Training and testing data

Four data sets were collected and prepared, for training and testing the
developed PdM methods, each from a different vessel, these vessels are referred
to as ‘vessel 1’, ‘vessel 2’, ‘vessel 3’ and ‘vessel 4’, in this thesis. The raw
data sets consist of individual events, with the majority being informational
or warnings, as seen in Table 6.1. In this table, the number of events in each
vessel’s data sets with an event message containing the word ‘Alarm’ is counted.
It is worth noting that there may be alarm events that do not contain the word
‘Alarm’ in their event message. In this table it can be observed that less than
1% of the events from any given vessel are alarms, with vessel 1 experiencing
the highest alarm to event ratio, and vessel 4 the lowest. More information
about the raw data sets is listed in Table 3.2, in Section 3.2.

These raw events were then used to create the samples that were used for
modelling. Each event type was represented as the context they commonly
appear in using Random Indexing (RI), as described in Section 3.4. This
algorithm requires some parameter values which have to be chosen. The RI
was calculated using index- and context vectors of length NRIL = 100, and
an index vector sparsity of SRI = 10%. These values were chosen based on
the original proposal of the algorithm (Kanerva, Kristoferson and Holst 2000),
where the NRIL = 1, 800 was selected for a dictionary of size 60,000. Through
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Vessel Event counts Alarm Events counts
1 339,521 3,372
2 443,624 2,994
3 1,187,118 5,015
4 580,914 1,289

Table 6.1: Proportion of alarms in the log event data.

some preliminary testing by increasing NRIL from 100 to 500 and then 1,000,
no noticeable difference in prediction ability was observed, each individual
RI feature simply had a lower importance when the number of features was
increased. The context vectors were then created using a window of size
CTwL = 10 sec, to determine the event type context of each event type. This
was chosen as a reasonable value to represent a ‘now’ on the vessels. As the
original algorithm was developed for representing words used in sentences, it
determines the context based on distance, and not time. There is therefore not
any previous works to base this number on.

Then the event counts and RI representations were aggregated over Time
Windows (TWs) and Rolling Windows (RWs) to get the samples that will be
used for model training. For the window aggregation, the length of each TW
was set to TwL = 10 min. The TWs were then used to construct the RWs, which
had a length of RwL = 6× TwL = 1 hour. These values were chosen, as they
seemed like reasonable amounts of time to represent what is currently occurring
on a vessel. The used aggregation functions were the minimum, the mean, and
the maximum. The motivation behind these specific functions, and the window
aggregation in general was explained in Section 3.3. The combination of the
window aggregation and RI was explained in Section 3.5.

All these initial parameter values are summarized in Table 6.2.

Name Parameter Value
Index vector length NRIL 100
Index vector sparsity SRI 10%
Context vector window length CTwL 10 sec
Time window length TwL 10 min
Rolling window length RwL 1 hour
Aggregation functions - min, mean, max

Table 6.2: Initial reasonable parameter values, for pre-processing the data sets

At the end of Section 2.2, a couple of major challenges for PdM were
presented. The two most prevalent for the data sets from the vessels, were the
difficulty and cost of incorporating expert knowledge into the data sets and the
models, and the data imbalance.

The raw data are extremely imbalanced, as shown in Table 3.2, back in
Section 3.2. This was somewhat mitigated by the window aggregation, which
resulted in a large reduction in number of samples, and only a small reduction
in the number of failure samples for most vessels, as seen in Table 6.3. While
this was not the main reason for the use of the window aggregation, it is an
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additional benefit of using the method. All the vessels have raw data sets that
span roughly the same amount of time, which is the reason they have roughly
the same amount of samples, but the vessels logged varying amounts of events
in this time frame. The number of samples containing failures is lower than
the total number of failure events, because multiple failures can occur within
the same TW. This should not be an issue, because if multiple failures occur
in quick succession, it is reasonable to assume that the failures had the same
cause, perhaps because the system was restarted before the problem was solved
properly, and the failure quickly occurred again.

Vessel Events Failure events Samples Failure samples
1 339,521 36 91,562 24
2 443,624 40 99,142 30
3 1,187,118 48 100,141 17
4 580,914 14 96,946 12

Table 6.3: The number of events and failure events in each vessel’s raw data
sets, compared to the total number of samples, and number of positive samples
after the window aggregation.

The work of analysing and determining the cause of every failure, and how
they differ from standard operation is difficult and a costly, time consuming
process, and as such is not feasible. The challenge to augment the expert
knowledge, into the machine learning models and data, will therefore be solved
with MIL. The imbalance should also be reduced, as multiple samples in each
bag are likely to be labelled as causing a failure. This MIL, combined with the
BRF into MIL-B-RF, drastically reduces the effects of the imbalance present in
the raw data sets.

One important note about the data sets, is that they were not collected
with the specific intent of doing PdM. These events were logged with event
messages intended to be read and interpreted by humans, such that operators
can determine what is happening on the vessels. This means that the data may
contain many correlated, and redundant events, which is one of the reasons why
RI is used.

6.2 Hyperparameter analysis

In addition to all the parameters mentioned in the previous section, that
were used in the pre-processing of the data sets, there are also multiple
hyperparameters that were used for the training of the model itself. For
the BRF model; the number of trees, the stopping criteria, and the number
of features each tree used, all had to be determined. The MIL algorithm also
required a cooling function C(t), a stopping temperature or maximum number
of iterations, and a bag size. The initial values for these hyperparameters are
presented in Table 6.4.

The maximum tree depth and the number of features per tree is set to the
suggested starting values for classification as described in Hastie, Tibshirani
and Friedman (2009, p. 592). Here it is suggested that

√
NF is used, where

NF = 3Ne +NRIL is the number of features in the data set, and that the trees
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Hyperparameter name Value
Number of trees 100
Maximum depth Grow until every node is pure
Number of features per tree

√
3Ne +NRIL

Cooling function e−1/5t

Stopping temperature 0.1
Bag length 3 days

Table 6.4: Initial hyperparameter values for training the model.

are grown until all nodes contain only a single sample. In Hastie, Tibshirani
and Friedman (2009, p. 591) it can also be observed that the performance of the
RF stopped improving at around 100-200 trees. Leistner, Saffari and Bischof
(2010) proposed the use of a cooling function of the form e−C·t, where C is a
constant that determines how fast the MIL algorithm converges toward the
final estimated labels. The exponentially decaying function slowly reduces the
contribution of the added entropy, term as shown in Equations (5.6) and (5.7).
The stopping temperature was chosen fairly arbitrarily, because it was easily
modifiable by observing when the convergence was reached.

In Figure 6.1 the total number of samples in the training set estimated to
have a label of ŷ = 1 is shown as a function of the number of iterations. It can be
observed that the results converge quickly, and that the stopping temperature
can probably be increased, as only about half the shown iterations are required.
This corresponds to a stopping temperature of 0.4 for 6 iterations, or 0.35 for 7
iterations. Even after convergence is reached the number of samples labelled
ŷ = 1 fluctuates slightly, this is because of how the labels are assigned randomly
using the probability of the sample belonging to the two classes according to
Equation (5.9). In Leistner, Saffari and Bischof (2010) a cooling function of
e−

1
2 t was used, which converges in even fewer iterations, usually in about 3

iterations from some preliminary testing.
To use MIL as described in Sections 5.4 and 5.5, a bag size had to be chosen

as well. This bag size was based on how long before a failure its cause could
reasonably have occurred, and was set to BL = 3 days. This value was chosen as
it should be a reasonable amount of time to detect and perform the maintenance
required to avoid potential failures. Bags of this size results in 432 samples in
each positive MIL bag. If one positive bag would overlap with another, the
second bag is shortened to ensure that each sample only appears in one bag.
The samples outside the positive bags were simply treated as belonging to one
large negative bag, as them being in one or multiple negative bags does not
matter for the algorithm.

Another important measure that had to be chosen is how to determine if
a failure is likely to occur based on the predictions of the model. Whether a
single sample predicting that a failure will occur should be enough to determine
that a failure is likely, or if multiple positive predictions within a certain time
can be used. The first of these two options was chosen. The second approach
can be easily implemented given sufficient data including sufficient failures to
tune the extra parameters.

The size of the data sets make them slightly inconvenient to work with.
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Figure 6.1: The number of samples in the training set estimated to have a label
ŷ = 1 during the MIL iterations while training the models of vessel 1.

While the sparsity of the data allows it be stored in a more efficient format
(using the ‘Sparse’ data-types in Pandas (Reback et al. 2020) (McKinney 2010))
for long term storage, thus taking up only 70-75MB per data set, the data have
to be uncompressed to be used for training and testing. This results in roughly
5GB of memory being used when training a model per data set.

6.3 PdM results

Even though MIL was only used to estimate the labels of the training set,
the testing set was also bagged in a similar fashion, with the 3 day window
before a failure being referred to as a bag. These bags are not used in any
way while predicting, but they are instead used to determine if any failures are
predicted in the 3 day windows before a failure.

This project covers a total of four vessels, to avoid repetitions, and while all
the methods presented were used for all four of them, some results will only
be shown for one vessel, since all results and figures for all failures in all bags
cannot be properly shown in a limited space. The resulting confusion matrices
will be shown for all four vessels.

For simplicity and easier visualization, the data sets were split into training
and testing sets based on timestamps instead of randomly, manually ensuring
that there are roughly the same amount of failures in both sets. This also
made it easier to analyse the time frames before and after the bags to look for
patterns. This would be difficult to do if the bag-level data were split randomly,
or via other methods such as cross-validation. Information about the resulting
training and testing sets for each vessel is found in Table 6.5. While the training
and testing sets for some of the vessels may look very imbalanced, particularly

51
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for vessel 3, this is because of the time duration between the failures. For
example, vessel 3’s test set has 13 failures in total, but 2 failures occur on one
day, and 11 failures occur on another day, so in reality the set only contains 2
clusters of failures.

Vessel Train span Testing span Train set failures Test set failures
1 420 days 217 days 6 18
2 591 days 99 days 14 16
3 554 days 143 days 4 13
4 436 days 238 days 5 7

Table 6.5: The time spans of the training and testing sets for each vessel, and
the number of failures in each of these sets.

The estimated labels and the bags of the training set after the model training
using the MIL-B-RF algorithm, are observed in Figure 6.2 for the whole training
set, and a zoomed in version in Figure 6.3. Here the rectangles represent the
bags with a length of 3 days, and the points indicate the labels of the individual
samples. During the training process of vessel 1 the MIL-B-RF algorithm was
reliably able to label at least one sample Xj

i in each bag Bj as ŷj
i = 1 without

resorting to the use of Equation (5.10), except for in one bag. During the
training process, bag B4 was occasionally reported to not contain any positively
labelled samples X4

i , the sample with the highest true class label probability
p4

i,1 of having a true label of 1 in the bag, was therefore corrected to have that
label in order to satisfy Equation (5.2b) as performed by Equation (5.10).

01-Jan 01-Mar 01-May 01-Jul 01-Sep 01-Nov 01-Jan

Timestamp

0

1

ŷ

Training set estimated labels, Vessel 1

Positive bag

Prediction

Figure 6.2: The labelled training data for vessel 1, after the MIL algorithm,
with bags shown.
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Figure 6.3: A zoomed plot of the training data for vessel 1, after the MIL
algorithm, with bags shown

The classification confidence of each sample across the entirety of vessel
1’s training set is visualized in Figure 6.4, a zoomed in plot showing the first
bag in Figure 6.5, and another zoomed in plot showing a large cluster of bags
over about a week in Figure 6.6. In Figure 6.5 it can be observed that there
is a large number of samples with very high classification confidence a couple
of days before the bag around 04-Feb. These samples could be an indication
that the bag size can be expanded to be more than 3 days in length. However,
because the data sets are weakly labelled, it is impossible to know if a failure
was ever close to occurring. Large number of high classification confidence
samples within a short time frame outside a bag could also be an indication
that a failure was going to occur, but that the problem was solved by the crew
on board in time. This is not reflected in the data sets, and is therefore purely
hypothetical, but it presents an additional challenge when working with the
data sets.

A similar scenario can also be observed in Figure 6.6 around 20-Apr, where
a cluster of samples with very high classification confidence appear. These
samples are however located further away from a failure at almost 1 week before.
A single sample with very high classification confidence can also be observed a
couple of days before the early April bag.

Because the data are weakly labelled, and the true labels are therefore
unknown, it makes little sense to look at a standard confusion matrix for the
testing set. We propose to instead look at the number of samples Xi with a
predicted label ŷi = 0, outside the bags as the true negative, and those with
a predicted label ŷ = 1 as the false positive. Doing the equivalent within the
positive bags would not be appropriate, as not every sample within the positive
bags has a true label of 1. The false negative were therefore instead determined
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Figure 6.4: Classification confidence for samples in the entire test set of vessel
1. The rectangles indicate the positive bags.
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Figure 6.5: Classification confidence for samples in the test set of vessel 1,
zoomed in on the first bag. The rectangles indicate the positive bag.

54



6.3. PdM results

01-Apr 08-Apr 15-Apr 22-Apr 01-May 08-May

Timestamp

-0.5

0

0.5

C
la
s
s
ifi
c
a
ti
o
n
c
o
n
fi
d
e
n
c
e

Test set prediction, Vessel 1

Positive bag

Prediction

Figure 6.6: Classification confidence for samples in the test set of vessel 1,
zoomed in on a cluster of bags. The rectangles indicate the positive bags.

by the number of positive bags that do not contain any Xi with a predicted
label ŷi = 1, equivalently the true positive was the number of bags containing
at least one sample Xi with a predicted label of ŷi = 1. The confusion matrices
resulting from this process for all the vessels, using a classification confidence
of 0.4 as the cutoff point are seen in Tables 6.6 to 6.9 on Pages 55 to 56.

The results seem good, and are fairly similar for all the vessels, but vessel
3, and 4 have more false positives. This is likely related to the fact that these
vessels have the lowest amount of distinct failures, as both of them only have
failures occurring on 2 or 3 different days in both their training and test sets.

0 1
0 28,333 281
1 1 17

Table 6.6: Raw confusion matrix for the test set of vessel 1. Predicted labels in
the vertical direction, and true labels in the horizontal direction.

0 1
0 12,603 227
1 0 16

Table 6.7: Raw confusion matrix for the test set of vessel 2. Predicted labels in
the vertical direction, and true labels in the horizontal direction.
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0 1
0 19,144 553
1 0 13

Table 6.8: Raw confusion matrix for the test set of vessel 3. Predicted labels in
the vertical direction, and true labels in the horizontal direction.

0 1
0 30,912 2,081
1 0 7

Table 6.9: Raw confusion matrix for the test set of vessel 4. Predicted labels in
the vertical direction, and true labels in the horizontal direction.

The feature importance from the model trained on vessel 1 can be observed
in Figure 6.7. The metric used is the Gini importance, which is calculated from
the total reduction in the Gini cost (see Equation (4.4)) resulting from the splits
using that feature. From this figure, the RI features at the end can easily be
distinguished from the aggregation features, these can be observed more easily
in Figure 6.8. While the RI features appear to be the largest contributors to
the predictive power of the model, there are a few aggregation features that
are clearly more significant than the rest. When analyzing the 25 features
with highest importance as seen in Table 6.10, it can be observed that there
are no features resulting from the min aggregation function. The mean and
the maximum aggregation features also appear to have similar importance in
multiple cases. Both of these observations may indicate that the minimum and
either the mean or the maximum aggregations can be removed to vastly reduce
the number of features. This will be investigated in the next section.

max(e878) mean(e878) mean(e877) mean(e1191) mean(e824)
C71 C49 C4 C11 max(e877)
C26 C5 C75 C81 max(e809)
C43 C93 mean(e809) C57 C29
C17 C83 C40 C88 C89

Table 6.10: The 25 most important features for vessel 1, ordered by importance.
Left to right, then top to bottom

An attempt was also made at training a model to predict the time-to-
failure. This model was trained with a standard random forest regression (using
RandomForestRegressor from ‘scikit-learn’ (Pedregosa et al. 2011)), as it was
only trained on the samples with a positive estimated label in the training set.
Because of the large reduction in samples for this application, the total number
of features is significantly larger than the number of samples, therefore, only the
50 most important features according to the failure prediction model were used
to train the time-to-failure model. To evaluate the performance of this model,
only the samples in the training set predicted to have a label of ŷ = 1 and are

56



6.3. PdM results

0 1000 2000 3000 4000 5000

Feature index

0.000

0.005

0.010

0.015

0.020

G
in
i
im

p
o
rt
a
n
c
e

Feature importance, Vessel 1

Figure 6.7: Feature importance for vessel 1.
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Figure 6.8: Feature importance of the RI features for vessel 1.
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Figure 6.9: Time-to-failure prediction on the positively predicted samples from
the test set of vessel 1. The height of the bags in the plot are lowered to allow
for easier observation of the samples.

located within a bag are used. This is because using the samples outside the
bags would result in large errors at resulting from the miss-prediction of the
failure prediction model, and not the time-to-failure model. The time-to-failure
prediction error in the resulting predictions on vessel 1’s test set are presented
in Figure 6.9. Here the timestamps of the samples are plotted against the
difference between the predicted time-to-failure and the true time-to-failure.
The model is clearly predicting that failures will occur later than they do the
majority of the time, which may be the result of insufficient number of samples
for training. Some outliers that predict the failure occurring more than 40 hours
before it does can also be observed at the start of April.

6.4 Discussion and comparison

To see the benefits of using both the window aggregation functions and the
RI features to train one model, a separate model was trained on each subset
of features. In Table 6.10, it was also observed that only aggregation features
that used the maximum or the mean as the aggregation function appeared
among the most important features, and that for multiple event types, the
mean and the maximum seem to have roughly equal importance. This may be
an indication that the minimum and either the mean or the maximum could
be removed without significantly impacting the results. A model was therefore
also trained on the subset of features consisting only of the aggregation features
using the maximum as the aggregation function. The model trained on the
full set of features will be referred to as M0, the model trained on the subset
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consisting only of the window aggregation features M1, the one trained only
on the RI features M2, and the one trained only on the maximum aggregation
features M3.

In Table 6.11 the resulting confusion matrices obtained through these four
models trained on each subset of features from vessel 1 are presented. It can be
observed that all the models trained on the subsets of features (M1,M2,M3)
have a lower true positive rate than the model trained on the full data set (M0),
but some also have a lower false positive rate. M1 has the lowest true positive
rate, while keeping roughly the same false positive rate as M0. M2 also has a
lower true positive rate than M0, but has a lower false positive rate as well. It
can also be seen that the results from M3 are not significantly different from
those obtained from M1, indicating that the mean and the minimum may be
redundant aggregation functions. While the M2 does have better predictive
ability than the M1 and M3, they are not as explainable. To properly perform
PdM, explainable features are required such that the cause of a potential failure
is understood and preventive measures can be taken. Combining these sets
of features provides a mix of the predictive power of the RI features and the
explainability of the window aggregation features.

M0 M1 M2 M3

28,364 281 28,364 250 28,444 170 28,319 295
1 17 6 12 5 13 5 13

Table 6.11: Comparison of the confusion matrices of the models trained using
different subsets of features for the data set of vessel 1.

There are multiple other papers that have attempted to solve similar
problems, or used similar methods to solve other problems. Here, some of
the results from these papers will be compared to the results presented in this
thesis. These comparisons are also summarized in Section 6.4.

Two papers that used MIL for PdM are Sipos et al. (2014) (Ref. 1) and
Naskos et al. (2020) (Ref. 2). Ref. 1 solved a similar problem to the one presented
in this thesis, using MIL and SVM on real-world data from medical equipment
to perform PdM. The only major difference begin that Ref. 1 attempted
to classify the bags themselves, and not the individual samples in the data
set. Ref. 2 used RF, but only a simplified version of MIL, the samples were
assigned labels based on the distance from the failure without using any form
of iterative optimization. A mix between real-world and simulated data from
some manufacturing equipment was used in Ref. 2. In Ref. 1, two different data
sets were analyzed, and an PM-AUC (PdM-based AUC (Area Under Cuve)) (a
slightly modified version of AUC) of 0.319 was observed for one data set, and
0.730 for the other. While in Ref. 2, F1-scores ranging from 0.48 to 0.61 for the
different data sets were achieved.

It is worth noting that Ref. 1 used a different approach for handling the issue
of multiple failures in short succession. After a failure was observed, a certain
window of time was deemed to be an ‘infected period’ with none of the data
in this period being used for training or testing. This technique could perhaps
have been used in this thesis as well, but it would have lead to a reduction in the
number of available failures for training and testing, which was not desirable.
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Reference Application domain ML method Performance
This thesis PdM: Vessels MIL-B-RF on event-log data FPRa: 1.0-6.3%, TPRb: 94.4-100%
Ref. 1 PdM: Medical equipment MIL combined with SVMc on event-log data PM-AUC scores of 0.319-0.730
Ref. 2 PdM: Manufacturing equipment Simplifiedd MIL with RF on event-log data F1-scores between 0.48-0.61
Ref. 3 NLPe: Polish sentences BRF on 20:1 imbalanced data F1-score of 32.6%
Ref. 4 PdM: Computer system RI with weighted SVM Balance between 0.36 and 0.94

aFalse Positive Rate
bTrue Positive Rate
cSupport Vector Machines, see Section 2.4
dLabels were simply assigned to samples based on distance from failure
eNatural Language Processing

Table 6.12: Comparison of results between different papers using similar methods as the ones presented in this thesis.
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A couple of other papers that are less closely related to the work presented
in this thesis, but still used some of the same methods. The natural
language processing paper Kobyliński and Przepiórkowski (2008) (Ref. 3),
which attempted to classify Polish sentences in a real-world data set using BRF.
As well as Fronza et al. (2013) (Ref. 4) which used RI along with weighted SVM
to predict failures in a computer system using log files. The data set presented
in Ref. 3 was labelled, and the imbalance of 20:1 was small compared to the
imbalance of the problem presented in this thesis. An F1-score of 32.6% was
achieved with a precision of 21.4% and recall of 69.0%. Ref. 4 tested the RI
and SVM approach on a real data set consisting of 6 different applications with
very varying results. True negative rates varied between 51% and 98% and a
true positive rate between 17% and 93%, resulting in a balance between 36%
and 94%.

While the results presented in this thesis are promising, with a low False
Positive Rate (FPR) and a high True Positive Rate (TPR), there are still a large
number of false positives compared to the number of true positives. Because
of the failure, miss-classifying just 1% of the samples outside the bags while
correctly classifying almost every failure still results in only 5.7% of the positive
predictions for vessel 1 being true positives. This is simply too low for the
model to be properly used for PdM as only about 1 out of every 18 predicted
samples lead to a failure.
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CHAPTER 7

Conclusions and future works

Conclusion

This thesis presented a machine learning framework based on event data for
Predictive Maintenance (PdM) on vessels equipped with Electrical Propulsion
Systems (EPSs). Multiple different algorithms were combined into one method
(Multiple Instance Learning through Balanced Random Forest (MIL-B-RF))
designed specifically to handle some of the common problems encountered in
the PdM field.

To start off, a general introduction to alarm systems and the maintenance
field were given, before the focus was moved to PdM specifically. Here the scope
of the thesis was laid out, and the challenges currently facing the field were
presented along with the approaches and algorithms that can be used to solve
them.

The data sets were then presented along with background information about
the ships that they originate from. The most significant challenges with working
on the data sets were also presented. In particular, these were; the lack of expert
knowledge resulting in weakly labelled data, extreme data imbalance because
failures were rarely observed, and interpretability to ensure that preventive
measures can be taken. Using only the event-logs, it was observed that the
results were promising, being roughly in-line with the results observed in papers
solving similar problems and using similar techniques.

Two different methods were combined for the pre-processing of the data,
window aggregation and Random Indexing (RI). The window aggregation
provided very explainable features, while RI provided good prediction ability by
taking into account the context of the event types. When comparing the results
of the models using different subsets of features at the end of the thesis, it was
observed that RI provided superior prediction power compared to the window
aggregation, but the window aggregation does still provide more explainable
features.

Random Forest (RF) was the model that was used for failure predictions.
This model handled the data sets well because of its resilience to overfitting and
noise features, and for its decent interpretability. The presented results were
good considering the very large amount of features (more than 10,000 for one
data set), with many of window aggregation features in particular potentially
being noise features.

To handle the data imbalance prevalent in this, and many other PdM
problems, Balanced Random Forest (BRF) was used. This method undersamples
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the majority class to artificially reduce the between-class imbalance in the data
sets while training. This appears to have worked well, as the models do predict
the minority class, which would likely not be the case for a standard RF model,
as near 100% accuracy could be achieved by simply predicting every sample as
not causing a failure.

Training a supervised model on weakly labelled data required the true labels
of the samples to be uncovered, Multiple Instance Learning (MIL) was the
algorithm chosen to accomplish this. The MIL algorithm used in this thesis
iteratively solves an optimization problem by assigning labels to each samples
based on their true class label probability, while simultaneously training a model
with the best predictive power. It is difficult to say whether the MIL labelled
the data well, as the true labels are unknown, but the presented results would
indicate that it was a success.

Finally, comparisons were conducted between the results obtained by using
the methods presented in this thesis on different subsets of the final data sets,
and with the results presented in other papers solving similar problems. Despite
the observed results being good, with a high true positive rate and a low false
positive rate, they are not accurate enough to be implemented in a real world
PdM strategy in EPS equipped vessels, because of the data imbalance.

Future works

While the work presented in this thesis achieved promising results, there are
multiple other methods that could potentially be investigated in future works.

In addition to the event-log data used throughout the thesis, the continuous
signal data from various components on board the vessels can be investigated.
If this signal data were to be used in combination with the event-log data to
create a hybrid model, better results may be possible to achieve. Attempting
this would however come with several challenges. A method that allows for
the combination of continuous and categorical data must be used. Also, many
of the alarms in the event data occur because a measured condition exceeds a
given threshold, this results in a high correlation between some of the events
and the signal data which must be taken into account.

If a sufficient amount of high quality data was collected, a way of performing
hyperparameter selection could be investigated. The hyperparameters presented
in this thesis were not optimized, because this would require a separate validation
set or another process such as cross-validation. Neither of these options were
desirable, as a validation set for each vessel would have resulted in many of
the training, testing and validation sets only containing one or two failures or
clusters of failures, which would be insufficient for training a model. Using
cross-validation would have been a more appropriate approach, but was avoided
because it would have made it difficult to perform some interesting analysis that
required the data to remain sequential, such as analyzing the failure predictions
that occur shortly before the start of the bags to determine whether or not the
bag size could be increased.

While RF is a good method for handling data sets with potentially large
amounts of redundant features, it is not the only model that is popular within the
PdM field. Support Vector Machine (SVM) is another popular model for PdM,
as its use of kernels also allows it to perform well in high-dimensional settings.
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The use of an SVM model does however result in many more hyperparameters,
making proper hyperparameter optimization more important.

In this thesis, the used MIL approach re-trained the full forest during each
iteration of the algorithm. A different approach that could perhaps produce
superior results would be the iterative re-training of the individual trees in the
forest. This would however be a lot more difficult to implement because of the
python libraries that were used in this thesis, as they do not provide a simple
way of retraining individual trees in a forest. This could be investigated as a
reasonable approach if another implementation is used, or if the algorithm is
implemented from scratch.

Because a combination of BRF and MIL was used, the number of samples
used for training in each iteration of the MIL algorithm was not consistent.
This is because the BRF algorithm undersamples the majority class to reduce
the imbalance during training. However, MIL adjusts the number of samples in
the minority class between iterations. This results in the number of bootstrap
samples drawn for the training of the BRF model also changing with each
iteration. A solution to this problem could potentially be investigated in future
works.

The time-to-failure model could be investigated further in future works.
While time-to-failure predictions were made, the results obtained were not too
promising. A cluster model could potentially also be investigated. If a good
clustering process is found, different failure modes could perhaps be discovered,
this may however prove difficult with the small amount of failure data available.
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Code

GenerateTimelines.py

1 import scipy.io
2 import os
3 import pandas as pd
4 import numpy as np
5 import matplotlib.pyplot as plt
6 from matplotlib import dates
7

8 def create_df(vessel, data_type=None, files=None, sort=True):
9 path = f'..\\DATA_V~1\\Vessel{vessel}'

10 dframes = []
11 srcs = []
12 vals = []
13 vals_start = []
14 counter = 0
15 if files == None:
16 files = os.listdir(path)
17 for file in files:
18 print("Current: " + path + "\\" + file + "

", end="\r")↪→

19 data = scipy.io.loadmat(path + '\\' + file,
struct_as_record=False)['data'][0][0]↪→

20

21 if data_type != None:
22 try:
23 if data.type[0] != data_type:
24 #print(data.type)
25 continue
26 except IndexError:
27 print('File empty: ' + path + '\\' + file)
28 continue
29

30 srcs.append(file[:-4]) # Slice off .mat from file name
31 timestamps = data.timestamp[:, 0]
32 N = len(timestamps)
33 if data.type[0] == 'string':
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34 values = data.value[:, 0]-1+len(vals) # Index from
0↪→

35 vals_start.append(len(vals))
36 for value in data.Cats:
37 vals.append(value[0][0])
38 else:
39 values = data.value.reshape(1, -1)[0]
40

41 try:
42 drive = int(file[3])
43 except ValueError:
44 drive = int(file[5])
45

46 dframes.append(pd.DataFrame({'time': timestamps,
'drive': drive, 'src': np.ones(N,
dtype=np.uint8)*counter, 'type': values}))

↪→

↪→

47 counter += 1
48

49 df = pd.concat(dframes, ignore_index=True)
50 if sort:
51 df = df.sort_values(by=['time'])
52

53 return df, srcs, vals, vals_start
54

55 def save_files(names, df, srcs, vals, vals_start):
56 df.to_pickle(names[0])
57 np.save(names[1], np.array(srcs))
58 np.save(names[2], np.array(vals))
59 np.save(names[3], np.array(vals_start))
60

61 def create_event_timelines():
62 for vessel in range(1, 5):
63 names = [f'Data\\Vessel{vessel}_timeline.pkl',
64 f'Data\\Vessel{vessel}_srcs',
65 f'Data\\Vessel{vessel}_vals',
66 f'Data\\Vessel{vessel}_vals_start']
67 save_files(names, *create_df(vessel, 'string'))
68 print("Done!

")↪→

69

70 def read_mat(file):
71 mat = scipy.io.loadmat(file,

struct_as_record=False)['data'][0][0]↪→

72 temp = np.zeros((mat.timestamp.shape[0], 2))
73 temp[:, 0] = mat.timestamp.reshape((1, -1))[0]
74 temp[:, 1] = mat.value.reshape((1, -1))[0]
75 mat_df = pd.DataFrame(temp, columns=("Timestamp",

"Value"))↪→

76 mat_df["Timestamp"] = pd.to_datetime(mat_df["Timestamp"],
unit="s")↪→
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77 return mat_df
78

79 def read_data(vessel):
80 df = pd.read_pickle(f'Data\\Vessel{vessel}_timeline.pkl') c

.reset_index().drop('index',
'columns')

↪→

↪→

81 srcs = np.load(f'Data\\Vessel{vessel}_srcs.npy')
82 vals = np.load(f'Data\\Vessel{vessel}_vals.npy')
83 vals_start =

np.load(f'Data\\Vessel{vessel}_vals_start.npy')↪→

84 return df, srcs, vals, vals_start

RandomIndexing.py

1 import GenerateTimelines
2 import pandas as pd
3 import numpy as np
4 from pathlib import Path
5 from scipy import sparse
6 from scipy.stats import randint
7

8 def create_random_indexing(vessel, tw_size=10, length=100,
density=0.1, random_state=0, vessel=1):↪→

9 pd.set_option('float_format', '{:f}'.format)
10 df = pd.read_pickle(f"Vessel{vessel}_timeline.pkl")
11 vals = np.arange(df["type"].max()+1)
12

13 # vals.shape[0]x100 sparse matrix with 10% density,
non-zero values 1 and 2, 2 changed to -1↪→

14 rv = randint(1, 3)
15 index_vectors = sparse.random(vals.shape[0], length,

format="csr", dtype=np.float32, density=0.1,
random_state=0, data_rvs=rv.rvs).astype(np.int8)

↪→

↪→

16 index_vectors[index_vectors == 2] = -1
17

18 # Check that no index_vector has 0 non-zero values
19 temp = sparse.csc_matrix(np.zeros((index_vectors.shape[0],

1)))↪→

20 for i in range(index_vectors.shape[1]):
21 temp += np.abs(index_vectors[:, i])
22 assert np.amin(temp.A) != 0
23

24 # Ensure all index_vectors are unique,
http://www.ryanhmckenna c

.com/2017/01/efficiently-remove-duplicate-rows-from c

.html

↪→

↪→

↪→

25 x = np.random.rand(index_vectors.shape[1])
26 assert np.unique(index_vectors.dot(x)).shape[0] ==

vals.shape[0]↪→
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27 while np.unique(index_vectors.dot(x)).shape[0] <
vals.shape[0]:↪→

28 _, unique_idx = np.unique(index_vectors.dot(x),
return_index=True)[1]↪→

29 for i in range(vals.shape[0]):
30 if i in unique_idx:
31 print(i)
32 index_vectors[i] = sparse.random(1, length,

format="csr", dtype=np.float32,
density=0.1, random_state=0,
data_rvs=rv.rvs).astype(np.int8)[0]

↪→

↪→

↪→

33

34 assert np.unique(index_vectors.dot(x)).shape[0] ==
vals.shape[0]↪→

35

36 # Each context vector is the sum of every context an event
is found in, context is tw_size/2 sec before and after↪→

37 # Context vectors are dense
38 context_vectors = np.zeros((vals.shape[0], length),

dtype=np.int32)↪→

39 for i in range(1, len(df)-1):
40 tw_start = df['time'][i] - tw_size/2
41 tw_end = df['time'][i] + tw_size/2
42 window = df[(df['time'] >= tw_start) & (df['time'] <

tw_end)]↪→

43 for index, val in window['type'].items():
44 context_vectors[df["type"][i]] +=

index_vectors[df["type"][val]]↪→

45 print(f"Progress: {(i-1)/(len(df)-2)*100:.2f}%",
end="\r")↪→

46

47 sparse.save_npz(f"Vessel{vessel}_index_vectors.npz",
index_vectors)↪→

48 np.save(f"Vessel{vessel}_context_vectors.npy",
context_vectors)↪→

49

50 return context_vectors
51

52 def read_context_vectors(vessel):
53 return np.load(f"Vessel{vessel}_context_vectors.npy")

RollingWindows.py

1 import GenerateTimelines
2 import RandomIndexing
3 import pandas as pd
4 import numpy as np
5 import itertools
6 from pathlib import Path
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7 from scipy import sparse
8

9 def rolling_windows(df, vessel, tw_size=60*10,
rw_sizes=60*60):↪→

10 if vessel == 1:
11 trip1 = 20
12 trip2 = 156
13 elif vessel == 2:
14 trip1 = 65
15 trip2 = 264
16 elif vessel == 3:
17 trip1 = 147
18 trip2 = 147 # Only 1 trip type for vessel 3
19 elif vessel == 4:
20 trip1 = 16
21 trip2 = 40
22

23 context_vectors =
RandomIndexing.read_context_vectors(vessel)↪→

24 tw_start = df['time'].iloc[0] - df['time'].iloc[0] %
tw_size↪→

25 tw_num = np.ceil((df['time'].iloc[-1]-tw_start)/tw_size) c

.astype(int)↪→

26 tw = np.zeros((tw_num, len(vals)))
27 tw_context = np.zeros((tw_num, context_vectors.shape[1]))
28 tw_counter = 0
29 tw_end_times = np.zeros(tw_num)
30 tw_labels = np.zeros(tw_num)
31

32 while tw_start < df['time'].iloc[-1]:
33 tw_end = tw_start + tw_size
34 tw_end_times[tw_counter] = tw_end
35 # Start from end of last window, stop after first end
36 window = df[(df['time'] >= tw_start) & (df['time'] <

tw_end)]↪→

37

38 window_counts = window['type'].value_counts()
39 for val, count in window_counts.items():
40 tw[tw_counter][val] = count
41 tw_context[tw_counter] +=

context_vectors[val]*count↪→

42 # Label tw BEFORE the tw containing "INU Tripped"
as 1↪→

43 if val == trip1 or val == trip2 and tw_counter >
0:↪→

44 tw_labels[tw_counter-1] = 1
45

46 # Print progress
47 progress = (tw_start-df['time'].iloc[0])/(df['time'] c

.iloc[-1]-df['time'].iloc[0])*100↪→
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48 print(f"Progress: {progress:.2f}%", end="\r")
49

50 tw_start = tw_end
51 tw_counter += 1
52

53

54 rw_sizes = np.array(rw_size)//tw_size
55 tw_length = tw.shape[0]
56 num_vars = tw.shape[1]
57 num_context_vars = tw_context.shape[1]
58 aggregations = ["min", "mean", "max"]
59 num_aggregations = len(aggregations)
60 s = np.zeros((len(rw_sizes), tw_length-rw_sizes.max(),

num_vars, num_aggregations))↪→

61 s_context = np.zeros((len(rw_sizes),
tw_length-rw_sizes.max(), num_context_vars))↪→

62

63 # Loop over all rolling windows sizes
64 for i in range(rw_sizes.shape[0]):
65 weights = np.logspace(0, 1, rw_sizes[i])
66 weights = weights/np.sum(weights)
67

68 # Loop over all time_windows
69 for j in range(rw_sizes.max(), tw_length):
70 window = tw[(j-rw_sizes[i]+1):(j+1)]
71 s_j_min = window.min(axis=0)
72 s_j_mean = window.mean(axis=0)
73 s_j_max = window.max(axis=0)
74 s[i, j-rw_sizes.max()] = np.stack((s_j_min,

s_j_mean, s_j_max), axis=1)↪→

75

76 window_context =
tw_context[(j-rw_sizes[i]+1):(j+1)]↪→

77 w_sum = np.dot(window_context.reshape(-1,
rw_sizes[i]), weights)↪→

78 s_context[i, j-rw_sizes.max()] = w_sum
79

80 # Print progress
81 print(f"Progress: {(i + j/len(tw))/len(rw_sizes)

*100:.1f}%", end="\r")↪→

82

83 val_names = [f"val_{a:d}_{b}" for a, b in
itertools.product(range(num_vars), aggregations)]↪→

84 ctx_names = [f"ctx_{i:d}" for i in
range(num_context_vars)]↪→

85 var_names = val_names + ctx_names + ["label"]
86 cols = pd.Index(var_names, name="vars")
87 rows =

pd.Index(pd.to_datetime(tw_end_times[rw_sizes.max():],
unit='s'), name="end_times")

↪→

↪→
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88 s_dfs = []
89

90 for i in range(rw_sizes.shape[0]):
91 s_combined = np.concatenate((s[i].reshape(s.shape[1],

s.shape[2]*s.shape[3]), s_context[i],
tw_labels.reshape(-1, 1)[rw_sizes.max():]),
axis=1)

↪→

↪→

↪→

92 s_df = pd.DataFrame(s_combined, columns=cols,
index=rows, dtype=pd.SparseDtype("float32",
0.0)).astype({"label": 'bool'})

↪→

↪→

93 s_df.to_pickle(f"Vessel_{vessel}_rw_size_{rw_ c

sizes[i]*tw_size//3600}h.pkl")↪→

94 s_dfs.append(s_df)
95

96 return s_dfs

MILBRF.py

1 import numpy as np
2 from sklearn.ensemble import RandomForestRegressor
3 from imblearn.ensemble import BalancedRandomForestClassifier
4 from pathlib import Path
5 import matplotlib.pyplot as plt
6 import pandas as pd
7 import matplotlib
8 from numpy import sqrt
9 from matplotlib.dates import DateFormatter

10

11 class MILBRF:
12 def __init__(self, data, labels, tw_size=60*10,

bag_size=60*60*24*3):↪→

13 self.train_data = data[:'20XX-01-20']
14 self.train_labels = labels[:'20XX-01-20']
15 self.test_data = data['20XX-01-21':]
16 self.test_labels = labels['20XX-01-21':]
17 self.tw_size = tw_size
18 self.bag_size = bag_size
19 self.bags, self.num_bags =

self.create_bags(self.train_data,
self.train_labels)

↪→

↪→

20 self.positive_bag_indecies = np.where(self.bags !=
0)[0]↪→

21

22 self.model = BalancedRandomForestClassifier(
23 n_estimators=100,
24 max_features='auto',
25 class_weight={False : 1, True : 1},
26 n_jobs=4)
27 self.model.fit(self.train_data, self.bags != 0)
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28

29 self.ttf_model =
RandomForestRegressor(n_estimators=300, n_jobs=4)↪→

30

31 def create_bags(self, data, labels):
32 bags = np.zeros_like(labels, dtype=np.int)
33

34 bag = 1
35 for idx in np.where(labels)[0]:
36 bags[idx] = bag
37 bag += 1
38 i = 1
39 while idx-i > 0 and data.index[idx-i] >

data.index[idx] -
pd.Timedelta(self.bag_size*10**9):

↪→

↪→

40 if bags[idx-i] != 0: break
41 if idx-i < 0: break
42 bags[idx-i] = bags[idx]
43 i += 1
44

45

46 reduce = 0
47 for i in range(bag):
48 bag_indecies = np.where(bags == i)[0]
49 if bag_indecies.shape[0] == 0:
50 reduce += 1
51 else:
52 bags[bag_indecies] -= reduce
53

54 return bags, bag-reduce
55

56 def margin(self):
57 probas = self.model.predict_proba(self.train_data)
58 margin = 2*probas-1
59 return margin
60

61 def temperature(self, t, C=1/5):
62 return np.exp(-t*C)
63

64 def p(self, T):
65 p = np.exp((self.margin()-T)/T)
66 return p/p.sum(1)[:, None]
67

68 def algorithm1(self, p):
69 positive_bag_indecies = np.where(self.bags != 0)[0]
70 new_labels = np.zeros_like(self.train_labels)
71 for i in self.positive_bag_indecies:
72 new_labels[i] = np.random.choice([0, 1], 1,

p=p[i])↪→

73
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74 for bag in range(1, self.num_bags):
75 bag_indecies = np.where(self.bags == bag)[0]
76 if new_labels[bag_indecies].max() == 0:
77 print(f"No positive labels in bag {bag}")
78 idx = p[bag_indecies][:, 1].argmax()
79 new_labels[idx] = 1
80

81 print(f"Positive labels: {new_labels.sum()}")
82 return new_labels
83

84 def algorithm2(self, end = 0.1):
85 t = 0
86 T = self.temperature(t)
87 while T > end:
88 print(f"Temperature: {T}")
89 p = self.p(T)
90 new_labels = self.algorithm1(p)
91 self.model = BalancedRandomForestClassifier(
92 n_estimators=100,
93 max_features='auto',
94 class_weight={False : 1, True : 1},
95 n_jobs=4)
96 self.model.fit(self.train_data, new_labels)
97 t += 1
98 T = self.temperature(t)
99 self.train_time_to_failure(new_labels)

100 return new_labels
101

102 def train_time_to_failure(self, labels, num_features=50):
103 train_label_indecies = np.where(self.train_labels)[0]
104 label_indecies = np.where(labels)[0]
105 ttf_labels = np.zeros(label_indecies.shape[0])
106

107 for i in range(len(label_indecies)):
108 train_label_index = train_label_indecies[np c

.where(train_label_indecies >=
label_indecies[i])[0][0]]

↪→

↪→

109 ttf_labels[i] = (self.train_data.index[train_ c

label_index].timestamp() -
self.train_data.index[label_indecies[i]] c

.timestamp())/3600 # In
hours

↪→

↪→

↪→

↪→

110

111 self.important_features = self.train_data.iloc[:,
self.model.feature_importances_.argsort()[-num_ c

features:][::-1]].columns
↪→

↪→

112 self.ttf_model.fit(self.train_data[self.important_ c

features][labels][1:],
ttf_labels[1:])

↪→

↪→

113 return ttf_labels.astype(int)
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114

115 if __name__ == "__main__":
116 vessel = 1
117

118 rw = pd.read_pickle(f"Vessel_{vessel}_rw_size_1h.pkl") c

.sparse.to_dense()↪→

119 tw_size = 60*10 # 10 minutes
120 bag_size = 60*60*24*3 # 3 days
121

122 model = MILBRF(rw.iloc[:, :-1], rw.iloc[:, -1],
bag_size=bag_size)↪→

123 new_labels = model.algorithm2()
124 pred_proba = model.model.predict_proba(model.test_data)[:,

1]↪→

125 pred = pred_proba > 0.9
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