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Abstract

With the resurgence in popularity of the local �eld potential (LFP) as a measure-
ment of neuronal activity in the brain, it remains a di�cult signal to interpret.
The LFP signal comprises activity originating in the electrophysiological fea-
tures of neurons and network synapses, and sophisticated simulations of these
signals involve a large number of nonlinear coupled di�erential equations. Sim-
pli�ed LFP approximation models have been developed in an e�ort to improve
the computational e�ciency of network LFP predictions, as well as gain a bet-
ter understanding of the LFP signal using linear models. Two such linear LFP
models are presented and evaluated, namely the hybrid- and kernel models.
The hybrid model adapts simpli�ed point-neuron spike times to synaptic acti-
vation times in biophysically detailed networks, removing the need to simulate
the detailed neuron dynamics. Alternatively, the kernel method �rst spikes a
population of neurons simultaneously to register the net LFP response per spike
per neuron. This is subsequently combined with the spiking activity of a sim-
ulated network to obtain an approximation of the network LFP signal. This
thesis presents a critical evaluation of the two linear LFP prediction methods
by applying them to various network conditions and neuron models. A network
of excitatory and inhibitory multicompartmental ball-and-stick neurons is �rst
simulated and the ground-truth LFP signal is compared to the hybrid- and ker-
nel method LFP approximations. These methods are then evaluated under two
network conditions. The �rst in which the external drive/stimulus of the net-
work is increased to up to four times stronger than the baseline, and another in
which synchronous network spiking activity is induced. Neither network condi-
tion was found to jeopardize the linear method prediction performances, though
the amplitude of the kernel method LFP prediction in the most synchronous
network was found to be approximately two times larger than the ground-truth
LFP signal. Finally, a layer 5b pyramidal cell was implemented to better rep-
resent a biophysically detailed system. The linear method LFP approximations
of the L5b cell network were evaluated, and an external drive up to four times
stronger than the baseline was used to investigate if the linear LFP approx-
imation performances were consistent. The kernel method failed to capture
high-frequency components of the ground-truth LFP signal in regions far from
the synaptic input, and the hybrid method predictions were found to outperform
the kernel method predictions in these regions. Despite this the kernel method
was found to provide signi�cant computational advantages, and both methods
were overall successful in recreating the ground-truth signal. This demonstrates
that a substantial amount of network LFP variability can be captured using
linear spike-LFP models.
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Chapter 1

Introduction

1.1 Thesis Context

The ongoing e�orts to improve lifelike models of the brain are paramount to
research �elds within neuroscience today. Computational neuroscientists work
to create replicas of the brain which can be simulated e�ciently on large-scale
computational clusters. One such model regards the primary visual cortex of
mice comprising of 250,000 neurons at the Allen Institute for Brain Science
in Seattle[1]. In these models, experimental data of biophysical properties of
neurons are implemented into coupled di�erential equations which can simulate
the evolution of such complex systems. The wide range of electrical brain signals
which can be measured experimentally allow for a large corpus of data which
can be compared with such simulations for benchmarking. The importance of
computational brain replicas arises when considering the rigorousness of the
mathematical descriptions we have of the brain. Several mathematical models
can be constructed and hypotheses can be stated, but an intricate evaluation of
the models is also necessary to verify the model performances.

1.2 Thesis Motivation

In the �eld of computational neuroscience in the 1960s, researchers observed the
innate requirement for large-scale computation facilities to carry out simulations
of the brain. The research at the time was predominantly focused on formalizing
the mathematical equations which govern brain activity, and �nding analytical
solutions wherever possible[2]. With the computational means found today,
large scale simulations are within reach, though computational bottlenecks are
encountered when aiming for the sheer scale of the human brain. Methods which
aim to simplify and approximate in vivo cortex activity are therefore imperative
to improve computational e�ciency.

The study at hand aims to evaluate two linear approximation models of
neuronal network signals, applied to the simulation of a ∼ 1 mm2 patch of the
primary visual cortex by Hagen et al. [3]. In particular, the thesis objective is
to perform a rigorous evaluation of the two linear methods, referred to as the
hybrid- and kernel methods. The hybrid method was a focal point of Hagen
et al. [3], where it was utilized as an approximation technique of in vivo local
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CHAPTER 1. INTRODUCTION 6

�eld potential (LFP) signals. The LFP signal is the low-frequency component
of the extracellular potential, where the cuto� frequency is typically set to ≤
500 Hz (though the de�nition varies[3, 4]). The LFP as a measurement of in
vivo neuronal network activity has seen a resurgence in popularity in the past
decade, though it is a di�cult signal to interpret[5]. These linear methods
are primarily meant to provide increased computational e�ciency of neuronal
network simulations, though a better understanding of the LFP signal can also
be obtained by use of the linear models. Note that the kernel method was not
mentioned as much as the hybrid method in Hagen et al. [3], and neither method
has seen a thorough performance validation. The kernel method in particular is a
promising technique to optimizing LFP simulations, and although the evaluation
of both techniques is central to the thesis, the implementation and assessment
of the kernel method is the focal point. Optimizing the fashion in which LFP
is simulated for large networks of neurons yields insight into the dynamics at
play, and if the optimized methods are to see continued application, they need
to be systematically tested and evaluated.

1.3 Thesis Structure

The thesis aims to introduce the reader to the necessary theoretical background
required for the analysis prior to the presentation of the methodology and re-
sults. Chapter 2 Theory describes a thoretical background of neuroscience, in-
troduces the reader to neuron simulations, and �nally describes the simulation
techniques of neuronal networks and the LFP signal. This is followed by chapter
3 Methods, where the initial network con�guration is described and the signal
evaluation techniques are outlined. Following this is a thorough introduction
to the hybrid- and kernel methods, and how these methods are implemented.
Afterwards, a section explaining the limitations of the linear methods is pre-
sented, where the techniques used to test the linear methods are described. A
biophysically detailed network of neurons is then implemented and the linear
methods are tested on a more challenging network. Following the method de-
scriptions are chapters 4 Results and 5 Discussion and Conclusion, where the
method results are presented, followed by a discussion of the material. Potential
future improvements are noted, and a conclusion of the study is �nally stated.



Chapter 2

Theory

2.1 Neuroscience Background

The central cell of neuroscience is the neuron, a cell which, being quite simple
on its own, can give rise to complex behaviour in larger networks. Neurons
consist of various sections, all of which serve di�erent functions within the cell.
The neuron consists of a central compartment named the soma, and outwards-
extending branches of axons and dendrites. Dendrites are further categorized
into basal and apical dendrites. Figure 2.1 illustrates the basic biological char-
acteristics describing a neuron. Note that signals from the neuron travel out-
wards along the axon and neural input comes from the various dendrites. The
cell membrane separates the Extracellular Space (ECS) from the Intracellular
Space (ICS). This membrane upholds a membrane potential, the relative volt-
age di�erence between these two spaces. This potential is generated by an ion
imbalance between the ECS and ICS, regulated by channels and pumps which
allow ions to pass through the membrane. The typical resting potential for neu-
rons is around ≈-62 mV[6], and any deviances this potential has from the mean
has a large impact on the neuronal membrane dynamics.

2.1.1 Membrane Characteristics

The membrane is bilipid, meaning that it is hydrophobic on the inside but hy-
drophilic on the outside, making for a barrier which separates the ECS and ICS
plasma, an important characteristic to have to uphold the membrane potential.
Figure 2.2 illustrates a conceptualization of how the potential di�erence is

measured on the two sides of the bilipid membrane. Something not included
in the membrane illustration are the ∼100-200[9] types of ion channels which
regulate the ion �ow through the membrane. This ion �ow of the membrane
is controlled by active and passive channels. The di�erence between the two
is that the active channels open and close based on various factors such as the
membrane potential or the prevelance of certain types of bound molecules[9].
These active channels can produce an `arti�cial' concentration gradient, and
therefore require energy to pump. This energy comes from ATP, Adenosine
triphosphate, an essential molecule for energy transport in biology. Meanwhile
the passive ion channels simply allow ions to di�use freely through the mem-
brane depending either on the concentration gradient or electric forces. These
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CHAPTER 2. THEORY 8

Figure 2.1: Figure illustrating the basic anatomy of a neuron cell. Adapted
from [7]

Figure 2.2: Figure illustrating the voltage caused by ion di�erences in the
ECS and ICS �uids, referred to as Extracellular �uid and Cytosol, respectively.
Copied from [8].

ion channels are thoroughly catalogued on several online sources[10, 11, 12] for
more detail on the subject. The ions which are discussed most in the thesis are:

� Potassium, K+

� Sodium, Na+

� Chloride, Cl−

� Calcium, Ca2+

All these are ions which are prominent inside and outside the neuron, though
the two central ones considered for the moment are the K+ and Na+ ions.
In the ECS, there is a far larger Na+ concentration, and in the ICS, the K+

ion is far more prominant. The neuron dynamics are very dependent on the
transfer of these ions through their respective active, voltage-gated Na+ and
K+ channels[9]. These channels regulate the �ow of the main charge carriers
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which contribute to the action potential �ring of the neuron, something which
is explained in detail shortly.

Another central membrane characteristic is the capacitive property of the
bilipid membrane. This capacitive impact arises from charges gathering at each
side of the cell membrane as a result of the resting potential. This then has
the properties of a capacitance plate, allowing for new for charge changes/cur-
rents through the membrane1. The capacitive current is one of multiple ways
in which currents can �ow through the membrane. There are many more trans-
membrane currents which can dynamically �ow through the bilipid membrane
which are described later on. Firstly though, the term neuron dynamics should
be addressed, as it refers to action potential �ring of neurons, the characteristic
signal used for neuron-to-neuron communication.

2.1.2 Action Potential

The membrane can be stimulated in several ways by outer sources, from input
from other neurons to arti�cial current injections. These stimuli change the
membrane potential to be greater or lesser than the resting potential, and can
cause the voltage-gated ion channels to change their states between open and
closed, depending on the stimulus strength. If the membrane potential in the

Figure 2.3: Conceptualization of the action potential. Copied from [14].

soma reaches a certain threshold potential (around ≈ -50 mV[6]), an irreversible
process known as an action potential (AP) is set in motion. The voltage-gated
Na+ channels begin to open if the membrane potential surpasses the thresh-
old potential, causing a surge of positively-charged Na+ ions to �ow into the

1It is worth noting that this membrane current is not a result of ions traveling through the
membrane but is rather a purely capacitive characteristic. See to [13] for more on capacitors.
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membrane. The �ow of positive ions into the membrane causes the neuron to
depolarize, meaning that the polarity caused by the charge surplus has been
negated.

A concurrent opening of the voltage-gated K+ channel takes place shortly
after the depolarizing surge of Na+ ions. This channel pumps positive K+ ions
out of the neuron, against the charge gradient. The opening of the K+ channel
comes about far slower than the Na+ channel, allowing for depolarization to
occur before the repolarization of the neuron. The slow nature of the K+ chan-
nel also results in hyperpolarization, where the membrane potential becomes
far more polarized than it otherwise is when resting. The full process of an
action potential is described by �gure 2.3, and the hyperpolarization state is
illustrated by refractory period region, a period in which the neuron is unable
to �re o� another AP. Figure 2.3 only displays the membrane potential of a
single measurement point in the neuron. The reality of the situation is that

Figure 2.4: Action potential from the soma propagating down the central
axon. Copied from [15].
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this action potential begins in the soma and propagates down the axon. This
is illustrated by �gure 2.4, where the opening of the Na+- and subsequently
the K+ ion channels propagates through the axon. The AP process involves
a quick depolarization of the membrane potential which propogates from the
soma outward. Although some so-called backpropogation of the AP goes to
the dendrites, the signal mainly propagates through the axon to several termi-
nals. These axon terminals connect to other neurons via synapses, the main
communication tool between cells.

2.1.3 Synapses

Synapses are the basis for communication between neurons in a network. They
ensure that an AP signal from a pre-synaptic neuron is properly conveyed to the
post-synaptic neuron. As mentioned previously, synapses are found at the end
of pre-synaptic axon terminals, connecting to the dendrites of the post-synaptic
neuron. When an AP propagates down the axon terminals and into a synapse,
a set of neurotransmitters are released from synaptic vesicles into the synaptic
cleft, the space between the neurons. These neurotransmitters are subsequently
received by various types of ion channels in the post-synaptic neuron membrane,
creating a setting in which the post-synaptic dendritic membrane can either po-
larize or depolarize, depending on the synapse type. Figure 2.5 illustrates a

Figure 2.5: Illustration of a synaptic connection between an axon of one neu-
ron and the dendrites of another. Closer inspection of the activity within the
synaptic cleft is included. Figure copied from [16].

synaptic connection between two neurons in detail. The two central types of
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synapses are excitatory and inhibitory synapses. The di�erence between the two
is that they release di�erent neurotransmitters into the synaptic cleft. Excita-
tory synapses typically release glutamate and acetylcoline, whereas inhibitory
synapses release gamma-aminobutyric acid (GABA)[9]. Excitatory synapses in-
crease the the post-synaptic membrane potential, bringing the post-synaptic
neuron closer to the AP �ring threshold potential, while opposite is true for
inhibitory synapses. Typically, the excitatory synapses are placed at the apical
dendrites and the inhibitory synapses are placed at the basal dendrites, closer
to the soma. The synaptic stimulus to the dendritic branches is still noticed in
the soma, though the distance between the dendrite and the soma causes the
stimulus strength to diminish. Despite the synaptic signal being weakened by
distance, the soma receives a multitude of signals from all other synapse loca-
tions in the dendrites, and sum of all such contributions guides the soma either
away- or towards the action potential �ring threshold.
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2.2 Modeling of Neurons

A number of neuron simulation models which are relevant to the thesis are
presented in the following chapter. Models with various levels of simulation
complexity are described, and the tradeo� between model complexity and sim-
ulation e�ciency is quite relevant in the context of neuronal modeling.

2.2.1 Traditional Neuron Models

In computational neuroscience, the neuron models typically utilize quasi-ohmic

approximations of transmembrane currents densities I:

Ix = gx(V − Ex) (2.1)

where gx is the membrane conductance per unit area, given in mS cm−2, V
is the membrane potential in mV, and Ex is the resting membrane potential
in mV. The current density Ix then has units µA cm−2. Note that positive
ion currents are currents which travel from ICS to ECS, by convention. The
factor (V − Ex) is the driving force of the ion, as the equilibrium is always
reached when the membrane potential equals the resting potential V = Ex, and
driving force equals zero. Here, x is some ion traveling between the ECS and
ICS x ∈ (K+,Na+,Cl−,Ca2+).

RC-Circuit Neuron

The RC-circuit neuron model allows for neuron dynamics to be modeled as an
RC-circuit. This involves combining the individual ion channel properties into
general membrane characteristics x→m using Thévenin's theorem[9]:

Im = gm(V − Em), (2.2)

where the parameters and units follow equation 2.1, and the ion-channel speci�cs
have been combined into a single membrane current expression. The current Icap
which describes the capacitive characteristics of the membrane can additionally
be modeled as[9]:

∂V

∂t
=

1

Cm

∂q

∂t
=

1

Cm
Icap, (2.3)

⇒ Icap = Cm
∂V

∂t
, (2.4)

where Cm is the speci�c membrane capacitance, given in µF cm−2, and V is the
membrane potential mV. Time is typically measured in ms, such that the capac-
itive current has units µA cm−2. The relation between the capacitive current
Icap and other transmembrane currents Im is found using current-conservation
in the ICS and ECS, where Kircho�'s law yields:

Icap + Im = 0 (2.5)

Cm
∂V

∂t
= gm(Em − V ), (2.6)

here, Im represents all currents into the membrane due to ion transmission.Figure
2.6 illustrates a conceptual circuit which can be used to describe neuron mem-
brane dynamics. Note that the speci�c membrane resistance Rm in units of Ω
cm2 is inversely related to the membrane conductance per unit area gm = 1/Rm.
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Figure 2.6: Figure illustrating the basic RC circuit graph for the neuron mem-
brane. Figure adapted from [17].

Figure 2.7: Conceptualization of how a measured, characterized neuron (A)
can be con�gured as a multicompartmental neuron (B), and subsequently sim-
ulated as a multicompartmental RC circuit (C). Figure adapted from [18].
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2.2.2 Multicompartmental Neuron Models

The RC-circuit model of the neuron relates to what is known as multicompart-
mental neuron models. This method of neuron modeling involves setting up a
multitude of connected RC circuits to represent various `compartments' of the
cell. Each such compartment is then connected to its neighboring compartments
by an axial resistance Ra such that compartments can transfer current axially,
as well as through the membrane into the ECS. Figure 2.7 illustrates a con-
ceptual chronological approach to how to simulate a neuron this way. Firstly,
the quantities and qualities of the neuron are measured and recorded in the
lab, as illustrated by section (A) of the �gure. This measurement step includes
the measurement of the morphology of the neuron - such as placements and
widths of dendritic branches - to measuring speci�c neuron parameters such as
the membrane capacitance Cm and resistivity Rm at a number of sites across
the morphology.

Once this is done, one can split the neurons into multiple cylindrical sections
depending on the level of granularity which is desired. In the example �gure
presented, there are 7 such splits of the neuron, illustrated by the red lines.
These should optimally be done to section o� regions which have very similar
parameters and morphologies, and there is a tradeo� between accuracy and
computational e�ciency here. Branching points are also included as two red
dots in �gure 2.7, where the circuit splits as showed in section (C) of the �gure.
An important step from sections (A) to (B) in �gure 2.7 is the assignment of the
cylindrical dimensions of each compartment. These dimensions are important
to evaluate closely as the length and diameter determines how much membrane
surface area the ICS of that compartment shares with the ECS. The curved
surface area of the cylinder is typically regarded as the only area in contact
with the ECS, such that the membrane area of each compartment is given by
A = πdl, where l is the cylinder length and d is the cylinder diameter.

In measuring the characteristic neuron in step (A), quantities such as the
speci�c membrane resistance Rm and speci�c membrane capacitance Cm should
be determined. Other measured quantities include the membrane resting po-
tentials Em and axial resistance between compartments Ra. In the RC circuit
model, the axial resistance determines the voltage drop between compartments,
and is closely linked to the so-called decay factor λ. This factor depends on
both the speci�c membrane resistance Rm and the axial resistance Ra, and is
given by the following expression[9]:

λ =

√
dRm

4Ra
=

√
rm
ra
, (2.7)

where rm = Rm/(πd) is the membrane resistance per circumference, and ra =
4Ra/(πd

2) is the axial resistance per cross sectional area. As an example fol-
lowing Sterratt et al. [9], inserting parameters such as d=1 µm, Ra = 35.4 Ω cm
and Rm = 6000 Ω cm2 yields a characteristic decay factor λ ≈ 1029 µm. Thus,
injecting a current into one end of a dendrite, then the membrane potential
has dropped by 1/e ≈ 36.8% after 1029 µm. As a �nal note on the matter, a
general rule when determining the length of a compartment is asserting a so-
called electrotonically compact compartment, where l << λ. If the length of
the compartment is far smaller than the characteristic voltage decay constant,
then the compartment size is considered appropriate.
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2.2.3 Hodgkin-Huxley Models

The Hodgkin-Huxley (HH) formalism from Hodgkin et al. [19] introduces so-
called activation/gating variables into the quasi-ohmic models. The motivation
behind this development was that previous models could not produce accurate
AP �rings as was observed in neurons. These activation variables simulate the
conductances for the Na+ and K+ ions as voltage- and time-dependent functions,
such that the transmembrane Na+ and K+ currents in the soma are given by:

INa = gNa(V, t) (V − ENa) , (2.8)

IK = gK(V, t) (V − EK) . (2.9)

The driving force still functions as described previously, though the conduc-
tances gNa and gK are modeled more dynamically. The HH formalism models
the conductances as[9, 19]:

gNa(V, t) = ḡNa · n4(V, t) (2.10)

gK(V, t) = ḡK ·m3(V, t) · h(V, t), (2.11)

where ḡNa and ḡK are constants and the parameters n, m and h are voltage- and
time-dependent gating variables. Such variables are probabilistic, (n,m, h) ∈
[0, 1], such that ḡNa and ḡK are the maximal conductance values. The full HH
model is then found using Kircho�'s law, where the membrane current Im is
split into three separate currents

Im = IL + IK + INa, (2.12)

and Kircho�'s law yields the HH formalism:

Icap + IL + IK + INa = 0 (2.13)

→ Cm
∂V

∂t
= −ḡL (V − EL)− ḡKn4 (V − EK)− ḡNam3h (V − ENa) . (2.14)

This is the general expression for the membrane dynamics under the HH formal-
ism. Where (n,m, h) are voltage- and time-dependent functions which are not
speci�ed in the thesis. More information about how these are modeled can be
found at Hodgkin et al. [19]. IL is the generalized leak current which accounts
for other passive membrane ion transmission which are not related to the K+

and Na+ ion dynamics. A central assumption of the HH model is that there
are enough ion channels in the membrane to approximate that the probabilities
(n,m, h) equal the fraction of open gates. Once these activation variables are
properly tuned and modeled, the HH model provides a simulation of AP �ring
in neurons, earning the developers the nobel prize in Physiology or Medicine in
1963[20].

2.2.4 Simpli�ed Neuron Models

The complexity of individual neuron simulations often gets in the way of large
scale network simulations. If the individual neuron detail level is too great,
then larger network simulations are impractical. Neuron models which attempt
to minimize the computational requirements of each neuron are developed for
this reason, and a description of simpli�ed neuron models is presented. Typical
simpli�cations which can be applied to the network are:
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1. Reduction of the number of compartments which each neuron is comprised
of.

2. Skip modeling AP shapes, opting instead for �ring rate models such as:

(a) Integrate-and-Fire (IF) family of models.

(b) Simpli�ed AP generation dynamics with the Morris-Lecar-[21], or the
Fitzhugh-Nagumo[22] models.

Ball-and-Stick Neuron Model

One neuron morphology simpli�cation is the ball-and-stick neuron model. The
study at hand utilizes this model throughout, as it is highly computationally
e�cient. This morphology is split into two central sections - the ball and the
stick. The ball section is meant to represent the soma, while the stick represents
the apical dendrites. These are then connected together such that current can
�ow axially between them. Each section is initialized with unique characteris-
tics. The ball section is given characteristics resembling the soma, where the
membrane is capable of �ring APs. The dendritic section is set to have com-
partments with passive membrane conductances, such that the compartments
are not capable of AP �rings. The AP �ring of the soma can be modeled using
either the active Na+ and K+ conductances of the HH formalism, or using other
simpli�ed neuron �ring models.

Neural Firing Models

An additional simpli�cation approach aims to reduce the amount of coupled
di�erential equations by simply modeling when the neuron �res, removing the
complexities of the membrane dynamics. The HH model for instance has four
coupled ODEs[19, 23], whereas the Morris-Lecar and Fitzhugh-Nagumo models
both reduce it to two coupled ODEs[21, 22].

Integrate-and-Fire Neurons

Integrate-and-Fire (IF) neuron models are highly computationally e�cient. The
IF neuron model involves monitoring the membrane potential in the soma in
relation to some voltage threshold θ, �ring an AP if the membrane potential in
the soma surpasses the threshold, and resetting the membrane potential to the
resting value. Typically, this threshold is set to be around θ ≈ −50 mV[24], and
the value is often accompanied with some noise to increase stochasticity of the
network. Several IF neuron model modi�cations have been made to incorporate
various additional observed phenomena into the IF neuron. This yields a large
IF-neuron family of models, a few such model modi�cations being[25]:

� Leaky Integrate-and-Fire neuron model (LIF)

Cm
∂V

∂t
= I − gm(V − Em) (2.15)

� Quadratic Integrate-and-Fire neuron model (QIF)

Cm
∂V

∂t
= I − gm

(V − Em)(θ − V )

(θ − Em)
(2.16)
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� Exponential Integrate-and-Fire neuron model (EIF)

Cm
∂V

∂t
= I − gm

(
V − Em −∆t · exp

(
V − θ

∆t

))
, (2.17)

where I is a general input current. Note that these models often share a similar
approach to refractory periods. A typical approach is to start integration of
the membrane potential at a time ∆abs after AP �ring. ∆abs is an absolute
refractory time, and is typically chosen to be in the range 0 < ∆abs < 5 ms[26].
Despite these models performing well in their own ways, it is important to note
that one of the most central characteristics seen in vivo is noisy signaling between
cells. The introduction of stochasticity and variability is something which was
brie�y discussed in relation to the threshold potential θ in the IF Neuron context,
and is a factor which is very important in the resulting variability of the system.

Neural Firing Variability, the Stein Model and Poisson Distributions

Figure 2.8: Intra-spike-interval (ISI) variability produced by high-noise input.
In this case noise refers to a large combination of both excitatory and inhibitory
input from external sources into the soma. Figure copied from [27].

The intra-spike-intervals (ISIs), de�ned as the time interval between a pair
of AP �rings of a single neuron, are quite regular if the input to each neuron
has little to no noise. This is problematic as we know from observations that in
vivo neuron spiking is irregular[27]. The impact of variability to neuron input
is illustrated in �gure 2.8, where the AP �ring of the neuron with the noisiest
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input has the most variability. A source of neural �ring variability is included
in the models to reproduce the stochasticity observed in vivo.

A way of modeling the variability in neuron ISIs is assuming that spike trains
are Poissonian[28, 29, 30]:

fPs(k;λ) =
λke−λ

k!
, (2.18)

where λ is the expected rate of occurrences and k is the number of occurrences.
Such Poissonian distributions have characteristics which resemble the behavior
of network spiking activity:

� The probability of occurrence of the event (the �ring of an AP in this
case) is the same with each small increment of time[27].

� The exponentially decaying interspike interval distribution observed in
vivo is characteristic of a poissonian distribution.

This insight which was provided by Stein [28], and the modeling of spike rate
statistics is an important one to the study at hand due to the external drive needs
of a network. In an e�ort to create network activity, each neuron is connected a
number of excitatory `external' neurons. Without an external drive, the network
would reach a resting state if unstimulated. These external stimulating synapses
have �ring rates which are picked from the poissonian distribution from equation
2.18, and are only excitatory.

2.2.5 Synaptic Models

The typical way in which synaptic connections between neurons are modeled is
to set up a quasi-ohmic approximation which determines the current injected
into the post-synaptic neuron following synaptic activation. Such a quasi-ohmic
expression can be stated as:

Isyn = gsyn (V − Esyn) , (2.19)

where gsyn is the conductance of the synapse, V is the post-synaptic membrane
potential and Esyn is the synaptic reversal potential. Esyn takes on two values
in the current study:

Esyn ≈

{
0 mV for AMPA and NMDA receptors

−80 mV for GABA receptors.
(2.20)

These driving forces re�ect the fact that AMPA and NMDA receptors are excita-
tory whereas GABA is inhibitory, as was described in section 2.1.3. Two central
models of synaptic current injections Isyn are introduced and implemented: the
conductance- and the current-based synapse models. The conductance-based
synapse model is as follows:

gsyn = ḡsynssyn (2.21)

Igsyn(V, t) = ḡsynssyn(t) (V − Esyn) (2.22)

where Igsyn(V, t) is the post-synaptic current injection using the conductance-
based synapse model, V is the post-synaptic membrane potential, ḡsyn is the
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maximum conductive value of the synapse, and ssyn(t) is a function which mod-
els synaptic kinetics[31]:

ssyn(t) = η(τ1, τ2)

[
exp

(
−(t− ts)

τ2

)
− exp

(
−(t− ts)

τ1

)]
Θ(t− ts), (2.23)

where τ1 and τ2 are characteristic rise- and decay time constants of the synapse,
respectively. The rise time determines how quickly the synaptic conductance
reaches the peak value ḡsyn, while the decay time determines how long it takes
for this value to taper o�, or reduce back down to zero. These constants are
restricted by τ1 < τ2. Θ(t − ts) is known as the heaviside step function, given
by:

Θ(t− ts) =

{
1 if t ≥ ts
0 else

(2.24)

where ts represents the time in which the post-synaptic current injection occurs.
This captures the time taken for the AP to arrive at the synapse, time of vesicle
release, time for the neurotransmitters to traverse the synaptic cleft, and time
taken for the transmitters to bind to the post-synaptic receptors. The heaviside
step function ensures that the current injection into the post-synaptic neuron
equals zero for all times prior to the completion of these processes. The value
η(τ1, τ2) from equation 2.23 is a normalization factor for some combination τ1,
τ2, given by:

η(τ1, τ2) =

(
exp

(
− tpeak/τ2

)
− exp

(
− tpeak/τ1

))−1

, (2.25)

tpeak =
τ2τ1
τ2 − τ1

log

(
τ2
τ1

)
. (2.26)

This normalization factor ensures that 0 ≤ ssyn ≤ 1, such that 0 ≤ gsyn ≤ ḡsyn.
The second synapse model which is vital to the study at hand is the current-
based synapse model. This model opts for the following expression for synaptic
current injections:

I isyn(t) = Īsynssyn(t) (2.27)

where Īsyn is the maximum current value, and ssyn(t) models the synaptic kinet-
ics as described in equation 2.23. The di�erences between the conductance- and
current-based synapse models from equations 2.22 and 2.27 are worth noting,
as conversion between them is a central subject of this study. The conductance-
based synapse model expression Igsyn(V, t) is a function of both post-synaptic
membrane potential and time, while the current-based synapse model only varies
with time I isyn(t). This means that the current-based synapse model is linear,
and is not dependent on the dynamics of the membrane potential V inside the
post-synaptic cell like the conductance-based model is.

This is important later on, as the linearized LFP techniques implement the
linear current-based synapse model. The conversion between the conductance-
and current-based synapse maximum values ḡsyn and Īsyn (later referred to as
weights) is a crucial step in linearizing the system, and is performed by the
multiplication of a driving force:

Īsyn = ḡsyn
(
V̄ − Esyn

)
. (2.28)
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Note that the synaptic maximum values ḡsyn and Īsyn are constants, such that
the conversion driving force

(
V̄ − Esyn

)
must also be a constant. Esyn is given

by the values in equation 2.20, such that a constant post-synaptic membrane
potential V → V̄ must be determined for the conductance- to current-based
synapse model procedure. The fashion in which the study chooses to determine
the constant post-synaptic membrane potential V̄ is by calculating the mean
value of the mean somatic membrane potential for each neuron in the network:

V̄ =
1

N

N∑
j=1

1

Nt

Nt∑
i=1

Vsoma,j(ti), (2.29)

where N is the total number of neurons in the network and Nt is the total
number of time points in the simulation. Vsoma,j(ti) is the somatic potential
value of neuron j at time point ti. This is the value which is assigned for the
conductance- to current-based synapse model weight conversion ḡ → Ī, and the
procedure is described in greater detail in section 3.4.2.
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2.3 Network Dynamics

The upcoming section regards the simulation of networks of neurons, from local-
ized multi-neuron interactions to large scale cortex simulations. A central chal-
lenge which arises in such networks is how measurements are conducted in the
lab, and how those measurements can be replicated in simulations. Several brain
activity measurement methods have recently been popularized such as Magnetic
Resonance Imaging (MRI)[32], Magnetoencephalography (MEG)[33], Electroen-
cephalography (EEG)[34], and Electrocorticography (ECoG)[35]. Many of these
measurements are logged in the Handbook of Neural Activity Measurement [36].
The thesis has one such neuronal activity measurement at its focal point, the
Local Field Potential.

2.3.1 Local Field Potential

The Local Field Potential (LFP) is a general term used for low-frequency poten-
tial signals which arise in the ECS from neuronal network activity in the brain.
Low-frequency recordings in this context refer to frequencies less than 500 Hz[4],
though the de�nition varies. There are several reasons in which the LFP signal
has gained more traction as a neural network activity indicator in recent times.
One of the reasons is that the main neuronal activity measurements, namely
AP �ring and synaptic activity, release a large amount of ions into the ECS.
The AP �ring of neurons was previously mentioned to take in a large amount of
Na+ before releasing K+, and the post-synaptic membrane stimulus results in
either a large release or a large intake of ions, depending on the type of synapse.
These transmembrane currents from ICS to the ECS result in voltage changes
in the ECS which are recorded by the LFP.

As opposed to ECOG and EEG measurements, experimental recordings of
the LFP involve invasive measurement techniques, meaning that the insertion
of a recording electrode into the brain is necessary for data collection. The
recording electrode is sensitive to voltage changes, and can record extracellular
potential in various sites in the brain. This results in a time series of extracellular
potential signals which record the neuron activity at various sites, revealing
characteristics about the network activity. The LFP is then obtained by low-
pass �ltering this signal at a prede�ned cuto� frequency. For more on the
resurgence of LFP as a neural network measurement tool, see to the article by
Einevoll et al. [5]. Understanding the LFP as a neural network activity signal is
a central component for the study at hand. Among other objectives, the current
study aims to improve the computational e�ciency of network LFP simulations
and understand the signal better.

The fashion in which the extracellular potential and LFP is simulated us-
ing multicompartmental neurons is presented in the following chapter. Each
compartment in the multicompartmental model from section 2.2.2 is capable
of current transfer to neighboring compartments, as well as transmembrane
currents. This means that all compartments of the neurons in the simulated
network can contribute to the total extracellular potential signal by transmem-
brane currents. The recording electrode is sensitive to potential changes from
transmembrane currents both close to- and far away from the electrode posi-
tioning. The simulation procedure follows the phenomena observed in the lab,
where the distance between the electrode and the transmembrane current sites



CHAPTER 2. THEORY 23

determines the strength of the registered potential signal. The strength is also
determined by the conductivity of the extracellular space, and the link between
a source of current and the resulting electric potential �eld in a surrounding
volume conductor is described by volume conduction theory.

2.3.2 Volume Conductor Theory

Volume Conductor Theory (VCT) is the theory describing an electric potential
recording of a current source, where the two are separated by some distance
[37]. More importantly, VCT can link a current source to the resulting electric
potential �eld within a medium, where the medium can have various conductive
properties. VCT is not speci�c to the extracellular potential of the brain, but
is very applicable in this context.

The many transmembrane currents from the compartments of a neuron net-
work produce an intricate electric potential �eld in the ECS �uid. The con-
ductive properties of the ECS �uid are impactful on the resulting �elds from
the current sources, and the ECS �uid conductance is a quanitity which can
be measured in the lab. A recording device sensitive to potential changes can
record the potential signal in a region of the �eld, and the electrodes which are
placed in the brain serve this purpose. A key assumption of VCT is describing
the ECS �uid as a continuous extracellular domain, and the ICS as a discrete
intracellular domain [9]. The key to understanding how these extra- and intra-
cellular domains interact is by the uptake and release of currents in the ICS
compartments. There are multiple cell processes capable of producing trans-
membrane currents Im, and assuming a current Im is released into the ECS,
then VCT states that the current density function ρ(r) in a sphere of radius r
around the injection point is given by[9]:

ρ(r) = −σe
∂φ

∂r
, (2.30)

where σe is the conductivity of the ECS �uid, and φ is the extracellular potential.
Using current conservation in a sphere around the source yields:

Im = ρ(r) · 4πr, (2.31)

⇒ Im = −σe
∂φ

∂r
· 4πr (2.32)

by insertion of equation 2.30. Rearranging the expression yields the following
di�erential equation describing the relationship between a current injection Im
and the resulting potential �eld φ in the ECS:

∂φ

∂r
=
−Im

4πσer2
. (2.33)

Integration then yields the ECS potential expression for the current source Im
to be:

∂φ

∂r
=
−Im

4πσer2
(2.34)

φ(r) =
Im

4πσer
, (2.35)
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where Im is some current injection into the ECS, σe is the conductivity of the
ECS �uid, and r is the distance between the measurement point of φ and the
current injection point. Notice also that φ → 0 for r → ∞, and φ → ∞ for
r → 0. The latter is referred to as a mathematical singularity, and should be
handled carefully when implementing VCT numerically.

This expression can be superpositioned, such that additional terms can be
added linearly without interactive e�ects[38]. If there are multiple current in-
jections Im,n at various positions rm,n, then the ECS potential in position ~r is
given by:

φ(~r) =
1

4πσe

∑
n

Im,n
|~r − ~rm,n|

, (2.36)

where φ(~r) is the extracellular potential �eld value at the point ~r, and ~rm,n is
the vector pointing at current source Im,n. This ties closely into the multicom-
partmental theory of neurons, where each compartment can provide a current
injection into the ECS through transmembrane currents.

Note the distance metric r is transformed into a vector ~r, such that the
current injection points ~rm,n are described by coordinates (rx, ry, rz), such that
~r = rxêx + ry êy + rz êz, where êd is the unit vector of dimension d. This yields
the distance from the measurement point ~r to the current injection points ~rm,n
to be the absolute value of the combined di�erences between each coordinate:

|~r1 − ~r2| =
√

(rx,1 − rx,2)2 + (ry,1 − ry,2)2 + (rz,1 − rz,2)2 (2.37)

2.3.3 Multicompartmental Neuron LFP

Applying VCT to calculations of the extracellular potential �elds of neuronal
networks is largely summarized by equation 2.36. A number of restrictions
are however placed on the amount of current Im,n which passes through the
membrane of compartment n. A central constraint to transmembrane currents
is current conservation and Kircho�'s law.

Kircho�'s law states that the net current �ow across the neuron membrane
is equal to zero, and dictates that the total positive transmembrane current Im,n
into the ICS must be followed by an equal amount into the ECS. This means
that the sum of the currents which pass through the neuron membrane cancel
out:

nseg∑
n=1

Im,n = 0, (2.38)

for all transmembrane currents of a neuron at any given time. Im,n is the
transmembrane current of compartment n, and nseg is the total number of com-
partments in the neuron. Recalling that positive currents are de�ned as currents
moving from the ICS to the ECS by convention[9], the positive currents Im,n > 0
are referred to as sources, and the negative currents Im,n < 0 are referred to as
sinks. A stimulated neuron acts as a dipole with this source-sink pair, and this
can be visualized by a two-compartment neuron model.

The two-compartment neuron model has one compartment representing the
soma, and another to represent the apical dendrites. A positive stimulus of the
dendritic compartment results in a current-sink in the surrounding ECS �eld.
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Figure 2.9: Dimensionless conceptualization of the potential pattern produced
by a source-sink dipole. The current source- and sink are placed in (0, 1) and
(0,−1), respectively. The potential value colorbar is capped at ±1 in order
to see the resulting dipole �eld patterns. In truth, the value of the potential
diverges to ±∞ as the �eld measurement approaches the source/sink points.
Image generated using the misc/dipole_conceptualization.py script[39].

The somatic compartment then releases an equal and opposite current into the
ECS, acting as a current-source. This is visualized by �gure 2.9, where equation
2.36 is superpositioned, with a positive current in (0, 1), and a negative current
in (0,−1).

In a larger network of multicompartmental neuron models, the current con-
tributions from each compartment are far more intricate, and all neurons are
taken into consideration for the extracellular potential �eld. For a recording
electrode placed at ~r, the extracellular potential then equals the contribution of
all compartments for each neuron in the network:

φ(~r) =
1

4πσe

N∑
j=1

nsegj∑
n=1

Im,jn
|~r − ~rm,jn|

, (2.39)

where ~rm,jn is the vector pointing at that the transmembrane current Im,jn from
compartment n of neuron j. N is the total number of neurons in the network,
and nsegj is the total number of compartments for neuron j. These currents are
still constricted under Kircho�'s law, such that

nsegj∑
n=1

Im,jn = 0 (2.40)

for all neurons j ∈ N . It is worth mentioning that the implemented VCT as-
sumes an in�nite, isotropic (same in all directions), homogeneous (same in all
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positions), and ohmic (frequency-independent) extracellular medium, such that
the conductivity σe from equation 2.35 is represented by a scalar[3]. There
are models which include varying spatial conductivities such that σe includes
grey/white matter modeling[9], though the current model is based on well es-
tablished VCT from Rall et al. [40] and Holt et al. [41]

Line-Source Potential Expression

The extracellular potential �eld value φ described in equation 2.39 is what is
known as a point-source model of the transmembrane current. In this model, all
the transmembrane current Im,jn from compartment n in neuron j originates
in a single point ~rm,jn in the ECS.

As was described in section 2.2.2, compartments are often set as cylinders
in the multicompartmental model. The membrane is then represented by the
curved surface area of the cylinder, and the extracellular potential model is
modi�ed to account for currents distributed across this membrane [42]:

φ(~r) =
1

4πσe

N∑
j=1

nsegj∑
n=1

Im,jn

∫
1

|~r − ~rm,jn|
d~rm,jn. (2.41)

This is known as the line-source approximation, and is obtained by integrating
equation 2.39 such that the transmembrane current Im,jn is distributed evenly
along the center axis of each cylindrical compartment. In order to avoid singu-
larities such as φ→∞ for ~r → ~rm,jn, the minimum possible distance |~r−~rm,jn|
is set to be the cylindrical compartment radius:

|~r − ~rm,jn| =

{
ajn if |~r − ~rm,jn| ≤ ajn
|~r − ~rm,jn| else

(2.42)

where ajn is the radius of compartment n in neuron j. The application of the
line-source approximation for extracellular potential modeling of multicompart-
mental neurons is further detailed in Hagen et al. [42], where the numerical
implementation of equation 2.41 is included.

A combination of the extracellular �eld approximations presented is used
for the current study. The point-source approximation from equation 2.39 is
used for the somatic compartment, while the line-source approximation from
equation 2.41 is applied to the cylindrical dendritic branches of the neuron.
This is referred to as the soma_as_point method in Hagen et al. [42].
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Methods

3.1 Network Con�guration

There are many ways of combining the theory presented into a neuron network
model which can produce results which are reasonably realistic, and the upcom-
ing chapter will introduce the con�guration of a recipe network which serves as
a baseline. Keep in mind that the following network con�guration described is
directly relevant to the initial results presented after the methods chapter. It is
worth noting that the recipe network chosen is set to be more phenomenological
rather than biophysically accurate. An implementation of more biophysically
accurate neurons is performed later on.

3.1.1 Network Description

The initial network characteristics are based on an example network of ball-and-
stick (BaS) neurons from the LFP simulation package used, the LFPy library
by Hagen et al. [42]. The inital example_network.py con�guration which the
study is based on can be found at the initial state of the repository fork1[43].

The LFPy library builds upon the NEURON python library by Hines et al.
[44], and the LFPy library can be used to calculate the extracellular potential
signal from transmembrane currents in NEURON, among other things. Several
papers have been published on the use of LFPy for LFP simulation purposes
[45, 46, 47], and a number of example networks are included in the library for
reference. For more information on the functionality of the library, see to the
docs written on the module at LFPy.readthedocs.io[42].

The initial recipe network sets the scene for how the rest of the simulations
are con�gured. Table 3.1 lists a number of general network and simulation
variables as well as their assigned values. Note the discrete fashion in which the
time is simulated, where the simulations increments by dt = 0.0625 ms until the
total time of Tsim =2200 ms is reached. This results in Nt ≈ 35200 time points
in the recipe network which describes the length of the recorded signals. The
network of 1280 ball-and-stick neurons exists within a cylindrical space, where

1https://github.com/LFPy/LFPy/blob/49f819/examples/example_network/example_

network.py
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https://lfpy.readthedocs.io/
https://github.com/LFPy/LFPy/blob/49f819/examples/example_network/example_network.py
https://github.com/LFPy/LFPy/blob/49f819/examples/example_network/example_network.py
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Variable Description Value

NE Total number of excitatory neurons 1024
NI Total number of inhibitory neurons 256
Tsim Total Simulation time 2200 ms
dt Simulation time step 0.0625 ms
T◦C Temperature 6.5 ◦C

Table 3.1: A number of variables describing the recipe network.

a depth parameter z and network radius rNw are given by:

rNw = 100 µm (3.1)

z ∈ [−200 µm, 1200 µm]. (3.2)

The z axis is used as the network depth representative, where z = 1200 µm is
at the top of the network, and z = −200 µm is at the bottom.

Electrode Channel Con�guration

Channel number (x, y, z) Coordinate

1 (0, 0, 1000 µm)
2 (0, 0, 900 µm)
3 (0, 0, 800 µm)
4 (0, 0, 700 µm)
5 (0, 0, 600 µm)
6 (0, 0, 500 µm)
7 (0, 0, 400 µm)
8 (0, 0, 300 µm)
9 (0, 0, 200 µm)
10 (0, 0, 100 µm)
11 (0, 0, 0)
12 (0, 0, -100 µm)
13 (0, 0, -200 µm)

Table 3.2: Positioning of the recording electrode channels in the network space.
These 13 channels record 13 unique extracellular potential signals, capturing the
network activity at various depths.

The electrode channel distribution follows the z-axis and the spatial coor-
dinates of the 13 channels are listed in table 3.2. Other parameters which are
necessary for the electrode con�guration are the conductivity of the extracel-
lular space, set here to be σe = 0.3 S m−1, and the radius of each electrode
contact surface, set here to be r = 5 µm.

Somatic Positioning

The somatic center point of each neuron is distributed evenly around the cylin-
drical space and the electrode channels presented in table 3.2. The positioning
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of the somatic center is determined according to a uniform distribution in a disk
at z=0, de�ned by:

x2 + y2 ≤ r2
Nw, (3.3)

where the radius of the network is set to rNw = 100 µm around the origin
point. In addition to the stochastic distribution of the (x, y) coordinates of each
somatic center, an additional variation of each somatic depth is introduced.
This is done by sampling each somatic depth zsoma according to the Gaussian
distribution zsoma ∼ N

(
0, (20 µm)2

)
.

Note that the study denotes the Gaussian distribution using the convention
N (µ, σ2), where µ is the distribution mean value and σ is the sample standard
deviation[48]. To denote the probability density function (PDF) Pr(x) of the
Gaussian distribution, the following convention is used:

PrN (µ,σ2)(x) =
1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)
. (3.4)

For clarity and as an example, if a variable l is sampled from an input µ = 1
mm and standard deviation of σ =4 mm, then it is denoted as:

l ∼ N
(
1 mm, (4 mm)2

)
, (3.5)

where `∼' denotes `has the probability distribution of'.

3.1.2 Neuron and Synapse Properties

Table 3.3 lists the neuron characteristics and synaptic parameters used in the
recipe network. The table describes the universal (applies to the entire network)
axial resistivity Ra and speci�c membrane capacitance Cm, following what was
presented in section 2.2.2 and equation 2.4, respectively. Table 3.3 also describes
the membrane characteristics and 3D morphologies of the somatic and dendritic
sections in detail. All morphologies of the ball-and-stick sections are relative to
the somatic center point, meaning that (0, 0, z) indicates a height of z above
the somatic placement. The somatic center points of the neurons are placed
according to equation 3.3.

Note the di�erence in somatic parameters which are set depending on the
`active' or `passive' characteristics of the soma in table 3.3. When the soma has
active conductances, the neuron can �re o� APs according to the gNa and gK
conductance models described in equations 2.8 and 2.9. An introduction to the
HH model was described in section 2.2.3, and further information can be found
about the HH model and parameter values at Hodgkin et al. [19] and Gillies
et al. [49], respectively. Setting the soma to be passive involves assigning the
membrane parameters (gm, Em) listed in table 3.3 to the somatic compartment
and implementing equation 2.6 to simulate the membrane potential dynamics.
Making the distinction between active and passive somatic compartments is
important as removing the AP �ring ability of the soma is a requirement of the
hybrid- and kernel methods described later on.

The fashion in which compartments are initialized in relation to the sections
presented in table 3.3 follows work by Hines et al. [44]. The number of compart-
ments for each neuron section is set according to the so-called d_lambda rule,
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Recipe Network

Variable Description Value

Universal Ra Cytoplasmic Resistivity 100 Ω cm
Cm Speci�c Membrane Capacitance 1 µF/cm2

Soma Active Characteristics

Hodkin-Huxley Model parameters [20, 23]

Passive Characteristics

gm Conductance per unit area 0.3 mS/cm2

Em Resting potential -54.3 mV

3D Spatial Information

(x0, y0, z0) Soma Startpoint (0, 0, -15 µm)
(x1, y1, z1) Soma Endpoint (0, 0, 15 µm)
(d0, d1) Boundary Diameters (30 µm, 30 µm)

Dendrite Membrane characteristics

gm Conductance per unit area 0.2 mS/cm2

Em Resting potential -65 mV

3D Spatial Information

(x0, y0, z0) Dendrite Startpoint (0, 0, 15 µm)
(x1, y1, z1) Dendrite Endpoint (0, 0, 1015 µm)
(d0, d1) Boundary Diameters (3 µm, 3 µm)

Synapses Excitatory

τ1 Synaptic-Rise Time 0.2 ms
τ2 Synaptic-Decay Time 1.8 ms
Esyn Reversal Potential 0 mV

Inhibitory

τ1 Synaptic-Rise Time 0.1 ms
τ2 Synaptic-Decay Time 9.0 ms
Esyn Reversal Potential -80 mV

Table 3.3: Description of the ball-and-stick neurons used in the recipe net-
work. Active- and passive soma characteristics are listed, where an active soma
is capable of �ring APs and a passive soma is not. The active- and passive
characteristics follow equations 2.14 and 2.6, respectively. The morphologies of
the ball-and-stick sections are included, and the 3D coordinates are all relative
to the soma center. The population-speci�c synapse characteristics used in the
synaptic models presented in section 2.2.5 are also listed.
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using parameters of f = 100 Hz and d_lambda = 0.3. This fashion of compart-
ment initialization follows a procedure which is similar to the one described in
equation 2.7, where the decay factor λ determines the compartment lengths to
ensure electronically compact compartments.

3.1.3 Sampled Network Variables

A number of network parameters which are sampled stochastically are presented.
One such parameter is the delay value δ̄ assigned to each synaptic connection.
This synaptic delay value represents the time it takes for an AP to traverse the
length of the pre-synaptic axon and reach the terminals. This value is typically
not very long due to the speed of AP propogation. Another sampled parameter
is the synaptic weights ḡ, where the conductance-based synapse model presented
in equation 2.22 is implemented in the recipe network.

Additional network parameters include the network connectivity probabili-
ties between populations and the so-called multapse number for each connection.
The network connectivity probabilities are de�ned for all pre- and post- synap-
tic neuron population combinations CXY, denoting the probability connection
from population X to population Y. Once a connection is made, the number of
synapses in that connection is determined by the multapse number. The mul-
tapse number is sampled stochastically while the connectivity probabilities are
kept constant.

As an example of how these parameters are used to con�gure networks, con-
sider a population of 80 neurons in population E and 20 neurons in population I.
A CIE =10% probability of connection from population I to population E then
indicates that each neuron in the I population is connected to 8 neurons from
the E population on average. If the multapse argument n̄ for the I:E synapse
type (the notation i:j indicates the synaptic type connecting pre-synaptic popu-
lation i to post-synaptic population j) is set to n̄ = 5, then there are 5 synapses
connecting the I cells to the E cells for each connection. For clarity, this would
on average result in 8 · 20 = 160 I:E connections, and a total of 160 · 5 = 800
I:E synapses.

Table 3.4 lists the parameters mentioned, along with the connection proba-
bilities CXY. The parameters which are sampled according to a Gaussian distri-
bution have their mean- and standard deviation values (µ, σ) listed in the table.
The 12.8 scaling factors which are applied to the max synaptic conductances are
described shortly. A number of boundaries of the sampled parameters are also
included in the bottom of table 3.4 which describe the type of value assigned (Z
denoting integer numbers and R denoting real numbers) and domains in which
the sampled values are considered valid. If a sampled value is outside the de-
�ned domain, the value is discarded and is replaced by a new sample. Table 3.4
lists that the conductances are strictly positive, delay times are above a certain
value, and that there is always at least one synapse per connection. Note that
table 3.4 sets the standard deviation used for sampling the max synaptic con-
ductance value to 1/10th of the mean value. The max conductance values ḡsyn
are changed a number of times in the study, and it is important to note that
the standard deviation also changes in a relative fashion.
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Post-Synaptic Type

Variable Description E I

P
re
-s
yn
ap
ti
c
ty
p
e

E

ḡE,µ Max synaptic conductance mean 2 nS/12.8 2 nS/12.8
ḡE,σ Max synaptic conductance std 0.1 · ḡE,µ 0.1 · ḡE,µ

δ̄E,µ Synaptic delay mean 1.5 ms 1.5 ms
δ̄E,σ Synaptic delay std 0.3 ms 0.3 ms

n̄E,µ Multapse mean 2 2
n̄E,σ Multapse std 0.5 0.5

CEX Connectivity Probability 10% 10%

I

ḡI,µ Max synaptic conductance mean 20 nS/12.8 20 nS/12.8
ḡI,σ Max synaptic conductance std 0.1 · ḡI,µ 0.1 · ḡI,µ

δ̄I,µ Synaptic delay mean 1.5 ms 1.5 ms
δ̄I,σ Synaptic delay std 0.3 ms 0.3 ms

n̄I,µ Multapse mean 5 5
n̄I,σ Multapse std 1 1

CIX Connection probability 10% 10%

ḡ {ḡ ∈ R|ḡ ≥ 0}

Boundaries δ̄ {δ̄ ∈ R|δ̄ ≥ 0.3 ms}

n̄ {n̄ ∈ Z|n̄ ≥ 1}

Table 3.4: A listing of variables which are sampled from Gaussian distributions
N (µ, σ2), and the predetermined connection probabilities C. µ is the mean of
the distribution and σ is the standard deviation, often denoted `std'. The max-
synaptic conductance values used correspond to a conductance-based synapse
model, as described in equation 2.22. The parameter boundaries are also de-
clared, de�ning which sample values are within, and outside the de�ned range.
If a sample value is outside, a new value is sampled. The multapse value n̄ is
rounded down to the closest integer after sampling, and must be at least one.
The connection probability between the pre- and post-synaptic populations are
also included.

3.1.4 Network Scaling and Setup

The scaling factor 12.8 from the synaptic weights in table 3.4 is a result of
scaling up the network. The original network was con�gured from a network
of 100 neurons, scaled up to 1280 neurons to obtain a more densely populated
network. In order to increase the size of the network, however, one cannot in-
crease the number of neurons in the network without normalizing other network
parameters such as the connection probability or synaptic strength. Scaling the
network up without normalizing the connectivity between neurons can produce
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network behaviour which is far too active, and even epileptic2. To state this
formally, Potjans et al. [50] perform a �rst order Taylor series expansion of an
expression for the connection probability between two neurons, yielding:

CNpre,Npost =
K

NpreNpost
, (3.6)

where CNpre,Npost is the connection probability of two neurons from populations
of sizes Npre and Npost. These neurons are randomly connected with uniform
probability by K synapses. Following Potjans et al. [50], this expression is
obtained using the approximation:

K2 ·
(

−1

NpreNpost

)2

≈ 0. (3.7)

When scaling up a network, one could consider the number of synaptic con-
nections between two neurons K as a constant, such that the stimulus to each
neuron does not change. This equation then states that an increase in the two
network sizes Npre, Npost implies that the connection probability CNpre,Npost

should decrease accordingly, if the number of stimulus to each neuron K is held
constant.

Instead of reducing the connectivity between neurons, an approach which
decreases the strength of synaptic connections is chosen in order to regulate the
activity of the scaled up network. This approach comes from a paper by van
Albada et al. [51], in which the total network size N and the number of synapses
per neuron K are proportional to one another N ∝ K, and the synaptic weights
G are set to scale in the following fashion[51]:

G ∝ 1

K
∝ 1

N
. (3.8)

In this context, an increase in network size N → 10N implies that the synaptic
weights G should be adjusted in accordingly G → G/10 in order to keep the
so-called asynchronous irregular (AI) network behaviour. AI network behavior
means that the network activity is noisy, and there is little structure in the
neuron AP �ring times. This network �ring behavior is desirable as AI �ring
patterns are observed in cortex[52]. The recipe network which is utilized for the
study has an initial size of 100 neurons and is scaled to 1280. The scaling factor
of 12.8 applied to the total number of neurons N must then also be applied to
the synaptic strengths utilized G → G/12.8 to maintain the AI activity of the
recipe network.

3.1.5 Synaptic Positioning

The synaptic positioning of the recipe network con�guration is done such that
excitatory synapses are primarily connected to the dendritic section of the post-
synaptic neuron, while the inhibitory synapses are primarily connected to the
somatic section. This commonly observed in cortex [53]. Since the morphologies
of both ball-and-stick neuron populations are equivalent in the recipe network,

2Epileptic activity of neuron networks is characterized by a large systematic �ring of all
neurons in full synchronicity, a system in which there is little di�erence between a single
neuron and the rest of the network.
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then the only variability is the pre-synaptic connection type. This means that
the E:E and E:I synapses are placed in the same fashion, and the same goes for
the I:E and I:I synapses. When connecting a synapse, the synaptic placement
on the post-synaptic cell is determined by a probability which is assigned to
each compartment. This synaptic positioning probability is calculated in part
according to sampling the synaptic depth zsyn for each synapse. This establishes
a depth dependency of the synaptic connection probability, and the two pre-
synaptic population types have the following depth preferences:

zsyn, E ∼ N
(
500 µm, (100 µm)2

)
, (3.9)

zsyn, I ∼ N
(
0, (100 µm)2

)
. (3.10)

This indicates that the excitatory synapses prefer a depth of around 500 µm,
and the inhibitory synapses prefer a depth of around 0 µm. All synaptic depth
preference distributions are set to have a 100 µm standard deviation in the thesis.
For example, equation 3.9 re�ects that if a post-synaptic compartment is at a
depth of z = 500 µm and a new excitatory synapse is connected to the neuron,
then the compartments at z = 500 µm have the largest probability of connection.
The depth-related probability of connection assigned to the compartment is
given by the PDF value PrzN (500 µm,(100 µm)2)(z = 500 µm), presented in equation
3.4.

The post-synaptic compartment surface area is also taken into consideration
in the synaptic connection probability per compartment. The compartments
which take up the largest fraction of total neuron surface area are made to have
a higher number of synaptic connections than the smaller ones. This is included
by introducing the following surface area dependency to the synaptic connection
probability of each compartment:

PrAjn =
Sjn∑
n Sjn

, (3.11)

where PrAjn denotes the area-probability of synaptic connection for compartment
n in cell j. This is simply equal to the surface area Sjn of compartment n of
cell j, divided by the total surface area of all compartments of cell j, given by∑
n Sjn. Combining the depth-preference and area-probability yields a prob-

abilistic model in which each compartment is assigned a value between 0 and
1 which dictates how likely a synaptic connection is. The probability of each
compartment is given by[42]:

Prsyn, pjn = PrAjn · Pr
z
N (µp,σ2

p)(zjn) (3.12)∑
n

Prsyn, pjn = 1 (3.13)

where Prsyn,pjn ∈ [0, 1] is the probability of a synaptic connection from pre-
synaptic population p to compartment n of cell j. PrzN (µp,σ2

p)(zjn) denotes the

PDF value of the distribution N (µp, σ
2
p) which follows equation 3.9 or 3.10, and

zjn is the depth of compartment n in cell j. The �nal probability Prsyn, pjn is then
normalized for the compartments of the cell, as stated by equation 3.13. Each
time a connection is made from a pre-synaptic population p to post-synaptic
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neuron j, this probability density distribution Prsyn, pjn for each compartment n
is calculated, normalized, and sampled from. The sampled probability is then
used to determine which compartment the synapse connects to [42]. This ex-
pression ensures that the surface area distribution is fair across compartments
in the neuron, as well as maintaining the depth preferences of the synaptic types
observed in cortex[53].

3.1.6 External Stimulus

The `external stimulus' element (sometimes referred to as external drive) is one
which has previously been introduced as a depolarization requirement of the
network in section 2.2.4. The fashion in which the study at hand addresses
this is by connecting nidx excitatory synapses to each neuron. By default, the
number of excitatory external synapses per neuron is set to nidx = 64. The �ring
rates of these synapses are picked out using a Poissonian distribution, emulating
the �ring irregularities which were discussed in section 2.2. The expected rate
of spike occurrence is set to be λ = 100, with k = 0 expected values following
equation 2.18.

Variable Description Value

Synaptic properties

τ1 Synaptic Rise time 0.2 ms
τ2 Synaptic Decay time 1.8 ms
Esyn Synaptic reversal potential 0
ḡsyn Max synaptic conductance 2 nS

Firing distribution fPs(k;λ) variables

λ Expected rate of occurrance 100
k Expected values 0

Table 3.5: Con�guration for the external stimulating synapses. nidx = 64 such
synapses are stochastically connected to each neuron in the recipe network to
produce network activity.

All nidx synapses have the synaptic parameter con�guration which is listed
in table 3.5, though the �ring times sampled from fPs(k;λ) di�er. nidx = 64 of
these synapses are connected to each neuron by sampling 64 compartments by
area-probability and connecting them. Note that only the area-probability of
each compartment PrAjn from equation 3.11 is used to determine the probability
of synaptic connection for the nidx externally stimulating synapses. No depth-
preference is introduced for these synapses.
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3.2 Hybrid Model and Kernel Method

The hybrid- and kernel models are the two focal points of the study, and a
thorough description of these two methodologies is presented. These both ap-
proximate a ground truth signal, often referred to as the `Reference' signal in
the thesis.

3.2.1 Hybrid Model Introduction

The hybrid model is a relatively new development, being �rst introduced by
Hagen et al. [3]. This paper used e�cient, simpli�ed neuron models to estimate
the LFP signal of more biophysically accurate network models. First, a primary
point-neuron network was established and simulated to extract the network AP
spiking activity. Then a secondary biophysically accurate network used the
spike times of the simpli�ed primary network to determine synaptic activation
times, allowing for measurement of the LFP signal[3]. The central assumption
of the hyrbid methodology is that the spiking activity of the simpli�ed primary
network can be utilized to predict the LFP activity of the biophysically detailed
secondary network. This assumption of a linear spike-to-LFP relationship is a
central point of testing in the initial study, and a description of how this can be
tested is described.

The testing of the hybrid method in the thesis di�ers from the original
hybrid motivation. The original motivation was to conduct an e�cient simpli�ed
primary network simulation and apply it to a biophysically detailed secondary
network. The current study di�ers in that the primary- and secondary networks
are mostly equivalent. They still serve the same purpose, where the spiking
times of the primary network are applied to the synaptic activation times of
the secondary network. Both these networks produce LFP signals, and the
secondary network hybrid approximation is benchmarked by the ground-truth
primary network signal. Note that the primary network is often referred to
have `active conductances' and be `fully connected' in the study. These refer to
having somatic compartments which are capable of AP �ring, and have direct
connections between pre-synaptic and post-synaptic neurons, respectively. The
secondary network is not technically conneceted, as synapses provide current
injections to the post-synaptic neuron depending on predetermined activation
times, replicating the synaptic activity of the primary network. Note also that
the secondary network neurons have inactive conductances, meaning that no
additional AP �ring can occur. This allows for a replay of the synaptic activity
of the primary network without additional AP �ring activity in the soma.

3.2.2 Kernel Method Description

The kernel method takes the linear spike-LFP concept a step further, and is
a highly computationally e�cient LFP approximation method. The kernel
method requires two preliminary pieces of information to provide a LFP ap-
proximation. The primary network spiking activity per population is required,
and the net LFP response of a single spike per neuron per population from the
primary network is required. The way this is obtained is to set up synaptic con-
nections identical to the primary network, synchronously activating the synapses
and recording the LFP response in each of the electrode channels. Assuming a



CHAPTER 3. METHODS 37

linear spike-LFP relationship, the kernel method then uses the spike times and
the LFP response per spike signals to approximate the full LFP signal.

Kernel Method Procedure

The rest of the section lays out the various details which go into con�guring
the kernel method. Firstly, a primary network is simulated, where the ground-
truth LFP, spiking times, neuron con�gurations, and synaptic placements are
all saved. A network which has a neuron con�guration and synaptic placements
equivalent to the ground-truth network is then set up. The somatic compart-
ments are be set to have passive conductances, such that no additional AP
�rings occur, and all synapses are activated at a synchronous time τs, where the
delay time of AP propogation to current injection δ̄ described in section 3.1.3
is included. The LFP response of the synaptic activations is then registered for
all recording electrode channels, and these signals are referred to as the kernels
Hc. Note that this is done separately for every population in the network, such
that kernels are obtained for the excitatory- and inhibitory synapses separately.
Once the spiking of the primary network and kernels Hc are obtained, the kernel
method can be applied.

3.2.3 Convolution

The way in which the kernel method approximates the LFP signal is by con-
volution of the �ring rates and the kernels Hc. Convolution is a mathematical
operation in which two temporal signals x(t) and h(t) are combined into a new
temporal signal y(t) = (x ∗ h)(t) in the following manner[54]:

x(t) ∗ h(t) =

∫ ∞
−∞

x(τ) h(t− τ) dτ︸ ︷︷ ︸
y(t)

. (3.14)

x is considered as the input signal and y is the output. The �lter h (often referred
to as the kernel) transforms the input signal by integrating over a separate time
value τ for each time signal t, and multiplying the two signals together[54].
Applying this function to temporally discrete signals t → ti, as is done in the
thesis, involves implementing the following equation numerically[54, 55]:

(x ∗ h)(ti) =

∞∑
j=−∞

x(ti − tj) h(tj) (3.15)

where the index i ∈ [0, Nt] is the temporal index, and Nt is the total points
of time of the simulation. Figure 3.1 illustrates a convolution example, where
each point in signal y(ti) is the result of a summation of scanning the �lter
h(tj), j ∈ [. . . , i − 1, i, i + 1, . . .], over the input signal x(ti). Note that the
kernel contribution to the output signal is only non-zero in the points h(−5
ms≤ ti ≤ 5 ms). This means that the secondary time constant τ must only be
summed from τ ∈ [−5 ms, 5 ms] for a triangular �lter such as the one in �gure
3.1. Factors like these are important to decrease computational requirements of
these methods. As we can see in the �gure, there is a notable noise reduction
from the input signal x to the output y. This is characteristic of the convolution
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Figure 3.1: Convolution between an input signal and a triangular kernel. The
amplitude di�erence of signals x and y illustrate how multiple contributions
from the kernel h are be summed into the same output y(ti). The number of
such contributions depends on the width of the kernel, and this results in a low-
pass �ltering e�ect. Image generated using the misc/convolution_intro.py

script [39].

operation, where a temporarily extended �lter such as the triangular �lter allows
for multiple neighboring points of the input signal to add up to a weighted sum
for each output y(ti), as described in equation 3.15. The more broad the �lter
is, the more contributions from neighboring points each output point y(ti) has,
generally yielding an output signal which has lower frequency content than the
input signal (depending on the �lter h).
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3.2.4 Kernel Method LFP Approximation

To reiterate, the kernel method obtains the LFP approximation by convolv-
ing the spiking activity of the primary network with the LFP response of a
synchronous synaptic activation Hc

p per neuron per population in a similar sec-
ondary network. The spiking activity of the primary network is stored in spike
δ-train signals for each population νp. This signal is similar to a histogram with
Nt bins, where the value in each time window [ti−1, ti] equals the number of
AP �rings which occurred within the bin width dt. These spike δ-train signals
can only equal a non-negative integer for any time signature ν(ti) ∈ Z≥0. Fig-
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Figure 3.2: Illustration of a convolution between a δ-train signal and a kernel
h. Each non-zero x value inserts the kernel h into the output signal y. Image
generated using the misc/convolution_example.py script [39].

ure 3.2 illustrates the convolution of a spike δ-train input signal x and a kernel
h, and depicts how the primary network spike δ-train ν is combined with the
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LFP response per spike Hc
p to produce the LFP approximation. The population

spiking activity νp is obtained from the neuron-speci�c spiking times by:

νp(ti) =

Np∑
j=1

νj(ti) (3.16)

for all times ti, where νj is the spike δ-train for neuron j in population p with
size Np. The extracellular potential kernel approximation φc in channel c is then
obtained by combining population-speci�c kernels Hc

p with population-speci�c
�ring rates νp by:

φcp = (νp ∗Hc
p), (3.17)

⇒ φc =
∑
p

(νp ∗Hc
p), (3.18)

where φc is the kernel approximation to the extracellular potential in channel
c. Note that the extracellular potential and LFP responses have been used
somewhat interchangably for the kernels Hc

p in the section. Framing the kernels
Hc
p to be the LFP response builds intuition on the kernel method, though the
≤ 300 Hz low-pass �lter could be applied to the extracellular responses either
before- or after convolution. Both produce the same output, as convolution is a
linear operation The thesis applies the low-pass �lter ≤ 300 Hz after convolution,
such that the kernels Hc

p illustrated later on are the full extracellular potential
responses of the synchronous AP �ring.
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3.3 Evaluation Methods and Signal Processing

A central component of the thesis is the evaluation and signal processing of the
recorded results. A number of metrics are presented which are used to evalu-
ate the performances of the approximation methods in relation to the primary
ground-truth signal. Other signal processing tools applied to the signals are also
presented shortly after, such as the low-pass �lter ≤ 300 Hz used to obtain the
LFP signal from the raw extracellular potential.

3.3.1 Evaluation Methods

The current study aims to compare two time series of data to each other. One
signal which is a ground-truth, and another which is an approximation. This
study utilizes the relative maximum error (RME), pearson correlation coe�cient
(PCC) and the mean squared error (MSE) for signal comparison between the
two.

Relative Maximum Error

In order to evaluate the performance of an extracellular potential recreation
for any given time ti, the relative maximum error (RME) metric is used. The
RME outputs a signal of length Nt for two input signals of length Nt, where the
signals are depicted as vectors with length equal to the number of time steps in
the simulation:

~x1 = [x1(t1), x1(t2), . . . , x1(tNt−1), x1(tNt
)] (3.19)

~x2 = [x2(t1), x2(t2), . . . , x2(tNt−1), x2(tNt
)] (3.20)

~x1, ~x2 ∈ RNt . (3.21)

The RME calculates the element-wise subtraction of the two, normalizing to
the maximum of the second signal:

RME(~x1, ~x2) =

[
x1(t1)− x2(t1)

max(~x2)
, . . . ,

x1(tNt
)− x2(tNt

)

max(~x2)

]
, (3.22)

where RME(~x1, ~x2) ∈ RNt and max(~x2) equals the maximum scalar value of the
~x2 vector. This is a useful metric for �nding relative error between two signals
while simultaneously avoiding division by close-to-zero values.

Mean Squared Error

The mean squared error (MSE) metric is used as a measure of absolute signal
di�erence. The MSE yields a scalar value MSE(~x1, ~x2) ∈ R≥0, obtained by
subtracting the two signals from each other at time ti, squaring the result, and
calculating the mean for all times ti:

MSE(~x1, ~x2) =
1

Nt

Nt∑
i=1

(
x1(ti)− x2(ti)

)2
(3.23)

Note that this metric has units which correspond to [x]2, where [x] is the input
unit. This metric is one of two ways of evaluating two signals ~x1, ~x2 by a scalar
value.
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Pearson Correlation Coe�cient

The other technique used to compare two signals is the pearson correlation
coe�cient (PCC). This coe�cient is calculated using two signals ~x1, ~x2 ∈ RNt ,
and the PCC produces a scalar value which evaluates the linearity between the
two:

PCC(~x1, ~x2) ∈ [−1, 1] ⊂ R. (3.24)

This value approaches 1 as the two signals ~x1, ~x2 approach colinearity - a prop-
erty in which one can be expressed in terms of the other multiplied by some
constant ~x1 ∝ ~x2 ⇒ PCC(~x1, ~x2) = 1. This means that two signal which
have the same variance, or shape, but di�erent amplitudes, would still have
a high correlation coe�cient. Two signals which are completely uncorrelated
will produce PCC=0, and two signals which are precisely anti-correlated yield
PCC=-1[56]. The PCC value is calculated using the following expression [57]:

PCC(~x1, ~x2) =
cov(~x1, ~x2)

std(~x1)std(~x2)
, (3.25)

where cov(~x1, ~x2) is the covariance of the two signals, given by [58]:

cov(~x1, ~x2) =
1

Nt

Nt∑
i=1

[~x1(ti)− x̄1] [~x2(ti)− x̄2] , (3.26)

where x̄ is denotes the mean, and std(~x) is the sample standard deviation.

3.3.2 Frequency Spectrum Analysis

Fourier Transformations

A more in-depth approach to signal processing and signal analysis is found in
the frequency domain. The Fourier Transformation (FT) is a commonly used
analysis and processing technique of temporal signals. Applying a FT to a signal
yields information about which frequencies the input is comprised of, and the
FT method involves implementing the following transformation [59, 60]:

ŝ(f) = F
(
s(t)

)
(3.27)

=

∫ ∞
−∞

s(t)e−2πitfdt (3.28)

Here, s(t) denotes the temporal input signal to be transformed, ŝ(f) represents
the FT of s(t), and f represents the frequency in units of Hz. Applying this
transformation to a sum of sinusoid signals returns an image of what the fre-
quency spectrum illustrates. The sum of two sinusoid signals of frequencies 100
Hz and 250 Hz and a small amount of noise have their FT signal ŝ illustrated
in �gure 3.3. The FT can then be used to calculate the power spectral density
for signal analysis.

Power Spectral Density

The following expression is used to calculate the power spectral density (PSD)
for a given input signal s(t)[61]:

Sxx = lim
T→∞

1

T
|ŝT (f)|2, (3.29)
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Figure 3.3: Illustration of the frequency domain F
(
s(t)

)
of an input signal s(t)

which is comprised of two periodic sinusoids with frequencies 100 Hz and 250
Hz. Additional noise is added to the signal which has a Gaussian distribution
N
(
0, (0.8)2

)
. Image generated using the misc/fourier_example.py script [39].

where ŝT (f) is the FT of the signal s(t) within some given time period central-
ized around an arbitrary time [t− T/2, t+ T/2]. This method splits the signal
up into equal windows of length T and subsequently applies the FT method to
each window. This procedure is usually referred to as the Welch method[62, 63].
After this is done, the FT of each window is squared and the average is calcu-
lated. Finally, divide the squared average by the analysis bandwidth to obtain
the PSD output. This is done to normalize the data to a single Hertz[62]. The
enterpretation of this output PSD signal is that it shows the average energy at
a single frequency over a period of time T [62]. A central advantage of the PSD
method in relation to the FT is that the units which the PSD signal yields are
more intelligible than those of the FT, making for a better signal for analysis.
For more on the PSD methodology for analysis, see to the explanation by [62].

3.3.3 Signal Post-Processing

Low-pass Filtering

In order to extract the LFP signal from the extracellular potential, a low-pass
�lter needs to be applied. As has been mentioned, the cuto� frequency for the
LFP signal is set to ≤ 300 Hz in the thesis. The main �ltering technique used
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comes from the Butterworth �lter, developed by Butterworth et al. [64] in an
attempt to have as �at a frequency response in the pass-band as possible[64].
The critical frequency (approximately the -3 dB frequency) used to obtain the
LFP signal is fc = 300 Hz, and the thesis uses 4th order Butterworth �ltering
throughout. The Butter �lter is a well-established �ltering technique within
physiological signals, in particular due to the fact that there is minimal attenu-
ation of the signals you want to keep. A formal mathematical de�nition of the
Butter �lter is considered out of scope in the current thesis.

DC Subtraction

An important signal post-processing step which performed in the study is one
which subtracts the DC component from the extracellular signals. The DC
component represents the permanent o�set of the extracellular signals, and is
removed by subtracting the signal mean from all signal time points. As was
mentioned previously, the �rst 200 ms of the simulations can include unwanted
initialization artifacts, such that the DC value subtracted from the extracellular
potential signal is the mean value calculated by excluding the initial 200 ms:

φc(ti) = φc(ti)−mnct≥200 ms, (3.30)

mnct≥200 ms =
1

Nt≥200 ms

2200 ms∑
t=200 ms

φc(t). (3.31)

This step is performed for all extracellular signal time points φc(ti) of each
electrode channel c. Nt≥200 ms is the number of time points which are after
200 ms, and mnct≥200 ms is the mean extracellular potential value of channel c,
calculated by excluding the �rst 200 ms of data. This pre-processing step is
important to apply before the signals are presented, and before the evaluation
metrics are applied. It is �nally worth noting that when presenting the signals
later on, only the �nal ≈ 200 ms of the simulations are illustrated. This is done
in order to get a �ne-grained image of the signals and their di�erences, as the
di�erence details are harder to see if the entire time series is shown.
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3.4 Methodology Implementation

The implementations of the methodologies are presented, and the following
section details the steps involved to implement the recipe network, conductance-
and current-based hybrid models and the kernel method.

3.4.1 Recipe Network

All recipe network parameters and con�guration states have been presented,
though the fashion in which some of the results are presented should be estab-
lished beforehand. The central illustration of network activity used in the thesis
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Figure 3.4: Two example spike raster plots of 500 neurons simulated for 50 ms.
Left: Asynchronous irregular (AI) spiking of the network. Right: Synchronous
�ring structure. Below each is the smoothed total number of network spikes per
time. Image generated using the misc/spike_raster_example.py script[39].

is the spike raster plot. Two example spike raster plots are illustrated in �gure
3.4, where each red dot represents an AP �ring. The neuron ID and time can be
seen on the axes, and the spike raster plot is used to identify large scale network
AP �ring patterns such as synchronous �ring structures. The thesis includes
the population-speci�c �ring rates in the spike raster plots, given by:

ν̄p =
|νp|≥200 ms

Np · (Tsim − 200 ms)
, (3.32)

where |νp|≥200 ms is the total number of spikes from population p which occur
after the �rst 200 ms of simulation, Np is the size of population p, and Tsim is
the total simulation time of 2200 ms. The reason the �rst 200 ms are left out
of this evaluation is due to the so-called transient time. The �rst 200 ms of the
simulation are a�ected by startup artifacts which are attributed to the fact that
all neurons are initialized at the same membrane voltage. This means that it
takes time for the system to stabilize, and the �rst 200 ms of the simulation
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results are excluded from the evaluation metrics for this reason. The �ring
rate per population ν̄p indicates how active each population is, and is used
throughout the spike raster evaluations later on. Keep in mind that the fully
connected, active conductance recipe network is the only one which is presented
in terms of spike raster graphs, as the rest of the LFP approximation methods
have inactive conductances, meaning that no APs are �red.

3.4.2 Hybrid Model

Two hybrid models are presented - one in which the synaptic connections of
the network use the conductance-based synapse model from equation 2.22, and
another which utilizes the current-based synapse model from equation 2.27.
Keep in mind once again that these synapses are connected to post-synaptic
cell compartments with predetermined spiking times which come from the fully
connected, active conductance `primary' network simulation.

Conductance-based Hybrid Model

The initial results follow the procedure described in section 3.2.1, where a
secondary network is set up which recreates the synaptic �ring of a primary
network. The secondary network has inactive conductances in the soma, and
there are no connections made between neurons. The synapses are connected
to the post-synaptic compartments identically to the primary network, and the
synapses have activation times determined by the spiking times of the primary
network:

ta,i = tAP,i + δ̄, (3.33)

for all synapses and pre-synaptic neuron APs i of the primary network. ta,i
is the synaptic activation time, tAP,i is the AP �ring time of the pre-synaptic
neuron in the primary network, and δ̄ is the synaptic delay of the synapse.
When recreating the synapses, one must also deduce whether the synapse has
excitatory or inhibitory rise- and decay times τ1, τ2 and what the reversal po-
tential Esyn is. This is done by checking the pre-synaptic neuron population,
and setting the variables according to what was presented in table 3.3. When
recreating the synaptic activity in the hybrid scheme, the external stimulat-
ing nidx synapses are also recreated, where the compartment placement, �ring
times, and synaptic parameters are all predetermined by the primary network
con�guration. Note that in the results, the low-pass �lter ≤ 300 Hz is not ap-
plied for the initial hybrid method comparison. The raw extracellular potential
signals are instead illustrated to view the high-frequency somatic AP �ring ac-
tivity which is produced by the active-conductance, ground-truth signal of the
primary network.

Current-Based Hybrid Model

The current-based hybrid model is presented after the conductance-based hybrid
model results. Much of the same methodology is used, and a linearization
of the synaptic weights ḡ → Ī is conducted. Section 2.2.5 described the two
synapse models in detail, with a brief description of the di�erences and the
process of converting between the two. In the linear current-based hybrid model,
the primary network synapse model is unchanged, sampling synaptic weights



CHAPTER 3. METHODS 47

ḡsyn ∼ N (ḡp,µ, ḡ
2
p,σ) as was listed in table 3.4. The current-based hybrid model

then converts these conductance-based weights to a maximum current ḡ → Ī
in the fashion described in equation 2.28. As aforementioned, this includes
modeling the post-synaptic membrane potential V as a constant V → V̄ . The
estimation V̄ is set to be equal to the mean of the mean somatic membrane
potential of the active/primary network, as was described in equation 2.29,
omitting the �rst 200 ms of initialization:

V̄ =
1

N

N∑
j=1

1

Nt≥200 ms

2200 ms∑
t=200 ms

Vsoma,j(t), (3.34)

where Vsoma,j(t) is the somatic potential at time t for neuron j, Nt≥200 ms is
the number of time points after 200 ms, and N is the number of neurons in the
network. In the thesis, V̄ is determined by plotting the mean somatic potential
values for each neuron as a histogram in the results. The estimation V̄ can
then be extracted as the mean value of the histogram distribution. Once V̄ is
determined, the conversions from the conductance-based synapse model weights
to the current-based synapse model weights are given by:

Īsyn, E = ḡsyn, E ·
(
V̄ − (0 mV)

)
(3.35)

Īsyn, I = ḡsyn, I ·
(
V̄ − (−80 mV)

)
, (3.36)

using the synaptic reversal potential values stated in equation 2.20.

3.4.3 Kernel Method

Following is a blueprint of the methodology used to produce a reference network
simulation and a corresponding kernel method approximation:

1. Simulate the primary, fully connected, active conductance network, sam-
pling and saving all required network characteristics.

(a) Save the neuron and synaptic placements, as well as all necessary
synaptic parameters such as the conductance-based weights ḡsyn and
delay factors δ̄.

(b) Save the spiking δ-trains νp for each population p independently.
These are a requirement for the convolution operation of the kernel
method.

(c) Calculate the mean somatic potential of each neuron and save the
data as a histogram displaying the distribution of mean somatic po-
tentials across the network.

2. Establish a secondary con�guration in a similar fashion to the previous
hybrid scheme initializations (not connected, inactive soma conductances).

3. Simulate the copied con�guration once for the synchronous �ring of each
synapse type, recording the extracellular potential response with identical
recording electrodes to the primary network.

(a) A loop is conducted over all the synapse types [E:E, E:I, I:E, I:I] (the
notation i:j indicates the synapse type where i is the pre-synaptic
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population and j is the post-synaptic population), simulating for 400
ms and �ring the appropriate synapses synchronously at τs = 200
ms.

(b) Ensure that the conductance-based weights from the recipe network
are converted to current-based synapse weights, setting the post-
synaptic membrane potential estimation V̄ according to the recipe
network and equation 3.34.

(c) Ensure that the characteristic synaptic delay δ̄ for each synapse is
added on to the synchronous AP �ring time according to equation
3.33.

(d) Record the extracellular potential signal for each channel φc, and
extract the kernels using Hc

p = φc(100 ms ≤ ti ≤ 300 ms), where p
is the pre-synaptic neuron population of the current synapse �ring (i
when �ring the i:j synapse).

(e) Finally, divide this signal by the total number of neurons Np in the
pre-synaptic population p, obtaining the net extracellular potential
response Hc

p of an AP in channel c per neuron in population p.

This is important to describe, as there are a number of details which go into
the kernel method such as the inclusion of the delay factor of each synapse δ̄ in
the kernel Hc

p generation.
An important factor to consider in the methodology is the total simulation

time for the generation of kernels for each synaptic type, set here to be 400 ms.
In determining this time, one must ensure enough time for both initialization as
well as kernel resting/decay time. The exctacellular signals at φc(ti = 0) need
time to initialize, decaying to zero and stabilizing well before the synchronous
AP �ring of the network. The signal also needs time to decay to zero after
the synchronous AP �ring φc(ti ≥ 200 ms) to get the full kernel image. The
signals are therefore given τs = 200 ms ± 100 ms before and after for pre-τs
initialization and post-τs decay. This important for an accurate kernel shape,
and the extracellular potential values at ti = 100 ms and ti = 300 ms should
be asserted to be equal to a baseline value. This relaxed extracellular potential
value is then subtracted from the entire signal, such that the kernels are normal-
ized to zero at the points in which there is no AP response. The value chosen
to subtract from the entire signal for normalization purposes could be anywhere
in the range of ti ∈ [100 ms, 200 ms), or at the �nal point of ti = 300 ms. The
thesis normalizes the kernel signals by subtracting the signals by Hc

p(ti = 100
ms) for all populations p and channels c.

Methodology Remarks

In addition to the resting time normalization, there are a number of other no-
table remarks which are important to consider moving forward with the kernel
method. For one, the extracellular potential contributions from the E:E and
E:I synapse types both represent the extracellular potential response from the
synchronous AP �ring of the E population. This means that these can be added
accordingly to represent the full Hc

E kernels Hc
E = Hc

E:E + Hc
E:I. The current

study chooses to visualize these separately, as it is interesting to see the di�er-
ences between the synaptic connection types before convolution. This is equally
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true for the I population and the I:E and I:I kernels. It is �nally worth noting
that the synaptic activations only account for the `internal' synapses, denot-
ing direct connections between neurons in the primary network. This implies
that the kernel method extracellular signal includes neither the high-frequent
somatic AP �ring activity nor the nidx external stimulation synapses, both of
which are prominent in the primary network `Reference'/ground-truth extracel-
lular potential signal. These are all important factors to consider for the kernel
method evaluation later on in the results section.

To summarize, the extracellular potential responses Hc
p = φc(100 ms ≤ ti ≤

300 ms) from the synchronous AP �ring of each synaptic type [E:E, E:I, I:E, I:I]
are combined with the primary network �ring rates νp using convolution, such
that the extracellular potential approximation of the kernel method are then
given by:

φcKM = νE ∗ (Hc
E:E +Hc

E:I) + νI ∗ (Hc
I:E +Hc

I:I) , (3.37)

for all channels c. Finally, after the kernel method extracellular potential esti-
mation φcKM is calculated, the LFP approximation is obtained by applying the
low-pass �lter ≤ 300 Hz presented in section 3.3.3 to φcKM.
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3.5 Limitations of the Linear Models

The linear model limitations is a focal point of the study, where the performances
of the linear LFP approximation methods are evaluated in various network
conditions. This section is designed to prepare the reader for the new network
conditions which are induced, as well as the new condition characteristics and
how they can be quanti�ed. This ties closely to the thesis goal of validating the
linear spike-LFP assumptions made in Hagen et al. [3]. The main concern of
the kernel method originates in nonlinear LFP contributions, and synchronous
network states are of particular interest.

3.5.1 Network Synchronicity

If the network is stimulated in a certain fashion, a synchronous phenomena
can appear in the spike δ-trains of the neurons. In a perfectly synchronous
network state, each and every neuron �res an AP at the same time, repeat-
ing synchronously. Figure 3.4 illustrated this phenomena, where there is far less
stochasticity in the synchronous network �ring patterns (right) than in the asyn-
chronous irregular �ring patterns (left). This is also reminiscent of the epileptic
phenomena described in section 3.1. In this system where the synchronicity
of the network is large, the linear method LFP approximations are expected to
have a drop in performance relative to the ground-truth `Reference' signal. This
is in part due to the fashion in which the post-synaptic membrane potential is
estimated V → V̄ . If two connected neurons �re an AP at the same exact time,
then the post-synaptic membrane potential is likely to be much higher than the
average V̄ due to the depolarization of the membrane back-propagating into the
dendrites. This is expected to impact the performance of the kernel method as
an LFP approximation technique, and a comparison of the kernel method LFP
approximation and the groun-truth LFP signal under various degrees of network
synchronicity is conducted. A new metric SPCC is introduced in order to mea-
sure the degree of synchronisity in a network, placing a quantitative measure of
synchronicity to include in the results.

Spike Train Similarity

The pearson correlation coe�cient (PCC) introduced in equation 3.25 was es-
tablished as a way to evaluate the similarity between two signals. This metric
will continue to be involved in the calculation of network synchronicity, as it can
be used to quantify the similarity between neuron spike δ-trains. For full net-
work synchronicity, the spike δ-train similarity of each neuron with each other
neuron is evaluated. The average correlation of all spike δ-train similarities then
represents the network synchronicity measure. Note that the spike δ-train sig-
nals only equal non-zero values in very small dt = 0.0625 ms windows where the
spikes are registered to occur, as described in section 3.2.4. The similarity be-
tween two such signals would then only register if spikes happen within the same
small time dt. The spike δ-train signals are transformed into a more temporally
smooth signal in an attempt to solve this, giving the PCC measure some more
leniency in the synchronicity context. This is done by convoluting the delta sig-
nal with a Gaussian kernel of max value 1 and standard deviation σ, producing
a temporally spaced spike δ-train signals for the synchronicity measure.
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Figure 3.5: Impact of Gaussian kernel convolution on a δ-train signal. Var-
ious Gaussian kernel standard deviations σ are included for reference. Image
generated using the misc/delta_convolution_example.py script[39].

An example convolution of a neuron spike δ-train with various Gaussian ker-
nels is illustrated in �gure 3.5. Multiple standard deviations are illustrated to
show the impact it has on the convolution. The widths represent the tempo-
ral spread which each neuron spike is allowed when evaluating the similarity
between two spike δ-trains. The larger the standard deviation, the longer the
temporal spread of each spike, and the more likely for two spikes to overlap in
the PCC evaluation. If the spread is chosen to be σ = 20 ms, then two spikes
≈ 20 ms apart would be deemed somewhat synchronous by the PCC measure.
The aim is to keep it small enough to be considered temporally synchronous
without being too generous. The standard deviation value of the kernel is set
to be σ = 5 ms in the thesis, opting for a relatively strict standard for temporal
similarity.

Synchronicity Measure

Once the spike δ-trains are convoluted with Gaussian kernels, the PCC values of
the network can be calculated and averaged to obtain the synchronicity measure.
This involves comparing the convoluted spike δ-train signal of each neuron with
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every other neuron in the network, summarized by a square matrix P ∈ RN×N :

P =


1 P12 P13 . . . P1N

P21 1 P23 . . . P2N

P31 P32 1 . . . P3N

...
...

...
. . .

...
PN1 PN2 PN3 . . . 1

 , (3.38)

where element Pij is the PCC metric of the Gaussian-convolved spike δ-trains of
neurons i and j. Note that the characteristics of the PCC measure yield Pii = 1
and Pij = Pji for all (i, j)[56, 57]. To extract a network synchronicity value the
mean value SPCC is taken over all the upper-triangular elements of the matrix:

SPCC =
2

N(N − 1)

N∑
i=1

N∑
j=i+1

Pij , (3.39)

where Pij are the elements of the P matrix described in equation 3.38. This
value of SPCC is chosen to quantify the degree of network synchronicity in the
thesis. It is worth noting that the PCC value is not de�ned when no spikes are
�red, as the spike δ-train signal is constant[57]. The thesis addresses this by
leaving the unde�ned values out of the synchronicity estimation entirely (value
is not added and the normalization factor 2

N(N−1) is adjusted accordingly). It
is additionally worth noting that the total number of network spikes |ν| is not
included as a normalization factor to the synchronicity measure. Increasing the
total number of spikes also increases the likelihood of alignment between the
spike trains of neurons, leading to an increase in the synchronicity factor SPCC
even no network synchronicity is visible in the spike raster plot.

3.5.2 Synchronicity Induction Techniques

Once the network synchronicity measure is established, the methodology in
which the synchronous network states are induced is described. Two techniques
in particular are utilized in order to induce network synchronicity in the thesis,
referred to as the stimulus increase and weight search methods.

Stimulus Increase

The stimulus increase approach to network synchronicity involves increasing
the degree of external stimulus in the network, increasing the number of exter-
nal synapses nidx which connect to each neuron in the network, as presented
in section 3.1.6. Four levels of network stimulus increase are presented using
nidx ∈ [64, 128, 192, 256], and the network characteristics and kernel method
performance metrics of each of these networks are presented in the results. The
results include the spike raster of each network state, an image of all LFP signals
registered, and a summary of the kernel method performance for each channel
in each of the network states. The fashion in which the synapses are distributed
to each neuron and the synaptic characteristics of the external synapses are kept
consistent with the description given in section 3.1.6.
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Weight Search

The other methodology used to induce synchronicity is referred to as the weight
search methodology. This method is a more brute-force approach to synchronic-
ity induction in the network. This method involves performing a grid search
over a multitude of recipe network simulations, varying the excitatory and in-
hibitory synaptic weights (ḡsyn,E, ḡsyn,I) slightly for each network. The spike
raster graphs of the networks are inspected, and four levels of synchronicity are
picked out for use in the kernel method evaluation. These are picked to repre-
sent a gradual increase from weak- to strong levels of synchronicity, and it is
important to keep the network �ring rates ν̄p in mind when picking out the four
networks. This was previously mentioned to be a factor which can impact the
spike synchronicity measure SPCC, and if the network �ring rate changes dras-
tically, then the potential di�erences seen in the kernel approximation might
be a result of the �ring rate change, rather than the synchronous nature of the
network. The population �ring rates ν̄p should therefore be kept as consistent
as possible across the four weight search networks.
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3.6 Biophysically Detailed Neuron Network

The following section describes how the baseline network is altered to include
more biophysically detailed morphologies, and how the linear methods are eval-
uated in these new circumstances. The biophysically detailed network baseline
is �rst established. This involves calibrating the network to have AI activity
and �ring rates below ≈ 10 Hz and applying the kernel method to establish
the baseline method performance. A stimulus increase study similar to the one
described in section 3.5.2 is then conducted on the biophysically accurate net-
work, where the hybrid and kernel methods are applied to networks with various
degrees of external drive nidx ∈ [64, 128, 192, 256] and the LFP approximation
accuracies are evaluated relative to the ground-truth.

3.6.1 Hay Cell and Network Initialization

A neuron model from Hay et al. [65] which models a neocortical layer 5b pyrami-
dal cell is implemented for the excitatory neuron population in the biophysically
detailed network. This neuron morphology/model is referred to as the Hay cell
from now on. There are a number of motivations behind implementing this
neuron as the excitatory neuron model in the biophysically accurate network,
and the geometry of the cell is a central one. The cell morphology is very de-
tailed in that it has a large amount of compartments with varying dendritic
widths, with long branching apical and basal dendrites. The structure of the
Hay cell is depicted later on in the results section. An additional motivation
of implementing the Hay cell is the complexity which arises from the various
active, nonlinear ion channels distributed throughout the cell. The ion channels
of the Hay cell include two Na+ channels (Nat, Nap), three K+ channels (Kp,
Kt, Kv3.1), two Ca2+ channels (Ca_HVA, Ca_LVA), among others. The full
list of ion channels included in the Hay cell are described in Hay et al. [65].
These nonlinear ion channel details are not accounted for in the BaS cells, and
the complexity increase provides a challenge to the linear LFP approximation
methods. The a new inhibitory population morphology is also implemented, in
which the ball-and-stick model from table 3.3 with a shortened `stick' section is
used.

The network of Hay cells are observed to require ≈ 1000 ms to stabilize.
The study therefore assigns a 1200 ms initialization time to the biophysically
detailed network, adding an additional 2000 ms for linear method evaluation
afterwards. The total simulation time parameter previously described in ta-
ble 3.1 is recon�gured to Tsim = 3200 ms for this reason, keeping the other
network parameters consistent with what was previously presented. Increased
initialization and simulation times alter previously stated expressions slightly:

ν̄p =
|νp|≥1200 ms

Np · (Tsim − 1200 ms)
. (3.40)

V̄ =
1

N

N∑
j=1

1

Nt≥1200 ms

3200 ms∑
t=1200 ms

Vsoma,j(t), (3.41)

φc(ti) = φc(ti)−
1

Nt≥1200 ms

3200 ms∑
t=1200 ms

φc(t). (3.42)
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These three equations are variants of equations 3.32, 3.34 and 3.42, respectively,
altered to account for the additional 1000 ms of initialization time which is
required for the biophysically detailed network. These serve the same purposes
as before, where equation 3.40 is the population-speci�c �ring rate expression,
equation 3.41 is the post-synaptic membrane potential estimate, and equation
3.42 is the DC-removal signal post-processing step performed for all (c, ti) as
described in section 3.3.3.

3.6.2 New Con�guration Parameters

A number of new network con�guration parameters are introduced to accom-
pany the change in neuron models. Mostly the network still follows the network
con�guration presented in section 3.1, though the parameters which are altered
are listed in the following section. Firstly, the inhibitory neuron morphology
is still the ball-and-stick neuron con�guration presented in table 3.3, and the
following new parameters de�ne the shortened `stick' of the inhibitory cell. The
new dendritic morphology is listed in table 3.6.

Variable Description Value

Dendrite 3D Spatial Information

(x0, y0, z0) Dendrite Startpoint (0, 0, 15 µm)
(x1, y1, z1) Dendrite Endpoint (0, 0, 115 µm)
(d0, d1) Boundary Diameters (3 µm, 3 µm)

Table 3.6: The altered dendritic morphology for the inhibitory neuron popu-
lation in the biophysically detailed network. The dendritic length now extends
upwards 100 µm instead of 1000 µm. The other parameters still follow table
3.3.

Cell Con�gurations and Positioning

The biophysically detailed network has a radius of rNw = 100 µm, and synaptic
depth sampling of zsoma ∼ N

(
0, (20 µm)2

)
, equivalent to what was presented

in section 3.1.1. Note that a rotation of rotx = 4.729 rad and roty = −3.166
rad is applied to the Hay cells at initialization. This is done to orient the
apical dedrites of the Hay cell upwards along the z-axis, and illustrations of the
morphologies are included in the initial biophysically detailed network results
to inspect the cell placements and orientations.

Synaptic Positioning

The synaptic positioning con�guration of the biophysically detailed network
di�ers from the previous ball-and-stick (BaS) con�guration presented in section
3.1.5. The synaptic depth-preferences of the biophysically detailed network are
recon�gured and stated in table 3.7. Each synaptic type is listed individually,
and a context is included for a better description of the synaptic connection.
Section 2.1.3 stated that excitatory- and inhibitory synapses are often found
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Synaptic Type Context Depth-preference PDF

E:E Hay-to-Hay Excitatory N
(
0, (100 µm)2

)
+N

(
500 µm, (100 µm)2

)
E:I Hay-to-BaS Excitatory N

(
100 µm, (100 µm)2

)
I:E BaS-to-Hay Inhibitory N

(
0, (100 µm)2

)
I:I BaS-to-BaS Inhibitory N

(
0, (100 µm)2

)
Table 3.7: Depth preferences of the biophysically detailed network. These
depth preferences are combined with the area probability PrAjn to �nd the nor-
malized synaptic connection probability per post-synaptic cell compartment
Prsyn, pjn , as described in equation 3.12.

on apical- and basal dendrites, respectively. This was combined with the bio-
physically detailed excitatory and inhibitory morphologies to recon�gure the
depth-preferences.

The E:E synaptic type now combines two equally weighed Gaussian distri-
butions, and E:I connects to the end of the shortened apical dendrite introduced
in table 3.6. The I:E and I:I synaptic types still have identical depth prefer-
ences, as the somatic compartments of the E and I populations are initialized
around the same depth. Recall that the depth preferences from table 3.7 are
combined with the area probabilities of each compartment PrAjn to determine the
synaptic connection probability Prsyn,pjn , as was described in section 3.1.5. The
results section includes the synaptic placements in the morphology illustrations
to verify that the connections were con�gured correctly.

3.6.3 Morphology Stimulus Changes

Once the new network con�guration is established, the external drive/stimulus
needs to be recalibrated to reproduce the asynchronous irregular �ring activity
and population �ring rates ν̄p which are not too large (preferably ≤ 10 Hz).
The external drive of the BaS network is unlikely to produce similar AP �ring
activity in the biophysically detailed network. If the connectivity and stimulus
levels were to remain unchanged, the Hay- and shortened BaS neurons would �re
o� APs far less- and more frequently than the baseline BaS neurons, respectively.
This is due to the fact that the Hay cell and shortened BaS cell have far greater-,
and lesser spatial extentions relative to the baseline BaS morphologies described
in table 3.3. An equal amount of randomly distributed stimulating nidx = 64
synapses on relatively larger and smaller cells would then cause the net stimulus
to the soma to decrease and increase accordingly. This is closely tied to the area-
probability PrAjn which the nidx synapses are distributed by (described in section
3.1.5), and the ICS potential decay factor λ presented in section 2.2.2.

Stimulus Normalization

To normalize the stimulus to the two new neuron models, an external stimulus
nidx scale factor is implemented and calibrated for each population [εE, εI]. These
scale the typical nidx factor such that nidx, p = εp nidx, yielding a new number of
external stimulating synapses for each population. A combination [εE = 2, εI =
0.5] would, for example, double the number of external stimulating synapses
for the excitatory population and halve it for the inhibitory population. To
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calibrate these, a large number of networks with various [εE, εI] combinations
are simulated, and the spike raster graphs and populational �ring rates ν̄p are
monitored. Firing rates which are similar to the recipe network presented in
section 3.1 are considered a benchmark, though anything below 10 Hz should
su�ce.

Post-synaptic Potential Adaption

The post-synaptic membrane potential estimation V → V̄ is additionally adapted
to �t the biophysically detailed network. The same procedure presented in sec-
tion 3.4.2 is used, where the histogram displaying the mean somatic potentials
across the network is used to determine the post-synaptic membrane potential
estimate V̄ . However, due to the signi�cant morphology di�erences between the
E and I populations in the biophysically detailed network, the two populations
are evaluated separately V → V̄p. The synaptic weight conversion scheme ḡ → Ī
is then determined by the post-synaptic neuron population p, such that:

Īsyn = ḡsyn(V̄p − Esyn) (3.43)

is the max synaptic current value Īsyn of the current-based synapse model from
equation 2.27, and V̄p is the post-synaptic membrane potential estimation for
post-synaptic population p. The synaptic reversal potential Esyn, and synaptic
rise- and decay-factors (τ1, τ2) are kept consistent with what was presented in
table 3.3.

3.6.4 Methodology Limits and Evaluation

The aforementioned stimulus increase study from section 3.5.2 is conducted on
the biophysically detailed network. This methodology regards increasing the
external stimulus nidx and investigating what impacts it has on the linear spike-
LFP method performances.

Stimulus Increase

The value of nidx is incremented in four steps, increasing from nidx ∈ [64, 128,
192, 256] as previously presented in section 3.5.2. The calibrated normalization
scales [εE, εI] presented in section 3.6.3 are kept equal to their calibrated values
throughout these increases, scaling the default nidx population-speci�c external
synapses nidx, p = εp nidx for each nidx increase.

Final Evaluation

A number of additional graphs are presented which were not included in the
stimulus increase of the BaS recipe network presented in section 3.5.2. These
compare:

1. `Reference' signal, produced by the fully connected, active network.

2. Hybrid scheme signal, where synaptic activations are recreated using current-
based synapses ḡsyn → Īsyn.
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3. Kernel method signal, where the extracellular responses Hc
p of the syn-

chronous �ring of each current-based synaptic type are convoluted with
the �ring rates νp to obtain the LFP estimation according to equation
3.37.

Both the hybrid and kernel schemes are compared to the ground truth of the
`Reference' signal, and the di�erences between the two approximation methods
reveal where the hybrid scheme could be preferable to the kernel method. The
current study identi�es regions in which the hybrid method outperforms the
kernel method as:

PCC(`Reference',hybrid)− PCC(`Reference', kernel) > 0, (3.44)

MSE(`Reference', kernel)−MSE(`Reference',hybrid) > 0. (3.45)

Notice that the subtraction order is changed between the two metrics. This is
due to the fact that the PCC and MSE metrics have large- and small- values
indicate more accurate approximations, respectively. Regions in which these
equalities are found to be true are then used to indicate where the hybrid method
outperforms the kernel method, and where the kernel method should potentially
not be applied.
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3.7 Technical Details

A section on technical details is provided for reproducibility before the results
are presented. The environments used for simulation are built upon multiple
requirements and speci�c package versions which are documented here.

3.7.1 Code Availability

A repository containing code developed for the thesis is made publically available
on GitHub (see https://github.com/steinnhauser/linearLFP), and includes
two central folders - one containing the recipe BaS con�guration recipeBaS and
the other the Hay cell con�guration detailedHay. An additional folder misc
containing scripts used to plot example �gures in the thesis is also included. The
thesis utilizes a forked version of the LFPy package (see https://github.com/
LFPy/LFPy), where customized utilities were added for the thesis objectives. The
forked version can be found at (https://github.com/steinnhauser/LFPy) and
`git' (git-scm.com) can be used for tracking the code origin and history. Ad-
ditional utilities were developed and implemented for multiple miscellaneous
purposes including plotting and signal processing. These utilities are also pub-
lically available at (https://github.com/steinnhauser/linearLFP_utils).

3.7.2 Simulation Requirements

All code written for the thesis is written in the object-oriented programming
language Python (https://python.org). The following section describes the
python packages and libraries which were utilized in the thesis, along with
the speci�c versions used. The simulation code used Python (v3.8.5), numpy
(v1.20.1), Cython (v0.29.22), mpi4py (v3.0.3), NEURON (v7.8.2), and SciPy
(v1.6.1). LFPy (v2.1.1) was forked and customized. Other packages include
h5py (v3.1.0) and pandas (v1.2.2) for data storage and matplotlib (v3.3.4) for
plotting. For details on how the signals were low-pass �ltered, see the Ele-
phant (v0.10.0) [66] and SciPy (v1.6.1) [67] documentation on the butter and
filtfilt methods.

3.7.3 Computational Facilities

The ball-and-stick network simulations were conducted in parallel (4 threads) on
1.60 GHz Intel Core i5-8250U CPUs running on Ubuntu 20.04.2 LTS. The bio-
physically detailed network simulations presented in section 3.6 were conducted
in parallel (512 threads) on the JUSUF cluster module in the Jülich supercom-
puting centre (https://fz-juelich.de/). The JUSUF hardware con�guration
consists of 2.25 GHz AMD EPYC 7742 CPUs running the CentOS 7 Linux distri-
bution, and the full speci�cations of the JUSUF cluster can be found at (https:
//apps.fz-juelich.de/jsc/hps/jusuf/cluster/configuration.html).

https://github.com/steinnhauser/linearLFP
https://github.com/LFPy/LFPy
https://github.com/LFPy/LFPy
https://github.com/steinnhauser/LFPy
git-scm.com
https://github.com/steinnhauser/linearLFP_utils
https://python.org
https://fz-juelich.de/
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/configuration.html
https://apps.fz-juelich.de/jsc/hps/jusuf/cluster/configuration.html


Chapter 4

Results

The results from the recipe ball-and-stick (BaS) network from section 3.1 are
�rst presented, followed by the respective hybrid- and kernel approximations.
These are presented to establish the baseline network activity and baseline
hybrid- and kernel method performances. Afterwards, the results from the stim-
ulus increase and weight search methods from section 3.5.2 are presented. These
should reveal if the kernel method performance is impacted by the network
conditions discussed in section 3.5.2. Finally, the results of the biophysically
detailed network are presented, following what was described in section 3.6. A
baseline network and baseline linear method approximation performances are
�rst established, identifying how the kernel method performs with the complex
morphology of the Hay cell. The biophysically detailed network is then stim-
ulated with increased external drive nidx and the kernel method performance
is evaluated under these conditions. The hybrid- and kernel methods are then
compared to investigate if the two linear method performances di�er in the
biophysically detailed network.

4.1 Recipe-, Hybrid-, and Kernel Implementa-

tions

The results of the baseline BaS network con�guration from section 3.1 and
the linear method implementations described in section 3.4 are presented. The
performances of the hybrid- and kernel approximations are compared in relation
to the `Reference' recipe BaS network extracellular potential signal.

4.1.1 Recipe Network

Figure 4.1 illustrates the distribution of 25% of the 1280 neuron population for
clutter reduction. The morphologies are depicted by inserting a dot in the soma
compartment and connecting the �rst and last dendritic compartments with a
line. Note that the dot and line diameters are not accurate to the morphologies,
though the neuron placements and dendritic branch lengths are.

Figure 4.2 illustrates the spike raster plot of the recipe network. Each dot
represents the AP �ring of a neuron, where the x-axis is the time and the y-axis

60
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Figure 4.1: Distribution of 25% of the total population of the recipe network.
Neurons from both the excitatory and the inhibitory populations are illustrated,
with the central recording electrodes visible in the middle.
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Figure 4.2: Spike raster of by the recipe network simulation. The estimated
population-speci�c �ring rates ν̄p are calculated according to equation 3.32.
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Figure 4.3: Raw extracellular potential signals of all electrode channels 1-13
for the recipe network. The signals from each population and the network sum
are illustrated separately.

is the neuron ID. The y-axis distinguishes between the two populations instead
of listing all neuron IDs. The entire 2200 ms of simulation is included, and the
�rst 200 ms are considered as the startup transient time. The �ring rate for each
population is illustrated above the spike raster plot, calculated using equation
3.32.

This network condition is stochastic and noisey, with few signi�cant struc-
tures in network �ring times. Such activity is good for the baseline recipe net-
work, as asynchronous irregular (AI) �ring patterns are observed in cortex[52].
Inhibitory neurons are also found to have higher �ring rates in cortex when the
network activity is relatively low[52]. The inhibitory population �ring rate in
�gure 4.2 is slightly larger than the excitatory ν̄I > ν̄E, though not by a large
margin.
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Figure 4.3 illustrates the raw extracellular potential recordings of each record-
ing electrode channel. The signal amplitudes of the I population are found to be
1/2 that of the other two, a combination of the population size di�erence and
the conductance-based synapse model weight di�erence ḡI > ḡE described in
table 3.4. Recall the coordinates of each recording electrode channel described
in table 3.2, indicating that the high frequency components of the extracellu-
lar potential signals around channel 11 are a result of somatic AP �ring activity.

4.1.2 Conductance-based Hybrid Model
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Figure 4.4: Raw extracellular potential recordings of the fully connected, ac-
tive network (populations of E, I and their sum Σ depicted in blue, orange and
green, respectively), and the conductance-based synapse hybrid model gsyn.
Only channels 1 and 11 are illustrated, as channel 1 sees minimal somatic ac-
tivity whereas channel 11 is very close to the soma. The RME of each signal
combination is included below.
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Figure 4.4 illustrates the full raw extracellular potential recordings of the
fully connected, active conductance recipe network in relation to the conductance-
based hybrid model approximation from in section 3.4.2, denoted as gsyn. Note
that the conductance-based hybrid model is not a linear model, as it depends on
both the post-synaptic membrane potential and time Igsyn(V, t), as expressed in
equation 2.22. This model is later linearized by conversion to the current-based
synapse model I isyn, as described around equation 2.28. The largest di�erence
between the conductance-based hybrid approximation and the ground-truth sig-
nal is in channel 11, where somatic activity is most prominent. This is clearest
in the raw extracellular potential signal of the inhibitory population φ〈11〉

I , and

can also be seen by the high frequent oscillations of signals φ〈11〉
E and φ〈11〉

Σ

The RME signals below visualize the relative max error for each signal type,
described in equation 3.22. The inhibitory population is found to have the
largest relative error in channel 11. This is likely a result of the lesser signal
amplitude, as the relatively small inhibitory population causes each AP �ring
to be more in�uential in the RME. This is also true for channel 1, and a current
dipole-like pattern can be seen. The high frequent extracellular signals of the
AP seen in channel 11 have equal and opposite spikes in the inhibitory popula-
tion RME in channel 1. These are most visible for the inhibitory population, in
particular at times ti ≈ 2037 ms, ti ≈ 2145 ms and ti ≈ 2165 ms.
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Figure 4.5: Power spectral densities (PSD) of the raw extracellular potential
signals of channels 1 and 11. R signi�es the `Reference' signal.
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Figure 4.5 presents the PSD calculations of the raw extracellular potential
signals from �gure 4.4. The ground-truth signals in which the network is fully
connected and has active conductances are denoted as R, representing the `Ref-
erence' signals. The PSD values of the dotted red- and blue lines are more or
less equal, indicating that the `Reference' signal is accurately approximated by
the conductance-based hybrid model in regions far from the soma. This indi-
cates that the extracellular potential signal far from the soma is largely a result
of synaptic activity.

The black dotted- and green lines have signi�cant di�erences, where high
frequent somatic activity from the `Reference' signal in channel 11 is prominent
throughout the frequency spectrum. Recall that the conductance-based hybrid
method has inactive conductances in the soma, such that this di�erence is ex-
pected. Note that the black dotted- and green lines are also separated by a
fairly large margin at ≤ 300 Hz . This is the critical frequency used to obtain
the LFP signal, and �gure 4.5 reveals that the LFP signal still has trace con-
tributions from somatic AP �ring below this frequency. The somatic activity
artifacts of the `Reference' signal below 300 Hz are a consistent inaccuracy of
the LFP approximation models presented later on.

4.1.3 Current-based Hybrid Model

Transitioning into the current-based synapse hybrid model, recall the process of
synaptic model conversion ḡ → Ī described in equation 2.28 and section 3.4.2.
The somatic potential distributions are evaluated for the membrane estimation
V → V̄ , then the conversions ḡ → Ī from equations 3.35 and 3.36 are used to
produce the current-based hybrid model synaptic weights.

Figure 4.6 illustrates the distributions of the per-neuron mean soma poten-
tials, as described in section 3.4.2. The mean of the somatic potential means, as
presented in equation 3.34, yields the network somatic compartment potential
estimation to be V̄ ≈ −64 mV. Recall that the distributions presented in �gure
4.6 are obtained from the active, fully connected recipe network. Note that the
population-speci�c mean values are very similar, such that a population speci�c
value V̄p is not required.

To better view how potentials distribute inside the neurons, �gure 4.7 illus-
trates the membrane potential distributions of a single randomly chosen neuron
in the active, fully connected network. For each recording electrode channel,
the neuron compartment which was closest to that channel was chosen, and the
distribution of the compartment potential is illustrated as a boxplot. Note that
channels 12 and 13 are not included, as the somatic compartment was the closest
for them and is already depicted by channel 11. The AP �rings of the neuron
can be seen in the somatic compartment closest to channel 11, and the AP can
be seen conducting into neighboring compartments by the red > 95% �iers. The
mean value depicted by the orange lines is of most interest, di�ering by ≈ 5 mV
between the compartments closest to channels 1 and 11. This indicates that the
V → V̄ estimation, using the somatic compartment mean value as the general
post-synaptic membrane potential, is reasonable for the recipe network.
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Figure 4.6: Distributions of the mean soma compartment potential values in
the recipe network. The mean of the somatic membrane potential means is set
to V̄ ≈ −64 mV in the recipe BaS network.
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Figure 4.7: Membrane potential distributions across multiple compartments of
a single neuron. Compartments which are the closest to the indicated electrode
channel depths are chosen. The outliers of the distribution (< 5% and > 95%)
are illustrated by the red dots, and the mean potential value of the compartment
is depicted by the orange line inside the box.

To compare the three signals presented, �gure 4.8 illustrates the extracellular
potentials of all three signals for channels 1 and 11. Note that the current-based
hybrid model is linear, and is very similar to the non-linear conductance-based
hybrid model throughout. These both are still found to di�er from the high
frequent somatic activity of the `Reference' signal in channel 11. Although the
conductance-based hybrid model signal is slightly more similar to the `Refer-
ence' signal than the current-based hybrid model signal, �gure 4.8 a�rms that
the V → V̄ synapse conversion for the current-based hybrid model is successful.



CHAPTER 4. RESULTS 67

20
0

20
1

E  [µV]

Reference Current-Based Conductance-Based

0

100
11

E  [µV]

5
0
5

1
I  [µV]

50

011
I  [µV]

25

01  [µV]

2000 2025 2050 2075 2100 2125 2150 2175 2200
Time [ms]

100
0

100
11  [µV]

Figure 4.8: `Reference' signal compared to the two hybrid method predictions.
V̄ = −64 mV is used to convert ḡ → Ī in equations 3.35 and 3.36 for the current-
based hybrid method signal.

The fact that the linear current-based hybrid model performed well indicates
that the recorded extracellular potential signals are linearly dependent of the
spikes of the recipe network, and is a promising �nd in relation to the kernel
method.

4.1.4 Kernel Method

The current-based hybrid model approximation indicates that a linear spike-
LFP model correlates well with the `Reference' signal, and the kernel method-
ology results are presented in the following section to build further upon this.
Note that the `Reference' and linear method approximation signals are lowpass
�ltered ≤ 300 Hz to obtain the LFP approximation from now on. The LFP
signal from the full population, previously referred to as Σ in �gures 4.4 and
4.8, is also exclusively illustrated from now on.
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Figure 4.9: Raw extracellular potential responses from each channel for each
synaptic type. A segment [τs − 20ms, τs + 30ms] of the kernels is illustrated,
though the total kernel signals extend 100ms in each direction from the syn-
chronized AP time τs.

The kernels Hc
p obtained from the synchronous �ring of the synapse types

are illustrated in �gure 4.9. As a reminder of section 3.4.3, these were obtained
by setting up the synapses from the `Reference' network, and �ring them in a
synchronous fashion, recording the extracellular potential response. This is done
using a current-based synapse model, converted using a post-synaptic membrane
potential estimation of V̄ = −64 mV. The resulting exctacellular response is
subsequently divided by the number of neurons in the pre-synaptic population,
yielding the net extracellular potential response of AP �ring per neuron in that
population Hc

p.
As mentioned before, the e�ective single kernel of population E is the sum of

the synapse types E:E and E:I displayed in the �gure, Hc
E = Hc

E:E +Hc
E:I. The

details of the various synaptic connection types are however interesting to see for
themselves. The kernels illustrated in �gure 4.9 are not post-synaptic neuron
population dependent, meaning that E:E and E:I are practically identical in
shape. The amplitude di�erence between the two is caused by the fact that the
excitatory population is four times larger than the inhibitory population. This
is also true for the I:E and I:I kernels.

The kernels re�ect the fact that the excitatory synapses yield positive stim-
ulus into the dendrites and the inhibitory synapses yield negative stimulus into
the somatic region, following the depth-preferences presented in equations 3.9
and 3.10. This is visible by the negative extracellular potential response around
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channel 6 for the E:E and E:I synapse types, and the positive extracellular po-
tential response around channel 11 for the I:E and I:I synapse types, respectively.
The extracellular contributions of opposite sign in channels surrounding these
are products of Kircho�'s law and the neuron acting as a dipole, as discussed
in section 2.3.3.

A note on extracellular potential contribution per population is in order, as
�gure 4.9 reveals the amplitudes of the I:E and I:I kernels to be signi�cantly
larger than those of the E:E and E:I synapse types. This is a result of the
stronger inhibitory synaptic weights listed in table 3.4, and does not necessar-
ily imply that the inhibitory kernels contribute more to the full LFP signal
produced by equation 3.37. Given that the E population is four times larger
than the I population, a similar population �ring rate ν̄E ≈ ν̄I implies that the
amplitude of the populational spike trains are related by νE ≈ 4νI

1. An even
LFP contribution between the two populations is then obtained if the inhibitory
kernel amplitude is four times larger than that of the excitatory 4Hc

E ≈ Hc
I to

account for the spike train amplitude di�erence. Figure 4.9 reveals this ampli-
tude di�erence to be approximately 8Hc

E ≈ Hc
I , indicating that the inhibitory

population likely contributes two times more to the LFP signal than the excita-
tory population, as the �ring rates were found to be similar ν̄E ≈ ν̄I in �gure 4.2.
The subject of which population contributes most to the resuling LFP signal
approximation is a relevant subject in the biophysically detailed morphology
results.

Finally in �gure 4.9, the inhibitory kernels are found to be wider than the
excitatory kernels, in part due to the decay constants of the synapses presented
in table 3.3. Section 3.2 brie�y mentioned the impact wide kernels have in con-
volution, shown in �gure 3.1 to have a low-pass �ltering e�ect on the output
signals. The low-pass �ltering e�ect of wide kernels is due to the low-frequency
content of the kernel, and is not speci�c to the convolution operation. A low-
frequent �lter results in a low-frequent output if a Finite Impulse Response
(FIR)[68] �lter formalism was used instead. An additional factor is referred to
as `processing gain' in signal processing, where the larger the gain, the more
the contribution to the convolution outcome. The gain for each kernel is related
area under the curves, and the inhibitory synapses are found to have larger gain.
The impacts of the kernel widths and amplitudes should be kept in mind, as it
is also a central point of discussion later on.

As a comparison of the kernel method in relation to the current-based hybrid
method, �gure 4.10 illustrates the LFP signals as well as the PCC and MSE
evaluations of the signals. Recall from section 3.3.1 that the PCC measure
evaluates the variances/shapes of two signals, while the MSE measure evaluates
the mean squared amplitude di�erence of the two.

Note that the two evaluation metrics are bene�ted by longer signal lengths,
the PCC metric in particular. An evaluation time of 2000 ms is su�cient for
the current study, but a simulation time increase would yield a more rigorous
PCC evaluation of the methods. This is due to the metric then converging to
a so-called consistent estimator[69, 70]. The LFP signals and evaluation metric

1Recall that the populational �ring rate ν̄p is normalized to the number of neurons in the
population, as per equation 3.32
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Figure 4.10: Comparison between the current-based hybrid model and kernel
method LFP approximations. The PCC and MSE metrics from equations 3.25
and 3.23 are included for shape- and amplitude evaluations respectively. Recall
that the �rst 200 ms are not included in the evaluation metrics.

values of �gure 4.10 all point to a successful kernel method performance. Keep
in mind that the `Reference' LFP signal is not included in �gure 4.10, though
the current-based hybrid model was previously found to successfully recreate
the raw extracellular potential of the `Reference' signal in �gure 4.8.

Channel 9 is found to have the lowest PCC metric performance in �gure
4.10. Figure 4.9 reveals that a change in polarity for both the excitatory and
inhibitory kernels occurs in the region around channel 9, resulting in a small
extracellular potential response in the kernels H〈9〉p . The inaccuracies of channel
9 can therefore be attributed to the local cancellations of channel 9 seen in the
kernels, and the kernel recreation performance drop in polarity transition regions
was also found to be the case in Hagen et al. [3].

Finally, the largest MSE metric value is found in channel 11, the rest of
the MSE metrics being below 25 µV2. The MSE metric being maximal in the
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channel with the largest amplitude is to be expected, and an error of ≈ 50 µV2

is still regarded as a successful kernel method recreation. The best channel in
terms of the evaluation metrics in �gure 4.10 is channel 13, where the PCC
is ≈ 1, and the MSE is at a minimum. The linear method performances are
however expected to drop in relation to the `Reference' LFP in regions where
somatic activity is prominent.
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Figure 4.11: Full image of the `Reference'-, current-based hybrid-, and kernel
LFP signals for the recipe BaS network.
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Figure 4.11 illustrates the `Reference' LFP signal in relation to the current-
based hybrid- and kernel method LFP approximations. Both linear approxima-
tion methods recreate the `Reference' successfully, though the high frequency
content of the `Reference' signal provides challenges to both approximations.
The current-based hybrid model performs slightly better than the kernel method
in �gure 4.11, though the di�erence is marginal. The baseline BaS network `Ref-
erence' LFP signal is found to be very linearly dependent of the spiking activity.

4.2 Methodology Limits

The methodology limit results are presented, where the kernel method perfor-
mance is evaluated under various network conditions, as described in section
3.5. Note that the evaluation metrics use the last 2000 ms of the signals.

4.2.1 Stimulus Increase

E

I

nidx = 64, SPCC =  0.002
E = 4.46 Hz, I = 4.60 Hz

500 1000 1500 2000
10
20
30

Sp
ik

e 
#

E

I

nidx = 128, SPCC =  0.006
E = 8.51 Hz, I = 8.79 Hz

500 1000 1500 2000
25
50
75

E

I

nidx = 192, SPCC =  0.011
E = 11.67 Hz, I = 11.72 Hz

500 1000 1500 2000
Time [ms]

25
50
75

Sp
ik

e 
#

E

I

nidx = 256, SPCC =  0.014
E = 13.91 Hz, I = 14.08 Hz

500 1000 1500 2000
Time [ms]

50
100

Figure 4.12: Spike raster plots for each stimulus increase network. The stim-
ulus per neuron nidx, network �ring rate per population ν̄p from equation 3.32,
and network synchronicity metric SPCC from equation 3.39 are included. Below
each spike raster is a smoothed total number of network spikes per time.
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Figure 4.12 illustrates the spike rasters and �ring rate summaries of the four
networks of the stimulus increase study. These spike rasters provide a context
of the four network states in which the kernel method is applied. The increase
in stimulus per neuron nidx produces a large increase in network activity across
the four cases, increasing from a network �ring rate of ≈ 4.5 Hz to around 14
Hz. The synchronicity measure is seen to increase for increased nidx, though
synchronous �ring structures (i.e. clear vertical line patterns) are not seen in
the spike rasters. Section 3.5.1 presented the synchronicity measure SPCC by
noting that the measure is not normalized according to the total number of
network spikes |ν|. The networks synchronicity measures SPCC of �gure 4.12
are therefore considered unreliable. The total number of network spikes for each
network di�er too much.
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Figure 4.13: `Reference' and kernel method LFP signals for each nids value of
the stimulus incease study.

Figure 4.13 illustrates the LFP signals of the `Reference' and the kernel ap-
proximation for each of the outside stimulus values nidx. Only the last 100ms of
the signals is included for a more detailed look of how well the signals match up.
The kernel approximations perform well for all four networks, though the high
frequencies of the `Reference' signal in the nidx = 64 column seem to provide
large inaccuracies. It is likely that the inaccuracies between the two signals are
more visible due to the scale/amplitude, as the other columns are scaled to eight
times larger at most, and the same level of detail is not visible.
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Figure 4.14: Top row: The PCC evaluation metric results of the `Reference'
and kernel signals of each channel. Bottom row: The MSE evaluation metric
results of the `Reference' and kernel signals of each channel. The four stimulus
increase cases are sorted into the four columns.



CHAPTER 4. RESULTS 75

To evaluate the `Reference' and kernel signals, �gure 4.14 lists both PCC and
MSE evaluation metrics for all channels, and for each nidx network. The kernel
signals are found to perform very well in approximating the `Reference' signals
for all nidx network states. Disregarding channel 9, each of the three columns
nidx ∈ [128, 192, 256] have PCC values which are well above 0.850. The low
PCC values of nidx = 64 are to be expected, as �gure 4.13 revealed this network
state to have signi�cantly lower LFP signal amplitudes, indicating that small
�uctuations can have relatively large impacts on the PCC. Finally, the MSE is
smallest in nidx = 64 and consistently increases for a larger amount of network
stimulus nidx. This is also a product of the network amplitude di�erences, where
the largest LFP signal amplitude was found in column nidx = 256. The stimulus
increase provided no negative impact to the kernel method performance.

4.2.2 Weight Search
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Figure 4.15: Spike raster plots of the weight search networks. The
conductance-based synapse weights used are listed above each spike raster. Syn-
chronicity SPCC and �ring rates νp are included, and a smoothed total network
spikes per time is included below each spike raster.
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The weight search study follows the same procedure as the simulus increase
study, and �gure 4.15 illustrates the four spike raster plots of the weight search
study. Recall the fashion in which the weights are initialized and converted. The
weights listed in �gure 4.15 are used as mean values µ for sampling N (µ, σ2),
as listed in table 3.4 and described in section 3.4.2. V̄ = −64 mV is still used
for ḡ → Ī conversion, still set according to �gure 4.6. The spike rasters in �g-
ure 4.15 display the synchronous �ring structures desired. Regarding the most
synchronous network, the clear vertical line patterns are now visible, re�ected
by the total network spike number per time graph below. Note that the �ring
rates of the networks are kept consistent around ≈ 4.4 Hz, indicating that the
synchronicity measure SPCC is considered reliable. The SPCC measure is seen
to increase systematically from the �rst network to the last.
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Figure 4.16: `Reference' and kernel method LFP signals for the four weight
search networks.

Figure 4.16 illustrates the LFP signals of the four weight search networks.
The amplitudes are again found to increase between the four networks, similar
to �gure 4.13. The kernel method is still successful in recreating the `Reference'
signal in �gure 4.16, though there are regions of inaccuracy seen. In particular,
the amplitude of the kernel method in the �nal network (weights ḡsyn, E = 14
nS/12.8 and ḡsyn, I = 80 nS/12.8), is consistenly almost two times larger than
the `Reference' signal.
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Figure 4.17: Top row: The PCC evaluation metric results of the `Reference'
and kernel signals of each channel. Bottom row: The MSE evaluation metric
results of the `Reference' and kernel signals of each channel. The four weight
search cases are sorted into the four columns.
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Figure 4.17 illustrates the PCC and MSE evaluation of the signals from �g-
ure 4.16. The second column is found to perform better than the �rst column
in terms of both PCC and MSE, an interesting �nd considering that the net-
work synapse strengths only di�er by ∆ḡsyn, E = 3 nS/12.8. Columns three
and four have outstanding PCC evaluation measures, indicating that the kernel
method captured the signal variances very well. This is however at the cost of
an increased MSE, which is found to be very large in column 4. The amplitude
di�erences of column four indicate that the linear spike-to-LFP assumptions
have a systematic signal magnitude error for synchronous network states. In
particular, the V → V̄ and ḡ → Ī conversions presented in section 3.4.2 seem
to be less applicable in the highly synchronous network state. Despite this am-
plitude inaccuracy, the PCC indicates that the kernel method is very successful
in recreating the shape/variance of the `Reference' signal.

4.3 Biophysically Detailed Neuron Model

The results of the biophysically detailed neuron morphology described in section
3.6 are presented. Recall that this process involves implementing new neuron
morphologies, con�guring a baseline network similar to what was seen in section
4.1.1, followed by a methodology extent study following what was described in
section 3.6.4. Firstly, the baseline network state is established, followed by the
external stimulus increase study.

4.3.1 Network Baseline

The new morphologies of the network include the Hay cell for the excitatory
population and a shortened BaS cell for the inhibitory population. The Hay cell
morphology is illustrated in �gure 4.18, accompanied by the total number of E:E
and I:E synapses per depth. The histograms provide an idea of the E:E and I:E
distributions on the new cell model. These re�ect the distributions which are
a result of the depth- and area preferences of synaptic connections, described
in equation 3.12. The depth preferences of the E:E and I:E connections in the
upgraded network were described in table 3.7.

The inhibitory neuron morphology is displayed in �gure 4.19, where the
ball-and-stick cell described in table 3.3 has a dendritic branch shortened to
the speci�cations listed in table 3.6. The total number of E:I and I:I synapses
per depth are also included, where the depth preferences listed in table 3.7 are
visible.

The baseline network con�guration spike raster of the biophysically detailed
network is illustrated in �gure 4.20. The initialization artifacts are very signi�-
cant in the neuron model upgrade network, where it takes some time to stabilize,
as described in section 3.4.1. The network normalization parameters [εE, εI] de-
scribed in section 3.6.3 are included above the spike raster, and recall that these
are multiplied by the default number of external stimulating synapses nidx = 64.
The stimulus to each population is then scaled to nidx, E = 4.625 · 64 = 296 and
nidx, I = 0.375 · 64 = 24 to �t the new morphologies.
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Figure 4.18: Morphology of the Hay cell, set as the excitatory population in
the biophysically detailed network. The total number of E:E and I:E synapses
in the network are also illustrated in a histogram of synaptic depths z using a
12 µm bin width.
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Figure 4.19: Shortened BaS cell morphology, used as the inhibitory population
in the biophysically detailed network. A histogram of synaptic depths z with a
12 µm bin width of all E:I and I:I synapses is included.
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Figure 4.20: Spike raster plot of the biophysically detailed network baseline.
Normalization factors [εE, εI] and �ring rates are included.
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Few structures are found in the spike raster after ti = 200 ms, and the spikes
are quite stochastic. The �ring rate of the inhibitory network is additionally
larger than that of the excitatory network ν̄I > ν̄E. Both the asynchronous
irregular �ring patterns and increased inhibitory network �ring rate were men-
tioned to be good baseline representatives of cortical activity in section 4.1.1[52].
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Figure 4.21: Mean soma potential distribution of each neuron in the network,
split by population. The mean of the somatic potential mean values are used
to determine the appropriate V̄p value, as described by equation 3.43.

Figure 4.21 illustrates the mean somatic potential distributions, used to de-
termine the population speci�c conversion factors V → V̄p for equation 3.43.
Note that the mean somatic potential value of each neuron was obtained using
the last 2000 ms of simulation time, leaving 1200 ms for initialization. The two
post-synaptic estimations are set to V̄E = −57.62 mV, and V̄I = −63.82 mV in
the upcoming current-based synapse conversions. The populations now di�er
clearly in mean somatic potential, contrary to the previous BaS network distri-
butions in �gure 4.6. The inhibitory population distribution is found to have a
larger standard deviation than that of the excitatory population, indicating that
the activity per neuron in the inhibitory population is more uneven than that of
the excitatory population. This indicates that the estimation might work better
for some neurons rather than others in the inhibitory population.

Moving onto the kernel method approximation, �gure 4.22 illustrates the
kernels of each synaptic type in the biophysically accurate network. The mor-
phologies of the neurons are visible here, as the inhibitory BaS neuron dendrite
extends up to z =115 µm, which is close to channel 10 as seen in table 3.2. The
E:I and I:I kernels have very small extracellular responses in channels 1-8 for
this reason. Note once again that the kernels used span τs ± 100 ms instead
of the time frame of [τs − 20 ms, τs + 30 ms] illustrated in �gure 4.22. The
injection sites of the E:E and I:E synapses are once again visible in the kernels.
The negative extracellular potential repsponse in channels 6 and 11 of the E:E
kernels indicate a positive synaptic stimulus in those regions. Similarly, the I:E
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Figure 4.22: Biophysically detailed network kernels

kernel has a positive extracellular potential response in channel 11, indicating
that these synapses provide a negative stimulus to the soma. These agree well
with the depth preferences stated in table 3.7. The other channels have re-
sponses of opposite sign in regions which neighbor the synaptic connections - a
result of current conservation as described in section 2.3.3. Note that the E:E
kernel type has two depth preferences of 0 µm and 500 µm, as stated in table
3.7 and seen in �gure 4.22. This results in a total of three polarity transition
zones around channels 4, 7 and 10. These local cancellations in polarity tran-
sition regions were previously seen to jeopardize the performance of the kernel
method in channel 9 in �gure 4.10, and should be noted for the upcoming kernel
results.

It important to discuss the width and amplitude of the I:E kernel. These
two subjects were presented in detail in the section 4.1.4, where the inhibitory
I:E and I:I kernels of �gure 4.9 were wide and had relatively high amplitudes.
The signal amplitudes and gain is signi�cantly larger for the I:E kernels than
for any of the others, where many of the I:E kernels do not decay to zero before
the end of the illustrated [τs − 20 ms, τs + 30 ms] time window. These widths
were attributed to the long inhibitory synaptic decay constant τ2 = 9 ms in
�gure 4.9, though there is an additional factor which is referred to as intrinsic
dendritic �ltering. The term is described by Lindén et al. [71], which builds
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Figure 4.23: `Reference' LFP signal in relation to the current-based hybrid-
and kernel method LFP approximation signals.
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upon work by Pettersen et al. [72]. The latter �nds that a low-pass �ltering
e�ect is found in the extracellular potential response of APs, with a larger low-
pass e�ect with increasing distance from the soma[72]. Lindén et al. [71] stated
as a main �nding that there is an unavoidable low-pass �ltering e�ect of the
extracellular potential frequency signature due to dendrites acting as electrical
cables. Lindén et al. [71] goes on to state that this applies to frequencies as
low as 10 Hz (well within the LFP domain), and that this �ltering impact also
occurs for synaptic input. The LFP power spectra which were recorded closer
to the active synapses were typically found to be less low-pass �ltered than
those recorder further away [71]. The results from the two papers are similar;
passing axial currents through a large amount of compartments produces an
increased low-pass �ltering e�ect of the recorded extracellular response. Fig-
ure 4.22 con�rms this, as channels 1-3 of the I:E kernels are farthest from the
synaptic input in the soma, and are found to have the lowest frequency con-
tent. The principles which lead to the low-frequency content of the kernels are
important to identify, as low-frequent kernels are unable to produce relatively
high-frequent LFP signals. This was described in section 3.2.3 and by �gure 3.1,
where a noisey input signal was smoothed by a relatively wide triangular kernel.
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Figure 4.24: Current-based hybrid model relative to the kernel method in the
biophysically detailed network. PCC and MSE metrics are included.
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The `Reference' LFP signal is illustrated with the current-based hybrid
model and the kernel method LFP signals in �gure 4.23. Channels 1-5 a�rm
the current-based hybrid method to be a successful recreation of the `Reference'
signal, though the kernel method signal frequency content is too low. The three
signals agree very well in the other channels, though the `Reference' signal am-
plitude is far too large in the somatic region of channel 11. The hybrid method
does perform slightly better than the kernel method in the channels surrounding
channel 11, though this performance increase is marginal. The performance of
the kernel method in relation to the current-based hybrid method is illustrated
in �gure 4.24. This �gure contrasts with �gure 4.10, where the only poor PCC
evaluation was found in channel 9. Here, channels 1-5 reveal the poor kernel
method performance in terms of PCC metric, where the red kernel LFP signal is
far too low-frequent. The current-based hybrid and kernel methods are however
seen to be similar in channels 5-13, where the kernel method variability is larger.

4.3.2 Stimulus Increase
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Figure 4.25: Spike raster graphs of the four levels of external stimulus in the
biophysically detailed neuron network, including the smoothed total number of
spikes per time. The default nidx value is displayed on top of each spike raster.



CHAPTER 4. RESULTS 86

Moving on to the stimulus increase study of the upgraded network, keep in
mind that the default value of nidx = 64 is increased in the same fashion as
in section 4.2.1, while the normalization factors [εE, εI] presented in �gure 4.20
are kept constant throughout. To remind, the population-speci�c number of
external synapses nidx is then nidx,p = εpnidx. The kernel method is compared
to the `Reference' signal for each network stimulus state, and an additional
comparison using the hybrid method �nalizes the study.

The spike rasters and their quantitative metrics of the four networks are
all illustrated in �gure 4.25. The total number of spikes per time are included
below in the same fashion as previously, assisting in identifying network spike
structures. The spiking activities of both populations ν̄p increase signi�cantly
for increased external stimulus nidx, as previously. Recall that the synchronic-
ity measure SPCC is not considered reliable under such conditions. Synchronous
structures are very clear in �nal 1000 ms of all four the Tsim =3200 ms simula-
tions, and the �nal three external stimulus levels nidx ∈ [128, 192, 256] demon-
strate the clearest synchronicity patterns.
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Figure 4.26: `Reference' and Kernel method LFP signals for each channel of
the four states of stimulus increase. The default nidx value is indicated at the
top of each column.
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Figure 4.27: Top row: The PCC evaluation metric results of the `Reference'
and kernel signals of each channel. Bottom row: The MSE evaluation metric
results of the `Reference' and kernel signals of each channel. The default nidx
value is indicated at the top of each column.
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The `Reference' and kernel LFP signals of each network state are illustrated
by �gure 4.26. As compared to �gures 4.13 and 4.16, the LFP amplitudes
across the four networks �gure 4.26 are quite consistent. The previous BaS
methodology extent study found the amplitudes to vary up to 8 times stronger
and �gure 4.26 shows that the amplitude of network nidx = 256 is only around
two times stronger than network nidx = 64.

Figure 4.27 illustrates the evaluation metrics of the signals seen in �gure
4.26. Recall that the kernels Hc

p illustrated in �gure 4.22 are produced by
the simultaneous �ring of the synaptic connections from within the network,
as described in section 3.2. This means that all the network con�gurations
nidx ∈ [64, 128, 192, 256] use the same kernels illustrated in �gure 4.22. The
inaccuracies seen in the topmost channel metrics of all columns in �gure 4.27
are therefore attributed to the same low-frequency content of the kernel model
discussed in �gures 4.22 and 4.24.

4.3.3 Hybrid and Kernel Comparison

The current-based hybrid method is �nally applied to the four networks and
compared to the kernel method. Figure 4.28 illustrates the LFP signals in de-
tail for all channels and networks. Note that the channels are illustrated on
relative scales for a better view of the details in the topmost channels. The sig-
nals a�rm the successful linear model performances in recreating the `Reference'
signal, indicating that a linear spike-LFP approximation can still account for a
large amount of the ground-truth signal variability in the biophysically detailed
network. Note the current-based hybrid model accuracy relative to the `Refer-
ence' signal in the topmost channels of column nidx = 64. The kernel method
predition in this region is far too low-frequent, and this seems to be a consistent
problem in channels 1-6 of column nidx = 64. In columns nidx = [128, 192, 256],
the current-based hybrid method seems to have consistent amplitude inaccu-
racies in channels 1-3. An amplitude inaccuracy of the hybrid model points
to an inaccurate post-synaptic membrane potential estimation V → V̄ . Note
that new calibration factors V̄p are not extracted for each new network state,
and that the values found in 4.21 are still used in all four networks presented.
Recalibration of the V̄p factors at the start of each network is a possible solution
to this. To �nalize, the kernel method is compared to the current-based hybrid
method by evaluation metric di�erences in �gure 4.29. Recall that the signs
between the two metric subractions is di�erent for the PCC and MSE metrics,
such that a positive value indicates a better current-based hybrid model perfor-
mance for both the PCC and MSE metrics. For all columns, the largest PCC
value di�erence is in the topmost channels, and the largest MSE di�erences are
in the channels closest to the soma. The former is prodominantly a result of
the kernel widths discussed around �gure 4.22, where the low-frequency content
of the kernels in the topmost channels results in a LFP approximation which
does not capture large amounts of the `Reference' LFP signal variability. The
largest overall di�erence between the two methods is found in network nidx = 64,
where the hybrid model outperforms the kernel method consistently across all
channels. The largest localized di�erence is found in channels 1 and 2 in net-
work nidx = 256, where the current-based hybrid method outperforms the kernel
method with a substantial di�erence of ∆PCC ≈ 0.6, though the methods have
similar performances in channels 3 and below.
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Figure 4.29: Top row: The PCC evaluation metric di�erences between the
current-based hybrid- and kernel methods. The PCC values of both methods
are calculated in relation to the `Reference' signal and subtracted. Top row: The
MSE evaluation metric di�erences between the current-based hybrid- and kernel
methods. Both are calculated relative to the `Reference' and subtracted. The
network state is indicated by the default nidx value at the top of each column.



Chapter 5

Discussion and Conclusion

5.1 Recipe-, Hybrid-, and Kernel Implementa-

tions

The study aimed to test and assess the hybrid- and kernel methods, and the
results presented reinforce the work by Hagen et al. [3]. The approximations of
the ground-truth local �eld potential (LFP) signal produced by the linear spike-
LFP methods are overall found to be successful. The extracellular signals of the
conductance- and current-based hybrid schemes were both found to be very
accurate approximations of the ground-truth signal in the multicompartmental
ball-and-stick (BaS) network. Both methods were found to have inaccuracies
around the soma, and this is to be expected of the methods. The ground-truth
signal includes a number of nonlinear factors, and the most prominant one comes
from the high-frequent action potential (AP) contributions to the LFP around
the soma. The hybrid method was generally found to perform slightly better
than the kernel method, though the computational e�ciency and speed of the
kernel method is outstanding. On a mid-range personal computer, the hybrid
method generally took above 2 hours, whereas the kernel method could be com-
pleted in less than 3 minutes when given the preliminary network information.
This makes the kernel method a great option for LFP signal prediction in the
BaS network.

5.2 Limitations of the Linear Models

The thesis investigated how the performances of the linear methods were im-
pacted by synchronous network states. Two approaches were used to investigate
the limitations of the linear models: one in which the external drive/stimulus of
the network was increased up to four times stronger than the baseline, and an-
other in which synchronous activity was created by tuning the synaptic strengths
of the network. The expectations of the study were that the linear prediction
performance would decrease with increased synchronicity, as compared to the
baseline network. This study revealed that the two methods of inciting syn-
chronicity provided no signi�cant challenge to the kernel method, and that the
pearson correlation coe�cient (PCC) between the ground-truth signal and the
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kernel prediction were in fact found to improve with increased external drive/s-
timulus and synchronicity. This improvement is mostly attributed to the signal
amplitude increase, as the mean squared error (MSE) between the ground-truth
and kernel predictions increased consistently for both increased external drive/s-
timulus and synchronicity. The largest MSE between the ground-truth and ker-
nel method prediction by far was in the most synchronous network, where the
amplitude of the kernel method prediction was up to two times larger than the
ground-truth signal in all channels. An alternative to the kernel method should
be considered for LFP prediction in synchronous networks if signal amplitude
accuracy is of large importance.

5.3 Biophysically Detailed Network

A network was constructed using a biophysically detailed layer 5b pyramidal cell
from Hay et al. [65] to study how the linear methods perform using complex cell
models. The performance of the linear method predictions was expected to drop
when recreating the ground-truth LFP signal of the complex cell model network,
as the Hay cell consists of multiple additional nonlinear LFP contributions which
were not included in the BaS con�guration. The biophysically detailed network
LFP signals proved to be the most di�cult for the linear spike-LFP methods to
recreate. The current-based hybrid method was found to outperform the kernel
method overall, though both methods had large performance drops relative to
that found with the BaS network con�guration. These performance drops are
attributed to the complex characteristics of the Hay cell.

The impact of intrinsic dendritic �ltering on the kernels was found to produce
very low-frequency extracellular potential responses far from the synaptic input
sites, concurring with Lindén et al. [71]. This resulted in low-frequency LFP
signal approximations in the same channels, signi�cantly reducing the kernel
method LFP prediction variability and accuracy. Note that this did not impact
the hybrid method to the same degree despite the synaptic placements being
identical, meaning that intrinsic dendritic �ltering impacted the hybrid model
as well. The di�erence is likely attributed to the fact that the kernel method
reduces the contributions from speci�c synapses by averaging over the presy-
naptic cell populations. The hybrid methods ability to activate speci�c synapses
was therefore bene�cial in recreating the ground-truth LFP signal variability in
channels far from the soma.

In addition to intrinsic dendritic �ltering, the many additional ion channels
of the Hay cell proved to be a challenge to the linear spike-LFP methods. The
number of degrees of freedom in the Hay cell gave rise to complexities and
non-linear factors which were not present in the BaS network, and the hybrid-
and kernel schemes struggled to recreate these in their entirety. Despite the
additional nonlinear LFP contributions from the Hay cell, the two linear spike-
LFP methods were overall successful in approximating the LFP signal in terms
of both PCC and MSE measures, indicating that linearizing the system in this
fashion is suitable for larger scale networks.



CHAPTER 5. DISCUSSION AND CONCLUSION 93

5.4 Further Improvements

A number of potential shortcomings of the thesis are discussed in the follow-
ing section, together with potential further improvements to the methods used.
Centrally, the evaluation metrics presented could be calculated more rigorously.
The PCC metric in particular would bene�t from longer simulation times, con-
verging to a consistent estimator with increasing signal length. Simulating mul-
tiple runs with varying RNG seeds and averaging evaluation metrics across runs
would also yield more reliable performance evaluations. The trial size of the eval-
uation metrics was 1 in the thesis, and increasing the trial size would produce
more statistically signi�cant results. The synaptic model conversion method
used was also quite rudimentary, and the mean network value of the mean
somatic potential is likely not an ideal estimate for the general post-synaptic
membrane potential. This method produced very reliable LFP approximations
in the BaS network, though it likely contributed to errors in the biophysically
detailed network. The post-synaptic potential estimate was also only deter-
mined by the baseline network in the limitation studies, and the mean of the
mean somatic potential could be recalibrated for each of the three additional
networks in the increased external drive- and synchronicity studies. Alternative
methods for approximating the post-synaptic potential can also be considered,
and it could additionally be interesting to search for synaptic weight combina-
tions which result in highly synchronous activity in the biophysically detailed
network, as only the increased external drive methodology was applied in this
instance. A �nal discussion of the assumptions made in con�guring the models
of the thesis follows. Firstly, the membrane conductivity was set to be constant
throughout the simulations. In reality, the total conductance of the membrane
changes with the number of synaptic inputs. Cavallari et al. [31] sets the total
membrane conductance to equal the sum of passive leak conductance and ad-
ditional conductance which accounts for synaptic input. To account for this in
future work, since the total conductance would be a time-dependent function,
the average of the total conductance over time could be used to linearize the
system. Secondly, when modeling active, voltage-dependent conductances us-
ing inactive/passive ion channels, an equivalent quasi-linearized version of the
voltage-dependent conductances can be added to the membrane voltage dynam-
ics, assuming a typical membrane potential. Ness et al. [73] showed that the
LFP signals from active, voltage-dependent ion channels which use the Hodgkin-
Huxley formalism can be accurately approximated by the addition of a linearized
quasi-active conductance term in the voltage dynamics expression. The model
then accounts for active Na+ and K+ contributions in the soma while still
maintaining a linear spike-LFP relation. The current study removed the gNa
and gK conductances from the somatic membrane dynamics without adding an
equivalent quasi-active conductance, and an addition of a linearized quasi-active
conductance term in the membrane dynamics is another further improvement
for future work. Thirdly and �nally, the so-called hyperpolarization-activated
inward current Ih was not accounted for in the BaS neuron models. This current
is activated by a hyperpolarized membrane, capable of producing rebound spik-
ing in neurons [74] and resonance in the LFP power spectral density (PSD)[73].
It would also be prudent to investigate the impact which the hyperpolarization
current has on the linear methods.
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5.5 Conclusion

The linearized spike-LFP methods were found to successfully recreate the ref-
erence LFP signal in the BaS network. This indicates that the LFP signals are
linearly dependent on the spikes of the BaS network, and is a promising �nd in
relation to the method applications. The limitations of the linear methods were
also investigated, and neither the increased external drive nor the synchronous
network were found to impact the kernel method negatively. The increase in
network stimulus was even found to result in more accurate PCC metrics, al-
beit at the cost of MSE inaccuracies. A similar result was found in networks in
which synchronicity was induced. The PCC values of all channels were found
to be consistently more accurate with increased synchronicity, though the most
synchronous network had relatively large MSE errors in all channels.

The implementation and trials performed on the Hay cell revealed complex
Hay cell dynamics to be the most damaging to the linear spike-LFP method
performances. The impacts of intrinsic dendritic �ltering, multiple new ion
channels, and hyperpolarization-activated current Ih introduced new non-linear
factors which the hybrid- and kernel methods were unable to account for. Ulti-
mately, regions in which the hybrid model was preferable to be kernel method
were identi�ed in channels 1 and 2, the channels farthest from the soma. These
regions were mainly attributed to regions of signi�cant intrinsic dendritic �lter-
ing within the Hay cell.

These results could prove to be very promising when implemented for large
scale simulations. The linear methods provide an advantage which allows for
further upscaling of these systems, and these methods are not necessarily limited
to LFP prediction. Although the LFP signal was the primary focus of the
thesis, the linearization techniques presented are potentially applicable to other
electrophysiological recordings of the brain which have clinical and research
applications. Further exploring the application of these linear methods to MRI,
MEG, EEG, and other brain activity recordings could provide a computational
breakthrough to the simulations required today.
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