

Master thesis

Unsupervised segmentation of

biosignal-based time-series

Knut Joar Strømmen

 Robotics and Intelligent Systems

60 credits

Department of Informatics

Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

 Spring 2020

1

2

Thesis

Unsupervised segmentation of

 biosignal-based time-series

Knut Joar Strømmen

3

4

Abstract

The rise of the Internet of Things (IoT) and the development of more compact and less power-

hungry sensors have led to an increasing amount of data from various modalities. To analyze

a large amount of continuously recorded time series data at scale, it is often beneficial to

separate the data into homogenous segments before further analysis or classification. One

common way to do time series segmentation is to find the transitions that separate the

different segments. These transitions are in the literature referred to as changepoints, and the

problem of discovering them is referred to as change point detection (CPD). Long time series

data is hard and time-consuming to label; thus, having a CPD algorithm that works in an

unsupervised fashion is highly beneficial.

This thesis provides an overview of automatic change point detection, time series

segmentation, and previous research concerning representation learning in the context of

CPD. The main contribution of this thesis is the Latent Space Unsupervised Semantic

Segmentation (LS-USS) model, which is an unsupervised segmentation algorithm that is

hyperparameter lite, domain agnostic, and works well with multidimensional data. This model

utilizes an autoencoder for extracting constrained feature encodings from time-series data

before using the similarity between neighboring feature encodings in time to do changepoint

detection and segmentation.

The LS-USS model is compared with other state-of-the-art algorithms on multiple datasets.

The results show that the model performs similarly or better than other state-of-the-art

models. To demonstrate a practical application of LS-USS, a dataset containing activity data

from non-depressed and depressed participants is used. Using the LS-USS algorithm as a

preprocessing step before classification significantly outperforms the previous best

classification results on this dataset.

5

Table of Contents
Abstract .. 4

Preface .. 14

1 Introduction .. 16

1.1 Applications of Change Point Detection ... 16

1.2 Mental Health Monitoring Systems ... 17

1.3 Summary of the Work ... 18

1.4 Chapters ... 20

1.4.1 Background .. 20

1.4.2 Methods .. 21

1.4.3 Datasets .. 21

1.4.4 Experiments .. 21

2 Background .. 22

2.1 Time series change point detection ... 22

2.1.1 Wanted Features ... 22

2.1.2 Supervised CPD methods ... 23

2.1.3 Unsupervised CPD methods ... 23

2.2 Matrix profiles ... 27

2.2.1 Mueen’s algorithm for similarity search .. 29

2.2.2 Scalable Time-series Anytime Matrix Profile .. 31

2.3 Fast Low-cost Unipotent Semantic Segmentation ... 33

2.3.1 Region Extraction Algorithm ... 35

2.3.2 Fast Low-cost Online Semantic Segmentation .. 36

2.3.3 Locality – Temporal constraint .. 37

2.3.4 Multidimensional time series data .. 38

2.4 Representation Learning .. 39

2.4.1 Representation learning for change point detection ... 40

2.4.2 Time Series Segmentation through Automatic Feature Learning 42

2.5 Evaluation Metrics ... 43

2.6 Spectral density estimation .. 47

2.6.1 Periodograms .. 47

2.6.2 Windowed Periodograms ... 48

2.6.3 Welch’s method .. 49

6

3 Methods .. 50

3.1 Data Scalers ... 50

3.1.1 NoScaler ... 51

3.1.2 StandardScaler .. 51

3.1.3 MinMaxScaler .. 51

3.1.4 RobustScaler ... 51

3.2 Change point detection algorithms .. 52

3.2.1 Components .. 52

3.2.2 Latent Space Unsupervised Semantic Segmentation ... 62

3.2.3 FLUSS and FLOSS Implementation .. 62

3.2.4 TSSTAFL Implementation ... 63

3.2.5 FLUSS-Welch .. 63

3.3 Change Point Extraction Algorithms ... 63

3.3.1 Regime Extraction Algorithm Implementation .. 64

3.3.2 Local Regime Extractor Algorithm .. 64

3.3.3 Local Threshold Extraction Algorithm .. 65

4 Datasets .. 68

4.1 UCI Human Activity Recognition Using Smartphones Dataset 68

4.2 Expressive Motion With Dancers .. 69

4.3 Long-Term 3DC Dataset ... 70

4.4 Depresjon ... 72

4.5 UCR Time Series Semantic Segmentation Archive .. 73

5 Experiments .. 76

5.1 Comparisons Done on Long Multidimensional Data .. 76

5.1.1 Experiments .. 78

5.1.2 Discussion .. 90

5.2 Improving Depression Detection Using Natural Segments 93

5.2.1 Experiments .. 93

5.2.2 Discussion .. 96

5.3 Automatic subsequence size using FLUSS-Welch ... 97

5.3.1 Experiment ... 97

5.3.2 Discussion .. 99

6 Conclusion .. 101

7

6.1 Future work .. 101

7 References .. 104

8

List of Figures
FIGURE 1: EXAMPLE OF A CHANGEPOINT OCCURRENCE AT TIMESTEP 25,000. FROM A DATASET IN THE UCR TIME SERIES SEMANTIC

SEGMENTATION ARCHIVE [2] WHERE A SUBJECT WAS LYING ON A TILT TABLE WITH FOOT SUPPORT. AT TIMESTEP 25,000 THE

TILT TABLE WAS RAPIDLY ROTATED TO THE STAND-UP POSITION. THE FIGURE SHOWS THE VOLUNTEERS ABP (ARTERIAL BLOOD

PRESSURE). ... 16

FIGURE 2: UNSUPERVISED METHODS FOR CHANGE POINT DETECTION. THE PAPER [4] PROVIDES AN OVERVIEW OF ALL THE METHODS

DEPICTED IN THE DIAGRAM. .. 24

FIGURE 3: PLOT DEPICTING TYPICAL CLUSTER CENTERS GENERATED BY STS-CLUSTERING. FROM [17] ... 25

FIGURE 4: PLOT SHOWING THE NOGUNGUN DATASET FROM THE UCR TIME SERIES ARCHIVE.. 26

FIGURE 5: PLOT SHOWING THE RESULTS OF AVERAGING OVER A SELECTION OF SUBSEQUENCES EXTRACTED FROM THE NOGUNGUN

DATASET. THE DATA IS SCALED TO ZERO MEAN FOR THE WHOLE DATASET. .. 26

FIGURE 6: EXAMPLE FROM [18] OF A MOTIF (MARKED IN BOLD) THAT OCCURS FOUR TIMES. FROM [17] 27

FIGURE 7: THE DISTANCE MATRIX IS A MATRIX CONSTRUCTED FROM ALL THE DISTANCE PROFILES, WHICH SHOWS HOW SIMILAR EACH

SUBSEQUENCE IN THE TIMES SERIES IS TO EVERY OTHER SUBSEQUENCE IN THE SAME TIME SERIES. IF ONE TAKES THE MINIMUM

DISTANCE OF EACH ROW, ONE WILL END UP WITH THE MATRIX PROFILE. THE ORIGINAL TIME SERIES IS SHOWN IN YELLOW AND

THE MATRIX PROFILE IN GREEN. THE EXCLUSION ZONE IS TO AVOID TRIVIAL MATCHES. .. 28

FIGURE 8: PLOT DEPICTING A TIME SERIES AND ITS CORRESPONDING MATRIX PROFILE. THE TIME SERIES PRESENTED IS AN EXCERPT

FROM THE DATASET NOGUNGUN FROM THE UCR TIME SERIES ARCHIVE. .. 29

FIGURE 9: OUTLINE OF THE SLIDINGDOTPRODUCT [20] .. 30

FIGURE 10: OUTLINE OF MASS .. 31

FIGURE 11: OUTLINE OF THE STAMP ALGORITHM ... 32

FIGURE 12: OUTLINE OF THE STAMPI ALGORITHM .. 33

FIGURE 13: VISUALISING THE ARC-CROSSINGS. FROM [12] .. 33

FIGURE 14: THE TOP PLOTS SHOWS THE ABP OF A RECLINING MALE. AT TIME 2400 HE WAS ROTATED TO A STANDING POSITION. THE

BOTTOM PLOT SHOWS THE CORRESPONDING AC. FROM [12].. 34

FIGURE 15: THE TOP PLOT SHOWS THE EPIRICAL VS THEORETICAL IAC. THE BOOTOM PLOT SHOWS THE CORRECTED ARC CURVE (CAC)

AND HERE WE CAN THAT THE ARC CURVE IS CLOSE TO 0 WHEN THERE IS A CHANGE POINT. FROM [12] 35

FIGURE 16: OUTLINE OF THE REA ALGORITHM .. 36

FIGURE 17: THE TOP PLOTS SHOW CHANNEL 0 OF SUBJECT 14 FROM THE DATASET “A PUBLIC DOMAIN DATASET FOR HUMAN

ACTIVITY RECOGNITION USING SMARTPHONES” [22]. THE BOTTOM PLOTS SHOW THE CAC PRODUCED BY THE FLUSS

ALGORITHM. THE TWO LEFT PLOTS SHOW THE PREDICTED CHANGEPOINT WHEN NOT USING AN EXCLUSION ZONE, WHILE THE

RIGHT PLOTS SHOW THE PREDICTED CHANGE POINTS WHEN USING AN EXCLUSION ZONE. WHEN THERE IS NO EXCLUSION ZONE,

ALL CHANGEPOINTS END UP IN THE SAME “VALLEY”. .. 36

FIGURE 18: THE BI DIRECTIONAL IAC VS. THE ONE-DIRECTIONAL IAC (IAC1D). FROM [12] .. 37

FIGURE 19: TOP PLOT SHOWS THE ACCELEROMETER DATA OF A WHO FROM PAMAP DATASET. PERSON ACENDING STARIS,

DESCENDING STAIRS AND ANOTHER SEGMENT OF ASCENDING STAIRS AGAIN WITH TRASISTIONAL ACTIVITIES WHICH INCLUDES

SOME NOISE DATA IN BETWEEN. MIDDLE PLOT SHOWS THE CAC WHEN NOT INCLUDING A TEMPORAL CONSTRAINT. WHILE THE

BOTTOM PLOT SHOWS THE CAC PRODUCED WHEN USETTING THE TEMPORAL CONSTRAINT TO 1000, 6000 AND 8000. FROM

[12] .. 37

FIGURE 20: EXAMPLE OF MULTIDIMENSIONAL TIME SERIES SEGMENTATION OF THREE ACTIVITIES: “BASKETBALL FORWARD DRIBBLE”,

“WALK WITH WILD LEGS” AND “NORMAL WALK”. COMBINING THE TWO CACS, BY TAKING THE MEAN, MAKES IT POSSIBLE TO

SEGMENT ALL THREE ACTIVITIES. FROM [12] .. 38

FIGURE 21: ALEXNET [23]. EXAMPLE OF A DEEP CONVOLUTIONAL NEURAL NETWORK. THE EARLIER LAYERS WILL LEARN TO DETECT

LOW-LEVEL FEATURES, WHILE THE LATER LAYERS WILL COMBINE THESE LOWER-LEVEL FEATURES INTO HIGH-LEVEL FEATURES. . 39

FIGURE 22: EXAMPLE OF A BASIC AUTOENCODER ARCHITECTURE. THE IMAGE OUTPUTTED BY THE NETWORK CLOSELY RESEMBLES THE

INPUT IMAGE. THE LATENT LAYER IN THE MIDDLE OF THE NETWORK WOULD HERE SERVE AS A GOOD LOW DIMENSIONAL

ENCODING OF THE INPUT IMAGE. ... 40

FIGURE 23: BLOCK DIAGRAM SHOWING THE MODULES USED IN THE ARTICLE “REPRESENTATION LEARNING FOR UNSUPERVISED

HETEROGENEOUS MULTIVARIATE TIME SERIES SEGMENTATION AND ITS APPLICATION” [31]. IT SHOWS REPRESENTATION

https://uio-my.sharepoint.com/personal/knutjstr_uio_no/Documents/Master/Thesis_knut.docx#_Toc72214886
https://uio-my.sharepoint.com/personal/knutjstr_uio_no/Documents/Master/Thesis_knut.docx#_Toc72214886
https://uio-my.sharepoint.com/personal/knutjstr_uio_no/Documents/Master/Thesis_knut.docx#_Toc72214890
https://uio-my.sharepoint.com/personal/knutjstr_uio_no/Documents/Master/Thesis_knut.docx#_Toc72214890
https://uio-my.sharepoint.com/personal/knutjstr_uio_no/Documents/Master/Thesis_knut.docx#_Toc72214890
https://uio-my.sharepoint.com/personal/knutjstr_uio_no/Documents/Master/Thesis_knut.docx#_Toc72214890
https://uio-my.sharepoint.com/personal/knutjstr_uio_no/Documents/Master/Thesis_knut.docx#_Toc72214890

9

LEARNING BEING USED TO COMBINE CHANNEL DATA FROM DIFFERENT SOURCES BEFORE SEGMENTATION. IN THE ARTICLE, THEY

USED THE WORD EMBEDDING MODEL WORD2VEC FOR THE REPRESENTATION LEARNING MODULE. 41

FIGURE 24: MODEL DEPICTION FROM THE PAPER “TIME SERIES SEGMENTATION THROUGH AUTOMATIC FEATURE LEARNING” [12] 42

FIGURE 25: OUTLINE OF THE BREAKPOINT SEGMENTATION ALGORITHM ... 43

FIGURE 26: EXAMPLE FROM THE ARTICLE "TIME SERIES SEGMENTATION THROUGH AUTOMATIC FEATURE LEARNING"[36] (DETAILED IN

SECTION 2.4.2) WHERE THEY MADE A ROC CURVE TO HELP EVALUATE THE BEST MODEL DEPTH FOR AN AUTOENCODER BASED

ON THE PERFORMANCE ON THE UCI DATASET [33].. 45

FIGURE 27: A POWER SPECTRUM OF TWO SINUSOIDS. FROM THE PERIODOGRAM IT IS EASY TO SEE THAT THE SINUSOIDS HAVE

FREQUENCIES AROUND 35HZ AND 45HZ... 47

FIGURE 28: WINDOW FUNCTIONS IN TIME AND FREQUENCY DOMAIN. FROM LECTURE “SPECTRAL ESTIMATION I” IN INF4480, SLIDE

40 ... 48

FIGURE 29: TWO CLOSE SINUSOIDS WITH FREQUENCIES AT 0.145 AND 0.150 WITH ADDED WHITE GAUSSIAN NOISE. IT SHOWS THE

EFFECT OF USING DIFFERENT WINDOW FUNCTIONS. FROM LECTURE “SPECTRAL ESTIMATION I” IN INF4480 ,SLIDE 41. 49

FIGURE 30: VISUAL DEPICTION OF HOW THE TIME SERIES IS DIVIDED INTO SUB-PARTS WHEN USING THE WELCH METHOD 49

FIGURE 31: FLOW CHART DEPICTING THE DIFFERENT MODEL COMPONENTS USED FOR EACH OF THE CPD ALGORITHMS. THE COLORED

ALGORITHMS ARE PART OF THIS THESIS CONTRIBUTION. .. 52

FIGURE 32: FULLY CONNECTED MODEL FOR AN INPUT SIZE OF 30. INSPIRED BY THE PAPER “TIME SERIES SEGMENTATION THROUGH

AUTOMATIC FEATURE LEARNING” [37]. ... 53

FIGURE 33:: THE TRANSPOSED OF CONVOLVING A 3X3 KERNEL OVER A 5X5 INPUT PADDED WITH A 1X1 BORDER USING TWO 2X2

STRIDES. THIS EXAMPLES SHOWS 2D CONVOLUTION, BUT THE SAME PRINCIPLES APPLY TO 1D CONVOLUTION—EXAMPLE FROM

THE JOURNAL ARTICLE [41]. .. 54

FIGURE 34: THE TOP PLOTS SHOW ALL TEN CHANNELS OF TWO SUBSEQUENCES OF SIZE 52 TAKEN FROM THE LONG-TERM 3DC

DATASET [42]. THE MIDDLE PLOTS SHOW THE LATENT REPRESENTATION OF THE SUBSEQUENCES. THE BOTTOM PLOTS SHOW THE

RECONSTRUCTED SUBSEQUENCE. THE AUTOENCODER USED IS THE CONVOLUTIONAL MODEL. ... 55

FIGURE 35: EXAMPLE OF THE FULL DISTANCE MATRIX USED TO CALCULATE MATRIX PROFILE PFF FROM A TIME SERIES OF LENGTH 4000.

CALCULATING THE MATRIX PROFILE FOR THIS LENGTH IS NOT THAT TIME-CONSUMING ON A MODERN GPU, BUT HANDLING

LARGER TIME SERIES WOULD GET DIFFICULT AS THE DISTANCE MATRIX WOULD REQUIRE EXPONENTIALLY MORE SPACE AND

CALCULATION TIME. .. 56

FIGURE 36: RESULTS OF ONLY CALCULATING THE DISTANCES INSIDE A TEMPORAL CONSTRAINT TC OF 800. TO EXCLUDE TRIVIAL

MATCHES, THE LINE ALONG THE DIAGONAL IS ALSO NOT CALCULATED. ... 57

FIGURE 37: SHOWS THE COLLAPSE OF THE DISTANCE MATRIX INTO THE MATRIX PROFILE. THIS IS DONE BY EXTRACTING THE MINIMUM

VALUE OF EACH ROW. (P.S THE MATRIX PROFILE SHOWN HERE IS JUST FOR VISUALIZATION AND DOES NOT REPRESENT THE

ACTUAL MATRIX PROFILE) ... 58

FIGURE 38: OUTLINE OF THE ALGORITHM BATCHED COLLAPSE .. 58

FIGURE 39: SHOWS THE ALGORITHM BATCHED COLLAPSE ON A TIME SERIES OF LENGTH 10400. THE CALCULATION IS DIVIDED INTO

THREE BATCHES TO REDUCE MEMORY REQUIREMENTS FOR LONG-TIME-SERIES DATA. EACH BATCH PRODUCES ONE MATRIX

PROFILE. THE ORANGE SQUARES SHOW THE AREA THAT MUST BE RECALCULATED WHEN DOING A “BATCH COLLAPSE”. 59

FIGURE 40: TOP FIGURE SHOWS THE TEMPORARILY CONSTRAINED MATRIX PROFILE OF A TIME SERIES OF LENGTH 10400. THE SECOND

FIGURE THE THREE BATCHED MATRIX PROFILES CALCULATED. THE BOTTOM FIGURE SHOWS THE FULL MATRIX PROFILE AFTER

TAKING THE MINIMUM VALUE IN THE OVERLAPPING AREA. .. 59

FIGURE 41: SHOWS THE ONLINE VERSION OF LSMP ON A TIME SERIES OF LENGTH 10400. NO RECALCULATION IS NEEDED WHEN

UPDATING THE DISTANCE MATRIX ... 60

FIGURE 42: TOP FIGURE SHOWS THE ORIGINAL "SMART CANE" TIME SERIES FROM THE UCR DATASET. THE MIDDLE FIGURE SHOWS THE

PERIODOGRAM OF THE TIME SERIES. THE BOTTOM FIGURE SHOWS THE PERIODOGRAM CREATED USING WELCH'S METHOD 61

FIGURE 43: OVERVIEW OF THE LS-USS AND LS-USS ONLINE ALGORITHMS. .. 62

FIGURE 44: OVERVIEW OF THE FLUSS AND FLOSS ALGORITHMS. ... 62

FIGURE 45: OVERVIEW OF THE TSSTAFL ALGORITHM. ... 63

FIGURE 46: OVERVIEW OF THE FLUSS-WELCH ALGORITHM. .. 63

FIGURE 47: THE TOP PLOT SHOWS THE ORIGINAL CAC, WHILE THE BOTTOM PLOT SHOWS THE SCALED CAC. 64

FIGURE 48: OUTLINE OF THE LREA ALGORITHM .. 65

10

FIGURE 49: THE TOP PLOT SHOW CHANNEL0 AND THE TRUE CP LOCATIONS OF A SUBJECT IN THE UCI DATASET. THE SECOND PLOT

SHOW THE ASSOCIATED CAC. THE THIRD PLOT SHOW THE SCALED CAC. THE FOURTH PLOT SHOW THE THRESHOLDED CAC WITH

THE PREDICTED CHANGEPOINTS IN EACH “VALLEY”. THE LAST PLOT SHOWS THE PREDICTED CHANGEPOINTS IN CONJUCTION WITH

CHANNEL0 AND THE TRUE LOCATIONS. .. 66

FIGURE 50: OUTLINE OF THE LTEA ALGORITHM ... 67

FIGURE 51: CHANNEL ZERO AND THREE IN A TIME SERIES FROM THE UCI DATASET .. 69

FIGURE 52: CHANNEL ZERO AND THREE IN A TIME SERIES FROM THE DANCE DATASET .. 70

FIGURE 53: CHANNEL ZERO AND THREE IN A TIME SERIES FROM THE EMG DATASET .. 71

FIGURE 54: GESTURES USED IN THE LONG-TERM 3DC DATASET DATASET. FROM [46] ... 72

FIGURE 55: EXAMPLES OF CONTROL AND CONDITION PARTICIPANTS FROM THE DEPRESJON DATASET. .. 73

FIGURE 56: TREE SUB-DATASETS FROM THE UCR TIME SERIES SEMANTIC SEGMENTATION ARCHIVE[3] . THE FIRST PLOT SHOWS THE

CANE DATASET. THE SECOND PLOT SHOWS THE PULSUSPARADOXUS DATASET. THE LAST PLOT SHOWS THE NOGUNGUN

DATASET, AND THE IMAGES ABOVE SHOW HOW IT WAS MADE. ... 75

FIGURE 57: BOXPLOT SHOWING THE PERFORMANCE OF THE OFFLINE SEGMENTATION ALGORITHMS ON THE UCI DATASET 80

FIGURE 58: BOXPLOT SHOWING THE PERFORMANCE OF THE ONLINE SEGMENTATION ALGORITHMS ON THE UCI DATASET 80

FIGURE 59: TOP: CHANNEL 0 OF SUBJECT 4 IN THE UCI DATASET. MIDDLE: SEGMENTATION USING LS-USS – LREA- BOTTOM:

SEGMENTATION USING LS-USS – LTEA. .. 81

FIGURE 60: BOXPLOT SHOWING THE PERFORMANCE OF THE OFFLINE SEGMENTATION ALGORITHMS ON THE DANCE ARTIFICIAL DATASET

 ... 82

FIGURE 61: BOXPLOT SHOWING THE PERFORMANCE OF THE ONLINE SEGMENTATION ALGORITHMS ON THE DANCE ARTIFICIAL DATASET

 ... 82

FIGURE 62: TOP: CHANNEL 0 OF D41 IN THE DANCE ARTIFICIAL DATASET. MIDDLE: SEGMENTATION USING LS-USS – LREA-

BOTTOM: SEGMENTATION USING LS-USS – LTEA. .. 83

FIGURE 63: BOXPLOT SHOWING THE PERFORMANCE OF THE OFFLINE SEGMENTATION ALGORITHMS ON THE DANCE DATASET 84

FIGURE 64: BOXPLOT SHOWING THE PERFORMANCE OF THE ONLINE SEGMENTATION ALGORITHMS ON THE DANCE DATASET 84

FIGURE 65: TOP: CHANNEL 0 OF D24 IN THE DANCE DATASET. MIDDLE: SEGMENTATION USING LS-USS – LREA- BOTTOM:

SEGMENTATION USING LS-USS – LTEA. .. 85

FIGURE 66: BOXPLOT SHOWING THE PERFORMANCE OF THE OFFLINE SEGMENTATION ALGORITHMS ON THE EMG ARTIFICIAL DATASET

 ... 86

FIGURE 67: BOXPLOT SHOWING THE PERFORMANCE OF THE ONLINE SEGMENTATION ALGORITHMS ON THE EMG ARTIFICIAL DATASET

 ... 87

FIGURE 68: TOP: CHANNEL 0 OF GESTURE19 IN THE EMG ARTIFICIAL DATASET. MIDDLE: SEGMENTATION USING LS-USS – LREA-

BOTTOM: SEGMENTATION USING LS-USS – LTEA. .. 87

FIGURE 69: BOXPLOT SHOWING THE PERFORMANCE OF THE OFFLINE SEGMENTATION ALGORITHMS ON THE EMG DATASET 88

FIGURE 70: BOXPLOT SHOWING THE PERFORMANCE OF THE ONLINE SEGMENTATION ALGORITHMS ON THE EMG DATASET............. 89

FIGURE 71: TOP: CHANNEL 0 OF PARTICIPANT3_EVALUATION3 IN THE EMG DATASET. MIDDLE: SEGMENTATION USING LS-USS –

LREA- BOTTOM: SEGMENTATION USING LS-USS – LTEA. .. 89

FIGURE 72: TOP PLOT SHOW 13 DAYS OF ACTIVITY DATA FROM A PARTICIPANT. BOTTOM PLOT SHOWS THE CAC OUTPUTTED BY LS-

USS. NOTICE THAT ON THIS PLOT, THE STRIPED GREEN LINES DO NOT REPRESENT THE GROUND TRUTH CHANGEPOINTS BUT A

CHANGE OF DATE. ... 94

FIGURE 73: BOXPLOTS OF THE F1 AND MCC SCORES FOR 30 RUNS. .. 95

FIGURE 74: PERFORMANCE OF DIFFERENT FIXED SEGMENT LENGTHS (BLUE) VS PERFORMANCE OF USING LS-USS (ORANGE). THE

MCC-SCORES ARE THE MEAN OVER 30 RUNS. THE LIGHT BLUE SHOWS THE IQR (INTER QUARTILE RANGE) OF THE FIXED

SEGMENTS, WHILE THE LIGHT ORANGE SHOWS THE IQR OF THE LS-USS SEGMENTATION. ... 96

FIGURE 75: SEGMENTATION DONE ON THE SMART CANE DATASET. ... 99

FIGURE 76: SEGMENTATION DONE ON THE FETAL2013 DATASET. THE TOP PLOT SHOWS CHANNEL0. THE MIDDLE PLOT SHOWS THE

SEGMENTATION RESULT WHEN USING STANDARD FLUSS. THE BOTTOM PLOT SHOWS THE SEGMENTATION RESULT WHEN USING

FLUSS-WELCH. THE CACS ARE SIMILAR, BUT WHEN USING THE FLUSS-WELCH BOTH CHANGEPOINTS ENDS UP IN THE SAME

“VALLEY” .. 100

https://uio-my.sharepoint.com/personal/knutjstr_uio_no/Documents/Master/Thesis_knut.docx#_Toc72214920
https://uio-my.sharepoint.com/personal/knutjstr_uio_no/Documents/Master/Thesis_knut.docx#_Toc72214920
https://uio-my.sharepoint.com/personal/knutjstr_uio_no/Documents/Master/Thesis_knut.docx#_Toc72214920
https://uio-my.sharepoint.com/personal/knutjstr_uio_no/Documents/Master/Thesis_knut.docx#_Toc72214920
https://uio-my.sharepoint.com/personal/knutjstr_uio_no/Documents/Master/Thesis_knut.docx#_Toc72214944

11

FIGURE 77: SEGMENTATION DONE ON THE WALKJOGRUN DATASET. THE TOP PLOT SHOWS CHANNEL0. THE MIDDLE PLOT SHOWS THE

SEGMENTATION RESULT WHEN USING STANDARD FLUSS. THE BOTTOM PLOT SHOWS THE SEGMENTATION RESULT WHEN USING

FLUSS-WELCH. THE CACS ARE SIMILAR, BUT WHEN USING THE FLUSS-WELCH THE BOTH CHANGEPOINTS ENDS UP IN THE

SAME “VALLEY” .. 100

FIGURE 78: A PROPOSED MODULAR APPROACH TO UNSUPERVISED TIME SERIES SEGMENTATION.. 102

FIGURE 79: SENSOR CO-OCCURRENCES.APP: APPLICATION USAGE, SOCIAL: SOCIAL MEDIA, EEG: ELECTROENCEPHALOGRAM, SCREEN:

SMARTPHONE SCREEN STATE, CONTACTS: PHONE CONTACT INFORMATION, CALLS: PHONE CALL LOGS, LOCATION: GPS AND CELL

TOWERS,SPO2: BLOOD OXYGEN SATURATION LEVEL. .. 103

12

List of Tables
TABLE 1: OVERVIEW OF THE IMPLEMNETED ALGORITHMS. THE UNDERLINED ALGORITHMS ARE NEW METHODS DEVLOPED DURING THIS

THESIS. ... 50

TABLE 2: OVERVIEW OF THE CONVOLUTIONAL MODEL FROM INPUT TO OUTPUT. .. 54

TABLE 3: OVERVIEW OF THE DIFFERENT DATASETS AND CORRESPONDING ABBREVIATIONS AND FEATURES. THE ORIGINAL TRAINING

DATA IN THE DATASETS EXPRESSIVE MOTION WITH DANCERS AND LONG-TERM 3DC DATASET IS USED TO CONSTRUCT ARTIFICIAL

DATASETS. ... 68

TABLE 4: THE FIRST 10 MINUTES OF DATA FOR ONE PARTICIPANT IN THE DEPRESJON DATASET .. 72

TABLE 5: DESCRIPTIONS FROM A PRESENTATION ON ARTICLE WEBSITE [2] ... 74

TABLE 6: OVERVIEW OF THE ONLINE ALGORITHMS USED AND THEIR HYPERPARAMETERS. NW=SUBSEQENCE SIZE, TC=TEMPORAL

CONSTRAINT, STEP-SIZE=DISTANCE IN TIME BETWEEN EACH SUBSEQUENCE USED (DECIDES HOW MUCH EACH SUBSEQUENCE

OVERLAP) .. 77

TABLE 7: OVERVIEW OF THE ONLINE ALGORITHMS USED AND THE HYPERPARAMETERS. NW=SUBSEQENCE SIZE, TC=TEMPORAL

CONSTRAINT, STEP-SIZE=DISTANCE IN TIME BETWEEN EACH SUBSEQUENCE USED (DECIDES HOW MUCH EACH SUBSEQUENCE

OVERLAP) .. 77

TABLE 8: MODEL CONFIGURATIONS FOUND FROM DOING HYPERPARAMETER SEARCH ON THE UCI DATASET. THE LEFTMOST COLUMN

SHOWS THE MEAN REGIME SCORE FROM SEGMENTING THE TEST SET. NW-RANGE = [50-150], STEP-SIZE-RANGE=[25-250] 79

TABLE 9: MODEL CONFIGURATIONS FOUND FROM DOING HYPERPARAMETER SEARCH ON THE UCI DATASET. THE LEFTMOST COLUMN

SHOWS THE MEAN PREDICTION LOSS MAE FROM SEGMENTING THE TEST SET. NW-RANGE = [50-150], STEP-SIZE-RANGE=[25-

250] .. 79

TABLE 10: MODEL CONFIGURATIONS FOUND FROM DOING HYPERPARAMETER SEARCH ON THE DANCE ARTIFICIAL DATASET. THE

LEFTMOST COLUMN SHOWS THE MEAN REGIME SCORE FROM SEGMENTING THE TEST SET. NW-RANGE = [50-400], STEP-SIZE-

RANGE=[25-250] .. 81

TABLE 11: MODEL CONFIGURATIONS FOUND FROM DOING HYPERPARAMETER SEARCH ON THE DANCE ARTIFICIAL DATASET. THE

LEFTMOST COLUMN SHOWS THE MEAN PREDICTION LOSS MAE SCORE FROM SEGMENTING THE TEST SET. NW-RANGE = [50-

400], STEP-SIZE-RANGE=[25-250] ... 82

TABLE 12: MODEL CONFIGURATIONS FOUND FROM DOING HYPERPARAMETER SEARCH ON THE DANCE DATASET. THE LEFTMOST

COLUMN SHOWS THE MEAN REGIME SCORE FROM SEGMENTING THE TEST SET. NW-RANGE = [50-400], STEP-SIZE-RANGE=[25-

250] .. 83

TABLE 13: MODEL CONFIGURATIONS FOUND FROM DOING HYPERPARAMETER SEARCH ON THE DANCE DATASET. THE LEFTMOST

COLUMN SHOWS THE MEAN PREDICTION LOSS MAE SCORE FROM SEGMENTING THE TEST SET. NW-RANGE = [50-400], STEP-

SIZE-RANGE=[25-250] .. 84

TABLE 14: MODEL CONFIGURATIONS FOUND FROM DOING HYPERPARAMETER SEARCH ON THE EMG ARTIFICIAL DATASET. THE

LEFTMOST COLUMN SHOWS THE MEAN REGIME SCORE FROM SEGMENTING THE TEST SET. NW-RANGE = [50-500], STEP-SIZE-

RANGE=[25-500] .. 85

TABLE 15: MODEL CONFIGURATIONS FOUND FROM DOING HYPERPARAMETER SEARCH ON THE EMG ARTIFICIAL DATASET. THE

LEFTMOST COLUMN SHOWS THE MEAN PREDICTION LOSS MAE FROM SEGMENTING THE TEST SET. NW-RANGE = [50-500],

STEP-SIZE-RANGE=[25-500] .. 86

TABLE 16: MODEL CONFIGURATIONS FOUND FROM DOING HYPERPARAMETER SEARCH ON THE EMG DATASET. THE LEFTMOST

COLUMN SHOWS THE MEAN REGIME SCORE FROM SEGMENTING THE TEST SET. NW-RANGE = [50-500], STEP-SIZE-RANGE=[25-

500] .. 88

TABLE 17: MODEL CONFIGURATIONS FOUND FROM DOING HYPERPARAMETER SEARCH ON THE EMG DATASET. THE LEFTMOST

COLUMN SHOWS THE MEAN PREDICTION LOSS MAE FROM SEGMENTING THE TEST SET. NW-RANGE = [50-500], STEP-SIZE-

RANGE=[25-500] .. 88

TABLE 18: TABLE SHOWING THE MEAN TEST SCORE, THE FRIEDMAN RANK, AND THE ADJUSTED P-VALUE ON EACH OF THE DATASETS

FOR THE OFFLINE ALGORITHMS. THE HIGHEST-RANKED ALGORITHM (USED AS THE CONTROL MODEL) ON EACH DATASET IS

SHOWN IN BOLD. H0=1 MEANS THAT THE NULL HYPOTHESIS IS ACCEPTED. H0=0 MEANS THAT THE NULL HYPOTHESIS IS

REJECTED. ... 91

13

TABLE 19: TABLE SHOWING THE MEAN TEST SCORE, THE FRIEDMAN RANK, AND THE ADJUSTED P-VALUE ON EACH OF THE DATASETS

FOR THE ONLINE ALGORITHMS. THE HIGHEST-RANKED ALGORITHM (USED AS THE CONTROL MODEL) ON EACH DATASET IS

SHOWN IN BOLD. H0=1 MEANS THAT THE NULL HYPOTHESIS IS ACCEPTED. H0=0 MEANS THAT THE NULL HYPOTHESIS IS

REJECTED. ... 92

TABLE 20: CLASSIFICATION RESULTS. THE METRICS SHOWN ARE THE MEAN SCORES OVER 30 RUNS .. 95

TABLE 21: SCORES ON THE UCR DATASET USING FLUSS WITH RECOMMENDED WINDOW SIZE VS. AUTOMATIC WINDOW SIZE. THE

BEST SCORING ALGORITHM ON EACH SUB-DATASET IS BOLDED OUT. .. 98

14

Preface

It has been a long year due to the ongoing pandemic. Luckily, this thesis has kept me busy!

The work undertaken has allowed me to combine concepts from various fields, which has

really made me appreciate the diverse education acquired through five years at IFI. It has also

helped me learn to manage high complexity, and I will never again underestimate the amount

of time that goes to documenting and writing when doing scientific work.

I want to give a huge thanks to Ulysse for being interested and supportive through the whole

thesis. I have learned a lot from you, and I am forever grateful for all the help.

Thanks to Jim for having an eye for details and for reminding me to Concentrate on where

you feel you get "fish" and "return home" before it gets too dark and difficult to get back to

the dock.

I would also like to thank my friends. Both for motivating me to write and for distracting me

from writing.

Lastly, a well-deserved thanks to my family for showing compassion and helping me out

under stressful periods.

15

16

1 Introduction

Humans use the cognitive functions of attention and memory to make constrained

representations about the world that are beneficial for relevant goal attainments [1]. An

important skill when driving a car is to differentiate between the road and the roadside.

Contrastingly, identifying every nook and cranny that the road is comprised of would be

useless. Instead, having a constrained encoding of the road based on high-level features such

as texture, color and contrasts are much more helpful. A sufficient change in the feature

encoding would indicate that the road lane has ended and that the roadside has started. These

transition between objects in visual data is often referred to as edges. If one has detected all

the edges between objects in an image, extracting the objects is trivial. In time-series data

mining, a similar concept to edges called changepoints is utilized. A changepoint represents a

transition between different states in the process that generates the time series data. The

problem of finding these transitions is referred to as Change point detection (CPD).

Figure 1: Example of a changepoint occurrence at timestep 25,000. From a dataset in the UCR Time

Series Semantic Segmentation Archive [2] where a subject was lying on a tilt table with foot support. At

timestep 25,000 the tilt table was rapidly rotated to the stand-up position. The figure shows the volunteers

ABP (Arterial Blood Pressure).

1.1 Applications of Change Point Detection
CPD algorithms are getting increasingly useful due to the rise of the Internet of Things (IoT)

and the development of more compact and less power-hungry sensors, which has led to an

increasing amount of long-time series data from various modalities. A device category that is

becoming more ubiquitous is wearable devices (wearables) attached to the user’s body.

Examples of such devices are smartphones, smartwatches, fitness trackers, and sensors

implemented in textiles. The various kinds of wearables’ sensors can include accelerometers,

gyroscopes, heart rate sensors, and galvanic skin response monitors. The data extracted from

these sensors can then be employed to derive various helpful metrics such as calories burned,

heart rate, blood pressure, physical activity, sleep patterns, and even mental states.

The time-series data gathered from these devices are often challenging and time-consuming to

label. Say one wants to continuously monitor heart rate data and accelerometer data (recorded

in three spatial directions) sampled at 50Hz from an activity watch worn by several

participants. In this case, each participant would generate 720000 datapoints every hour.

Having people manually supervising or labeling these data streams is for most real-world

17

applications, unfeasible. To make use of data at this scale, having unsupervised CPD

algorithms that can detect when the data changes become highly beneficial. Often, the most

useful information lies in the areas where there is a change in the times series data, while long

monotonous data contain little information. In the example above, one could use CPD

algorithms to automatically find anomalies in a person’s heart rate based on the activity level

and heart rate. In [3] they made a CPD algorithm for heart rate trend monitoring that

outperformed the change detection by clinicians in real time. Another use-case of CPD could

be fault detection in factory machines, as these machines often perform repetitious tasks. By,

for example, monitoring their power consumption, one can use a change point detection

algorithm to detect anomalies which could indicate a malfunctioning machine automatically.

Another application of unsupervised CPD is time series segmentation, which is the main

focus of this thesis. If all the changepoints in the time series that separate the different

segments are detected, all the segments that the signal is comprised of are also found. When

dealing with a large amount of continuously recorded data, it is often beneficial to separate

the data into homogenous segments before further analysis or classification. It would be

impossible to classify activities based on activity data without having information about when

the different activities are performed. By first segmenting the signal, one could then train a

classifier to detect the class of each segment based on the statistics in the segment. There is

plenty of previous work done on human activity analysis in the context of CPD [4]. Another

similar use-case would be to segment out uninteresting data which contains little useful

information for a specific application. One example of this could be filtering out data captured

from an activity watch when not being worn.

Some time series data is weakly labeled in that they include imprecise or inexact labels. An

example of this could be recording EMG-data from a person instructed to hold five hand

gestures for 15 seconds each in one continuous recording session. Here, a new segment in the

data will occur approximately every 15 seconds, but one would not know the exact location of

the actual gesture change since humans cannot robotically perform tasks at the exact time

specified. To get a more precise segmentation, one could use CPD algorithms on a local area

around every 15-second mark to pinpoint the exact time of a gesture change.

This thesis is associated with INTROMAT (INtroducing personalized TReatment Of Mental

health problems using Adaptive Technology) [5], a Research Council of Norway funded

research project. The project's vision is to investigate how the use of ICT (Information and

Communications Technology) can improve public mental health. One of the INTROMAT

project goals is to develop an unobtrusive Mental Health Monitoring System (MHMS) using

sensors, surveys, and machine learning. The following section will provide information about

mental health and how CPD algorithms can be utilized in the context of MHMS.

1.2 Mental Health Monitoring Systems
Mental health is a major problem worldwide. In 2010 mental health problems were the

leading cause of years lived with disability(YLD) worldwide, and depressive and anxiety

disorders were among the most frequent disorders [6], [7]. Living with a mental disorder can

be challenging in many ways, as it reduces the ability to carry out everyday tasks, which often

18

leads to social, economic, and emotional difficulties. It will affect the friends and family of

the patient since it can be hard to see a person one cares for dealing with a mental illness.

Mental health problems also affect society in lost taxes due to work impairment and treatment

costs. World Economic Forum estimated that the cumulative global effect of mental disorders

in terms of lost economic output could amount to US $16 trillion in the next 20 years,

equivalent to 25% of global GDP in 2010 [8].

Much research has been done on mental health monitoring systems (MHMS) [9], but much

more is needed to get to a fully autonomous patient monitoring system. Wearables are, as

mentioned, great for continuous data collection, and recent studies show that they hold great

potential for unobtrusive data gathering of biological signals from people suffering from

mental disorders [9]. These devices have the advantage of being privacy-minded as it is hard

to identify a specific person from data gathered using them. Another benefit of wearables is

that they can be worn all day and are not bound to specific locations or settings. Since these

devices are becoming increasingly ubiquitous, it is less expensive to deploy due to decreased

manufacturing costs. In addition to this, many people already use them for other purposes

such as physical health and fitness, making it less stigmatic to use for MHMS. According to

Statista Consumer Surveys, 30 percent of U.S. consumers owned a fitness band, and 44

percent of U.S. consumers used their sport and fitness gadgets daily[10]. Smartphones, which

are pretty common these days, have a lot of the same sensors used in fitness trackers and can

therefore also be a useful tool for monitoring the mental state of a person, in addition to being

a potential tool for self-reporting and interventions.

As MHMS utilizing wearables can generate a large amount of data, it is crucial to have

algorithms that can extract useful information without supervision. One application of CPD in

the context of mental health could be to find changepoints in the data that could suggest a

change in behavior or mental state. Another possible application is to use unsupervised CPD

to find homogenous segments in the data before extracting statistical features from each

segment which is fed to a classifier trained to distinguish between different activities. As an

example, there is evidence that depression leads to reduced daytime motor activity and

increased nighttime activity compared to healthy individuals [11], so being able to separate

between wakefulness and sleep could be beneficial for detecting depressed patients.

In this thesis, a CPD algorithm is used to separate activity data into natural segments, which

are then used to classify non-depressed and depressed participants. More details on this follow

in the next chapter, which will go through the main contributions presented in the thesis.

1.3 Summary of the Work
This thesis aims to develop unsupervised semantic segmentation algorithms that are

hyperparameter lite, domain agnostic, and work well with multidimensional data. In addition

to this, it is preferable if the algorithms are fast and can work on online streaming data.

Being hyperparameter lite and domain agnostic means the algorithm can be deployed on

various time series data-mining problems without needing extensive tuning to perform well.

19

Real-world data is often multidimensional, meaning that data is sampled from various sources

and sensors that often contain multiple channels. It is crucial that the algorithms can utilize

this data effectively and ensure that the most helpful information is not drowned out by data

sources containing less information.

Time series data is often recorded over a long time, making algorithms that are fast and scales

well to big data crucial. Algorithms with a high time complexity that works great on short

time series data would quickly get useless for problems such as continuous monitoring of

people suffering from mental health issues, which entails data captured over long time

intervals. Many real-world applications depend on fast changepoint detection to execute time-

sensitive actions, which means that algorithms that cannot handle online streaming data will

struggle, as they would require a complete rerun every time a new data point is added.

One state-of-the-art algorithm that meets many of these requirements is Fast Low-cost

Unipotent Semantic Segmentation [12] (FLUSS). The fundamental thought process behind the

development of FLUSS is that subsequences (small snippets of the time series data extracted

around each time step in the time series) in similar segments are more similar than

subsequences belonging to other segments. Thus, parts of the time series containing many

similar subsequences are likely to be a segment. The main contributions of this thesis are

inspired by the FLUSS algorithm and try to improve upon the basic concepts presented in that

paper.

FLUSS handles multidimensional data by calculating the likelihood of a change point at each

time step for each channel independently before taking the average likelihood over all the

channels. When you have many channels, some might not contain information that is helpful

for segmenting out activities, or they might be heavily correlated. When taking the average

over all the channels, these “not so useful” channels can drown out the useful channels as they

are all equally weighted when taking the average. The authors acknowledge this problem and

recommend that when dealing with high dimensional data one should do a search or manually

find the most useful subset of channels and remove the rest.

As time series data is often sampled from multiple sources and sensors, it would be helpful to

have an algorithm that can automatically extract the most useful information from high-

dimensional times series data before doing segmentation. This is the primary motivation

behind one of the main contributions of this thesis; the Latent Space Unsupervised Semantic

Segmentation (LS-USS) model. LS-USS is based on the same basic concepts as FLUSS, but

instead of using the similarity between subsequences, it finds the similarity between lower-

dimensional encodings of the multidimensional subsequences. These encodings are found by

feeding the subsequences through an autoencoder trained in an unsupervised fashion. The idea

is that the dimensionality reduction learned by the autoencoder will remove redundant and

correlated information between channels, which in turn will improve the segmentation.

Through extensive testing conducted on both artificial and real-world datasets from various

domains and sensors, it was found that LS-USS delivers on par or better segmentation scores

compared to other state-of-the-art algorithms.

20

One challenge in applying unsupervised algorithms is the selection of hyperparameters.

FLUSS only requires us to define the subsequence length, which, depending on the context, is

not always trivial to define. While it was shown that FLUSS is not overly sensitive to its

value, for practical application of FLUSS, this remains an important consideration. It was

found that FLUSS seems to perform best when the subsequence length is set to approximately

one period of the signal. One of the contributions of this thesis is to augment FLUSS with

Welch's method to automatically determine an appropriate subsequence length, thus making

FLUSS completely hyperparameter-free. Welch’s method is a method for estimating the

frequency contents of a signal. From the frequency content, one can find the peak frequency,

which makes finding the main periodicity of the signal trivial. This method will in this thesis

be referred to as FLUSS-Welch. This algorithm is tested on the UCR Time Series Semantic

Segmentation Archive[2], which includes 21 datasets from many domains. The results show

that FLUSS-Welch achieves similar results to specifying the subsequence length manually.

The algorithms developed in this thesis should be relatively domain agnostic. Nevertheless, as

this thesis is associated with INTROMAT, it would be beneficial to test the algorithm on

more datasets from mental health research, but these datasets are often difficult to get access

to due to the sensitive nature of personal data from people suffering from mental health

issues. To showcase a practical application of the algorithms developed in the context of

MHMS, an open dataset from the INTROMAT project called Depresjon [13] containing data

from non-depressed and depressed participants is used. Here the goal is to see if using

segments found by unsupervised segmentation can increase depression detection. The results

show that using the LS-USS segmentation algorithm before classification clearly outperforms

the previous best classification results on the dataset.

1.4 Chapters

1.4.1 Background

The background chapter starts with more details on CPD and provides an overview of the

previous research done on classical CPD (2.1). Section 2.2 will go through a concept called

matrix profiles, an essential building block for both FLUSS and LS-USS. In section 2.3,

FLUSS will be covered in more detail.

Section 2.4 is about representation learning and relevant research regarding representation

learning in the context of CPD. Representation learning, or feature learning, concerns

techniques for automatically extracting feature encodings/representations from raw data. One

common example of representation learning methods is autoencoders, which are highly

relevant for the development of LS-USS.

The evaluation metrics used are essential to get a fair comparison between different CPD

algorithms. Thus, section 2.5 gives an overview of various evaluation metrics with a

discussion of their strength and weaknesses when used in CPD problems.

The last chapter in the Background, Section 2.5, will give a brief overview of Spectral

Density Estimation. This chapter is relevant for FLUSS-Welch as it uses the spectral density

estimator Welch’s method to find an appropriate subsequence length for FLUSS.

21

1.4.2 Methods

The methods chapter details the new methods developed for this thesis and the

implementations of some state-of-the-art CPD algorithms presented in the background

chapter. The chapter is divided into three main sections:

Section 3.1 describes the scalers used to scale the data before doing segmentation.

Section 3.2 details the CPD algorithms implemented in this thesis.

Section 3.3 covers the changepoint extraction algorithms implemented. These algorithms are

used to decide what constitutes a changepoint based on the output from the CPD algorithms.

1.4.3 Datasets

The datasets chapter includes descriptions of five datasets used to test the methods

implemented in this thesis. The three datasets presented in section 4.1 to 4.3 contains long

multidimensional data which will be used to compare LS-USS against other state-of-the-art

CPD algorithms.

The Depresjon dataset, which will be used to showcase a practical application of LS-USS in

the context of MHMS, is detailed in section 4.4.

Section 4.5 presents the UCR Time Series Semantic Segmentation Archive[2] that includes 21

datasets from many different domains, ideal for testing FLUSS-Welch as all the datasets

contain human-specified subsequence sizes.

1.4.4 Experiments

The experiments chapter shows the results of running the segmentation algorithms on the

different datasets.

Section 5.1 details the experiments conducted on the datasets containing long

multidimensional data and includes an in-depth comparison between the performance of the

different segmentation algorithms.

Section 5.2 presents the results from using LS-USS on the Depresjon dataset as a

preprocessing step before classifying depressed vs. non-depressed patients.

In section 5.2.2, the performance of FLUSS-Welch will be tested against using manually

specified subsequence sizes on the UCR Time Series Semantic Segmentation Archive.

22

2 Background

This chapter will first give an overview of time-series changepoint detection (CPD). Then, a

concept called the matrix profile is presented, which provides information about the similarity

of the subsequences in a time series. Next, a state-of-the-art segmentation algorithm called

FLUSS, built upon the matrix profile will be introduced. The section after that will focus on

representation learning and present some examples from previous research of how it can be

utilized in time-series segmentation. Then, there will be an overview of various evaluation

metrics discussing their strengths and weaknesses when used in CPD problems. The last

section centers around spectral density estimation, which is used to determine the frequency

contents of a time series.

2.1 Time series change point detection
A changepoint (CP) represents a transition between different states in a process that generates

time-series data [4]. Changepoint detection can be defined as the problem of hypothesis

testing between the null hypothesis “no change occurs” and the alternative hypothesis “a

change occurs” for each timestep in the time series. By finding these changepoints, one has

indirectly segmented the time series, as the segments can be defined as the areas between the

found changepoints.

2.1.1 Wanted Features

Besides raw performance in localizing changepoints, there are other aspects one needs to

consider when comparing different CPD algorithms. The paper “A Survey of Methods for

Time Series Change Point Detection” [5] introduces and describes some of the more central

challenges for CPD algorithms.

One important feature to consider is whether the algorithm can be used for online data

streams. Offline algorithms need the whole time series to do changepoint detection and cannot

be updated with new data points without rerunning the algorithm on the whole dataset, which

makes them unusable for streaming data. Online algorithms can run concurrently with the

process. There will be a slight delay because of processing time, but it is usually sufficient

that the datapoint is processed before a new one arrives. Different algorithms need varying

amounts of data before detecting that a changepoint has occurred. To differentiate between

them, the authors also define a third term called ɛ real-time algorithm. These need at least ɛ

data points to detect a changepoint. A completely online algorithm would then be 1-real time

since it only needs one data point to detect a change. It will often be a tradeoff between how

real-time an algorithm is and the change point detection performance. The reason for this

tradeoff is that offline algorithms can make decisions based on data from the whole time

series, while online algorithms have to base the decision of there being a changepoint at the

current timestep solely on previous observations.

Another critical factor is the scalability of the algorithm. Nowadays, as one has access to an

increasing amount of data and often with high dimensionality, making an algorithm that is

computationally efficient and scales well to large data sizes important. Having an algorithm

23

where its space requirement and computation time grow exponentially with the length of the

time series would be impractical when scaling to big data. Algorithms that can be interrupted

and return the current best solution would be highly beneficial to meet the needs of

applications with various time requirements. These algorithms are commonly referred to as

anytime algorithms. In the survey paper [4] (from 2017), they did not find any interruptible

CPD algorithms; thus, they considered anytime algorithms an avenue for future research.

However, for matrix profiles (2.2), there has been developed an algorithm called

scrimp++[14] that can calculate approximate matrix profiles to allow for use at “interactive

speeds”. Scrimp++ was, in the original paper, not used for changepoint detection but for motif

discovery which is another subject that will be touched on later in the thesis (2.1.3.6).

It is essential to consider what constraints and requirements the data impose on the choice of

algorithm. Some might use statistical assumptions about stationarity or i.i.d. Some models

cannot handle missing or multidimensional data. Others require extra information such as the

number of changepoints or other knowledge about the underlying process that produces the

time series.

2.1.2 Supervised CPD methods

Supervised learning uses labeled training data that consists of input-output pairs. The models

will try to learn a mapping from input to output that generalizes to unseen data. There are two

ways to apply this to CPD. One possible approach is to use binary classification, where the

labels are “changepoint” and “no changepoint,” and train the model to recognize changes

between states in the data. Alternatively, If the states are labeled into different classes, one

can classify each data point in the time series based on class and extract the changepoint

locations based on the class probability changes. Both techniques usually utilize the

subsequences found by sliding a window over the time series as inputs to the model, where

each subsequence is assigned a label/class. Most of the classifiers used in other machine

learning tasks can also be used here. Some common classifiers are naïve Bayes, Support

Vector Machines (SVMs), Gaussian Mixture Models (GMMs), Decision Trees, Hidden

Markov Models, and Artificial Neural Networks (ANNs).

2.1.3 Unsupervised CPD methods

Unsupervised learning tries to find patterns in the input data without knowing the true label of

the data. Labeling data can often be a time-consuming task. As time-series data is often long

and hard to label visually based on just the time series data itself, finding changepoints in an

unsupervised manner is of great interest. These algorithms will try to determine where a

change point occurs based on the statistics of the data.

The survey paper [4] contains an overview of the main categories of unsupervised CPD

algorithms in addition to implementing some of the algorithms in each category (depicted in

Figure 2). For an in-depth comparison of the selected algorithms from each category, check

out the original survey paper. The following sections will give a brief synopsis of each

category.

24

Figure 2: Unsupervised methods for change point detection. The paper [4] provides an overview of all the

methods depicted in the diagram.

2.1.3.1 Likelihood Ratio Methods

One common way to detect changepoints is using Likelihood ratio methods. These methods

compare the probability distributions of data before and after a potential changepoint. If the

probability distributions are sufficiently different, it is concluded that the datapoint is a

changepoint. Kullback-Leibler (KL) divergence is a common choice for measuring the

dissimilarity between the two distributions.

2.1.3.2 Subspace Modeling

Another way to do unsupervised CPD is by using subspace modeling. Here one tries to find a

mathematical model of the system states based on the finite amount of available data. The

intuition is that a change in system state indicates a change point. Subspace modeling is

closely related to System Identification, which is important in control theory [15].

2.1.3.3 Probabilistic methods

Probabilistic methods estimate the probability distribution of there being a changepoint at

each time step. Some methods use a Bayesian approach to model the run-length distribution at

each time step based on the observed data since the previous changepoint. The run-length

represent the elapsed time since the last changepoint. When there is a spike in the probability

of a 0-length run, a changepoint is likely to have occurred.

25

2.1.3.4 Kernel-based Methods

Kernel-based methods are most commonly used in supervised techniques such as SVMs but

can also be used in unsupervised methods. The observations are first mapped onto a higher-

dimensional feature space using kernel functions before using the Fisher discriminant ratio as

a measure of the similarity between consecutive subsequences to determine if a new

changepoint exists between them. The performance of kernel-based methods will be heavily

dependent on the choice of kernel functions.

2.1.3.5 Graph-based methods

Another more recent approach to unsupervised CPD is graph-based methods. Here

observations before and after a possible changepoint are divided into two parts. The number

of edges in the graph that connects observations from the two parts decides whether a

changepoint has occurred based on some threshold. Few edges increase the possibility of a

changepoint. The graph is usually made using time series observations as nodes and edges

connecting them based on a chosen distance metric. The background chapter will take a look

at FLUSS [16], which is not specified by the authors as a graph method but uses the same

concepts for doing time series segmentation.

2.1.3.6 Clustering methods

Clustering methods divide the data into a known or unknown number of clusters. If two data

points close in time belong to different clusters, there is likely a changepoint between them.

The work done on clustering of time series data can broadly be separated into two categories:

whole clustering and subsequence clustering. Whole clustering is similar to regular clustering

of discrete objects, which means it can only be used to cluster individual time series into

clusters based on how similar they are. This technique is thus not applicable to time series

segmentation, as the goal here is to segment one continuous time series. Subsequence

clustering tries to cluster individual subsequences extracted from running a sliding window

over the time series. Intuitively, this way of clustering seems to be useful for time series

segmentation, as one could segment the time series based on which cluster center each

subsequence belongs to. How to find these clusters, however, is a challenging problem.

Despite subsequence clustering being used as a subroutine in many other algorithms, the

paper “Clustering of Time Series Subsequences is Meaningless: Implications for Previous and

Future Research” [17] found that subsequence clustering produces essentially random cluster

centers. The cluster centers are just sinusoids with random phases that average to the mean of

the time series for any dataset used.

Figure 3: Plot depicting typical cluster centers generated by STS-clustering. From [17]

26

This was true for both k-means and hierarchical clustering, and for clustering based on a

random sampling of a subset of subsequences. To get an intuition why this is the case, the

NoGunGun dataset (depicted in Figure 4) from the UCR time series archive will be used.

Figure 4: Plot showing the NoGunGun dataset from the UCR time series archive

As the cluster centers will be the average over all the subsequences in each cluster, this

experiment tries to showcase the effect of averaging over multiple time series subsequences

extracted from a sliding window. Here subsequences are extracted using a sliding window

before taking the averages over n subsequence samples. The results presented in Figure 5

clearly show that given enough samples, the averages will converge to a straight line equal to

the mean of the whole dataset. The out-of-phase sinusoid cluster centers mentioned above

conforms to these results as their weighted average sums to a straight line. This is due to the

inherent problem caused by using a sliding window to extract the subsequences. A detailed

explanation of this phenomenon is provided in [17].

Figure 5: Plot showing the results of averaging over a selection of subsequences extracted from the

NoGunGun dataset. The data is scaled to zero mean for the whole dataset.

There are no easy fixes to make subsequence clustering work, but the paper [17] introduces a

novel method that makes it possible to do meaningful clustering of time series data. Instead of

clustering every subsequence in the time series, this method clusters something called time

series motifs. In the context of data mining, motifs are reoccurring sequences in the time

series data (see example in Figure 6). These motifs can be seen as fingerprints for time series

data, as all nonrandom time series data produced from the same process should contain some

reoccurring patterns.

27

Figure 6: Example from [18] of a motif (marked in bold) that occurs four times. From [17]

The clustering algorithm presented extracts the top n motifs from the time series and does

standard k-means clustering on these motifs. Notice that to do clustering in this way, the

number of motifs extracted n has to be set much larger than the number of clusters k. The

results were promising as the cluster centers looked like the different segments in the time

series data they tested with. It is not surprising that this works since the method resembles

doing whole clustering, in that it clusters short individual time series into clusters, instead of

using all the subsequences extracted by a sliding window. This means that the cluster-centers

are not averages over all the data but averages over motifs (similar patterns in the data).

One thing that has not been explained yet is how to discover these motifs. There are different

ways of mining for motifs in time series data. One example of motif discovery is from a CPD

algorithm presented in the paper “Time Series Epenthesis: Clustering Time Series Streams

Requires Ignoring Some Data” [19]. The CPD algorithm presented in [19] extracts and

clusters motifs by finding motifs that minimize the number of bits required to represent the

time series using Minimum Description Length (MDL). A more recent approach used for

motif discovery called the matrix profile is detailed in the next chapter.

2.2 Matrix profiles

One of the core concepts in this thesis is the matrix profile [20], a data structure for time

series that facilitates change point detection and motif discovery. To calculate the matrix

profile, one first has to find the all-subsequence set A from the time series T by utilizing a

sliding window of length m to extract all the possible subsequences of T. After this the

distance matrix is found by calculating the z-normalized Euclidian distance between every

subsequence in A with every other subsequence in A. Figure 7 show what the resulting

distance matrix looks like for the time series NoGunGun from the UCR time series archive.

Each row in the distance matrix, referred to as the distance profile D depicts the distance from

the subsequence at the current row index to every other subsequence in the time series. When

the distance profile is calculated for every index, one naturally ends up with the distance

matrix.

28

Figure 7: The distance matrix is a matrix constructed from all the distance profiles, which shows how

similar each subsequence in the times series is to every other subsequence in the same time series. If one

takes the minimum distance of each row, one will end up with the matrix profile. The original time series

is shown in yellow and the matrix profile in green. The exclusion zone is to avoid trivial matches.

After the distance matrix is calculated, one can easily extract the matrix profile PA, which is

defined as the vector of Euclidian distances between all the subsequences in A with the

nearest non-trivial neighbor in A itself *. The matrix profile can thus be made by extracting

the smallest value from each row in the distance matrix, as this will be the distance to the

nearest neighboring subsequence. There is, however, one problem with this, as the nearest

neighbor to a subsequence will always be the subsequence itself because they are exactly the

same. Also, subsequences that are extracted close in time will be nearly identical as well. To

avoid these trivial matches, an exclusion zone around each index can be made by setting these

areas to infinity. As seen in Figure 7, this exclusion zone will be along the diagonal of the

distance matrix. When calculating the matrix profile PA, one can also extract the index of the

nearest neighbor for each row in the distance matrix to make the matrix profile index IA,

which is defined as the vector containing the indices of the nearest non-trivial neighbor in A

for every subsequence in A. It can thus be seen as a time series containing pointers to the

nearest neighbors for each subsequence. The matrix profile index IA will be important later as

this is the basis for the segmentation algorithm FLUSS presented in section 2.3.

The matrix profile is a useful tool for motif and discord discovery. Motifs, as mentioned in

2.1.3.6, are reoccurring subsequences in the time series data. Discords can be seen as the

opposite of motifs, as they are the subsequences that least resembles the other data in the time

series. It is easy to get an intuition about the motifs and discords in the data by just looking at

the matrix profile. In the areas with relatively low values, one knows that the subsequences in

the original time series must have (at least one) relatively similar subsequence elsewhere in

* One can also calculate the matrix profile from two distinct time series, but this is not relevant for the purpose of

this thesis

T
im

e S
eries

Time Series
M

at
ri

x
 P

ro
fi

le

Distance Matrix

Minimum

29

the data. These regions are reoccurring patterns and can thus be classified as motifs. While in

the areas with relatively high values, one knows that the subsequence in the original time

series must be a unique shape since it does not match any other subsequence. These areas are

discords and can be considered anomalies in the data. Figure 8 shows an example of this. The

time series data presented are mostly just repeated patterns (motifs), except for what seems

like an anomaly (discord) ca. midway through. The matrix profiles are low in the areas where

there seem to be motifs and high in the areas where there seem to be some kind of anomaly

Figure 8: Plot depicting a time series and its corresponding matrix profile. The time series presented is an

excerpt from the dataset NoGunGun from the UCR time series archive.

Due to these qualities, the matrix profiles can be applied to a multitude of time series change

point detection problems. It could, for example, be used directly for fault or anomaly

detection in various domains by looking for discord in the data. Some examples of this could

be monitoring for abrupt changes in the financial markets, finding anomalies in factory

machines, or finding irregularities in the activity patterns of people suffering from a mental

health disorder. The motifs extracted by this algorithm can also be used for segmentation

based on clustering, as seen in the previous chapter. In this thesis, it will be used as a crucial

building block for the segmentation algorithms FLUSS and LS-USS.

To deploy change point detection algorithms on real-world problems, it is important that the

algorithms scale well to large amounts of data. Calculating the Euclidean distance between

every subsequence in a time series to every other subsequence in the same time series (as

done in Figure 7) will quickly result in high computation time. There would also quickly be a

problem with storing the distance matrix as this algorithm requires O(n2) space. Calculating

the matrix profile for a time series with a length of 1 million samples would need around 4TB

of memory. The following sections will detail how to calculate the matrix profile more

efficiently.

2.2.1 Mueen’s algorithm for similarity search

Mueen’s algorithm for similarity search (MASS) is a method for finding the distance from

one query subsequence Q in T to every other subsequence in T. The distance measure in this

algorithm is the z normalized Euclidian distance.

The convolutional theorem states that convolution in time is equal to multiplication in the

frequency domain. Taking the dot product between a subsequence A[i] and the time series T

in the frequency domain is thus the same as taking the dot product between each subsequence

Time Series

Motif

Discord

Matrix profile

30

A[i] and every other subsequence in the set A. The time complexity of convolution is O(nm)

in the time domain and O(nlogn) in the frequency domain, making it possible to drastically

reduce the number of calculations by detouring into the frequency domain. Doing this will

also make the computation time independent of the subsequence size used. The algorithm

presented does precisely this by using the Fast Fourier transform on both the query Q and the

time-series, multiplying the resulting spectra, before finally using the Inverse Fast Fourier

transform on the product. The result is a fast and accurate way of calculating the dot product

between Q and all the subsequences in T.

Figure 9: Outline of the SlidingDotProduct [20]

𝐷[𝑖] = √2𝑚(1 −
𝑄𝑇[𝑖] − 𝑚µ𝑄𝑀𝑇[𝑖]

𝑚𝜎𝑄𝛴𝑇[𝑖]
)

Equation 1: The z-normalized distance.

The formula for calculating the z normalized Euclidean distance for every index in the

distance profile is presented in Equation 1. In addition to the dot product QT, a few other

statistics needs to be calculated: 𝒎 is the subsequence length, µ𝑸 is the mean of Q, 𝑴𝑻 is the

mean of A[i], 𝜎𝑸 is the standard deviation of Q, and 𝜮𝑻[𝒊] is the standard deviation of A[i].

These statistics are also calculated efficiently, using a technique from [21]. The total time

complexity for MASS is O(nlogn). The MASS algorithm is outlined in pseudocode in Figure

10.

Algorithm name: Sliding Dot Product

SlidingDotProduct(Q,T)

 Inputs:

 Q – query

 T – Time series

 Outputs:

 QT – the sliding dot product between Q and T

1. n = Length(T), M = Length(Q)

2. Ta = T appended with n zeros

3. Qr = Reverse(Q)

4. Qra = Qr appended with 2n-m zeros

5. Qraf = FFT(Qra), Taf = FFT(Ta)

6. QT = InverseFFT(Elementwisemulitplication(Qraf, Taf))

7. return QT

31

Figure 10: Outline of MASS

2.2.2 Scalable Time-series Anytime Matrix Profile

MASS is useful for finding the similarity between one query subsequence Q and every other

subsequence in the time series. To obtain the full matrix profile PA and the corresponding

matrix profile index IA, one needs to find the nearest neighbor for every sub-sequence, which

is what the Scalable Time-series Anytime Matrix Profile (STAMP) algorithm solves. STAMP

queries every subsequence in the all-subsequence set A against all subsequences in A itself.

For each query, a distance profile D is produced. The matrix profile for that location is

updated by adding the minimum distance in D, and the matrix profile index is updated by

adding the index of the minimum distance in D. When this is done for all the queries, the

algorithm returns the full matrix profile. For an outline of the algorithm, take a look at Figure

11. The time complexity of this algorithm is O(n2logn) since the MASS algorithm(O(nlogn))

is used n times to calculate the matrix profile, but based on empirical results, the algorithms

growth rate is roughly O(n2), which the authors attribute to FFT being exceptionally well

optimized.

Algorithm name: Mueen’s algorithm for similarity search (MASS)

MASS(Q,T)

 Inputs:

 Q – query

 T – Time series

 Outputs:

 D – A distance profile D of every query Q

1. QT = SlidingDotProducts(Q,T)

2. µQ, σQ, MT ΣT = ComputeMeanStd(Q,T)

3. D = CalcualteDistanceProfile(Q,T,QT, µQ, σQ, MT ΣT) // Equation 8

4. return D

32

Figure 11: Outline of the STAMP algorithm

Recalculating the full matrix profile every time a data point is added would take O(n2log(n))

time, which would make it difficult to use on online data streams. Because of this, the authors

of [20] also introduce an algorithm for incrementally updating the matrix profile called

STAMP Incremental (STAMPI). In the STAMPI algorithm, a new data point is appended to

the original time series before the distance between the resulting new subsequence and the

rest of the all-subsequence set A's subsequences is calculated. Next, the minimum distance in

D, and the corresponding index, is appended to the last matrix profile. The time complexity of

incrementing the matrix profile is just O(nlog(n)) compared to O(n2log(n)) for STAMP. The

STAMPI algorithm is outlined in Figure 12.

Algorithm name: Scalable Time-series Anytime Matrix Profile (STAMP)

STAMP(TA,m)

 Inputs:

 TA – time series

 m – subsequence length

 Outputs:

 PA,IA – The incrementally updated matrix profile and the associated matrix profile index

1. PA=infs, IA = zeros

2. for idx=0 : length(TA)-m

3. D = MASS(A[idx],TA)

4. PA,IA = ElementWiseMin(PA, IA,D,idx)

5. end

6. return PA,IA

33

Figure 12: Outline of the STAMPI algorithm

2.3 Fast Low-cost Unipotent Semantic Segmentation

Fast Low-cost Unipotent Semantic Segmentation (FLUSS) [12] is a segmentation algorithm

that builds upon the matrix profile. This algorithm utilizes the matrix profile indices IA, given

by the STAMP algorithm, to segment time series data. The basic concept is quite intuitive and

straightforward.

The matrix profile index can be seen as arcs or arrows that point to the most similar

subsequence in the time series. In time-series data gathered from a person wearing an activity

sensor and performing the activities walking and running, one would expect that most of the

walking subsequences would point to other walking subsequences, and most running

subsequences would point to other running sequences.

Figure 13: Visualising the arc-crossings. From [12]

If one for an index in the time series T counts the number of arcs crossing “over” that index,

one would have a low arc-count in the areas where the time series is changing and a high arc-

Algorithm name: Scalable Time-series Anytime Matrix Profile Incremental (STAMPI)

STAMPI(TA, PA, IA)

 Inputs:

 TA – Original time series

 t – new data point t

 PA, IA – The matrix profile and the associated matrix profile index

 Outputs:

 PA,new,IA,new – The incrementally updated matrix profile and the associated matrix

profile index

7. TA,new = [TA,t]

8. S = last subsequence in TA,new, idx = index of S in TA,new

9. D = MASS(S,TA)

10. PA, I = ElementWiseMin(PA, IA,D,idx)

11. PA,last,IA,last = findMin(D)

12. PA,new = [PA, pA,last], IA,new = [IA, IA,last]

13. return PA,new,IA,new

0 1000 2000 3000 4000 5000

34

count in areas with a clear homogenous pattern. If these arc-crossings are counted for each

index, the end result is the Arc Curve (AC).

The Arc Curve(AC) for a time series T of length n is itself a time series of

also length n containing non-negative integer values. The ith index in the AC

specifies how many nearest neighbor arcs from the Matrix profile index

spatially cross over location I [12]

Figure 14: The top plots shows the ABP of a reclining male. At time 2400 he was rotated to a standing

position. The bottom plot shows the corresponding AC. From [12]

Figure 14 shows that the AC is close to zero at the transition between the segments. However,

the arc count is also low at the end and beginning of the time series due to fewer arcs that can

cross the edges' indices. To compensate for this, the authors divide the AC with an inverted

parabola with a height equal to half the length of the time series. This parabola is called the

idealized arc curve (IAC) and is what the AC would look like for a time series with no

structure, where all arc curves would just point to random locations. The empirical and

theoretical IAC is depicted in the top plot in Figure 13. Dividing the AC with the IAC will

normalize the time series between 0 and 1 and solve the edge effects, and the result is the

0 1000 2000 3000 4000 5000
0

500

1000

1500

35

Corrected Arc Curve (CAC). A min function is also included to ensure that the CAC is

between 0 and 1, even in the unlikely event that AC > IAC.

𝐶𝐴𝐶 = min⁡(
𝐶𝐴𝐶

𝐼𝐴𝐶
, 1)

Equation 2: The Corrected Arc Curve

2.3.1 Region Extraction Algorithm

As known from the previous chapter, a low number of arc crossings indicate a changepoint,

but a method for extracting the changepoint locations has not yet been described. There are

many ways to do this; a simple and straightforward approach is described in the paper [12].

The extraction algorithm proposed is called Regime Extracting Algorithm (REA), and

searches for the k lowest “valley” points in the CAC. To extract these “valley” points trivial

minimums have to be avoided. If x is the lowest point on the CAC, x-1 and x+1 is likely the

second and third-lowest point. To avoid all the changepoints ending up in one “valley”(ref

Figure 17), they set an exclusion zone around the already detected “valley” points. The

algorithm is outlined in Figure 16.

Theoretical Empirical

0 1000 2000 3000 4000 5000 0

2500

0 1000 2000 3000 4000 5000
0

0.2
0.4
0.6
0.8

1

Figure 15: The top plot shows the epirical vs theoretical IAC. The bootom plot

shows the corrected arc curve (CAC) and here we can that the arc curve is close

to 0 when there is a change point. From [12]

36

Figure 16: Outline of the REA algorithm

Figure 17: The top plots show channel 0 of subject 14 from the dataset “A Public Domain Dataset for

Human Activity Recognition Using Smartphones” [22]. The bottom plots show the CAC produced by the

FLUSS algorithm. The two left plots show the predicted changepoint when not using an exclusion zone,

while the right plots show the predicted change points when using an exclusion zone. When there is no

exclusion zone, all changepoints end up in the same “valley”.

2.3.2 Fast Low-cost Online Semantic Segmentation

The FLUSS algorithm works well for batch data. It will, however, struggle to handle

streaming data. Adding a point to the time series and calculating the nearest neighbor to the

new subsequence will only use O(nlog(n)) time using the MASS algorithm, but maintaining

the CAC also require an ejection of the leftmost point (earliest data point) in the matrix profile

when adding a new one. This operation takes O(n2) time because the whole matrix profile

needs to be updated since every subsequence could point to the ejected point.

An online version of FLUSS called Fast Low-cost Online Semantic Segmentation (FLOSS)

solves this issue by only use arcs pointing to the right. If all arcs point to the right, no arc can

point to the leftmost point; ejecting it would then take O(1) time. Maintaining the one-

Algorithm name: Regime Extracting Algorithm (REA)

REA (CAC,num_regimes,L)

 Inputs:

 CAC – a Corrected Arc Curv

 numRegimes – number of regime changes

 Outputs:

 locRegimes – the location of the regimes

1. locRegimes = empty array of length numRegimes

2. for i=1 : numRegimes

3. locRegimes(i) = indexOf(min(CAC))

4. Set exclusion zone of 5×L // To prevent matches to “self”

5. end

6. return locRegimes

37

directional CAC1D would then take a total of O(nlogn). The IAC will also be more skewed to

the right since the rightmost part of the CAC1D will have a higher chance of arc crossings, as

shown in Figure 18. Using the one-directional CAC helps accomplish online streaming

functionality but will come at the cost of a slight loss in performance.

Figure 18: The Bi directional IAC vs. the one-directional IAC (IAC1D). From [12]

2.3.3 Locality – Temporal constraint

In some time-series datasets, the activities or events are repeated multiple times with other

segments in between. In these cases, the CAC would not be a good indicator of a regime

change. This is because the arcs would have practically the same likelihood of pointing to

subsequences in a similar segment as pointing to subsequences in the same segment. The

middle plot in Figure 19 shows that the CAC cannot locate some of the visually obvious

change points because of the repeated activity “ascending stairs”. The solution proposed is to

Figure 19: Top plot shows the accelerometer data of a who from PAMAP dataset. Person acending staris,

descending stairs and another segment of ascending stairs again with trasistional activities which includes

some noise data in between. Middle plot shows the CAC when not including a temporal constraint. While

the bottom plot shows the CAC produced when usetting the temporal constraint to 1000, 6000 and 8000.

From [12]

38

use a temporal constraint (TC) that limits how far in time arcs can point and will ensure that

each index in the CAC is only based on a local area around that index. An added benefit is

that the computing time will be reduced, with the only disadvantage being that an extra

parameter must be specified. The authors claim that the temporal constraint can be set to circa

maximum expected segment length. Therefore, setting this parameter requires some domain

knowledge about the distribution of changepoints in time. However, as shown in the bottom

plot in Figure 19, this parameter is not very sensitive to changes as setting TC to 1000 yields

nearly the same results as setting it to 8000 for that particular time series. For both FLUSS

and FLOSS, one need to normalize the arc curve (AC) using the ideal arc curve (IAC), which

in this case would be a uniform distribution of height equal to the TC size as each index in the

CAC can maximally be crossed by the total number of arcs inside the TC.

2.3.4 Multidimensional time series data

Many datasets contain data from different sensor types and sensor locations. When localizing

change points, it is usually beneficial to use multiple sensors as these often contain more

information about the underlying process. A straightforward way to do this is to calculate the

CACs for each channel separately and take the mean over the CAC’s to produce a single

combined CAC. As the CACs are normalized between zero and one, this also works for data

from sensors with different sampling rates. The authors of [12] presented an example of this

using a dataset where a person performed the activities “basketball forward dribble”, “walk

with wild legs”, and “normal walk”. The person was wearing two sensors: one on the arm and

one on the foot. Figure 20 shows that using data from only the hand or foot is not enough to

differentiate between the three activities. Combining the two CACs, by taking the mean,

makes it possible to segment all three activities.

Figure 20: Example of multidimensional time series segmentation of three activities: “basketball forward

dribble”, “walk with wild legs” and “normal walk”. Combining the two CACs, by taking the mean, makes

it possible to segment all three activities. From [12]

There will, however, arise some problems when dealing with data containing many channels,

as some of them might not contain information that is helpful for segmenting out activities, or

they might be heavily correlated. When taking the average over all the channels, these “not so

39

useful” channels can drown out the useful channels as they are all equally weighted when

taking the average. The authors acknowledge this problem and recommend that when dealing

with high dimensional data, one should search for or manually find the most useful subset of

channels and remove the rest. The following section, about representation learning, will

include methods that could help solve this problem by removing redundant and correlated

information between channels by automatically extracting lower-dimensional encodings of

the original multidimensional data.

2.4 Representation Learning
Representation learning, or feature learning, is a central concept in machine learning. Real-

world data is often unstructured and high-dimensional. Thus, most tasks require us to design

features that describe the data before doing tasks like classification. The problem with this is

that one needs to hand pick these features and that the features selected will usually be sub-

optimal. In supervised learning, one successful way of doing representation learning is by

using deep neural networks. These networks contain layers that act as different abstraction

levels and helps the model extract the most valuable features for the given classification task.

Deep models like convolutional neural networks learn to detect low-level features, like edges

in the first layer(s) and higher-level features, like facial features, in the “deeper” layers. The

output from the final layer is a feature representation of the original input. The main benefit of

these models is the capability to learn the representation in conjunction with the final decision

boundary, which means one do not have to design the features manually.

Figure 21: Alexnet [23]. Example of a deep convolutional neural network. The earlier layers will learn to

detect low-level features, while the later layers will combine these lower-level features into high-level

features.

There are also unsupervised methods for finding feature representations from “raw data”

using dimensionality reduction. Principal Component Analysis (PCA) is a common technique

for reducing the dimensionality of feature spaces in an unsupervised manner. Another method

for reducing the dimensionality of the data is autoencoders. Autoencoders are neural networks

that consist of an encoder and decoder network (example in Figure 22). In training, the

networks are coupled together and try to recreate the input by minimizing the reconstruction

error. The encoder network usually encodes the data into a smaller representation with some

information loss, often referred to as a latent representation, while the decoder will try to

Convolutional Layers

Fully Connected Layers

Softmax

40

recreate the original input data from this encoded representation. The training of the whole

network is done like a regular feed-forward-network, through backpropagation. Minimizing

the error between the input and output will result in the latent representation being a low-

dimensional representation of the original input data. There are numerous ways of

implementing autoencoders depending on the data type and use case. The next section will

examine how representation learning techniques like autoencoders have been applied to

changepoint detection in previous research.

Figure 22: Example of a basic autoencoder architecture. The image outputted by the network closely

resembles the input image. The latent layer in the middle of the network would here serve as a good low

dimensional encoding of the input image.

2.4.1 Representation learning for change point detection

One popular supervised method for segmenting data is the well-known convolutional

segmentation network U-net [24]. Even though this network has been mostly utilized on

image data, there are examples of U-net-inspired architectures that work well on time series

data [19] [20]. Since U-net requires to be trained on labeled data and this thesis is focused on

unsupervised segmentation methods, further details on U-net will not be provided here.

There has been some research focused on applying representation learning to typical change

point detection problems. Autoencoders are, for example, often used for anomaly detection

[27]–[29]. The most common approach is to train the autoencoder on a dataset with none to

relatively few anomalies. When doing inference, one can use the reconstruction error as a

measure of how likely the current data is to contain an anomaly. The reconstruction error will

be small when the input data is normal and high when there is an anomaly. This is because the

model has learned to represent the normal data better than data with anomalies. While this

approach successfully finds changepoints that are anomalies, it is not straightforward to use

this method for segmentation because the different segments are a natural part of the data. An

autoencoder trained on all the data would also have a low reconstruction error for all the

different segments, and the reconstruction error would thus not be a good indicator of these

changepoints.

Decoder
Hidden layer

Latent Space

Encoder
Hidden layer

Input layer

Original Image
Reconstructed Image

Output layer

41

It would be reasonable to think that measuring the distance between vectors of low-level

representations of the data would benefit semantic segmentation. This method is often used in

natural language processing to represent the words' semantic similarity. The idea is that words

with a similar context should be represented by word vectors/embeddings close to each other.

One of the most popular models for making these word embeddings is called Word2Vec [30].

Here, a neural net is used to map each word into a compact representation called a vector. The

mapping tries to ensure that words with similar semantic meaning will be close to each other

in the vector space. The article “Representation learning for unsupervised heterogeneous

multivariate time series segmentation and its application” [31] tries to segment out driving

patterns based on collected sensor data from driving vehicles. Here they use the word2vec

model to make an encoded representation of time series data consisting of both categorical

and numerical data in varying scales. They use this model because there is no universal

distance measure that works for similarity search and segmentation between multivariate data.

By applying this word embedding method, the data are transformed into continuous vectors,

allowing them to be segmented using conventional distance metrics such as Euclidian

distance. This article shows that representation learning holds great potential for the

segmentation of multidimensional time series data collected from multiple sources.

Figure 23: Block diagram showing the modules used in the article “Representation learning for

unsupervised heterogeneous multivariate time series segmentation and its application” [31]. It shows

representation learning being used to combine channel data from different sources before segmentation.

In the article, they used the word embedding model word2vec for the representation learning module.

There are also other ways to use representation learning on multidimensional data. One

example is to use PCA to project the multidimensional data onto the principal components as

they did in the article “A PCA based Change Detection Framework for multidimensional data

streams” [32]. Multichannel data can often have some correlated channels that do not yield

much useful information for segmentation tasks. Say one has a dataset where the data is

collected from two sensors at each arm and one sensor on the leg. For many tasks, the sensors

on the arms would be more correlated with each other than the leg sensor. If the segmentation

model does not capture this correlation, the leg's sensor data can easily be “drowned out”.

Using representation learning techniques like PCA, these changes in channel correlations can

be captured. Another benefit is that one can get a more general and compact representation of

the time series data by only projecting the data to the n first principal components. As stated

before, using the latent representation found by autoencoders have many of the same benefits

42

as PCA. The paper “Time Series Segmentation through Automatic Feature Learning” [12]

uses an autoencoder to do automatic feature representation/feature learning before segmenting

the time series. As the method of segmenting time series data based on extracted latent

representation will be central for this thesis, the next section will give a more detailed

overview of the methods used in the paper.

2.4.2 Time Series Segmentation through Automatic Feature

Learning

Figure 24: Model depiction from the paper “Time Series Segmentation through Automatic Feature

Learning” [12]

The input to the autoencoder is the time series partitioned into subsequences of length Nw.

These subsequences might have some overlap, as shown in Figure 24. The channels of the

subsequences are concatenated into a single one-dimensional vector. Thus, the input size for

time step t will be the subsequence length Nw multiplied by the number of channels NC. The

encoder Eec will encode the input at time step st to a feature representation ft, while the

decoder Dec maps the feature representation back to the original input space. The parameters

of the autoencoder consist of weights W and bias be, and the decoder consists of weights W’

and bias bd. The autoencoder used in the article uses tied weights, which means that the

weights in the decoder are the transposed weights from the encoder (W’=WT). The activation

function used is sigmoid.

𝑓 = 𝐸𝑛𝑐(𝑠) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊 × 𝑠 + 𝑏𝑒)

Equation 3: Equation for encoded representation 𝒇

𝑠̃ = ⁡𝐷𝑒𝑐(𝑓) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊′ × 𝑠 + 𝑏𝑒)

Equation 4: Equation for reconstructed input 𝒔̃

The objective of the autoencoder is, as usual, to minimize the reconstruction error between the

input st and the reconstructed input 𝒔̃. The weights and biases are initialized randomly and are

updated using standard gradient descent.

After training, the autoencoder is used to detect what the authors have defined as breakpoints,

which are “human-specified changepoints”. The algorithm used for finding these breakpoints

is outlined below.

43

Figure 25: Outline of the Breakpoint Segmentation algorithm

𝐷𝑖𝑠𝑡𝑡 =
‖𝑓𝑡 − 𝑓𝑡−1‖2

√‖𝑓𝑡‖2 × ‖𝑓𝑡−1‖2

Equation 5: Formula for calculating the distance between the current and previous feature at time t

The numerator in the distance metric (Equation 5) is the Euclidean distance between features

at consecutive times, and the denominator is a normalization term. The breakpoint

segmentation algorithm will compute the distances at each time step, resulting in a distance

curve. A high distance relative to the local area will indicate a change in the underlying

process and is thus classified as a breakpoint.

A sensitivity analysis is also provided to give practical guidelines for choosing

hyperparameters. They used three datasets from different real-world domains (EEG eye state

data set [33], UCI human activity recognition data set [34], and the DCASE2016 sound data

set [35]) for the sensitivity analysis. They found three main factors that could impact the

performance: subsequence size, model depth, and feature size. As one would expect, the

optimal subsequence size varied between the datasets. The best window size for the EEG data

was 25, 400 for the UCI data, and 20000 for the DCASE data. The experiments found that the

best performance on all three datasets was achieved using a model with two hidden layers.

The feature size, the ratio between the feature representation and the input (dim(ft)/dim(st)),

had a negligible effect on the performance. The feature sizes tested were in the range between

0.05×st to 0.5×st.

2.5 Evaluation Metrics
The evaluation methods are essential to get a fair comparison between CPD algorithms. Many

papers written about changepoint detection do not contain concrete evaluation metrics but rely

solely on visual inspection[4], making it hard to compare algorithms objectively. Visual

inspection can also be quite time-consuming to do when ranking multiple algorithms on a

wide array of data from different domains. A fair evaluation metric is thus crucial for

evaluating CDP algorithms.

The evaluation criteria must be based on what type of output the CPD/segmentation

algorithms yield. If the CPD model is a binary classifier (decide for each time step if a

changepoint is present) or change point detection is done with varying levels of precision

(decide if changepoint occurs within a time interval), it is possible to use standard machine

Algorithm name: Breakpoint Segmentation

1. for each subseqence st:

2. Extract features ft according to Equation 3

3. Compute distances Distt between consecutive feature vectors according to Equation 5

4. if Distt is a local-maximal distance:

5. Classify t as breakpoint

44

learning metrics. What follows are examples of evaluation techniques that can be used with

these types of models.

Accuracy is the ratio of correctly classified data points to the total number of data points.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁡
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

Equation 6

Sensitivity/Recall is the portion of the positive class (will in this case be True CP) that was

classified correctly.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
⁄

Equation 7

Precision is the ratio of true positive (True CP) data points to total data points classified as

CP.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Equation 8

The F1 score is a balanced metric that combines precision and recall by calculating the ratio

of weighted importance of precision and recall.

𝐹1 = (1 + 𝛽)2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Equation 9: 𝜷 is positive real factor that is chosen such that Recall is 𝜷 times more important than

precision

Another balanced metric often used in machine learning is the Matthews correlation

coefficient.

𝑀𝐶𝐶 = ⁡
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

Equation 10

When the class distribution is highly skewed, some of these metrics will give very little

information about the actual performance of the classifier. If a negative sample is 100 times

more likely to appear than a positive one, the model's accuracy would be nearly 100% by

classifying every sample as negative. This scenario is often the case when doing changepoint

detection because the number of changepoint is usually much smaller than the number of non-

changepoints. Looking at the confusion matrix and using metrics that are class balanced like

 Classified as non-CP Classified as CP

True Non-CP True negative (TN) False positive (FP)

True CP False negative (FN) True positive (TP)

45

the F1 score will give a better impression of the actual performance of the algorithm. What

metrics to choose will also be dependent on the real-world use-case of the algorithm as

different misclassifications could have different costs. If one were to make a CPD system that

detects lethal anomalies in ECG data recorded from patients' hearts and alerts a human expert

for proper examination, missing a true changepoint would have much more dire consequences

than detecting a changepoint where there is none. In this case, one would probably prioritize a

high sensitivity over a high precision.

Plotting the true-positive rate (TPR/sensitivity) against the false-positive rate (FPR/precision)

provides an intuition about the trade-off between the two metrics. This type of plot are

referred to as a Receiver Operating Characteristics (ROC) curve. The optimal algorithm

would have a high TPR while still maintaining a low FPR, which means that the ROC curve

for a good CPD algorithm should be pushed towards the left upper corner. A more concrete

metric is AUC (Area Under the Curve), which is, as the name implies, the area under the

ROC curve. The closer the ROC curve is to the top-left corner, the closer the AUC is to 1. In

"Time series segmentation through Automatic feature learning" [36] (detailed in Section

2.4.2), they used ROC curves to find the best model depth for their autoencoder. Figure 26

depicts the ROC curves for different model depths found by running the algorithm on the UCI

dataset [33].

Figure 26: Example from the article "Time series segmentation through Automatic feature learning"[36]

(detailed in Section 2.4.2) where they made a ROC curve to help evaluate the best model depth for an

autoencoder based on the performance on the UCI dataset [33]

Often in time series changepoint detection and segmentation, the changepoints' exact location

is not as important as the time difference between the predicted and actual changepoint. In

these cases, metrics that utilize the distance to the true changepoint locations instead of the

class labels are more telling of the performance. The most commonly used metrics in this

context are the Mean Square Error (MSE) and the Mean Absolute Error (MAE).

MAE calculates the distance in time by finding the absolute difference between each ground

truth CP and the nearest predicted CP before averaging over the number of true changepoints.

46

𝑀𝐴𝐸 =
∑ |𝐶𝑃𝑝𝑟𝑒𝑑 − 𝐶𝑃𝑎𝑐𝑡𝑢𝑎𝑙 ⁡|
𝑁𝐺𝑇
𝑖=1

𝑁𝐺𝑇

Equation 11: Where N_GT is the number of ground truth changepoints

MSE is similar to MAE except that it uses the squared difference instead of the absolute

difference. Because the error measure will increase quadratically, MSE will penalize outlier

CPs more than MAE.

𝑀𝑆𝐸 =
∑ (𝐶𝑃𝑝𝑟𝑒𝑑−𝐶𝑃𝑎𝑐𝑡𝑢𝑎𝑙)

2𝑁𝐺𝑇
𝑖=1

𝑁𝐺𝑇

Equation 12:Where 𝑵𝑮𝑻 is the number of ground truth changepoints

There are also other similar metrics like Mean absolute error (MSA), Mean signed difference

(MSD), Root mean square error (RMSE), and Normalized root mean square error (NRMSE).

Prediction ratio is the number of predicted CPs that corresponds to ground truth CPs divided

by the ground truth number of CPs. The optimal prediction ratio will be 1. If the model

outputs more than 1 the model overpredicts and if outputs less the model underpredicts.

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛⁡𝑟𝑎𝑡𝑖𝑜 =
𝑁𝑝𝑟𝑒𝑑

𝑁𝐺𝑇

Equation 13: Where 𝑵𝒑𝒓𝒆𝒅 is the number of predicted changepoints and 𝑵𝑮𝑻 is the number of ground

truth changepoints.

If the model underpredicts the distance error metrics MSE or MAE will usually be worse, but

if the model overpredicts, they will increase their score using these metrics. For example, if

the model predicts all data points to be changepoints, both the MSE and MAE would be 0,

and this does not represent the actual performance. To get a single metric that captures both

the importance of predicting the right amount of changepoints and the distance from ground

truth changepoints, the article [37] introduces a new measure they call prediction loss. This

metric combines MSE and the prediction ratio into one measure. Both a prediction ratio

bigger and smaller than one would increase the total prediction loss. The CPD algorithms

need to have a good prediction ratio and MSE score to get a good score on this metric.

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛⁡𝑙𝑜𝑠𝑠 = ⁡ |1 −
𝑁𝑝𝑟𝑒𝑑

𝑁𝐺𝑇
| × 𝑀𝑆𝐸

Equation 14: Where 𝑵𝒑𝒓𝒆𝒅 is the number of predicted changepoints and 𝑵𝑮𝑻 is the number of ground

truth changepoints.

A scoring metric that is less sensitive to outliers can be made by changing the MSE score to

MAE. The metric will in this thesis be referred to as prediction loss MAE.

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛⁡𝑙𝑜𝑠𝑠⁡𝑀𝐴𝐸 = ⁡ |1 −
𝑁𝑝𝑟𝑒𝑑

𝑁𝐺𝑇
| × 𝑀𝐴𝐸

Equation 15: Where 𝑵𝒑𝒓𝒆𝒅 is the number of predicted changepoints and 𝑵𝑮𝑻 is the number of ground

truth changepoints.

47

In the article [12], they introduce a scoring metric similar to MAE, referred to as Regime

Score. Like MSE, this metric finds the absolute difference between each predicted CP and the

nearest ground truth CP before summing them. This sum is then divided by the number of true

segments and the length of the time series resulting in a normalized score between zero and

one.

𝑅𝑒𝑔𝑖𝑚𝑒⁡𝑠𝑐𝑜𝑟𝑒 =
∑ |𝐶𝑃𝑝𝑟𝑒𝑑 − 𝐶𝑃𝑎𝑐𝑡𝑢𝑎𝑙|
𝑁𝐺𝑇
𝑖=1

𝑁𝐺𝑇 ∗ 𝑛

Equation 16: Where 𝑵𝑮𝑻 is the number of ground truth changepoints, and n is the length of the time series

2.6 Spectral density estimation
In spectral density estimation, one wants to automatically determine the frequency content of

a signal by estimating the power spectral density. The power spectral density of a wide sense

stationary process is defined as the Fourier transform of the autocorrelation of a signal.

Figure 27: A power spectrum of two sinusoids. From the periodogram it is easy to see that the sinusoids

have frequencies around 35Hz and 45Hz

One application of spectral density estimation is period estimation. A distinct high peak in the

power spectrum at frequency f is a good indication of a periodic signal with a period equal to

1/f. As sampled time series data does not have an infinite number of samples, and the data

often contain some noise, the exact power spectrum for a given process cannot be found

directly, which means one has to estimate it.

2.6.1 Periodograms

The most straightforward method of estimating this is the periodogram. It is close to the

power spectra definition since it is defined as the Fourier transform of the autocorrelation of

the sampled time series.

48

Ƥ𝑥𝑥(𝜔) = ∑ 𝑅𝑥𝑥(𝑘)𝑒
−𝑗𝜔𝑘

𝑁−1

𝑘=−𝑁+1

Equation 17: Formula for calculating the periodogram of a time series x

𝑅𝑥𝑥(𝑘) =

{

 1

𝑁
∑ 𝑥(𝑛 + 𝑘)𝑥

𝑁−1−𝑘

𝑛=0

(𝑛), 𝑘 ≥ 0

𝑅𝑥𝑥(−𝑘), 𝑘 < 0

Equation 18: Formula for calculating the autocorrelation of time series x

This estimator is both biased and suffers from high variance. The bias comes from

"indirectly" using a rectangular window when doing the Fourier transform, which results in

that the expected value of the periodogram is the true power spectrum convolved with a

squared sinc function.

2.6.2 Windowed Periodograms

One way to reduce the bias is to use windowed periodograms (Ƥ𝑥𝑥(𝜔)
𝑤). This method

reduces the bias by applying a window function to the time series before the Fourier

transform. Figure 28 shows the different window functions in both the time and frequency

domain, and Figure 29 shows the effect of using the windows on a signal composed of two

sinusoids with added white Gaussian noise. When applying the window functions, the ripples

around the main lobe are reduced, leading to a less biased estimate. Doing this comes at the

cost of making it harder to separate close frequencies in the power spectral density estimate.

Figure 28: Window functions in time and frequency domain. From lecture “Spectral Estimation I” in

INF4480, slide 40

49

Figure 29: Two close sinusoids with frequencies at 0.145 and 0.150 with added white Gaussian noise. It

shows the effect of using different window functions. From lecture “Spectral Estimation I” in INF4480

,slide 41.

2.6.3 Welch’s method

A common way to reduce variance in statistics is to average over multiple realizations of a

process. It is possible to make multiple realizations of a time series by splitting it up into

smaller parts. After doing this, one can estimate the PSD for each part before averaging over

the resulting PSDs to reduce the variance of the PSD-estimator.

𝑃𝑥𝑥(𝜔) =
1

𝐾
∑𝑃𝑥𝑥

𝑚,𝑤(𝜔)

𝐾−1

𝑖=0

Equation 19: Equation for Welch’s method for estimating the power spectra. 𝑷𝒙𝒙
𝒎,𝒘(𝝎) is the the i'th

windowed periodogram

Welch’s method[38] tries to reduce both the bias and variance when estimating the power

spectrum density by averaging over short windowed periodograms. Doing this comes at the

cost of a lower spectral resolution because each PSD estimate uses fewer samples than would

have been the case when using the whole time series. The main idea is to divide the time

series into K segments with size L and offset each segment with D datapoints, calculate the

windowed periodograms, and average over the resulting periodograms (see Equation 19). The

partitioning of the time series is depicted in Figure 27.

Figure 30: Visual depiction of how the time series is divided into sub-parts when using the Welch Method

50

3 Methods

This chapter is divided into three main sections based on the algorithm types: data scalers

(3.1) which scale the data to values that are easier to process, CPD algorithms (3.2) that

output a likelihood for changepoints occurring at each time step, and change point extractor

algorithms (3.2) that extracts the location of the change points using the output from the CPD

algorithms. The predicted segments are the areas between the predicted changepoints. Notice

that the CPD algorithms, as defined here, do not output the location of changepoints but the

likelihood of there being a changepoint at each time step. Table 1 shows an overview of the

implemented algorithms. The underlined algorithms in Table 1 are new methods developed

during this thesis, while the others are existing methods detailed in the background chapter.

The following sections will go through the implementations of the various algorithms and

describe the new methods and modifications to existing approaches.

Algorithms Full Name Section

Data Scalers 3.1

NoScaler - 3.1.1

StandardScaler - 3.1.2

MinMaxScaler - 3.1.3

RobustScaler - 3.1.4

CPD algorithms 3.2

LS-USS Latent Space Unsupervised Sematic Segmentation 3.2.2

LS-USS online Latent Space Unsupervised Sematic Segmentation online 3.2.2

FLUSS Fast Low-cost Unipotent Semantic Segmentation 3.2.3

FLOSS Fast Low-cost Online Semantic Segmentation 3.2.3

TSSTAFL
Named after paper: “Time Series Segmentation through

Automatic Feature Learning”
3.2.4

FLUSS-Welch - 3.2.5

CP extraction

algorithms
 3.3

REA Region Extraction Algorithm 3.3.1

LREA Local Region Extraction Algorithm 3.3.2

LTEA Local Threshold Extraction Algorithm 3.3.3

Table 1: Overview of the implemneted algorithms. The underlined algorithms are new methods devloped

during this thesis.

3.1 Data Scalers
Four data scaling techniques are applied to data for comparing the segmentation algorithms on

the different datasets. These methods are implemented in scikit-learn [41] and are widely used

for machine learning and data mining tasks. The scaling is done independently over all

51

channels, and the statistics used for scaling the data are extracted from the training data. What

follows is an overview of the different scaling methods as they are implemented in scikit-

learn.

3.1.1 NoScaler

NoScaler does not perform any scaling

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑥

Equation 20

3.1.2 StandardScaler

StandardScaler scales the channels to zero mean and unit variance by subtracting the mean

and dividing by the standard deviation.

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − µ

𝜎

Equation 21

This method will alter the relative distances between samples.

3.1.3 MinMaxScaler

MinMaxScaler scales the channels to range between 0 and 1 based on the minimum and

maximum values of the data.

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

Equation 22

The relative distance between samples will stay the same, but the method is not very sensitive

to outliers.

3.1.4 RobustScaler

RobustScaler uses statistics that are sensitive to outliers. It removes the median and scales the

data to IQR (Interquartile range). The IQR is the range between the 1st and 3rd quartile.

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑚𝑒𝑑𝑖𝑎𝑛
𝑥𝑄3 − 𝑥𝑄1

Equation 23

52

3.2 Change point detection algorithms

Figure 31: Flow chart depicting the different model components used for each of the CPD algorithms. The

colored algorithms are part of this thesis contribution.

The CPD algorithms in this thesis receive scaled time-series data as input and output a

measure of the likelihood of a changepoint occurring at each time step. Figure 31 depicts the

different CPD algorithms implemented and their components (marked in blue). The arrows

pointing from the CPD algorithms and through the components represent the order in which

the components are applied. As many of the components are shared between the different

algorithms, the next subsection will go through the implementation of all the main

components used, namely STAMP, the autoencoder, LSMP, CAC, the Distance Curve, and

Welch. After this, the implementation of all the CPD algorithms (which utilize the

components) is presented.

3.2.1 Components

3.2.1.1 STAMP implementation

STAMP (2.2.2) is the algorithm used for calculating the matrix profile. To implement

STAMP, a python library called stumpy [39] is used. This library contains implementations

of various ways to calculate exact or approximate matrix profiles depending on the hardware

and time available. The specific stumpy methods used were based on the methods mstump

and gpu-stump. The mstump method is for parallel computation of the multi-dimensional

matrix profile and works well on multicore CPUs. As the name suggests, gpu-stump is a

highly parallelized method for computing the matrix profile using GPUs.

As neither of these methods supported using a temporal constraint (TC), this was added by

modifying the methods to only calculate the distance profile D over a local window in the

MASS algorithm (2.2.1). The online version only has access to previous data. The equations

used are shown in Equation 24.

53

𝐷[𝑖] = √2𝑚(1 −
𝑄𝑇[𝑖] − 𝑚µ𝑄𝑀𝑇[𝑖]

𝑚𝜎𝑄𝛴𝑇[𝑖]
)

𝑖⁡ ∈ ⁡ {

⁡⁡
[𝑎𝑟𝑔𝑚𝑎𝑥(0, 𝑄𝑖𝑑𝑥 − 𝑇𝐶)⁡, 𝑎𝑟𝑔𝑚𝑖𝑛(𝑁, 𝑄𝑖𝑑𝑥 + 𝑇𝐶)], 𝑖𝑓⁡𝑜𝑓𝑓𝑙𝑖𝑛𝑒

[𝑎𝑟𝑔𝑚𝑎𝑥(0, 𝑄𝑖𝑑𝑥 − 𝑇𝐶)⁡, 𝑄𝑖𝑑𝑥], 𝑖𝑓⁡𝑜𝑛𝑙𝑖𝑛𝑒

Equation 24: Equation for calculating a temporarily constrained distance profile

In addition to returning the matrix profile P and matrix profile index I, the methods return the

left and right matrix profile indices IR IL, which are the indices to the nearest neighbors

(smallest Euclidean distance) to the right and left.

3.2.1.2 Autoencoder Implementations

Two versions of the autoencoder have been implemented; the fully connected model from the

paper “Time Series Segmentation through Automatic Feature Learning” [37] (described in

section 2.4.2) and a convolutional model. The latter is implemented to test if modeling the

input's temporal characteristics can help find a good latent representation.

3.2.1.2.1 Fully Connected Model

Figure 32: Fully Connected model for an input size of 30. Inspired by the paper “Time Series

Segmentation through Automatic Feature Learning” [37].

In the original paper, the fully connected model is implemented using two hidden layers,

transposed weights for the decoder, and the sigmoid activation function. The loss function is

the mean square error, and the optimization function used to update the weights and biases is

Adam [40]. The feature size, the ratio between the feature representation and the input

(dim(ft)/dim(st)), is set to 0.1. Figure 32 shows the model architecture for an input size of 30.

3.2.1.2.2 Convolutional Model

The input to the fully connected model is made by concatenating the NC channels of the

subsequence to a one-dimensional vector. However, in the convolutional model, the

ft

𝒔𝒕 𝒔̃𝒕

54

multichannel subsequence is processed as is, which means the input shape is [NC, NW]. The

two first layers of the encoder are one-dimensional convolution layers, both with stride=2,

and the convolution is done over the time axis. Next, the feature map is flattened to one

dimension and passed to two fully connected layers, which outputs the latent feature ft. Then

the latent feature is sent through the decoder to reconstruct the original input. In the decoder,

the latent feature is first passed through transposed fully connected layers and reshaped back

into 4×Nc channels before being passed through two one dimensional transposed

convolutional layers that scale it back to the same shape as the original multidimensional

subsequence. Transposed convolution does not guarantee to recover an earlier feature map but

can be considered a learnable up-sampling operation that makes it possible to recover an

earlier feature map's shape. Figure 33 shows a visualization of two-dimensional transposed

convolution.

Figure 33:: The transposed of convolving a 3x3 kernel over a 5x5 input padded with a 1x1 border using

two 2x2 strides. This examples shows 2D convolution, but the same principles apply to 1D convolution—

example from the journal article [41].

All the layers, except the last layer, use the ReLU activation function. The last layer must use

a linear activation function for it to be able to reconstruct the original input. The model is

trained in the same way as the fully connected model using mean square error as loss function

and Adam as optimizer. The feature size, which is now defined as the ratio (dim(ft)/ NC×Nw),

is set to 1/6. For a more detailed overview of the model, have a look at Table 2.

Table 2: Overview of the convolutional model from input to output.

Layer Type Input

Channel

s

Output

Channel

s

Kernel

size

Stride Padding Activation

Hidden Layer 1

Encoder

Convolution Nc 2×Nc 3 2 1 ReLU

Hidden Layer 2

Encoder

Convolution 2×Nc 4×Nc 3 2 1 ReLU

Reshape

Encoder

Reshaping 4×Nc 1 - - - -

Hidden Layer 3

Encoder

Fully Connected 1 1 - - - ReLU

Hidden Layer 4

Encoder

Fully Connected 1 1 - - - ReLU

Hidden Layer 1

Decoder

Transposed Hidden

Layer 4 Encoder

1 1 - - - ReLU

Hidden Layer 2

Decoder

Transposed Hidden

Layer 3 Encoder

1 1 - - - ReLU

Reshape

Decoder

Reshaping 1 4×Nc - - - -

55

Hidden Layer 3

Decoder

Transposed

Convolution

4×Nc 2×Nc 3 1 1 ReLU

Hidden Layer 4

Decoder

Transposed

Convolution

2×Nc Nc 3 2 1 Linear

Figure 34 shows the latent representation and reconstruction of two subsequences from the

EMG dataset. As one can see, the reconstruction is a bit less detailed than the original

subsequence but contains the same general patterns. Remember that the goal here is not to get

the best possible reconstruction of the subsequence but rather to find a good encoded

representation of the subsequence for segmentation.

Figure 34: The top plots show all ten channels of two subsequences of size 52 taken from the Long-Term

3DC dataset [42]. The middle plots show the latent representation of the subsequences. The bottom plots

show the reconstructed subsequence. The autoencoder used is the convolutional model.

3.2.1.3 Latent Space Matrix Profile (LSMP)

The latent space matrix profile is, as the name implies, a latent representation of the matrix

profile. To produce the Latent Space Matrix Profile, the latent representation of the all-

subsequence set A is needed. The all-subsequences set A of a time series T is an ordered set

of all possible subsequences of T obtained by sliding a window of length m across T. The

latent all subsequence set F is defined as the latent representations of the all-subsequence set

A. Each latent representation 𝒇 in F is found by feeding each subsequence s in A through a

pretrained autoencoder (𝑓 = 𝐸𝑛𝑐(𝑠)). Remember that the autoencoder will represent

multidimensional input as a one-dimensional feature in latent space.

The latent space matrix profile is defined by the same logic used for calculating the regular

matrix profile in Section 2.2. With the only difference being the use of latent representation

instead of subsequences. The latent space matrix profile PF is thus defined as the vector of

Euclidian distances between all the latent features in F with the nearest non-trivial neighbor in

F itself. The corresponding latent space matrix profile index IA is defined as the vector

containing the indices of the nearest non-trivial neighbor in F for every latent representation

in F.

56

In section 2.2, it was mentioned that calculating the matrix profile directly using convolution

in the time domain was impractical due to high time and space complexity. The solution to

this was SlidingDotProduct (outlined in Figure 9), which uses FFT to reduce the computation

time substantially. Doing this is only possible if the all-subsequence set can be made using a

sliding window on the time series. This is true for the all-subsequence set A but not for the

latent set F, which means it is not possible to use the SlidingDotProduct method when

calculating the latent space matrix profile PF. The following paragraphs will show that it is

possible to work around this by using highly parallelized computation and exploiting the

temporal constraint utilized when making the CAC.

The formula for the Euclidian distance between the vectors x and y is given by:

𝑑(𝑥, 𝑦) = √(𝑥 − 𝑦)2

Equation 25

If the formula is expanded, this can be calculated by taking the dot product of the vectors

themselves and the dot product between the vectors.

√(𝑥 − 𝑦)2 = √𝑥2 + 𝑦2 − 2𝑥𝑦

Equation 26

By exploiting this, and that each distance calculation can be done independently, it is

straightforward to vectorize the problem and run the calculations in a parallelized fashion.

The GPU is perfect for this, as it is highly specialized for parallel processing of floating-point

operations, making it great for doing simple math operations on vectorized data. The

implementation in this thesis is based on the cdist function in the machine learning framework

PyTorch [43]. This function can calculate the Euclidian distance between pairs of vectors and

supports GPUs.

Figure 35: Example of the full distance matrix used to calculate matrix profile PFF from a time series of

length 4000. Calculating the matrix profile for this length is not that time-consuming on a modern GPU,

57

but handling larger time series would get difficult as the distance matrix would require exponentially

more space and calculation time.

As seen in section 2.3.1, doing time series segmentation based on the matrix profile and CAC

only benefits from finding arc crossings inside the current and next segment. If the time series

includes repeated similar segments, the CAC might even be rendered useless. Therefore, the

authors introduced the temporal constraint, which also radically decreases the computation

time. A TC can be applied to the matrix profile PF, which means that only the distances

between the latent features located inside the temporal constraint need to be calculated.

Applying the temporal constraint results in a linear time and space complexity.

Figure 36: Results of only calculating the distances inside a temporal constraint TC of 800. To exclude

trivial matches, the line along the diagonal is also not calculated.

The Euclidian distances are not normalized like in the STAMP algorithm. This is because the

CAC only needs the matrix profile indices IF and not the similarity score provided by the

matrix profile (the index to the shortest distance is the same whether the distance is

normalized or not). To find the matrix profile PF and the matrix profile indices IF the distance

matrix is collapsed by saving the minimum distance and the corresponding index at each time

step.

58

Figure 37: Shows the collapse of the distance matrix into the matrix profile. This is done by extracting the

minimum value of each row. (P.S The matrix profile shown here is just for visualization and does not

represent the actual matrix profile)

For long time-series data, a memory problem might arise because the algorithm saves 2*TC

datapoints per time step to make the temporally constrained distance profile. However, using

the TC makes it possible to collapse the distance profile before processing the whole time

series. The algorithm for doing this is outlined in Figure 38.

Figure 38: Outline of the algorithm Batched Collapse

As seen in the Batched collapse algorithm, collapsing the matrix profile before processing the

entire time series comes at the cost of recalculating the last (TC*2-1) timesteps of the matrix

profile. This recalculation is necessary because the first time-steps in the new matrix profile

can point back to the old one. Figure 39 and Figure 40 give a visual intuition about why this is

necessary.

Algorithm name: Batched Collapse

1. Calculate the distance matrix D until a specified amount of time steps tlim

2. Collapse the distance matrix to get the matrix profile P

3. Keep P, Delete D

4. While tlim < lenght(T):

a. tlim_prev = tlim

b. tlim += tlim

c. Calculate the new distance matrix from tlim_prev-(TC*2-1) to tlim

d. Collapse the new distance matrix Dnew to get the matrix profile Pnew

e. Where P and Pnew overlaps in time -> Keep min(P,Pnew), Delete

max(P,Pnew),

f. P = Pnew

g. Keep P, Delete D

59

Figure 39: Shows the algorithm batched collapse on a time series of length 10400. The calculation is

divided into three batches to reduce memory requirements for long-time-series data. Each batch produces

one matrix profile. The orange squares show the area that must be recalculated when doing a “batch

collapse”.

Figure 40: Top figure shows the temporarily constrained matrix profile of a time series of length 10400.

The second figure the three batched matrix profiles calculated. The bottom figure shows the full matrix

profile after taking the minimum value in the overlapping area.

The “batch collapse” could also be used to make the algorithm ɛ real-time by accumulating a

batch of data before adding it to the end of the matrix profile. Doing this will entail a tradeoff

between batch size and calculation time because every time a batch is added, TC*2-1 timestep

must be recalculated.

In section 2.3.1, FLOSS was made to work online by only using the right-pointing arcs. This

trick can be borrowed to make the LSMP updateable in real-time as well. If one only looks for

the closest distance forward in time, no subsequence can have a nearest-neighbor in the

previous matrix profile. An example of this is shown in Figure 41. Doing this makes it

possible to increment the matrix profile without having to do extra calculations. As with

FLOSS, using only forward-pointing arcs will usually yield a slight decrease in performance

at detecting change points compared to using both forward and backward-pointing arcs.

60

Figure 41: Shows the online version of LSMP on a time series of length 10400. No recalculation is needed

when updating the distance matrix

3.2.1.4 CAC Implementation

The CAC, detailed in section 2.3, is found by counting the number of arc crossings over each

index using the matrix profile index. In this thesis, a method from the stumpy API called _cac

is used to produce the CAC. Support for multidimensional time-series data by averaging over

the CACs calculated from each channel is added to the original implementation.

3.2.1.5 Distance Curve

The distance curve used in TSSTAFL is made from measuring the Euclidean distance

between consecutive features and is implemented according to Equation 5 in section 2.4.2.

For the CAC, low values indicate changepoints. For the distance curve, however, high values

indicate changepoints. Because of this, a modification to the distance curve has been made

that allows for using the extraction algorithms interchangeably between the different CPD

algorithms used in this thesis:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑐𝑢𝑟𝑣𝑒𝑛𝑒𝑤 = 1 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒⁡𝑐𝑢𝑟𝑣𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙⁡

Equation 27

This modification will flip the distance curve upside down, and the minimum value will now

indicate a change point. Since the distance curve is already normalized between zero and one,

the maximum value will now be one, and the minimum value will be zero. For simplicity,

both the distance curve and the corrected arc curve will hereafter be referred to as CAC.

61

3.2.1.6 Welch Implementation

Figure 42: Top figure shows the original "Smart Cane" time series from the UCR dataset. The middle

figure shows the periodogram of the time series. The bottom figure shows the periodogram created using

Welch's method

As known from section 2.3, the authors of the article "Domain agnostic online semantic

segmentation for multi-dimensional time series" [12] presented a segmentation algorithm

FLUSS that only requires one parameter: the subsequence length. They also state that this

parameter can be set to roughly a period. In [12], they found this subsequence length based on

visual inspection. If the signal is relatively periodic over time, there should be a way to

estimate this parameter automatically. Section 2.6 showed that one way to find the periodicity

of a signal is by searching for the highest peak in the signal's power spectrum. A high peak in

the power spectrum at frequency f is a good indication of a periodic signal with a period equal

to 1/f. There are multiple ways to estimate the signal's power spectral density, depending on

how much variance or bias can be tolerated. Since the FLUSS and FLOSS algorithms are not

that sensitive to minor variations in subsequence length, one does not have to pinpoint the

signal's exact periodicity, which makes using welch optimal since it trades some of the

spectral resolution for reduced variance and bias. One can see this clearly in Figure 42, where

the standard periodogram has high spectral resolution and more variance, while the modified

periodogram from welch has a lower spectral resolution but less variance.

62

For the implementation of Welch’s method, the open-source Python library SciPy [44] is used

with the following hyperparameters: the length of each segment (L) is set to 256, the offset of

each segment (D) is set to 128, and the window function used is Hann.

3.2.2 Latent Space Unsupervised Semantic Segmentation

Figure 43: Overview of the LS-USS and LS-USS online algorithms.

As seen in the background, representation learning has proven beneficial for segmenting high-

dimensional data, partly because it allows for filtering out correlated or redundant information

from the time series data. Combining representation learning with the basic building blocks

used in FLUSS could resolve some of the problems with high-dimensional times series data

(see section 2.3.4) and allow for better utilization of data from multiple sources. This is the

thought process behind developing the segmentation algorithm Latent Space Unsupervised

Sematic Segmentation (LS-USS).

All the primary components used to build LS-USS have been detailed in 3.2.1. As mentioned

earlier, it utilizes components from both FLUSS and TSSTAFL. LS-USS uses an autoencoder

to encode the multidimensional all subsequences set A into the one-dimensional latent all

subsequence set F. After this, the latent space matrix profile (LSMP) PF and the

corresponding LSMP index IF is constructed. The indices IF are then used to make the CAC,

which is the graph that contains the number of arc crossings at each time step. Few arc

crossings indicate a high likelihood of changepoint at that time step, and a high number of arc

crossings indicate a low likelihood for a changepoint.

LS-USS online is similar to LS-USS, except that it uses the version of the LSMP that works

online by only considering right-pointing arcs. Doing this makes it possible to update IF

without recomputing the distance matrix for the last (TC*2-1) timesteps. As mentioned, the

regular LSMP can also be ɛ real-time by accumulating a batch of data before adding it to the

end of the PF, making the regular LS-USS ɛ real-time. An overview of the components used

to make the two CPD algorithms are shown in Figure 43.

3.2.3 FLUSS and FLOSS Implementation

Figure 44: Overview of the FLUSS and FLOSS algorithms.

63

Section 2.3 went through the main components used in the FLUSS and FLOSS (2.3.2)

algorithms. First, the STAMP algorithm produces the matrix profile before the CAC is found

by counting the number of arc crossings over each index using the matrix profile index. If

there are few arc crossings over an index, it is more likely to be a changepoint than if there are

many arc crossings.

The difference between FLOSS and FLUSS is that the former only uses the right-pointing

arcs to enable online functionality.

3.2.4 TSSTAFL Implementation

Figure 45: Overview of the TSSTAFL algorithm.

Another algorithm detailed in the background (section 2.4.2) is from the paper “Time Series

Segmentation through Automatic Feature Learning”[37]. As the authors did not name the

method described in that paper, it will be referred to as TSSTAFL going forward. This

algorithm compares the distance between consecutive subsequences represented in latent

space using an autoencoder. The output from TSSTAFL is a distance curve (slightly modified

in section 3.2.1.5), where local minima values on this curve indicate a high likelihood for

changepoint.

3.2.5 FLUSS-Welch

Figure 46: Overview of the FLUSS-Welch algorithm.

FLUSS-Welch uses the Welch method to estimate the periodicity of the signal. This estimate

is used as the subsequence length in STAMP, which produces the matrix profile. After this,

the CAC is found by counting the number of arc crossings over each index using the matrix

profile index. If there are few arc crossings over an index, it is more likely to be a changepoint

than if there are many arc crossings. The difference between this and regular FLUSS is that

the subsequence size used in STAMP does not have to be manually specified when using

FLUSS-Welch.

3.3 Change Point Extraction Algorithms
Changepoint extractors locate changepoints using the output from the CPD algorithms. The

predicted segments are the areas between the predicted change points. The extractors in this

thesis are used to find the changepoint based on the CAC.

64

The first section details the implementation of REA (2.3.1) used in [12]. The two sections

after that will go through the extraction algorithms: LREA and LTEA. The former extracts

changepoints based on local statistics, and the latter is a changepoint extractor that can be

used with online data streams.

3.3.1 Regime Extraction Algorithm Implementation

The Regime Extraction Algorithm (REA) was presented in section 2.3.1. It searches for the k

lowest “valley” points in the CAC and utilizes an exclusion zone around each valley point to

avoid that all changepoints end up in the same place. In this thesis, it is implemented using the

method _rea from the stumpy API [39].

3.3.2 Local Regime Extractor Algorithm

REA was presented as a simple algorithm for extracting segments based on the k lowest

"valley" points of the CAC. There are some problems with this algorithm for long time-series

data, however. In the datasets used in this thesis, the changepoints are usually distributed

relatively evenly in time, which means that when extracting changepoints, one cares more

about local minimums than about the global minimums. The REA algorithm will always pick

the global k lowest "valley" points on the CAC instead of locating where the CAC is at its

lowest compared to the local area around it. To combat this, a method that scales the CAC

depending on the local statistics is introduced. The method scales each point in the CAC to

zero mean and unit variance based on the local mean and standard deviation calculated over a

rolling window (as shown in Equation 28). Figure 47 shows the effect of scaling the CAC.

After the scaling is done, the same procedure used in the REA algorithm extracts the lowest k

“valley points” from the scaled CAC.

𝐶𝐴𝐶𝑠𝑐𝑎𝑙𝑒𝑑 =
𝐶𝐴𝐶 − µ𝑟𝑜𝑙𝑙𝑖𝑛𝑔

𝜎𝑟𝑜𝑙𝑙𝑖𝑛𝑔

Equation 28: Where µ𝐫𝐨𝐥𝐥𝐢𝐧𝐠 and 𝝈𝐫𝐨𝐥𝐥𝐢𝐧𝐠 are time series that contain the rolling mean and rolling standard

deviation of the CAC

Figure 47: The top plot shows the original CAC, while the bottom plot shows the scaled CAC.

The downside with this algorithm is that it assumes that the changepoints are somewhat

evenly distributed, but it should yield good results if the size of the rolling window is large

enough to capture the local statistics of the CAC. If one increases the window size, the

extraction will be increasingly global and more like the original REA. If one reduces the

65

window size, the extraction will be more local. This thesis does not include any analysis on

the optimal local window size, but the algorithm usually yields good results when it is set to

the average segment length. The LREA algorithm is outlined in Figure 48.

Figure 48: Outline of the LREA algorithm

3.3.3 Local Threshold Extraction Algorithm

For comparisons between the offline CPD algorithms in this thesis, the algorithms REA and

LREA are used. These algorithms require information about the number of segments, which is

often not available. LREA and REA work great for comparing the CPD algorithms but have

limited use in real-world segmentation tasks. To address this, the Local Threshold Extraction

Algorithm (LTEA) is presented. As the name suggests, this algorithm works by scaling the

CAC before doing threshold-based change point extraction.

The same CAC scaling used in the LREA algorithm is also utilized in LTEA. When the

algorithm is used on online streaming data, the rolling statistics are only based on previous

data points. Since the number of changepoints/segments is not included, it is more challenging

to set the local window size. Setting this parameter requires some domain knowledge, but so

does setting the temporal constraint. In this thesis, the local window size is set to 2xTC.

In LTEA, the scaled CAC-values over a given threshold are disregarded by being set to the

value one. As the scaled CAC is standardized to zero mean and unit variance, setting the

threshold is relatively trivial. Usually, the threshold can be set to around minus one standard

deviation. To get better performance, one can find a good threshold by visualizing the scaled

Algorithm name: Local Regime Extracting Algorithm (LREA)

LREA (CAC,num_regimes)

 Inputs:
 CAC – a Corrected Arc Curve or Distance Curve
 numRegimes – number of regime changes

 Outputs:
 locRegimes – the location of the change points

1. CAC_scaled = empty array with same length as CAC

2. avg_seg_length = length(CAC)/(numRegimes)

3. for i=1 : length(CAC)

4. local_window = CAC[i-(avg_seg_length/2): i+(avg_seg_length/2)]

5. local_mean = mean(local_widow) //Mean over a local window

6. local_std = std(local_window) // standard deviation over a local window

7. CAC_scaled[i] = (CAC[i]-local_mean)/local_std // Scales to zero mean and unit variance

8. locRegimes = empty array of length numRegimes-1

9. for i=1 : numRegimes

10. locRegimes(i) = indexOf(min(CAC_scaled))

11. Set exclusion zone // To prevent matches to “self”

12. end

13. return locRegimes

66

CAC for a small amount of data. If some labeled data are available, one can also do a

hyperparameter search to find a suitable threshold.

After thresholding the CAC, one gets some clear valleys separated by intervals of “ones”, as

can be seen in the 4th plot in Figure 49. For each valley, the index of the minimum value in the

valley is set to be a changepoint location. An exclusion zone like the one used in LREA and

REA is also utilized to avoid trivial matches caused by valleys close in time. The algorithm is

outlined in Figure 50.

Figure 49: The top plot show channel0 and the true CP locations of a subject in the UCI dataset. The

second plot show the associated CAC. The third plot show the scaled CAC. The fourth plot show the

thresholded CAC with the predicted changepoints in each “valley”. The last plot shows the predicted

changepoints in conjuction with channel0 and the true locations.

67

Figure 50: Outline of the LTEA algorithm

Algorithm name: Local Threshold Extracting Algorithm (LTEA)

LREA (CAC,local_window_size=Threshold=-1)

 Inputs:
 CAC – a Corrected Arc Curve or Distance Curve
 local_window_size – The size of the window used to nomalize the CAC
 Threshold = -1 – Threshold for where to search for change points. Defaults to -1
 Outputs:
 locRegimes – the location of the change points

1. CAC_scaled = empty array with same length as CAC

2. avg_seg_length = length(CAC)/(numRegimes)

3. for i=1 : length(CAC)

4. local_window = CAC[i-(avg_seg_length) : i+(avg_seg_length)]

5. local_mean = mean(local_widow) //Mean over a local window

6. local_std = std(local_window) // standard deviation over a local window

7. CAC_scaled[i] = (CAC[i]-local_mean)/local_std // Scales to zero mean and unit variance

8. If CAC_scaled[i] > -1

9. CAC_scaler[i] = 1

10. CPs = empty array of length numRegimes-1

11. for i=1 : n_valleys

12. CPs[i] = indexOf(min(valley))

13. end

14. return CPs

68

4 Datasets

This chapter will present the datasets used to compare and test the algorithms implemented in

the methods chapter. Table 3 presents an overview of the datasets utilized and their features.

The abbreviations will be used to refer to the datasets when doing experiments, and the

leftmost column shows which sections contain experiments involving the datasets.

The original training data in the datasets Expressive motion with dancers and Long-Term

3DC Dataset is used to construct two artificial datasets. The following sections will detail how

each dataset was made and how it is used in this thesis.

Original dataset

names

Abbreviations

used in this

thesis

Containing ground

truth changepoint

locations

Containing

human specified

subsequence sizes

Sections

involving

dataset

UCI Human Activity

Recognition Using

Smartphones

Dataset

UCI ✓ ✕ 5.1.1.1

Expressive motion

with dancers

Dance

artificial
✓ ✕ 5.1.1.2

Dance ✓ ✕ 5.1.1.3

Long-Term 3DC

Dataset

EMG artificial ✓ ✕ 5.1.1.4

EMG ✓ ✕ 5.1.1.5

Depresjon Depresjon ✕ ✕ 5.2

UCR Time Series

Semantic

Segmentation

Archive

UCR ✓ ✓ 5.2.2

Table 3: Overview of the different datasets and corresponding abbreviations and features. The original

training data in the datasets Expressive motion with dancers and Long-Term 3DC Dataset is used to

construct artificial datasets.

4.1 UCI Human Activity Recognition Using
Smartphones Dataset

The UCI Human Activity Recognition Using Smartphones Dataset [22] contains 30 volunteers

between the ages of 19 and 48 who perform six activities wearing a smartphone on the waist.

The activities are walking, walking upstairs, walking downstairs, sitting, standing, and laying

down. The collected data came from the 3-axial accelerometer and 3-axial gyroscope located

in a Samsung Galaxy S2 and were sampled at 50Hz. The raw acceleration data signals have

three main components: body movement, gravity, and noise. The sensor data was filtered

using a median filter and a 3rd order low pass Butterworth filter with a corner frequency of 20

Hz for noise removal. A low pass Butterworth filter, with a corner frequency of 0.3 Hz, is

used to separate the body movement and gravity signals. The reason for choosing to use a 0.3

Hz cut-off frequency is that gravitational forces are assumed only to have low-frequency

components. This thesis will use the data from the gyroscope, accelerometer, and the filtered

69

body movement from the accelerometer. As all these signals are sampled in all three spatial

dimensions, the dataset contains nine channels in total. Nine subjects constitute the training

set, five subjects are used as a validation set, while the remaining 16 subjects are picked for

the test set.

Figure 51: Channel zero and three in a time series from the UCI dataset

4.2 Expressive Motion With Dancers

The dataset Expressive motion with dancers[45] is made in collaboration with professional

dancers performing different dance moves that correspond to three emotional states. The

dancers were wearing two Myo armbands, one on the calf and one on the forearm. The Myo is

a low-cost eight-channel consumer-grade, dry-electrode EMG armband that also integrates a

nine degree of freedom IMU (inertial measurement unit). Data from the two IMU sensors are

represented by yaw, pitch roll coordinates and are sampled at 50Hz. For the experiments

conducted in this thesis, only the IMU channels will be utilized.

Channels Time Signals

Channel0 Body accelerometer x

Channel1 Body accelerometer y

Channel2 Body accelerometer z

Channel3 Body gyroscope x

Channel4 Body gyroscope y

Channel5 Body gyroscope z

Channel6 Total accelerometer x

Channel7 Total accelerometer y

Channel8 Total accelerometer z

70

Pitch Yaw Roll

Arm channel0 channel1 channel2

Leg channel3 channel4 channel5

The dancer was instructed to develop three choreographic moods differentiated by the

emotion they subjectively represented for the performer. To generate training data, the dancer

repeated each sequence of moods for around 20 seconds. In addition to this, the dancers also

created dance performances using the same lexicon of sequences used when building the

training set. The dataset contains data from 27 participants. Here, the training data is used as

the training set, while the dance performances from 9 participants are used as the validation

set, and the remaining 18 are used for testing.

An additional artificial dataset is made from the original training data. The new training set

includes raw data from 12 participants, while the validation and test sets have been made by

randomly concatenating ten to seventeen choreographic moods from remaining six and nine

participants, respectively. The validation set consists of 20 artificial time series’, while the test

set consists of 50.

Figure 52: Channel zero and three in a time series from the Dance dataset

4.3 Long-Term 3DC Dataset
The dataset Long-Term 3DC Dataset was initially used in the article "Virtual reality to study the

gap between offline and real-time EMG-based gesture recognition" [46] and is made publicly

available on [42]. This dataset contains data from 20 able-bodied participants between 18 and

34 years old, making eleven hand gestures (see Figure 54). Each of the participants

71

participated in three to four recording sessions in a period of 14 days. The EMG armband

used to make this dataset is the 3DC Armband[47]. The 3DC is a ten-channel, dry electrode

3D printed EMG band with a sampling rate of 1000 Hz. The armband also includes a 9-axis

Magnetic, Angular Rate, and Gravity (MARG) sensor, but only 10 EMG channels are used in

this thesis. The dataset is divided into training sessions and evaluation sessions. In the training

session, the participants were asked to hold each of the 11 gestures for 5 seconds, repeated

four times by each participant on every recording day. For the evaluation session, the

participants were asked to do a total of 42 gestures in one continuous session. The requested

gestures were selected at random every 5 seconds. Each participant recorded a minimum of 6

evaluation sessions. The original paper [46] contains a more detailed description of the

making of this dataset.

Figure 53: Channel zero and three in a time series from the EMG dataset

For this thesis, the evaluation session will be used as a unique dataset. Here, the first

evaluation of six participants is used as a training set, the first evaluation of five participants is

used as a validation set, and the remaining evaluation runs for every participant is used as a

test set.

From the training sessions, an additional artificial dataset is made. The artificial training set

consists of training sessions recorded from 10 participants. As with the artificial dance

dataset, the validation and test sets are made by randomly concatenating ten to seventeen

gestures. The validation set consists of 15 time series made by gestures from 4 participants,

while the test sets include 30 time series made by gestures from 8 participants.

72

Figure 54: Gestures used in the Long-Term 3DC Dataset dataset. From [46]

4.4 Depresjon
The datasets presented thus far are helpful for comparing and testing the different

segmentation algorithms objectively because they contain ground truth labels. The Depresjon

[48] dataset, however, does not contain changepoints, so it will not be used to compare the

segmentation performance between the different algorithms. Instead, it will be used to test a

practical application of the unsupervised segmentation algorithm LS-USS. This dataset

contains motor activity recordings from 23 unipolar and bipolar depressed patients in addition

to 32 healthy controls. The Montegomery-Asberg Depression Rating Scale (MADRS) is used

for rating the severity of the ongoing depression, and all the depressed patients had a

MADRS-score above 10. The motor activity was monitored with an actigraph watch

(Actiwatch, Cambridge Neurotechnology Ltd, England, model AW4) worn on the right wrist.

The sampling rate used is 32Hz, and the movement has to be above 0.05 g to be recorded. The

data points in the dataset are the total activity counts recorded over one-minute intervals.

Table 4 shows the first 10 minutes of data for one participant in the Depresjon dataset.

Table 4: The first 10 minutes of data for one participant in the Depresjon dataset

timestamp date Activity Count

0 2006-01-30 12:30:00 2006-01-30 7

1 2006-01-30 12:31:00 2006-01-30 79

2 2006-01-30 12:32:00 2006-01-30 4

3 2006-01-30 12:33:00 2006-01-30 3

4 2006-01-30 12:34:00 2006-01-30 4

5 2006-01-30 12:35:00 2006-01-30 4

6 2006-01-30 12:36:00 2006-01-30 94

7 2006-01-30 12:37:00 2006-01-30 4

8 2006-01-30 12:38:00 2006-01-30 10

9 2006-01-30 12:39:00 2006-01-30 3

10 2006-01-30 12:40:00 2006-01-30 9

73

Figure 55: Examples of control and condition participants from the Depresjon dataset.

4.5 UCR Time Series Semantic Segmentation
Archive

UCR Time Series Semantic Segmentation Archive[2] was used to showcase the FLUSS and

FLOSS segmentation algorithms[12]. This dataset contains many short datasets from different

domains. Many of these datasets are not that difficult to segment independently, but they are

useful for testing how domain agnostic a segmentation algorithm is. To get a sense of how

diverse the data is, take a look at Table 5 and Figure 56.

This dataset includes human specified subsequence sizes, which makes it possible to test the

performance of FLUSS-Welch against regular FLUSS utilizing human specified subsequence

sizes.

74

Table 5: Descriptions from a presentation on article website [2]

Dataset-name #

Channels

CPs

Short Description

Cane 1 1 Data from two different users of a smart can concatenated together

DutchFactory 1 1 This dataset is one year of electrical power demand in a Dutch facility

city

EEGRat 2 1 Contains 5 sec of a two-channel EEG recording at left and right frontal

cortex of male adult WAG/Rij rats. Signals were referenced to an

electrode placed at the cerebelum

Fetal2013 1 2 Concatenated three AECG1 leads from separate fetal recordings, a64,

a68, a57

GrandMalSeizures 1 1 Tonic-clonic seizures of a subject recorded with a scalp right central

(C4) electrode

GrandMalSeizures2 1 1 Tonic-clonic seizures of a subject recorded with a scalp right central

(C4) electrode

GreatBarbet 2 2 Three birds calls, all from the same species, Great Barbet, and

concatenated approximately one minute snippets of their songs.

InsesctEPG 1,2,3,4 1 1 Four datasets containing EPG recordings of feeding states in the insect

Asian citrus psyllid

NogunGun 1 1 The time series is the y-axis position of an actors hand as she points her

finger about 20 times, followed by pointing a gun about 30 times.

PigInternalBleeding 3 1 The data has been collected from a cohort of 52 pigs subjected to

induced slow bleeding. Each animal has been sedated, instrumented and

bleed with a pump at a rate of 20mL/min. From data of each pig, two 30

second long segments of data were randomly sampled: one from the

period before and one approximately 2 minutes into the bleeding.

Powerdemand 1 1 This dataset is 320 days of electrical power demand in an Italian city,

beginning in mid august. At time point 4500, the remaining data was

flipped left to right.

PulsusParadoxus 3 1 This dataset records the onset of Pulsus Paradoxus on a patient. The

dataset records the volunteers SpO2(one channel) and ECG(two

channels)

RoboticDogActivityX 1 1 x-axis acceleration of the Sony RoboDog first walking on cement and

then "playing"

RoboticDogActivityY 1 1 x-axis acceleration of the Sony RoboDog first walking on cement and

then "playing"

RoboticDogActivityY2 1 1 x-axis acceleration of the Sony RoboDog first walking on cement

before walking on carpet

SimpleSyntetic 1 2 Dataset created by these two lines of matlabocde: >> a= sin(0:0.05:400)

+ randn(size(sin(0:0.05:400)))/30; >>

a(3000:5000)=abs(a(3000:5000));

SuddenCardiacDeath 2 1 Data is at 50Hz. Patient is Female, 82 undergoing Heart failure. For the

first 65 seconds the patient a very irregular beat, then there is a

sustained ventricular tachyarrhythmia. Contains data from two different

ECG-channels.

SuddenCardiacDeath1 1 2 Patient is Male, 75 undergoing Cardiac surgery.

For the first 125 seconds the patient has Bundle branch block beats, then

there is a burst of Premature ventricular contractions lasting for about

28 seconds before the patient settles back to normal heartbeats

TiltABP 1 1 A subject was lying on tilt table with foot support. At timestep 25,000

the tilt table was rapidly rotated to the stand-up position. This dataset

records the volunteers ABP.

TiltECG 1 1 A subject was lying on tilt table with foot support. At timestep 25,000

the tilt table was rapidly rotated to the stand-up position.This dataset

records the volunteers ECG

WalkJogRun 2 2 A person walking, jogging and running with a rotationsensor on the left

lower arm and on the left calf

75

Figure 56: Tree sub-datasets from the UCR Time Series Semantic Segmentation Archive[3] . The first plot

shows the Cane dataset. The second plot shows the PulsusParadoxus dataset. The last plot shows the

nogunGun dataset, and the images above show how it was made.

 20

00
40

00
60

00
80

00
10

00

12

00

14

00

16

00

18

00

Pulsus paradoxus (PP), also

paradoxic pulse or paradoxical

pulse, is an abnormally large

SpO2 is an estimate of

arterial oxygen

saturation, or SaO2,

76

5 Experiments

This chapter includes three sections containing different types of experiments:

The first section will include an in-depth comparison between the different segmentation

algorithms used in the thesis (except FLUSS-Welch). The comparisons are performed on five

datasets containing long multi-dimensional time-series data.

The second section will demonstrate a practical application of unsupervised segmentation

algorithms, the last section in the experiments chapter shows the utility of LS-USS for finding

natural segments on the Depresjon dataset. Statistical features are extracted from the found

segments and used for the classification of depressed vs. non-depressed participants. The

results are then compared to the classification performance achieved when using fixed

segment sizes.

The third section in this chapter is dedicated to the parameter-free segmentation algorithm

FLUSS-Welch obtained by estimating the subsequence size using Welch’s method. The

experiments are performed on the UCR datasets where FLUSS-Welch’s performance is

compared to using the recommended subsequence lengths included with each of the datasets.

Each of the sections is split into two subsection: experiments and discussion. The experiment

sections present the results, while the discussion sections contain an analysis of the results

5.1 Comparisons Done on Long Multidimensional
Data

The comparisons in this section are made on five datasets: UCI, Dance Artificial, Dance,

EMG artificial, and EMG. The datasets are split into test, validation, and training sets as

specified in the dataset section (2.5) in the methods chapter. The mean distance between the

changepoints from the training set is calculated for use as the local window size for scaling

the CAC when using the LREA and LTEA extractors. The training set is also utilized for

training the autoencoders. As the autoencoders require both training and validation sets, 80%

of the training set is used as training examples, while the remaining 20% is used to validate

the autoencoder. The validation portion of the dataset is used to find the optimal

hyperparameters of the segmentation algorithms. After the best performing model

configurations on the validation set are found, the test set is used to make the final

comparisons between the different segmentation algorithms.

77

Offline Models Datascalers NW TC Step-size Autoencoder

EMG

datasets

Other

s

LS-USS - REA NoScaler

StandardScaler

RobustScaler

MinMaxScaler

50

100

150

200

300

400

500

1000

1500

2000

800

1200

1600

- Fully Connected

Convolutional

LS-USS -

LREA

NoScaler

StandardScaler

RobustScaler

MinMaxScaler

50

100

150

200

300

400

500

1000

1500

2000

800

1200

1600

- Fully Connected

Convolutional

FLUSS - REA NoScaler

StandardScaler

RobustScaler

MinMaxScaler

50

100

150

200

300

400

500

1000

1500

2000

800

1200

1600

- -

FLUSS -

LREA

NoScaler

StandardScaler

RobustScaler

MinMaxScaler

50

100

150

200

300

400

500

1000

1500

2000

800

1200

1600

- -

TSSTAFL -

LREA

NoScaler

StandardScaler

RobustScaler

MinMaxScaler

50

100

150

200

300

400

500

1000

1500

2000

800

1200

1600

25

50

100

150

200

250

350

500

Fully Connected

Table 6: Overview of the online algorithms used and their hyperparameters. Nw=Subseqence size,

TC=Temporal Constraint, step-size=distance in time between each subsequence used (decides how much

each subsequence overlap)

Online Models Datascalers NW TC Step-size Autoencoder Threshold

EMG

datasets

Others

LS-USS -

LTEA (Ɛ-real

time)

NoScaler

StandardScaler

RobustScaler

MinMaxScaler

50

100

150

200

300

400

500

1000

1500

2000

800

1200

1600

- Fully Connected

Convolutional

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

LS-USS online

- LTEA

NoScaler

StandardScaler

RobustScaler

MinMaxScaler

50

100

150

200

300

400

500

1000

1500

2000

800

1200

1600

- Fully Connected

Convolutional

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

FLUSS -

LTEA

(Ɛ-real time)

NoScaler

StandardScaler

RobustScaler

MinMaxScaler

50

100

150

200

300

400

500

1000

1500

2000

800

1200

1600

- - -0.5

-1.0

-1.5

-2.0

-2.5

-3.0

FLOSS -

LTEA

NoScaler

StandardScaler

RobustScaler

MinMaxScaler

50

100

150

200

300

400

500

1000

1500

2000

800

1200

1600

- - -0.5

-1.0

-1.5

-2.0

-2.5

-3.0

TSSTAFL -

LTEA

NoScaler

StandardScaler

RobustScaler

MinMaxScaler

50

100

150

200

300

400

500

1000

1500

2000

800

1200

1600

25

50

100

150

200

250

350

500

Fully Connected

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

Table 7: Overview of the online algorithms used and the hyperparameters. Nw=Subseqence size,

TC=Temporal Constraint, step-size=distance in time between each subsequence used (decides how much

each subsequence overlap)

78

The segmentation algorithms are divided into two categories: online and offline. Table 6 and

Table 7 present the different segmentation algorithms and their associated hyperparameters.

The hyperparameter optimization is done using grid search. The step size is used in TSSTAFL

and decides the amount of overlap between subsequences. If the step size is set to one, all

subsequences in the all-subsequences-set A will be used to construct the distance curve, and if

the step size is set to 25, every 25th subsequence will be used. The threshold parameter is the

threshold used in the extraction algorithm LTEA. TSSTAFL only uses the local extractors

LREA and LTEA because the original paper states that only local maxima should be

classified as a breakpoint. Even if they are not fully online, LS-USS and FLUSS are also

included in the online category as they can be made to work Ɛ real-time when using a

temporal constraint. Also, notice that the data scalers are part of the hyperparameter search.

Due to time constraints, only certain ranges of the hyperparameters are considered for the

different datasets based on prior knowledge about the scaling of the data.

The offline algorithms are evaluated using the Regime Score (Equation 16), while the online

algorithms are evaluated using the Prediction Loss MAE (Equation 15). The Regime Score

works well for evaluating segmentation algorithms that have access to the number of

changepoints to predict, such as the offline algorithms used in this thesis. When the number of

changepoints is not known in advance, the segmentation algorithms run the risk of under or

over-predicting. The Prediction Loss (MAE) takes this into account by weighting the mean

absolute error with the prediction ratio. Thus, the Prediction Loss is a fairer evaluation metric

for the online algorithms as the number of changepoints to predict is not given beforehand.

Note that the metrics used are not comparable and cannot be used to make comparisons

between the online and offline algorithms.

5.1.1 Experiments

The following subsections will give an overview of the experiments done on each dataset.

Each section starts with two tables presenting the different model configurations found on the

validation set for the offline and online models. The leftmost column shows the mean Regime

Score on the test set for the offline algorithm, while the mean Prediction Loss MAE is shown

for the online ones. Then, two boxplots, one for the offline and one for the online models,

show the spread in segmentation scores over the dataset, which is useful for looking into the

consistency of each algorithm. Each section also includes a plot of one segmentation run

using two of the algorithms developed in this thesis: the offline LS-USS LREA and the Ɛ real

time algorithm LS-USS LTEA. These plots are included to get a sense of the models' real-

world segmentation performance and give some context about what the segmentation scores

represent.

79

5.1.1.1 UCI

Table 8: Model configurations found from doing hyperparameter search on the UCI dataset. The leftmost

column shows the mean regime score from segmenting the test set. NW-range = [50-150], Step-size-

range=[25-250]

Table 9: Model configurations found from doing hyperparameter search on the UCI dataset. The leftmost

column shows the mean prediction loss MAE from segmenting the test set. NW-range = [50-150], Step-size-

range=[25-250]

Offline Datascaler NW TC Step-size Autoencoder Regime Score Mean

TSSTAFL

- LREA

RobustScaler 50 - 250 Fully Connected 0.01589

FLUSS -

REA

RobustScaler 50 800 1 None 0.02824

FLUSS -

LREA

RobustScaler 50 1200 1 None 0.00931

LS-USS -

REA

MinMaxScaler 50 800 1 Fully Connected 0.00687

LS-USS -

LREA

MinMaxScaler 50 800 1 Fully Connected 0.01041

Online Datascaler NW TC Step-size Autoencoder Threshold Prediction Loss

MAE Mean

TSSTAFL

- LTEA

MinMaxScaler 100 - 100 Fully

Connected

-2 51.99

FLOSS -

LTEA

RobustScaler 150 1600 1 None -1 87.36

FLUSS -

LTEA

RobustScaler 50 1600 1 None -1 47.27

LS-USS

online -

LTEA

RobustScaler 50 1200 1 Fully

Connected

-0.5 114.82

LS-USS -

LTEA

MinMaxScaler 150 800 1 Fully

Connected

-1.5 45.54

80

Figure 57: Boxplot showing the performance of the offline segmentation algorithms on the UCI dataset

Figure 58: Boxplot showing the performance of the online segmentation algorithms on the UCI dataset

LS-USS REA is the best performing algorithm on the test set for the offline models, scoring

higher than the local counterpart LS-USS LREA. Scaling the CAC with a local window equal

to the mean segment length on the training set might not be optimal as the segment lengths on

this dataset vary quite a lot, making it difficult to detect the smaller segments when using the

local extractor LREA. Most of the algorithms perform similarly on the online dataset, with

mean scores around 50, except for LS-USS online LTEA. RobustScaler and MinMaxscaler

appear to be the best scaling methods for the UCI dataset. Also, notice that all the LS-USS

algorithms utilizes the Fully Connected model on this dataset. The example plots below show

that LS-USS LREA is nearly spot on the true changepoints. One can also see that although it

81

does not have any information about the number of changepoints, LS-USS LTEA performs a

nearly optimal segmentation as well.

Figure 59: Top: Channel 0 of subject 4 in the UCI dataset. Middle: Segmentation using LS-USS – LREA-

Bottom: Segmentation using LS-USS – LTEA.

5.1.1.2 Dance Artificial

Table 10: Model configurations found from doing hyperparameter search on the Dance Artificial dataset.

The leftmost column shows the mean regime score from segmenting the test set. NW-range = [50-400],

Step-size-range=[25-250]

Offline Datascaler NW TC Step-

size

Autoencoder Regime Score

Mean

TSSTAFL

- LREA

MinMaxScaler 100 - 1 PaperModel2 0.03807

FLUSS -

REA

RobustScaler 50 800 1 None 0.02608

FLUSS -

LREA

StandardScaler 50 800 1 None 0.01735

LS-USS -

REA

MinMaxScaler 100 800 1 ConvModel 0.0257

LS-USS -

LREA

NoScaler 50 800 1 ConvModel 0.01803

82

Online Datascaler NW TC Step-size Autoencoder Threshold Prediction Loss

MAE Mean

TSSTAFL

- LTEA

MinMaxScaler 50 - 1 PaperModel2 -0.5 109.04

FLOSS -

LTEA

NoScaler 50 800 1 None -0.5 55.06

FLUSS -

LTEA

MinMaxScaler 100 800 1 None -0.5 48.01

LS-USS

online -

LTEA

MinMaxScaler 50 800 1 ConvModel -0.5 64.08

LS-USS -

LTEA

MinMaxScaler 50 800 1 ConvModel -0.5 27.15

Table 11: Model configurations found from doing hyperparameter search on the Dance Artificial dataset.

The leftmost column shows the mean Prediction Loss MAE score from segmenting the test set. NW-range =

[50-400], Step-size-range=[25-250]

Figure 60: Boxplot showing the performance of the offline segmentation algorithms on the Dance

Artificial dataset

Figure 61: Boxplot showing the performance of the online segmentation algorithms on the Dance Artificial

dataset

83

The best performing offline algorithm on the test set is here FLUSS LREA, closely followed

by LS-LSS LREA. On this dataset, there seems to be a benefit in scaling the CAC with the

local statistic as both the LS-USS and FLUSS scores higher using the local region extractor

LREA. For the online models, the Ɛ real-time algorithm LS-USS LTEA has the best score.

The rest of the online algorithms have similar scores except TSSTAFL, which is the worst-

performing model on the test set. Also, notice that all the LS-USS-based algorithms ended up

using the convolutional model on this dataset. The figure below shows that LS-USS yields

similar segmentation results for both LREA(offline) and LTEA(online).

Figure 62: Top: Channel 0 of d41 in the Dance Artificial dataset. Middle: Segmentation using LS-USS –

LREA- Bottom: Segmentation using LS-USS – LTEA.

5.1.1.3 Dance

Table 12: Model configurations found from doing hyperparameter search on the Dance dataset. The

leftmost column shows the mean regime score from segmenting the test set. NW-range = [50-400], Step-

size-range=[25-250]

Offline Datascaler NW TC Step-size Autoencoder Regime Score

Mean

TSSTAFL

- LREA

MinMaxScaler 400 - 100 Fully

Connected

0.03665

FLUSS -

REA

RobustScaler 400 800 1 None 0.03802

FLUSS -

LREA

RobustScaler 50 800 1 None 0.02969

LS-USS -

REA

RobustScaler 400 1200 1 Fully

Connected

0.05459

LS-USS -

LREA

MinMaxScaler 400 1600 1 Fully

Connected

0.029

84

Online Datascaler NW TC Step-

size

Autoencoder Threshold Prediction Loss

MAE Mean

TSSTAFL

- LTEA

MinMaxScaler 125 - 200 Fully Connected -1.5 289.2028

FLOSS -

LTEA

RobustScaler 125 1200 1 None -2 334.65

FLUSS -

LTEA

RobustScaler 200 1200 1 None -1.5 281.0156

LS-USS

online -

LTEA

MinMaxScaler 200 1600 1 Fully Connected -1.5 204.9742

LS-USS -

LTEA

RobustScaler 200 1200 1 Fully Connected -2 415.32

Table 13: Model configurations found from doing hyperparameter search on the Dance dataset. The

leftmost column shows the mean Prediction Loss MAE score from segmenting the test set. NW-range = [50-

400], Step-size-range=[25-250]

Figure 63: Boxplot showing the performance of the offline segmentation algorithms on the Dance dataset

Figure 64: Boxplot showing the performance of the online segmentation algorithms on the Dance dataset

85

The algorithm with the best mean regime score on the Dance test set is LS-USS, closely

followed by FLUSS LREA. One can also see that models utilizing the REA extractor have the

worst performance. The fully connected model is the autoencoder used for both the online and

offline models on this dataset. On the online dataset, every algorithm performs poorly, and the

results seem a bit random. This could be caused by too much variation between the individual

dance performances, which might lead to the best performing configurations in the

hyperparameter search not generalizing well to the dance performances in the test set. The

results seem to be inconsistent and less than optimal when inspecting the online models'

segmentation visually as well. Figure 65 shows that the offline model LS-USS LREA yields a

reasonably good segmentation, while the Ɛ real time LS-USS LTEA algorithm underpredicts.

Figure 65: Top: Channel 0 of d24 in the Dance dataset. Middle: Segmentation using LS-USS – LREA-

Bottom: Segmentation using LS-USS – LTEA.

5.1.1.4 EMG artificial

Table 14: Model configurations found from doing hyperparameter search on the EMG Artificial dataset.

The leftmost column shows the mean regime score from segmenting the test set. NW-range = [50-500],

Step-size-range=[25-500]

Offline Datascaler NW TC Step-size Autoencoder Regime Score

Mean

TSSTAFL

- LREA

StandardScaler 500 - 150 Fully

Connected

0.02536

FLUSS -

REA

StandardScaler 50 2000 1 None 0.00797

FLUSS -

LREA

StandardScaler 50 1500 1 None 0.00718

LS-USS -

REA

StandardScaler 50 2000 1 ConvModel 0.00251

LS-USS -

LREA

StandardScaler 50 1500 1 ConvModel 0.00214

86

Table 15: Model configurations found from doing hyperparameter search on the EMG artificial dataset.

The leftmost column shows the mean Prediction loss MAE from segmenting the test set. NW-range = [50-

500], Step-size-range=[25-500]

Figure 66: Boxplot showing the performance of the offline segmentation algorithms on the EMG artificial

dataset

Online Datascaler NW TC Step-

size

Autoencoder Threshold Prediction

Loss MAE

Mean

TSSTAFL -

LTEA

StandardScaler 300 - 150 Fully

Connected

-0.5 97.54

FLOSS -

LTEA

StandardScaler 100 2000 1 None -0.5 86.44

FLUSS -

LTEA

StandardScaler 50 1500 1 None -1 26.73

LS-USS

online -

LTEA

StandardScaler 50 1500 1 ConvModel -1 16.1

LS-USS -

LTEA

StandardScaler 50 2000 1 ConvModel -0.5 6.64

87

Figure 67: Boxplot showing the performance of the online segmentation algorithms on the EMG artificial

dataset

The two best performing offline models on the test set are here LS-USS LREA and LS-USS

REA. Both FLUSS and LS-USS get better scores using the local extractor LREA. The best

performing online model is the Ɛ real time algorithm LS-USS LTEA, followed by LS-USS

online LTEA. The Ɛ real-time algorithms perform better than the fully online versions of both

the FLUSS and LS-USS algorithms. Scaling the data to zero mean and unit variance seems

beneficial for segmentation on this dataset. The convolutional model seems to be the best

autoencoder for LS-USS on this dataset.

Figure 68: Top: Channel 0 of gesture19 in the EMG Artificial dataset. Middle: Segmentation using LS-

USS – LREA- Bottom: Segmentation using LS-USS – LTEA.

88

5.1.1.5 EMG

Table 16: Model configurations found from doing hyperparameter search on the EMG dataset. The

leftmost column shows the mean regime score from segmenting the test set. NW-range = [50-500], Step-

size-range=[25-500]

Online Datascaler NW TC Step-size Autoencoder Threshold Prediction Loss

MAE Mean

TSSTAFL

- LTEA

StandardScaler 500 - 500 Fully

Connected

-1.5 388.8155

FLOSS -

LTEA

StandardScaler 200 1000 1 None -2 163.7127

FLUSS -

LTEA

StandardScaler 50 1500 1 None -2 251.408

LS-USS

online -

LTEA

RobustScaler 200 1000 1 Fully

Connected

-2 164.6831

LS-USS -

LTEA

StandardScaler 300 1000 1 Fully

Connected

-2 121.9777

Table 17: Model configurations found from doing hyperparameter search on the EMG dataset. The

leftmost column shows the mean Prediction loss MAE from segmenting the test set. NW-range = [50-500],

Step-size-range=[25-500]

Figure 69: Boxplot showing the performance of the offline segmentation algorithms on the EMG dataset

Offline Datascaler NW TC Step-

size

Autoencoder Regime Score

Mean

TSSTAFL

- LREA

RobustScaler 300 - 200 Fully

Connected

0.01206

FLUSS -

REA

StandardScaler 50 1500 1 None 0.00768

FLUSS -

LREA

StandardScaler 50 1500 1 None 0.00593

LS-USS -

REA

NoScaler 100 1000 1 ConvModel 0.00746

LS-USS -

LREA

RobustScaler 50 2000 1 ConvModel 0.00452

89

Figure 70: Boxplot showing the performance of the online segmentation algorithms on the EMG dataset

LS-USS LREA is the best performing online model on the test set. Both LS-USS and FLUSS

get the best test score when using the LREA extraction algorithm. On the online dataset, the Ɛ

real-time algorithm LS-USS LTEA performs the best. Nearly all the models use

StandardScaler and the similar RobustScaler. The offline LS-USS models use the

convolutional model, while the fully connected model is utilized for the online LS-USS

models.

Figure 71: Top: Channel 0 of participant3_evaluation3 in the EMG dataset. Middle: Segmentation using

LS-USS – LREA- Bottom: Segmentation using LS-USS – LTEA.

90

5.1.2 Discussion

This section will first go through some general observations about the hyperparameter search

before making a more in-depth comparison between the different segmentation models.

5.1.2.1 General observations

Section 2.3.1 showed that the FLUSS and FLOSS algorithm was not very sensitive to the TC

size. The same findings are observed here, as the model configurations often utilize the

smaller TC choices, which might indicate that there is no benefit in including subsequences

far away from the current time step when using the LS-USS or FLUSS/FLOSS models.

Another observation is that the scaling used varies between the datasets, which is expected

since the scaler is highly dependent on the original scaling and distribution of the time series

data. An interesting result is that the autoencoder selected by the hyperparameter search for

the LS-USS models (both offline and online) varies between the datasets; some use the less

complex, fully connected model, while others use the convolutional model. As pointed to in

previous research [36], using a smaller model with only two hidden layers might be beneficial

for feature representation as it could lead to more general ways to represent the data. The

drawback of simpler autoencoder models is that one risks losing some of the information

needed for segment differentiation. Finding the optimal autoencoder is a complex problem as

it involves a combination of factors such as layer types, feature-length, layer size, and the

number of layers.

TSSTAFL usually has the lowest or among the lowest scores both for the online and offline

version. As mentioned in section 2.4.2, TSSTAFL has been made to detect breakpoints, which

the authors describe as human-specified changepoints. Even though most of the datasets

included here use changepoints that can be segmented reasonably well by a human expert,

some of the segmentation done might be outside the original scope of the TSSTAFL

algorithm.

5.1.2.2 Statistical approach

A two-step procedure recommended in [49] is used to analyze the algorithms’ performance.

This involves using a Friedman test to rank the algorithms against each other. Then, the

Holm’s post-hoc test is applied using the highest-ranked algorithm as a comparison basis.

The null hypothesis of the post hoc test is that the performance of the two models is the same.

The null hypothesis is rejected when p < 0.05. Table 18 and

Table 19 show the mean test score, the Friedman rank, and the adjusted p-value on each of the

datasets for the offline and online algorithms. The highest-ranked algorithm (used as the

control model) on each dataset is shown in bold. The EMG dataset contains six evaluation

recordings per participant, where five recordings from each participant are used to construct

the test set. The statistical analysis is done on the average scores over each recording in the

test set. This is done under the assumption that sufficient time has passed between the

recordings so that the evaluations are iid (independent and identically distributed).

91

5.1.2.3 Offline Model Comparisons

Table 18: Table showing the mean test score, the Friedman rank, and the adjusted p-value on each of the

datasets for the offline algorithms. The highest-ranked algorithm (used as the control model) on each

dataset is shown in bold. H0=1 means that the null hypothesis is accepted. H0=0 means that the null

hypothesis is rejected.

LS-USS REA has the highest score on the test set but is not significantly better than LS-USS

LREA and FLUSS LREA on the UCI dataset. On both the Dance and Dance artificial

datasets, the lowest-ranked algorithm is FLUSS LREA which is significantly better than all

algorithms except for the LS-USS LREA. On the EMG and EMG artificial datasets, the best

performing model is LS-USS LREA, which is significantly better than all algorithms except

for LS-USS REA on the artificial dataset. In conclusion, LS-USS LREA seems to be the most

consistent performing offline segmentation algorithm over all the datasets. On every dataset

except for the UCI dataset, the offline segmentation algorithms FLUSS and LS-USS got

higher mean regime score when using the LREA extractor compared to using the REA

extractor, which indicates that scaling the CAC based on the local statistics is useful (and

often necessary) when dealing with longer time series data.

 LS-USS -

REA

LS-USS -

LREA

FLUSS -

REA

FLUSS -

LREA

TSSTAFL -

LREA

UCI

Mean

Friedman rank

H0 (Adjusted p-

value)

0.00687

1.63

N/A

0.01041

2.57

1 (0.42388)

0.02824

4.80

0 (0.00000)

0.00931

2.60

1 (0.37627)

0.01589

3.40

0 (0.00885)

Dance Artificial

Mean

Friedman rank

H0 (Adjusted p-

value)

0.0257

3.27

0 (0.00001)

0.01803

1.92

1 (0.89934)

0.02608

3.28

0 (0.00002)

0.01735

1.88

N/A

0.03807

4.55

0 (0.00000)

Dance

Mean

Friedman rank

H0 (Adjusted p-

value)

0.05459

4.59

0 (0.00000)

0.029

2.18

1 (0.27808)

0.03802

3.59

0 (0.00068)

0.02969

1.59

N/A

0.03665

3.05

0 (0.01339)

EMG Artificial

Mean

Friedman rank

H0 (Adjusted p-

value)

0.00251

1.93

1 (0.16512)

0.00214

1.37

N/A

0.00797

3.53

0 (0.00000)

0.00718

3.17

0 (0.00002)

0.02536

5.00

0 (0.00000)

EMG

Mean

Friedman rank

H0 (Adjusted p-

value)

0.00746

3.30

0 (0.00001)

0.00452

1.00

N/A

0.00768

3.60

0 (0.00000)

0.00593

2.10

0 (0.02781)

0.01206

5.00

0 (0.00000)

92

5.1.2.4 Online Model Comparisons

Table 19: Table showing the mean test score, the Friedman rank, and the adjusted p-value on each of the

datasets for the online algorithms. The highest-ranked algorithm (used as the control model) on each

dataset is shown in bold. H0=1 means that the null hypothesis is accepted. H0=0 means that the null

hypothesis is rejected.

The highest-ranked algorithm on the UCI dataset is LS-USS LTEA, but the results are not

significant. On the dance dataset, the LS-USS LTEA is statistically better than all the other

models. For the Dance artificial dataset, the highest-ranked algorithm is LS-USS online, but

the results on this dataset were bad in general, and the results might be somewhat random.

LS-USS LTEA is also the highest-ranked algorithm on both EMG datasets and is significantly

better than every algorithm except for LS-USS online on the artificial EMG dataset. The Ɛ-

real time LS-USS LTEA model seems to be the most consistent performing online

segmentation algorithm over all the datasets. Both Ɛ real time algorithms (LS-USS LTEA and

FLUSS LTEA) achieve higher scores than their completely online counterparts (LS-USS

online and FLOSS) on four out of five datasets, which is expected as the Ɛ real time models

use arcs pointing both forward and backward in time, while the online models only use

 LS-USS -

LTEA (Ɛ-

real time)

LS-USS

online -

LTEA

FLUSS -

LTEA (Ɛ-

real time)

FLOSS -

LTEA

TSSTAFL -

LTEA

UCI

Mean

Friedman rank

 H0 (Adjusted p-

value)

45.54

2.50

N/A

114.82

4.20

0 (0.01294)

47.27

2.56

1

87.36

3.12

1 (0.81797)

51.99

2.60

1

Dance Artificial

Mean

Friedman rank

 H0 (Adjusted p-

value)

27.15

1.92

N/A

64.08

3.17

0 (0.00023)

48.01

2.77

0 (0.01078)

55.06

2.80

0 (0.01078)

109.04

4.34

0 (0.00000)

Dance

Mean

Friedman rank

 H0 (Adjusted p-

value)

415.32

3.88

0 (0.00663)

204.9742

2.18

N/A

281.0156

2.71

1 (0.32897)

334.65

3.12

1 (0.24799)

289.2028

3.12

1 (0.24799)

EMG Artificial

Mean

Friedman rank

 H0 (Adjusted p-

value)

6.64

1.82

N/A

16.1

2.28

1 (0.25300)

26.73

2.80

0 (0.03202)

86.44

3.88

0 (0.00000)

97.54

4.22

0 (0.00000)

EMG

Mean

Friedman rank

 H0 (Adjusted p-

value)

121.9777

1.50

N/A

164.6831

2.50

1 (0.07146)

251.408

3.70

0 (0.00003)

163.7127

2.55

1 (0.07146)

388.8155

4.75

0 (0.00000)

93

forward-pointing arcs. Which algorithm to use can be seen as a tradeoff between calculation

time and segmentation performance.

5.1.2.5 Limitations

The segmentation outcomes for each of the algorithms are heavily dependent on the

hyperparameter search. Therefore, it would be beneficial to do a more in-depth

hyperparameter search that includes sampling the hyperparameters from predefined

distributions instead of doing a grid search. Some of the datasets used are also a bit small for

doing extensive hyperparameter search, in that the validation set does give a good indication

of the real-world performance because of the limited size.

It would also be useful to do a hyperparameter sensitivity analysis for finding how sensitive

LS-USS is to the choices of the different hyperparameters.

It is worth noting that LS-USS requires more hyperparameters to be specified than FLUSS

due to the autoencoder. There might be an autoencoder implementation that works well for

most time series data without needing extensive hyperparameter tuning, so more research into

the effects of different autoencoder architectures might alleviate this drawback.

5.2 Improving Depression Detection Using Natural
Segments

One of the papers written under the INTROMAT project is called “Motor Activity Based

Classification of Depression in Unipolar and Bipolar Patients” [50]. This paper tried to

classify non-depressed and depressed participants using various classifiers and oversampling

techniques on the Depresjon dataset (Section 4.4). The features used for the classifier are

statistical descriptors extracted from 24-hour fixed segments. There is evidence that

depression leads to reduced daytime motor activity and increased nighttime activity compared

to healthy individuals [11]. A fixed time window of 24 hours does not capture the difference

in night and daytime activity, which might mean important information gets lost. Choosing

the right segment size when doing time series classification can be difficult and will often

have to be based on domain-specific assumptions. This is where an unsupervised

segmentation algorithm can come in handy. Instead of dividing the time series into fixed

segments, the segmentation algorithm finds natural segments based on the data itself. The

hypothesis is that this will lead to better features, which will improve the classifier's

performance.

To test this, a comparison will be made between using features extracted from fixed segment

sizes and using features extracted from segments found by the unsupervised segmentation

algorithm LS-USS.

5.2.1 Experiments

Since the goal is to compare the effects of different segmentation approaches, the

comparisons between classification models are not the focus. Thus, only the best performing

model from [50] will be implemented. The statistical features calculated from the segments

are the mean activity, the standard deviation, and the number of samples with no activity

94

(activity level=0). The highest MCC- score(0.44) and F1 score(0.68) in [50] was achieved

using the SMOTE oversampling technique in conjunction with the Random Forrest Classifier.

The evaluation is done using Leave-One-User-Out validation.

For the oversampling, the implementation of SMOTE included in the python library

imbalanced learn [51] is used, and for the Random Forest Classifier, the implementation in

scikit-learn [52] with default parameters is utilized.

Each of the following experiments is performed 30 times because of the high variation in

performance between runs. The best MCC score (for the model implemented based on [50])

was 0.47, and the best F1 score was 0.65. These metrics are similar to those found in the

original paper [50], indicating that the implementation is correct.

5.2.1.1 Experiment 1

The experiment is done using LS-USS combined with the extraction algorithm LTEA instead

of fixed 24-hour segments. To make it a fair comparison, the rest of the classification pipeline

remains the same. To not overfit the data, best guess parameters are used for LS-USS and

chosen extraction algorithm LTEA. The temporal constraint is set to 12 hours to ensure that

arcs do not point to repeated activities on other days. Relatively big changes in the activity are

more useful for this task since segmenting out every activity would be meaningless. Because

of this, the subsequence size must be set quite large and is therefore set to 4 hours. The local

window used in LTEA to normalize the CAC is set to 6 hours (this parameter is not very

sensitive to changes). Figure 72 shows an example of the segmentation done by LS-USS on

one of the participants. The segments make sense visually as well, as high activity periods

often seem to be separated from low activity periods.

Figure 72: Top plot show 13 days of activity data from a participant. Bottom plot shows the CAC

outputted by LS-USS. Notice that on this plot, the striped green lines do not represent the ground truth

changepoints but a change of date.

95

As shown in Table 20, LS-USS outperforms the fixed segment size of 24 hours on all the

performance metrics used. From the boxplots in Figure 73, one can see that the mean F1 and

MCC scores using LS-USS segmentation are as high as the maximum of the fixed 24-hour

segments.

Table 20: Classification results. The metrics shown are the mean scores over 30 runs

Specificity Recall Precision Accuracy F1 MCC

LS-USS 0.886 0.546 0.778 0.744 0.641 0.469

24 H fixed 0.771 0.507 0.618 0.662 0.556 0.292

Figure 73: Boxplots of the F1 and MCC scores for 30 runs.

96

5.2.1.2 Experiment 2

As the ideal segmentation length for this classification problem might not be 24 hours, this

experiment will compare LS-USS to using other fixed segment lengths. Here each whole hour

fixed segment length between one and 24 hours is tested over 30 runs each. The results are

shown in Figure 74.

Figure 74: Performance of different fixed segment lengths (blue) vs performance of using LS-USS

(orange). The MCC-scores are the mean over 30 runs. The light blue shows the IQR (Inter Quartile

Range) of the fixed segments, while the light orange shows the IQR of the LS-USS segmentation.

5.2.2 Discussion

To test if the improvement seen when using LS-USS is statistically significant, the Wilcoxon

signed-rank test is utilized[49]. The statistical test is done on the mean correct classification

percentage when using LS-USS and fixed 24-hour segments for each participant over the 30

runs. The null hypothesis of the post hoc test is that the performance of the two models is the

same. The null hypothesis is rejected when p < 0.05. Here, it was found that the LS-USS is

significantly better than using fixed 24-hour segments.

The plot in Figure 74 clearly shows that 24-hour segments are not optimal. The best fixed

segment length seems to be around 8 hours. Using LS-USS yields approximately the same

performance as the optimal fixed segment length, which shows that LS-USS seems to find a

near-optimal segmentation. There is also worth pointing out that when trying all the 24

different fixed segments, one also has a higher chance of overfitting to the data, so real-world

performance when using the fixed segments might be worse.

97

5.2.2.1 Limitations

The parameters selected for the LS-USS algorithm in the experiments did require some

subjective assumptions. It would be interesting to see how changing the different

hyperparameters like the window size would affect the segmentation. In this case, the

segmentation provided by LS-USS seemed to separate primarily based on daytime and

nighttime activity.

This experiment was used to showcase the utility of unsupervised segmentation in the context

of MHMS. As the main benefit of LS-USS is the way it handles multidimensional data, it

would be preferable if the dataset included data from more sensors with a higher sampling

rate. This proved difficult to get access to due to the sensitive nature of personal data from

people suffering from mental health issues.

5.3 Automatic subsequence size using FLUSS-Welch
As mentioned in section 4.5, the UCR dataset includes recommended subsequence lengths for

each dataset manually specified by a human expert. This experiment compares using the

recommended subsequence length vs. using a subsequence size found using the spectral

density estimation method Welch.

5.3.1 Experiment

The implementation of the FLUSS algorithm used in this experiment does not use any

temporal constraint and utilizes the standard REA algorithm for extracting change points. The

results are presented in Table 21.

98

Dataset names FLUSS with recommended

subsequence size

FLUSS with automatic

subsequence size
Regime Score Matches Regime Score Matches

Cane 0.0155 1/1 0.0137 1/1

DutchFactory 0.0134 1/1 0.0037 1/1

EEGRat 0.1240 1/1 0.0900 1/1

Fetal2013 0.0018 2/2 0.1627 2/2

GrandMalSeizures 0.2395 1/1 0.2102 1/1

GrandMalSeizures2 0.1302 1/1 0.1129 1/1

GreatBarbet 0.0089 2/2 0.0048 2/2

InsectEPG1 0.0022 1/1 0.0098 1/1

InsectEPG2 0.0189 1/1 0.0200 1/1

InsectEPG3 0.1026 1/1 0.0300 1/1

InsectEPG4 0.0016 1/1 0.0309 1/1

NogunGun 0.0028 1/1 0.0153 1/1

PigInternalBleeding 0.0037 1/1 0.0619 1/1

Powerdemand 0.0073 1/1 0.0027 1/1

PulsusParadoxus 0.0035 1/1 0.0009 1/1

RoboticDogActivityX 0.0042 1/1 0.0007 1/1

RoboticDogActivityY 0.0035 1/1 0.0006 1/1

RoboticDogActivityY2 0.0082 1/1 0.0029 1/1

SimpleSynthetic 0.0070 2/2 0.1250 1/2

SuddenCardiacDeath 0.0067 1/1 0.0215 1/1

SuddenCardiacDeath1 0.0084 2/2 0.0083 2/2

TiltABP 0.0034 1/1 0.0022 1/1

TiltECG 0.0101 1/1 0.0129 1/1

WalkJogRun 0.0306 2/2 0.1530 1/2
Table 21: Scores on the UCR dataset using FLUSS with recommended window size vs. automatic window

size. The best scoring algorithm on each sub-dataset is bolded out.

99

Figure 75: Segmentation done on the Smart Cane dataset.

5.3.2 Discussion

Using the automatic subsequence size produces the best performance on 14 of the 24 datasets.

The Regime scores achieved by the two algorithms are not significantly different, with an

adjusted p-value at 0.86, when using the Wilcoxon signed-rank test (p <0.05). The results

indicate that using the automatic subsequence size yields comparable results to the

recommended subsequence size specified by a human expert. The main benefit of the FLUSS-

Welch algorithm over regular FLUSS is that it is entirely parameter free.

5.3.2.1 Limitations

On some of the datasets containing more than one changepoint, FLUSS-Welch seems to be

doing much worse. Because of this, a short inspection of some of the datasets where the

algorithm seemed to fail was also done. Figure 76 and Figure 77 show that although the CACs

look very similar for the automatic and recommended subsequence sizes, the predicted

changepoint ends up in one “valley” when using the automatic window size on these datasets.

These are not major failures and could be remedied by a larger exclusion zone.

I also tried applying FLUSS-Welch on the Dance and UCI datasets, but the resulting

periodograms did not yield any useful information. This is most likely because those datasets

do not have a clear periodicity or that the periodicity changes through the time series.

Implementing a version of FLUSS-Welch that dynamically changes the subsequence length

by estimating the periodogram based on a local window could help resolve this, with the

added benefit of making FLUSS more robust to data where the periodicity of the time series

changes drastically over time.

100

Welch’s method for automatically finding a good subsequence size could also be beneficial

for LS-USS. Analysis of this is not provided in this thesis, but this could be interesting to look

into in future research.

Figure 76: Segmentation done on the Fetal2013 dataset. The top plot shows channel0. The middle plot

shows the segmentation result when using standard FLUSS. The Bottom plot shows the segmentation

result when using FLUSS-Welch. The CACs are similar, but when using the FLUSS-Welch both

changepoints ends up in the same “valley”

Figure 77: Segmentation done on the WalkJogRun dataset. The top plot shows channel0. The middle plot

shows the segmentation result when using standard FLUSS. The Bottom plot shows the segmentation

result when using FLUSS-Welch. The CACs are similar, but when using the FLUSS-Welch the both

changepoints ends up in the same “valley”

101

6 Conclusion

This thesis intended to research and develop unsupervised segmentation algorithms with the

main focus being on bio signal-based time series data. One contribution is the parameter-free

segmenation algorithm FLUSS-Welch obtained by estimating the window size using Welch’s

method. The algorithm delivered promising results that are shown on a broad selection of

datasets from the UCR Time Series Semantic Segmentation Archive[2].

Another important contribution is the segmentation algorithms LS-USS and LS-USS online.

Through extensive testing conducted on both artificial and real-world datasets from various

domains and sensors, it was found that LS-USS generally delivers on par or better

segmentation scores compared to other state-of-the-art algorithms such as FLUSS/FLOSS and

TSSTAFL. The LS-USS algorithms have many desirable properties. They can be

implemented both online and in an “anytime” fashion. They are domain agnostic and do not

need any extensive tuning of hyperparameters. They do not make any statistical assumption

about the input data. The LSMP component used in LS-USS also shows that it is possible to

calculate a temporarily constrained matrix profile from feature vectors by exploiting highly

parallelized hardware. The same methods used for constructing the LSMP can be used on

every Representation Learning algorithm that produces a feature vector, which presents an

excellent potential for further research.

The extraction algorithms LREA and LTEA developed in the thesis also show potential.

LREA usually outperformed the more global REA algorithm, which shows that scaling the

CAC based on the local statistics is highly useful, especially for long time series data. The

online extraction algorithm LTEA uses the same CAC scaling as LREA but instead of

extracting the n lowest “valley” points, it utilizes a threshold. In contrast to REA and LREA,

LTEA does not need any information on the number of change points to extract, making it

applicable to more real-world segmentation problems.

To demonstrate a real-world application, the dataset Depresjon was used. This was to see if

using natural segments, found by unsupervised segmentation, would increase the robustness

of mood state detection (depression and control). Using the LS-USS CPD algorithm in

conjunction with the LTEA extraction algorithm improved the previous best results

significantly and proved to produce near-optimal segments for classifying depressed and non-

depressed participants.

6.1 Future work
As seen in section 2.1, one of the most critical areas of future research in CPD algorithms is

developing fast online or anytime algorithms. The LS-USS algorithms proposed in this thesis

are fast enough for many time series segmentation applications, but for very time-sensitive

tasks, there would be a clear benefit to making a tradeoff between computation time and

detection performance. This can be implemented by decreasing the resolution of the latent

space matrix profile (LSMP) by only calculating the similarity between every nth

subsequence. For example, by only calculating the LSMP for every 10th subsequence in the

102

latent all subsequence set F, the segmentation time can be reduced approximately ten times.

The same concept could be used to make an anytime algorithm. As each similarity score in

the LSMP can be calculated in parallel, doing it in temporal order is not necessary. Instead of

calculating the matrix profile from start to end, it should be possible to make an algorithm that

starts by calculating the matrix profile at a low resolution before increasing the resolution

gradually. If the process is interrupted, the current best resolution LSMP will be used.

Figure 78: A proposed modular approach to unsupervised time series segmentation.

One of the main contributions of this thesis is to show the potential of representation learning

in conjunction with constructing the matrix profile and CAC. To showcase future research

possibilities, a modular approach to time series segmentation is presented in Figure 78, which

makes it possible to isolate the different areas of research. The CAC and Matrix profile format

must be static, but the method for calculating the matrix profile, either approximately or exact,

can be investigated further. It would also be interesting to look at the effects of using other

similarity metrics than Euclidian distance, for example cosine similarity, when constructing

the matrix profile. As the CAC has the same format regardless of the other modules, it is

possible to design general CP extraction algorithms that work for all representation learning

techniques.

The representation learning module has great potential for future research. In this thesis, only

two autoencoder implementations were implemented, but there are plenty of other model

architectures to try. Two-dimensional convolutional models might, for example, better capture

the temporal and inter-channel relations. The background section 2.4.1 also mentioned other

representation learning methods such as PCA and NLP techniques such as word2vec. Another

common autoencoder architecture used on time series data is LSTM autoencoders. More

recently, transformer-based models have also been used to do representation learning on

multivariate time series data [53].

The experiments conducted in this thesis have mainly been on multidimensional data where

the channels are from similar sensors, similar sampling rates, and numerical data only. It

would be interesting to use the model on time series data containing channels from a broader

range of sources with both numerical and categorical variables. This could have great

potential for applications in mental health monitoring systems (MHMS) since much of the

data are gathered from varying sources and from both wearables and external sensors. The

authors of the survey paper “Mental health monitoring with multimodal sensing and machine

learning: A survey” [9] suggests that a robust MHMS system should use a combination of

sensing types. Figure 79 shows the combinations of sensors used in the papers reviewed in the

survey.

103

Figure 79: Sensor co-occurrences.app: application usage, social: social media, EEG:

electroencephalogram, screen: smartphone screen state, contacts: phone contact information, calls: phone

call logs, location: GPS and cell towers,spo2: blood oxygen saturation level.

Doing an in-depth analysis on how the number of channels affects the performance of LS-

USS would also be beneficial. As the algorithms used could be implemented more efficiently,

the thesis does not include any extensive comparisons on processing time for different time

series data. This is also something to look more into in future research.

104

7 References

[1] A. Radulescu, Y. S. Shin, and Y. Niv, “Human Representation Learning,” Annual

Review of Neuroscience, vol. 44, no. 1, p. null, 2021, doi: 10.1146/annurev-neuro-092920-

120559.

[2] “Eamonn Keogh.” https://www.cs.ucr.edu/~eamonn/FLOSS/ (accessed Sep. 24, 2020).

[3] P. Yang, G. Dumont, and J. M. Ansermino, “Adaptive change detection in heart rate

trend monitoring in anesthetized children,” IEEE Trans Biomed Eng, vol. 53, no. 11, pp.

2211–2219, Nov. 2006, doi: 10.1109/TBME.2006.877107.

[4] S. Aminikhanghahi and D. J. Cook, “A Survey of Methods for Time Series Change

Point Detection,” Knowl Inf Syst, vol. 51, no. 2, pp. 339–367, May 2017, doi:

10.1007/s10115-016-0987-z.

[5] “About INTROMAT – Intromat.” https://intromat.no/about/ (accessed Jan. 27, 2020).

[6] H. A. Whiteford, A. J. Ferrari, L. Degenhardt, V. Feigin, and T. Vos, “The Global

Burden of Mental, Neurological and Substance Use Disorders: An Analysis from the Global

Burden of Disease Study 2010,” PLoS One, vol. 10, no. 2, Feb. 2015, doi:

10.1371/journal.pone.0116820.

[7] G. V. Polanczyk, G. A. Salum, L. S. Sugaya, A. Caye, and L. A. Rohde, “Annual

Research Review: A meta-analysis of the worldwide prevalence of mental disorders in

children and adolescents,” Journal of Child Psychology and Psychiatry, vol. 56, no. 3, pp.

345–365, 2015, doi: 10.1111/jcpp.12381.

[8] H. A. Whiteford et al., “Global burden of disease attributable to mental and substance

use disorders: findings from the Global Burden of Disease Study 2010,” The Lancet, vol. 382,

no. 9904, pp. 1575–1586, Nov. 2013, doi: 10.1016/S0140-6736(13)61611-6.

[9] E. Garcia-Ceja, M. Riegler, T. Nordgreen, P. Jakobsen, K. J. Oedegaard, and J.

Tørresen, “Mental health monitoring with multimodal sensing and machine learning: A

survey,” Pervasive and Mobile Computing, vol. 51, pp. 1–26, Dec. 2018, doi:

10.1016/j.pmcj.2018.09.003.

[10] T. text provides general information S. assumes no liability for the information given

being complete or correct D. to varying update cycles and S. C. D. M. up-to-D. D. T. R. in the

Text, “Topic: Fitness & activity tracker,” www.statista.com.

https://www.statista.com/topics/4393/fitness-and-activity-tracker/ (accessed Mar. 16, 2020).

[11] C. Burton, B. McKinstry, A. Szentagotai Tătar, A. Serrano-Blanco, C. Pagliari, and M.

Wolters, “Activity monitoring in patients with depression: a systematic review,” J Affect

Disord, vol. 145, no. 1, pp. 21–28, Feb. 2013, doi: 10.1016/j.jad.2012.07.001.

[12] S. Gharghabi et al., “Domain agnostic online semantic segmentation for multi-

dimensional time series,” Data Min Knowl Disc, vol. 33, no. 1, pp. 96–130, Jan. 2019, doi:

10.1007/s10618-018-0589-3.

105

[13] E. Garcia-Ceja et al., “Depresjon: a motor activity database of depression episodes in

unipolar and bipolar patients,” in Proceedings of the 9th ACM Multimedia Systems

Conference on - MMSys ’18, Amsterdam, Netherlands, 2018, pp. 472–477. doi:

10.1145/3204949.3208125.

[14] Y. Zhu, C.-C. M. Yeh, Z. Zimmerman, K. Kamgar, and E. Keogh, “Matrix Profile XI:

SCRIMP++: Time Series Motif Discovery at Interactive Speeds,” in 2018 IEEE International

Conference on Data Mining (ICDM), Singapore, Nov. 2018, pp. 837–846. doi:

10.1109/ICDM.2018.00099.

[15] M. Viberg, “Subspace Methods in System Identification,” IFAC Proceedings

Volumes, vol. 27, no. 8, pp. 1–12, Jul. 1994, doi: 10.1016/S1474-6670(17)47689-0.

[16] S. Gharghabi et al., “Domain agnostic online semantic segmentation for multi-

dimensional time series,” Data Mining and Knowledge Discovery, vol. 33, pp. 1–35, Sep.

2018, doi: 10.1007/s10618-018-0589-3.

[17] E. Keogh and J. Lin, “Clustering of Time Series Subsequences is Meaningless:

Implications for Previous and Future Research,” p. 20.

[18] E. Keogh and J. Lin, “Clustering of time-series subsequences is meaningless:

implications for previous and future research,” Knowl Inf Syst, vol. 8, no. 2, pp. 154–177,

Aug. 2005, doi: 10.1007/s10115-004-0172-7.

[19] T. Rakthanmanon, E. J. Keogh, S. Lonardi, and S. Evans, “Time Series Epenthesis:

Clustering Time Series Streams Requires Ignoring Some Data,” in 2011 IEEE 11th

International Conference on Data Mining, Dec. 2011, pp. 547–556. doi:

10.1109/ICDM.2011.146.

[20] C.-C. M. Yeh et al., “Matrix Profile I: All Pairs Similarity Joins for Time Series: A

Unifying View That Includes Motifs, Discords and Shapelets,” Dec. 2016, pp. 1317–1322.

doi: 10.1109/ICDM.2016.0179.

[21] T. Rakthanmanon et al., Searching and Mining Trillions of Time Series Subsequences

under Dynamic Time Warping, vol. 2012. 2012. doi: 10.1145/2339530.2339576.

[22] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A Public Domain

Dataset for Human Activity Recognition Using Smartphones,” Computational Intelligence, p.

6, 2013.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” Commun. ACM, vol. 60, no. 6, pp. 84–90, May 2017, doi:

10.1145/3065386.

[24] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for

Biomedical Image Segmentation,” arXiv:1505.04597 [cs], May 2015, Accessed: Nov. 18,

2020. [Online]. Available: http://arxiv.org/abs/1505.04597

106

[25] M. Perslev, M. Jensen, S. Darkner, P. J. Jennum, and C. Igel, “U-Time: A Fully

Convolutional Network for Time Series Segmentation Applied to Sleep Staging,” Advances in

Neural Information Processing Systems, vol. 32, pp. 4415–4426, 2019.

[26] F. Isensee, P. F. Jaeger, P. M. Full, I. Wolf, S. Engelhardt, and K. H. Maier-Hein,

“Automatic Cardiac Disease Assessment on cine-MRI via Time-Series Segmentation and

Domain Specific Features,” in Statistical Atlases and Computational Models of the Heart.

ACDC and MMWHS Challenges, Cham, 2018, pp. 120–129. doi: 10.1007/978-3-319-75541-

0_13.

[27] M. Sakurada and T. Yairi, “Anomaly Detection Using Autoencoders with Nonlinear

Dimensionality Reduction,” in Proceedings of the MLSDA 2014 2nd Workshop on Machine

Learning for Sensory Data Analysis, Gold Coast, Australia QLD, Australia, Dec. 2014, pp. 4–

11. doi: 10.1145/2689746.2689747.

[28] C. Zhou and R. C. Paffenroth, “Anomaly Detection with Robust Deep Autoencoders,”

in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, Halifax, NS, Canada, Aug. 2017, pp. 665–674. doi:

10.1145/3097983.3098052.

[29] C. Zhang et al., “A Deep Neural Network for Unsupervised Anomaly Detection and

Diagnosis in Multivariate Time Series Data,” AAAI, vol. 33, no. 01, Art. no. 01, Jul. 2019,

doi: 10.1609/aaai.v33i01.33011409.

[30] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed

Representations of Words and Phrases and their Compositionality,” p. 9.

[31] H. Kim et al., “Representation learning for unsupervised heterogeneous multivariate

time series segmentation and its application,” Computers & Industrial Engineering, vol. 130,

pp. 272–281, Apr. 2019, doi: 10.1016/j.cie.2019.02.029.

[32] A. Qahtan, S. Wang, B. Alharbi, and X. Zhang, “A PCA-Based Change Detection

Framework for Multidimensional Data Streams,” p. 10.

[33] “UCI Machine Learning Repository: EEG Eye State Data Set.”

https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State# (accessed Nov. 20, 2020).

[34] “UCI Machine Learning Repository: Human Activity Recognition Using Smartphones

Data Set.”

https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

(accessed Sep. 25, 2020).

[35] A. Mesaros et al., “Detection and Classification of Acoustic Scenes and Events:

Outcome of the DCASE 2016 Challenge,” IEEE/ACM Transactions on Audio, Speech, and

Language Processing, vol. 26, no. 2, pp. 379–393, Feb. 2018, doi:

10.1109/TASLP.2017.2778423.

107

[36] W.-H. Lee, J. Ortiz, B. Ko, and R. Lee, “Time Series Segmentation through Automatic

Feature Learning,” arXiv:1801.05394 [cs, stat], Jan. 2018, Accessed: Jun. 14, 2020. [Online].

Available: http://arxiv.org/abs/1801.05394

[37] W.-H. Lee, J. Ortiz, B. Ko, and R. Lee, “Time Series Segmentation through Automatic

Feature Learning,” arXiv:1801.05394 [cs, stat], Jan. 2018, Accessed: Jun. 14, 2020. [Online].

Available: http://arxiv.org/abs/1801.05394

[38] P. Welch, “The use of fast Fourier transform for the estimation of power spectra: A

method based on time averaging over short, modified periodograms,” IEEE Transactions on

Audio and Electroacoustics, vol. 15, no. 2, pp. 70–73, Jun. 1967, doi:

10.1109/TAU.1967.1161901.

[39] S. Law, “STUMPY: A Powerful and Scalable Python Library for Time Series Data

Mining,” JOSS, vol. 4, no. 39, p. 1504, Jul. 2019, doi: 10.21105/joss.01504.

[40] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”

arXiv:1412.6980 [cs], Jan. 2017, Accessed: Dec. 09, 2020. [Online]. Available:

http://arxiv.org/abs/1412.6980

[41] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep learning,”

arXiv:1603.07285 [cs, stat], Jan. 2018, Accessed: Dec. 09, 2020. [Online]. Available:

http://arxiv.org/abs/1603.07285

[42] UlysseCoteAllard, UlysseCoteAllard/LongTermEMG. 2021. Accessed: May 16, 2021.

[Online]. Available: https://github.com/UlysseCoteAllard/LongTermEMG

[43] “PyTorch.” https://www.pytorch.org (accessed Apr. 05, 2021).

[44] “SciPy — SciPy v1.5.3 Reference Guide.”

https://docs.scipy.org/doc/scipy/reference/index.html (accessed Oct. 26, 2020).

[45] D. St-Onge, “Expressive motion with dancers.” IEEE, Apr. 22, 2018. Accessed: Sep.

28, 2020. [Online]. Available: https://ieee-dataport.org/documents/expressive-motion-dancers

[46] U. Côté-Allard et al., “Virtual Reality to Study the Gap Between Offline and Real-

Time EMG-based Gesture Recognition,” arXiv:1912.09380 [cs, stat], Dec. 2019, Accessed:

Aug. 31, 2020. [Online]. Available: http://arxiv.org/abs/1912.09380

[47] “(PDF) A Low-Cost, Wireless, 3-D-Printed Custom Armband for sEMG Hand

Gesture Recognition,” ResearchGate.

https://www.researchgate.net/publication/333988468_A_Low-Cost_Wireless_3-D-

Printed_Custom_Armband_for_sEMG_Hand_Gesture_Recognition (accessed Sep. 29, 2020).

[48] E. Garcia-Ceja et al., “Depresjon: a motor activity database of depression episodes in

unipolar and bipolar patients,” in Proceedings of the 9th ACM Multimedia Systems

Conference on - MMSys ’18, Amsterdam, Netherlands, 2018, pp. 472–477. doi:

10.1145/3204949.3208125.

108

[49] J. Demsˇar and J. Demsar, “Statistical Comparisons of Classifiers over Multiple Data

Sets,” p. 30.

[50] E. Garcia-Ceja et al., “Motor Activity Based Classification of Depression in Unipolar

and Bipolar Patients,” in 2018 IEEE 31st International Symposium on Computer-Based

Medical Systems (CBMS), Karlstad, Jun. 2018, pp. 316–321. doi:

10.1109/CBMS.2018.00062.

[51] “Welcome to imbalanced-learn documentation! — imbalanced-learn 0.7.0

documentation.” https://imbalanced-learn.org/stable/ (accessed Nov. 16, 2020).

[52] “scikit-learn: machine learning in Python — scikit-learn 0.23.2 documentation.”

https://scikit-learn.org/stable/ (accessed Oct. 26, 2020).

[53] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, “A

Transformer-based Framework for Multivariate Time Series Representation Learning,”

arXiv:2010.02803 [cs], Dec. 2020, Accessed: Dec. 14, 2020. [Online]. Available:

http://arxiv.org/abs/2010.02803

