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Abstract

Investigations into the relationship between genomic and phenotypic (serum) diversity of

antibodies are of decisive importance for understanding the human adaptive immune response in

health and disease. The capability to accurately predict and describe the entire antibody

repertoire of the body in detail, including both B-cell receptors (antibody genome) and

circulating serum antibodies (antibody phenome) will dramatically alter approaches to vaccine

development and disease diagnostics. However, despite recent advances in high-throughput

analytical techniques to mine antibody repertoires in great molecular depth, a comprehensive

characterization of antibody complexity at the single-cell and single-molecule levels remains

elusive due to the fact that most sequencing approaches fail to capture the natural pairing of

B-cell receptor (BCR) heavy and light chain variable regions. Additionally, the biological

reasons for the abundance difference between the number of B cells with a distinct receptor and

the number of circulating antibodies remain unclear. Therefore, extensive proteomic profiling of

serum antibodies, as well as coupling of sequencing and proteomics data, are crucial in order to

further advance the field of immunology. In this Master’s thesis project, we have adapted and

improved upon a highly reliable and reproducible experimental protocol for human BCR

sequencing in bulk, established a solid foundation for single-cell BCR sequencing, and

performed an extensive benchmarking of existing approaches to antibody proteomics. The

findings and knowledge obtained in this work will be translated into a Ph.D. project aiming at the

development of an open-access systems immunology platform that combines bulk- and

single-cell sequencing of BCRs and protein sequencing of serum antibodies in order to

characterize a person’s B-cell repertoire in great detail.
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1. Introduction

1.1 The mammalian immune system

The immune system protects the body from the harmful effects of pathogens, cleans up dead

cells, and maintains homeostasis. The immune system has multiple layers built on top of each

other as a result of evolution. As pathogens evolve to increase their chances of successfully

infecting the host, so too must the host’s defenses evolve to deal with them [1]. The mammalian

immune system comprises of three layers: (i) mechanical and chemical barriers which operate

continuously to limit exposure to pathogens, (ii) innate immunity which responds within minutes

to hours once the physical barriers have been breached, and (iii) adaptive immunity which is

fully effective within days to weeks after the initial infection to eliminate threats not cleared out

by innate immunity [2]. To achieve this level of protection, the immune system organizes a

complex system of cells and organs. Primary lymphoid organs, such as bone marrow and

thymus, are where immune cells differentiate from lymphoid stem cells and gain their effector

functions. Secondary lymphoid organs, such as lymph nodes and spleen, are where antigens are

encountered and responded to. However, it is more accurate to consider the immune system not

as discrete parts that function independently, but rather as interconnected and complementary

processes [3].

1.2 Innate immunity

The innate immune system plays a key role in the early response to pathogens, consisting of cells

and molecules that are readily available and spread throughout the body. These cells and

molecules can react rapidly with full effectiveness without prior encounters with pathogens. This

is achieved through a system of recognition based on common patterns exhibited by pathogens.

These include, but are not limited to, lipopolysaccharides in bacterial cell walls, double-stranded

RNA produced by replicating viruses, and mannose residues in microbial glycoproteins, all of

which are common and essential for many microbial life functions. In addition, molecules

created by dying or damaged cells can also be recognized to alert and stimulate the immune

response [4]. However, the threat recognition ability of innate immunity is limited by the finite
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number of germline-encoded genes and the inability to develop a memory of previous pathogen

encounters. In addition, pathogens have long evolved alongside innate immunity and developed

strategies to evade and minimize the innate immune response [5].

Cells of the innate immune system include phagocytes (macrophages, neutrophils, and dendritic

cells), which engulf and digest pathogens with enzymes; basophils and eosinophils which secrete

molecules in response to an infection; and natural killer (NK) cells, which kills infected cells

through contact. Phagocytes, especially dendritic cells (DC), also contribute to adaptive

immunity by presenting antigens and directing the development of T cells .1

1.3 Adaptive immunity

The adaptive immune response is highly specific to a wide array of threats, enabled by the

expression of antigen-specific receptors on the cell membrane of lymphocytes (T cells and B

cells). This specificity exists due to the large number of genes that code for these receptors and

the somatic recombination process that greatly expands the variety of gene assemblies. As a

receptor binds to an antigen with specificity, the cell expressing that receptor becomes activated

and proliferates, creating thousands of clones with the same specificity, a process known as

clonal expansion [6,7]. In addition, receptor binding to antigens also creates long-lived memory

lymphocytes that can respond more rapidly and strongly to any subsequent exposure to the same

antigen. As a result, the body is protected from pathogens that are common and recurring in the

environment [8]. This mechanism has been utilized as the basis for vaccination.

There are two types of adaptive immunity: humoral immunity and cellular immunity. Humoral

immunity is mediated by B lymphocytes and their secreted glycoproteins, the antibodies, and

helps to protect the body from extracellular threats. Cellular immunity, in contrast, is mediated

by T lymphocytes and responds to intracellular threats where it is inaccessible to antibodies [4].

1 Antigen presentation to T cells is explained further in section 1.4.1.2 “Antigen recognition and effector functions
of T cells”.
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1.4 Lymphocytes

All the cells of the immune system arise from hematopoietic stem cells in the bone marrow or

the fetal liver. These stem cells differentiate into precursor cells of the myeloid lineage, which at

terminal differentiation creates polymorphonuclear granulocytes, macrophage, and dendritic

cells, or the lymphoid lineage, which creates NK cells, T cells and B cells [9].

1.4.1 T lymphocytes

1.4.1.1 Development of T cells

There are two types of T cells, distinguished by their T-cell receptor: ɑβ T cells and ɣ T cells.

Ɣ T cells account for only 5–10% of the T cells population and mainly serve to protect the

body’s mucosal surfaces. In contrast, ɑβ T cells account for 90–95% of T cells and are further

divided into subpopulations, such as Helper T cells (TH), Cytotoxic T cells (Tc), and Regulatory

T cells (Tregs) [9].

The common lymphoid progenitor (CLP) cells that migrate to the thymus, with the induction of

Notch-1 and other transcription factors, commit to the T-cell lineage [10]. T-cell precursors first

express neither CD4 nor CD8 (“double negative” cells). It is at this stage that somatic

recombination occurs which leads to the expression of the ɑβ or the ɣ T-cell receptors (TCR).

First, the TCR β chain undergoes somatic recombination in the thymus subcapsular zone. If the2

rearrangement is productive, the cell moves to the thymic cortex and undergoes rearrangement

for the TCR ɑ chain and expression of the CD3, CD4, and CD8 co-receptors (“double positive”

cells) [11].

T cells with productive TCR then undergo positive selection with the Major Histocompatibility

Complex (MHC) molecules. Cells that exhibit sufficient affinity to MHC class I (MHC I) lose

expression of CD4 and retain expression of CD8, while cells that exhibit sufficient affinity to

MHC class II (MHC II) lose expression of CD8 and retain expression of CD4. Failure to

recognize self-MHC leads to apoptosis [10,11].

2 Somatic recombination in T-cell and B-cell receptors follows the same principles and therefore is explained in
detail in section 1.4.2.1 “Development of B cells”.
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T cells that survive positive selection migrate to the thymic medulla and undergo negative

selection. This process eliminates cells that recognize self-antigens presented by the MHC

molecules. Self-antigens include proteins that are common in tissues and in circulation. In

addition, the thymus cells also have a mechanism to exhibit many different types of antigens in

different tissues, all to ensure that the T cells do not attack the body’s own cells. However, some

CD4+ T cells that recognize self-antigens instead differentiate into Tregs cells that work to

regulate the immune response [4].

1.4.1.2 Antigen recognition and effector functions of T cells

T cells exit the thymus as mature but “naive” lymphocytes inexperienced with antigens. These

cells enter circulation and migrate to the secondary lymphoid organs such as lymph nodes, where

antigens can be encountered. The TCR is unable to recognize an antigen in its native form.

Instead, the antigen needs to be processed and presented by the MHC [12]. Interaction between

the TCR and the MHC with processed antigen, in addition to an array of cell surface molecules,

forms a structure collectively termed “the immunological synapse”, leading to the activation and

execution of T-cell effector functions [13].

MHC class I molecules are ubiquitously expressed on all nucleated cells and bind with peptides

processed from proteins produced inside the cell as a result of infection. These proteins are

marked by ubiquitin and degraded in proteasomes, the resulting peptides are transported to the

endoplasmic reticulum (ER). In the ER, the peptides are packaged in vesicles, exported to the

cell surface, and bound with MHC class I peptide-binding groove, which can bind to peptides

around 8–10 residues long [11,14]. The binding of the TCR with MHC-peptide complex leads to

the destruction of the infected cells, stabilized by the CD8 co-receptor. This is achieved by the

release of cytotoxic granules containing perforin and granzymes. Perforin creates pores on the

target cell membrane, then granzymes can enter the cell and trigger programmed cell death

(apoptosis) [15].
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MHC class II is expressed on professional antigen-presenting cells (APC) such as dendritic cells,

macrophages, and B cells. However, many other cell types can also be induced to express MHC

II with IFN-ɣ [11]. Extracellular antigens such as bacteria, viruses released from infected cells,

and proteins are taken up by APCs through phagocytosis, pinocytosis, or receptor-mediated

endocytosis [16]. Afterward, these antigens undergo proteolysis, creating peptide fragments that

accumulate in lysosomes. In the ER, new MHC II molecules are synthesized and transported to

the lysosomes where peptide binding occurs. The peptide-loaded MHC II is then transported to

the cell surface where it can display the antigen to CD4+ T cells [17]. CD4+ T cells account for

the majority of T cells in the body and are divided into many subsets. TH1 cells produce IFN-ɣ

and IL-2 and play an important role in cell-mediated immunity and production of

complement-activating antibodies. TH2 cells produce IL-4 and mediate primarily the defense

against parasites and IgE antibody production. Other TH subsets include TH17, TH22, TH9, and T

follicular helper cells (Tfh) [18]. In particular, Tfh cells play an important role in the formation

and maintenance of germinal centers (GC), and B cells are dependent on Tfh cells for survival,

proliferation, and differentiation [19].

1.4.2 B lymphocytes

1.4.2.1 Development of B cells

CLP cells that are committed to the B-cell lineage pass through a series of developmental steps

to form mature B cells (Figure 1). B-cell development can be divided into two phases: (i) the

antigen-independent phase and (ii) the antigen-dependent phase. Antigen-independent

development occurs in the bone marrow (Figure 1A) while antigen-dependent development

occurs in secondary lymphoid organs such as the spleen and lymph nodes (Figure 1B) [20].

12

https://www.zotero.org/google-docs/?1R07JD
https://www.zotero.org/google-docs/?n0LBy5
https://www.zotero.org/google-docs/?X20TSy
https://www.zotero.org/google-docs/?nBeoH6
https://www.zotero.org/google-docs/?EfCj2v
https://www.zotero.org/google-docs/?oM749r


Figure 1: Development of B cells. A) Antibody-independent development in the bone marrow.
Pro-B cells begin somatic recombination on the heavy chain locus. The heavy chain protein is
expressed on the cell surface in association with an invariant surrogate light chain (SLC) to form
the pre-BCR complex. Pre-B cells proliferate and expand, initiating light chain recombination. A
fully formed BCR marks the immature B cell stage, at which the B cells enter circulation. B)
Antibody-dependent development in secondary lymphoid organs. Circulating B cells first enter
the spleen to complete the maturation process. The majority of B cells acquire co-expression of
IgD on the surface and recirculate between lymphoid organs to encounter antigens and become
activated. Activated B cells can differentiate into plasma cells (PC), which secrete antibodies or
enter the follicle and form germinal centers. In germinal centers, long-lived memory B cells and
plasma cells are created. Alternatively, mature B cells can enter the spleen’s marginal zone (MZ)
where they can become MZ B cells. This figure is inspired by Bonilla and colleagues [10]. This
figure and subsequent figures were created in BioRender.com [21].
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The earliest stage committed to the B-cell lineage is the pro-B cell stage. At this stage, the

immunoglobulin (Ig) genes are not yet expressed, and somatic recombination begins on the Ig

genes on the heavy chain locus. The Ig VH domain on chromosome 14 in humans (chromosome

12 in mice [22]) consists of three gene segments: variable (V), diversity (D), and joining (J). In

humans, there are 55 VH genes, 27 DH genes, and 6 JH genes, excluding pseudogenes [23]. These

genes associate with 9 constant (C) genes to create different effector classes of B cells. Firstly, a

D gene segment and a J gene segment are joined together through DNA double-strand break and

repair. The pro-B cell then progresses to the pre-B cell stage and a V gene segment is joined to

the DJ unit, forming a VDJ exon (Figure 2). The rearranged VDJ exon is transcribed together

with the Cμ region and further processed into a complete μ heavy chain protein [4].

V(D)J recombination is mediated by the lymphoid-specific recombination activating gene 1

(RAG1) and RAG2 proteins. The RAG proteins bind to the site-specific recombination signal

sequences (RSS) flanking each gene segment. Each RSS consists of a conserved heptamer and a

conserved nonamer, separated by a 12bp or 23bp spacer sequence. A 23bp RSS is located 3’ of

each V gene, 5’ of each J gene, and two 12bp RSSs flank both sides of each D gene. This

organization ensures the correct joining of gene segments, preventing the binding of V to J

directly on the heavy chain locus (the “12/23 rule”) [24]. The RAG complex binds to one RSS,

forming a signal complex, then binds to the complementary RSS, forming a paired complex.

RAG nicks the DNA on a single strand between the heptamer and the coding sequence, resulting

in a free 3’ OH group. This 3’ OH group then attacks the other strand, creating a double-strand

break. This creates a hairpin coding end and a blunt signal end [25]. After coupled cleavage, the

double-strand breaks are repaired by proteins of the non-homologous end joining (NHEJ)

pathway. The signal ends are precisely joined together, creating the signal joint that is lost from

the genome. On the coding joint, the hairpin must first be opened, creating palindromic (P)

overhangs. Additionally, non-template (N) nucleotides may be added by the enzyme terminal

deoxynucleotidyl transferase (TdT) to generate complementary sequences between two coding

ends. N nucleotides can also be deleted during this process, resulting in imprecise joining of the

coding joint [26], contributing to junctional diversity in V(D)J recombination.
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Figure 2: Somatic recombination on the heavy chain locus. Each VH, DH, and JH gene (Figure
3B) segment is accompanied by a recombination signal sequence (RSS), which consists of a
heptamer (dark arrow) and a nonamer (light arrow), separated by a spacer sequence (12 bp or
23 bp). Recombination starts with DNA breakage and ligation between DH and JH, followed by
VH to DJH. The resulting DNA product is then transcribed into RNA and processed together with
a CH region to create the heavy chain protein. Figure modified from Jung and colleagues [27].

The addition of nucleotides to the junctions can cause frameshifting, therefore, only ⅓ of V(D)J

recombination events are productive. D to J rearrangement occurs on both alleles. If the first

V(D)J rearrangement is productive, V(D)J recombination on the other allele is halted at the DJ

stage. However, if the first attempt is unsuccessful, V(D)J rearrangement can be completed on

the second allele. This phenomenon is termed “allelic exclusion” and it ensures only one receptor

sequence can be expressed in a B cell [27]. B cells that fail both V(D)J recombination attempts

are eliminated by apoptosis.

Successful expression of the μ heavy chain marks the transition into the pre-B cell stage. At this

stage, the μ heavy chain is expressed on the cell surface, together with the invariant surrogate

light chain (SLC) and the signal transducers Igɑ and Igβ to form the pre-B cell receptor

(pre-BCR). This serves as the first important checkpoint in the development of B cells [28].
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Pre-BCR signaling induces proliferation and expansion of pre-B cells, while at the same time

downregulating the expression of the pre-BCR and initiating recombination of the light chain

locus [29].

Recombination of the light chain locus follows the same principle as the heavy chain locus.

There are two types of light chains: κ and λ. In humans, the κ locus is located on chromosome 2

and consists of 35 Vκ, 5 Jκ, and 1 Cκ functional genes, while the λ locus is located on

chromosome 22 with 30 Vλ and 4 Jλ-Cλ functional genes [4]. Expression of the enzyme TdT is

lower compared to during heavy chain rearrangement, therefore junctional diversity is also

decreased. Recombination first occurs on the κ locus, and if unsuccessful on both alleles, occurs

on the λ locus. The ratio between κ-containing and λ-containing antibodies in human serum is

around 2:1 but can vary between isotypes and immunological conditions [30]. Successful light

chain recombination results in the assembly and expression of the IgM BCR on the B cell

surface.

The immature B-cell stage is marked by the expression of IgM on the cell surface.

Surface-expressed BCR activates signaling pathways that keep the cell alive and inhibits RAG

expression, preventing further rearrangement. If the BCR reacts to autoantigens in the bone

marrow, then the B cell can undergo receptor editing or apoptosis in order to prevent

autoimmunity [31]. In receptor editing, the light chain or heavy chain can go through

RAG-dependent secondary rearrangement in order to eliminate autoreactivity [32]. Immature B

cells that are not autoreactive leave the bone marrow and enter circulation, before entering the

spleen to complete the maturation process.

In the spleen, B cells are divided into two subtypes: marginal zone (MZ) B cells and follicular B

cells. MZ B cells are located at the interface between the white pulp and red pulp of the spleen

and are capable of eliciting an antibody response independent of T-cell stimulation. MZ B cells

do not recirculate and are distinguished by the high expression of CD21 [33]. The majority of B

cells in the spleen, however, are follicular B cells. Due to alternative mRNA splicing, follicular B
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cells are capable of expressing surface IgD with the same V(D)J sequence in addition to IgM.

These mature B cells recirculate through secondary lymphoid organs such as lymph nodes,

spleen, and mucosal-associated lymphoid tissues [10]. Follicular B cells associate with T cells

and play an important role in the formation of GCs, which facilitate affinity maturation of B-cell

receptors [20].

1.4.2.2 Structure and antigen recognition of the antibody

When B cells are stimulated by antigens, those B cells become activated and differentiate into

plasma cells (Figure 1B). Plasma cells secrete a large number of antibodies, a glycoprotein

product of alternative mRNA splicing on the Ig domain genes [34]. Antibodies are Y-shaped

molecules consisting of 2 heavy chains (HC) and 2 light chains (LC) (Figure 3A). The LCs can

be one of the two types: κ or λ, while the HC’s isotype is determined by the constant domain

genes: μ, ɣ, δ, ɑ, and ε representing IgM, IgG, IgD, IgA, and IgE, respectively [4]. Each chain is

made up of independent structures called Ig domains. Each Ig domain consists of 110 to 130

amino acids in an antiparallel β-strands formation, held together by disulfide bonds. A LC has 1

V domain and 1 C domain, whereas a HC has 1 V domain and 3 (in IgG, IgA, IgD) or 4 (in IgM,

IgE) C domains [35]. Between the CH1 and CH2, there is an unstructured hinge region that is

susceptible to enzymatic digestion, separating the antibody into 2 fragments: F(ab) (fragment

antigen binding) and Fc (fragment crystallizable).
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Figure 3: The structure of immunoglobulins. A) Antibodies of all isotypes consist of two heavy
chains (blue) and two light chains (green). Each chain contains a V domain (VH or VL) and C
domains (CL or CH1–3/4). The chains are held together by disulfide bonds (S-S). B) Each V
domain consists of conserved framework regions (FR) interspersed by hypervariable
complementary determining regions (CDR). Red squares indicate the position of the CDRs and
yellow lines delineate the borders between the V, D, and J genes. This figure is inspired by the
work of Schroeder and colleagues [36].

The effector function of an antibody molecule varies between isotypes and subtypes. This is

mediated by the binding between the Fc region of the antibody (CH2–CH3/4) and the Fc receptor

on different types of cells, such as phagocytes, NK cells, mast cells, and proteins of the

complement system [37]. Specificity between an antibody and an antigen is determined by the

F(ab) region of the antibody. The F(ab) region comprises the VH and CH1 domain on the HC and

the VL and CL domain on the LC. Each V domain is further divided into 4 framework regions
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(FR) interspaced by 3 complementary-determining regions (CDR). CDR1 and CDR2 lie on the V

gene on both chains. CDR3 lies on the V-J junction on the LC and on the V-D-J junction on the

HC (Figure 3B) [36].

The CDRs have a significantly higher amino acid sequence variation compared to the FRs and

are positioned together to form a binding surface with the antigen. This allows antibodies to bind

to a wide variety of antigens while retaining a common structure. CDR3 in particular has the

highest degree of sequence variation, partly due to junctional diversity [38]. Therefore it has the

largest contribution to antigen recognition and is the focus of much research into antibody

specificity [39,40]. However, some residues on the FR region can also have a significant effect

on antigen binding, evidenced by the loss of binding affinity during the grafting of CDRs from

mouse to human antibodies [41].

Antibodies are glycoproteins and each isotype possesses a unique glycosylation pattern. This

pattern plays an important role in maintaining structural integrity, modulating effector functions,

and can also influence antigen binding [42].

1.4.2.3 Class switching and affinity maturation of B-cell receptors

Activated B cells can either differentiate into PCs and produce antibodies with low affinity or

enter follicles of secondary lymphoid organs to form GCs, where class switch recombination

(CSR) and somatic hypermutation (SHM) occur (Figure 1B). In CSR, the enzyme

activation-induced deaminase (AID) targets the switch sequence 5’ of the C gene and converts

cytidine to uracil. Enzymes of the base excision pathway remove uracil and create nicks on both

strands of the DNA, leading to dsDNA breaks. The broken DNA ends from the 2 switch regions

are then joined by NHEJ, bringing the VDJ sequence closer to the new C gene. As a result, the B

cells lose the expression of IgM and IgD and gain the expression of any of the other isotypes

[43,44]. CSRs are regulated by cytokines and different cytokines induce class switching to

different isotypes [45].
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At the same time as CSR is occurring, the V domain coding sequence is further diversified

through SHM in the dark zone of the GC. In SHM, AID also plays an important role in creating

single nucleotide substitution mutations targeting the CDRs, further contributing to sequence

variation at those regions [46]. Subsequently, B cells migrate to the light zone of the GC where it

is presented with an antigen sequestered by follicular dendritic cells (FDC) and receives

necessary survival signals from the Tfh cells. B cells compete with each other to bind antigens

and present antigens on MHC II to the Tfh cells [47]. B cells that show low affinity to antigens

or autoreactivity are eliminated via apoptosis while those that show high affinity differentiate

into PCs or memory B cells and exit the GC. A fraction of light zone B cells with improved

affinity is returned to the dark zone for further SHM and affinity maturation [48]. As a result, the

average affinity of antibodies to a particular antigen is increased over time.

1.4.2.3 Classes and effector functions of immunoglobulins

The different isotypes of antibodies vary in size, the flexibility of the hinge region, ability to

activate the complement system, accessibility through surfaces, and effector functions in

response to antigens (Figure 3A). Antibodies are produced and decay at a constant rate,

regardless of antigen specificity. Therefore, the serum concentration of antibodies is maintained

throughout life [49].

IgM is the first isotype to be expressed in B-cell development in monomeric BCR form. Due to

the fact that IgM is expressed early without extensive somatic mutation in response to antigens,

IgM antibodies bind to a wide variety of antigens with low affinity [36]. In serum, IgM is

secreted as a pentamer linked together by disulfide bonds and a J chain. This gives IgM

enhanced avidity by binding to multiple sites, especially to repeating epitopes [50]. IgM acts

primarily in the primary immune response by opsonizing antigens and activating the complement

system [4].

Similar to IgM, IgD is also expressed early in B-cell development in BCR form and secreted in

monomeric antibody form in serum, albeit in low levels. IgD has a long hinge region, giving it
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higher flexibility to bind antigens with low-density epitopes while at the same time making it

more susceptible to proteolytic cleavage, resulting in a very short serum half-life [51]. Effector

functions of IgD mainly involve binding to basophils and mast cells, triggering the production of

antimicrobial peptides and induce inflammation [52].

IgG is the most abundant antibody isotype in the serum (70–75% of serum antibody) and is

divided into 4 subclasses: IgG1, IgG2, IgG3, and IgG4, in order of decreasing prevalence [9].

The different subclasses of IgG exhibit variation in flexibility, susceptibility to cleavage, and

effector functions, with IgG1 and IgG3 responding mainly to protein antigens while IgG2 and

IgG4 responding mainly to polysaccharide antigens [36]. All of them are able to cross through

the placenta and dominate the secondary immune response. IgG can also bind with the FcRn

receptor and diffuse into extravascular sites [53]. IgG antibodies bind to antigens with high

affinity, neutralizing the pathogens or toxins, and initiate the complement cascade (with the

exception of IgG4) [34].

IgA is the second most common antibody isotype after IgG in circulation but it is the

predominant antibody isotype in mucosal surfaces and external secretions. IgA exists as

monomers in the serum and as dimers or oligomers, linked together by the J chain in mucosal

surfaces [54]. There are 2 subclasses of IgA: IgA1 with a longer hinge region, higher proteolytic

cleavage susceptibility and comprise the majority of serum IgA; IgA2 with a shorter hinge

region, higher resistance to proteases and predominates mucosal secretions [37]. IgA protects the

body’s mucosal surfaces from pathogen binding and is the principal component of the colostrum,

which provides crucial protection for newborns [55].

IgE is present in the serum at the lowest concentration and shortest half-life out of all the

isotypes but with a very potent effector function. IgE binds with extremely high affinity to

receptors on mast cells, basophils, and eosinophils. Once bound, IgE can upregulate the

expression of these receptors for an extended period of time [56]. As a result, IgE contributes in

the defense against parasites and is often a target for therapies in allergies and asthma [57].
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1.4.2.4 Diversity of the antibody repertoire

The paradigm for the generation of antibody diversity, established by Tonegawa in 1983 [58], is

governed by stochastic mechanisms explained above: somatic recombination, imprecise V-(D)-J

joining, insertion or deletion at junctions, and SHM. As a result, the theoretical diversity of the

naive antibody repertoire in humans is estimated to be at least 1012 [59]. However, with the

advent of new technologies and an increase in data throughput, new evidence has been

uncovered depicting a more deterministic and biased process: factors such as genetic background

[60] and previous exposure to antigens [61] can also have a significant impact on the diversity of

the antibody repertoire. All these factors are in a dynamic balance with varying degrees of

contribution during different stages of development in B cells [62].

Owing to the massive theoretical diversity of antibody generation, it has long been assumed that

an individual’s antibody repertoire is overwhelmingly unique (termed “private”). Large-scale

analyses revealed that, on the contrary, a notable fraction (>1%) of antibody sequences is shared

between individuals (termed “public”) [63–66]. An individual’s clonal diversity and distribution

serve as a fingerprint of their current immunological status and thus contain highly useful

information for diagnostics [67]. This further emphasizes the importance of evaluating and

quantifying the diversity of the antibody repertoire. By applying bioinformatics methods to

analyze immunosequencing data, it is now possible to build an immune repertoire diversity

profile consisting of a multitude of singular diversity indices. This can provide valuable insights

into people’s immunological status at an unprecedented resolution, enabling a systematic,

data-driven approach to disease detection and prevention [68].

There are several important characteristics that can be evaluated in repertoire analysis: germline

V-gene usage, clonal expansion, clonal diversity, and repertoire size [62]. In particular, clonal

diversity is defined as the variation in the amino acid sequence of CDR-H3, calculated using

Shannon information entropy. Shannon entropy, designated “H”, is a versatile and widely utilized

tool to measure sequence variability [69].
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1.5 Sequencing of the B-cell receptor repertoire

1.5.1 Current B-cell receptor repertoire sequencing methods

Up until the early 2000s, immunosequencing research was mostly restricted to a throughput of

several hundred B cells per run, due to the cost and labor requirement of Sanger sequencing

[70–72]. Therefore, it was only possible to sample a minuscule fraction of the BCR repertoire,

limiting the conclusions that could be drawn. With the advent of high-throughput sequencing

(HTS), Sanger sequencing is now primarily relegated to validating HTS results [73]. HTS offers

a more comprehensive look into the diversity of the immune repertoire owing to the high volume

of data generated. Multiple sequencing platforms are currently available, such as Illumina, Ion

Torrent, PacBio, and Oxford Nanopore. Each platform comes with its own advantages and

disadvantages, primarily concerning the read length and error rates [74–76]. The Illumina MiSeq

platform has a read length of 300–600 bp for paired-end sequencing. Considering the full-length

variable regions being ~350–420 bp long, this restricts the number of options for primer design

and library preparation methods [77]. Ion Torrent’s platform offers comparable performance with

a rapid turnover time, albeit with a higher error rate (1.78% compared to <0.4% in Illumina’s

platform), making it suitable for clinical settings and less error-sensitive applications [78].

Long-read sequencing platforms, such as PacBio and Oxford Nanopore,  can be useful in

receptor chain pairing workflows that rely on overlap extension PCR [79], but similarly suffer

from lower throughput, higher error rates, and higher cost [78,80]. Overall, Illumina is currently

the platform of choice for immunosequencing research because of its high fidelity, high

throughput, and comparably low cost [81].

Illumina sequencing belongs to the category of short-read sequencing and sequencing by

synthesis, in which a polymerase is utilized and fluorophore-tagged nucleotides provide the

signal to identify the incorporation of a base into a DNA template [82]. The first step in the

sequencing process is the ligation of common adapters for amplification and sequencing. The

adapters contain complementary sequences to the two types of oligos immobilized on the flow

cell, index sequences to distinguish between samples, and the binding site for sequencing
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polymerase (Figure 4A). Next, each DNA molecule is amplified on the flow cell. The template

hybridizes with the first type of oligos, then a polymerase creates a complementary strand of the

template. The double-stranded molecule is then denatured and the original template is removed.

Then, the adapter on the other end of the newly synthesized sequence interacts with the second

type of oligos on the flow cell and the sequence is amplified in a process termed bridge

amplification. The bridge structure is subsequently denatured and the process is repeated in order

to generate clusters of amplified templates (Figure 4B). The purpose of this process is to ensure

the signal is strong enough to be detected during imaging. After enrichment of the template,

DNA polymerase, sequencing primers, and modified nucleotides are added into the flow cell.

These nucleotides contain a fluorophore specific for each type of base and are modified to

terminate the reaction after each incorporation. This ensures that only one nucleotide is added in

each cycle. After base incorporation, the unbound nucleotides are washed away and a laser is

used to induce the fluorophore at specific wavelengths to identify the incorporated base. Once

the base is bound, the fluorophore is cleaved and the 3’ terminal is reversed so that the cycle can

begin anew. After the first read is completed, the index sequence is sequenced and, in paired-end

sequencing, the sequencing starts again from the other end. This process occurs simultaneously

in hundreds of millions of clusters on the flow cell (Figure 4C).
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Figure 4: Overview of the Illumina sequencing platform. A) The sequencing library is
prepared by PCR amplification of the template and ligation of specialized adapters to both ends.
B) The library is loaded into a flow cell and hybridizes to the oligos on the surface. Each bound
template is then amplified into a cluster through bridge amplification. C) Sequencing reagents
and fluorescently labeled nucleotides are added to the flow cell and one base is incorporated. An
image of the flow cell is captured and the fluorescence signal is recorded at each cluster. This
cycle is repeated a number of times equal to the desired read length. D) Bioinformatic tools align
the reads with the reference sequence to construct the complete sequence. In immunosequencing
applications, alignment is conducted using the sequence of germline genes as reference. Then,
the difference between the reference and the sequenced reads can be analyzed.

Most Illumina sequencing platforms utilize 4-channel chemistry, in which each nucleotide base

is assigned a distinct fluorophore for identification. Newer platforms, such as NextSeq 550 and

Miniseq, utilized 2-channel chemistry, where only 2 distinct fluorophores are used. This helps

reduce the sequencing time and cost while maintaining similar accuracy. More recently, a
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1-channel chemistry system was introduced where only one fluorophore is used but modified

differently for each base and having two imaging steps per sequencing cycle [83]. After the

sequencing data is obtained, the quality of the base call is assessed. The standard scoring system

widely used at the moment is Phred. The Phred score Q is defined as Q = -10 x log10(P) where P

is the probability of an incorrect base call [84]. A Q score of 30 indicates a 1/1000 probability of

incorrect base calling and is commonly used as a benchmark for sequencing quality. Sequences

from different samples are distinguished by their respective indices and sequences from the same

sample are clustered together. These clusters are then mapped to the reference sequence in a

process called sequence alignment. This allows the complete sequence to be reconstructed and

any variation to be detected (Figure 4D).

For immune repertoire analysis, sequencing accuracy is critical. However, errors can be

introduced during library preparation and during sequencing. Several library preparation

strategies depend on targeted enrichment from gDNA or mRNA, going through several

amplification steps, such as reverse transcription and multiplex PCR [77]. To minimize errors

during amplification, the use of high-fidelity polymerase is often utilized [85]. In addition,

various methods have been developed to correct for sequencing errors, such as replicate

sequencing, sequence clustering and most notably, unique molecular identifiers (UMI) [77].

UMIs are RNA or DNA molecules with degenerate nucleotide sequences that are incorporated

into a gene-specific primer. When reverse transcription takes place, UMI-tagged cDNA

molecules are created [86]. After sequencing is performed, reads are grouped together based on

their UMIs, and a consensus sequence is built based on the assumption that reads sharing the

same UMI originated from the same mRNA molecule. With this, errors originating from

sequencing may be significantly reduced and quantification of transcript abundance can also be

improved by counting the number of UMIs instead of reads [87]. However, for UMI-based error

correction to be effective, the sequencing depth needs to be sufficiently high, which can be

challenging for large and highly diverse populations such as B cells [63]. In addition, UMI

further increases the sequence length of libraries, which can negatively affect read quality [88] .
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Bulk sequencing of B-cell receptors can yield a large amount of useful data and has been applied

extensively in immunological research following the work of Weinstein and colleagues in 2009

[89]. However, the native light chain and heavy chain pairing is lost due to the fact that the

transcripts come from different chromosomes [4,22]. This poses a challenge in determining

antigen specificity because the pairing of heavy and light chains contributes significantly to

antibody-antigen interaction [90]. To overcome this limitation, novel methods for single-cell

library preparation, such as Smart-seq [91], Drop-seq [92], and commercial platforms such as

10X Genomics Chromium have been developed.

1.5.2 Single-cell sequencing of B-cell receptor repertoires

Single-cell sequencing enables the characterization of gene expression at the individual cell

level, revolutionizing transcriptomic studies. Single-cell BCR sequencing offers a solution to the

chain-pairing problem unaddressed by bulk sequencing. To isolate single cells, various methods

have been developed. Limiting dilution is performed using standard pipetting tools and relies on

statistical distribution to achieve single-cell concentrations. Typically, only about 1 in 3 wells

will contain cells and require confirmation by a microscope, making this method laborious and

low throughput [93]. Laser capture dissection and manual picking by micromanipulation are

often utilized on fixed, frozen, or solid tissue samples. Similarly, these methods have very low

yield and are uncommon in immunosequencing workflows [94]. Fluorescence-activated cell

sorting (FACS) systems rely on fluorescence tagging of cells using specific antibodies. These

tagged cells then move through a laser beam with an optical detector and single cells can be

separated into tubes or microtiter plates, scalable up to hundreds of cells [93]. Major drawbacks

of this method include the use of specific monoclonal antibodies and the inability to scale down

the reaction volume below microliter levels, resulting in a higher reagent cost per cell [95].

Microfluidics technology, especially droplet-based microfluidics, has gained popularity in recent

years. Each cell flowing through the microfluidics chip is isolated in an aqueous nanoliter-sized

droplet containing all the necessary reagents, with the droplets surrounded by oil to prevent

mixing [96]. Due to its low-volume nature, droplet-based microfluidics offers distinct
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advantages, such as low reagent consumption and low analysis cost, reduced risk of

contamination, scalability, and throughput up to thousands of cells per second [93].

At the present time, numerous workflows for single-cell RNA sequencing (scRNA-seq) have

been developed [97], with the first method demonstrated by Tang and colleagues in 2009 [98].

Since then, various approaches to single-cell library preparation have been explored, including

the use of template-switching reverse transcription (Smart-seq) [91]; capturing of cells in

droplets with uniquely barcoded primer beads (Drop-seq) [92]; the pairing of light and heavy

chain through emulsion linkage RT-PCR (DeKosky 2013) [99]; linear amplification of mRNA

using in vitro transcription (CEL-seq) [100]; full-length capture of the variable region using both

molecular and droplet barcodes without the use of beads (Briggs) [101]. Furthermore, novel

methods are being actively developed and the majority of immune repertoire data is expected to

come from single-cell sequencing data in the coming years [81]. A comprehensive review of

currently available single-cell sequencing platforms was conducted by Brown and colleagues of

our research group [97].

Due to the low amount of starting materials, scRNA-seq suffers from a higher degree of

technical variation compared to traditional bulk sequencing. Factors including low capture

efficiency, bias in transcript coverage, and inclusion of dead cells or multiple cells in one droplet

can all affect the quality of the sequencing data [102]. Therefore, quality control (QC) is

especially important in scRNA-seq. Low-quality reads should be filtered out using software

packages such as FastQC or pRESTO [103,104]. Setting a cutoff value to remove clones with

low abundance helps to reduce artificial diversity originating from sequencing errors [63].

However, modern sequence alignment tools such as MiXCR can rescue low-quality reads via

clustering and reduce data loss from sequencing errors . Additionally, the use of synthetic3

spike-ins is also increasingly common in scRNA-seq in order to assess sequencing quality and

accuracy [105].

3 Sequence alignment with MiXCR is introduced in section 3.4.3 “Read assembly and clonotyping”.
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1.5.3 Applications of B-cell receptor repertoire analysis

Advances in BCR sequencing have greatly expanded the possibilities for immunological

research in many different areas, including basic research in adaptive immunity [106],

development of novel personalized diagnostics and therapeutics [67,97], and understanding the

immune response to infections and diseases [107,108].

HTS data have shown that the immune repertoire is not distributed uniformly and that gaps exist

in the recognition ability of the adaptive immune system due to central and peripheral tolerance

mechanisms [106]. This information is important in immunoengineering not only for designing

antibodies with minimal cross-reactivity to self-antigens but also for the generation of rare

neutralizing antibodies that are usually eliminated in vivo [109].

Applications in personalized and precision medicine rely on accurate genotyping of the antigen

receptor sequence. The high volume of data generated by HTS makes it suitable for coupling

with computational approaches. With machine learning, useful information can be extracted from

the receptor sequence data, such as immunological status in the past and present of an individual,

leading to a more tailored experience in diagnostics and treatments [97]. In addition, disease

progression monitoring, particularly leukemia, can be conducted with much higher sensitivity

compared to other methods by identifying receptor rearrangements unique to cancer cells and

quantifying the abundance of cancer-specific clones during the course of treatment [67].

BCR sequencing data analysis has also proved to be highly useful in clinical immunology and

immune response to infectious diseases. Singh and colleagues discovered that B cells producing

autoantibodies exhibit mutations similar to those in lymphoid malignancies which help

pathogenic B cells to avoid elimination at immune checkpoints [107]. More recently, Schultheiß

et al. reported that in COVID-19 patients, the B-cell response exhibits distinctive signatures and

that the degree of SHM can be associated with the severity of the disease [108]. These findings

provide important insights into understanding the role of the adaptive immune system in disease

pathogenesis and progression.
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1.6 Characterization of serum antibody repertoire by mass spectrometry

Despite the fact that BCR sequencing can reveal important information on the nature of the

immune system, the immunological protection and memory function of the humoral immune

response depends on the circulating antibodies produced by plasma cells. Even with advances in

deep sequencing of the BCR repertoire, a sizable fraction of serum antibodies is still missing

when compared with proteomic results [110]. In addition, it has been reported that the number of

antigen-specific B-cell clones (109) does not match the number of distinct circulating

antigen-specific antibodies (105–106) [111]. Therefore, the ability to deconvolve the serum

antibody repertoire is essential in many applications. However, the antibody response against

antigenic stimulation is both temporal and diverse, making the task more challenging [112]. In

order to extract useful information, there is a need to resolve the mixture of antibodies into

distinct clonotypes. However, until recently there is no good information about the identification

of specific antibodies in serum. This is due to the very high sequence identity between antibodies

in the framework region making identification based on peptide mapping difficult [113].

Therefore, studies so far have mostly focused on antigen-specific antibodies after stringent

purification and enrichment to reduce sample complexity [114,115].

1.6.1 Approaches for mass spectrometry-based antibody proteomics

Two main approaches to identify and characterize antibodies using mass spectrometry (MS) are

the “bottom-up” and the “top-down” approaches. In bottom-up MS, antibodies in a polyclonal

mixture or in the monoclonal form are first digested by proteolytic enzymes into peptides,

separated by chromatography, and analyzed in a mass spectrometer. By contrast, top-down MS

utilizes intact antibodies for analysis without prior digestion. Of the two approaches, bottom-up

MS has been more widely utilized to date since it offers several distinct advantages. Digested

peptides offer better separation efficiency due to higher solubility, higher throughput, and a

straightforward approach compatible with multiple mass spectrometers [116]. In addition, there

are multiple commercially available software and data analysis tools compatible with bottom-up

MS. However, bottom-up MS cannot achieve full sequence coverage, due to the nature of

enzymatic digestion. Additionally, a portion of post-translational modifications (PTM) is lost due
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to incomplete sequence coverage [117]. This is noteworthy since PTMs of antibodies have been

the subject of study in assessing therapeutic monoclonal antibodies (mAbs) [118].

Top-down MS promises to resolve the shortcomings of bottom-up MS with the potential for a

more comprehensive antibody coverage [119]. However, protein solubility remains a challenge,

especially for larger biomolecules such as antibodies. Surfactants are commonly utilized to

improve solubility although they can interfere with the ionization process, requiring removal or

replacement prior to MS analysis [120]. Top-down MS also suffers from lower sensitivity and

difficulties in protein identification, requiring higher mass accuracy and resolution to

discriminate the ion species correctly [121,122]. Furthermore, since data from top-down MS is

incompatible with bottom-up MS workflows, there is a lack of software support for top-down

antibody MS, although this is being addressed [123]. Therefore, most top-down applications are

limited to the characterization of single mAbs or antibodies in simple mixtures with low

throughput since both chemical separation and spectral assignment of different antibodies would

prove too complicated otherwise.

In addition to these two approaches, there is also “middle-down” MS, where mAbs are analyzed

after digestion of the hinge region [124] or are deglycosylated prior to MS [125]. The approaches

have attempted to gain the benefits of top-down and bottom-up MS, albeit with mixed results

[121]. While middle down MS provides significantly better coverage, sensitivity, and accuracy, it

eschews the benefits of reduced sample processing and native chain pairing information [126].

In short, either approach can be suitable depending on the purpose of the study. Bottom-up MS

can be utilized for antibody identification in complex mixtures, while top-down MS is used in

PTM studies and tracking of single antibodies, which can provide information on the

bioavailability and performance of therapeutic mAbs for quality control purposes [127].

1.6.2 Liquid chromatography tandem mass spectrometry in antibody proteomics

Mass spectrometry, particularly liquid chromatography with tandem mass spectrometry

(LC-MS/MS) has allowed researchers to identify and decode a wide variety of biological
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molecules and antibodies are no exception. Mass spectrometry is most efficient in very small

flow rate (0.05–0.2 mL/min) [128]. Therefore high-performance liquid chromatography (HPLC)

is most often the separation method of choice in a LC-MS/MS system (Figure 5A).

Reverse-phase chromatography columns made up of C18 alkyl ligands immobilized to silica

beads are often utilized due to the absence of salt in the elution process, which if present can

interfere with the ionization process. Furthermore, the low elution volume provides better

separation and subsequently superior resolution in the mass spectra [129]. Intact antibodies are

enzymatically digested in order to create peptide fragments suitable for mass spectrometry

analysis. Trypsin is the protease of choice for the vast majority of mass spectrometry workflows

since it is very efficient, widely available, and affordable. Other proteases, such as chymotrypsin

and LysC, with their own unique characteristics, are also commonly utilized albeit to a lesser

extent [130]. The resulting peptides from protein digestion are separated by chromatography and

loaded into the inlet of the mass spectrometer, where they are nebulized in a highly charged

electric field. These charged droplets are sprayed against a stream of inert dry gas, which rapidly

reduces the size of the droplets. Once the charge density reaches the Rayleigh limit, the droplets

get torn apart, creating gas-phase ions that are directed into the mass analyzer [131] (Figure 5B).

Under high vacuum, the ions travel through the mass analyzer and the mass-to-charge (m/z)

ratios are recorded in the detector. Additionally, peptides can be selected to undergo collision

induced dissociation (CID), in which ions collide with inert gases in order to create smaller

fragment ions, the m/z of which form the basis of peptide sequence determination [128] (Figure

5B).

Deciphering the antibody repertoire in the serum requires reference data gathered by HTS of the

BCR repertoire, since circulating antibodies have gone through V(D)J recombination and SHM,

therefore unique for each individual. When combined with the paired VH:VL sequencing

approach previously described, serum antibody mass spectrometry allows the complete

reconstruction of the antibody peptide sequence. This would not only allow researchers to better

analyze the humoral immune response against antigens but also aid the discovery and

development of antibodies to be used in therapeutics [132]. Although previous research has
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performed MS/MS antibody repertoire analysis [113,114,133], no standardized pipeline with

evaluations from experimental work to computational analysis exists in this particular field of

study. As a result, there remain many outstanding challenges in antibody proteomics. For

instance, it is still unclear what is the minimum concentration of an antibody in a sample that can

still be reliably identified using mass spectrometry. However, new methods are being developed

in order to increase the sensitivity and accuracy of antibody analysis [127]. In addition, due to

the low dynamic range of mass spectrometry, the presence of highly abundant antibodies may

affect the detection of rare antibodies. Highly similar antibodies are also difficult to distinguish

and rely on the identification of unique peptides. Furthermore, integration of BCR sequencing

into antibody proteomics can shed light on the variation between genotype and phenotype of the

immune repertoire, and possibly open the way to linking antibody sequence and function.
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Figure 5: Schematic of a LC-MS/MS workflow in antibody proteomics. A) Purified
antibodies are digested with enzymes (e.g., Trypsin/Chymotrypsin) to create mass
spectrometry-compatible peptides. The resulting peptides are then separated by
high-performance liquid chromatography (HPLC) and forwarded into the mass spectrometer. B)
In the mass spectrometer, an electric field is applied and the peptides are sprayed into charged
droplets. The droplets are converted into charged peptide ions and travel through the mass
analyzer, and the mass to charge (m/z) ratio is recorded in the detector. In addition, collision
induced dissociation (CID) can be performed on selected peptides to produce secondary ions for
antibody sequence determination.
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2. Thesis aims
The BCR repertoire is the product of antigen-driven clonal expansion and selection and

represents the genotype of the adaptive immune system. The antibody repertoire, however, is the

executor of immune functions regarding infection and diseases and represents the phenotype of

the adaptive immune system. Thus, understanding the relationship and connection between these

two repertoires is crucial in understanding the function of the immune system. At present, there

exists no pipeline that provides a high volume of information on genomic and phenotypic

antibody diversity at the single-cell (B cell) and single-molecule (antibody) level. Therefore, our

goal for this thesis project is to develop a pipeline that allows high-throughput dissection of

antibody repertoire diversity at the genomic and proteomic level (Figure 6). Specifically, this

thesis aims to achieve scientific advances in the following areas:

1. Adaptation of a reliable protocol for bulk BCR sequencing that maximizes the coverage of

the variable region sequence.

2. Establishment of a workflow for single-cell sequencing that allows the recovery of native

VH:VL chain pairing in B cells.

3. Building a foundation for the dissection of the antibody repertoire at the proteomic level by

benchmarking existing LC-MS/MS and peptide sequence identification tools.

4. Creating a combined pipeline of experimental work and bioinformatic data analysis.
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Figure 6: Overview of the thesis aims.
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3. Methods
3.1 Bulk B-cell receptor sequencing

Library preparation for bulk BCR sequencing started with B cells isolated from whole blood

using magnetic separation. Using RNAs isolated from B cells, cDNAs were synthesized using

isotype-specific primers with the addition of UMIs. The cDNAs were then amplified using 5’

multiplex (MTPX) primer sets for V genes in the heavy chain and light chain (κ or λ). Finally,

Illumina adapters were added with a unique index sequence for each sample (Figure 7).

Figure 7: Summary of the bulk B-cell receptor sequencing library preparation workflow.
Isolated RNAs from B cells were reverse-transcribed into cDNAs using isotype-specific primers
containing unique molecular identifiers (UMI). The cDNAs were amplified using a set of
multiplex (MTPX) PCR primers for heavy and light chain sequences. Finally, Illumina adapters
with indices were added in by limited-cycle amplification.
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3.1.1 B cell isolation from peripheral blood

B cells were isolated from whole blood using the MACXpress Whole Blood B Cell Isolation Kit

by Miltenyi Biotec according to the manufacturer’s instructions. This method removed

non-target cells by binding them with magnetic beads and separating them from the solution

using strong magnets. The red blood cells were sedimented at the bottom, leaving only B cells in

the plasma. The B cells were subsequently recovered via centrifugation, resulting in pure B cell

pellets.

3.1.2 Cell counting

The Countess II Automated Cell Counter utilized trypan blue chemistry and bright field

microscopy to calculate the concentration and viability of cells in a sample. Cell suspension and

trypan blue 0.4% were mixed in a 1:1 ratio and loaded into the counting chamber. Since trypan

blue cannot cross the membrane of live cells, only dead cells would be stained blue. The

concentration of B cells in the sample was calculated based on the image captured by the cell

counter.

3.1.3 RNA isolation

RNAs from isolated B cells were extracted and purified using the RNeasy Plus Mini Kit from

Qiagen following the manufacturer’s instructions. The cells were lysed and homogenized in a

denaturing buffer to inactivate RNases. Then ethanol was added to help bind RNA to the column

while contaminants were washed away with washing buffers. Pure RNA was then eluted with an

elution buffer and the concentration measured by Nanodrop.

3.1.4 Determination of nucleic acid concentration

The concentration and purity of nucleic acids were measured using the NanoDrop 1000

Spectrophotometer from Thermo Fisher Scientific. The system measured the concentration of

nucleic acids using absorbance at 260 nm, and protein at 280 nm, based on Beer-Lambert’s law.

Sample purity was assessed using the A260/A280 ratio and should be around 1.8 for DNA and
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around 2.0 for RNA. This system allows rapid quantification of nucleic acids while minimizing

sample loss (only 1 μL of sample is required).

3.1.5 cDNA synthesis

The RNAs isolated from B cells next underwent reverse transcription into cDNA. This was done

using isotype-specific reverse transcription primers that targeted the 3’ constant region (Figure

7). The primers also included a UMI sequence for error correction and an adapter sequence

partially overlapping with Illumina’s Read2 sequencing primer (Supplementary Table 1).

Procedure:
1. Measure RNA concentration and use 200 ng as input.
2. Create a reaction mix:

a. 200 ng RNA (X µL)
b. 1 µL isotype-specific primer
c. 1 µL dNTP 10mM
d. 12.5 - X µL H2O

3. Incubate for 5 minutes at 65oC and then place on ice.
4. Add to the sample, in each reaction:

a. 4 µL 5X Reverse Transcription buffer
b. 0.5 µL Ribolock
c. 1 µL Maxima Reverse Transcriptase enzyme

5. Incubate for 30 minutes at 50oC, 5 minutes at 85oC, hold at 4oC.
6. Proceed to DNA purification with Qiagen’s MinElute PCR Purification.

3.1.6 DNA purification

The DNA product was purified using Qiagen’s MinElute PCR Purification system, which is

based on silica membrane purification. The DNA was bound to the silica membrane in the

column, while excess reagents, primers, and other contaminants were removed by washing with

ethanol. The DNA products were then eluted with 10mM Tris.Cl, pH 8.5, resulting in cleaner,

purer DNA for subsequent reactions.
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3.1.7 Multiplex PCR

The purified cDNA was amplified in a multiplex PCR reaction with the 3’ primer targeting the

Read2 sequence ligated during cDNA synthesis and a 5’ forward primer mixture (Figure 7). The

5’ mixture contained multiple primers targeting the 5’ leader sequence of the V genes and a tail

overlapping with the Illumina Read1 sequencing primer (Supplementary Table 2). The 5’

primers were divided into 3 categories: VH for all the heavy chain isotypes, VK for the κ light

chain, and VL for the λ light chain. This was done in order to capture most of the possible V

gene sequences present in the sample.

Procedure:
1. Create the 5’ forward primer mix: Add 1.0 µL of all the primers in a set (VH, VK, VL)

into one microcentrifuge tube, mix well and freeze after use.
2. Create the reaction mix:

a. 4 µL cDNA template.
b. 0.5 µL 10mM 3' Read2U primer.
c. 1.0  µL 5' Forward primer mixture.
d. 10 µL Kapa HiFi HotStart ReadyMix.
e. 4.5 µL H2O .

3. Run the PCR reaction according to the protocol:
a. 96oC for 5 minutes.
b. 25 cycles of:

i. 95oC for 20 seconds.
ii. 68oC for 20 seconds.

iii. 72oC for 20 seconds.
c. 72oC for 5 minutes.
d. Hold at 8oC.

4. Run the samples on gel electrophoresis.
5. Cut out desired bands and purify the DNA using NEB Monarch Gel DNA extraction kit.

3.1.8 Gel electrophoresis

Gel electrophoresis was performed not only to ensure the DNA libraries were of the correct size

but also to separate the DNA libraries from primer-dimers and other non-specific products. The

gel matrix was composed of agarose, which created the environment in which DNA migrated.

An electric field applied to the gel caused the DNA products to migrate at speed corresponding
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to their size, causing the DNA products to separate. In order to determine the size of the DNA

bands, a 1Kb+ DNA ladder from Invitrogen was utilized. GelRed was added into the gel matrix,

which bound to the DNA and fluoresced under UV light.

3.1.9 DNA extraction from agarose gel

In order to extract DNA bands from the agarose gel, the NEB Monarch DNA Gel Extraction Kit

was utilized. The desired DNA bands were excised using a scalpel and dissolved in a chaotropic

buffer under heat in order to release the DNA from the gel. The DNA was retained in a silica

membrane column and underwent washing with ethanol to remove impurities. Finally, the DNA

was eluted using an elution buffer according to the manufacturer’s instructions.

3.1.10 Adapter extension PCR

In order to make the DNA libraries compatible with Illumina’s MiSeq sequencing platform,

adapters and indices were ligated by PCR (Figure 7). The 5’ primer targeting the Read1 sequence

contained the P5 adapter while the 3’ primers targeting the Read2 sequence contained the P7

adapter and the index sequence unique for each sample (Supplementary Table 3).

Procedure:
1. Create the reaction mix:

a. 3 µL DNA template.
b. 0.5 µL 10mM Illumina P5 primer.
c. 0.5 µL 10mM Illumina P7 index primer.
d. 9 µL H2O.
e. 12 µL Kapa HiFi HotStart ReadyMix.

2. Run the PCR reaction according to the protocol:
a. 96oC for 5 minutes.
b. 10 cycles of:

i. 95oC for 30 seconds.
ii. 68oC for 30 seconds.

iii. 72oC for 30 seconds.
c. 72oC for 10 minutes.
d. Hold at 8oC.

3. Purify the DNA product.
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3.1.11 Capillary Electrophoresis

Electrophoresis assays were performed using the Agilent Bioanalyzer 2100 system to evaluate

the library before sequencing. The DNA chip was made of glass with multiple wells

interconnected by microchannels. When all the wells were filled with DNA samples, marker

DNA and intercalating dye mixed with gel matrix, they form a closed electrical circuit. An

electric current was then applied to the chip and the DNA separated based on size, with larger

fragments moving more slowly and smaller fragments moving more quickly. The samples were

then visualized with fluorescence and the results were displayed as an electropherogram or a

gel-like image.

3.2 Single-cell B-cell receptor sequencing

Library preparation for single-cell BCR sequencing similarly started with B cells isolated from

whole blood. The B cells were then individually encapsulated in oil droplets together with

unique barcodes and reagents for reverse transcription (Figure 8A). Two types of barcode

sequences were present: droplet barcodes which confer a unique identification sequence to each

cell; and molecular barcode which ligates to each mRNA molecule in order to facilitate error

correction in the sequence. The concentration of barcodes was calculated and adjusted so that

each droplet on average contained one unique droplet barcode and multiple molecular barcodes

(Figure 8B). After encapsulation, cell lysis and reverse transcription occurred within each droplet

(Figure 9) and the barcode sequences incorporated before the emulsion was broken and library

preparation can be implemented.
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Figure 8: Schematic representation of the droplet encapsulation process. A) The Nadia
instrument with Innovate module add-on (image by Dolomite Bio [134]). B) Inside each
microfluidic chip, B cells and barcodes arriving from separate channels are encapsulated
together by the action of oil pressure, creating an emulsion of water droplets surrounded by oil.
C) Within each droplet, the B cell is lysed, releasing the heavy and light chain mRNA, which
serves as the template for reverse transcription and barcode incorporation.
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3.2.1 Single-cell encapsulation with the Nadia Instrument

The isolated B cells from peripheral blood were encapsulated using the Nadia Instrument from

Dolomite Bio with customized parameters shown in Table 1. The pressure profile for each

channel during an encapsulation run was shown in Table 2.

Table 1. Droplet encapsulation run parameters.

Sample loading stage Pre-run stage Run stage

Parameter Value Parameter Value Parameter Value

Sample volume 250 μL Stirring time 30 s Run temperature 6 oC

Reagent volume 250 μL Sample stirrer speed 75 rpm Initial sample stirrer time 30 s

Oil volume 3 mL Reagent stirrer speed 200 rpm Initial sample stirrer speed 75 rpm

Loading temperature 5 oC Initial regent stirrer time 30 s

Post-run stage Initial regent stirrer speed 200 rpm

Post-run duration 10 min Final sample stirrer speed 75 rpm

Post-run temperature 22 oC Final regent stirrer speed 150 rpm
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Table 2. Pressure profile of a droplet encapsulation run stage.

Step Duration
(minutes:seconds)

Oil pressure
(mbar)

Reagent pressure
(mbar)

Sample pressure
(mbar)

1 00:01 450 0 0

2 00:01 450 40 40

3 00:01 450 70 60

4 00:04 450 200 100

5 00:01 450 200 100

6 00:01 450 40 40

7 00:01 450 80 400

8 00:01 450 80 400

9 00:06 450 80 133

10 00:01 450 80 133

11 00:03 450 140 600

12 00:01 450 140 600

13 19:26 450 100 133

14 00:01 450 100 133

15 00:01 450 0 0

16 00:01 0 0 0

Procedure:
1. Power up the instrument and insert the microfluidic chip.
2. Load 3 mL of emulsion oil (QX200™ Droplet Generation Oil for EvaGreen) into the oil

reservoir.
3. Load 250 μL of Cell lysis buffer (165 μL) and PCR reagents (85μL) (Supplementary

Table 4) into the reagent reservoir.
4. Load 250 μL of B-cell suspension into the cell reservoir.
5. Close the lid of the instrument and start the encapsulation process, followed by 10

minutes of incubation.
6. Carefully remove excess oil from the reservoir and collect the cell droplets.
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3.2.2 In-droplet reverse transcription

The droplets containing lysed B cells underwent template-switching reverse transcription and

addition of droplet and molecular barcodes. Due to the activity of MuMLV reverse transcriptase,

a non-templated overhang was created during cDNA synthesis. The molecular barcode acted as

the template-switching oligo, annealing to the handle sequence. Within the droplet, the droplet

barcode containing the partial Illumina P7 sequence was amplified and annealed to the molecular

barcode via the universal adapter sequence (Figure 9).

Procedure:
1. Aliquot the droplets into PCR tubes, with each tube not exceeding 50 μL of droplets
2. Run the PCR according to the protocol:

a. 65°C for 5 minutes.
b. 37°C for 50 minutes.
c. 70°C for 15 minutes.
d. 95°C for 2 minutes.
e. 40 cycles of:

i. 95°C for 15 seconds.
ii. 65°C for 20 seconds.

iii. 72°C for 30 seconds.
f. 72°C for 3 minutes.
g. Hold at 8°C.
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Figure 9: Summary of the single-cell B-cell receptor sequencing library preparation
workflow. Inside each droplet, cDNA synthesis occurred with isotype-specific primers by
MuMLV reverse transcriptase, creating an overhang sequence for molecular barcodes to attach.
Droplet barcode containing a partial Illumina adapter was amplified and attached to the cDNA
via the universal adapter sequence. Afterwards, the droplets were broken and the full adapter
sequences were added during limited-cycle amplification.
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3.2.3 Emulsion breakage and target enrichment PCR

After reverse transcription and addition of barcode sequences within the droplets (Figure 8), the

emulsion was broken and then target enrichment PCR could occur, which ligated the complete

P7 and P5 Illumina adapters to the sequence (Figure 9).

Procedure:
1. Add 40 ul emulsion breaking solution (1:1 FC-40:perfluorooctanol) together with 15ul

lysate clearing solution (12.5 μL Qiagen Protease, 2.5 μL 0.5 M Na-EDTA, pH 8.0).
2. Invert 10 times to break the emulsion and incubate the mixture for 15 minutes at 50 °C

and 3 minutes at 95 °C to inactivate the protease.
3. Centrifuge at 15,000 g for 1 minute and collect the supernatant.
4. Clean the products with Qiagen’s MinElute PCR Purification kit.
5. Determine the nucleic acid concentration of the product.
6. Create the reaction mix (Supplementary Table 5):

a. 5 μL 5x RT buffer.
b. 0.5 μL dNTP.
c. 1.25 μL primer IgG_nest_fullP5  .
d. 1.25 μL primer IgM_nest_fullP5.  
e. 1.25 μL primer fP7  .
f. 30 ng of DNA product.
g. 0.25 μL Q5 polymerase.
h. H2O up to 25 μL.

7. Run target enrichment PCR according to the protocol:
a. 98°C for 30 seconds.
b. 20 cycles:

i. 98°C for 5 seconds.
ii. 72°C for 45 seconds.

iii. 72°C for 2 minutes.
c. Hold at 8°C.

8. Analyze the library products on the BioAnalyzer system.
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3.3 Antibody mass spectrometry

3.3.1 Antibody purification from serum

Antibodies were purified from serum using the Nab Protein A/G Spin kit from Thermo Scientific

following the protocol provided. This is a column-based affinity chromatography method

suitable for small scale antibody purification in a short amount of time using Protein A and

protein G immobilized in the column, which have high binding affinity for IgG.

3.3.2 GingisKHAN antibody F(ab) fragment collection

After antibodies were isolated from serum, F(ab) fragments were generated using the

GingisKHAN F(ab) kit from Genovis according to the manufacturer’s instructions.

GingisKHAN is an IgG1 specific protease targeting a single site above the hinge region of

antibodies. The reaction occurred at 37oC and pH 8.0. After cleavage, the resulting F(ab)

fragments were purified using affinity chromatography that is specific for the CH1 domain of the

heavy chain of IgG.

3.3.3 Enzymatic digestion of antibodies

Purified intact antibodies were enzymatically digested prior to chromatographic separation.

Three digestion strategies were employed: digestion with trypsin (tryp) only (Trypsin Gold, Mass

Spectrometry Grade, Promega Cat 5280), chymotrypsin (ct) only (Chymotrypsin MS grade,

Thermo Fisher Cat 90056), and chymotrypsin digestion followed by additional trypsin digestion

(ct + tryp). This was done to diversify the resulting peptide sequences and increase the sequence

coverage of the antibody peptides (Figure 10).

Procedure:
1. Divide each sample into 3 (20µl in each tube).
2. Add 2µl 100mM Dithiothreitol (final 10mM) and incubate at 56°C for 30 minutes.
3. Add 5.5µl 55mM Indole-3-acetic acid (15mM) and incubate in the dark for 30 minutes.
4. Add 1µl 0.5µg/µl chymotrypsin into two of the replicates and incubate at 37°C for 4

hours.
5. Add 1µl 0.5 µg/µl trypsin into one of the chymotrypsin treated samples and one of the

untreated samples. Incubate at 37°C overnight.
6. Save the chymotrypsin-treated samples in the freezer until the next day.
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7. Total volumes are 28.5µl (chymotrypsin, trypsin), 29.5µl (chymotrypsin + trypsin).
8. Perform Evotip C18 purification according to standard EVOSEP instructions. Load

7.125µl of trypsin sample, 7.125µl of chymotrypsin sample, and 7.325 of
chymotrypsin+trypsin sample.

Figure 10: Specificity of commonly used proteolysis enzymes. A) Cleavage rules for
Chymotrypsin and Trypsin, with regards to the peptide composition of the target site. B)
Exception rules for Trypsin detailing specific peptide compositions in which cleavage does not
occur. C) Representation of effect of enzymatic cleavage on peptide sequence composition.
Enzyme cleavage rules were extracted from the ExPASy Peptide cutter tool [135].

3.3.4 Liquid chromatography and tandem mass spectrometry
All mass spectrometry experiments were performed by The Proteomics Core Facility at Oslo

University Hospital on an EVOSEP liquid chromatography system connected to a quadrupole –

Orbitrap (QExactive HF) mass spectrometer (ThermoElectron, Bremen, Germany) equipped

with a nanoelectrospray ion source (EasySpray/Thermo). For liquid chromatography separation
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an 8 cm C18 column was used (Column details: Dr Maisch C18 AQ, 3um beads, 100um ID, 8cm

long.EVOSEP). The standard EVOSEP method 100 samples/day was used.

The mass spectrometer was operated in data-dependent mode to automatically switch

between MS and MS/MS acquisition. Survey full scan MS spectra (from m/z 375 to 1,500) were

acquired in the Orbitrap with resolution R = 60,000 at m/z 200 (after accumulation to a target of

3,000,000 ions in the quadruple). The method used allowed for sequential isolation of the most

intense multiply-charged ions, up to twelve, depending on signal intensity, for fragmentation on

the higher-energy collisional dissociation (HCD) cell using high-energy collision dissociation at

a target value of 100,000 charges or maximum acquisition time of 50 ms. MS/MS scans were

collected at 30,000 resolution at the Orbitrap cell. Target ions already selected for MS/MS were

dynamically excluded for 30 seconds. General mass spectrometry conditions were: electrospray

voltage, 2.0 kV; no sheath and auxiliary gas flow, heated capillary temperature of 250oC,

normalized HCD collision energy 28%.

3.4 Data analysis

3.4.1 Quality control of sequencing reads

Quality checking of the sequencing libraries was performed by the sequencing facilities using

FastQC [103]. The quality control report provided information such as the total number of reads

in a sequencing sample, the median quality value of each base across a read, the presence of

adapter sequences in a read, and the proportion of overrepresented sequences in a library. Quality

reports from all samples in a sequencing run were combined into a single report in MultiQC

[136].

3.4.2 UMI-based error correction

The utilization of UMI in the sequencing workflow for error correction necessitated a software

pipeline to identify, extract UMI sequences and group reads together by molecular identifiers.

MIGEC, developed by Shugay and colleagues processed sequencing data in 3 steps [137]. First,

the UMI tags were extracted from the read and added onto the header section by scanning and
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comparing with previously provided barcode sequences. Next, the quality of the extracted UMIs

was evaluated. UMIs were grouped together into molecular identifier groups (MIG) and each

group’s over-sequencing level and size were calculated and displayed as a histogram. These

values helped to exclude erroneous MIGs and kept the amplified and eligible MIGs for reliable

read assembly. In the last step the reads in a MIG were assembled into a consensus read,

excluding all the MIGs that fall below the desired thresholds. This helped to correct PCR errors

in the reads and excluded MIGs that contained too few reads (usually errors in the UMI

sequence). The resulting outputs were then forwarded to assembly mapping and clonotyping.

The MIGEC version 1.2.9 workflow was executed in command line using the following script:

#Running UMIs search by migec and putting the results in the folder

/checkout

java -jar ../migec-1.2.9.jar CheckoutBatch -c -u --skip-undef

barcodes.txt ./checkout

#Generating statistics for the UMIs found and storing the results in

wd/checkout/histo

java -jar ../../migec-1.2.9.jar Histogram ./ ./histo

#Running R script to create histogram of MIGs

Rscript Histogram.r

#Setting "checkout" as the working directory and data assembly with

output folder wd/output

cd checkout

java -jar ../../migec-1.2.9.jar AssembleBatch -c

--force-collision-filter . ./histo/ ./output/

3.4.3 Read assembly and clonotyping

B-cell receptor sequencing data was processed by MiXCR version 3.0.13, which is highly

efficient at handling immune repertoire sequencing data [138]. UMI-corrected sequencing data
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was first aligned to reference V,D,J and C germline sequences in the reference database and the

paired-end reads were overlapped. Subsequently the aligned reads were assembled into

clonotypes using the desired assembling features and clonotypes with high similarity were

clustered together in a hierarchical manner. Via multi-layered clustering (assembling consensus

CDR3 sequences using homologous and identical CDR3s), MiXCR also allowed for correction

of both PCR and sequencing errors by reducing artificial clonal diversity, while at the same time

rescuing reads that are low quality by matching and aggregating these reads to already

constructed clonotypes. Thus the clonal diversity of the repertoire may be preserved [62].

Finally, the resulting clonotypes were exported in a human-readable format containing

information such as clonotype count, amino acid and nucleic acid sequences for each feature,

best match for germline gene family, mutation in the sequences, among others. MiXCR was

executed in command line using the following script:

#Read alignment

java -Xmx4g -Xms3g -jar PATH align --species hs --report

alignmentReport.log $(ls|grep R1)  $(ls|grep R2) alignments.vdjca

#Assemble clonotypes

java -Xmx4g -Xms3g -jar PATH assemble

-OassemblingFeatures="[VDJRegion]" -OaddReadsCountOnClustering=TRUE

-OcloneClusteringParameters.clusteringFilter.specificMutationProbabil

ity=1E-4 -OseparateByC=true --report assembleReport.log

alignments.vdjca clones.clns

#Export clonotypes

java -Xmx4g -Xms3g -jar PATH exportClones -vGene -jGene -nMutations

VRegion -aaMutations VRegion -nMutations JRegion -aaMutations JRegion

-nMutations DRegion -aaMutations DRegion --preset full -nFeature CDR3

-nFeature VDJRegion -aaFeature VDJRegion --filter-out-of-frames

--filter-stops clones.clns clones.txt
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3.4.4 Immune repertoire analysis

The MiXCR output file of each sample provided information on identified features of the V

region, including the name and family of the V, D, and J genes, and the identified isotype (C

region). In addition, the nucleotide and amino acid sequence of each feature, including the CDRs

and FRs, were also provided, along with any identified mutation compared with the germline

reference database. A clonotype was defined as sequences with the same identified V and J

genes, and containing CDR3 sequences of the same length [139]. Clonotype data from MiXCR

was analyzed using the R package Immunarch [140], which performed the main analysis on

immune repertoire data, including clonotype abundance, CDR3 length distribution, overlap

between repertoires, and V-gene usage.

The CDR3 region is the most important determining factor of antigen recognition [141]. The

length of the CDR3 region varies due to somatic recombination, with SHM also contributing the

sequence length. By looking at the shape of a CDR3 length distribution, it is possible to identify

the presence of clonal expansion in a repertoire [142]. CDR3 overlapping is a common approach

to study the overlap of repertoires, defined as the presence of identical immune receptor

sequences between samples, by quantifying the proportion of shared clonal sequences. This can

yield important information since exposure to antigen can affect clonal selection and increases

repertoire similarity [62]. There exist multiple methods to evaluate repertoire overlap, the

simplest of which is calculating the overlap coefficient. By regarding the CDR3 amino acid

sequence as strings of text, two strings can be a match if one is a subset of the other, and the

coefficient is calculated as the size of the intersection divided by the size of the smaller repertoire

of the two. If one repertoire is a subset of the other, the overlap value is 1 [143].

The IGHV gene locus contains 7 V gene families, with each family having a myriad of V genes.

However, not all V genes have the same likelihood of expressing in the B cell repertoire due to

negative selection pressure during B-cell development. Nonetheless, specific V-gene usage

patterns have been associated with the development of autoimmune diseases and can fluctuate in

response to therapy [144,145]. In order to evaluate consistency in V-gene usage patterns between

54

https://www.zotero.org/google-docs/?F2TDLD
https://www.zotero.org/google-docs/?5jAh8x
https://www.zotero.org/google-docs/?uGoEJ2
https://www.zotero.org/google-docs/?NHK7Ut
https://www.zotero.org/google-docs/?NnbJ1u
https://www.zotero.org/google-docs/?pzfJEl
https://www.zotero.org/google-docs/?WmGpYw


repertoires, pairwise Pearson correlation coefficients were calculated and aggregated into a

heatmap using R’s pheatmap function [146]. Pearson correlation coefficient is a normalized

measurement of covariance, a number between -1 and 1 that measures the linear relationship

between two sets of data.

While sequence-dependent analyses can provide useful information about an immune repertoire,

there exists little overlap in clonal sequence between repertoires, making comparison restricted

to the subset of public clones [66]. Repertoire diversity analysis, derived from but not dependent

on clonal sequence, can yield important information regarding the immunological status of the

subject. This is especially important in studying the immune response to diseases and vaccines

[147]. There are many indices to measure diversity, such as species richness [148], Shannon

entropy [149], the inverse Simpson index [150], and Berger-Parker index [151]. However,

different indices may provide different conclusions regarding repertoire diversity [152].

Therefore, Greiff and colleagues developed the Diversity index profile which united the

aforementioned indices and painted a more complete picture of the immune repertoire structure

[68]. Alpha diversity was calculated as , where f is the clonal frequency

distribution, fi is the clonal frequency of each clonotype, and n the total number of clonotypes.

The Diversity index profile calculations were performed using the R package vegan [153] with

clonotype frequencies as the input. By extension, Evenness profiles, defined as the alpha

Diversity divided by the species richness, were calculated in order to measure the distance

between the clonal frequency distribution and the uniform clonal frequency distribution. Pairwise

Pearson correlation of Evenness profiles between repertoires were calculated and visualized

using R’s pheatmap function [146].

3.4.5 Mass spectrometry data analysis

Proteomics data from LC-MS/MS were processed by MaxQuant version 1.6.7.0, developed by

Cox and colleagues [154]. MaxQuant allowed for higher peptide mass accuracy, improved

peptide and protein identification, and integrated all steps needed in a computational proteomics

workflow in a single package. Thus, MaxQuant database search was performed by The
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Proteomics Core Facility at Oslo University Hospital. Data from identified peptide sequences

and their respective matching databases were further processed in R. For the antibody

LC-MS/MS experiment, the parameters utilized were described in detail in Supplementary Table

6.

Briefly, in addition to the antibodies’ own sequences, the experimental data was searched against

12 databases (up to 2 miscleavages allowed, minimal detected peptide length 7aa, false discovery

rate 1%):

● UniProt – uniprot-reviewed_Homo_sapiens_Sept_2018 (1 database).

● IGoR igh – 10000 randomly generated naive sequences using the IGoR software suite (1

database) [155].

● IMGT genes – igh (v, d, j genes), igk (v, j genes), igl (v, j, genes) (3 + 2 + 2 databases)

[156].

● ImmuneSIM igh, igk, igl – 10000 naive sequences randomly generated with ImmuneSIM

(3 databases) [157].

● Antibody-specific databases (Supplementary Table 7).

MaxQuant reports sequences of detected peptides with their intensities and matching databases

(one peptide might be detected in multiple databases, e.g. peptide from a V gene or constant

region). Each detected peptide was overlapped with the CDR3 sequence of the correspondent

antibody. The intensity ratio of peptides that uniquely correspond to an antibody was compared

with the concentration ratio.
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4. Results

4.1 Bulk B-cell receptor sequencing

4.1.1 Assessment of library quality

The PCR protocol for the amplification of BCR sequence was inspired by Bernat et al. [88],

where they have generated 5’ multiplex primers for the capture of IgG, IgM heavy chain and κ, λ

light chain sequences. Here we expanded upon the framework by designing isotype-specific

primers to capture also IgD, IgA, and IgE sequences. Thus we managed to conduct a

comprehensive analysis on all Ig isotypes from a blood sample (Table 3).

Table 3. Sample description of bulk B-cell receptor sequencing libraries.

Isotype
Illumina index

Replicate 1 Replicate 2 Replicate 3

Heavy chain

IgG i1 i2 i3

IgM i3 i1 i2

IgD i4 i5 i6

IgA i6 i4 i5

IgE i7 i8 i9

Light chain

IgΚ i9 i7 i8

IgΛ i10 i11 i12

Bold text represents samples in the first sequencing batch.
Unbolded text represents samples in the second sequencing batch.

The Bioanalyzer results showed that the protocol successfully generated libraries for all the

isotypes, which was between 500-600 bp in size. For IgG libraries, there were by-products at

around 200 bp that were removed during post-PCR cleanup. In IgE libraries, aside from the

expected libraries at 600 bp, there existed also unwanted products in the 400–500 bp range,
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suggesting that the isotype-specific IgE cDNA primers needed further adjustments and

optimization (Figure 11). Accounting for the relative abundance of the libraries in different

isotypes, the proportion of samples used when pooling was adjusted accordingly to ensure

sufficient read coverage and depth in all samples before sequencing.

Figure 11: Representative example of bulk B-cell receptor libraries, with each sample
tagged with individual Illumina index adapters. The expected size of the libraries is
between 500–600 bp. Before sequencing, the libraries were purified again using AMPure XP
Beads to remove non-specific products and pooled into a single microcentrifuge tube.
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The data retrieved from the sequencing facility was evaluated by FastQC and displayed as an

aggregate in MultiQC. In each sequencing batch, the sequences for each sample were divided

into the forward read (R1) and the reverse read (R2). For the first sequencing run (Table 3,

Figure 12A), out of the 22 sample reads available (paired-end reads of 11 samples in each

sequencing run), 8 sample reads were of good quality while 14 sample reads were of lower

quality. Specifically, all of the R2s fell into the low quality category. Meanwhile, the sequencing

quality of the second sequencing batch (Table 3, Figure 12B) is generally better, with 10 R1s

having a higher quality score and 10 R2s having a lower quality score. Overall, the quality score

for the R2s were lower than the R1s. This is a common pattern in Illumina sequencing, especially

in long-read sequencing, and was discussed by Tan and colleagues when they evaluated the

quality of paired-end sequencing in different Illumina platforms, overlining the limitations of

paired-end sequencing [158]. Although the quality of the bases toward the end of the read was

lower than recommended by FastQC, we decided to keep these reads for further analysis since

the process of alignment and mapping by MiXCR can potentially rescue these reads when the R1

and R2 of each sample are merged and by clustering reads of lower quality into a larger

clonotype during clonotyping, retaining as much of the sequence data as possible.
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Figure 12: Overview of the bulk B-cell sequencing library quality. Quality is represented as
the mean Phred score of all positions in a sequencing read. The Phred score Q is defined as Q =
-10 x log10(P) where P is the probability of an incorrect base call. The quality score distribution
of each library is represented as a color-coded line according to FastQC’s assessment of library
quality and categorized as high quality (green), acceptable quality (yellow), or low quality (red).
A) Quality score of libraries in the 1st sequencing run. B) Quality score of libraries in the 2nd

sequencing run.
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4.1.2 Analysis of B-cell receptor libraries

Before alignment and clonotyping by MiXCR could occur, the raw sequencing data went

through UMI processing by MIGEC and the resulting MIG distributions were visualized by

isotype (Figure 13). The vast majority of MIGs (> 80%) in all samples contained less than 3

reads, which is the minimum size necessary to construct consensus sequences. In particular, in

very abundant samples such as IgM or κ light chains, more than 95% of MIGs had only one or

two reads. If UMI error correction was employed, the amount of useful information retrieved

from the data would be reduced more than 5-fold and up to 10-fold. Since the goal was to

capture as much diversity in the data as possible, we decided that UMI error correction would

not be utilized in this experiment and error correction would depend mainly on MiXCR instead .4

Figure 13: UMI group distribution across isotypes. In all isotypes, including the light chain
samples, more than 80% of MIGs contained only one or two reads (exact proportions given
above each plot). Identical UMI sequences were assembled into molecular identifier groups
(MIGs). MIGs were categorized based on the number of reads contained. Consensus sequence
building requires a MIG size ≥ 3.

4 The MiXCR error correction mechanism was introduced in section 3.4.3 “Read assembly and clonotyping”.
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Before analysis of the immune repertoire can be conducted, the output file of the MiXCR

pipeline of each sample was examined. Based on the identification of the C gene (determinant of

isotype), it was shown that a sizable number of assembled clonotypes have unidentified C region

or C region identified as another isotype. Therefore, these non-specific clonotypes were removed

before subsequent analyses were conducted. In order to evaluate the impact of this removal,

clonotype counting was performed on both the original data and the isotype-corrected data.

Comparing the two datasets showed that in the IgG and IgM samples, around half (54.7% and

43.8%, respectively) of the identified clonotypes had unidentified isotype or an isotype different

from the input sample. In the IgA samples, 72.3% of unique clonotypes were removed after

correction. IgE samples in particular saw the largest reduction in clonotype count with 92.3% of

unique clonotypes removed after correction (Figure 14). However, this is expected due to the

presence of some non-specific products in the electropherogram of the IgE lane and the low

intensity of the band at the expected product size (Figure 11). In contrast, the IgD samples and

the light chain samples saw little reduction in clonotype count after correction, suggesting the

presence of highly specific products.

Across all isotypes, IgD had the highest number of unique clonotypes, followed by IgM and IgG,

in agreement with the fact that the majority of B cells in the blood are naive IgM+IgD+ B cells

[159]. Meanwhile, IgE showed the lowest clonotype count, at <1000 unique clonotypes per

replicate. This is expected both from the low abundance of IgE B cells in peripheral blood and

from the performance of the IgE-specific reverse transcription primer (Figure 11), rendering it

difficult to produce only specific products. For the light chain samples, the clonotype count for

the κ chain sequences was the highest averaging around 196768 unique clonotypes per sample,

owing to the fact that ⅔ B cells in the blood had the κ light chain. Accordingly, the λ chain

sequences averaged around 34049 unique clonotypes (Figure 14B). In particular, the high

variation of clonotype count in the κ light chain replicates indicated that the true abundance of

the sample was higher than what was displayed and sub-sampling might have affected the

results.
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Clonotypes that contained only one read on average made up around 50–60% of those identified

in the samples (IgA, IgE, IgG, and the light chain sequences). However, for IgD samples, the

single-read clonotypes accounted for only around 33% of all identified clonotypes. Conversely,

for IgM samples, single-read clonotypes comprised 70% of identified clonotypes (Figure 14C).

This discrepancy between isotypes can partly be explained by the sequencing depth of each

sample. A very high percentage of single-read clonotypes might signify the need for more

sequencing depth since the large number of cDNA molecules in such samples might not be

sufficiently covered with multiple reads in sequencing. In contrast, low single-read clonotypes

samples had a higher degree of saturation regarding the number of reads per cDNA molecule. In

short, the number of clonotypes identified and the clonotype abundance in each sample can be

affected both by the prevalence in the blood as well as the allocation of sequencing depth for

each sample. Thus there is room for optimization in these areas.
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Figure 14: Number of unique clonotypes identified by MiXCR. A clonotype was defined as
sequences with the same identified V and J genes, and containing CDR3 sequences of the same
amino acid length. A) The number of clonotypes in each sample before isotype correction. B)
The number of clonotypes in each sample after isotype correction. C) The number of clonotypes
in each sample after selecting for clonotypes that contained only one read.
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Despite the large impact on clonotype count, the isotype correction primarily affected clonotypes

with low clonotype count, mostly in the range of ≤ 10 reads, as evidenced by the clonal

abundance distribution (Figure 15). The change in clonotype abundance was most evident in the

IgE samples (light green lines), where the number of clonotypes with abundance ≤ 10 was on

average around 8455 clonotypes (Figure 15A). After filtering out non-isotype-specific

clonotypes, the abundance of clonotypes with ≤ 10 reads reduced to an average of 689

clonotypes (Figure 15B). Similar patterns can be observed in the IgM samples (red lines), where

the abundance of clonotypes with ≤ 10 reads was around 91547 clonotypes before correction and

around 52318 after isotype correction (Figure 15B). Meanwhile, the most abundant clonotypes in

each sample remained relatively unaffected by the correction process, since there were only

several clonotypes that were highly expanded in each sample. The distribution of clonotype

abundance was as expected from an antigen-inexperienced blood sample, with the vast majority

of clonotypes possessing a very small size and a very small fraction of clonotypes that were

expanded.
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(See figure on the previous page)
Figure 15: Clonotype abundance of each sample, with abundance defined as the number of
reads assembled into a clonotype. The bulk of clonotype identified in each sample had an
abundance of ≤ 10 reads. Filtering of misidentified and unidentified isotypes reads from
samples primarily affected IgE samples and to a lesser extent IgM samples. A) Clonotype
abundance before isotype correction. B) Clonotype abundance after isotype correction.

In addition to investigating the number of unique clonotypes in each sample, in order to explore

the diversity of each repertoire, the sequence contents of the clonotypes in each repertoire were

analyzed, specifically the CDR3 region. Within each isotype, the CDR3 length frequency stayed

consistent between technical replicates, with the exception of IgE, which showed slight variation

between replicates. This could be attributed to the smaller sample size of IgE, which could

amplify the differences between replicates. Regarding the CDRH3 length distribution across

different isotypes, IgD had the longest average CDRH3 sequence at 18 aa and a flatter

distribution pattern; while IgA, IgE, IgG, and IgM had an average CDRH3 length of 17 aa,

which were consistent with other publications [64,160] (Figure 16A). In addition, the pattern of

peak distribution in all isotypes followed the typical peak profile which resembled a Gaussian

distribution, representative of healthy volunteers, matching what we expected [142].

Regarding the light chain, the average length of the CDRL3 sequence of the λ and κ light chain

were 11 aa and 12 aa, respectively. Length variation of the CDRL3 sequences was limited

possibly due to the CDRL3 being comprised of only the V-J gene junction, rather than the V-D-J

gene junctions in CDRH3, limiting the possibilities for variation in length due to non-template

additions and removals during recombination.
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Figure 16: CDR3 length in nucleotides and the frequency of each CDR3 length in a
repertoire, adjusted for clonotype count in each sample. CDR3 length distribution in each
heavy chain isotype resembled a normal distribution. The mean length of the CDR3
sequence is 17 aa in the heavy chain and 11 aa in the light chain. A) CDR3 length distribution
of different Ig isotypes: IgA, IgD, IgE, IgG, and IgM,. B) CDR3 length distribution of the light
chain sequences: κ and λ.
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Subsequent to clonotype counting, the CDR3 overlap between samples was examined (Figure

17). As expected, CDR3 amino acid sequence similarities were higher between replicates of the

same isotype and drastically lower between different isotypes (<0.1000). In particular, the

overlap values were highest within the isotypes IgM, IgA, and IgD, at around 0.6000. IgG, IgE

and λ chain sequences showed medium overlap values while κ chain sequences showed the

lowest overlap between replicates. Interestingly, IgE samples had a higher degree of overlap with

IgG samples than between replicates of the same isotype.

After selecting for only single-read clonotypes in each sample, the CDR3 overlap values

exhibited a similar pattern between replicates and across isotypes, albeit with lowered values

(Figure 18). An exception to this was IgM, which retained a similar average overlap value even

after removing expanded clonotypes. This contrasted the pattern exhibited by other isotypes such

as IgD, in which the average overlap value reduced by 0.4041 after removing expanded

clonotypes. This phenomenon might be explained by the clonotype counts of the isotypes, in

which IgD only had around 33% single-read clonotypes whereas IgM had as high as 70%

single-read clonotypes (Figure 14). It is possible that between technical replicates, the same

clone that contained 1 read might contain > 1 read in other replicates and thus be removed by

filtering, which would lower the overlap value. The higher overlap value when single-read

clonotypes were included demonstrated that many of the single-read clonotypes were correct and

not due to sequencing errors, thus a higher sequencing depth would have rescued them.
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Figure 17: Repertoire overlap between samples. Average CDR3 overlap values within each
isotype ranged from 0.1923 to 0.6120. CDR3 overlap between different isotypes generally
stayed below 0.100, except for IgE. Overlap value was measured based on CDR3 amino acid
sequence overlap, calculated as the size of the intersection divided by the size of the smaller of
the two repertoires.
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Figure 18: Repertoire overlap between samples after selecting for single-read clonotypes.
For the majority of isotypes, the average CDR3 overlap values between technical replicates
ranged between 0.1670 and 0.2893, except for IgM samples (0.6362). Overlap value was
measured based on CDR3 amino acid sequence overlap, calculated as the size of the intersection
divided by the size of the smaller of the two repertoires.
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Based on the identified V gene in each clonotype, the V gene usage distribution of each isotype

was constructed (Figure 19). In general, IGHV3 was the most ubiquitous gene family in IgA

(0.4300), IgD (0.3383), and IgE (0.4443), whereas IGHV4 was the most frequent family in IgG

(0.3305) and IgM (0.3468). These two gene families combined accounted for over half of all V

genes identified in every isotype, which is generally consistent with previous publications

[60,64]. Particularly, the most used V genes were IGHV3-30 in IgA (0.1082), IgE (0.1676), and

IgG (0.1022) and IGHV4-34 in IgM (0.1062) and IgD (0.1248). However, in the IgG samples,

the frequency of usage between IGHV3-30 and IGHV4-34 differed by only a small margin. In

addition, between the IgM technical replicates, IgM_i3 (blue) showed a different pattern of V

gene usage compared to the two remaining replicates while in other isotypes, V gene usage

stayed relatively consistent between replicates. Once again this phenomenon could be explained

by the lack of sequencing depth in the IgM samples, thus each technical replicate might have

captured a different section of the true sample.

In order to assess the similarities in V gene usage as a whole across samples, pairwise Pearson

correlation between V gene frequencies and distance-based clustering between samples were5

performed (Figure 20A). As expected, V gene frequencies showed perfect correlation within an

isotype for the vast majority of samples, except for IgM_i3 as previously observed. The

clustering process divided the isotypes into 3 groups: IgA–IgE, IgD–IgM, and IgG which stood

in the middle of the other two groups. Between IgA–IgE and IgD–IgM, the correlation

coefficient ranged from 0.71 to 0.83 while the pairwise correlation between IgG samples and

other isotypes varied from 0.87 to 0.94.

5 Pearson correlation was introduced in section 3.4.4 “Immune repertoire analysis”.
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Figure 19: V gene usage pattern across different isotypes. IGHV3 was the most ubiquitous
gene family in IgA, IgD, and IgE, while IGHV4 was most ubiquitous in IgG and IgM.
IGHV3-30 was most frequently used in IgA, IgE, and IgG, while IGHV4-34 was most
frequently used in IgM and IgD. Relative proportion of each of the heavy chain V genes in
different families was adjusted for clonotype count in each sample.
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Figure 20: Pearson correlation and hierarchical clustering of heavy chain V gene usage.
Samples were clustered into three groups: IgA–IgE, IgD–IgM, and IgG. A) Each tile in the
heatmap represented the pairwise Pearson correlation of two V-gene repertoires. Color gradient
indicated the magnitude of correlation. Clustering categorized the samples into 3 groups:
IgA–IgE, IgD–IgM, and IgG. B) An example of Pearson correlation of V gene repertoires for two
samples.
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Aside from V gene usages in the heavy chain sequences, the V gene usage distribution was also

measured in the light chain samples (Figure 21). For the κ chain, IGKV1 was the most frequently

utilized gene family (0.6628), followed by IGKV3 (0.1981). IGKV1-39 (0.2100) and IGKV1-5

(1419) were the 1st and 2nd most frequent V genes, respectively. For the λ chain, IGLV2 was the

most frequently utilized gene family (0.4885), followed by IGLV3 (0.2762). IGLV2-11 (0.2788)

and IGLV2-14 (0.1979)  were the 1st and 2nd most frequent V genes, respectively.

Figure 21: V gene usage pattern in the light chain sequences: κ and λ. The IGKV1 gene
family comprised the majority of V genes used in the κ chain, and IGLV2 was the most
utilized V gene family in the λ chain. Relative proportion of each of the V genes in different
families was adjusted for clonotype count in each sample.

In addition to analyses such as CDR3 length distribution, CDR3 overlap, and V gene usage

frequency that are dependent on the clonotype’s sequence, another sequence-independent

characteristics such as clonotype frequencies can also provide important information about a

repertoire, especially the clonal diversity and state of clonal expansion. An alpha Diversity

profile of each sample was constructed based on clonal frequencies and normalized into an
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Evenness profile . Since Evenness describes the extent in which a clonal frequency distribution6

is distanced from a uniform clonal frequency distribution (no clonal expansion), a steeper curve

would signify a higher degree of clonal expansion. Of particular note was the intersection of the

profiles for the IgM and the IgD/IgE samples, demonstrating the usefulness of looking at

diversity and clonal expansion profiles instead of deciding on a single diversity index, since

different indices would provide contradicting conclusions depending on the sub-clonal expansion

in a repertoire. The samples’ Evenness profiles were divided into 2 groups: IgM–IgE–IgD with a

lower degree of clonal expansion and IgA–IgG–light chain samples with a higher degree of

clonal expansion (Figure 22). Pairwise Pearson correlation between samples’ Evenness profile

was also calculated and clustering of results confirmed previous observations in the Evenness

profiles grouping the samples according to clonal expansion status (Figure 23).

Figure 22: Evenness profiles across isotypes. IgM, IgE and IgD samples showed a high
degree of clonal expansion while IgA, IgG, and light chain samples showed a high degree of
clonal expansion. Evenness profiles were constructed as a collection of Evenness values at a
range of alpha from 0 to 10 (step size 0.2) and colored according to their respective isotypes.

6 Diversity indices, Diversity profiles and Evenness profiles and their applications were introduced in section 3.4.4
“Immune repertoire analysis”.
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Figure 23: Pearson correlation and hierarchical clustering of Evenness profiles. Two main
clusters were identified based on their respective Evenness profile values: IgM–IgE–IgD
and IgA–IgG–light chain samples. Each tile in the heatmap represented the pairwise Pearson
correlation between two Evenness profiles. The color gradient indicated the magnitude of
correlation.

4.2 Single-cell B-cell receptor sequencing

4.2.1 B-cell encapsulation

In order to evaluate the efficiency of the cell encapsulation process, we formulated an experiment

in which samples varied in the number of starting B-cell input, from 100000 to 1000000 cells.

The B cells were stained prior to encapsulation with Hoechst 33342 Solution (20 mM) in order to

be visualized under fluorescence microscopy (Figure 24).
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The Dolomite Nadia system provided a good performance for input up to 500000 cells, where

the fraction of droplets containing multiple cells stayed below 5%. However, at the highest cell

input (1000000 cells), the multiplet’s fraction sharply increased (15.3%), making this input level

unsuitable for downstream applications (Figure 25). Based on the results obtained and balancing

between throughput and reliability, we decided to set the input to 500000 B cells per

microfluidics chip for our library preparation.

Figure 24: Droplet visualization under fluorescence microscopy, with B cells stained blue.
(A) Representative image of products from the droplet encapsulation process. Droplets were
categorized as either single-cell droplets (B) or multiple-cell droplets, which contained either
two (C) or more than two (D) B cells in an oil droplet.

Figure 25: B-cell encapsulation efficiency. The droplets were classified as either single-cell
droplets (green) or multi-cell droplets (orange). Capture efficiency was measured at a range of
cell input from 100 thousand to 1 million B cells per microfluidic chip. The percentage is
calculated as the number of droplets containing cells over the total number of droplets in a field
of view, averaged over 30 fields of view.
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4.2.2 Assessment of library quality

After the captured B cells were lysed and the released mRNAs were reverse transcribed into

cDNAs, subsequent steps in the library preparation workflow were performed. The resulting

products after emulsion breakage were divided into 3 fractions: fraction 1 contained cDNA

products prior to any cleanup, fraction 2 contained cDNA products after purification with

AMPure XP Beads, and fraction 3 contained cDNA products after purification with MinElute

purification kit. Each fraction was accompanied by a no polymerase control (no Q5) and a no

template control (NTC).

The resulting libraries analysed on BioAnalyzer did not show any product at the expected size

(~600 bp). Moreover, there were unexpected product bands at around 150–200 bp (Figure 26).

Thus, it is likely that the in-droplet reverse transcription process was not successful and did not

generate the required cDNA template for subsequent reactions. There are several possible

explanations for this result. Firstly, the reverse transcriptase enzyme might not work properly

under a very low template concentration [161]. Secondly, the template-switching reaction had a

low efficiency. Thus, the universal adapter sequence could not anneal to the 5’ end of the cDNA

and subsequent reactions could not amplify the products (Figure 9). Finally, the presence of

non-specific product bands at around 150–200 bp suggested that primer dimers formed during

amplification, requiring a re-evaluated of the design and reaction conditions. In short, the library

preparation workflow for single-cell B-cell receptor sequencing did not lead to a viable product

and therefore requires further evaluations and redesigns in the future.
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Figure 26: Representative example of single-cell B-cell receptor libraries. Each library
consists of 3 fractions, each containing a no polymerase control (no Q5) and a no template
control (NTC): products from emulsion breakage (L1), products from emulsion breakage purified
with AMPure XP Beads (L2), and products from emulsion breakage purified with MinElute
purification kit (L3).

4.3 Benchmarking of the antibody LC-MS/MS pipeline

4.3.1 Proof-of-concept and pilot experiments

4.3.1.1 Antibody peptides detection with LC-MS/MS

As a proof-of-concept, we wanted to test the capability of LC-MS/MS in detecting antibody

related peptides. Two different treatments were conceived: one where the antibodies were

digested with GingisKHAN, leaving only the Fab fragment, and the other where intact antibodies

were used. Each treatment contained 4 samples: 14.2 µg of blood-isolated IgG1, 14.2 µg of

PGDM1400 (Supplementary Table 7), 14.2 µg of IgG1 + 14.2 µg of PGDM1400, and 14.2 µg of
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IgG1 + 142 ng of PGDM1400. All samples were cleaved with chymotrypsin, followed by trypsin

prior to mass spectrometry.

In the first 4 samples where the antibody was treated with GingisKHAN, no antibody-related

peptide was detected. Sample 6 (contained only PDGM1400) contains only the antibody-related

matches. Sample 7 (higher PDGM1400 concentration, mixed with IgG1) contained more

antibody-related matches than sample 8 (lower PDGM1400 concentration, mixed with IgG1)

(Figure 27). Most of the antibody-related peptides matched with the constant region (which can

be similar to other antibodies), only a small fraction matched with the CDR3 region (Figure 28).

Figure 27: Detection of antibody-related peptides using LC-MS/MS. No antibody-related
peptides were detected in samples treated with GingisKHAN (Gz), while only
PGDM1400-specific peptides were detected in the PGDM1400 sample (mAb). Samples 1–4
were treated with GingisKHAN, and samples 5–8 utilized intact antibodies. All samples were
digested with chymotrypsin + trypsin.
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Further examining the peptide fragments that matched with either the LC or HC of PDGM1400

detected 1 peptide fragment that had significant overlap (≥ 3 aa) with the CDRL3 region of

PDG1400 in samples 6 and 7, suggesting the feasibility of identifying known antibodies from

complex mixtures (Figure 28).

Figure 28: CDR3 overlap distribution of detected peptides. CDR3 overlapping peptides
were detected only on the light chain, not on the heavy chain. Each detected peptide was
compared to the known CDR3 sequence (HC and LC) of the PDGM1400 mAb and overlap
length was calculated. An overlap is considered significant if the overlap length ≥ 3 aa.

4.3.1.2 Performance comparison between MS settings

Two mass spectrometry settings available at the Proteomics Core Facility at Oslo University

Hospital with different throughputs were compared, which can either process up to 100 samples

per day or up to 60 samples per day (100 s/d and 60 s/d). Comparing the same starting sample

(14.2 µg of blood-isolated IgG1 + 14.2 µg of PGDM1400) digested by the same enzymes in two

different settings showed that more peptides overall were detected in the lower-throughput

setting (60 s/d). However, the number of antibody-related peptides detected showed no
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noticeable differences, especially those that mapped to the PDGM1400 sequences. Most of the

extra peptides detected in the 60 s/d setting were unrelated to the antibody sequences (Figure 29).

Figure 29: Comparison of LC-MS/MS pipelines on detection of antibody-related peptides.
Similar numbers of antibody-related peptides were detected between two mass
spectrometry settings. Each sample (14.2 µg of blood-isolated IgG1 + 14.2 µg of PGDM1400)
was digested with either chymotrypsin, trypsin, or chymotrypsin + trypsin and underwent
LC-MS/MS with a throughput of 100 samples per day or 60 samples per day, respectively.

Closer examination of CDR3-related peptides revealed that the number of detected peptides were

almost identical in both workflows, except in the chymotrypsin-treated samples where there were

more peptides detected in the lower-throughput setting (Figure 30). Overall, the

lower-throughput setting did not seem to provide any additional advantages regarding antibody

identification and thus we decided to use the 100 s/d mass spectrometry setting for all subsequent

experiments.
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Figure 30: Comparison of LC-MS/MS pipelines on detection of CDR3-related peptides.
The number of CDR3-overlapping peptides detected was almost identical between two
different mass spectrometry settings. Each detected peptide was compared to the known CDR3
sequence of the PDGM1400 mAb and overlap length was calculated. An overlap is considered
significant if the overlap length ≥ 3 aa.

For the same detected peptide fragments at the same antibody input (14.2 µg of blood-isolated

IgG1 + 14.2 µg of PGDM1400), in two different mass spectrometry settings (100s/d and 60s/d),

and digested in three different conditions (chymotrypsin, trypsin, and chymotrypsin + trypsin),

the signal intensity ratio between the two is close to 1, with only a few outliers (Figure 31).
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Figure 31: Peptide signal intensity comparison. Most of the identical peptides detected in
different samples possessed similar signal intensities. The intensity ratio is calculated by
comparing signal intensity between identical peptides cleaved by the same enzyme and detected
in both mass spectrometry settings.

4.3.1.3 Correlation between intensity ratios and concentration ratios in peptides

With the results from the comparison between MS settings, we set out to investigate whether

MS/MS signal intensity ratios correlate and reflect mAb input concentration ratios. For that

purpose Trypsin-digested BSA MS standard (CAM-modified) (New England Biolabs #P8108S)

at 5 pmol, 500 fmol, 50 fmol, and 5 fmol, with the addition of 100 ng of HeLa Protein digest

standard (Pierce #88328) in all BSA samples were used. The results showed a high correlation

between signal intensity ratios and peptide concentration ratios (Figure 32), which suggests that

signal intensity can be a good indicator for peptide concentration in samples with known

sequence.
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Figure 32: Peptide signal intensity comparison in BSA + HeLa digests. In both settings, the
signal intensity ratios of the detected tryptic peptides followed closely with their respective
concentration ratios. Intensity ratios and concentration ratios of detected BSA and HeLa
peptides are calculated between identical detected peptides at different amounts of inputs.

4.3.1.4 Limit of detection for LC-MS/MS in antibody identification

In order to test the limit of LC-MS/MS in antibody identification, we devised an experimental

setup with samples in varying levels of antibody input at 1 µg, 100 ng and 10 ng (6.67 pmol, 667

fmol, and 66.7 fmol, respectively). The antibodies were either blood-isolated (sample 1–3) or

from the PDGM1400 mAb (sample 4–6) and digested with chymotrypsin + trypsin. The number

of peptides detected tended to decrease with lowering concentration, as expected. At 10 ng input

(66.7 fmol), no PDGM1400-related peptides were detected, suggesting the lower limit of input

for antibody identification with chymotrypsin + trypsin digestion (Figure 33).
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Figure 33: Comparison of monoclonal antibody concentration on peptide detection.The
number of detected peptides decreased with declining concentrations. No antibody-related
peptides were detected at an input of 10 ng (66.7 fmol). Each antibody sample was cleaved by
chymotrypsin + trypsin with input of 1 μg, 100 ng and 10 ng, respectively.

4.3.2 Detection of monoclonal antibodies at different concentrations

The pilot experiments helped establish the foundations for further benchmarking of antibody

LC-MS/MS. As a result, we decided to expand further into other mAbs in order to investigate

whether the detection limit of antibodies would be impacted by the interaction between antibody

sequences and the choice of digestion enzymes. An experiment setup was devised where 3

different mAbs were utilized: Briakinumab, PGDM1400, and PGT121 (Supplementary Table 7).

The input of each antibody varied from 1 μg, 100 ng, 10 ng, to 1 ng (6.67 pmol, 667 fmol, 66.7

fmol, and 6.67 fmol, respectively). Each sample was further split into 3 different enzymatic

treatments: chymotrypsin, trypsin, and chymotrypsin + trypsin. Every sample was performed in 3

technical replicates (each digested antibody sample went through the LC-MS/MS pipeline three

times and the resulting data was combined together).
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Prior to the experiment, mAb sequences were digested in-silico according to ExPASy cleavage

rules, with 0 miscleavage allowed [135]. Subsequently, the peptides identified by MaxQuant

were matched with the theoretical peptides, separated by either heavy or light chain sequence

and by the enzyme utilized (Figure 34). In general, the in-silico digestion process generated

peptides mostly clustered below 30 aa in length, with some exceptions. However, the number of

theoretical peptides actually detected in the experimental samples was very low, with the

majority of detected peptides being on the light chain instead of the heavy chain sequences.

Particularly, in the case of Briakinumab heavy chain, only 1 peptide was detected with trypsin

digestion and none with other enzymes. The results showed that only a small fraction of peptides

detected followed exactly the rules devised and the majority would contain miscleavages or were

not detected altogether.

Figure 34: Distribution of enzyme-digested peptides in mAbs. Most detected peptides
resided on the light chain. In Briakinumab, only 1 peptide was detected and was derived
from trypsin. A) Theoretical digested peptide distribution of mAbs, with 0 miscleavage. B)
Detected peptide distribution of mAbs that matched theoretical sequences.
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All MS peptides detected by MaxQuant were next overlapped with the CDR3 regions of the

mAbs and the number of significant (overlap length ≥ 3 aa) CDR3-overlapping peptides were

counted (Figure 35). With Briakinumab, the number of peptides detected as well as the lower

detection limit differed greatly between enzymes. Chymotrypsin-digested peptides only mapped

to the light chain and only at 1000 ng (6.67 pmol) input, with no peptides at lower inputs.

Chymotrypsin + trypsin performed better with a detection limit of 10 ng (66.7 fmol) yet still

inferior to trypsin where peptides were identified at only 1 ng (6.67 fmol) of input. Peptides from

PGDM1400 and PGT121 samples, on the other hand, only mapped to their respective CDRL3

region and not CDRH3 regions. In PGDM1400, chymotrypsin again performed worse compared

to other enzymes when it came to the limit of detection, with a steep drop in detected peptides

from 1000 ng (6.67 pmol) to 100 ng (667 fmol), and no detected peptides at 10 ng (66.7 fmol)

and lower. On the other hand, peptide detection in PGT121 was noticeably different than the

other two mAbs, with similar performance across all three digestion strategies but only at 1000

ng (6.67 pmol). At inputs of 100 ng (667 fmol) and lower, no CDR3-overlapping peptides were

detected in PGT121 samples.

Examining the relationship between concentration ratios and signal intensity ratios of the

detected peptides revealed similar results to the previous experiments (Figure 31, 32), where the

two ratios roughly follow one another, albeit to a different degree with different enzymes (Figure

36). The two ratios matched up best in trypsin-digested peptides, slightly less so in chymotrypsin

+ trypsin digestion, and worst in chymotrypsin peptides. This could be explained partly by the

low digestion efficiency of chymotrypsin, leading to incomplete digestion and skewed peptide

concentrations. Nevertheless, the results showed that signal intensity ratios could be useful as an

indicator when comparing the amount of Abs in a sample.

In short, the ability to identify mAbs based on CDR3-overlapping peptides and the limit of

detection varied dramatically depending on the sequence of the mAbs themselves and the

digestion strategy employed.
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Figure 35: CDR3-overlapping peptides with overlap length ≥ 3 aa detected in different
mAbs. Trypsin performed best regarding the number of peptides detected and limit of
detection. No peptides were mapped to the CDRH3 region of PGDM1400 and PGT121.
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Figure 36: Peptide signal intensity comparison in monoclonal antibody samples.
Equivalence between concentration ratios and signal intensity ratios was highest in
trypsin-digested peptides and lowest in chymotrypsin-digested peptides. Intensity ratios and
concentration ratios are calculated between identical detected peptides at different amounts of
inputs.
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In summary, several insights were gained after conducting the pilot and benchmarking

experiments:

● It is possible to confirm the presence of an antibody with known sequence by mapping

the MS peptides to the CDR3 region of the antibody sequence (Figure 28).

● Increasing runtime for the LC-MS/MS pipeline does not result in better sensitivity

regarding peptide identification (Figure 29).

● Between identical peptides detected in different samples, the signal intensity ratios reflect

the concentration ratios of the samples (Figure 31, 32, 36).

● The number of antibody-related peptides decreases with respect to declining sample input

(Figure 33).

● Only a small fraction of theoretical peptides can be detected by MS (Figure 34).

● Limit of detection varies significantly depending on the antibody sequence and digestion

enzyme utilized (Figure 35).
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5. Discussion

In this project, we aimed to establish a multi-pronged approach for examining the composition of

the B-cell receptor (genomics) and antibody repertoire (proteomics), combining bulk BCR

sequencing with developing novel single-cell BCR sequencing methods, and additionally

comparing with data generated from proteomics analysis of serum antibodies. The reason for this

is the lack of studies examining the overlap between expressed BCR sequences and secreted

antibodies. In addition, the use of single-cell sequencing for the characterization of BCRs

remains cost-prohibitive and low-throughput. Furthermore, while there have been studies

utilizing mass spectrometry as a tool to deconvolve the serum antibody repertoire, so far there

exists no consensus regarding the experimental details such as the exclusion of constant regions,

the choice of enzyme for antibody digestion, and limit of detection for antibodies in complex

mixtures such as the serum.
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(See figure on the previous page)
Figure 37: Summary of thesis results. Green text and arrows denote completed goals; brown
text and arrows denote tasks planned for future projects; yellow text and arrows denote where
further work is needed. For detailed presentation of results, section 4.1 concerned bulk B-cell
receptor sequencing, section 4.2 concerned single-cell B-cell receptor sequencing, and section
4.3 contained results from the benchmarking experiment for antibody mass spectrometry.

Of the stated goals previously mentioned in the thesis project’s aims, the majority of the tasks

have been completed (Figure 37). Specifically, we successfully adapted a reliable protocol for

bulk BCR sequencing and expanded the scope of the workflow to include all isotypes in a single

sequencing batch. The workflow proved to be reproducible and provided abundant information

for immune repertoire analyses. With regards to single-cell BCR sequencing, we accomplished

to develop a method for B-cell encapsulation that allowed for much higher throughput while

maintaining comparable efficiency compared to other currently available methods. Yet,

challenges remain in designing and optimizing a suitable library preparation protocol for

single-cell BCR sequencing, requiring additional time and efforts that were beyond the scope of

this thesis. In addition, due to the needs arising during the research process, we also conducted a

benchmarking experiment detailing the technical aspects of antibody LC-MS/MS and derived

from it valuable experiences for further studies in this field. Due to the fact that what we have

done is very novel and untested method development, not all aspects of the project turned out as

expected. However, we learned a lot from it and managed to build strong foundations for future

studies in which these methods can be applied to provide useful biological insights regarding the

adaptive immune system. The insights gained, difficulties faced, and future considerations for

each method are discussed in further details in their respective sections.

5.1 Bulk B-cell receptor sequencing: method adaptation and considerations

At present the field of BCR sequencing is dominated by two main approaches: 5’ rapid

amplification of cDNA ends (5’ RACE) and multiplex PCR (MTPX), each with their own

advantages and drawbacks. Modern 5’ RACE protocols are combined with a template-switching

reaction and are based on the premise that only a single universal primer is necessary to capture

all mRNA sequences while the template-switch oligos capture the 3’ mRNA end irrespective of
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the 3’ RNA sequence and subsequently synthesize cDNAs [162]. This simplifies the primer

design step and reduces amplification bias due to differences in binding efficiencies of primers

and is ultilized in numerous BCR sequencing workflows [86]. However, there are certain

disadvantages to this approach. Firstly, the efficiency of the template-switching reaction is low

and batch-dependent, requiring a higher number of PCR cycles to generate sufficient amounts of

cDNA for library preparation [88]. Secondly, owing to the fact that 5’ RACE captures the

full-length mRNA sequence, the 5’ UTR sequence is also incorporated into the library as well.

The length of the UTR sequence varies between V gene families and can negatively affect the

recovery of the full V(D)J sequence due to the length constraints in paired-end sequencing [105].

As a consequence, 5’ RACE protocols may exhibit biases against longer sequences in

downstream analyses. In contrast, MTPX protocols require a more elaborate design in order to

cover every V-gene family and to ensure that the melting profile of all the multiplex primers

remains consistent [163]. Compared to 5’ RACE, MTPX protocols display amplification bias

towards specific V-gene families [86]. However, with careful design and optimization, this can

be minimized to an acceptable degree that does not hinder further analysis, as shown in the work

of Wu and colleagues in optimizing a multiplex PCR system for TCRβ sequencing, which

employed similar principles [164]. In return for those drawbacks, 5’ MTPX protocols possess

significant benefits. First and foremost, by targeting the leader sequence of the V gene sequence

on the 5’ end, the library length is significantly reduced and unaffected by variations in 5’ UTR

length, allowing for complete coverage of the V(D)J sequence [88]. Furthermore, 5’ MTPX

utilizes C gene-specific sequences for cDNA synthesis, circumventing the need for a semi-nested

PCR step to enrich the V(D)J sequences prior to library preparation. In our project, we intended

to build a reference database for reconstruction of the antibody sequence in combination with

proteomics, therefore the full length sequence of the whole V region is important. Thus, for our

BCR sequencing workflow in humans where the reference germline sequence is available,

MTPX is a better fit after considering all the characteristics. However, in the field of immune

receptor sequencing as a whole, so far no standard protocol exists that is widely adopted.
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One of the goals we achieved in our project was expanding the bulk BCR sequencing protocol to

all the different B-cell isotypes in the blood, including the κ and λ light chains, contrary to most

currently available protocols where only the heavy chain was targeted and within the heavy

chain, only IgG or IgM were recovered. We adapted a bulk BCR sequencing protocol from

Bernat and colleagues [88] and designed our own in-house primers for the capture of IgA, IgD,

and IgE mRNA sequences, coupled with extensive work on validation to improve reliability and

reproducibility (Supplementary table 1). Additionally, in order to facilitate error correction in the

sequencing data, UMIs were employed in the library preparation process. However, during our

implementation of UMI-based error correction, several shortcomings of this approach were

revealed. The vast majority of UMI groups (> 80%) in our sequencing data contained only one or

two reads per UMI sequence, therefore building consensus reads from the data would require the

majority of the sequencing data to be discarded (Figure 13). In order to be a viable option, the

sequencing depth of each sample would need to be increased by at least 3–5-fold and up to

10-fold, which would either greatly increase the cost or decrease the number of cells surveyed in

each sequencing run. This trade-off between repertoire diversity and accuracy was also briefly

discussed by Barennes and colleagues in comparing different library preparation methods,

supporting the point that including UMI for error correction depends on the specific goals of the

study and not applicable under all circumstances [165]. Since the main goal of our sequencing

workflow was to capture the diversity of the B-cell repertoire, it would be necessary to perform

over-sequencing to a degree that would severely restrict the number of samples being surveyed.

As a result, it was decided that UMI-based error correction would be excluded from the analysis

pipeline.

Data from bulk BCR sequencing revealed several areas that require further optimizations. Even

though the library preparation workflow proved reproducible, IgE libraries still contained

non-specific products (Figure 11) and low clonotype count (Figure 14B). A redesign and

performance benchmarking of the isotype-specific IgE primer would be necessary in order to

improve yield and specificity. Secondly, clonotype count numbers (Figure 14) and CDR3 overlap

values (Figure 17, 18) suggested that sequencing depth is an important consideration when
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characterizing different isotype libraries. Due to differences in abundance in the blood, the

concentration for resulting BCR isotype libraries can vary significantly. Thus, careful

consideration of concentration when pooling the libraries prior to sequencing is necessary to

avoid undersampling very abundant samples. Finally, by performing various routine analyses on

the BCR repertoires, we demonstrated that our bulk BCR sequencing workflow is robust and

applicable to multiple applications. Nevertheless, native chain pairing information can not be

recovered by bulk BCR sequencing. Thus combining this workflow with single-cell BCR

sequencing would prove highly beneficial.

5.2 Single-cell B-cell receptor sequencing: advancements and limitations

We set out to develop a novel protocol for single-cell BCR sequencing due to the limitations of

currently available methods. Of the tools available for single-cell isolation, droplet-based

microfluidics offers the biggest advantages in terms of throughput and cost per cell [93].

However, droplet encapsulation necessitates the use of beads for sequence capture and cellular

barcoding. Beads can vary in characteristics between batches and comprise the largest cost in a

single-cell sequencing experiment. Therefore, our approach attempted to circumvent this

problem by utilizing bead-free cellular barcoding, inspired by the work of Briggs and colleagues

[101]. However, instead of using custom-made apparatuses, we adapted commercially available

instruments such as Dolomite’s Nadia system and customized its parameters in order to render it

more accessible and less labor-intensive.

Prior to library preparation, we examined the encapsulation efficiency of our system using

fluorescent microscopy and adjusted our encapsulation parameters accordingly to achieve a

higher encapsulation rate, which is usually not available in other single-cell workflows and

commercial kits. Specifically, parameters during the encapsulation process such as the flow rate

and pressure of each channel within the microfluidics chip, mixing speed, volume and

concentration of B cells, barcodes, and other reagents were meticulously evaluated and adjusted

in order to improve efficiency. With this approach, from an input of 500000 B cells, we managed

to capture the vast majority of cells since only around 20.4% of droplets are occupied with cells,
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and within those droplets, 71.7% are single-cell droplets (Figure 25). This is comparable with

most currently available methods, albeit at a much higher cell input. For instance, plate-based

protocols such as Smart-seq2 can only handle up to several hundred cells per experiment [166]

while commercial platforms such as 10X Chromium allow up to 20000 cells as input per sample

well, with only around 10000 of which are recovered [167] at a substantially higher cost per cell

(10X: ≈1 USD per 8 cells; Nadia systems: ≈1 USD per 500 cells, based on our estimations). With

more refining of the parameters and cell input, it is possible to achieve even higher efficiency.

However, a major limitation encountered in our project was the lack of precedent regarding this

specific approach in single-cell sequencing. The majority of primers used in our single-cell

library preparation workflow were designed and validated in-house. This would require

extensive testing and optimization to find a good balance between specificity and yield. More

specifically, the delivery of a single droplet barcode sequence into a droplet remains challenging

(Figure 26). The main approach to attain single-molecule dilution depends on mathematical

modeling and probabilities. The incorporation of droplet barcodes into droplets follows a Poisson

distribution, based on several assumptions. Firstly, the average rate of occurrence is known since

the number of barcode molecules and the number of cells is determined. Secondly, incorporation

of one barcode does not affect another barcode. Finally, since droplets are formed separately, an

encapsulation event does not overlap with another at a single time period. With this distribution,

it is possible to estimate a barcode-to-cell ratio so that the vast majority will have one droplet

barcode encapsulated with one B cell. However, in practice, the lack of visual confirmation in

the form of beads hinders the ability to truly assess barcode distribution before analyzing

sequencing data. In addition, since our approach utilized isotope-specific primers for reverse

transcription of BCR V(D)J sequences, it is only applicable for immune receptor analysis and not

for transcriptome analysis. Nevertheless, we believe that if more work is done on optimizing the

library preparation, this approach could lead to major cost reduction by taking advantage of the

high throughput of droplet encapsulation and at the same time avoid problems and costs

associated with the use of beads. Specifically, a systematic approach reevaluating every section

of the workflow is warranted (Figure 9), starting from the use of template-switching mechanism
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for cDNA synthesis, choice of reverse transcriptase enzyme and operating conditions, to the

distribution of molecular barcodes and droplet barcodes with respect to B-cell input quantity

would certainly lead to identification and resolution of problems encountered during the library

preparation process.

5.3 Antibody LC-MS/MS: benchmarking of antibody proteomics

The vast diversity of the antibody repertoire, both in terms of variety and magnitude, necessitates

a method that is both robust and with a high dynamic range in order to capture useful

information. Therefore MS, particularly LC-MS/MS has emerged as a valuable tool to study

antibodies in great detail. However, so far there exists no large-scale benchmarking studies that

could provide a definitive answer to what extent a given antibody at a certain concentration can

be reliably identified using bottom-up MS. Previous efforts so far have focused on either

top-down or middle-down MS for mAbs identifications [126]. The sensitivity of MS instruments

is constantly improving and in order to take full advantage of those benefits, other factors in the

MS workflow from start to finish (from sample preparation to MS settings to data analysis)

would need to be improved as well. Therefore, we decided to pursue this benchmarking

experiment in order to gain valuable information and experience that would become useful in

future studies.

Starting from the sample preparation, the first consideration when conducting antibody

LC-MS/MS is isolating and purifying antibodies from samples. When it comes to serum

antibodies, the most common approach is utilizing immobilized reagents that bind antibodies.

Proteins A, G, L, a plant lectin Jacalin, and mannose-binding lectin are used for class-specific

isolation. Although these proteins allow enrichment of multiple immunoglobulin isotypes, the

current selection does not allow for the capture of all possible antibody isotypes in the serum. In

addition, the isotype-specific immobilizing reagents exhibit their affinity to specific subclasses in

an isotype, which hampers the ability to encompass the entirety of the serum antibody

repertoire, thus reducing the capacity of mass spectrometry techniques for repertoire

characterization. The second consideration regarding sample preparation is whether to cleave
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the antibodies into F(ab) or F(ab')2, and Fc fragments. In principle, excluding the constant

region, which is highly similar in all antibodies, would yield a massive reduction of the volume

of data to be processed and improve the sensitivity and ability to identify peptides of interest in

the V region [168]. However, the magnitude of impact of antibody fragmentation on the final

experimental output has yet to be measured. In our experiment, we compared antibodies samples

with GingisKHAN treatment and intact antibodies for peptide detection (Figure 27). In both

serum antibodies samples and mAbs samples, the GingisKHAN treatment resulted in the

inability to detect any antibody-related peptides. One possible reason for this could be due to the

design of the kit itself, which is designed to digest up to 2 mg of antibodies in each purification

run. However, since the goal of our experiments was to test the lower limit of detection for

antibody MS, the antibody input was in the range of micrograms to as low as 1 ng (6.67 fmol).

Hence, the digestion process would not be able to proceed properly and resulted in poor yield.

Therefore, we decided that, for our research purpose, partial digestion of antibodies prior to

LC-MS/MS would not be utilized.

The benchmarking experiments revealed several important insights regarding the performance of

LC-MS/MS in antibody proteomics. First and foremost, only a small fraction of peptides

sequenced by MS/MS could be mapped to a known antibody sequence, with most being

contaminants and unrelated peptides (Figure 27, 29, 33). Furthermore, of the mapped peptides,

an even smaller fraction could be overlapped with the CDR3 region, which is crucial for

discrimination between antibodies (Figure 28, 30, 35). Another factor to consider was the

MS-derived peptides contained miscleavages in addition to correctly cleaved peptides, evidenced

by the small overlap between theoretical digestion and detected peptides (Figure 34). As a result,

antibody identification would have to rely on a very small subset of peptides from MS, which

could vary depending on the antibodies examined. Secondly, the limit of detection in terms of

identifying CDR3-overlapping peptides were greatly affected by the choice of digestion enzymes

(Figure 35). Within the mAbs utilized so far in the benchmarking experiment, the lower

detection limit was around 1 ng (6.67 fmol), depending on the enzyme and mAb used, which was

in line with other published studies on antibody MS [169]. This phenomenon was expected due
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to the interaction between antibody sequence and the enzymes, the same antibody would have

different detection limits with different enzymes. However, one unexpected factor was that in

some mAbs (PGDM1400 and PGT121), CDR3 peptides were not detected on the heavy chain at

any concentration, which meant the variety of digestion enzymes was not high enough to cover

all possible variations between antibodies. The last important insight gained was the strong

relationship between concentration ratios and signal intensity ratios between identical peptides.

Not only identical peptides at the same concentration shared similar signal intensity values

(Figure 31), but also identical peptides at certain concentration ratios would also possess similar

ratios in signal intensity as well (Figure 32, 36). This finding would be helpful in estimating the

native concentration of an antibody in complex samples such as human serum.

These findings represented only the first steps toward a more comprehensive benchmarking of

antibody LC-MS/MS. Going forward, further experiments will be conducted at a larger scope,

with additional mAbs tested and in different combinations. In addition, another digestion strategy

will be implemented, for instance Asp-N, which has specific cleavage activity for Aspartate and

Glutamate, and has shown potential in uncovering more CDR3 peptides in samples unique from

other enzymes (Figure 38). Our latest preliminary experimental data revealed that Asp-N was

able to generate CDR3-overlapping peptides on the heavy chain of PGDM1400, which was not

previously detected in other enzymatic treatments [unpublished data]. Therefore, expanding the

benchmarking experiment further could alleviate some of the problems encountered during our

experiments.
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Figure 38: Theoretical cuttings of CDR3-related peptides in Briakinumab, PGDM1400, and
PGT121. Asp-N digestion in particular resulted in unique CDR3-related peptides in every
mAb used. Each mAb was digested in-silico by trypsin, chymotrypsin, chymotrypsin + trypsin,
and Asp-N. A) Number of CDR3 peptides detected on the heavy chain. B) Number of peptides
detected on the light chain.
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6. Outlook and future perspectives

Although we have achieved advancements in bulk BCR sequencing, single-cell BCR

sequencing, and antibody LC-MS/MS, further technology and method improvements are

required. The single-cell sequencing workflow will need further adjustments and modifications

to ensure higher yield and better library quality. The MS benchmarking experiments will be

continued to contribute to a more standardized approach to antibody proteomics. Once

completed, MS experiments regarding human serum antibodies could be performed in order to

investigate the intersection between antibody genome and phenome. In addition, single-cell

sequencing data would provide crucial information about native chain pairing in antibodies,

helping to reconstruct a complete antibody structure from MS data. By combining all of these

workflows together, a comprehensive description of an individual’s immune repertoire can be

made, which would prove invaluable to multiple applications all across the field of immunology.
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Appendix

Supplementary table 1. Overview of the cDNA synthesis primers. Letters in bold indicated
the UMI sequence, while letters underlined indicated overlap with Illumina Read2
sequence.

Primer name Sequence Ref

3’ primers

Hu_IgG GGAGTTCAGACGTGTGCTCTTCCGATCTHHHHHACAHHHHHACAHHHHGCCAG
GGGGAAGACCGATGGG

[88]

Hu_IgM GGAGTTCAGACGTGTGCTCTTCCGATCTHHHHHACAHHHHHACAHHHHNHCCG
ACGGGGAATTCTCACAGGAGACGAGGGGGAAAAG

[88]

Hu_IgA GGAGTTCAGACGTGTGCTCTTCCGATCTHHHHHACAHHHHHACAHHHHGAAGA
CCTTGGGGCTGGT

In-house

Hu_IgD GGAGTTCAGACGTGTGCTCTTCCGATCTHHHHHACAHHHHHACAHHHHGGGTGT
CTGCACCCTGATA

In-house

Hu_IgE GGAGTTCAGACGTGTGCTCTTCCGATCTHHHHHACAHHHHHACAHHHHGAAGA
CGGATGGGCTCTGT

In-house

Hu_IgK GGAGTTCAGACGTGTGCTCTTCCGATCTHHHHHACAHHHHHACAHHHHNGGGAT
AGAAGTTATTCAGCAGGCACACAACAGAG

[88]

Hu_IgL GGAGTTCAGACGTGTGCTCTTCCGATCTHHHHHACAHHHHHACAHHHHTGGCTT
GRAGCTCCTCAGAGGAGG

[88]

Supplementary table 2. Overview of the Multiplex PCR primers.
Primer name Sequence Ref

3’ primers

Read2U GGAGTTCAGACGTGTGCTCTTCCGATCT [88]

5’ primers

Hu_VH_MTPX_1 CCTACACGACGCTCTTCCGATCTGGTGGCAGCAGTCACAGATGCCTACTC [88]

Hu_VH_MTPX_2 CCTACACGACGCTCTTCCGATCTGGTGGCAGCAGCCACAGGTGCCCACTC [88]

Hu_VH_MTPX_3 CCTACACGACGCTCTTCCGATCTGGTGGCAGCAGCTACAGGTGTCCAGTC [88]

Hu_VH_MTPX_4 CCTACACGACGCTCTTCCGATCTGGTGGSAGCAGCAACARGWGCCCACTC [88]
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Hu_VH_MTPX_5 CCTACACGACGCTCTTCCGATCTGCTGGCTGTAGCTCCAGGTGCTCACTC [88]

Hu_VH_MTPX_6 CCTACACGACGCTCTTCCGATCTCCTGCTGCTGACCAYCCCTTCMTGGGTCTT
GTC

[88]

Hu_VH_MTPX_7 CCTACACGACGCTCTTCCGATCTCCTGCTACTGACTGTCCCGTCCTGGGTCTTA
TC

[88]

Hu_VH_MTPX_8 CCTACACGACGCTCTTCCGATCTGGGTTTTCCTCGTTGCTCTTTTAAGAGGTGT
CCAGTG

[88]

Hu_VH_MTPX_9 CCTACACGACGCTCTTCCGATCTGGGTTTTCCTTGTTGCTATTTTAAAAGGTGT
CCARTG

[88]

Hu_VH_MTPX_10 CCTACACGACGCTCTTCCGATCTGGATTTTCCTTGCTGCTATTTTAAAAGGTGT
CCAGTG

[88]

Hu_VH_MTPX_11 CCTACACGACGCTCTTCCGATCTGGGTTTTCCTTKTKGCTATWTTAGAAGGTG
TCCAGTG

[88]

Hu_VH_MTPX_12 CCTACACGACGCTCTTCCGATCTGGTGGCRGCTCCCAGATGGGTCCTGTC [88]

Hu_VH_MTPX_13 CCTACACGACGCTCTTCCGATCTCTGGCTGTTCTCCAAGGAGTCTGTG [88]

Hu_VH_MTPX_14 CCTACACGACGCTCTTCCGATCTGGCCTCCCATGGGGTGTCCTGTC [88]

Hu_VH_MTPX_15 CCTACACGACGCTCTTCCGATCTGGTGGCAGCAGCAACAGGTGCCCACT [88]

Hu_VH_MTPX_16 CACTCTTTCCCTACACGACGCTCTTCCGATCTATGGAACTGGGGCTCCGCTGG
GTTTTCC

[88]

Hu_VH_MTPX_17 CACTCTTTCCCTACACGACGCTCTTCCGATCTATGGACTGCACCTGGAGGATCC
TCCTC

[88]

Hu_VH_MTPX_18 CACTCTTTCCCTACACGACGCTCTTCCGATCTTGGCTGAGCTGGGTTTYCCTTG
TTGC

[88]

Hu_VH_MTPX_19 CACTCTTTCCCTACACGACGCTCTTCCGATCTGGAGTTKGGGCTGMGCTGGGT
TTTCC

[88]

Hu_VH_MTPX_20 CACTCTTTCCCTACACGACGCTCTTCCGATCTGCACCTGTGGTTTTTCCTCCTG
CTGGTG

[88]

Hu_VH_MTPX_21 CACTCTTTCCCTACACGACGCTCTTCCGATCTCACCTGTGGTTCTTCCTCCTSC
TGG

[88]

Hu_VH_MTPX_22 CACTCTTTCCCTACACGACGCTCTTCCGATCTCCAGGATGGGGTCAACCGCCA
TCCTC

[88]

Hu_VH_MTPX_23 CTCTTTCCCTACACGACGCTCTTCCGATCTCAGAGGACTCACCATGGAGTTTG
GGCTGAG

[88]

Hu_VH_MTPX_24 CCTACACGACGCTCTTCCGATCTGGACTCACCATGGAGTTGGGACTGAGC [88]

Hu_VH_MTPX_25 CCTACACGACGCTCTTCCGATCTGGGCTGAGCTGGCTTTTTCTTGTGGC [88]

Hu_VK_MTPX_1 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGTTGCCATCACAACTCA
TTGGGTTTCTG

[88]
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Hu_VK_MTPX_2 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGAARCCCCAGCGCAG
CTTCTCTTCC

[88]

Hu_VK_MTPX_3 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGAGGCTCCCTGCTCAGC
TCTTGGGGCT

[88]

Hu_VK_MTPX_4 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGAGGCTCCCTGCTCAGC
TCCTGGGGCT

[88]

Hu_VK_MTPX_5 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGACATGAGGGTCCCTG
CTCAGC

[88]

Hu_VK_MTPX_6 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGACATGAGRGTCCTCG
CTCAGC

[88]

Hu_VK_MTPX_7 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGAAGCCCCAGCACAG
CTTCTTCTTCC

[88]

Hu_VK_MTPX_8 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGAGGCTCCTTGCTCAGC
TTCTGGGGCT

[88]

Hu_VK_MTPX_9 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGAAGCCCCAGCTCAGC
TTCTCTTCC

[88]

Hu_VK_MTPX_10 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGACATGAGGGTCCCCG
CTCAGC

[88]

Hu_VK_MTPX_11 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGGGTCCCAGGTTCACC
TCCTCAG

[88]

Hu_VK_MTPX_12 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGTGTTGCAGACCCAGG
TCTTCATTTC

[88]

Hu_VK_MTPX_13 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGACATGAGGGTGCCCG
CTCAGC

[88]

Hu_VK_MTPX_14 CTCTTTCCCTACACGACGCTCTTCCGATCTCAGGAAGATGTYGCCATCACAAC
TCATTGG

[88]

Hu_VK_MTPX_15 CACTCTTTCCCTACACGACGCTCTTCCGATCTCTCRCAATGAGGCTCCCTGCTC
AGCTC

[88]

Hu_VK_MTPX_16 CACTCTTTCCCTACACGACGCTCTTCCGATCTCCTGCTCAGCTCYTGGGGCTG
CTAATGC

[88]

Hu_VK_MTPX_17 CACTCTTTCCCTACACGACGCTCTTCCGATCTATGGACATGAGGGTGCCCGCTC
AGCGCC

[88]

Hu_VK_MTPX_18 CACTCTTTCCCTACACGACGCTCTTCCGATCTATGGACATGAGGGTSCCYGCTC
AGCKCC

[88]

Hu_VK_MTPX_19 CACTCTTTCCCTACACGACGCTCTTCCGATCTGCTCCTGGGGCTGCTAATGCTC
TGG

[88]
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Hu_VK_MTPX_20 CACTCTTTCCCTACACGACGCTCTTCCGATCTGGGGCTCCTGCTGCTCTGGCTC
C

[88]

Hu_VK_MTPX_21 CACTCTTTCCCTACACGACGCTCTTCCGATCTGGACATGAGGGTCCCCGCTCA
GCTCC

[88]

Hu_VL_MTPX_1 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGGCTCCACTAC
TTCTCACCCTCC

[88]

Hu_VL_MTPX_2 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGTCCCCTCTCT
TCCTCACCCT

[88]

Hu_VL_MTPX_3 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGGCTCTGCTCC
TCCTCACCCT

[88]

Hu_VL_MTPX_4 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGAYCCCTCTCC
TGCTCCCCCTC

[88]

Hu_VL_MTPX_5 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGGCTCTGCTGC
TCCTCACTCT

[88]

Hu_VL_MTPX_6 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCATGGATCCCTCTCTT
CCTCGGCGTC

[88]

Hu_VL_MTPX_7 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCATGGGCCACACTCC
TGCTCCCACTC

[88]

Hu_VL_MTPX_8 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGGTCTCCTTCT
ACCTACTGCCCT

[88]

Hu_VL_MTPX_9 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGACTCCTCTTC
TTCTCTTGCTCCT

[88]

Hu_VL_MTPX_10 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGACTCCTCTCC
TCCTCCTGYTCC

[88]

Hu_VL_MTPX_11 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGAGTGTCCCCACCATGG
CCTGGATGATGC

[88]

Hu_VL_MTPX_12 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGGCTCCTCTGC
TCCTCACCCTCC

[88]

Hu_VL_MTPX_13 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGRCCDGCTTCCCTCTCC
TCCTCACCCT

[88]

Hu_VL_MTPX_14 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGACCCCACTCC
TCCTCCTCTTCC

[88]

Hu_VL_MTPX_15 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGGCTCTGCTSC
TCCTCASCCT

[88]

Hu_VL_MTPX_16 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGATCCCTCTAC
TTCTCCCCCTC

[88]
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Hu_VL_MTPX_17 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGACCSCTCTCC
TCCTCRGCCTC

[88]

Hu_VL_MTPX_18 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGACTCTTCTCC
TTCTCGTGCTCC

[88]

Hu_VL_MTPX_19 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGTCTCCTCTCC
TCCTCACTCT

[88]

Hu_VL_MTPX_20 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGCCCTGGGCTCTGCTCC
TCCTGACCCT

[88]

Hu_VL_MTPX_21 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGACCCCTCTCT
GGCTCACTCTC

[88]

Hu_VL_MTPX_22 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGACCGCTCTCC
TTCTGAGCCTC

[88]

Hu_VL_MTPX_23 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCTTGGACCCCACTCC
TCTTCCTCACC

[88]

Hu_VL_MTPX_24 CTACACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGACTCCTCTCT
TTCTGTTCCTCC

[88]

Hu_VL_MTPX_25 CACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGACTCTTCTCCTTC
TCGTG

[88]

Hu_VL_MTPX_26 CACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGACTCCTCTYCTYC
TCYTG

[88]

Hu_VL_MTPX_27 CACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGACCCCACTCCTCC
TC

[88]

Hu_VL_MTPX_28 CACTCTTTCCCTACACGACGCTCTTCCGATCTATGGCCTGGGTCTCCTTCTACC
TACTGC

[88]

Hu_VL_MTPX_29 CACTCTTTCCCTACACGACGCTCTTCCGATCTGCAGCATCGGAGGTGCCTCAG
CCATG

[88]

Hu_VL_MTPX_30 CACTCTTTCCCTACACGACGCTCTTCCGATCTGGCAGAACTCTGGGTGTCTCA
CCATG

[88]

Hu_VL_MTPX_31 CACTCTTTCCCTACACGACGCTCTTCCGATCTGCAGCACTGGTGGTGCCTCAG
CCATG

[88]

Hu_VL_MTPX_32 CACTCTTTCCCTACACGACGCTCTTCCGATCTGGGCTCTGCTSCTCCTCACYCT
CCT

[88]

Hu_VL_MTPX_33 CACTCTTTCCCTACACGACGCTCTTCCGATCTGGGCTCTGCTCCTCCTGACCCT
C

[88]
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Supplementary table 3. Overview of the adapter extension PCR primers. Letters in bold
indicated the index sequence, while letters underlined indicated the Illumina P5/P7 adapter
sequence.

Primer name Sequence Ref

5’ primers

P5_R1 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGAT
CT

[88]

3’ primers

P7_R2_I1 CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCAGACGTGTGCT
CTTCCGATCT

[88]

P7_R2_I2 CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGTGCT
CTTCCGATCT

[88]

P7_R2_I3 CAAGCAGAAGACGGCATACGAGATGCCTAAGTGACTGGAGTTCAGACGTGTGCT
CTTCCGATCT

[88]

P7_R2_I4 CAAGCAGAAGACGGCATACGAGATTGGTCTGTGACTGGAGTTCAGACGTGTGCT
CTTCCGATCT

[88]

P7_R2_I5 CAAGCAGAAGACGGCATACGAGATCACTGTGTGACTGGAGTTCAGACGTGTGCT
CTTCCGATCT

[88]

P7_R2_I6 CAAGCAGAAGACGGCATACGAGATATTGGCGTGACTGGAGTTCAGACGTGTGCT
CTTCCGATCT

[88]

P7_R2_I7 CAAGCAGAAGACGGCATACGAGATGATCTGGTGACTGGAGTTCAGACGTGTGCT
CTTCCGATCT

[88]

P7_R2_I8 CAAGCAGAAGACGGCATACGAGATTCAAGTGTGACTGGAGTTCAGACGTGTGCT
CTTCCGATCT

[88]

P7_R2_I9 CAAGCAGAAGACGGCATACGAGATCTGATCGTGACTGGAGTTCAGACGTGTGCTC
TTCCGATCT

[88]

P7_R2_I10 CAAGCAGAAGACGGCATACGAGATAAGCTAGTGACTGGAGTTCAGACGTGTGCT
CTTCCGATCT

[88]

P7_R2_I11 CAAGCAGAAGACGGCATACGAGATGTAGCCGTGACTGGAGTTCAGACGTGTGCT
CTTCCGATCT

[88]

P7_R2_I12 CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCAGACGTGTGCT
CTTCCGATCT

[88]
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Supplementary table 4. Components of the Cell lysis buffer and PCR reagents.
Component Volume

(μL)
Component Volume

(μL)
Component Volume

(μL)

Cell lysis buffer Molecular and droplet barcodes PCR reagents

Nuclease-free H2O 110 LNA_MBC_UA_TS 1.2 IgM-biotin primer 1.2

20 % w/v Ficoll PM-400 82.5 DBC_pP7_UA 0.1 IgG-biotin primer 1.2

20 % v/v Sarkosyl 2.75 DBC_FP 1.2 Herculase II PCR
polymerase

2.5

0.5 M EDTA 11 DBC_RP 1.2 MuMLV reverse
transcriptase

6

1 M Tris pH 7.5 55 dNTP 22

1 M DTT 13.75 5x RT buffer 50

RiboLock RNase
inhibitor

6

Supplementary table 5. Overview of the single-cell library preparation primers. Letters in
bold indicated the index/UMI sequence, while letters underlined indicated the Illumina
P5/P7 adapter sequence.

Primer name Sequence Ref

IgG-biotin AGGACAGCCGGGAAGGTGT-biotin [101]

IgM-biotin TGTGAGGTGGCTGCGTACTTG-biotin [101]

LNA_MBC_UA_TS AAGCAGTGGTATCAACGCAGAGTNNNNNNTCTT{GGG} In-house

DBC_pP7_UA GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNNNNNAAG
CAGTGGTATCAACGCAGAGT

In-house

DBC_FP GTGACTGGAGTTCAGACGTGTG In-house

DBC_RP ACTCTGCGTTGATACCACTGC In-house

IgG_nest_fullP5 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT
CCGATCTCCAGGGGGAAGACSGATG

[101]

IgM_nest_fullP5 AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTT
CCGATCTGAGACGAGGTGGAAAAGGGTTG

[101]

fP7-I12 CAAGCAGAAGACGGCATACGAGATTACAAGGTGACTGGAGTTCAGACGT
GTGCTCTTCCGATCT

In-house
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Supplementary table 6. Parameters utilized in MaxQuant.
Parameter Value Parameter Value Parameter Value

Include contaminants TRUE Advanced site intensities TRUE Da interval. (ITMS) 100

PSM FDR 0.01 Write msScans table FALSE MS/MS deisotoping
(ITMS)

FALSE

PSM FDR Crosslink 0.01 Write msmsScans table TRUE MS/MS deisotoping
tolerance (ITMS)

0.15

Protein FDR 0.01 Write ms3Scans table TRUE MS/MS deisotoping
tolerance unit (ITMS)

Da

Site FDR 0.01 Write allPeptides table TRUE MS/MS higher charges
(ITMS)

TRUE

Use Normalized Ratios
For Occupancy

TRUE Write mzRange table TRUE MS/MS water loss
(ITMS)

TRUE

Min. peptide Length 7 Write DIA fragments table FALSE MS/MS ammonia loss
(ITMS)

TRUE

Min. score for
unmodified peptides

0 Write pasef Msms Scans
table

TRUE MS/MS dependent losses
(ITMS)

TRUE

Min. score for modified
peptides

40 Write accumulated Pasef
Msms Scans table

FALSE MS/MS recalibration
(ITMS)

FALSE

Min. delta score for
unmodified peptides

0 Max. peptide mass [Da] 4600 MS/MS tol. (TOF) 40 ppm

Min. delta score for
modified peptides

6 Min. peptide length for
unspecific search

8 Top MS/MS peaks per
Da interval. (TOF)

10

Min. unique peptides 1 Max. peptide length for
unspecific search

25 Da interval. (TOF) 100

Min. razor peptides 1 Razor protein FDR TRUE MS/MS deisotoping
(TOF)

TRUE

Min. peptides 1 Disable MD5 FALSE MS/MS deisotoping
tolerance (TOF)

0.01

Use only unmodified
peptides and

TRUE Max mods in site table 3 MS/MS deisotoping
tolerance unit (TOF)

Da

Modifications included in
protein quantification

Oxidation
(M);Acetyl
(Protein
N-term)

Match unidentified
features

FALSE MS/MS higher charges
(TOF)

TRUE

Peptides used for protein
quantification

Razor Epsilon score for
mutations

None MS/MS water loss (TOF) TRUE

Discard unmodified
counterpart peptides

TRUE Evaluate variant peptides
separately

TRUE MS/MS ammonia loss
(TOF)

TRUE
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Label min. ratio count 2 Variation mode None MS/MS dependent losses
(TOF)

TRUE

Use delta score FALSE MS/MS tol. (FTMS) 20 ppm MS/MS recalibration
(TOF)

FALSE

iBAQ FALSE Top MS/MS peaks per Da
interval. (FTMS)

12 MS/MS tol. (Unknown) 20 ppm

iBAQ log fit FALSE Da interval. (FTMS) 100 Top MS/MS peaks per
Da interval. (Unknown)

12

Match between runs FALSE MS/MS deisotoping
(FTMS)

TRUE Da interval. (Unknown) 100

Find dependent peptides FALSE MS/MS deisotoping
tolerance (FTMS)

7 MS/MS deisotoping
(Unknown)

TRUE

Decoy mode revert MS/MS deisotoping
tolerance unit (FTMS)

ppm MS/MS deisotoping
tolerance (Unknown)

7

Include contaminants TRUE MS/MS higher charges
(FTMS)

TRUE MS/MS deisotoping
tolerance unit
(Unknown)

ppm

Advanced ratios TRUE MS/MS water loss
(FTMS)

TRUE MS/MS higher charges
(Unknown)

TRUE

Second peptides TRUE MS/MS ammonia loss
(FTMS)

TRUE MS/MS water loss
(Unknown)

TRUE

Stabilize large LFQ ratios TRUE MS/MS dependent losses
(FTMS)

TRUE MS/MS ammonia loss
(Unknown)

TRUE

Separate LFQ in
parameter groups

FALSE MS/MS recalibration
(FTMS)

FALSE MS/MS dependent losses
(Unknown)

TRUE

Require MS/MS for LFQ
comparisons

TRUE MS/MS tol. (ITMS) 0.5 Da MS/MS recalibration
(Unknown)

FALSE

Calculate peak properties FALSE Top MS/MS peaks per Da
interval. (ITMS)

8 Main search max.
combinations

200
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Supplementary table 7. Monoclonal antibodies used in peptide identification
Antibody Sequence (V-region only)

PGDM1400_HC QAQLVQSGPEVRKPGTSVKVSCKAPGNTLKTYDLHWVRSVPGQGLQWMGWISHEGDKKVI
VERFKAKVTIDWDRSTNTAYLQLSGLTSGDTAVYYCAKGSKHRLRDYALYDDDGALNWAVD
VDYLSNLEFWGQGTAVTVSS

PGDM1400_LC DFVLTQSPHSLSVTPGESASISCKSSHSLIHGDRNNYLAWYVQKPGRSPQLLIYLASSRASGVP
DRFSGSGSDKDFTLKISRVETEDVGTYYCMQGRESPWTFFGQGTKVDIK

PGT121_HC QMQLQESGPGLVKPSETLSLTCSVSGASISDSYWSWIRRSPGKGLEWIGYVHKSGDTNYSPSL
KSRVNLSLDTSKNQVSLSLVAATAADSGKYYCARTLHGRRIYGIVAFNEWFTYFYMDVWGN
GTQVTVSS

PGT121_LC SDISVAPGETARISCGEKSLGSRAVQWYQHRAGQAPSLIIYNNQDRPSGIPERFSGSPDSPFGTT
ATLTITSVEAGDEADYYCHIWDSRVPTKWVFGGGTTLTVL

Briakinumab_HC QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYA
DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS

Briakiumab_LC QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFS
GSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTKVTVL
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