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1 Introduction and Background

The Norwegian Cancer Registry is currently engaging in a study named
CRCbiome [1, 2]. The purpose of the CRCbiome study is to identify
microbial biomarker genes for colorectal cancer (CRC) and investigate how
lifestyle factors modify the microbiome [1]. The study is a sub-study of
the Bowel Cancer Screening in Norway (BCSN), a pilot for a nationwide
bowel cancer screening program [3]. Participants are recruited from the
BCSN study to the CRCbiome study. The CRCbiome study receives stool
samples from the recruited participants from the BCSN study. DNA from
these collected samples are sequenced and sent through a data pipeline
which analyses and assembles the sequences into a metagenomic dataset.

In this introduction we will introduce the key concepts in the field of
colorectal cancer screening, the gut microbiome, data pipelining as well
as machine learning and classifier analysis as they relate to metagenomic
datasets. We will provide an entry into the related scientific literature
surrounding these topics. The introduction will also present the plan to
apply machine learning methods with data preprocessing on pipelined
metagenomic datasets with functional gene annotations from shotgun
sequenced samples of the gut microbiome in certain individuals. The
purpose of this is gaining information about possible biomarker genes
that might assist the detection of colorectal cancer in vivo. We will also
examine the performance of classifiers trained with the aforementioned
dataset. In addition the results from this the shall be compiled into a series
of visualisations for a multi-disciplinary audience.

2 Colorectal Cancer

CRC is a term covering malignant neoplasms of the colon and rectum and is
one of the most common forms of cancer in Norway. The age standardized
incidence rate of CRC was 89.1 and 70.4 per 100000 person years for men
and women respectively in 2018 [4]. This is higher than the global age
standardized incidence rate per 100000 which was 23.1 for men and 15.7 for
women in 2018 [5]. In Norway CRC caused 14.5% of total cancer mortality
in 2017 and in 2018 it constituted 12.7% of all cancers in males and 12.8% of
all cancers in females [4].

At which stage CRC is discovered has a large impact on chances for
survival. The 5 year survival rate for CRC are around 98% for localised
cancers, around 80% for cancers with a regional spread and around 20%
for cancers that have spread to distant parts of the body. The numbers are
similar for both women and men [4]. Screening leads to earlier detection
of cancer, and the effect of screening in reducing CRC mortality has
been documented [6]. The European Union recommends colorectal cancer
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screening in order to discover cancer cases early while still asymptomatic
and surgically remove possible precursor lesions of CRC [7].

2.1 Colorectal Cancer Screening

Colorectal cancer screening enables the detection of CRC. In the BSCN
study two ways of screening for CRC are applied. Faecal occult blood
tests (FOBT), that involve checking for the presence of blood in faeces, and
sigmoidoscopy, a minimally invasive medical examination of the rectum
and sigmoid colon. Both these approaches have been shown to reduce
colorectal cancer mortality [6]. FOBT tests have recently been replaced by
faecal immunochemical tests (FIT) which perform better than FOBT tests
[8]. In the case of a positive FIT then a colonoscopy is performed. FIT
lack sensitivity for the early stages of CRC as well as specificity generally.
Sigmoidoscopies may be too invasive and also miss a large portion of
cancers [9]. The discovery of biomarker genes for CRC can lead to new
approaches for CRC screening. The use of stool sampling for the detection
of these genes is a possibility for future non-invasive CRC screening.

3 The Human Gut Microbiome

The human microbiome is the sum of organisms that live in or on humans
[10]. The human gut harbors a large subset of the total human microbiome
with abundance and genetic characteristics varying between individuals.
Each individual has a relatively stable microbial community [11]. These
bacteria exist in a commensal and symbiotic manner in our gut and play an
important role in human digestion. Interindividual variation in microbial
populations is due to both host genetics and environmental influences
such as diet, stress, antibiotics, pets and likely other agents [12]. It
has been observed that taxonomic distribution of the microbiome in the
gut is different between subjects suffering from irritable bowel diseases,
such as Crohn’s disease and ulcerative colitis, and healthy individuals
[13]. The microbial imbalances associated with such diseases is referred
to as dysbiosis, defined as "a breakdown in the balance between putative
species of “protective” versus “harmful” intestinal bacteria [..]" by Tamboli
(2004)[14] [12].
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3.1 Role in Cancer

It has been demonstrated that the gut microbiome of people with several
forms of cancer, including CRC, differs from that of other individuals. We
also know that certain microbes, such as Streptococcus bovis and Clostridium
septicum, are strongly associated with CRC. We know that some single
microbes can drive human cancer. Such as Helicobacter pylori for gastric
adenocarcinoma, gastric lymphoma and esophagael adenocarcinoma, and
the human papillomavirus for anogenital carinomas and oropharyngeal
carinoma [12].

With the use of machine learning methods, classifiers have been trained
that have been able to predict the occurrence of colorectal cancer with
good accuracy [15]. Thus further emphasising the association between gut
microbiome profile and colorectal cancer.

3.2 Data collection

As a part of the BCSN trial stool were donated by participants. The
stool samples were checked for blood. If the samples were found to
contain blood then the participants were referred on to colonoscopies.
These collected stool samples contain an environmental footprint of the gut
microbiome. The samples that were collected as a part of the BCSN trial
were found to harbor diverse microbial profiles be usable for metagenomic
sequencing and analysis [16].

A total of 2700 candidates that were found to have blood in their sample
will invited to participate. The samples from the willing candidates con-
stitute the data collected to be sequenced and analysed in the CRCbiome
project and that this master thesis will utilize. Out of this group some of the
participants will be found to have advanced neoplasias after a colonoscopy
while others will not. Participants without advanced neoplasias will be se-
lected as controls as they have a very low risk of developing CRC following
a negative colonoscopy [17, 18].

3.3 Metagenomics and Metagenomic Data

Metagenomics as defined by Riesenfeld et al. 2004[19] is "[..] the functional
and sequence-based analysis of the collective microbial genomes contained
in an environmental sample". Metagenomics and metagenomic methods
have enabled the study of a large amount of previously hard to study
organisms due to them being difficult to cultivate in vitro [20, 21].

Metagenomic data is the data gathered from collective microbial gen-
omes in an environmental sample. They contain the full breadth and di-
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versity of the microbiome present in the host environment. Our metagen-
omic data is the data sequenced from the samples from the BCSN project
[22].

A key term in relation to metagenomics is gene function. Gene function
is the function a gene causes when it is expressed. Gene function analysis
is the analysis of the functions of an organism based to the genes present in
it. With metagenomic datasets we have a large set of microorganisms. By
way of analyzing and examining the genes present in the sample, and their
known functions, it is possible to gain insight into the total behaviour and
function of entities contained in it.

3.4 Taxonomy

Taxonomy is a common term in biology and is the practice of naming,
describing and classifying different organisms. Individual organisms can
be grouped together into a taxon, a group of organisms recognized to form
a unit, and these can be classified hierarchically by taxonomic rank. These
ranks are, in hierarchical order, domain, kingdom, phylum, class, order,
family, genus and species. Taxonomic profiling is the process of quantifying
the taxa observed in order to create an overview of the distribution of
taxa, a taxonomic profile, of the sample [23]. Much of the former work
on machine learning on the gut microbiome has made use of taxonomic
profiles [24]. Exact classification of each individual sequenced item might
not be possible, but due to the homologous nature of the organisms in
the gut microbiome they can generally be assigned to a higher taxonomic
group or be clustered together with similar sequences. Clustering of similar
sequences creates taxonomic groups referred to as operational taxonomic
units (OTUs) [25].

3.5 Sequencing

Sequencing is the process of reading and storing the genetic code of
organisms. DNA from the collected environmental samples need to be
sequenced in order to be processed.

Two common approaches for sequencing microbiome are 16S rRNA gene
amplification and whole genome shotgun sequencing. Targeted 16S rRNA
gene amplification and sequencing entails the selective amplification of
the 16S rRNA gene. 16S enables the clustering of the obtained sequences
into operational taxonomic units (OTUs), by way of the variations in the
16S rRNA gene, from which the taxonomy of each OTU can be inferred
[26]. Shotgun sequencing entails the sequencing of small sections of
the DNA from the genomes of all organisms in the sample. During
subsequent processing information can be gained about taxonomy as
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with 16S rRNA amplification. Unlike 16S rRNA amplification shotgun
sequencing includes more than just the 16S gene, but rather representative
fragments of the genes present in the organisms in the sample. That offers
the possibility of reassembly and the use of database lookups on the genes
which yields functional insight [27]. Shotgun sequencing thus enables
functional annotation of the dataset for information about community-
wide gene composition and function, which is relevant for this thesis [26].

The CRCbiome project conducts whole genome shotgun sequencing
through a third party provider on the collected samples which yields a
multitude of small, essentially random, reads of the genomes. This is
done by first shearing the sample into appropriately small chunks and
annotating them with specific barcodes in order to keep track of the
sample they originate from. Adapters for the facilitation of sequencing
are also added. The samples are subsequently sequenced via a high-
throughput sequencing machine. For each individual DNA fragment there
are two individual reads going in opposite direction. Each individual
read generated is 100 base pairs long. The reads are annotated with a
Phred[28] quality score which gives a probabilistic correctness rating to
each sequenced base pair. These reads are stored in the FASTQ[29] format.

The reads are returned from the third party provider demultiplexed
whereby the reads have been grouped with the other reads from their
respective original samples. The barcodes that signify which sample each
individual read originated from are also removed as a part of that process.
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4 The Data Pipeline

Figure 1: Data Pipeline Overview

(1) - MultiQC, a quality control tool. (2) - Trimmomatic, removes low quality
sequences. (3) - Kaiju, performs taxonomic classification. (3a) - HUMAnN, does
gene function abundance profiling. (4) - BWA, removes human reads. (5) -
MetaSPAdes, tool for sequence assembly. (6) - Prodigal, protein encoding
prediction. (7) - InterProScan, database protein lookup tool, (8) - Yellow colour
indicates protein sequences
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As a part of the CRCbiome project several data processing pipelines have
been constructed and combined to handle incoming sequenced sample
data. This section will give a board overview of the structure of the
combined pipeline, a short summary of the steps involved and describe
the structure of the resulting dataset. A more in-depth look at the pipeline
will be available in forthcoming publications on the work of the CRCbiome
team. The pipeline is implemented in Snakemake v5.3.0[30], a data
pipelining tool for Python[31].

For each stage of the pipeline a set of input, output and temporary files
are defined. This means that there is intermediate storage between every
executed step in the data pipeline.

Incoming sequence data is first checked with MultiQC[32], a quality
control tool that aggregates the quality metrics from the FASTQ files. The
report generated by MultiQC will make it possible to verify whether or
not there as been an issue during the sequencing process that might lessen
the quality of the results. Subsequently Trimmomatic[33] is used to remove
the adapters that were needed for the high-throughput sequencing and low
quality bases.

The Snakemake pipeline then proceeds to run the samples through
Kaiju. Kaiju[34] is a tool for providing fast and sensitive taxonomic
classification for metagenomics. Kaiju processes the sequences from
the sample in the pipeline; tagging their taxonomy and thus providing
taxonomic classification of the sequences in the sample. That data is later
used for various forms of analysis pertaining to the relative diversity and
abundance of different taxa in the sample.

In a side step we make use of HUMAnN3[35] in order to functionally
profile our reads. HUMAnN3 takes the sequences out from trimmomatic
and conducts taxonomic classification on them via MetaPhlAn3[36]. After
the taxonomic classification, the reads of the samples are aligned to their
the entire gene set according to taxonomic classification. Subsequently, a
translated search is run on the unclassified reads before quantifying gene
families and pathways. The final results of HUMAnN is a profile with
information about the abundance of the gene functions in each sample.
This is the basis for one of our two datasets. One substantial motivation
for including this dataset was the significantly faster execution speed as
compared to the main pipeline. It also allows us to compare the results on
this dataset against the main pipeline dataset results.

Then the pipeline removes genes from the which are found to belong
to humans by way of using a Burrows-Wheeler Aligner on the human
genome. This is done with regard to ethical considerations and restrictions
pertaining to the analysis and processing of human DNA. It is done because
the focus of the study is on identifying the specific genes in the gut
microbiome related to or associated with CRC.
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In the next step the MetaSPAdes[37] algorithm is used in order to
assemble the small "shotgun" reads that were obtained during the high-
through sequencing into longer fragments. After this step most of the reads
have been reconstituted back into their original genes.

At this stage the data pipeline sends the assembled and processed
sequences through Prodigal[38], a protein-coding gene prediction software
tool for bacterial and archaeal genomes. Prodigal translates the gene
sequences into the amino acid sequences that they are predicted to produce.

The translated sequences are subsequently run through InterProScan[39]
which is an amino acid search and classification tool search tool that
enables search through the InterPro databases [40]. Due to the nature of the
InterPro databases and InterProScan not all databases must be included.
Which of the constituent databases to include has not yet been established.
InterProScan yields hits on sequences in the searched databases returning
accession numbers, a unique identifier for each protein in the database,
if any are found. Via this accession number a wide range of functional
information can be extracted about the sequence.

4.1 Output Data Structure

The final InterProScan output is in tabular form and includes IPR (InterPro)
accession numbers from hits to included databases, short descriptions
of action extracted from the databases, and associated GO[41, 42] (Gene
Ontology) and KEGG[43] (Kyoto Encyclopedia of Genes and Genomes)
Terms. The GO and KEGG databases contain information on the functions
of genes and each term is tied to a specific gene function recording
in the respective databases. The terms are retrieved via the protein
accession entries in the InterPro database. The resulting output is thus each
individual sequence put in a biological context and from which a range of
other additional attributes can be retrieved for analysis. From this point in
this master thesis we will refer to InterPro accession numbers as IPR terms
and GO id’s as GO terms. This is for simplicity since we will use them as
features. GO terms and InterPro accession numbers are not the same as
InterPro accession numbers are database lookup id, while GO terms can be
hierarchical in nature.

We also retrieve output data from HUMAnN which is also in tabular
form. In the case of the HUMAnN dataset we have a matrix of samples
and GO term abundance. While the results for InterProScan are organized
such that every sample is represented by a file containing an overview of
the reads and their mapping.
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4.2 Data Preparation

An important step in the training of a machine learning classifier is the
treatment of data before the training phase. There are a series of different
steps that can be taken in order to treat data in order to improve classifier
accuracy and performance across different datasets while not impairing the
integrity of the dataset. In this section we will cover those as they relate to
this project.

Normalization is the process by which the number of reads is normalised
in case of differing numbers of sequences per sample, which is the case for
our dataset. This ensures the intercomparability of samples in the study. A
selection of methods for data normalization across samples have been tried
[44, 45]. We have decided to apply l2-regularization from the scikit-learn
preprocessing library[46].

In the realm of machine learning a feature is an attribute or a collection
of attributes of the data [47]. In our case the attributes are the terms
and accession numbers tied to each sequence in the samples and the
information retrievable via the database entries for those terms and
accession numbers. There are two ways to prepare features in the
data - feature selection and feature extraction. Feature selection is the
process of selecting which attributes to include as features, while feature
extraction is the dimensionality reduction of the attributes in the dataset to
extract features. Preparing appropriately independent, discriminating and
relevant features is essential to train a capable classifier. In our resulting
dataset the features will be discrete, but be quantified as non-negative real
numbers. Any actions related to the treatment of features must be applied
equally on the entire dataset in order to avoid distortions.

The selection and extraction of features for training of a classifier can
significantly impact the results. Earlier work on predicting host trait
characteristics has made use of the taxonomic distribution of the samples.
Given the abundance of different taxa in each sample and the similarity
of the individual sequences in the sample, they can be grouped into
operational taxonomic units (OTUs) [48]. This is done to avoid excessive
sparsity and feature counts in the dataset which could arise from not
combining any sequences bar those that are identical.

A series of different approaches to the grouping and aggregation of
OTUs exist. Approaches include Fizzy[49], MetAL[15] and hierarchical
feature extraction (HFE) [50]. Zhou and Gallins 2019[24] found that the
application of HFE generally improves prediction accuracy for several
machine learning methods on three different metagenomic datasets. Since
this project will use features based on gene data and not exclusively
taxonomy, the feature selection approaches based on OTUs discussed here
is not directly applicable. They do, however, give insight to the feature
engineering work done for classifier training on environmental samples of

13



microbiota for host trait prediction.

Another issue relating to the features of the dataset is data sparsity. In
a collection of samples there might identified genes that are exceedingly
rare or not present in other samples. Machine learning methods handle
sparcity in input data with varying degrees of success with some, such as
Lasso Regression[51], performing feature selection in and of themselves.
For methods that do not do this sparcity should be handled in the data
preprocessing stage. Several approaches exist. One approach to sparse
features is to impute their abundance. A number of methods exist for
this purpose they include. Imputation using mean/median values of
the missing feature where present, imputation via kNN[52], imputation
of the most frequent value where present and the MICE[53] algorithm
for multivariate imputation by chained equations. Another approach to
reducing the total number of features by way of feature selection is to
remove the features that do not meet a required minimum abundance.
This is a common approach with metagenomic datasets. Too aggressive
an application of this approach might reduce the capacity of the dataset
to be used for accurate classification as it might prune away important
associations.

It’s also possible to apply univariate feature selection (UFS) to the set.
Whereby we select the features that have the highest p-value with the
output label. This makes the dataset less feature rich, and is one approach
to removing features that might not have much of an impact on the
result. Such an approach might improve performance of the classifiers by
removing noise and will also reduce training time.

From the sample collection discussed earlier we obtain data labels
consisting of a discrete value per sample which indicates the CRC status
in the sample host. The purpose of the classifier is to identify a specific
host trait, in our case gender and CRC development stage, so each of the
samples run through the pipeline are annotated with the associated data
label before the training of the classifier. The appropriate approach to
feature extraction from the GO, KEGG and IPR terms tied to the samples
in the dataset will be explored. One approach could be quantifying the
occurrence of each terms in each sample, but it might be advantageous
to obtain other related data such as taxonomy tied to the attributes. In
summary, the exact manner in which data processing will be done before
the classifier training has been a concern for this project.

5 Machine Learning on Metagenomic Data for Host
Trait Prediction

Emerging technologies give rise to new methods of processing metagen-
omic data with potentially novel and useful insights. Training classifiers
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with metagenomic datasets from the gut microbiome has been demon-
strated to yield classifiers capable of predicting host traits such as type 2
diabetes and CRC with reasonable accuracy [15].

Much of this work has been on taxonomic profiles often derived from S16
rRNA sequencing, with the whole genome shotgun sequencing approach,
we can look at gene functions. It is the genetic and functional profiles in
microbial communities that determine their overall function [12]. Using
the added functional profiles gained via shotgun sequencing, we might be
able to uncover new associations.

5.1 Algorithms of Interest

The selection of classifiers has been made on the perceived performance of
their classification ability as well as the interpretability of their predictions
and models. Our dataset and datasets referenced from earlier work have
been labeled datasets. In labeled datasets we know the trait or the thing
to predict with the classifier. That entails the use of supervised machine
learning algorithms. Another point is that for our dataset the classifier will
be binary. Each sample will be predicted by the model to either belong to a
cancer victim or not, that is also the case for most, but not all of the earlier
work discussed here.

Based on previous work summarised in section 5.4, we think that lasso
regression[51], support-vector machines (SVM)[54], random forest[55],
XGBoost[56], multi-layer perception neural networks[57] would be good
choices for this setting. Long short term memory recurrent neural networks
(LSTM)[58] have not been used on the gut microbiome. Though it could be
interesting to see how the neural network performs relative to the RNNs
previously tried and they have been successful in other applications.

Lasso regression is a form of linear regression which minimizes the
residual sum of squares subject to the sum of the absolute value of
coefficients being less than a constant [51]. This results in certain
coefficients being set to zero and thus performs a form of feature selection
on the dataset. Lasso regression has been used for host trait predictions on
metagenomic datasets with good accuracy and the classifiers generated are
interpretable.

The use of SVMs is a common approach to supervised learning. SVMs
construct maximum margin separators, separators that aim to minimize
generalization loss over empirical loss, on the trained dataset. Since data
that is not linearly separable in the original input space might be separable
in higher-dimensional space, the kernel trick can be used to perform non-
linear classification by way of inputs into high-dimensional feature spaces
being implicitly mapped [59]. Thus the high dimensional linear separator is
non linear in the original space [47]. SVMs have been used on metagenomic
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datasets relatively yielding good classification accuracy.

Random forest is a variant of the decision tree learning (DTL) algorithm.
The random forest algorithm trains its classifier by generating several DTLs
and aggregating the resulting classifiers. DTLs make binary splits on the
feature in the dataset that has the highest level of impact on the classifier as
measured by some metric (typically information gain, entropy or gini) until
a specified number of nodes is reached [47]. The random forest algorithm
generates a "forest" by creating an ensamble of decision trees that have been
subjected to the random subspace method [60]. These trees are aggregated
in a "bagging" process into a single classifier [61]. Another forest type
classifier that has yielded promising results is XGBoost[56]. XGBoost uses
gradient boosting to improve the classifier model.

The random forest algorithm has been used extensively with promising
results from earlier studies. Due to the ensemble nature of the resulting
classifier interpreting the predictions and the model is arduous. On their
own they are therefore often seen as a black box. However, efforts have
been made to make the predictions made by random forest classifiers in-
terpretable. The package treeinterpreter for scikit-learn enables decompos-
ition of predictions into bias (training set mean) and the individual feature
contributions thereby enabling analysis and interpretation of the generated
predictions [62].

Neural Networks are a broad category of algorithms with a multitude
of different versions and variants. Common to them all is their ability
to perform nonlinear regression to generate classifiers and doing so by
utilizing multiple networked layers of nodes with different properties
depending on the type of neural network [47]. A range of different neural
networks have been used for host trait prediction on metagenomic data
with good, but somewhat varied results with some variants performing
better than others [63]. A significant downside to the use of neural
networks is the relative lack of interpretability of the generated predictions
which limits their use for analysis.

MLP is an early neural network design where by the network has three
distinct layers an input layer, a hidden layer and an output layer. The MLP
neural network is comprised entirely of n layers of regular perceptrons
with training of the internal weights taking place via backpropagation,
as with all neural networks. The number of nodes in the hidden layer
is instrumental in the capacity of these neural networks performing non-
linearly separable classifications [47].

The LSTM neural network is a particular kind of RNN that is less prone
to the vanishing gradients problem [58]. Recurrent neural networks are
neural networks that retain memory in the nodes and incorporate recursive
structures. By feeding the output of each node into its own inputs, they are
able to support short term memory [47]. In LSTM differ from regular RNNs
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by using a set of gates to control the entry of new information, it’s output
and when it is forgotten. This enables greater control over the gradient
flow and preservation of earlier training. LSTM RNNs have been seen to
provide accurate classifiers in a series of scenarios, particularly relating to
time series, but have not been studied on metagenomic data. On earlier
work in regard to predicting of host traits with metagenomic data RNNs
have been outperformed by other forms of neural networks [64].

5.2 Machine Learning Toolkits

There are a range of different machine learning toolkits and libraries
available for use and these provide implementations of a wide variety
of different classifiers. For our purposes scikit-learn[46] and keras[65]
running on TensorFlow[66] seem well suited given their common use and
coverage.

Scikit-learn is a free software Python module integrating a wide range of
state-of-the-art machine learning algorithms for medium scale supervised
and unsupervised problems. TensorFlow is an end-to-end open source
platform for machine learning running on Python. Keras is a high-level
neural networks API, written in Python that can be run on TensorFlow.
Scikit-learn v0.23.2 will be used for the implementation of most of the
classifiers, and keras on TensorFlow v2.3.0 for the neural networks that
are not supported in scikit-learn. This project will rely on these programs’
implementations of the classifiers that we intend to run on our dataset.

For interpretation we intend to make use of LIME[67]. LIME enables us
to look at which features are deemed most important for the classification
of any given sample. This gives us a breakdown which can allow us to
look at which gene functions are deemed the most significant. While we
have chosen to use LIME, there are other alternatives available. Some have
a wide range of supported algorithms like ELI5[68]. Others are specifically
designed for certain algorithms sometimes in specific packages. An
example could be treeinterpreter[62] for scikit-learn. LIME was ultimately
chosen because of the large range of supported algorithms, high adoption
rate, useful applicable output and Python support.

5.3 Issues

A regular issue when using training classifiers is the overfitting of the
classifier to the training data. Overfitting entails that the classifier is so
closely mapped to the specific training set so as to not be a good classifier
when presented with other similar data. In order to manage this the project
will make use of k-fold cross validation, whereby the dataset is split into k
chunks of equal size, one of which is designated as test set with the rest
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being set as a training set. k-fold splitting is executed before every round
of classifier training to avoid a constant training and test chunk. This is a
common approach to manage and control issues related to overfitting [47].

Figure 2: Machine Learning Component Overview

(1) - The dataset is split randomly according to k-fold splitting, (2) - Not always
applicable. Influences adjustments. Analysis might also impact feature selection
and extraction. (3) Interprets the classifiers models. * - For illustrative purposes

5.4 Accuracy Metrics

When specifying the accuracy of the predictions made by the classifiers
there are a few metrics in use. The three we will reference or use are
error rate, accuracy and Area Under Curve (AUC). Error rate is the rate
of false classifications made. Accuracy is the rate of correct predictions
made. AUC, also referred to as Area Under Receiver Operator Curve
(AUROC), is a measure of the accuracy of a binary classifier. The AUC
value is an expression of the rate of accurately predicted true positives and
false positives by the classifier. A higher value implies greater accuracy.
Given that AUC is a model for binary classifiers a AUC value of 0.5 implies
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a random guess on the part of the classifier.

5.5 Earlier work

A number of studies have applied machine learning methods to metagen-
omic datasets, comparing the relative performance of the machine learning
algorithms. As referenced earlier the previous studies have been conducted
on taxonomic profiles in contrast to our dataset.

For CRC prediction Pasolli et al. 2016[15] found that using random forest,
support vector machines (SVMs), elastic net and lasso regression on the
dataset from Zeller et al. 2014[69] yielded AUC values of 0.87, 0.81, 0.79 and
0.73 respectively. The sample size was 121, with 48 cases and 73 controls.
The taxonomic profile covered the species level.

Also for CRC prediction, Ai et al. 2017[70] applied Bayes net, random
forest and logistic regression separately on two different datasets; one from
a Chinese cohort and one from a French cohort. The predictions yielded
AUC values of 0.93, 0.94 and 0.98 for the Chinese cohort and AUC values
of 0.86, 0.86 and 0.71 for the french cohort respectively.

Neural networks have been tried on a relatively large metagenomic
dataset by Ditzler, Polikar et al. 2015[63] and Reiman et al. 2017[64]. They
used the gut microbiome dataset from Caporaso et al. 2011[71]. Unlike the
other sets discussed here, the Caporaso et al. dataset is composed mostly of
temporal variations of the human microbiome. It sampled two individuals
at four sites over 396 time points, one of the sites being a fecal sample.

Ditzler, Polikar et al. 2015[63] tried to predict host gender and sample
body site origin from the dataset using a selection of neural networks with
different parameters and one random forest application. The random forest
implementation outperformed the neural networks, but the multi-layer
perceptron (MLP) neural network also performed well with error rates of
0.01 and 0.01 for body site and 0.03 and 0.08 for host gender respectively.
Reiman et al. 2017[64] had good results with an accuracy of at least 0.97 for
at least one set of parameters for all implemented neural networks except
for recursive neural networks (RNN) with an accuracy of 0.84.

Zhou and Gallins 2019[24] has assembled a comprehensive review of
the application of machine learning classifiers on metagenomic data and
taxonomic profiles for host trait prediction.

19



6 Aims

This introduction has presented the basis for this master thesis on the use
of machine learning methods on processed metagenomic data for host trait
prediction as a part of a data pipeline for deep analysis of metagenomic
data. Given the basis of earlier work in applying machine learning methods
on taxonomic distributions of gut microbiomes to predict host traits, it is
clear that such an approach can yield insights. This project has special
promise due to the functional gene data on which the classifiers will be
trained as well as the large sample size.

As stated earlier, one of the aims of the CRCbiome is find gut microbiota
biomarkers for CRC. The identification of such biomarkers could lead to
new and better tests for CRC. This master thesis has been conducted as a
part of the CRCbiome project. The concrete aims for this master thesis are.

6.1 Primary Aims

• Train machine learning classifiers for CRC prediction.
Accurate machine learning classifiers for CRC prediction will be
trained as a part of the thesis.

• Analyse classifier predictions to identify possible biomarker candid-
ates for colorectal cancer.

The identification of biomarker genes or biomarker gene func-
tions could lead to new and better tests for CRC. While we know
which bacterial taxa are associated with CRC [69], we want to
obtain more information about which genes and gene functions
are.

• Integrate the created machine learning module into the data pipeline.
The machine learning module will be integrated into the data
pipeline for the CRCbiome project.

This master thesis also has a set of secondary aims. These fulfillment of
these aims are necessary for the achievement of the primary aims, but the
secondary aims also carry value in their own right and may help inform
best practice for similar projects.
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6.2 Secondary Aims

• Identify appropriate classifiers for the metagenomic dataset.
We have discussed and will trial and confirm likely appropriate
classifiers. The judgement of which algorithms are appropriate
have been made on the basis of the experiences of other projects
using taxonomic profiles for host trait prediction in addition to
general assessments. While not equivalent, the experiences from
those projects have informed our initial choices.

• Identify appropriate parameters for the chosen classifiers where
applicable.

Here it is also expected that the experiences from other projects
using taxonomic profiles based on OTUs for host trait prediction
will be largely transferable, though to what extent is not yet
clear.

• Ensure appropriate fitting of the model on the training set.
Due to the novel and limited nature of this dataset, this will be
closely examined. Mitigation methods such as k-fold splitting
will be applied.

• Make assessments of the predictive ability of trained classifiers and
the interpretability of their results.

When training and testing the classifiers we will make note
of and reflect on their comparative performance and models.
Predictions and classifier models of any of the methods applied
could perform poorly, differ significantly from the consensus or
behave unexpectedly. Such an event, while possibly interesting
and informative, could stem from errors and issues in the
process. Additionally, it’s important to recognise that higher
accuracy might not always indicate a more correct model.
Especially with regard to large, heterogeneous and diverse
datasets such as metagenomic data from the gut microbiome. In
this context it is also important to reflect on cohort overfitting.

• Perform appropriate data preprocessing.
Common approaches for feature selection and extraction on
datasets will be applied and evaluated. Given the opportunity to
extract supplementary information from the identified protein
sequences with functional annotations, we will consider making
use of this. Feature imputation methods might also be applied if
judged necessary or desirable.

• Visualise results.
A Python framework or an R[72] framework will be used
visualize the results. This is in order to provide clear and
insightful visualizations to illustrate the findings and for the
purpose of aiding visual analysis of the results.
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7 Methodology

The software developed through this master thesis has been named
"Multiple Algorithm Pipeline for machineLEarning on gene functions"
(MAPLEgf). The Python IDE PyCharm was used to develop MAPLEgf
in Python v3.6.10. Together with Python we used NumPy[73] v1.18.5. Git
and GitHub were used for version control of the software.

For preprocessing two separate scripts were made, one for the HU-
ManN3 dataset and one from the dataset from InterProScan. A short script
was made for each of the applied algorithms while making use of extra
functionality from an interface common to all the scripts. Each of the al-
gorithms reads from a config test file which contains a series of parameters
and some comments on how to modify them. These were used to apply dif-
ferent settings to the algorithms and by updating them Snakemake would
rerun the scripts since one of the inputs would have been updated. The
full source code can be accessed at the GitHub repository associated with
the project[74]. Se figure 3 for a graphical representation of dataflow in the
pipeline.

The algorithms were executed inside of the University of Oslo managed
"Tjeneste for Sensitive Data" (TSD) in a Slurm managed system. This gave
access to large amounts of computing power for potentially very heavy
execution tasks. The script that used to execute the Snakemake pipeline is
in the project GitHub repository.

Due to the COVID-19 pandemic of 2020/2021 there was some delay
in obtaining sequenced samples due to the sequencing capacity being
occupied by other sources. Additionally the pipeline requires some amount
of time to process the sequenced sample data. At the time of the final
executions we had a total of 468 annotated InterProScan samples and 953
HUMAnN3 annotated samples. The annotated sample data format for
each set was tab-separated values (.tsv) and comma-separated values (.csv)
respectively.
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Figure 3: Overview of data flow in MAPLEgf

Blue rectangles are Python files directly executed. Yellow rectangles are Python
files used as interfaces or utility function files. ... denote ranges of files. Arrows
indicate dataflow.

When executing the preprocessing script takes in the sample data. It is
then referenced to the supplied metadata file containing the labels for the
data. The referenced data is subsequently formatted into a matrix with
samples in and their respective feature abundance. For InterProScan it
selects which term to include as per the config file provided. For every
read in every sample contained in the InterProScan dataset it fetches the
tagged terms and multiplies them with the coverage of the each specific
term and the read length. The dataset from HUMAnN required no such
preprocessing.
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The preprocessing script also takes parameters for feature selection from
a config file. As a result of the nature of the dataset sourcing, it’s assumed
to contain some wrongly annotated gene functions as noise. In order to
handle this noise we would like to remove all features that are not found in
a certain quantity in a certain share of the samples.

The labels for classification were sourced directly from study information
where samples are matched to anonymized study participants and several
information elements regarding them. The label metadata elements were
grouped for gender into a male and female group and for cancer the
metadata elements were grouped by cancer and advanced adenomas
together and all earlier states of cancer progression separately.

The data can be normalized before execution via the config files for
each algorithm. Each sample is normalized using the scikit-learn v0.23.2
preprocessing library.

Univariate Feature Selection (UFS) was attempted both before the
running the machine learning algorithm and for each training set in each
individual k-fold split. The UFS was implemented in the common interface
for the machine learning scripts. Is is executed on a per classifier basis in
the machine learning section of the pipeline. The settings for UFS are also
defined from the config file.

Running the script for the analysis in TSD starts a Snakemake v5.3.0
pipeline which lists a series of jobs to be executed piping the inputs and
outputs of scripts together.

When training the algorithms we first focused on getting results for
predicting gender. It’s established that there are differences in the gut
microbiomes of men and women. Therefore we thought it as likely that it
would be possible to train classifiers able to predict the host gender status
based on the gene annotations.

For each execution on the dataset we made changes and optimizations
to the parameters of the classifiers in order to improve their performance.
Several values for the feature selection for the preprocessing script were
also tried. The final results for each run are outputted to a individual .txt
file for each result and a common .csv file for the combined results. As a
final part of the executing a selection of results are run through the classifier
interpretation tool LIME[67]. LIME v0.20.1 was used. The LIME library
is used to write a series of .csv files with an overview over which terms
were deemed most important for the classification of samples. The final
results contain information about program execution times, AUC value
and associated information about each run. There is also the associated
slurm-log file listing the printed output for each complete run.

The explain .csv file generated by using LIME Python library gives
an indication of which features are the most significant in the given
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model classifying a certain sample as either. Every distinct feature has a
percentage impact listed to each term and value. Since our feature values
are continuous, we made use of the discretize option in LIME with the
value "quartile". This makes the different sample predictions easier to
compare and to aggregate as we get only four intervals for each continuous
value instead. For every execution we set a threshold of 100 for the number
of features to include in the output. For every sample that was executed
the results of these most important 100 features were then aggregated
and average by number of samples to give an average indication for each
feature.

In addition to this there are another two .csv files that are output from
the program when interpretation is enabled. One lists the number of
times each term was counted as one of the 100 most important features
for classification. While the other lists how many times the specific interval
occurred in the 100 most important feature values for each sample. These
give us some indication as to which features are commonly found to be
important and should be subject to examination.

Source and Term Type Terms Samples
InterProScan IPR 14923 468
InterProScan GO 3300 468
HUMAnN GO 9408 944

Table 1: Overview of sequenced samples provided for this thesis.

Host Gender Labels Males Females Total
InterProScan IPR 293 171 464
InterProScan GO 293 171 464
HUMAnN GO 532 407 939

Table 2: Overview of host gender label information applied with the
samples for this thesis.

Host CRC Development
Stage Labels

Cancer or
Advanced Adenoma

Control Total

InterProScan IPR 221 247 468
InterProScan GO 221 247 468
HUMAnN GO 412 532 944

Table 3: Overview of host CRC development stage information applied
with the samples for this thesis.
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8 Results

The results presented are the best overall results obtained. The parameters
for the classifiers were modified in such a way as to find the best possible
classification performance. Several different feature selection levels for the
dataset were also tried. On the training speed of the classifiers we have an
overview over the run times for the algorithms. Here the interest was more
in comparisons between the different algorithms as the specific conditions
of the execution.

In evaluating the performance of results we will be comparing the
performance of our classifiers to the performance of a baseline classifier.
The baseline classifier we refer to in this thesis text is a mode classifier. Such
a classifier classifies all samples as the most common class and on average
manages to score an AUC equal to the size of the largest class. We tried
different datasets that have different distributions of control and sample
cases. This is reflected in the different baseline classifier scores. In order to
properly get an impression of the performance of any given classifier on a
dataset, the baseline AUC should be taken into consideration.

As laid out in the methodology chapter, each of the scripts takes in
a small configuration file which controls some of the parameters in the
application. These external configuration files were used in order to
easily update parameters for the algorithms. No parameters except the
ones in the configuration files were explicitly set for the machine learning
algorithms and were therefore the default values for the packages. Table 3
summarizes the specific parameters for each machine learning algorithm.

Algorithm Parameters
LSTM* embedding_enabled=false, embedding_level=32,

LSTM_depth=512, num_layers=2,
denselayer_size=1, dropout=0.1, epochs=20,
batch_size=32, l2_regularization=false,
regularization_weight=0.0001

MLPNN max_iter=10000, hidden_layer_sizes=1000,
alpha=0.0001

Random Forest n_estimators=2500
XGBoost max_depth=32
SVM C=0.1
Lasso positive=true, tol=0.00001, alpha=0

Table 4: Parameters set for the different algorithms in preprocessing.
*LSTMs from TensorFlow have a more complicated setup than the algorithms

implemented via scikit-learn. These are the adjustable parameters in the
configuration file, but these are not directly passed to the method. Please refer to

the source code in the GitHub repository for exact information.
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8.1 Results of Preprocessing

Figure 4: InterProScan IPR term abundance before and after preprocessing

A. InterProScan IPR terms before preprocessing, x-axis shows terms sorted in
descending order by aggregated abundance for all 14923 terms. B. InterProScan
IPR terms after preprocessing, x-axis shows terms sorted in descending order by
aggregated abundance for all 2348 terms. y-axis shows the aggregated abundance
of each term in the dataset for all the samples. y-axis is scaled by log10.

Figure 4. shows how many terms are present before and after the execution
of preprocessing on the InterProScan IPR gene annotation dataset. The
feature selection was executed with a minimum coverage of 250 per sample
for a given term in at least 20% of the samples included.
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Figure 5: InterProScan GO term abundance before and after preprocessing

A. InterProScan GO terms before preprocessing, x-axis shows terms sorted in
descending order by aggregated abundance for all 3300 terms. B. InterProScan
GO terms after preprocessing, x-axis shows terms sorted in descending order by
aggregated abundance for all 1098 terms. y-axis shows the total abundance of
each term in the dataset for all the samples. y-axis is scaled by log10. x-axis
follows each term sorted by the abundance in descending order.

Figure 5. shows how many terms are present before and after the
execution of preprocessing on the InterProScan GO gene annotation
dataset. The feature selection was executed with a minimum coverage of
250 per sample for a given term in at least 20% of the samples included.
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Figure 6: HUMAnN GO term abundance before and after preprocessing

A. HUMAnN GO terms before preprocessing, x-axis shows terms sorted in
descending order by aggregated abundance for all 9408 terms. B. HUMAnN GO
terms after preprocessing, x-axis shows terms sorted in descending order by
aggregated abundance for all 2109 terms. y-axis shows the total abundance of
each term in the dataset for all the samples. y-axis is scaled by log10. x-axis
follows each term sorted by the abundance in descending order.

Figure 6. shows how many terms are present before and after the
execution of preprocessing on the HUMAnN GO gene annotation dataset.
The feature selection was executed with a minimum coverage of 250 per
sample for a given term in at least 20% of the samples included.

29



Source Features Before Features after Samples
InterProScan IPR 14923 2348 468
InterProScan GO 3300 1098 468
HUMAnN GO 9408 2109 953

Table 5: Overview of samples before and after preprocessing

Figure 7: Comparison of the 10 most prevalent GO terms from InterProScan
and HUMAnN gene annotations

A. InterProScan GO terms. B. HUMAnN GO terms. y-axis shows the total
abundance of each term in the dataset for all the samples. x-axis follows each
term sorted by the abundance in descending order.

Figure 7 gives an overview and comparison of the results from the
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HUMAnN and InterProScan by comparing the 10 most prevalent features
in each dataset for all samples. It’s notable that despite the same source
data the relative abundance of the data is fairly different. This goes for
the ordering of the terms. For instance we find that both sets contain
GO:0016021, GO:0003677, GO:0005524 and GO:0003700. These are all terms
for common gene functions that would be expected to show up frequently.

Figure 8: Overview of the 10 most prevalent IPR terms InterProScan gene
annotation.

A. InterProScan IPR terms. y-axis shows the total abundance of each term in the
dataset for all the samples. x-axis follows each term sorted by the abundance in
descending order.

Figure 8 shows an overview of the 10 most prevalent terms. We do not
have a comparison for this as only InterProScan yields IPR terms.
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8.2 Results for Host Gender Prediction

Figure 9: Performance for prediction of host gender by classifier.

A. Classifiers trained on InterProScan IPR terms. B. Classifiers trained on
InterProScan GO terms. C. Classifiers trained on HUMAnN GO terms. y-axis
shows AUC score. A total of 20 train/test cycles are included in the results for
each algorithm. Dotted line marks the size of the largest class, an effective
baseline performance rating.

For each run a classifier was trained with the respective dataset.
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A total of 20 train/test cycles are included in the results for each
algorithm in Figure 9. Please refer to the config files in GitHub for
individual parameters for each method and version of each classifier.

Common for all algorithms were a k-fold split of 5. A greater splitting
would give a larger set to train on, but would likely increase variance
between each set due smaller test sets. The results for each k-fold train/test
split makes up Figure 9. Also common for all samples is no UFS as
performance was consistently worse than without (data not shown). All
samples were l2 normalized. Dotted line marks the size of the largest class,
an effective baseline performance rating.

The best results appear to come from MLPNN, random forest and
XGBoost, in particular on the dataset HUMAnN GO terms and the
InterProScan IPR terms. On the InterProScan IPR dataset the MLPNN also
did very well. The larger set size of the HUMAnN GO dataset helps to
explain the lower standard deviation of the results on it.

Classifier Mean AUC St. Dev 95% CI Baseline AUC
LSTM 0.6314 0.0398 0.5519 - 0.7111 0.6315
MLPNN 0.6999 0.0358 0.6283 - 0.7714 0.6315
Random Forest 0.6509 0.0525 0.5459 - 0.7559 0.6315
XGBoost 0.6567 0.0479 0.5610 - 0.7525 0.6315
SVM 0.6374 0.0518 0.5336 - 0.7413 0.6315
Lasso 0.6024 0.0561 0.4901 - 0.7147 0.6315

Table 6: Results for classifiers trained with InterProScan IPR terms.

Classifier Mean AUC St. Dev 95% CI Baseline AUC
LSTM 0.6315 0.0475 0.5634 - 0.7265 0.6315
MLPNN 0.6475 0.0511 0.5453 - 0.7498 0.6315
Random Forest 0.6622 0.0388 0.5846 - 0.7399 0.6315
XGBoost 0.6546 0.0443 0.5660 - 0.7431 0.6315
SVM 0.6315 0.04353 0.5444 - 0.7186 0.6315
Lasso 0.6634 0.06249 0.5384 - 0.7884 0.6315

Table 7: Results for classifiers trained with InterProScan GO terms.
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Classifier Mean AUC St. Dev 95% CI Baseline AUC
LSTM 0.5566 0.0481 0.4605 - 0.6527 0.5666
MLPNN 0.6192 0.0301 0.5590 - 0.6795 0.5666
Random Forest 0.6419 0.0275 0.5868 - 0.6969 0.5666
XGBoost 0.6595 0.0286 0.6021 - 0.7168 0.5666
SVM 0.5631 0.0393 0.4844 - 0.6418 0.5666
Lasso 0.6248 0.0360 0.5527 - 0.6968 0.5666

Table 8: Results for classifiers trained with HUMAnN GO terms.

Tables 6 to 8 show the results for the classifiers trained with their
respective datasets.
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8.3 Results for Colorectal Cancer Stage Prediction

Figure 10: Prediction of host CRC progression state performance by
classifier.

A. Classifiers trained on InterProScan IPR terms. B. Classifiers trained on
InterProScan GO terms. C. Classifiers trained on HUMAnN GO terms. Dotted
line shows performance expected of baseline classifier. y-axis shows AUC
performance. A total of 20 train/test cycles are included in the results for each
algorithm. Dotted line marks the size of the largest class, an effective baseline
performance rating.
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For CRC stage prediction the same settings were used as for host gender
prediction. The results of CRC stage prediction appear to have higher
AUCs the results than for host gender prediction. The classification task
is a binary classification with groupings of advanced adenomas and cancer
versus the rest of the samples as controls.

We find that the results are best for the MLPNN, random forest
and XGBoost classifiers for both host gender prediction and CRC host
prediction. The dataset with InterProScan IPR terms and the dataset with
IPR GO terms seem to yield the best results based on AUC relative to
baseline. The difference in variance in the results between the smaller
dataset from InterProScan and the HUMAnN dataset is also noticeably
smaller for CRC stage prediction than host gender prediction.

Classifier Mean AUC St. Dev 95% CI Baseline AUC
LSTM 0.5021 0.0516 0.3989 - 0.6052 0.5277
MLPNN 0.6438 0.0521 0.5411 - 0.7496 0.5277
Random Forest 0.6288 0.0580 0.5127 - 0.7448 0.5277
XGBoost 0.5978 0.0587 0.4804 - 0.7153 0.5277
SVM 0.5641 0.0418 0.4804 - 0.6478 0.5277
Lasso 0.5533 0.0504 0.4525 - 0.6542 0.5277

Table 9: Results for classifiers trained with InterProScan IPR terms.

Classifier Mean AUC St. Dev 95% CI Baseline AUC
LSTM 0.5085 0.0305 0.4474 - 0.5695 0.5277
MLPNN 0.5891 0.0534 0.4822 - 0.6959 0.5277
Random Forest 0.6271 0.0460 0.5352 - 0.7190 0.5277
XGBoost 0.5983 0.0331 0.5320 - 0.6645 0.5277
SVM 0.5204 0.0504 0.4196 - 0.6212 0.5277
Lasso 0.5658 0.0578 0.4501 - 0.6814 0.5277

Table 10: Results for classifiers trained with InterProScan GO terms.
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Classifier Mean AUC St. Dev 95% CI Baseline AUC
LSTM 0.5366 0.0486 0.4392 - 0.6338 0.5636
MLPNN 0.5742 0.0265 0.5522 - 0.6271 0.5636
Random Forest 0.6213 0.0321 0.5571 - 0.6855 0.5636
XGBoost 0.6252 0.0317 0.5617 - 0.6888 0.5636
SVM 0.5630 0.0220 0.5190 - 0.6071 0.5636
Lasso 0.5810 0.0332 0.5145 - 0.6475 0.5636

Table 11: Results for classifiers trained with HUMAnN GO terms.

Tables 9 to 11 show the results for the classifiers trained with their
respective datasets.

8.4 Interpretation of Results

Using the LIME library we were able to deduct which features made the
model classify any given sample as one class or another class. Running
LIME on such a large dataset as we have even after preprocessing was
relatively resource intensive. Therefore we selected only to perform
the analysis on the best candidates. In this instance XGBoost and
MLPNN. We found that XGBoost and Random forest have similar results
for classification, however the interpretations for XGBoost had higher
individual values than for random forest. Thus they give more value when
trying to pinpoint key features associated with the later stages of CRC
development.

Given a possibility that our models might select different features and
feature ranges and important for each model training we decided to apply
the interpretation for each test set in every cross-validation. This gives
us a wider range of features. As referenced earlier we forced some level
of discretization of values for the continuous features. Operating with
quartiles we have 4 fold the amount of distinct possible feature ranges. For
every interpretation we selected the 100 most important feature ranges.

All results presented are from 5-fold cross validations. Where each
sample in the test set for each fold is run through the LIME interpreter.
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8.4.1 Interpretation of Host Gender Prediction

Figure 11: 10 most frequently occurring InterProScan IPR terms from
MLPNN and XGBoost classifiers trained for host gender classification on
the InterProScan IPR dataset and interpreted by LIME

A. Most common terms for MLPNN classifier trained for host gender prediction
on InterProScan IPR terms. B. Most common terms for XGBoost classifier
prediction trained for host gender prediction on InterProScan IPR terms. Values
averaged from test cycles for classifiers with 5-fold cross validation. Dotted line
shows highest possible value if present in all samples.

Figure 11 shows the most frequently occurring terms from the MLPNN
and XGBoost classifiers on the InterProScan IPR dataset. This gives us an
indication of which terms are deemed important. Note that they do not
have an overlap. This implies that the features being deemed important for
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each classifier are different.

Figure 12: 10 most frequently occurring InterProScan IPR feature ranges
from MLPNN and XGBoost classifiers trained for host gender classification
on the InterProScan IPR dataset and interpreted by LIME

A. Most common terms value ranges for MLPNN classifier trained for host
gender prediction on InterProScan IPR terms. B. Most common terms value
ranges for XGBoost classifier trained for host gender prediction on InterProScan
IPR terms. Values averaged from test cycles for classifiers with 5-fold cross
validation. Dotted line shows highest possible value if present in all samples.

Figure 12 shows the specific term value ranges that were the most
frequently occurring from the MLPNN and XGBoost classifiers on the
InterProScan IPR dataset when predicting host gender. Note that they do
not have an overlap. This implies that the features being deemed important
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for each classifier are different.

Figure 13: 10 most frequently occurring HUMAnN GO terms from
MLPNN and XGBoost classifiers trained for host gender classification on
the InterProScan IPR dataset and interpreted by LIME

A. Most common terms for MLPNN classifier for host gender prediction trained
on HUMAnN Go term. B. Most common terms for XGBoost classifier trained for
host gender prediction on HUMAnN GO terms. Values averaged from test cycles
for classifiers with 5-fold cross validation. Dotted line shows highest possible
value if present in all samples.

Figure 13 shows the most frequently occurring terms from the MLPNN
and XGBoost classifiers on the HUMAnN GO dataset when predicting host
gender. The numbers are higher here due to the larger sample size of the
HUMAnN GO dataset.
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Figure 14: 10 most frequently occurring HUMAnN GO feature ranges from
MLPNN and XGBoost classifiers trained for host gender classification on
the InterProScan IPR dataset and interpreted by LIME

A. Most common terms for MLPNN Classifier trained on HUMAnN Go term. B.
Most common terms for XGBoost classifier trained on HUMAnN GO terms.
Values averaged from test cycles for classifiers with 5-fold cross validation.
Dotted line shows highest possible value if present in all samples.

Figure 14 shows the most frequently occurring terms from the MLPNN
and XGBoost classifiers on the HUMAnN GO dataset when predicting host
gender. The numbers are higher here due to the larger sample size of the
HUMAnN GO dataset.
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Figure 15: Figure of the 10 most important feature ranges for classification
as male or female for InterProScan IPR terms from trained classifiers
interpreted by LIME.

A. Interpretation of MLPNN trained on InterProScan IPR terms. B. Interpretation
of XGBoost trained on InterProScan IPR terms. Positive values contribute
towards classification as male, negative values contribute towards classification
as female. y-axis is impact size as a share of one. x-axis show features and their
respective value range.

Figure 15 shows the important feature values for the classification of
samples. A value of 0.03 here indicates a 3% increased probability of a
certain sample being classified as coming from a male. Note that the values
are lower for XGBoost than MLPNN. XGBoost applies lower impact values
for individual feature values in our model for the InterProScan IPR dataset.
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Term Range Mean
Importance

St. Dev Short
Description

IPR025399 > 0.01 0.03954 0.00816 Domain of unknown
function DUF4372

IPR026325 <= 0.00 0.03889 0.00581 Protein of unknown
function DUF932

IPR027848 <= 0.00 0.03633 0.00231 Protein of unknown
function DUF4494

IPR024445 > 0.00 0.02929 0.00497 SXO2-like transposase
domain

IPR039444 <= 0.00 0.02929 0.00322 SIR2-like domain
IPR003325 <= 0.00 -0.03712 0.00251 TerD domain
IPR025399 <= 0.00 -0.03878 0.00322 Domain of unknown

function DUF4372
IPR032299 <= 0.00 -0.04130 0.00414 Protein of unknown

function DUF4843
IPR005046 <= 0.00 -0.04585 0.00450 Protein of unknown

function DUF285
IPR024445 <= 0.00 -0.05107 0.00246 SXO2-like transposase

domain

Table 12: Table of the 10 most important feature ranges for classification
as male or female for InterProScan IPR terms from MLPNN classifier
interpreted by LIME. Positive values male. Negative values female.
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Term Range Mean
Importance

St. Dev Short
Description

IPR000257 <= 0.00 0.04282 0.00497 Uroporphyrinogen de-
carboxylase (URO-D)

IPR022791 > 0.01 0.01797 0.00435 Lysylphosphatidyl-
glycerol synthetase/
glycosyltransferase
AglD

IPR024522 <= 0.00 0.01486 0.00213 Protein of unknown
function DUF3789

IPR006009 > 0.01 0.1359 0.00415 N-acetylglucosaminyl-
transferase, MurG

IPR012547 <= 0.02 0.01333 0.00201 PD-(D/E)XK nuclease
superfamily 9

IPR022791 <= 0.01 -0.01348 0.00355 Lysylphosphatidyl-
glycerol synthetase/
glycosyltransferase
AglD

IPR024522 > 0.00 -0.01354 0.00163 Protein of unknown
function DUF3789

IPR010095 <= 0.01 -0.01510 0.00273 Transposase IS605,
OrfB, C-terminal

IPR011733 > 0.01 -0.01638 0.00151 Conserved hypothet-
ical CHP02185, integral
membrane

IPR000257 > 0.00 -0.03225 0.00449 Uroporphyrinogen de-
carboxylase (URO-D)

Table 13: Table of the 10 most important feature ranges for classification
as male or female for InterProScan IPR terms from XGBoost classifier
interpreted by LIME. Positive values male. Negative values female.
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Figure 16: Figure of the 10 most important feature ranges for classification
as male or female for HUMAnN GO terms from trained classifiers
interpreted by LIME.

A. Interpretation of MLPNN trained on HUMAnN GO terms. B. Interpretation of
XGBoost trained on HUMAnN GO terms. Positive values contribute towards
classification as male, negative values contribute towards classification as female.
x-axis show features and their respective value range. y-axis is impact size as a
share of one.

Figure 16 shows the 10 most important feature ranges for the classifiers
for on the HUMAnN GO dataset. Here the difference between the MLPNN
classifier and the XGBoost classifier in terms of the magnitude of impact of
the individual features is smaller than for the InterProScan IPR dataset.
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Term Range Mean
Importance

St. Dev Short
Description

GO:0009401 > 0.01 0.01936 0.00135 phosphoenolpyruvate-
dependent sugar
phosphotransferase
system

GO:0016021
<= 0.077

0.01814 0.00307 integral component of
membrane

GO:0005634 <= 0.00 0.01305 0.00110 nucleus
GO:0005737 > 0.27 0.01090 0.00281 cytoplasm
GO:0008982 > 0.01 0.00955 0.00109 protein-N(PI)-

phosphohistidine-
sugar phosphotrans-
ferase activity

GO:0045892 > 0.01 -0.01029 0.00125 negative regulation of
transcription, DNA-
templated

GO:0016310 > 0.00 -0.01043 0.00186 phosphorylation
GO:0005737 <= 0.24 -0.01148 0.00154 cytoplasm
GO:0009401 <= 0.01 -0.01199 0.00215 phosphoenolpyruvate-

dependent sugar
phosphotransferase
system

GO:0016021 > 0.81 -0.01375 0.00244 integral component of
membrane

Table 14: Table of the 10 most important feature ranges for classification as
male or female for HUMAnN GO terms from MPLNN classifier interpreted
by LIME. Positive values male. Negative values female.
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Term Range Mean
Importance

St. Dev Short
Description

GO:0070403 > 0.00 0.02233 0.00237 NAD+ binding
GO:0006826 > 0.00 0.01548 0.00135 iron ion transport
GO:0097367 > 0.00 0.01239 0.00252 carbohydrate derivat-

ive binding
GO:0003896 > 0.00 0.01154 0.00209 DNA primase activity
GO:0050343 <= 0.00 0.01111 0.00155 trans-2-enoyl-CoA

reductase (NAD+)
activity

0.00 < GO:0070403
<= 0.00

-0.01238 0.00125 NAD+ binding

GO:0050797 > 0.00 -0.01344 0.00152 thymidylate synthase
(FAD) activity

GO:0046080 > 0.00 -0.01412 0.00151 dUTP metabolic pro-
cess

GO:0009072 > 0.00 -0.01514 0.00150 aromatic amino acid
family metabolic pro-
cess

GO:0050518 <= 0.00 -0.01743 0.00236 2-C-methyl-D-
erythritol 4-phosphate
cytidylyltransferase
activity

Table 15: Table of the 10 most important feature ranges for classification
as male or female for HUMAnN GO terms from XGBoost classifiers
interpreted by LIME. Positive values male. Negative values female.
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8.4.2 Interpretation of Colorectal Cancer Developement Stage Predic-
tion

Figure 17: 10 most frequently occurring InterProScan IPR terms from
MLPNN and XGBoost LIME interpretation

A. Most common terms for MLPNN classifier trained for CRC development stage
prediction on InterProScan IPR terms. B. Most common terms for XGBoost
classifier trained for CRC development stage on InterProScan IPR terms. Values
averaged from test cycles for classifiers with 5-fold cross validation. Dotted line
shows highest possible value if present in all samples.

Figure 17 shows the most frequently occurring terms from the MLPNN
and XGBoost classifiers on the InterProScan IPR dataset. This gives us an
indication of which terms are deemed important. Note that they do not
have an overlap. This implies that the features being deemed important for
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each classifier are different.

Figure 18: 10 most frequently occurring InterProScan IPR feature ranges
from MLPNN and XGBoost LIME interpretation

A. Most common feature values for MLPNN classifier trained for CRC
development stage prediction on InterProScan IPR terms. B. Most common
feature values for XGBoost classifier trained for CRC development stage on
InterProScan IPR terms. Values averaged from test cycles for classifiers with
5-fold cross validation. Dotted line shows highest possible value if present in all
samples.
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Figure 19: 10 most frequently occurring HUMAnN GO terms from
MLPNN and XGBoost LIME interpretation

A. Most common terms for MLPNN classifier trained for CRC development stage
prediction on HUMAnN GO terms. B. Most common terms for XGBoost classifier
trained for CRC development stage on HUMAnN GO terms. Values averaged
from test cycles for classifiers with 5-fold cross validation. Dotted line shows
highest possible value if present in all samples.

Figure 19 shows the most frequently occurring terms from the MLPNN
and XGBoost classifiers on the HUMAnN GO dataset. The numbers are
higher here due to the larger sample size of the HUMAnN GO dataset.
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Figure 20: 10 most frequently occurring HUMAnN GO feature ranges from
MLPNN and XGBoost LIME interpretation

A. Most common feature values for MLPNN classifier trained for CRC
development stage prediction on HUMAnN GO terms. B. Most common feature
values for XGBoost classifier trained for CRC development stage on HUMAnN
GO terms. Values averaged from test cycles for classifiers with 5-fold cross
validation. Dotted line shows highest possible value if present in all samples.

Figure 20 shows the most frequently occurring terms from the MLPNN
and XGBoost classifiers on the HUMAnN GO dataset. The numbers are
higher here due to the larger sample size of the HUMAnN GO dataset.
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Figure 21: 10 most important feature ranges for cancer or advanced
adenoma classification and control classification for InterProScan IPR terms
from trained classifiers interpreted by LIME.

A. Interpretation of MLPNN trained on InterProScan IPR terms. B. Interpretation
of XGBoost trained on InterProScan IPR terms. Positive values contribute
towards classification as cancer or advanced adenoma, negative values contribute
towards classification as control. y-axis is impact size as a share of one. x-axis
show features and their respective value range.
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Term Range Mean
Importance

St. Dev Short
Description

IPR003325 <= 0.00 0.03471 0.00181 TerD domain
IPR032877 <= 0.00 0.03061 0.00340 Transposase

IS204/IS1001/IS1096
/IS1165, helix-turn-
helix domain

IPR038717 <= 0.00 0.02867 0.00294 Tc1-like transposase,
DDE domain

IPR004501 <= 0.00 0.02723 0.00240 Phosphotransferase
system, EIIC compon-
ent, type 3

IPR032299 <= 0.00 0.02318 0.00184 Protein of unknown
function DUF4843

IPR041408 <= 0.00 -0.03123 0.00281 Hemolysin coregulated
protein (Hcp) TssD

IPR004841 <= 0.00 -0.01948 0.00116 Amino acid permease/
SLC12A domain

IPR003491 <= 0.00 -0.01875 0.00195 Replication initiation
factor

IPR032806 <= 0.00 -0.01806 0.00233 H repeat-associated
protein, N-terminal

IPR004291 > 0.03 -0.01752 0.00281 Transposase, IS66

Table 16: Overview of the 5 most important feature ranges for cancer or
advanced adenoma and the 5 important feature ranges for control classi-
fication for InterProScan IPR terms from MLPNN classifier interpreted by
LIME.
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Term Range Mean
Importance

St. Dev Short
Description

IPR001661 <= 0.00 0.02623 0.00220 Glycoside hydrolase,
family 37

IPR010213 > 0.01 0.02351 0.00555 Transcription termina-
tion factor NusA

IPR025948 > 0.02 0.02153 0.00468 HTH-like domain
IPR004593 <= 0.00 0.01840 0.00401 Nuclease SbcCD sub-

unit D
IPR002589 <= 0.01 0.01637 0.00430 A1pp domain
IPR004593 > 0.00 -0.02526 0.00480 Nuclease SbcCD sub-

unit D
IPR012889 <= 0.00 -0.02237 0.00227 L-fucose isomerase, N-

terminal-2
IPR041233 <= 0.00 -0.01872 0.00192 Alpha galactosidase, C-

terminal beta sandwich
domain

IPR001029 > 0.01 -0.01480 0.00329 Flagellin, D0/D1 do-
main

0.01 < IPR010213
<= 0.01

-0.01137 0.00169 Transcription termina-
tion factor NusA

Table 17: Overview of the 5 most important feature ranges for cancer or
advanced adenoma and the 5 important feature ranges for control classi-
fication for InterProScan IPR terms from XGBoost classifier interpreted by
LIME.

Figure 21 shows the important feature values for the classification of
samples. A value of 0.03 here indicates a 3% increased probability of
a certain sample being classified as cancer or advanced adenoma. Note
that the values are lower for XGBoost than MLPNN. XGBoost applies
lower impact values for individual feature values in our model for the
InterProScan IPR dataset.
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Figure 22: Figure of the 5 most important feature ranges for cancer
or advanced adenoma and the 5 important feature ranges for control
classification for HUMAnN GO terms from trained classifiers interpreted
by LIME.

A. Interpretation of MLPNN trained on HUMAnN GO terms. B. Interpretation of
XGBoost trained on HUMAnN GO terms. Positive values contribute towards
classification as cancer or advanced adenoma, negative values contribute towards
classification as control. x-axis show features and their respective value range.
y-axis is impact size as a share of one.
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Term Range Mean
Importance

St. Dev Short
Description

GO:0005634 > 0.00 0.01847 0.00215 nucleus
GO:0005886 > 0.12 0.01332 0.00216 plasma membrane
GO:0045892 > 0.01 0.01032 0.00056 negative regulation of

transcription, DNA-
templated

GO:0005829 > 0.01 0.01006 0.00104 cytosol
GO:0009279 > 0.02 0.00878 0.00086 cell outer membrane
GO:0005634 <= 0.00 -0.06302 0.00215 nucleus
GO:0009401 > 0.01 -0.01258 0.00182 phosphoenolpyruvate-

dependent sugar
phosphotransferase
system

GO:0015473 <= 0.00 -0.01053 0.00042 fimbrial usher porin
activity

GO:0043711 <= 0.00 -0.01017 0.00041 pilus organization
GO:0009297 <= 0.00 -0.00906 0.00052 pilus assembly

Table 18: Overview of the 5 most important feature ranges for cancer
or advanced adenoma and the 5 important feature ranges for control
classification for HUMAnN GO terms from MLPNN classifier interpreted
by LIME.
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Term Range Mean
Importance

St. Dev Short
Description

GO:0103011 <= 0.00 0.02324 0.00128 mannosylfructose-
phosphate synthase
activity

GO:0004492 > 0.00 0.01439 0.00105 methylmalonyl-CoA
decarboxylase activity

GO:0009307 <= 0.00 0.01439 0.00184 DNA restriction-
modification system

GO:0008963 > 0.00 0.01167 0.00185 phospho-N-
acetylmuramoyl-
pentapeptide-
transferase activity

GO:0050114 > 0.00 0.01143 0.00107 myo-inosose-2 dehyd-
ratase activity

GO:0004492 <= 0.00 -0.03191 0.00102 methylmalonyl-CoA
decarboxylase activity

GO:0050114 <= 0.00 -0.01536 0.00061 myo-inosose-2 dehyd-
ratase activity

GO:0009253 > 0.01 -0.01506 0.00140 peptidoglycan cata-
bolic process

GO:0016311 > 0.00 -0.01455 0.00160 dephosphorylation
GO:0015407 <= 0.00 -0.01107 0.00126 ABC-type monosac-

charide transporter
activity

Table 19: Overview of the 5 most important feature ranges for cancer
or advanced adenoma and the 5 important feature ranges for control
classification for HUMAnN GO terms from XGBoost classifiers interpreted
by LIME.
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8.5 Execution Times for Classifiers

Figure 23: An overview of the execution times for the classifiers for gender
on the datasets.

A. Classifiers trained on InterProScan IPR terms. B. Classifiers trained on
InterProScan GO terms. C. Classifiers trained on HUMAnN GO terms. Execution
time for script with 5 k-fold splitting and no interpretation. Y-axis in Log10 scale.
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Figure 24: An overview of the execution times for the classifiers for cancer
on the datasets.

A. Classifiers trained on InterProScan IPR terms. B. Classifiers trained on
InterProScan GO terms. C. Classifiers trained on HUMAnN GO terms. Execution
time for script with 5 k-fold splitting and no interpretation.

Figure 23 and 24 show a comparison of the execution times for the
classifiers. The larger dataset from HUMAnN has slightly longer execution
times. As both are binary classification tasks the difference between there
is little difference between execution times for CRC stage prediction and
host gender prediction. The Neural Network based algorithms and the
random forest algorithm are the most demanding while the regression
based classifiers take the least amount of time to execute. The execution
times are for a set of 5-fold cross-validation and no interpretation.
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Due to sharing of resources we did not make full use of the resources
available to avoid waiting for resource allocation. We ran sets with 4
tasks in parallel using Snakemake with 24 cores. Effectively 6 cores per
algorithm. The exact specifications for the cores available on TSD are not
openly specified by TSD.

Figure 25: An overview of the execution times for the classifiers on the
datasets.

A. Classifiers trained on InterProScan IPR terms with interpretation. B. Classifiers
trained on HUMAnN GO terms with interpretation. Execution time for script
with 5 k-fold splitting with interpretation.

Figure 25 shows the disparity between execution for classifier with LIME
interpretation for a full k-fold cross validation with k = 5. There seems
to be not much of a difference in terms of the classification task being
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performed. It’s also clear that the training for the individual algorithms
has little bearing on the total execution time for the interpreter.

9 Discussion

The purpose of this master thesis was to build a pipeline for deep analysis
of cancer causing genes in the gut microbiome. In this section we will
discuss the results for the machine learning pipeline we’ve developed. We
will detail the strengths and weaknesses of our implementation and chart
a course for the future expansion on the work.

9.1 Summary

We were able to successfully make a pipeline tool we named MAPLEgf
(Multi-Algorithm Pipeline for machine LEarning on gene functions). We
preprocessed, trained and interpreted results from a series of machine
learning algorithms. MAPLEgf takes a defined set of inputs from two
different supported sources and formats. It applies six different machine
learning algorithms to the dataset with settings applied from a user
configuration file. The results are then interpreted by LIME and we receive
an overview of the most influential features.

With the constructed product we have a ready pipeline for final results
when all the samples are finished. The results we have obtained so far
as laid out in chapter 8 has shown that we have been able to get positive
results. As we get more samples preprocessed and ready for MAPLEgf we
are likely to get better results. Furthermore a focus of this project was to
create interpretable results. We have succeeded in this regard, however,
given the variable results from the interpreter some comparison and
evaluation of which algorithms provide the most plausible interpretations
will be required.

9.2 MAPLEgf

A substantial portion of this master thesis, and hence our results was the
development process of a pipeline to conduct analysis of gene functions
in the gut microbiome with machine learning algorithms. MAPLEgf is the
result of that effort. The latest version of MAPLEgf as of the submission
of this master thesis is v0.2. MAPLEgf is freely available on GitHub
at https://github.com/henrikolsvik/maplegf and is licensed under the
MIT Licence. The complete instructions for how to set up MAPLEgf are
available in the readme.md file in the MAPLEgf repository. MAPLEgf
has been confirmed to work with Python v3.6.2[31], NumPy v1.18.5[73],
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Snakemake v5.3.0[30], scikit-learn, v0.23.2[46], XGBoost v1.4.2[56] and
TensorFlow v2.3.0[66]. Please refer to the requirements.txt file in the
MAPLEgf GitHub repository for a complete list of all dependencies and
their respective versions.

Figure 2 in the Methodology chapter shows the overall dataflow in
MAPLEgf. MAPLEgf has proved a reliable tool for performing machine
learning on gene function data, and it can be readily integrated into larger
pipelines.

Execution times for MAPLEgf vary depending on the system configur-
ations, but on TSD we were able to consistently make use of 6 AMD CPU
cores per Snakemake task. We found that increasing the number of cores
allocated to MALPEgf increased the performance, but not linearly. The
subtasks making use of scikit-learn and TensorFlow had better multi-core
scaling than the data preprocessing subtask (data not shown). MAPLEgf
was only tested using CPU performance. TensorFlow has support for GPU
accelerated machine learning and enabling that should reduce classifier
training time. Memory use was at most 5GiB RAM in the 24 core 4 task
configuration.

9.3 Discussion of Classifier Results

The best performing algorithms were MLPNN, random forest, XGBoost.
Occasionally lasso also yielded results as good as the best classifiers. We
have AUC results at least one standard deviation above baseline for all
datasets for at least one algorithm. In some instances more than two
standard deviations above baseline. By individual train/test cycles for the
dataset we find a greater spread. When looking at the mean AUC of an
entire execution cycle we have smaller variances between then than when
looking at individual train/test cycles.

Our interpretation results come from an averaged model. Since we
average the results for the importance of every feature range, we should
have more certain results since the individual variations have been
averaged out. We obtained values for feature importance in line with
Yachida et al.2019[75] on KEGG Orthology[76] (KO) terms. Though it
should be noted that they only operated with a set of 16 KO terms and in
combination with metabolomic and taxonomic information. Their dataset
was also of similar size with what we have processed and trained on so
far. In the models where taxonomic information, metabolomic information
and KO terms were included the overall AUC was higher. Transferring this
to our study it seems to imply that we could make use of our taxonomic
classification information to improve overall AUC for the classifiers.

The AUC numbers for our classifiers are consistently lower than from
Pasolli et al. 2016[15] and Ai et al. 2017[70]. Comparing AUC values
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between different studies is not straightforward as uneven distributions of
cases and controls might lead to high baseline values. For the french dataset
from Ai et al. 2017[70] and the dataset from Pasolli et al. 2016[15] we have
a baseline AUCs of 0.624 and 0.603 respectively. Given the different feature
sets ours are not directly comparable, however, it is clear that it is possible
to get higher AUC numbers for classifiers trained on metagenomic data.

Looking at the results from Yachida et al. 2019[75], which make use of
gene functions, can give us a better indication as their results are more
comparable to ours. For classification of host stage 3 or 4 CRC they had an
AUC of 0.69 with a baseline AUC of 0.61 using gene functions with random
forest. We managed results with an AUC of 0.6288 with a baseline AUC of
0.5277 using random forest on the InterProScan IPR dataset, which was the
best performing dataset for random forest on host CRC stage prediction.
Our colorectal cancer cases are also from an earlier stage of colorectal cancer
development, which is promising in regard to the potential future clinical
value of our findings. In summary these are encouraging results and give
promise to the eventual final results with the entire study dataset.

Two other studies that make for interesting comparisons are Wirbel et
al. 2019[77] and Thomas et al. 2019[78]. Wirbel et al. 2019 performed
CRC stage classification on a combined dataset from several different
studies using EGGnog[79] and taxonomic information. EGGnog provided
functional annotations and so make for an interesting comparison. They
obtained AUC values from 0.78 to 0.89 on data with slightly variable ratios
of cases to controls. With that they were able to identify significant enriched
gene clusters in the metagenomic profiles of CRC cases.

Thomas et al. 2019[78] also make use of datasets from several different
studies. In common with our data they also have information from
HUMAnN and seek to find metagenomic profiles associated with colorectal
cancer. One interesting result from Thomas et al. 2019 is examining a
minimum microbial signature for CRC detection. They looked at prediction
accuracy relative to the number of features included and found that small
subsets can give nearly as good predictive performance as the entire feature
set. This was at a species level, but is interesting in relation to gene
functions nonetheless, especially when looking at the out-sized importance
placed by LIME in a few features. The overall AUC values from the study
were higher than from our results.

9.4 Strengths

A general strength of MAPLEgf that has been constructed is that it is highly
configurable. Parameters can easily be changed through a set of config
files associated with each step in the process. This configurability makes it
easy to produce batches of results and compare results with the parameters
selected. The tools used in the making of MAPLEgf are widely supported
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and well documented. This will make it easier for the CRCbiome team
to integrate it into the entire pipeline for metagenomic analysis. Another
technical strength is that it’s freely available to clone on GitHub with
documentation for how to it set up and start an analysis.

Data about CRC development stage and the gut microbiome is sensitive
personal information. In the course of this project we have conducted
machine learning without direct identification by any other means than
sample id. As a part of the preprocessing pipeline we also filter out human
genes found in the gut microbiome. Thereby not doing any machine
learning on human genes.

The pipeline has a wide range of algorithms implemented as it stands.
This gives the user a good ability to compare the results between the
different methods that are applied. In the event that more or different
algorithms should be included in the future, the structure is such that it
should be very simple to add them in the future. This is because all the
algorithms implement an interface where they have a set of commonly
accessible methods and where the program configuration is managed.
The source code is entirely hosted on GitHub, and free to clone and by
following the provided instructions anyone should be able to start using it
with fairly little effort.

The pipeline is to the best of our knowledge the first of it’s kind to look
at gene functions with a dataset of this size and using both InterProScan
and HUMAnN. As described in the earlier works section prediction CRC
or CRC development stage using metagenomic data is not a completely
novel idea, but it has not been done in this way and at this scale for gene
functions before.

Because of the cross-validation applied to the analysis and the large
sample size we have good protection from overfitting on our dataset. This
is something that has been borne out by our results and helped some of
the classifiers implemented using solvers, such as ADAM[80], which can
optimize in a way that can reduces overfitting.

The project also has implemented gene-function interpretation that has
not been done on this kind of data of this size and with these term
sets. Therefore having it in the project pipeline is a unique advantage of
our project. And is an important part of gaining practically applicable
information about the role of the gut microbiome in colorectal cancer
development. This pertaining to the goal of this part of the analysis
which is to find which specific gene functions are biomarkers for CRC
development.

Our samples come from participants taking part in a screening program.
As such our results are interesting in the way that any biomarkers could be
used in colorectal screening. For instance Yachida et al.2019 [75] attempt to
predict stage 3 or 4 colorectal cancer. This is a late stage of cancer where
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the gut microbiome might be more affected by the CRC development, but
where the benefit of screening for cancer is gone as the patient is already
seriously ill.

9.5 Weaknesses

Currently we do not have the complete results for the project. Ideally
we would have access to all complete data from the approximate total
2500 samples. Due to delays stemming from the COVID-19 pandemic the
sequencing has taken longer than intended. A larger amount of samples
would reduce the risk of overfitting, likely reduce AUC variance between
each individual training session and possibly increase the average AUC for
each run.

We have a very feature rich dataset. We found better results for a
preprocessed dataset where we reduced the amount of features by a
coverage filter (data not shown). By way of preprocessing we tried to
remove the noise and improve classification accuracy and reduce the
variance. This is an optimization issue, and it’s not clear that we found the
ideal parameters. Part of the reason why it’s difficult to determine is due
to the variance in classifier results. In order to properly get a very accurate
reading for any one setting quite a few executions have to be made.

In regard to the individual classifier results they have been mostly in
line with our expectations. We tried two regression based classifiers, two
"forest"-based classifiers and two neural network based classifiers. On
metagenomic data it was expected that we would get the highest AUC
results from the neural network based classifiers, but get very good results
from forest based classifiers. Our assumptions were on the basis of such a
performance profile on metagenomic data for Pasolli et al. 2016[15] and
This has broadly seem to been the case, however we found that LSTM
underperformed relative to expectations, rarely performing better than the
baseline value. That does seem improbable, but when working on the
LSTM we were unable to improve performance. We have not applied time
series datasets which is a special ability of LSTMs to handle, but without
that they should perform around the same level as MLPNNs. More on this
in the further works section.

From the time the samples are taken to the final gene annotations there
are quite a few steps. In some of them there is no guarantee that the results
are entirely accurate. The entire analysis pipeline has been constructed
with state of the art resources and tools, so this is inevitable. Still, it is
worth mentioning as a possible weakness as in the future there might be
better resources and tools for metagenomic analysis which could improve
results.

Our samples do not all originate from the same follow up stage of
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CRC screening. When doing colonoscopies or sigmoidoscopies the gut
microbiome is impacted. We know that and we considered the additional
samples included to be more valuable than keeping the dataset baseline
only. Still, in theory it would be ideal to have nothing but samples taken at
the same stage of screening. With all the samples finally it would make
sense to split this up and look at baselines and other screening stages
separately.

9.6 Further Work

In regard to further work on this project the first point should be running
the entire dataset through the pipeline as soon as it is ready. The increase
in samples will likely reduce variance in results, in part by increasing test
sample sizes since each k-fold will be bigger. A larger training set should
give better results, less prone to overfitting and which are less prone to
making significantly different models with every train cycle. In essence
a better and more stable model. Though looking at the results from our
interpreters and the relatively small standard deviation for the feature
importance for CRC stage classification it seems that our model is at present
fairly stable.

When preprocessing the data it should be possible to only include a
subset of GO terms that are functionally relevant to CRC. That might
exclude unexpected associations, but should reduce the number of features
and by this reduce the amount of noise. Given that we do not remove any
important links or features this should improve accuracy and give clearer
results when interpreting by avoiding overfitting. This could be an avenue
worth exploring at a later point in time.

We could explore letting the output about which terms are interpreted as
relevant back into the analysis. We could for instance look at the classifier
performance if we only include features that occur with a given frequency
or higher in the 100 most important features in a LIME interpretation. This
makes overfitting on the dataset much more likely, but it could be worth
exploring, even if just to confirm that features outside of this set have little
bearing on classifier AUC.

Since we have samples taken at different times in the screening process
that enables us to try time series data for the LSTM algorithm. This was
not tried in this instance as we do not have enough sequenced samples for
all times in the sequencing cycle finished. Therefore this will have to wait
until we have more of the results in from sequencing.

The interpretation phase of the pipeline yields information about which
features have a large bearing on the predictions made by the model.
Analysis and interpretation of the terms by someone with a background
in molecular microbiology would give an indication of whether the
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terms brought out by the model are likely to be associated with CRC
development. This would help with ascertaining which of the models yield
the best interpretation among those tried.

We could also stratify the dataset and explicitly compare different groups
in it. Such as only looking at men or women, specific stages of CRC
development or certain lifestyle factors. As brought up in discussion of
Yachida et al. 2019 [75], we could also improve accuracy by combining
taxonomy and gene function information in classifier training.

10 Conclusion

Given the basis of earlier work in applying machine learning methods
on taxonomic distributions of gut microbiomes to predict host traits, it
is clear that such an approach can yield insights. We have succeeded in
constructing a pipeline for deep analysis of cancer causing genes in the gut
microbiome. For all datasets we have been able to get AUC results that
were well above their respective baseline values for at least some of the
classifiers applied.

These results have been interpreted using LIME and we have been able
to identify some preliminary candidates as gene function biomarkers for
CRC development stage. The results have been promising. In the future
this pipeline will be applied to the entire dataset when all the samples
included in the study have been sequenced and processed. That will
provide some final results for this project. With the current conditions that
will be around 2Q2022. If as a result of this we find certain gene functions
acting as biomarkers for CRC it can help create better screening protocols
for colorectal cancer in the future.
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11 Abbreviations

AUC: Area Under Curve
BCSN: Bowel Cancer Screening in Norway
CRC: Colorectal Cancer
DLT: Decision Learning Tree
FOBT: Faecal Occult Blood Test
GO: Gene Onthology
HFE: Hierarchical Feature Extraction
LSTM: Long Short-Term Memory
MAPLEgf: Multiple Algorithm Pipeline for machineLEarning on gene
functions
MLP: Multi-layer Perceptron
NN: Neural Network
KEGG: Kyoto Encyclopedia of Genes and Genomes
RNN: Recursive Neural Network
SVM: Support Vector Machines
TSD: Tjeneste for Sensitive Data
UFS: Univariate Feature Selection
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