
Package Template Script

An Implementation of Package
Templates in TypeScript

Petter Sæther Moen

Thesis submitted for the degree of
Master in Informatics: Programming and System

Architecture
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2021

Package Template Script

An Implementation of Package
Templates in TypeScript

Petter Sæther Moen

© 2021 Petter Sæther Moen

Package Template Script

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

In this thesis we will explore how TypeScript can be extended with an
additional language mechanism for re-use and adaptation, namely Package
Templates. We will look at how Package Templates, which was initially
designed for a nominally typed language, will work in a structurally typed
language like TypeScript, and what differences this makes for its usage.

Package Templates, or as it was originally called, Generic Packages,
is a language mechanism first proposed by Krogdahl in 2001. The
language mechanism gives the programmer the opportunity to create
collections of classes, interfaces and enums which can later be re-used
and adapted. These collections can be instantiated inside new collections,
where the mechanism allows for renaming classes and its attributes, as
well as merging members of the instantiated collections. This enables
the programmer to write general collections for concepts such as graphs
and lists, and later adapt these to new domains with additional concepts
forming collections for domains such as road systems between cities.

The result of the work done in this thesis is the Package Templates Script
programming language, or just PTS for short, and an easily accessible
compiler for the language. This contribution will hopefully make the
language mechanism, Package Templates, more accessible for newcomers,
and potentially spark further research in the field.

i

ii

Acknowledgements

I would like to thank my supervisor, Associate Professor Eyvind Wærsted
Axelsen, who has made me a more critical thinker through his thorough
and pedagogic feedback and has helped me gain insights I would likely
have lacked without his help.

I would also like to thank my co-supervisor, Professor Stein Krogdahl, who
unfortunately fell ill and passed away. It was a true inspiration to work
with someone with such vast knowledge and experience in the field of
programming languages.

Finally, I would like to thank my parents who have supported and encour-
aged me throughout my education, and my friends who have motivated
me and brightened my days in these rather challenging times.

Petter Sæther Moen
Oslo, 2021

iii

iv

Contents

Abstract . i
Acknowledgments . iii

I Introduction and Background 1

1 Introduction 3
1.1 Research Questions . 3
1.2 Contributions . 4
1.3 Chapter Overview . 4
1.4 Project Source Code . 5

2 Background 7
2.1 Package Templates . 7

2.1.1 Basics of Package Templates 7
2.1.2 Concepts of PT . 15

2.2 TypeScript . 16
2.2.1 JavaScript . 16
2.2.2 What is TypeScript? 19

2.3 Structural and Nominal Type Systems 19

II The Project 23

3 The Language - PTS 25
3.1 Syntax . 25
3.2 The PTS Grammar . 26
3.3 Example Program . 27

4 Planning the Project 31
4.1 TypeScript vs. JavaScript . 31

4.1.1 Type-checking Templates 31
4.1.2 Renaming . 32
4.1.3 Language Choice Conclusion 32

4.2 What Do We Need? . 32
4.3 Approach . 33

4.3.1 Implementing PT as an internal DSL 33
4.3.2 Preprocessor for the TypeScript Compiler 37

v

4.3.3 TypeScript Compiler Plugin/Transform 37
4.3.4 Babel plugin . 38
4.3.5 TypeScript Compiler Fork 38
4.3.6 Making a Custom Compiler 39

4.4 Conclusion . 39

5 Implementation 43
5.1 Methodology . 43
5.2 Compiler Architecture . 44
5.3 Lexer and Parser . 44

5.3.1 Parser Generator . 44
5.4 Transforming Parse Tree to AST 47

5.4.1 The AST Nodes . 47
5.4.2 Transforming . 48

5.5 Closing Templates . 48
5.5.1 Create a Correctly Scoped AST 49
5.5.2 Transforming Nodes to Reference Nodes 50
5.5.3 Perform the Rename 52
5.5.4 Go Back to the Original AST 54
5.5.5 Merge Classes . 54

5.6 Type-checking of Templates 56
5.7 Code Generation . 56
5.8 Testing . 57

5.8.1 Lexer and Parser . 57
5.8.2 Compiler . 58

5.9 Completing the Implementation 59
5.9.1 addto-statements . 59
5.9.2 Supporting All Attribute Declarations 60
5.9.3 Supporting All References 60
5.9.4 Supporting Multi File Programs 60

6 Using PTS 61
6.1 Installing and Using PTS Globally 61
6.2 Creating a PTS Project . 62
6.3 A "Real World" Example . 63

6.3.1 Short Introduction to React 63
6.3.2 The FetchJSON Template 64
6.3.3 The StateLogger Template 65
6.3.4 Creating the Pokemon Component 65
6.3.5 How the Example Benefited From PT 66

III Results 67

7 Evaluation and Discussion 69
7.1 Does PTS Fulfill The Requirements of PT? 69

7.1.1 The Requirements of PT 69
7.1.2 PTS’ Implementation of the Requirements 72

vi

7.1.3 Conclusion . 83
7.2 Nominal vs. Structural Typing in PT 83

7.2.1 Advantages of Nominal Type Systems 83
7.2.2 Advantages of Structural Type Systems 84
7.2.3 Disadvantage of Structural Type Systems 85
7.2.4 Which Better Fits PT? 85

8 Concluding Remarks 89
8.1 Addressing Research Questions 89
8.2 In Retrospect . 91

8.2.1 Approach . 91
8.3 Future Work . 92

8.3.1 Finishing the PTS Compiler 92
8.3.2 Improve the Compilers Error Messages 92
8.3.3 Making Syntax Highlighting for the PTS Language . 92

vii

viii

List of Listings

2.1 Defining a package P and a template T 8
2.2 Instantiating template T in package P 9
2.3 Example of renaming classes during instantiation. This

could be used to make the classes fit the domain of the
project better. 10

2.4 Example of instantiating the same template twice solved by
renaming. 11

2.5 Adding new attributes to the instantiated class A in package P 12
2.6 Adding the Loggable interface to the Graph class from

listing 2.3 on page 10, making it compatible with our logger
implementation. 12

2.7 Instantiation with class merging through renaming 13
2.8 Example of a nominally typed program in a Java-like language 21
2.9 Example of a structurally typed program in a Java-like

language . 21
3.1 An example program with instantiation, renaming, and

addition-classes in PTS vs. PT 29
4.1 Example of defining a template in a library implementation. 35
4.2 Example of renaming a template class 35
4.3 Example showcasing the problems of renaming classes in a

library implementation. 36
4.4 Example of instantiating a template in a library implementa-

tion . 36
5.1 Snippet from the PTS grammar, where we override the

_declaration rule from the TypeScript grammar, and
adding two additional declarations. 47

5.2 AST of a class declaration of class A before and after
transforming the references. The values surrounded by
angle brackets are references to Scope/Class instances. . . . 53

5.3 Example of Tree-sitter grammar test 57
5.4 Example of a test for the PTS compiler 58
7.1 Example of parallel extension in PT. Here we make additions

to both A and B in our instantiation in package P, and we are
able to reference the additions done to A in our addition to
B. This is done without the need to cast A, as if the additions
were present at the time of declaration. 70

ix

7.2 Modified example from [13] where type parameterization is
used to create a list implementation. 72

7.3 An example program that should fail during compilation,
where we are trying to reference a non-existent attribute, h,
in an addition to class A. 74

7.4 Example showcasing the preservation of super-/subclass
relations . 75

7.5 Example of renaming in PTS 77
7.6 Example showcasing the problem of having renaming in a

structural language. In class B we have an attribute, a, that
expects an object that contains an attribute i. The attribute
is initialized with an A object. This is fine in template T as A

contains an attribute i, however when class A’s attribute is
renamed in the instantiation in package P then an object of A
is no longer valid as a value, since it no longer contains an
attribute i. This is an instance where we can’t just rename
the references to i, since this reference isn’t explicitly related
to A. 78

7.7 Example showing how a renaming of an interfaces’ at-
tributes could result in an invalid program. 79

7.8 A program showcasing multiple uses in PTS, and the
resulting program in TypeScript at the bottom. 80

7.9 Example of a similar list implementation as in listing 7.2 on
page 72, without the use of required types. Instead of giving
a type for the required type we will have to merge the class
E with the "actual parameter". 81

7.10 Example of class merging in PTS, where we merge two
classes, A, with attributes, i and j, respectively 82

7.11 Example of subtype relations in nominal and structural
typing, in a Java-like language. In the example of the
nominal subtype we have to explicitly state the subtype
relation, while in the structural subtype example the subtype
relation is inferred from the common attributes. 84

7.12 Example of spurious subsumption in TypeScript 86
7.13 Example of how using renaming in PTS might break a pro-

gram. After renaming the field i to j the class Consumable is
no longer consumable by function f in class Consumer. . . . 87

7.14 Example of how using renaming in PT might break a
program. After renaming the method f to g the class, A, no
longer conform to the implementing interface I. 88

x

Part I

Introduction and Background

1

Chapter 1

Introduction

Package Templates is a language mechanism created at the University
of Oslo, at the Department for Informatics. The language mechanism
is a mechanism for re-use and adaptation, where you are able to define
collections of classes, interfaces and enums. These collections can then be
instantiated at a later time, in a different context, where we can tailor the
collections’ content to fit its use. Package Templates was first proposed by
Krogdahl in 2001 [12], and was at the time called Generic Packages. Since
then further proposals have been made to the language mechanism, and it
is now known as Package Templates, or PT for short.

TypeScript is a superset of JavaScript, the programming language of the
web. It extends JavaScript with the addition of static type definitions. These
type definitions are used for type-checking the program at compilation, as
well as serving as documentation for the program [25].

This thesis will explore how Package Templates can be implemented in
TypeScript. Here we will discuss the different approaches that can be taken
when working with a project such as this, and how such an implementation
can be carried out.

The purpose of implementing PT in TypeScript is to look at how this
language mechanism would it into a language like TypeScript. Most
interesting is probably TypeScript’s structural type system, and how this
mechanism will work in this context, where other implementations in
statically typed languages so far have only been conducted in nominally
typed languages. It will also be interesting to see how PT can be used in
the context of the web, with its vast variety of frameworks and libraries.

1.1 Research Questions

As we briefly touched upon in the introduction, an implementation of
Package Templates in a language like TypeScript gives rise to some
interesting research questions:

3

• RQ1: How does the language mechanism Package Templates fit into
TypeScript?

• RQ2: Does structural typing change how the core of Package
Templates works?

• RQ3: Will having PT in a structurally typed language have any
notable advantages or disadvantages over having it in a nominally
typed language?

1.2 Contributions

This thesis’ main contribution is the PTS compiler. It is easily accessible
through the Node Package Manager, henceforth referred to as npm. This
makes it easy to try out the PTS language, but more importantly the PT
language mechanism. Having easy access to a language with PT might
make adoption of the language mechanism greater, and spark new research
within the field.

By making the parser for the language separate from the compiler this also
contributes to making creations of tools for the language more accessible.
While we have in this project used the parser solely for producing a parse
tree for our compiler, this parser could also be used to make other tooling,
such as syntax highlighting or a language server.

The final contribution this thesis makes is conveying how to approach
related projects. We show in this thesis how someone can approach
extending a language by utilizing the grammar extending capabilities of
the general-purpose parser generator, Tree-sitter, and how Tree-sitter can
be used as the parser for a compiler.

1.3 Chapter Overview

Chapter 2 will give the reader an introduction to the Package Templates
language mechanism and the programming language TypeScript. We
will also look into TypeScript’s underlying language JavaScript, and its
ecosystem.

Chapter 3 will present the programming language PTS, which is a superset
of TypeScript with the addition of Package Templates. Here we will look at
the grammar of the language as well as an example program.

Chapter 4 is focused around the planning phase of the project. This
includes a discussion about whether we will need to go for TypeScript as
our host language, or if we could opt for the simpler underlying language,
JavaScript. We will look at the requirements for our project and look at the
different approaches we could use to implement PTS, as well as making a
decision for which approach is the most beneficial for our project.

4

Chapter 5 is all about the implementation of our compiler for the PTS
programming language. Here we will look at the methodology used
during the implementation phase, as well as going into detail about how
the compiler was implemented. As the compiler is not fully implemented
we will also talk about what remains to be implemented, and how this
could be implemented to complete the implementation.

Chapter 6 presents how our compiler for the PTS programming language
can be installed and used. We will present the two main ways of installing
the compiler, either as a project dependency or a global installation. With
an understanding of how to get the compiler up and running we will look
at a real world example of how PTS can be used.

Chapter 7 is the first chapter of the results part of the thesis. Here we will
discuss and evaluate the PTS programming language, checking whether it
is a "true" implementation of PT, and how PT is affected by a structurally
typed language.

Chapter 8 concludes this thesis. Here we will revisit the research questions
we introduced previously, and answer them with the knowledge we have
gained in the span of this work. We will conclude the chapter, and the
thesis, by looking at what could have been done better in retrospect, and
some proposals for future works within this field.

1.4 Project Source Code

The source code for the implementation of the PTS language is split up
into two GitHub repositories, one for the parser of the project, and one
for the compiler. The parser’s source code can be found at https://github.
com/petter/tree-sitter-pts/releases/tag/master-thesis. Source code for the
compiler can be found at https://github.com/petter/pts-lang/releases/tag/
master-thesis.

5

https://github.com/petter/tree-sitter-pts/releases/tag/master-thesis
https://github.com/petter/tree-sitter-pts/releases/tag/master-thesis
https://github.com/petter/pts-lang/releases/tag/master-thesis
https://github.com/petter/pts-lang/releases/tag/master-thesis

6

Chapter 2

Background

2.1 Package Templates

Krogdahl proposed Generic Packages in 2001, which is a language mech-
anism aimed at "large scale code re-use in object-oriented languages" [12].
The idea behind this mechanism is to make modules of classes, called pack-
ages, that could later be imported and instantiated. This would make tex-
tual copies of the package body, and would also allow for further expand-
ing the classes of the packages. Modularizing through Generic Packages
made programming more flexible as you would easily be able to write
modules with a certain functionality and be able to later import it several
times when there is a need for the functionality.

Generic Packages was later extended, and the mechanism is now called
Package Templates (while the textual program modules themselves are
simply called templates). The system is not fully implemented and there
exists a number of proposals for extending it.

2.1.1 Basics of Package Templates

In this section we will look at the syntax of Package Templates (further
referred to as PT) in a Java-like language as proposed in [13], with the
extensions of required types as proposed in [3].

Defining Packages and Package Templates

Packages are defined by a set of classes similar to a normal Java package.
Package templates (later just templates for short), are defined similarly except
for using the keyword template instead of package. Listing 2.1 on the
following page shows an example of defining packages and templates.
The contents of a package can be used as you would with a normal Java
package.

7

package P {

interface I { ... }

class A extends I { ... }

}

template T {

class B { ... }

}

Listing 2.1: Defining a package P and a template T

Instantiating Templates

Instantiating is what really makes PT useful. When defining packages
and templates, PT allows for including already defined templates through
instantiating. Instantiation is done inside the body of a package (or a
template) with the use of an inst-clause. Instantiating a template will make
textual copies of the classes, interfaces and enums from the instantiated
template and insert them replacing the instantiation statement at compile
time. Note that the template itself still exists and that it can be instantiated
again in the same program.

Listing 2.2 on the next page shows an example of instantiating a template
inside a package. The resulting package P will then have the classes A and
B from template T and its own class C. Note that class C can reference class
A and B as if they were defined in the same package, which they essentially
are after the instantiation.

Renaming

During instantiation it is possible to rename classes (as well as interfaces
and enums) and class attributes. Here and henceforth we will be using
the term class attributes to describe the union of both the fields and the
methods of a class. Renaming is a part of the instantiation of templates,
and will only affect the copy made for this instantiation, and it is done
for the copy before it replaces the inst-statement. Renaming is denoted
by an optional with-clause at the end of the inst-statement. In the with-
clause one can rename classes using the following fat arrow syntax, A =>

B, where class A is renamed to B, and rename class attributes with a similar
thin arrow syntax, i -> j, where the attribute i is renamed to j. For
method renaming, the signature of the method has to be given, so that it
is possible to distinguish between overloaded versions, i.e. m1(int) ->

m2(int). On a more technical level the compiler will find the class or
attribute declaration that is going to be renamed, and then find all name
occurrences bound to this declaration and rename these.

Field renaming comes after the class renaming enclosed by a set of
parentheses. Renaming classes will also affect the signatures of any
methods using this class. Listing 2.3 on page 10 shows an often used

8

// Before compile time instantiation of T

template T {

class A { ... }

class B { ... }

}

package P {

inst T;

class C {

A a;

B b() {

...

}

}

}

// After compile time instantiation of T

package P {

class A { ... }

class B { ... }

class C { ... }

}

Listing 2.2: Instantiating template T in package P

example of renaming, where a graph template is renamed to better fit
a domain, in this case a road map. When renaming the class Node

the signature of the methods in Edge using this Node was also changed
to reflect this, i.e. the method Node getNodeFrom() would become City

getNodeFrom() with the class rename, and City getStartingCity() with
the method renaming.

Renaming makes it possible to instantiate templates with conflicting names
of classes, or even instantiate the same templates multiple times. Listing 2.4
on page 11 shows an example of this where we instantiate the same
template, T, twice without any issues.

Additions to a Class

When instantiating a template you can also add attributes to the classes of
the template, as well as extending the class’ implemented interfaces. These
additions will only apply to the currently instantiated copy. Additions
are written inside an addto-clause. Extending the class with additional
attributes is done in the body of the clause, like you would in a normal Java
class. If an addition has the same signature as an already existing method
from the instantiated template class, then the addition will override the
existing method, similarly to traditional inheritance.

Listing 2.5 on page 12 shows an example of adding attributes to an

9

template Graph {

class Node {

...

}

class Edge {

Node getNodeFrom() { ... }

Node getNodeTo() { ... }

}

class Graph {

...

}

}

package RoadMap {

...

inst Graph with

Node => City,

Edge => Road

(getNodeFrom() -> getStartingCity(),

getNodeTo() -> getDestinationCity()),

Graph => RoadSystem;

...

}

Listing 2.3: Example of renaming classes during instantiation. This could
be used to make the classes fit the domain of the project better.

10

template T {

class A {

void m() { ... }

}

}

package P {

inst T;

inst T with A => B;

}

// package P after compile time instantiation and renaming

package P {

class A {

void m() { ... }

}

class B {

void m() { ... }

}

}

Listing 2.4: Example of instantiating the same template twice solved by
renaming.

instantiated class. The resulting class A in package P would have the field i

and the methods someMethod and someOtherMethod.

It is also possible to extend the list of implemented interfaces of a class
by suffixing the addto-clause with a implements-clause containing the list
of implementing interfaces. Having the possibility to add implementing
interfaces to classes makes working with PT easier and enables the
programmer to re-use template classes to a much larger degree. This
feature’s use is easier explained through an example.

Say we have implemented some class that will deal with logging. This
class can log the state of a class given that the class implements some
interface Loggable. If we want to be able to log the state of our Graph
implementation, from 2.3 on the preceding page, then the Graph class
would need to implement the Loggable interface. We can’t do this at the
declaration of the Graph template, as we do not have access to the interface
at the time of declaration. By using addto however we are able to add the
Loggable interface and the log method to the Graph class. You can also
achieve the same functionality through class merging, which we will look
at in the following section.

11

template T {

class A {

void someMethod() { ... }

}

}

package P {

inst T;

addto A {

int i;

void someOtherMethod() { ... }

}

}

Listing 2.5: Adding new attributes to the instantiated class A in package P

template Logger {

interface Loggable {

String log();

}

class Logger {

void log(Loggable loggable) {

...

}

}

}

package P {

inst Graph;

inst Logger;

addto Graph implements Loggable {

String log() {

...

}

}

}

Listing 2.6: Adding the Loggable interface to the Graph class from listing 2.3
on page 10, making it compatible with our logger implementation.

12

template T1 {

class A {

...

}

}

template T2 {

class B {

...

}

}

package P {

inst T1 with A => C;

inst T2 with B => C;

}

Listing 2.7: Instantiation with class merging through renaming

Merging Classes

If two or more classes in the same or in different instantiations in one
package share the same name they will be merged into one class. Through
this mechanism PT achieves a form of multiple inheritance. This form of
inheritance is different from what you would normally find in Java, it acts
more like mixins (a language feature for injecting code into a class, first
introduced in the programming language Jigsaw [6]). The merging of the
classes will not lead to a classic superclass-subclass relation, as the merged
class is simply a concatenation of textual copies of the merging classes. We
call this kind of inheritance static multiple inheritance.

If two classes don’t share the same name, it is still possible to force a merge
through renaming them to the same name. In listing 2.7 we see an example
of renaming class A from template T1 to C and class B from template T2 to
C. Renaming these two classes to the same name will force these classes to
be merged in package P. The result of this merge is a new class C with the
attributes of both classes. The two classes A and B, from templates T1 and T2

respectively, no longer exists in package P, but have formed the new class
C, which is a union of both. Any pointers typed with the old A or B will now
be typed with the new merged class C.

Required Types

Required types in PT gives the programmer extra flexibility when declaring
templates. They are generic types declared at the template level, which can
be substituted at instantiation. If a template instantiates another template
with a required type, but does not give an actual parameter for the required
type, then the required type is propagated to the template it is being
instantiated into. When a template with required types is instantiated in

13

a package, then all the required types needs actual parameters.

Required types can then be used throughout the template, similar to how
you would use generics in a Java class. The most basic required type can
be seen below.

template T { required type R { } }

Here R is a required type for which any class or interface can be substituted
at instantiation. Required types can be constrained using both nominal
types, such as classes and interfaces, and structural types, constraining the
type to have certain attributes. Below we can see examples of declaring
required types with different types of constraints, where the first has a
simple nominal type constraint, the second having a structural constraint,
and the third having both a nominal and structural constraint.

template T {

required type R1 extends Runnable { }

required type R2 { void f(); }

required type R3 extends Runnable { void f(); }

}

We could then instantiate the template, T, giving classes or interfaces as
actual parameters for the required types, as seen below.

package P {

class A implements Runnable {

void run() { ... }

}

class B {

void f() { ... }

}

interface C extends Runnable {

void f();

}

inst T with

R1 <= A,

R2 <= B,

R3 <= C;

}

Required types as presented above can not be used as classes or interfaces,
that is you cannot create a new object of the type or implement the type as
an interface for a class, as they can be substituted with both. They can only
be used as type references, like in the simple Tree implementation example
below.

template Tree {

required type E { }

14

class Tree {

Node root;

...

}

class Node {

E e;

List<Node> children;

...

}

}

It is also possible to declare required classes and interfaces similarly to
required types, which can be used as classes and interfaces respectively,
however this will not be discussed in this thesis. If the reader wants to get
a better understanding for required types, required classes and required
interfaces I recommend reading [3].

2.1.2 Concepts of PT

With a firm understandings of the basics of PT we will now have to dig a bit
deeper into some terminology and restrictions of the language mechanism.

Open and Closed Templates

A closed template is a template that does not contain any instantiation
statements nor any additions to classes, it comprises only classes, interfaces
and enums. The body of a closed template in Java is simply a Java
program. Closed templates are self-contained units that can be separately
type-checked [5]. An open template on the other hand is a template which
do contain one or more instantiations or addto-statements in its body.

Open templates will be closed at compile-time. The task of closing a
template is that of performing the contained instantiations and additions
to classes. Open templates can instantiate open templates, as long as these
instantiations are not cyclic. What this means is that a template A can
instantiate a template B if template B does not contain any (transitive)
instantiations of template A. A template B contains an instantiation of
template A if it has an instantiation of template A in its body, or contains
a nested instantiation of template A.

Packages can also be open and closed and work in the same manner as with
templates, except that they can not be instantiated.

Avoiding Indirect Multiple Inheritance

While PT enables the programmer to merge classes together and giving
us some form of static multiple inheritance, it is not intended to actually
enable multiple inheritance. However, with class merging, it is not

15

uncommon that a class might end up with two or more different
superclasses. To avoid this PT has some restrictions to stop this from
happening.

The first restriction is that if an external class is used as a superclass, then
it can only be merged with other classes with the same superclass. This
restriction is necessary since we can’t rename nor merge external classes.

The second restriction is that if two or more classes are merged in an
instantiation, then their superclasses must also be merged in the same
instantiation. This is to avoid the situation where merging two classes
results in two or more different superclasses [13].

2.2 TypeScript

Before we look at what TypeScript is we first need to understand JavaScript
and the JavaScript ecosystem.

2.2.1 JavaScript

Back in the mid-90s web pages could only be static, however, there was
a desire to remove this limitation and make the web a more interactive
platform, as it became increasingly more accessible to non-technical users.
In order to remove this limitation, Netscape, with its Netscape Navigator
browser, partnered up with Sun to bring the Java platform to the browser
and hired Brendan Eich to create a scripting language for the web. Eich was
tasked to create a Scheme-like language with syntax similar to Java and the
language was intended to be a companion language to Java. The language
when it first released was called LiveScript, however, it was later renamed
to what we know it as today, JavaScript. This has been characterized as a
marketing ploy by Netscape to give the impression that it was a Java spin-
off.

Microsoft, with its Internet Explorer, adopted the language and named
it JScript. During this time Microsoft and Netscape would both ship
new features to the language in order to increase the popularity of their
respective browsers. Because of this war between browsers the language
was later handed over to ECMA International as a starting point for a
standard specification for the language. This ensured that users would
get the same experience across different browsers, making the web more
accessible [27].

A web page generally consists of three layers of technologies. The first
layer is HTML, which is the markup language that is used to structure the
web page. Second is CSS which gives our structured documents styling
such as background colors and positioning. The third and final layer is
JavaScript which enables web pages to have dynamic content. Whenever
you visit a website that isn’t just static information, but instead might have

16

timely content updates, interactive maps, etc., then JavaScript is most likely
involved [18].

JavaScript is a programming language conforming to the ECMAScript stan-
dard. ECMAScript is a JavaScript standard, created by Ecma International,
made to standardize the JavaScript language and ensure interoperability
across different browsers. There is no official runtime or compiler for
JavaScript as it is up to each browser to implement the languages runtime.
When we create a JavaScript program/script for a web page we don’t com-
pile it and transfer a binary or bytecode file for the web page to execute,
instead, the browser takes the raw source code and interprets it1.

JavaScript is a multi-paradigm language, mainly consisting of object-
orientation and functional programming, with a dynamic type system.
It is object-oriented in the way that most data structures are represented
through objects, and functional in the way that it has first-class functions,
where functions can be free from a class and are treated as values that can
be assigned to variables and sent around as parameters.

Where most object-oriented programming languages are class-based, like
Java, JavaScript is prototype-based. What this means is that the objects are not
class instances, but are rather "instances" of a prototype. What you would
normally think of as a class instance in Java, is an object with a reference
to a prototype object. These instances are created through constructor
functions, which create an object and sets the prototype for the object.

An object in JavaScript is a "bag" of properties containing values, which
are specified in the prototype constructor, and a reference to the prototype
object it is an instance of. The prototype object is not special in any way, it
is just another object that has contains values that can be commonly used
by all objects with the same prototype, and can themselves have prototype
objects. This is how inheritance works in JavaScript, chains of prototype
objects, where the Object prototype is at the end of the chain, similar to
how the Object class is at the top of the inheritance hierarchy in Java. The
Object prototype has null as its prototype, and null does not have any
prototype. When trying to access a member of an object the object itself is
first checked, then its prototype, and the prototype’s prototype and so on,
following the chain of prototypes, until a match is found [10], or until there
are no more prototypes to follow. Since prototypes are just objects they
can as with any other object be changed at runtime or replaced by other
prototypes.

In ECMAScript 2015 there was introduced a class-syntax, however, this is
just syntactic sugar for creating the prototype object, and the associated
constructor. Extending a class with this syntax is as you would expect just
defining the prototype for the prototype object.

1On a more technical level, JavaScript is generally just-in-time compiled in the browser.

17

ECMAScript Versions

ECMAScript versions are generally released on a yearly basis. This
release is in the form of a detailed document describing the language,
ECMAScript, at the time of release. New versions will most likely include
some additions to the language, but never any breaking changes2. This is
because the developer will not be able to control the environment on which
the code will be executed since you can not be sure which ECMAScript
version the client browser is using. Because of this lack of control over the
runtime environment, it is crucial that any pre-existing language features
don’t have breaking changes between versions.

Backwards Compatibility

With new ECMAScript versions comes new features, and it is up to each
browser to implement these changes. As we mentioned earlier, we do
not transfer a binary to the client browser, we transfer the source code.
So when a JavaScript script uses a new ECMAScript feature it is not
guaranteed to work with every client browser, since a lot of users might
have older browsers installed, or the team behind the browser has not
implemented the language feature yet. To deal with this a common practice
in JavaScript development is to first transpile the source code before using
it in a production environment. This transpilation step takes the source
code and transpiles it into an older ECMAScript version. In doing this
you ensure that more browsers will be able to run the script. This will
rewrite the new language features, and often replace them with a function,
called a polyfill. You can think of a polyfill as an implementation of a new
language feature that you ship with your code. These polyfills help the
developer regain some control over the runtime environment on which the
code will be run, and ensure that the code will run on almost any browser
as expected.

Some popular transpilers for JS to JS transpilation are Webpack and Babel,
but you could also use the TypeScript compiler for this.

Node.js

As of the time of writing, there are mainly two ways to execute JavaScript.
You can run the program in the browser, as it was originally intended, or
you can use a JavaScript runtime that runs on the backend, outside the
browser. Node.js (henceforth simply referred to as Node) is the mainstream
solution for the latter. Node is a JavaScript runtime built on the JavaScript
engine, V8, used by Chrome. It is independent of the browser and can be
run through a CLI (Command-Line Interface). One major difference from
the browser runtimes is that Node also supplies some libraries for IO, such
as access to the file system and the possibility to listen to HTTP requests and

2There have been occasions where there have been minor breaking changes between
ECMAScript versions, but these changes happen very rarely and the affected areas are often
insignificant.

18

WebSocket events. This makes Node a good choice for writing networking
applications for instance.

We will be using the Node runtime for our compiler since it gives us access
to the file system, as well as enabling the compiler to be executed through
a CLI, as is the norm for most compilers. The compiler will still also be
available as a library.

2.2.2 What is TypeScript?

TypeScript is a superset of JavaScript. The language builds on JavaScript
with the additions of static type definitions. TypeScript’s type system
is structural, which means that the type of an object is not bound to a
name, such as with nominal typing, but rather the structure of the object,
such as having an attribute i, which may be restricted to a number. The
type system also offers some more advanced type features such as union
types, where you can combine types into a new type. The new union type
represents values that can be any one of the combined types. There are also
similarly intersection types. These types combine other types into a new
type, which is the intersection of the combined types.

All valid JavaScript programs are also valid TypeScript programs. Types
in TypeScript can be optional, as the type inference is powerful enough
to infer most types without writing extra code. The type-checking can be
tailored to be stricter or leaner, where you can for instance disable features
such as usage of any-types, which are a way for the programmer to bypass
the type-check for certain values. TypeScript has full interoperability with
JavaScript, so you can adopt the language without needing to rewrite your
entire code base. If you are working with a JavaScript library, but you want
the safety of types, there can often be found type declaration files written
by the community in the DefinitelyTyped project [25].

2.3 Structural and Nominal Type Systems

Throughout this thesis we will have a major focus on the underlying
type systems of traditional PT in Java, and our implementation of PT in
TypeScript. Java has what we call a nominal type system, while TypeScript
has a structural type system.

Nominal is defined as "being something in name only, and not in reality"
in the Oxford dictionary. Nominal types are as the name suggest, types
in name only, and not in the structure of the object. They are the norm in
mainstream programming languages, such as Java, C, and C++. A type
could be A or Tree, and checking whether an object conforms to a type
restriction, is to check that the type restriction is referring to the same
named type, or a subtype.

Structural types on the other hand are not tied to the name of the type,
but to the structure of the object. These are not as common in mainstream

19

programming languages, but are very prominent in research literature.
However, in more recent (mainstream) programming languages, such as
Go and TypeScript, structural typing is becoming more and more common.
A type in a structurally typed programming language is often defined as a
record, and could for example be { name: string }.

In listing 2.8 on the next page we can see an example of a nominally
typed program in a Java-like language. Here B is a subtype of A, while C

is not. This is due to nominally typed programs having the requirement
of explicitly naming its subtype relations, through e.g. a subclass-relation.
Because of this we can see that at the bottom of the listing the first two
statements pass, since both A and B are of type A, while the last statement
fails (typically at compile time), as C is not of type A.

In listing 2.9 on the facing page we see a structurally typed program. This
program also has the exact same declarations as in listing 2.8 on the next
page, that is classes A, B, and C and the function g. In this program both type
B and type C are a subtype of type A, since they both contain all members of
type A. Not necessarily the same implementation as in class A, but the same
types as in type A. This is one of the major differences between nominal
and structural typing, types can conform to other types without having to
explicitly state that they should. Type C is an example of this, while it does
not have a subclass relation to class A, nor implement any common nominal
interface, it still conforms to the type of A. The result of this is that all three
usages of function g are valid in a structural type system, while consuming
C was illegal in the nominal example.

20

// Given the following class definitions for A, B and C:

class A {

void f() {

...

}

}

class B extends A {

...

}

class C {

void f() {

...

}

}

// And a consumer with the following type:

void g(A a) { ... }

// Would result in the following

g(new A()); // Ok

g(new B()); // Ok

g(new C()); // Error, C not of type A

Listing 2.8: Example of a nominally typed program in a Java-like language

// Given the same class definitions and

// the same consumer as in the previous listing.

// Would result in the following

g(new A()); // Ok

g(new B()); // Ok

g(new C()); // Ok, because C is structurally equal to A

Listing 2.9: Example of a structurally typed program in a Java-like
language

21

22

Part II

The Project

23

Chapter 3

The Language - PTS

In this chapter we will introduce the programming language Package
Template Script, henceforth just referred to as PTS. Here we will make
decisions about the syntax of the language, whether we can keep most of
the syntax of the original PT proposal, or if we will have to make some
adjustments to avoid concept confusion and an ambiguous grammar.

3.1 Syntax

For the implementation of PT we need a way to express the following
language constructs:

• Defining packages (package in PT)

• Defining templates (template in PT)

• Instantiating templates (inst in PT)

• Specifying renaming for an instantiation (with in PT)

• Renaming classes (=> in PT)

• Renaming class attributes (-> in PT)

• Additions to classes (addto in PT)

template, addto, and inst are all not in use nor reserved in the
ECMAScript standard or in TypeScript, and can therefore be used in
Package Template Script without any issues.

The keyword package in TS/JS is, as of yet, not in use, however the
ECMAScript standard has reserved it for future use. In order to "future
proof" our implementation we should avoid using this reserved keyword,
as it could have some conflicts with a potential future implementation
of packages in ECMAScript. It could also be beneficial to not share
the keyword in order to avoid creating confusion between the future ES
packages and PT Packages. module is also a keyword that could be used
to describe a PT package, however this is already used in the ES standard,

25

and should therefore also be avoided in order to avoid confusion. We will
therefore use pack instead.

Renaming in PT uses =>(fat-arrow) for renaming classes, and ->(thin-
arrow) for renaming class attributes. PT, for historical purposes, used two
different operators for renaming classes and methods, however in more
recent PT implementations, such as [11], a single common operator is used
for both. We will do as the latter, and only use a single common operator
for renaming. Another reason for rethinking the renaming syntax is the fact
that the =>(fat-arrow) operator is already in use in arrow functions [2], and
reusing it for renaming could potentially produce an ambiguous grammar,
or the very least be confusing to the programmer. JavaScript currently
supports renaming of destructured attributes using the :(colon) operator
and aliasing imports using the keyword as. We could opt to choose one of
these for renaming in PTS as well, however in order to keep the concepts
separated, as well as making the syntax more familiar for Package Template
users, we will go for the ->(thin-arrow) operator.

The with keyword is currently in use in JavaScript for with-statements [15].
With it being a statement, we could still use it and not end up with
an ambiguous grammar, however as with previous keywords, we will
avoid using it in order to minimize concept confusion. Instead of this we
will contain our instantiation renamings inside a block-scope ({ }). Field
renamings for a class will remain the same as in PT, being enclosed in a set
of parentheses (()).

Another change we will make to renaming is to remove the requirement
of having to specify the signature of the method being renamed. This
was necessary in PT as Java supports overloading, which means that
several methods could have the same name, or a method and a field.
Method overloading is not supported in JavaScript/TypeScript, and we do
therefore not need this constraint.

3.2 The PTS Grammar

Now that we have made our choices for keywords and operators we can
look at the grammar of the language.

PTS is an extension of TypeScript, and the grammar is therefore also
an extension of the TypeScript grammar. There is no published official
TypeScript grammar (other than interpreting it from the implementation
of the TypeScript compiler), however up until recently there used to be a
TypeScript specification [17]. This TypeScript specification was deprecated
as it proved a too great a task to keep updated with the ever-changing
nature of the language. However, most of the essential parts are still the
same. The PTS grammar is therefore based on the TypeScript specification,
and on the ESTree Specification [19].

In figure 3.1 on the facing page we can see the BNF grammar for our
language. This is not the full grammar for PTS, as I have only included

26

〈declaration〉 |= . . . | 〈package declaration〉 | 〈template declaration〉
〈package declaration〉 |= pack 〈id〉 〈PT body〉
〈template declaration〉 |= template 〈id〉 〈PT body〉

〈PT body〉 |= { 〈PT body decls〉 }
〈PT body decls〉 |= 〈PT body decls〉 〈PT body decl〉 | λ

〈PT body decl〉 |= 〈inst statement〉 | 〈addto statement〉 |
〈class declaration〉 | 〈interface declaration〉

〈inst statement〉 |= inst 〈id〉 〈inst rename block〉
〈inst rename block〉 |= { 〈class renamings〉 } | λ

〈class renamings〉 |= 〈class rename〉 | 〈class rename〉, 〈class renamings〉
〈class rename〉 |= 〈rename〉 〈attribute rename block〉

〈attribute rename block〉 |= (〈attribute renamings〉) | λ

〈attribute renamings〉 |= 〈rename〉 | 〈rename〉, 〈attribute renamings〉
〈rename〉 |= 〈id〉 -> 〈id〉

〈addto statement〉 |= addto 〈id〉 〈addto heritage〉 〈class body〉
〈addto heritage〉 |= 〈class heritage〉 | λ

Figure 3.1: BNF grammar for PTS. The non-terminals 〈declaration〉, 〈id〉,
〈class declaration〉, 〈interface declaration〉, and 〈class body〉 are produc-
tions from the TypeScript grammar. The ellipsis in the declaration pro-
duction means that we extend the TypeScript production with some extra
choices.
Legend: Non-terminals are surrounded by 〈angle brackets〉. Terminals are
in typewriter font. Meta-symbols are in regular font.

any additions or changes to the original TypeScript/JavaScript grammars.
More specifically the non-terminal 〈declaration〉 is an extension of the
original grammar, where we also include package and template decla-
rations as legal declarations. The non-terminals 〈id〉, 〈class declaration〉,
〈interface declaration〉, and 〈class body〉 are also from the original gram-
mar.

3.3 Example Program

Listing 3.1 on page 29 shows an example of a program in PTS. This
program showcases the basics of defining packages and templates, and
how instantiation, renaming and additions can be applied in the language.
We also have a similar program at the bottom, showing how this is done
in PT. While both the basic instantiation and additions stay pretty much

27

the same, renaming does have some interesting differences. We can see
that in the PT example we have to specify the signature of methods we are
renaming, while in the PTS example it is enough to just specify the names
of the methods.

28

// PTS

template T {

class A {

function f() : string {

...

}

}

}

pack P {

inst T { A -> A (f -> g) };

addto A {

i : number = 0;

}

}

// PT

template T {

class A {

String f() {

...

}

}

}

package P {

inst T with A => A (f() -> g());

addto A {

int i = 0;

}

}

Listing 3.1: An example program with instantiation, renaming, and
addition-classes in PTS vs. PT

29

30

Chapter 4

Planning the Project

Before we start the implementation of our language we first need to do
some planning. We know we are going to be creating a programming
language, a superset of TypeScript with the addition of Package Templates.
However, we might want to look at if creating a superset of TypeScript is
the way to go, or if keeping it simple and extending JavaScript is a better
option. We might also want to see if it is needed to create a language at
all, or if we are able to create a TypeScript library which can achieve the
functionality of PT instead. There are a lot of approaches we can take for
implementing our language, so we will have to map out the requirements
for our desired approach. We will conclude the chapter by looking at the
different approaches we can take, and see which approach is right for the
project.

This planning phase is crucial for the success of the project, as starting
off on the wrong approach for the wrong language would set us back
immensely.

4.1 TypeScript vs. JavaScript

When extending TypeScript you might be asking yourself if it is truly
necessary to go for TypeScript as the host language, or would it be better
to keep it simple and just extend JavaScript instead? This is something we
need to find out before going any further with the planning of our project.

4.1.1 Type-checking Templates

One of the requirements of PT is that it should be possible to type-check
each template separately. There is no easy way to type-check JavaScript
code without executing it and looking for runtime errors. Even if some
JavaScript program successfully executes without throwing any errors, we
can still not conclude that the program does not contain any type errors.
TypeScript on the other hand, with the language being statically typed, we

31

can, at least to a much larger extent, verify if some piece of code is type safe.
Because of this trait TypeScript is the better candidate for our language.

Now it should be noted that due to TypeScript’s type system being
unsound one could argue that this requirement of PT is not met. While
this is true it still outperforms JavaScript on this remark, and we will
later in section 7.1.2 on page 82 discuss more in-depth to what extent this
requirement is met.

4.1.2 Renaming

Renaming is a hard task. In order to perform a (safe) renaming we will
need to find the declaration and all references to this declaration and
rename these. Doing this at compile time would mean that we will have to
implement a type system of sorts, since this will help us identify references.
This is also one of the reasons for why TypeScript is a better candidate
than JavaScript, as TypeScript is statically typed, meaning the type of a
variable is known at compile-time, while JavaScript is dynamically typed,
where the type of a variable is first known at run-time. While TypeScript
generally allows us to determine the types of variables at compile time, this
is not always the case, since it is possible for the programmer to explicitly
type a variable with any, a catch-all type which effectively bypasses type-
checking. This means that we can still run into the same issues as we
would in a JavaScript program, and not be able to perform a safe renaming,
however in cases such as these where the programmer has explicitly chosen
to bypass the type-check, it might then also be acceptable to not offer
renaming of any-typed variables.

4.1.3 Language Choice Conclusion

There has previously been done research into dynamic variants of PT,
where the PT transformations have been done mostly at run-time, so it
is certainly a possibility for us to also write a dynamic variant of PT
for JavaScript. However, as we discussed above, Package Templates
has a lot of properties that are designed around strong typing, and we
would therefore benefit from hosting PT in a strongly typed language like
TypeScript. This will likely also prove to be more interesting research, as
we could rather focus on TypeScript’s structural type system, than focusing
on creating another dynamic variant of PT. Because of these reasons we
will in this thesis look at how Package Templates can be implemented into
TypeScript.

4.2 What Do We Need?

There are a lot of approaches one can take when extending TypeScript,
however due to the nature of this project there are some restrictions we
have to abide by. Our approach should allow the following:

• The ability to add custom syntax (access to the tokenizer/parser)

32

• Enable us to do semantic analysis

In addition to these we would also like to look for some other desirable
traits for our implementation:

• Loosely coupled implementation

Having a loosely coupled implementation might mean different things
in different approaches. Generally we want our PT specific part of the
implementation to stay loosely coupled with the TypeScript specific parts.
In a TypeScript compiler fork this would for instance be pretty much
unachievable, since the PT implementation would likely have to change
some of the TypeScript implementation. If we are able to simply write a
preprocessor to the TypeScript compiler however, this would be fulfill the
requirement, as we could transform the PT specific parts of the language
before letting the TypeScript compiler deal with the rest of the program.
Having the implementation as loosely coupled as possible would make our
implementation cheaper to maintain, as updates to the TypeScript compiler
would likely not break our implementation, as it should not be affected by
the TypeScript specifics.

4.3 Approach

Before jumping into a project of this magnitude it is important to find out
what approach to use. The goal of this project is to extend TypeScript with
the Package Templates language mechanism, this could be achieved by one
of the following methods:

• Implementing as an internal DSL

• Making a preprocessor for the TypeScript compiler

• Making a compiler plugin/transform

• Making a fork of the TypeScript compiler

• Making a custom compiler

4.3.1 Implementing PT as an internal DSL

One of the first approaches we need to check out is if we are able to
achieve the functionality of PT, without having to create a compiler. Instead
of creating a compiler, which would likely be a complicated and time-
consuming task, we could potentially get away with implementing the
features of PT within TypeScript itself through making a small internal
DSL1. In [4], Axelsen and Krogdahl show how they were able to implement
PT in Groovy by utilizing the languages’ meta-programming capabilities.

1While most programming languages are made to be general purpose, DSLs, or Domain-
Specific Languages, are languages created to solve very specific problems within certain
domains. An internal DSL (sometimes referred to as embedded DSL) is a language based
on an existing programming language, but "tailoring it [...] to the domain of interest" [9].

33

Stordahl also showed the possibility of implementing PT in Boo, through
its meta-programming capabilities in [24]. We will in this section therefore
see if we are able to achieve something similar in TypeScript.

Both Groovy and Boo have strong meta-programming capabilities, where
they can perform transformations to the syntax tree during compilation.
JavaScript and TypeScript do not have the same capabilities for meta-
programming during compilation, as JavaScript is intended as an inter-
preted language, and TypeScript is only supposed to offer type declarations
without changing any of the underlying functionality, so any compile-time
transformations are not an option for our DSL. Besides the compilation
transformations used for some custom syntax, Groovy gives the program-
mer access to the meta-object protocol, where each object has a reference to
its meta-class, where members of a class can be added or changed at run-
time. This was utilized by Axelsen and Krogdahl during the implemen-
tation of GroovyPT, and we could seemingly achieve something similar in
TypeScript. Similar to Groovy’s meta-classes, objects in JavaScript have ref-
erences to a prototype object. These prototypes can have members added
or removed, or the entire prototype replaced, at runtime. Utilizing this we
could potentially be able to implement PT’s class merging, renaming and
additions. We will dive deeper into this in the following sections.

To implement PT we will need to handle the following:

• Defining templates

• Renaming classes and class attributes

• Instantiating templates

• Merging classes

Defining Templates

For defining templates we would like a construct that can wrap our
template classes in a scope. We will also need to be able to reference the
template. JavaScript has three options for this, an array, an object or a class.
It should however also be possible to inherit from classes within the same
template, which rules out both arrays and objects, as there is no way of
referencing other members during definition of the array/object (without
first defining them outside the construct). Templates could therefore be
defined as classes, where each member of the template is an attribute of the
template class. In listing 4.1 on the next page we see an example of how
this could be done.

Renaming Classes and Class Attributes

Renaming of classes is possible to an extent. Since we made the classes
static attributes of the template class we could easily just create a new static

34

class T1 {

static A = class {

i = 1;

};

static B = class extends T1.A {

b = 2;

};

}

Listing 4.1: Example of defining a template in a library implementation.

class T1 {

static A = class {

i = 0;

};

}

const classRef = T1.A;

delete T1.A;

T1.B = classRef;

Listing 4.2: Example of renaming a template class

field on the template class and use the delete-op 2 to remove the old field.
We can see an example of this in listing 4.2.

Even though we were able to give the class a "new name", this would still
not actually rename the class. Any reference to the old names would be left
unchanged, and thus we are not able to achieve renaming in TypeScript.
Listing 4.3 on the next page shows how this can be a problem, where the
function f of class X would fail at run-time due to it not being able to find
class A.

Attribute renaming can be done similarly, where we could alter the
prototype of the class to rename attributes, however this would also lead
to the same problems as with class renaming, where references would not
be changed.

Instantiating Templates

As with renaming, we are also able to instantiate templates to an extent. We
are able to iterate over the attributes of the template class, and populate a
package/template with references to the template. An example of this can
be seen in listing 4.4 on the following page.

2An operator in JavaScript for removing a property of an object. See https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/delete.

35

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/delete
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/delete

class T1 {

static A = class {

i = 0;

}

static X = class {

f() {

return new A();

}

}

}

// Renaming

const classRef = T1.A;

T1.B = classRef;

delete T1.A;

// Trying to use the template after renaming

const x = new T1.X();

x.f(); // ReferenceError: A is not defined

Listing 4.3: Example showcasing the problems of renaming classes in a
library implementation.

class T2 {

static A = class {};

}

const P = class {};

for (let attr of Object.keys(T2)) {

P[attr] = T2[attr];

}

Listing 4.4: Example of instantiating a template in a library implementation

36

The instantiation will only contain references to the instantiated templates
classes, while PT instantiations make textual copies of the templates
content. Only having references to the original template could mean that if
a template that has been instantiated is later renamed, then the instantiated
template might lose some of its references. We could possibly circumvent
this by getting the textual representation of the class, through the class’
toString, and then use eval to evaluate the class declaration.

Merging Classes

For merging of types we would use the built-in declaration merging [26].
Implementation merging is also possible because JavaScript has open
classes. For implementation merging you would create an empty class
which has the type of the merged declarations, and then assign the fields
and methods from the merging classes to this class. There are several
libraries that supports class merging, such as mixin-js3.

4.3.2 Preprocessor for the TypeScript Compiler

Could we implement the PT specific features in a preprocessor? In
order to understand this we need to understand what a preprocessor
is. There are a lot of different definitions for preprocessors, but they
are generally something that makes a source file ready for the compiler,
through some simple transformations. I will here define a preprocessor as
a "dumb" compiler. Where a compiler generally works on the source file
as a tree, requiring knowledge of the underlying programming language,
performing advanced tasks such as semantic analysis, a preprocessor
works on the source file as a piece of text, without knowledge of the
language, performing simple textual transformations such as removing
comments, expanding macros (such as #include in C), etc.

So the question becomes, can we transform a PTS program to TypeScript by
just doing textual transformations, and not having to rely on performing
more advanced tasks such as semantic analysis. We would most likely
be able to implement parts of PT with a preprocessor such as simple
instantiation without renaming. However, as we mentioned in section 4.1
on page 31 we will need to do some type-checking in order to find the
correct references when renaming, we can’t just rename everything that
is textually equal. This means that we will need an understanding of
the underlying programming language, something more advanced than a
preprocessor to implement the features of PT.

4.3.3 TypeScript Compiler Plugin/Transform

At the time of writing the official TypeScript compiler does not support
compile time plugins. The plugins for the TypeScript compiler is, as the
TypeScript compiler wiki specifies, "for changing the editing experience

3https://www.npmjs.com/package/mixin-js

37

https://www.npmjs.com/package/mixin-js

only" [16]. However, there are alternatives that do enable compile time
plugins/transformers;

• ts-loader4, for the webpack ecosystem

• Awesome Typescript Loader5, for the webpack ecosystem.

• ts-node6, REPL/runtime

Unfortunately all of the above do not support adding custom syntax, as
they only work on the AST produced by the TypeScript compiler. Because
of this they are not a viable option for our use-case and will therefore be
discarded.

4.3.4 Babel plugin

Babel isn’t strictly for TypeScript, but for JavaScript, however there does
exist a plugin for TypeScript in babel, and we could write a plugin that
depend on this TypeScript plugin.

Making a Babel plugin will make it very accessible as most web-projects
use Babel, and the upkeep is cheap, as plugins are loosely coupled with the
core.

In order for a Babel plugin to support custom syntax it has to provide a
custom parser, a fork of the Babel parser. Through this we can extend the
TypeScript syntax with our syntax for PT. This is all hidden away from the
user, as this custom parser is a dependency of our Babel plugin.

Seeing as we have to make a fork of the parser in order to solve our
problem, the upkeep will not be as cheap as first anticipated. However,
being able to have most of the logic loosely coupled with the compiler
core it will still make it easier to keep updated than through a fork of the
TypeScript compiler.

4.3.5 TypeScript Compiler Fork

The TypeScript compiler is a monolith. It has about 2.5 million lines
of code, and therefore has a quite steep learning curve to get into. If
we were to go with this route it could prove a hard task to keep up
with the TypeScript updates, as updates to the compiler might break our
implementation. However, as we have seen, going the plugin/transform
route also requires us to fork the underlying compiler and make changes to
it, however with the majority of the implementation being loosely coupled
it might presumably still make it easier to keep up-to-date. That being
said it will probably be a lot easier to do semantic analysis in a fork of the
TypeScript compiler vs in a plugin/transform.

4https://github.com/TypeStrong/ts-loader
5https://github.com/s-panferov/awesome-typescript-loader
6https://github.com/TypeStrong/ts-node

38

https://github.com/TypeStrong/ts-loader
https://github.com/s-panferov/awesome-typescript-loader
https://github.com/TypeStrong/ts-node

4.3.6 Making a Custom Compiler

Making a custom compiler for PTS might seem like a hard task, but let
us dig deeper into what this entails. Firstly we need to consider what the
target should be. Normally a compiler would output some sort of byte
code, like Java byte code in the Java compiler. Many compilers also produce
native code. Producing native code is not an option for our implementation
as we still want to stay in the same ecosystem, namely the browser. We
could possibly produce WebAssembly byte code, however there are a lot of
constructs in TypeScript/JavaScript that do not translate to WebAssembly,
such as working with the DOM. Since neither of these are valid options
we could either produce TypeScript or JavaScript. Producing TypeScript is
possibly the easiest way to go, as most of PTS is already TypeScript. And
producing TypeScript also means that we could run the resulting program
through the TypeScript compiler to produce JavaScript.

Having TypeScript as the target for our compiler also means that we can
ignore most parts of the language and mainly focus on the PT specifics. The
rest of the language can be outputted pretty much as is, since our language
will be a superset of TypeScript.

4.4 Conclusion

While it would be great to be able to implement Package Templates as
an internal DSL in TypeScript, it would seem that this is not a suitable
approach. Even though we were able to modify the prototype of the classes
in the templates, and effectively achieve some form of renaming, we were
not able to rename the references. This means that we won’t be able to use
the renaming to its fullest potential, and are thus not able to implement it as
an internal DSL. On top of this, while we were able to reproduce certain PT
functionality such as simple instantiations and class merging, the fact that
we are not able to change the syntax of the language, and having to define
templates as classes of classes leads to a quite ugly DSL, which could also
potentially be hard for the programmer to grasp.

Making a preprocessor to the TypeScript compiler in order to implement
the features of PT would presumably make the implementation time short.
However, as we learned, in order to safely rename classes and attributes we
need something more powerful than a simple preprocessor. If we were to
look at the core of PT, without the renaming mechanism this would likely
be the easiest approach, however, since we are aiming to implement the
renaming mechanism this makes this approach not viable for the project.

Making a TypeScript compiler plugin would seemingly also be a good
approach, in the future. However, as we discussed previously, the official
TypeScript compiler (and its alternatives) does not have proper support for
plugins that can alter the syntax of the language. Due to this we are not able
to implement the features of PT, since these would require us to add extra
syntax. For the time being this makes this approach not viable, however, if

39

in the future this would be supported it might prove a good approach for
doing tasks such as these.

Implementing PT in a fork of the TypeScript compiler would likely lead to
the most robust implementation, however the sheer size of the TypeScript
compiler makes this approach undesirable. I fear that this approach
would be too time costly for this project, and might lead to an incomplete
implementation as a result of this. A similar project has been performed by
Isene in [11], where they implemented PT in C# by extending the Roslyn
compiler. Here Isene suggested that a project of this size was better fit for
a group of two. To avoid re-discovering this we will therefore opt to go for
another approach. Furthermore, an implementation of PT in the TypeScript
compiler would not achieve our desired trait of having a loosely coupled
implementation. This could result in a tedious process of dealing with
merge conflicts when updates to the TypeScript compiler comes out.

Creating a plugin for babel might be a good approach, however since we
have to implement our grammar as part of a fork of the babel parser, this
makes the approach less desirable. As with the approach of implementing
PT in a fork of the TypeScript compiler this would also lead to a tightly
coupled implementation, at least for the parser part of our compiler. If we
were able to write a plugin for the parsing step of Babel this might prove a
viable option, however as of now there are no plans of supporting this.

Our last approach is creating a custom compiler. As we discussed, if
our compiler can simply target TypeScript for code generation, then the
custom compiler approach might be a valid option. Having TypeScript as
the target means that most of the language’s constructs can be ignored,
since most of the PTS language is simply TypeScript code, we can output
most of the code as is. The only transformations our compiler will need to
do will be the PT specific transformations, such as replacing instantiation
statements with the bodies of the instantiated templates. As it is a custom
compiler we will be able to fulfill our requirements, since we do have
access to the parser, so we can add new syntax, and we are able to perform
semantic analysis. For the desired trait of being loosely coupled we could
likely fulfill this as well with this approach. Since we will only be doing
PT specific transformations in the compiler, this means that most of our
compiler will stay loosely coupled with TypeScript. The one part of our
compiler that might not be able to stay as loosely coupled as we would
like is the lexer/parser. We will need parse the TypeScript parts of the
PTS program in order to perform most of the PT specific transformations,
such as renaming classes. However, some parser generators do allow for
importing or extending grammars, so we might be able to at least partially
stay loosely coupled. We will look more into this in chapter 5 on page 43.

It would seem that the most beneficial approach for our project is to write
a custom compiler, since the other options were either not able to fulfill the
requirements of our project, or ,in the case of implementing PT in a fork of
the TypeScript compiler, too great a task for one person alone. With having
made a choice for the approach, we can look at the implementation of our

40

compiler.

41

42

Chapter 5

Implementation

In this chapter we are going to look at the implementation of our compiler
for PTS programming language, as described in chapter 3 on page 25.
Before looking at the implementation we will first be discussing the
methodology used during development.

5.1 Methodology

When tackling a project of this magnitude it is important to have a proper
methodology for development. During the development phase of this
project I have had a strong focus on using agile techniques, where I have
filled the role as both product owner and developer. This agile software
development has aided me in discovering new requirements as the project
moves forward, and re-adjusting to these new requirements. I have actively
used a Kanban board throughout development to help keep track of tasks
and goals.

The compiler was made in an iterative manner. For each iteration I would
start off by implementing a new feature, and then put on the product owner
hat and test out the compiler. While working as product owner I try to
understand how I would like to use the language and what requirements I
have for the language. This often leads to re-adjusting the requirements.

I started off by creating a rough MVP (Minimum Viable Product), only
implementing the most basic functionality, which comprised declaration
of packages/templates and simple instantiation. This MVP made me
understand the project and requirements better, and also gave the project
some new requirements. After the initial iteration I decided to adopt a test-
driven development approach. I made tests for the features I had already
implemented and then continued to make tests for the next functionality
goal. This was done in order to gain more confidence in the compiler, as
well as helping me spot any erroneous code earlier rather than later, which
makes fixing them less costly. All of this resulted in a better development
cycle, making refactoring and implementation of new features a breeze.

43

Figure 5.1: Overview of the compiler

When adding new features or refactoring some tests will undoubtedly fail,
and before moving on I made sure that all the tests were passing again.

5.2 Compiler Architecture

Our compiler consists of the following parts:

• Lexing and parsing

• Parse tree transformation

• Type checking packages/templates

• Code generation

An overview of our architecture can be seen in figure 5.1. The first part
of the compiler, namely the lexing and parsing will take a source file and
transform it into a parse tree. Our compiler will then take this parse tree
and transform it into a simpler abstract syntax tree (AST). This AST will
then be used to perform the PT transformations. We will use this AST to
close any open packages and templates, and finally use the transformed
tree for code generation. Before code generation we will perform a type-
check step, where we validate the type-safety of each package/template
individually, to ensure an overall type-safe program. Given a valid type-
safe program we can then move on to code generation. The target language
for our code generation will mainly be TypeScript, however we will also
offer to target JavaScript, as we can easily produce JavaScript code through
using the TypeScript compiler.

5.3 Lexer and Parser

5.3.1 Parser Generator

There are a lot of parser generators out there, but there is no one-size-fits-
all solution. In order to navigate through the sea of options we need to

44

set some requirements in terms of functionality, so that we can more easily
find the right tool for the task.

As we talked about in section 4.2 on page 32, we set ourselves the goal
to find an approach that would allow us to create an implementation that
was loosely coupled with TypeScript. TypeScript is a large language that is
constantly updated, and is getting new features fairly often. Because of this
one of the requirements for our choice of parser generator is the possibility
for extending grammars. This is important because we want to keep our
grammar loosely coupled with the TypeScript grammar, and don’t want to
be forced to rewrite the entire TypeScript grammar, as well as keeping it
up-to-date.

Because our language will be extending TypeScript we would like to utilize
the TypeScript compiler as much as we can. The TypeScript compiler
will help us perform the type-checking for our compiler, as well as
producing JavaScript output. Therefore we need to be able to interact
with the TypeScript compiler somehow. The TypeScript compiler has
two main interfaces for interaction, through the command-line or using
the compiler API. Optimally we would like to use the compiler API as
this is the easiest way for us to perform type-checking and compilation.
The catch is however that the only supported languages for the compiler
API are JavaScript and TypeScript. Therefore a desired attribute for our
choice of parser generator is that it offers a runtime library in either
JavaScript or TypeScript, so that all of our implementation can be done
in the same language, and not have to work with command-line interface
programmatically.

ANTLR4

ANTLR, ANother Tool for Language Recognition, is a very powerful and
versatile tool, used by many, such as Twitter for query parsing in their
search engine [21].

ANTLR supports extending grammars, or more specifically importing
them. Importing a grammar works much like a "smart include". It will
include all rules that are not already defined in the grammar. Through this
you can extend a grammar with new rules or replacing them. It does not
however support extending rules, as in referencing the imported rule while
overriding [21]. This isn’t a major issue however as you could easily rewrite
the rule with the additions.

The only supported runtime library in ANTLR is in Java. This does not
mean that you won’t be able to use it in any other language, as you could
simply invoke the runtime library through command line, however it is
worth keeping in mind.

Overall ANTLR seems like a good option for our project, but the lack of a
runtime library in TypeScript is a hurdle we would rather get a round if we
can.

45

Bison

Bison is a general-purpose parser generator. It is one of many successors to
Yacc, and is upwards compatible with Yacc [8].

Bison does not support extending grammars. The tool works on a single
grammar file and produces a C/C++ program. There is a possibility to
include files, like with any other C/C++ program, in the grammar files
prologue, however this will not allow us to include another grammar, as
it only inserts the prologue into the generated parser. In order to extend a
grammar we would have to change the produced parser to include some
extra rules. Although this could possibly be automated by a script, it seems
too hacky of a solution to consider.

On top of this Bison does not have a runtime library in JavaScript/Type-
Script. There do exist some ports/clones of Bison for JavaScript, such as
Jison1 and Jacob2, however to my knowledge these also lack the function-
ality of extending grammars.

Tree-sitter

Tree-sitter3 is a fairly new parser generator tool, compared to the others in
this list. It aims to be general, fast, robust and dependency-free [7]. The
tool has been garnering a lot of traction the last couple of years, and is
being used by GitHub, VS Code and Atom to name a few. It has mainly
been used in language servers and syntax highlighting, however it should
still work fine for our compiler since it does produce a parse tree.

Although it isn’t a documented feature, Tree-sitter does allow for extending
grammars. Extending a grammar works much like in ANTLR, where you
get almost a superclass relation to the grammar. One difference from
ANTLR though is that it does allow for referencing the grammar we are
extending during rule overriding. This makes it easier and more robust to
extend rules than in ANTLR.

Tree-sitter also has a runtime library for TypeScript, which makes it easier
for us to use it in our implementation than the previous candidates.

Another cherry on top is that Tree-sitter is becoming one of the mainstream
ways of syntax highlighting in modern editors and IDEs, which means
that we could utilize the same grammar to get syntax highlighting for our
language.

All this makes Tree-sitter stand out as the best candidate for our project,
and will move on with implementing our grammar in Tree-sitter.

1https://zaa.ch/jison/
2https://canna71.github.io/Jacob/
3https://tree-sitter.github.io/tree-sitter/

46

https://zaa.ch/jison/
https://canna71.github.io/Jacob/
https://tree-sitter.github.io/tree-sitter/

_declaration: ($, previous) =>

choice(

previous,

$.template_declaration,

$.package_declaration

)

Listing 5.1: Snippet from the PTS grammar, where we override the
_declaration rule from the TypeScript grammar, and adding two addi-
tional declarations.

Implementing Our Grammar in Tree-sitter

Tree-sitter uses the term rule instead of production, and I will therefore also
refer to productions as rules here.

Extending a grammar in Tree-sitter works much like extending a class in an
object-oriented language. A "sub grammar" inherits all the rules from the
"super grammar", so an empty ruleset would effectively work the same as
the super grammar. Just like most object-oriented languages have access to
the super class, we also have access to the super grammar in Tree-sitter.
All of this enables us to add, override, and extend rules in an existing
grammar, all while staying loosely coupled with the super grammar. By
extending the grammar, and not forking it, we are able to simply update
our dependency on the TypeScript grammar, minimizing the possibility for
conflicts.

As mentioned, Tree-sitter allows for referencing the super grammar during
rule overriding, effectively making it possible to combine the old rule and
the new. A good example of overriding and combining rules can be found
in the grammar of PTS, see listing 5.1, where we override the _declaration
rule from the TypeScript grammar, to include the possibility for package
and template declarations.

5.4 Transforming Parse Tree to AST

5.4.1 The AST Nodes

Tree-sitter is a parser-generator written in Rust and C. Fortunately for us
there does exist Node bindings for Tree-sitter. These Node bindings uses
Node native addons4 to interop with the Tree-sitter core. Native addons
in Node are fairly new, and at the time of writing the Tree-sitter Node
bindings are still using the older unstable nan (Native Abstractions for
Node) instead of the newer and more stable Node-API. For the most part it
does work, however I did meet some difficulties with the produced parse
tree, more specifically the spread operator was not behaving properly on
the native produced objects. To get around this we will be walking through

4Node native addons are dynamically-linked shared objects written in C++ [20].

47

the parse tree and produce a new AST. What this means in practice is that
we are going to be ignoring some parsing specific properties. One of the
changes we are going to make is that we are going to ignore if a node is
named or unnamed, we will be keeping all nodes. This will help us later in
code generation.

For each AST node we picked out the following properties from the parse
tree:

• Node type

• Text

• Children

The node type is a string representing the rule which produced the node.
An AST node with a node type value of "class_declaration" for instance
is a class declaration node.

The text field of an AST node contains the textual representation/code for
the node and its children. A class declaration node for instance would of
course contain the class declaration ("class A extends B {"), but also the
entire body of the class. This text field is really only useful for leaf nodes,
as this would for instance contain the value of a number, string, etc.

Finally, the children field is, as the name would suggest, a list of all the
children of the node. For a class declaration node this would contain a leaf
node containing the keyword class, a type identifier for the class name,
and the class body. Optionally it could also contain a class heritage node,
which again contains either an extends clause, an implements clause or
both.

We could have also opted to get the start position and end position of each
node, so that we could use this to produce better error messages. This was
however not a priority in this thesis.

5.4.2 Transforming

I chose to do the transforming immutable, and in order to do this we have
to traverse the parse tree depth first and create nodes postfix. Tree-sitter
provides pretty nice functionality for traversing the parse tree through
cursors. With a tree cursor we are able to go to the parent, siblings, and
children easily. Using this we visit each node and produce an AST node as
described in the section above.

5.5 Closing Templates

The task of closing open packages and templates is what most of the
implementation is focused around. It is the task of performing the declared
instantiations and altering the declared classes through addto-statements.

48

This step is crucial as it will make each package/template a valid
TypeScript program and make the program ready for code generation.

For the most basic instantiations that doesn’t lead to any renaming,
performing additions to classes, or merging of classes, the task is fairly
simple. We merely have to find the referenced template, and replace
the instantiation statement with the body of said template. However, to
support proper instantiation, the task becomes a bit more advanced.

In order to support instantiation of templates, with all the concepts related
to it, we will have to do some additional steps. For each instantiation
statement we will have to perform the following steps on the body of the
instantiated template.

1. Create a correctly scoped AST

2. Transform nodes to reference nodes

3. Perform the rename

4. Go back to the original AST

5. Merge classes

If the template that is being instantiated is not closed, we will perform the
same steps to all the nested instantiations in a depth-first manner. We
want to close the nested templates before closing the upper templates,
as renaming at the top level should affect all members from the nested
instantiations.

Finally, once all templates have been closed we will have to perform class
merging and apply any additions to classes.

In order to get a better understanding of this we will go through each step
of closing a template in more detail.

5.5.1 Create a Correctly Scoped AST

This step of closing templates works on the body of a copy of the
instantiated template. In order to be able to rename classes and class
attributes we first need to create correct scopes in which the renaming can
be applied. We start off with a list of normal AST nodes and will transform
these nodes into nodes that has a reference to the scope they are part of.

A scope is represented through the Scope class. The Scope class is
essentially a symbol table that optionally extends a parent scope. A scope
without a reference to a parent scope is the root scope. The symbol table
is implemented as a map from the original attribute or class name, to a
reference to either a variable (this covers both class attributes and other
variables used throughout the program) or a class. Looking up symbols
in the symbol table will always start in the called scope, looking for any
references matching the given name. If we don’t find any references with
the given name we propagate the lookup to the parent scope. Given further

49

misses in the symbol table means that we will eventually reach the root
scope, and if the root scope also doesn’t contain any references then we fail
the compilation and inform the programmer that there is a reference error
in the program.

Having several layers of scope enables us to correctly handle shadowed
variables, or parallel declarations with equal naming.

For creating scopes I chose the following node types for "making new
scopes".

• class_body

• statement_block

• enum_body

• if_statement

• else_statement

• for_statement

• for_in_statement

• while_statement

• do_statement

• try_statement

• with_statement

We start of with a root scope which is given to the root node of the template
body. We then traverse the tree and give every node a reference to the
scope. When we reach one of the aforementioned nodes that should have
its own scope, we create a new scope, with the current scope as the parent
scope. This new scope is then given to all nodes beneath this node, until
we reach another node in the list above.

At the end of this traversal we have an AST where every node has a
reference to the scope its in.

5.5.2 Transforming Nodes to Reference Nodes

In order to rename a class or an attribute we also need to find all references
to the class or attribute and rename these. To make this easier we have in
this implementation instead transformed all references to reference nodes.
Reference nodes are AST nodes that contain a pointer to the class or
attribute they are supposed to represent. This makes the task of renaming
easier as we only have to worry about changing the name in one place. A
reference can be either a variable reference or a class reference.

A variable reference can be a class attribute or any other variable
declaration. Even though we call it a variable reference this does also
cover functions. We don’t need a different representation for functions,
since functions in JavaScript are values which are assigned to a variable,
and therefore share the same namespace, unlike Java where methods and
variables can have the same name. These references are represented by a
Variable class. The class contains the name of the attribute, and optionally
what type it is. The type of a variable in our implementation is set through
a very simple type-inference (relative to TypeScript’s type system), where

50

we only look at if there is a new-expression assigned to the variable at
declaration. If a variable is initialized with a class instantiation then the
type of the variable is an object of that class. However, this simple type
inference might not always correctly type variables, as variables might
have explicitly declared types which are not typed with the class’ type,
however for simplicity, and in order to not reimplement TypeScript’s entire
type system, we currently ignore these in the implementation (though we
will still perform a full type-check at a later stage in the compiler).

Class references are all references made to a class. These references are
references such as class declarations, instantiations of a class, usage of a
class as a type, etc. The Class class is a representation for class references.
The class is an extension of the Variable class, so it can store the name
of the class, however they also have references to all the variables that are
instances of the class, and optionally a superclass, which is a reference to
another Class instance.

With an understanding of what a reference is, let us look at how we can
transform the AST nodes that are references. Transforming nodes into
references mainly consists of two steps:

1. Transforming declarations

2. Transforming references

Transforming Declarations

When transforming declarations we both create the Variable or Class

instance, register them in the scope they were found, and transform the
identifier in the declaration to a reference. This reference is a special AST
node. It is represented by the RefNode class. This class contains the same
fields as other scoped AST nodes, type (which is always "variable" for
reference nodes), text, children and scope. In addition to these fields, the
RefNode class contains two additional fields for dealing with references.
The first field is a reference to the Variable or Class instance that the
RefNode is a reference to. The second is a field containing the original type
of the node, which is used when transforming the RefNodes back to the
original AST.

When we are transforming both the declarations and the references we
need to pass through the AST multiple times. A pass through the AST will
visit every node and perform a transformation. The task of transforming
declarations requires us to do three passes through the AST:

1. Class declarations

2. Class heritage

3. Class attribute declarations

During the first pass through the AST we register and transform all
class declarations, creating the Class instances. While creating the Class

51

instances we also register the associated this as a Variable in the class’
body scope. Listing 5.2 on the next page shows an example of how a class
declaration will be transformed in this step. In the listing we can see that
the "type_identifier" node has been transformed to a RefNode instance.

For the second pass we register class heritage. Here we will visit all the
class heritages and update the identifiers contained in the extends clause
with RefNodes containing references to the appropriate Class instances
found in the scope. For class declarations in which we found the class
heritage nodes we will update the associated Class instance’s superclasses.
Setting these superclasses will ensure that later references to inherited
attributes can be referenced and renamed properly.

The final step takes care of any class attribute declarations. This could have
been done in the same pass as with class heritage, however it was separated
to make the code more readable and the flow of the transformations
more understandable. During this transformation we also perform a very
simple form of type inference by checking if there is a new-expression in
the assignment. For the cases where there is a new-expression we assign
the type of the variable to be an instance of the constructed class. It
is worth noting that the current implementation only transforms public
field definitions. Other declaration types could be supported in the same
manner as with public field definitions, however due to a lack of time these
were not implemented.

Transforming References

Transforming references also has several passes, more precisely two passes.

1. Transforming this keyword

2. Transforming the rest

While transforming this references does not need to be done in a separate
pass, it does simplify the process a little for next pass, as we do not
have to worry about the this keyword as a special case for the other
transformations. The this-nodes are transformed to a RefNode like all other
references, and are simply a reference to the Variable instances for this,
which we created in the class declaration pass.

In the second pass the rest of the references are transformed. Currently,
the implementation will transform new expressions, member expressions,
and type annotations. These are all transformed in a pretty similar manner,
where the identifier is found and looked up in the attached scope. If we
can’t find it in the scope this usually means that it is something we can’t
rename, and is therefore not of interest, such as console.log, number, etc.

5.5.3 Perform the Rename

With all declarations and references transformed into reference nodes we
can now perform the rename. For each class rename we can simply look

52

// Before transformation

{

type: 'class_declaration',

text: 'class A ...',

scope: <Scope 1>,

children: [

{

type: 'class',

text: 'class',

scope: <Scope 1>,

children: []

}, {

type: 'type_identifier',

text: 'A',

scope: <Scope 1>,

children: [],

}

...

]

}

// After transformation

{

type: 'class_declaration',

text: 'class A ...'

scope: <Scope 1>,

children: [

{

type: 'class',

text: 'class',

scope: <Scope 1>,

children: []

}, { //

type: 'variable', // This node

text: '', // has been

scope: <Scope 1>, // transformed

children: [], // to a RefNode

origType: 'type_identifier', //

ref: <Class 1> //

},

...

]

}

Listing 5.2: AST of a class declaration of class A before and after
transforming the references. The values surrounded by angle brackets are
references to Scope/Class instances.

53

up the old class name in the root scope and change the reference to the new
class name. For class attribute renames we do a lookup on the specified
class’ scope. If the attribute can’t be found in the class’ scope we do a
lookup in the optional superclass’ scope. If either the superclass is missing
or we can’t find it in its scope either we throw an error, informing the
programmer that the attempted renaming can’t be performed.

5.5.4 Go Back to the Original AST

After we have performed the renaming we can go back to the original,
simpler, AST. For most nodes this is as simple as removing the scope
property. For RefNodes we have to create new AST nodes. Fortunately we
stored the original type of the RefNode, which means we only need to fill in
the children and text properties. The children property will always be
an empty array, since all RefNodes are also leaf nodes. The text property
will be filled with the name of the variable or class it is a reference to. This
name can be found through the reference stored in the RefNode to either a
Variable or Class instance.

Once we have traversed the tree and done the transformations as described
we will end up with an AST tree similar to what we had initially, where all
instantiation statements have been replaced by the renamed bodies of the
templates they were declared to instantiate.

5.5.5 Merge Classes

After we have performed the instantiation and have returned to the
original AST format we can finish off the last task necessary to close
a template, namely class merging. At this stage we will work on a
package/template body which will mostly consist of a (potentially) valid
TypeScript program, with the exception of possibly addto-statements and
duplicate class declarations. These addto-statements and duplicate class
declarations will in this step be merged to form new classes, and remove
the final construct of PT before the body is a TypeScript program. Merging
of classes mainly consists of performing the following tasks:

• Grouping class declarations and addto-statements

• Verify the validity of the groups

• Merging the bodies of the classes

• Merging the class declarations

• Replace the old classes with the new

Grouping Class Declarations and addto-statements

Before we can start merging the classes we need to first group the classes
and addto-statements which are going to be merged together. We will do
this through collecting all classes and addto-statements in the first layer of

54

the package/template body. These will then be split up into groups based
on the class name.

Verify the Validity of the Groups

Before we can merge these groups together, we first need to check that
doing so is valid. This consists of checking that there is at least one class
declaration in each group, as we can not perform additions to a non-
existent class.

As we discussed earlier in section 2.1.2 on page 15 another requirement we
should check before merging these classes is that if some classes in a group
have external superclasses, then these superclasses need to be the same in
order to avoid indirect multiple-inheritance. However, we will not trouble
ourselves by checking this, as this will be picked up in the type-check stage
of our compiler anyways.

Merging the Bodies of the Classes

Now that we have groups of classes that should be merged, and these
groups are valid, we can then proceed to composing new classes from
these. The first step to this is to create the new bodies of the new classes.
This task is relatively simple as we just combine the AST nodes contained
within each class declaration’s or addto-statement’s body.

The addto-statements would require some more advanced merging in
order to support overriding methods, however this was not implemented
due to the restricted time of the project. This will be discussed further in
section 5.9 on page 59.

Merging the Class Declarations

Merging of class declarations is similar to merging the bodies, however
we here instead merge the class heritage. That is if there are classes with
class heritage we will merge the optional extends and implements clauses,
inserting comma nodes between each member. This step might produce
class declarations with multiple superclass, however this will be picked up
by the type-check later on.

Replace the Old Classes With the New

Now that we have composed new classes from the merging of the old
classes we can insert these back into the AST. In order to somewhat
resemble the original program we replace the first class declaration within
the group with the new class, while all other members of the group are
removed from the AST.

55

5.6 Type-checking of Templates

After the previous step we have a program where all packages and
templates are closed, meaning that the bodies of these should contain
plain TypeScript. Because of this we can relatively easily type-check each
package/template individually by using the TypeScript compiler and its
compiler API. In order for us to type-check our pacakges/templates
we will have to transform the bodies of the packages/templates into
a textual format. This will be done by applying our code generation
implementation, which we will discuss in section 5.7, to the body of the
package/template we are currently working on. Running code generation
on the package/template body will give us a TypeScript program. This
program can then be passed on to the TypeScript compiler for type-
checking. We will make the TypeScript compiler transpile the program to
JavaScript without emitting any output. This will effectively type-check
the program.

If the TypeScript compiler throws any errors we can log this for the user
of our compiler to fix, and inform in which package/template this error
occurred. If no errors were thrown we have a type-safe package/template,
and we can then proceed to the next step in our compilation.

5.7 Code Generation

After performing these steps we can finally produce the output. Producing
TypeScript output is a relatively simple task. By traversing the AST we can
concatenate the text from each leaf node with whitespace between each
leaf node’s resulting textual representation. This will produce quite ugly,
unformatted code, but as long as the contents of the closed packages and
templates are valid TypeScript programs, then the generated code will be so
as well. In order to make it more readable we perform an extra step before
writing the output to the specified file, a formatting step. For formatting
our generated code we will be using Prettier5 for our implementation as it
is relatively simple to use. Running our produced source code through the
Prettier formatter produces a nicely formatted, readable output.

The TypeScript output is probably the best target for understanding what
the PT mechanism does, however it might not be the best output for
production use. Since the only officially supported language for the web is
JavaScript we will also be implementing this as a target for code generation.
This is fortunately also a relatively simple task, as we already depend
on the TypeScript compiler, and since we are able to produce TypeScript
source code, we can use this to produce JavaScript output.

5A code formatter for the web ecosystem. See https://prettier.io/.

56

https://prettier.io/

===========================

Closed template declaration

===========================

template T {

class A {

i = 0;

}

}

(program

(template_declaration

name: (identifier)

body: (package_template_body

(class_declaration

name: (type_identifier)

body: (class_body

(public_field_definition

name: (property_identifier)

value: (number)))))))

Listing 5.3: Example of Tree-sitter grammar test

5.8 Testing

Testing has been an essential tool throughout the development of the
compiler. After the initial prototype of the compiler was running I
continued onward with test driven development. This allows me to write
up tests for all the features of the language, and run them concurrently as I
make the changes to the implementation.

5.8.1 Lexer and Parser

For testing the lexer and parser I used the built in testing framework. Tree-
sitter tests are simple .txt files split up into three sections, the name of
the test, the code that should be parsed, and the expected parse tree in
S-expressions6. These files are placed in the corpus folder, and will be
automatically executed when running tree-sitter test.

Listing 5.3 shows an example of a Tree-sitter grammar test. This example
is taken from the source code of the PTS parser, where we test template
declarations.

6S-expressions are textual representations for tree-structured data. See [23] for additional
information and examples

57

import test from 'ava';

import transpile from '../src';

test('Transpiles closed templates to nothing', (t) => {

const program = `

template P {

class A {

i = 0;

}

}

`;

const expected = ``;

const result = transpile(

program,

{ emitFile: false, targetLanguage: 'ts' }

);

t.is(result, expected);

});

Listing 5.4: Example of a test for the PTS compiler

5.8.2 Compiler

For testing the implementation of our compiler I chose to make similar tests
to those used in the parser. I used the test framework AVA7 to run my tests.
I chose to structure my tests into separate files under the __test__ folder.
This is not a strict requirement for AVA, but helps structure the project.
All my tests for the compiler are implementation tests, where I transpile a
program and check that the output is equal to the expected output. AVA
has helper methods for this where I can use the is function to check that
two strings are equal to each other. On differing strings an informative
error is logged, with the differences between the actual results and the
expected results.

Listing 5.4 shows one of the tests from the source code of the compiler,
where we similarly to the Tree-sitter test we saw before, check that a
closed template is working as expected. Instead of providing a parse tree
as the expected result, we instead provide an expected program as the
string. Since templates are not supposed to produce any code after being
transpiled, we therefore also expect this program to be an empty string.

7https://github.com/avajs/ava

58

https://github.com/avajs/ava

5.9 Completing the Implementation

While we have a working compiler for most of the language, we did not
have enough time to implement all the desired functionality. What still
remains to be implemented are handling addto-statements properly, and
handling all declaration and reference types. We are also currently not
supporting splitting up the program into several files. In the following
sections we discuss how implementing these features could be carried out.

5.9.1 addto-statements

addto-statements are one of the core features of PT I was not able to finish
in time. As of now addto-statements for the most part work as intended,
however the method overriding capabilities of addto-statements was not
implemented.

There are mainly two ways for us to finish the implementation of addto-
statements as of now, one hacky but cheap implementation, and one more
robust but expensive implementation. The cheap and hacky way is to
simply always merge the bodies of the addto-statement at the bottom of the
formed merged class. This will work because of the JavaScript’s prototype-
based object-orientation. Since the class syntax is only syntactic sugar for
creating a prototype object and a constructor function, this means that
any attributes that are lower down in the prototype object will override
any previously declared attributes. So if we in a addto-statement wish
to override an attribute we will utilize overriding of properties in objects
to achieve this. The hacky part of the implementation is that TypeScript
gives errors for duplicate declarations inside the class syntax, as this is
often a sign of an erroneous program. In order for us to still be able
to pass the type-check we will have to bypass the TypeScript compilers
errors for certain lines by prefixing all attribute declarations in the bodies of
addto-statements with a // @ts-ignore. This will unfortunately have the
drawback of not having any type-checks for these function-declarations.

The better more robust way to fix this will force us to make a quite severe
refactor of the majority of the codebase. With this approach we will have
to create more complicated datastructures for classes and class attributes.
With our current implementation we are simply combining two AST trees
when merging classes, not really worrying about what is contained within
these trees. In order for us to be able to override attributes with the addto-
statements we will have to merge the bodies of classes in a smarter way.
I suggest that before class merging, the AST nodes representing classes or
addtos are transformed, as well as their contained attribute declarations.
Class nodes can be transformed to a node containing a body of attribute
nodes, instead of general AST nodes, and the attribute declarations will
be transformed to a pair of the name of the attribute, and the old AST
representation of the attribute. This will enable us to perform smarter
merges, as we have easy access to the contained attributes. For class
declarations this will enable us to give better error messages when merging

59

classes resulting in duplicate attribute declarations, and for addto this
enables us to replace the attributes that will be overridden.

This more robust implementation was attempted, but had to be discarded
because I ran out of time. The attempted implementation can be found
under the experimental branch in the GitHub repository, https://github.
com/petter/pts/tree/experimental. This implementation also tries to achieve
better representations for templates and packages to contain these new
class representations.

5.9.2 Supporting All Attribute Declarations

As of now we only support public field definitions, such as a = 2 for
instance, and simple function declarations, such as f() { ... }. There
are of course more ways that attributes can be declared, such as the
function syntax, function f() { ... }, however this was not prioritized
during implementation. I believe that the task of implementing the
remaining attribute types will not be a too expensive task, as these
could be implemented similarly as with the already implemented attribute
declarations. If someone ought to finish this task the TypeScript grammar is
very useful for finding all the different possibilities that an attribute could
be declared.

5.9.3 Supporting All References

This task is probably the hardest to finish off. In order to support all
reference types we would presumably have to do more advanced semantic
analysis of the program than we are currently doing, in order to correctly
identify references. One should then ask themselves if it is worth it to
continue on with this approach, or if starting off fresh with a fork of the
TypeScript compiler would be a better choice, as we would likely get the
semantic analysis for free.

5.9.4 Supporting Multi File Programs

This could likely be implemented by reading all files that are declared in
the import part of the main program. We could then replace the import
statement of templates with the contained templates. This could however
of course lead to duplicate template names, so a complete implementation
might have to offer some template aliasing on imports to circumvent this.

60

https://github.com/petter/pts/tree/experimental
https://github.com/petter/pts/tree/experimental

Chapter 6

Using PTS

Now that we have a working implementation of our compiler for PTS, let
us look into how we could install and use it. There are mainly two ways of
using the PTS compiler:

• Installing it globally, or

• Creating a PTS project

In the following sections we will look at how you can install and use the
compiler for both approaches.

The PTS compiler requires you to have Node and npm installed on your
computer. For instructions on installing Node and npm I refer the reader
to the npm documentations1.

6.1 Installing and Using PTS Globally

Installing PTS globally will enable you to use PTS anywhere, and might be
favorable if you are planning to create several smaller projects to test it out,
or if you are not too experienced with the node ecosystem. If you want to
install the compiler globally you can do the following:

$ npm install -g pts-lang

This will give you access to the PTS compiler CLI through the command
pts-lang. By giving the --help flag you will get some useful information
for how to use the compiler.

$ pts-lang --help

Options:

--help Show help

--version Show version number

-i, --input Name of the input file

-o, --output Name of the output file

1https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

61

https://docs.npmjs.com/downloading-and-installing-node-js-and-npm

-v, --verbose Show extra information during

transpilation

-t, --targetLanguage, --target Target language for

transpilation

-r, --run

6.2 Creating a PTS Project

If you are using PTS for a specific project it might be better to set it up as
a project dependency in npm. When installed in an npm project the CLI is
available to use through npm scripts or through accessing it directly from
the node_modules folder in your project. The compiler can also be accessed
through the API by importing it as with any other npm package.

Installing it inside an npm project will not require you to install it globally,
as it will stay contained in the project. This also means that any contributors
of the project will not have to worry about installing PTS, as it will be
installed when the project is set up.

To initialize an npm project you can do the following:

$ mkdir <project name>

$ cd <project name>

$ npm init -y

With a project set up you can install the PTS compiler as following:

$ npm install pts-lang

With the PTS compiler installed in the project you can then set up some
scripts in your project’s package.json to start and/or build the project.
Below you can see an example of a section of a package.json file with
scripts for running and building a file:

{

"scripts": {

"start": "pts-lang -i src/index.pts --run",

"build": "pts-lang -i src/index.pts -o build/index"

}

}

The start script only runs the program, and does not emit any files, while
the build script transpiles the src/index.pts file to JavaScript. If you
would rather have TypeScript output you can use the -t flag to specify
this:

pts-lang -i src/index.pts -o build/index -t ts

62

6.3 A "Real World" Example

Now that we understand how to get PTS set up, let us look at how it could
be used in a real world example, and how PT enables the programmer to
modularize the code base even further giving great flexibility. Note that
the following example will not work with the current state of the compiler
as it doesn’t handle member expressions containing call expressions, such
as f().i. Properly handling these types of member expressions would
require us to analyse the function for its return type. The example
serves as an example of how PTS could be useful given a more complete
implementation for a real world problem.

The most common use of TypeScript is to create web applications. Let us
look at how PTS can help make this task easier for the programmer. We will
try to create a simple web application for displaying a Pokémon. To do this
we will use one of the most popular web frameworks, React2. We could
of course just display some information about a predetermined Pokémon,
however, we would like to make something re-usable. We will utilize React
to create something re-usable, which we can use to display information
about any Pokémon. We do not want to have to write down information
about all Pokémon, so we will fetch this information from an API, more
specifically the PokéAPI3. This API lets us fetch data about all Pokémon.

6.3.1 Short Introduction to React

React is a web framework developed by Facebook4. It aims to make
creating scalable web projects easier to handle, through enabling the
programmer to modularize collections of elements into components. These
components are often created to make re-use of common elements easier,
such as creating a styled button with certain features, or we could create a
component to represent the entire web application.

Components can be made either through creating a function that returns
some JSX, which we call functional components, or through creating a
class that extends the Component class, which we call class components.
JSX is a syntax extension to JavaScript which resembles HTML, but in
reality is just syntactic sugar for creating React elements. We will in this
example create class components, as PT has a lot of useful functionality
for adapting classes. Class components most important method is the
render method. The render method works essentially the same way as a
functional components, where you return some piece of JSX, which is what
will be displayed when the component is used.

A component essentially has two sources of data, its state and its props.
Props, short for properties, is data passed to a component from its parents.
An example of this can be <SomeComponent text="some text" />, where

2https://reactjs.org/
3https://pokeapi.co/
4https://www.facebook.com/

63

https://reactjs.org/
https://pokeapi.co/
https://www.facebook.com/

the component SomeComponent got some text from its parents. This can
be accessed by the component through the props attribute. The other
source of data for components is the component’s state. State is a piece of
data connected to the component, which similar to props can be accessed
through the state attribute. Unlike props, state is entirely controlled by
the component itself. The state can be updated through using the setState
method of the Component class, which will also trigger a re-render of the
component.

Except for the render method, class components also has methods for
lifecycle events, such as componentDidMount, which is called after the initial
render of the component has finished, and componentDidUpdate, which
is called after the state of the component is updated. These lifecycle
methods are very useful for reacting to state changes, or to perform some
asynchronous actions. For a more thorough introduction to React I refer
the reader to the React documentation5.

6.3.2 The FetchJSON Template

We will start off with the task of fetching data. As this is something
you commonly want to do in web applications it might be a good
idea to separate this logic into a separate template. Fetching data is
commonly done after a component has been mounted, so we use the
componentDidMount lifecycle method for this. For fetching the data we use
the fetch function from the WebAPI6.

template FetchJSON {

class FetchJSON extends Component {

componentDidMount() {

fetch(this.props.url)

.then(response => response.json())

.then(data =>

this.setState(state => ({...state, data}))

).catch(error =>

this.setState(state => ({...state, error}))

);

}

}

}

The FetchJSON component we will fetch whatever URL we pass to it in its
props and update the state with the results of the fetch. If we for some
reason should fail to fetch the data we will instead update the state with
the error message we got.

5https://reactjs.org/docs/getting-started.html
6https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

64

https://reactjs.org/docs/getting-started.html
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

6.3.3 The StateLogger Template

In addition to fetching data, it might be useful to have a logger, which will
log all state changes to the console. This is often useful when working
with React components as we are able to see when they update, and what
the state was at the time of the update. Such a logger could then also be
separated into its own template, like the following:

template StateLogger {

class StateLogger extends Component {

componentDidUpdate() {

console.log("State updated!", this.state);

}

}

}

6.3.4 Creating the Pokemon Component

Finally we would like to combine these templates into our Pokémon
component, and add some logic for displaying the information. We will
do this inside of a package, so that this will produce an output:

pack Pokemon {

inst FetchJSON { FetchJSON -> Pokemon };

inst StateLogger { StateLogger -> Pokemon };

addto Pokemon {

render() {

if(this.state.error) {

return (

<div>

<h1>An error occurred</h1>

<p>{this.state.error.message}</p>

</div>

);

}

if(this.state.data === undefined) {

return 'Loading...';

}

const name = this.state.data.name;

const pokemonTypes = this.state.data.types;

const image = this.state.data.sprites.front_default;

return (

<div>

<h1>{name}</h1>

<h2>Types</h2>

65

{pokemonTypes.map(pokemonType => (

{pokemonType.name}

))}

</div>

)

}

}

}

We could then use our Pokémon component in our application by
supplying a URL for the Pokémon to display, as seen below:

class App extends Component {

render() {

<Pokemon

url="https://pokeapi.co/api/v2/pokemon/ditto" />

}

}

6.3.5 How the Example Benefited From PT

In this example PT helped us split up our component into several
smaller modules. This enables us to later re-use these common pieces of
functionality, fetching data and logging, in other components, which will
make our project more scalable, and aids in shortening development time.
Modularizing these concepts also helped make the implementation of our
Pokémon component less cluttered, which makes the readability of the
code better.

66

Part III

Results

67

Chapter 7

Evaluation and Discussion

7.1 Does PTS Fulfill The Requirements of PT?

This thesis is concerned with implementing Package Templates in Type-
Script. However, in order to determine to what degree we have actually
implemented PT or just created something that looks like it, we have to
understand what the requirements of PT are, and if we are meeting those
requirements. We will therefore in this chapter look at the requirements as
described in [13]. After getting an understanding of the requirements we
are going to look at how our implementation holds up to them.

7.1.1 The Requirements of PT

In [13] the authors discuss requirements of a desired language mechanism
for re-use and adaptation through collections of classes. They then present
a proposal for Package Templates, which to a large extent fulfills all
the desired requirements. These requirements can therefore be used to
evaluate our implementation and determine whether our implementation
can be classified as a valid implementation of Package Templates.

The requirements presented in the paper were the following:

• Parallel extension

• Hierarchy preservation

• Renaming

• Multiple uses

• Type parameterization

• Class merging

• Collection-level type-checking

In order to get a better understanding of what these requirements entail we
will have to dive a bit deeper into each requirement.

69

template T {

class A {

...

}

class B {

A a = new A();

...

}

}

package P {

inst T;

addto A {

void someMethod() {

...

}

}

addto B {

void someOtherMethod() {

a.someMethod();

}

}

}

Listing 7.1: Example of parallel extension in PT. Here we make additions to
both A and B in our instantiation in package P, and we are able to reference
the additions done to A in our addition to B. This is done without the need
to cast A, as if the additions were present at the time of declaration.

Parallel Extension

The parallel extension requirement is about making additions to classes
in a package/template, and being able to make use of them in the same
collection. What this means is that if we are making additions to a class,
then we should be able to reference these additions in a declaration or in
an addition to a separate class within the same package/template, without
having to use casting to access the new members. We can see an example
of this in listing 7.1, where an addition to class B is referencing the added
method of class A. Contrast this to how an implementation with traditional
extension through subclasses of A and B would work, and the casts etc.
necessary to make the call a.someMethod() work in that context. The order
of additions does not affect the parallel extension.

70

Hierarchy Preservation

PT should never break the inheritance hierarchy of its contents. If we have
a template with classes A and B, and class B is a subclass of class A, then this
relation should not be affected by any additions or merges done to either
of the classes. That is if we make additions to class B it should still be a
subclass of class A, and any additions made to class A should be inherited
to class B. Even if we make additions to both class A and B, then B with
additions should still be a subclass of class A with additions.

Renaming

The renaming requirement states that PT should enable us to rename the
names of any class, and its attributes, so that they better fit their use case.

Multiple Uses

PT should allow us to use packages/templates multiple times for different
purposes in the same program, and any additions or renamings should not
affect any of the other uses. Each use should be independent of each other.
This is an important requirement of PT as when we create a package or a
template it is often designed to be re-used. An example of this is the graph
template we created in listing 2.3 on page 10. Here we bundled the minimal
needed classes in order to have a working implementation for graphs. We
then used this graph implementation to model a road system, however we
might later also want to re-use the graph implementation for modelling the
sewer systems of each city, and this should not be affected by any changes
we made to the graph template for our road system.

Type Parameterization

The requirement of type parameterization of templates works similar to
how type parameterization for classes works in Java. Type parameteri-
zation in Java enables the programmer to assume the existence of a type
during declaration of a class, and the actual type can be given when a new
object of the class is created. Type parameters in Java can have constraints
where the concrete type must extend another class or interface. Similarly,
type parameterization in PT also enables the programmer to assume the
existence of a type, however here the type parameter is accessible to the
whole template. PT type parameters can also be constrained similar to
Java, by giving a nominal type it should extend, however PT also allows
for type constraining through structural types, by giving a structure the
type should conform to.

In listing 7.2 on the next page we see an example of how type parameteri-
zation can be used to implement a list. Type parameterization in PT might
feel similar to how you would use it in regular Java, however having the
type parameter at the template level, where Java has it at class level, does
have some advantages. One advantage of having the type parameter at

71

template ListsOf {

required type E { }

class List {

AuxElem first, last;

void insertAsLast(E e) { ... }

E removeFirst() { ... }

}

class AuxElem {

AuxElem next;

E e; // Reference to the real element

}

}

Listing 7.2: Modified example from [13] where type parameterization is
used to create a list implementation.

template level is that you don’t need to specify the actual parameter again
after instantiation. At instantiation of the ListsOf template we can give i.e.
a Person class, containing some information about a persons name, date of
birth, etc., as the actual parameter, and then we would not have to keep
specifying the actual parameter for every reference. Another advantage of
using type parameters at the template level is that the type parameter can
be used by all classes in the template. If we wanted to implement this in
Java we would either have to have type parameters for both classes, or the
AuxElem class would need to be an inner class of the List class.

Class Merging

PT should allow for merging two or more classes. When merging classes
the result should be a union of their attributes. If we merge two classes A

and B, it should be possible to reach all of B’s attributes from an A-variable,
and vice versa.

Collection-Level Type-Checking

The final requirement is collection-level type-checking. This requirement is
there to ensure that each separate package/template can be independently
type-checked. By having the possibility to type-check each pacakge/tem-
plate we can also verify that the produced program is also type-safe, as
long as the instantiation is conflict-free.

7.1.2 PTS’ Implementation of the Requirements

With a proper understanding of the requirements of PT we can evaluate
our implementation to check whether it fulfills these requirements.

72

Parallel Extension

Fulfilling the requirement of parallel extension requires us to be able
to merge or make extensions to classes, and be able to reference these
additions within the same package/template, in the same or in a different
class. To understand how this requirement can be fulfilled it is important
to understand how the requirement could fail to be fulfilled. A failure to
fulfill the requirement would be that making additions in parallel would
fail to compile, or create an otherwise incorrect program.

Failure to compile might of course not always be a bad thing, there are
certain scenarios where we do want the compiler to throw an error. There
are mainly two scenarios where we would like the compilation to fail for
additions:

• trying to make an addition to a non-existent class, and

• trying to reference non-existent attributes in a class.

The first scenario where our compiler should fail is when we are making
additions to a non-existent class. This will be caught in the class merging
part of our compiler. In the class merging part of the implementation the
compiler will group all class declarations and additions by the class name.
If there is a group containing only additions then it will fail, as we have no
class to make additions to.

The second scenario is when we are trying to reference non-existent
attributes in a class. An example of this can be seen in listing 7.3 on the
following page. This example will fail during the type-checking of our
packages/templates, as discussed in 5.6 on page 56. Our approach for
dealing with this is pretty much by not dealing with it, and instead assume
that everything is okay at this stage of the compilation. We will then instead
discover any inconsistencies in the type-checking stage of the compiler. In
the aforementioned listing it is of course pretty easy to examine class A to
see if it contains an attribute h, however it might not always be this easy.
In a more complicated example where we are in the process of merging
several classes and additions it might prove a tougher task to see if the
addition would result in a type-safe class. So as long as we are able to
perform the addition we can assume that it is working as intended and
instead let the TypeScript compiler check if it is type-safe, after the addition
has been performed.

Now that we understand when we want compilation to fail let us look at
where we do not want it to fail, namely when we have a valid parallel
extension. One way it could result in an unwanted failure is if we tried to
check if the addition contains any invalid references or type errors. This
could commonly happen if we are trying to check the addition’s references
to the declared class. However, as discussed above, checking if a reference
to an attribute is valid is quite tricky, and in our implementation we instead
leave this up to the TypeScript compiler in the type-check stage. By doing
this we will not incorrectly throw any false-negatives when it comes to

73

template T {

class A {

function f() {

return 1;

}

}

}

package P {

inst T;

addto A {

function g() {

this.h();

}

}

}

Listing 7.3: An example program that should fail during compilation,
where we are trying to reference a non-existent attribute, h, in an addition
to class A.

parallel extensions. This approach does unfortunately come with some
downsides. By not addressing the issue at the addition stage it makes
it harder to give informative error messages when invalid references do
occur, however this was a tradeoff that was beneficial for this project.

Our implementation handles parallel extension as expected, it fails when it
should fail and succeeds when it should succeed. It also doesn’t produce
any false-negative failures, failing where it shouldn’t fail or succeeding
when it should fail. Therefore our implementation fulfills the requirement
of parallel extension.

Hierarchy Preservation

In order to fulfill the hierarchy preservation requirement we have to
preserve all super-/subclass relations after additions and merges have been
applied. Listing 7.4 on the facing page shows a program, and the resulting
TypeScript program after compilation, which adheres to the requirement
of hierarchy preservation. In the example class B is still a subclass of class
A after both a merge and an addition is made to B, which is what we
expect. However, this doesn’t prove that our implementation will fulfill
the requirement of hierarchy preservation, let us dig deeper into how our
implementation handles these scenarios.

As we talked about briefly in section 5.5.5 on page 54 when we merge
classes we make sure to also merge their class heritage, combining the
extending classes and implementing interfaces of the different classes.
This means that we might end up with instances where we are extending
multiple different classes, however this will then be picked up in the type-

74

// PTS

template T1 {

class A {

i = 0;

}

class B extends A {

f() {

return this.i;

}

}

}

template T2 {

class C {

j = 0;

}

}

package P {

inst T1;

inst T2 { C -> B };

addto B {

k = 0;

}

}

// Resulting program

class A {

i = 0;

}

class B extends A {

f() {

return this.i;

}

j = 0;

k = 0;

}

Listing 7.4: Example showcasing the preservation of super-/subclass
relations

75

checking stage of the compiler. If we had not merged class heritage,
we could have ended up breaking the inheritance hierarchy in the
aforementioned listing, as we could have for example ended up with
class C’s heritage, which does not have a superclass. Because of the
heritage merging we can with confidence say that we have fulfilled the
requirement of hierarchy preservation, as we always preserve all super-
/subclass relations.

Renaming

In order to be able to fulfill the renaming requirement our implementation
should be able to rename classes and their attributes. This renaming should
result in a program where not only the declarations have been renamed,
but also all references. Listing 7.5 on the facing page shows a program
with an example of renaming in PTS, where we are renaming a class,
A, and the class’ attribute, i. We can see in the resulting program that
the identifier in the declaration of both the class and the attribute has
changed, as well as the references to these in the constructor of the class and
references in another class, B. The renaming has also not wrongly renamed
other references that are similar in naming, such as the parameter of the
constructor of class A.

Because of TypeScript’s structural type system, renaming will have to work
a bit differently than it would in a nominally typed language. In nominal
PT, all references are always renamed. In structural PT we could end
up with programs where some references can not be renamed, as some
variables might not be directly tied to a class. Listing 7.6 on page 78
showcases this problem. The problem arises in the a attribute of class B

in template T. This has been declared to be a variable expecting an object
where there exists an attribute i. The variable a is initialised with an object
of the class A. This is fine in template T, however when T is instantiated in
package P, and A’s attribute i is renamed to j, this is no longer the case.
The a variable in class B is not a direct reference to class A, and we can thus
not rename the reference to the attribute i. Since an object of A no longer
contains an attribute i, this is no longer a valid value for variable a.

The aforementioned listing shows how we would like the compilation
result to look like, however this is not the result the current implementation
produces. TypeScript’s type system can be quite complicated, and due to
a lack of time I chose to ignore most of the type declarations. The current
implementation would have treated the attribute a as an A-variable, since
it is being initialized with an object of A, and therefore have renamed later
references of a.i to a.j. It was more important to get a working prototype,
than support all scenarios with different type signatures. This is something
I would of course have liked to take into consideration if I had more time to
spend on the implementation. Deciding the type of variables is something
that possibly would have come for cheaper if I had opted for a fork of the
TypeScript compiler as my approach. This is something we will come back
to in 8.2.1 on page 91.

76

// PTS

template T {

class A {

i = 0;

constructor(i: number) {

this.i = i;

}

}

class B {

a = new A();

function f() {

return a.i;

}

}

}

pack P {

inst T { A -> X (i -> j) };

}

// Resulting program

class X {

j = 0;

constructor(i: number) {

this.j = i;

}

}

class B {

a = new X();

function f() {

return a.j;

}

}

Listing 7.5: Example of renaming in PTS

77

// PTS

template T {

class A {

i = 0;

}

class B {

a : { i : number } = new A();

i = a.i;

}

}

pack P {

inst T { A -> A (i -> j) };

}

// Expected result

class A {

j = 0;

}

class B {

a : { i : number } = new A();

i = a.i;

}

Listing 7.6: Example showcasing the problem of having renaming in a
structural language. In class B we have an attribute, a, that expects an
object that contains an attribute i. The attribute is initialized with an A

object. This is fine in template T as A contains an attribute i, however when
class A’s attribute is renamed in the instantiation in package P then an object
of A is no longer valid as a value, since it no longer contains an attribute i.
This is an instance where we can’t just rename the references to i, since this
reference isn’t explicitly related to A.

78

template T {

interface I {

void f();

}

class A implements I {

void f() { ... }

}

}

package P {

inst T with I => I (f() -> g());

// Error: A is not abstract and does not

// override abstract method f() in I

}

Listing 7.7: Example showing how a renaming of an interfaces’ attributes
could result in an invalid program.

PT for the nominally typed language Java is also not perfect in this regard,
as we can run into issues with renamings of interfaces’ attributes. If a
class implements an interface, and we in a later instantiation rename the
interfaces’ attributes, and not the attributes of the implementing class,
we could end up with a program where the class no longer fulfills the
requirement of the interface. In listing 7.7 we can see this problem in
action, where after a rename of interface I’s method f, the class A no longer
implements the interface properly. This is of course also a problem in
structural PT, and can potentially be an even bigger problem as we would
not necessarily have an explicit relation between the interface and the class,
and could therefore also not properly describe the error to the programmer.

As we have discussed, renaming does work to some extent, but will
also in a lot of cases not work because of the implementations’ lack
of handling explicit types. The renaming requirement is therefore only
partially fulfilled.

Multiple Uses

In order for this requirement to be fulfilled we should be able to re-use
a template several times, with different renamings and additions while the
different instantiations stay independent of each other. This was something
I paid extra attention to during implementation, not just to fulfill the
requirement, but to avoid bugs. I solved this by making sure that while
transforming the AST this would be done in an immutable fashion. In
order to test this we will be creating a simple program where we instantiate
the same template more than once and see if the resulting program is as
expected. The program can be seen in listing 7.8 on the following page.
The program comprises a template T with a single class, A, with an attribute

79

// PTS

template T {

class A {

i = 0;

}

}

pack P {

inst T { A -> B (i -> j) };

inst T;

inst T { A -> A (i -> x) };

}

// Resulting program

class B {

j = 0;

}

class A {

i = 0;

x = 0;

}

Listing 7.8: A program showcasing multiple uses in PTS, and the resulting
program in TypeScript at the bottom.

i. This template will then be instantiated three times, where we first will
be renaming the class and field, then instantiate without renaming, and
finally instantiate it with just an attribute renaming. The expected program
should have two classes, one class B, with an attribute j, and a class A

where the two bottom instantiations should have created a merged class
with attributes i and x. We can see from the resulting program after a
successful compilation that this is as expected.

From the aforementioned listing we can see that re-using templates will be
kept independent of each other, and we therefore fulfill the requirement of
multiple uses.

Type Parameterization

The type parameterization requirement is something the implementation
does not fulfill. This was not implemented due to it not being prioritized.
There is only so much time available during the span of a master thesis,
and I chose to look at how the core of PT would fit into a structurally
typed language like TypeScript, rather than on making sure it would be a
fully fleshed out implementation of PT. Another reason for avoiding this is
that much of type parameterization can be achieved through merging and
renaming. Listing 7.9 on the next page shows an example of how you can

80

template ListsOf {

class E { }

class List {

AuxElem first, last;

void insertAsLast(E e) { ... }

E removeFirst() { ... }

}

class AuxElem {

AuxElem next;

E e;

}

}

Listing 7.9: Example of a similar list implementation as in listing 7.2 on
page 72, without the use of required types. Instead of giving a type for the
required type we will have to merge the class E with the "actual parameter".

use an empty class as a generic type implementation of lists, similar to the
list implementation with required types in listing 7.2 on page 72. Required
types do of course have a lot of advantages such as making it possible to
constrain the type, and forcing the programmer to give an actual parameter
for the type, which we are unable to do.

Class Merging

In order to fulfill the requirement of class merging we will have to be able
to merge classes through instantiating two or more templates containing a
class with a common name, or through renaming a class at instantiation
leading to two classes having the same name. A failure to fulfill this
requirement could be that a resulting program would contain two different
class declarations, where these should have been merged. This could occur
if we had for instance not respected the renaming of a class at the time
class merging, that is if we had renamed a class to be merged, but this was
not picked up during class merging. Our implementation of class merging
has been made so that it is essentially unaware of the instantiation and
renaming steps, it is done as a separate step after these actions have been
performed. What this entails is that after performing all instantiations,
with optional renamings, we can momentarily end up with several class
declarations for the same class, which would be an invalid TypeScript
program, however before the closing of templates step is done we will
merge the class declarations and addto-statements representing the same
class, forming new classes. The resulting program could of course still
be an invalid TypeScript program, as the merge of classes could lead to
erroneous code, such as duplicate function declarations, however this is not
a result of an invalid implementation, but rather an error as a product of an
invalid input program. The class merging step will merge classes without
checking their bodies, as these will be picked up in the type-checking step
later on. By separating the logic of instantiations (and renaming) and class

81

// PTS

template T {

class A {

i = 0;

}

}

pack P {

inst T;

inst T { A -> A (i -> j) };

}

// Resulting program

class A {

i = 0;

j = 0;

}

Listing 7.10: Example of class merging in PTS, where we merge two classes,
A, with attributes, i and j, respectively

merging, as we have done, we should minimize the potential for an invalid
implementation of class merging.

Listing 7.10 shows a program with class merging, and the resulting
program from a compilation of the PTS program. In the program we
instantiate the same template twice, but rename the only attribute, so
that the resulting program doesn’t contain duplicate declarations. The
instantiations will produce one class A with the attribute i and another class
A with the attribute j. These are then merged together during compilation.
The resulting program is as expected a single class A with both attributes.

Because of our separation of logic between the instantiations and the
class merging we will always catch all merged classes, as long as the
instantiation process was successful. The fulfillment of this requirement
therefore relies heavily on the fulfillment of the renaming requirement. As
we discussed earlier, the renaming requirement is only partially fulfilled,
however the only important feature of renaming for this requirement is
that the class declarations are always renamed correctly, which they are.
Therefore the class merging requirement is fulfilled.

Collection-level Type-checking

To fulfill this requirement our implementation just needs to perform a type-
check on each package/template individually. In the type-checking step of
our compiler we do just this, and we therefore fulfill this requirement.

However, as we previously touched upon in section 4.1.1 on page 31,
TypeScript’s type system is unsound. What this means is that TypeScript’s

82

type-system will not be able to pick up all type errors. With an unsound
type-check, can we truly say we have fulfilled the requirement of collection-
level type-checking?

In the proposal of PT, Java is used as the host language. Java has also been
shown to have an unsound type system [1], so we could argue that if the
requirement is fulfilled in PT, then our unsound type-check should also
fulfill the requirement.

7.1.3 Conclusion

While we do not fulfill every requirement, we do fulfill most of them.
The current implementation might not be a full implementation of PT,
but we can confidently say we have at least made an implementation of
the core of PT for TypeScript. Not having a full implementation does
mean that we might not be able to examine all the differences between
our implementation and PT, however we will be able to examine the
common elements, which covers the most interesting parts. This allows
us to explore how a mechanism like PT fits with the TypeScript language,
and its potential utility.

7.2 Nominal vs. Structural Typing in PT

One of the most notable differences between PTS and PT are the underlying
languages’ type systems. PTS, as an extension of TypeScript, has structural
typing, while PT on the other hand, an extension of Java, has nominal
typing. We will in the following sections try to understand what
advantages (and disadvantages) these type systems have over the other,
and how this affects Package Templates.

7.2.1 Advantages of Nominal Type Systems

Subtypes

In nominal type systems it is trivial to check if a type is a subtype of
another, as this has to be explicitly stated, while in structural type systems
this has to be structurally checked, by checking that all members of the
super type, are also present in the subtype (modulo co-/contravariance).
Because of this each subtype relation only has to be checked once for
each type, which makes it easier to make a more performant type checker
for nominal type systems. However, it is also possible to achieve
similar performance in structurally typed languages through some clever
representation techniques [22]. We can see an example of subtype relations
in both nominal and structural type systems, in a Java-like language, in
listing 7.11 on the next page. It is important to note that even though C is a
subtype of A in a structural language, it is not a subclass of A.

83

// Given class A

class A {

void f() { ... }

}

// A subtype, B, in nominal typing

class B extends A { ... }

// A subtype, C, in structural typing

class C {

void f() { ... }

int g() { ... }

}

Listing 7.11: Example of subtype relations in nominal and structural
typing, in a Java-like language. In the example of the nominal subtype we
have to explicitly state the subtype relation, while in the structural subtype
example the subtype relation is inferred from the common attributes.

Runtime Type Checking

Often runtime-objects in nominally typed languages are tagged with the
types (a pointer to the "type") of the object. This makes it cheap and easy to
do runtime type checks, like in upcasting or doing a instanceof check in
Java. It is also easier to check sub-type relations in nominal type systems,
even though you might still have to do a structural comparison, you only
have to perform this once per type [22].

7.2.2 Advantages of Structural Type Systems

Arguably Tidier and More Elegant

Structural types carry with it all the information needed to understand
its meaning. This is often seen as an advantage over nominal typing as
the programmer arguably only has to look at the type to understand its
meaning, while in nominal typing you would often have to look at the
implementation or documentation to understand the type, as the type itself
is part of a global collection of names [22].

More General Functions/Classes

Malayeri and Aldrich performed a study (see [14]) on the usefulness
of structural subtyping. The study was mainly focused around two
characteristics of nominally-typed programs that would indicate that they
would benefit from a structurally typed program. The first characteristic
was that a program is systematically making use of a subset of methods of
a type, in which there is no nominal type corresponding to the subset. The
second characteristic was that two different classes might have methods
which are equal in name and perform the same operation, but are not

84

contained in a common nominal supertype. 29 open-source Java projects
were examined for these characteristics.

For the first characteristic the authors ran structural type inference over the
projects and found that on average the inferred structural type consisted of
3.5 methods, while the nominal types consisted of 37.8 methods. While for
the second characteristic the authors looked for types with more than one
common methods and found that every 2.9 classes would have a common
method without a common nominal supertype. We can see that from
both of these characteristics that the projects could have benefited from a
structural type system, as this would make the programs more generalized,
and could therefore support easier re-use of code.

7.2.3 Disadvantage of Structural Type Systems

It is worth noting that the advantage of types conforming to each other
without explicitly stating it in structural type systems can also be a
disadvantage. Structurally written programs can be prone to spurious
subsumption, that is consuming a structurally equal type where it should
not be consumed. An example of this can be seen in listing 7.12 on the
following page.

Here the function double will consume an object that has a calculate

attribute. The intended use is to consume something that does a calculation
on the object and returns a number which will be doubled, while the
unintended use example in this case does some unexpected side effect and
returns a number as a status code. The unintended object can be consumed
by the double function as it is conforms to the signature of the function,
while in a nominally typed system this can be avoided to a much larger
extent.

7.2.4 Which Better Fits PT?

Now that we understand the advantages and disadvantages of both
categories of type systems, let us look at which type system would be more
beneficial for PT.

PT’s type parameters uses structural typing, independent of the underlying
language’s type system. Using structural typing was seen as a necessity for
required types as this would give the mechanism its required flexibility.
One could therefore argue that a structural type system is a better fit for
Package Templates as it would remove the confusion of dealing with two
different styles of typing in a single program, and make the language
mechanism feel more like a first class citizen of the host language.

Another advantage for having structural typing for PT is that it can help
strengthen one of the main concepts of Package Templates, namely re-use.
As we learned from the study of Malayeri and Aldrich, structural typing
can make programs more general which makes them more prone to re-use.

85

function double(o: {calculate: () => number}) {

return o.calculate() * 2

}

const vector = {

x: 2,

y: 3,

calculate: () => 4

}

// function calculate also returns number, but as a status code

const unintended = {

calculate: () => {

doSomeSideEffect();

return 1;

}

}

double(vector); // Ok, intended

double(unintended); // Not intended use,

// but it is type-safe to do so.

Listing 7.12: Example of spurious subsumption in TypeScript

However, there are also some quite significant problems with having PT in
a structural language. Renaming is especially something that might not fit
nicely into a structurally typed language. In listing 7.13 on the next page
we see an example of a program that breaks after renaming an attribute.
The renaming resulted in class Consumable no longer conforming to the
signature of function f in class Consumer. PT does not support changing
the signature of functions so there is no way for us to be able to make the
Consumable class conform. In order to avoid running into this problem we
might consider disallowing inline type declaration. This would force us
to give an interface as the type for the formal parameter, consumable. We
could then also rename the members of the interface in order to once again
make the Consumable class conform to the signature of function f.

It is worth noting that the problem of renaming causing programs to
break is not something unique to structural typing, this can also occur in
nominally typed programs. Listing 7.14 on page 88 showcases a program
that breaks after renaming. In this listing we see that after renaming
method f of class A the class no longer fulfill the requirements of the
implementing interfaces I, as I expects a method f to be present, which
it no longer is. We could resolve this by also performing an equal renaming
to interface I. Although it is a problem in nominal PT as well, it is less
so than with structural PT, since it can be resolved with just an additional
renaming, and due to the relation being explicitly stated we can also give

86

template T {

class Consumable {

i = 0;

}

class Consumer {

function f(consumable : {i: number}) {

...

}

}

}

pack P {

inst T { Consumable -> Consumable (i -> j) };

}

Listing 7.13: Example of how using renaming in PTS might break a
program. After renaming the field i to j the class Consumable is no longer
consumable by function f in class Consumer.

an error message during compilation notifying the programmer of this
inconsistency. In structural PT we would have to disallow inline-types in
order to make the problem more solvable for the programmer, but due to
the relation between the class and interface not necessarily being explicitly
stated it would be harder to give a sensible warning for the programmer.

With the discussed general advantages and disadvantages of structural and
nominal type systems, and the points brought forward in this section we
can see that both styles of typing have strong use cases with PT. A nominal
type system in PT would seemingly lead to less problematic renaming
scenarios, while a structural type system in PT would arguably fit better
with the overall theme of PT, flexible re-use.

87

template T {

interface I {

void f();

}

class A implements I {

void f() { ... }

}

}

package P {

inst T with A => A (f() -> g());

}

Listing 7.14: Example of how using renaming in PT might break a program.
After renaming the method f to g the class, A, no longer conform to the
implementing interface I.

88

Chapter 8

Concluding Remarks

This thesis has explored how TypeScript can be extended with the language
mechanism Package Templates. The resulting language from this extension
was Package Template Scripts, or just PTS for short. PTS helps the
programmer further modularize their code into collections of classes,
which can at a later stage be re-used and adopted to a domain of interest.
We have also looked at how a project like this can be approached, where
we examined all the viable approaches to find the most beneficial approach
for our problem. With a decision made for the approach of the project
we implemented a compiler for our language using this approach, and we
have looked at how this implementation was carried out. In the previous
chapter we evaluated our implementation and discussed the consequences
of having a structurally typed language as the host of PT, opposed to a
nominally typed language. We will in this chapter conclude this work by
returning to our initial research questions and try to answer these with the
knowledge we have accumulated through the span of this thesis. After this
we will have a look at what could have been done differently in retrospect,
and finish off with proposing future works within the field.

8.1 Addressing Research Questions

RQ1: How does the language mechanism, Package Templates, fit
into TypeScript?

Package Templates benefits greatly from TypeScript’s ecosystem. Having
access to npm makes the compiler for PTS as easily accessible as the
TypeScript compiler, which makes trying out the language mechanism
easy. Publishing packages to npm is openly available for anyone. This
means that anyone could utilize npm to create and publish PT modules,
which greatly enforces the overall theme of PT, namely re-use. For instance,
if someone writes a great graph template implementation, this template
could then be published to npm, and others would be able to install
this template and re-use it in their PTS projects (given a more complete
implementation of the compiler which would allow multi-file projects).

89

It is worth noting, as we discussed in section 7.2.4 on page 85, the problem
of renaming in TypeScript is something that, at least for our proposal of
PTS, did not fit too nicely. Since types that a class conform to are not
necessarily tied to the class, this makes what would have been explicit
references to attributes in a nominally typed language, not necessarily be
explicit references in a structurally typed language. The consequence of
this is that we could end up in situations where renaming an attribute of a
class could break the type-safety of a program, since we would not be able
to rename all "references" to the classes attributes, as they would essentially
not be references. As we touched upon in the aforementioned section, it
is possible to end up in similar situations in nominally typed languages,
however in these scenarios it is also possible to give an informative error
to the programmer, while in structurally typed languages, we might not be
able to do the same.

It could possibly be viable to change the grammar of TypeScript further
to disallow inline types, so we could at least fix these issues when we
stumble upon them through performing renamings on the types as well.
However, doing this would greatly take away from the overall appeal of
the language. It might just be better to let the programmer have the choice
of using interfaces for these problematic inline-types if they so chooses.

RQ2: Does structural typing change how the core of Package
Templates works?

Most of the functionality of Package Template stay the same in a struc-
turally typed language as they do in a nominally typed language. The
most notable deviation is the renaming mechanism. While we still rename
all valid references, it is worth noting that what a reference is will differ in
a structurally typed language.

In nominal PT, all variables that are instantiated with an object of a class,
will also have some explicit relation to the class. A variable in nominal PT
will likely have either the class (or a superclass) as the type, or an interface.
For the case of the variable having the class as the type the relation to
itself is obviously there. For interface or superclass as the type the relation
must explicitly be declared in the class’ heritage. If the class’ attributes are
renamed we will either be able to rename the variables references to these
attributes if the renaming was applied to the class or any of its superclasses,
or at least give a detailed error message for when the renaming was applied
to the interface.

In structural PT, variables instantiated with an object of a class might not
have the same explicit relation to the constructed class. A variable in a
structurally typed language might be typed with a structure that the class
conforms to. However, this conformity might break after a renaming has
been applied to the class. In these cases we will not be able to rename the
variables type, nor any of the variables references to the possibly renamed
attributes, since these do not have the same explicit relation to the class.

90

RQ3: Will having PT in a structurally typed language have any
notable advantages or disadvantages over having it in a nominally
typed language?

As we discussed in section 7.2.4 on page 85 there are some benefits of
hosting PT in a structurally typed language. Structural typing does fit
nicely in with the theme of Package Templates, namely re-use. A structural
type system gives the programmer a flexibility that nominal type systems
can not offer to the same extent. One of the strongest points for structural
typing is how it enables us to easily use third-party libraries without
necessarily having to alter our classes. Say we have implemented a graph
library in PT and later on wanted to use some third-party graph utility
library. This library might take a graph as input and do some calculations
such as finding the shortest path between nodes in the graph. In structural
typing, as long as our graph implementation is structurally equal to the
type of the input we can pass it with no problems. In a nominally typed
language we might have to alter our implementation to explicitly declare
that our classes implement some interfaces from the library. It might at
worst not even be possible if the graph utility library has typed their input
with classes instead of interfaces. This is of course one of the strengths
of PT in the first place, being able to add implementing interfaces to a
class without altering the original implementation or merging classes if
possible, however the fact that we would not have to perform this step
in a structurally typed language could arguably be seen as a benefit.

The disadvantage of having PT in a structurally typed language is as we
have mentioned earlier, the problem of renaming. However, I would
argue that the advantages that structurally typed languages bring to PT,
outweighs the disadvantage. The problem of renaming is mostly the
problem of occasionally getting into situations where it is harder to inform
the programmer about the error that has been made. For these scenarios
it is still possible for the programmer to work their way around it through
using interfaces instead of inline-types, while the advantage of greater re-
use is not something that can be as easily gained in a nominally typed
language.

8.2 In Retrospect

8.2.1 Approach

While we were able to implement most of PT with our approach, I fear
that further development to reach a complete implementation might be
hindered by our chosen approach. This is largely because we might
have to implement much of the type system in order to properly identify
references, as we briefly discussed in section 5.9.3 on page 60. Instead of re-
inventing the wheel, we might be better off by implementing PT in a fork of
the TypeScript compiler. While this might make updates harder, than with
our implementation, we will most often likely be able to merge the changes

91

to the TypeScript compiler into our fork with the help of Git, conflict free.
Greater changes to the language might of course still give us some merge
conflicts, however these larger changes could also make our currently used
approach break.

8.3 Future Work

8.3.1 Finishing the PTS Compiler

As detailed in section 5.9 on page 59 we have a working compiler for PTS,
however the implementation is not complete. The majority of the work of
completing the implementation will presumably lie in performing more
advanced semantic analysis in order to correctly identify all references.
This could as we have pointed out either be attempted in a fork of the
TypeScript compiler, or as a continuation of this compiler. If one is to
continue on with this implementation it could be worth looking into if it is
possible to use the TypeScript compiler API in order to identify references.

8.3.2 Improve the Compilers Error Messages

As I mentioned shortly in subsection 5.4.1 on page 47 Tree-sitter does have
support for giving position of a syntax node, and this could be utilized to
produce better error messages. In addition to giving the position of where
the error occurred, it would also be helpful to give more informative error
messages than we currently do. In our implementation errors are usually
first found during the type-check phase, where we might have already
instantiated templates, and renamed classes and attributes. We should try
to make more effort to spot errors earlier rather than later.

8.3.3 Making Syntax Highlighting for the PTS Language

By utilizing Tree-sitter as our lexer/parser we could presumably pretty
easily also utilize it to get syntax highlighting. Most modern editors and
IDEs have recently been switching to Tree-sitter for syntax highlighting,
opposed to the traditional method of using regex to highlight code files.
This should be as simple as writing query files for identifying keywords,
operators, etc. Similar to how we extended the TypeScript grammar in
order to create our PTS grammar, it should also be possible to extend the
TypeScript highlight query files to create syntax highlighting for PTS. In
the GitHub repository for the Tree-sitter grammar for PTS there has been
done some initial work for setting this up, but has been abandoned as
implementing features for the compiler was more urgent.

92

Bibliography

[1] Nada Amin and Ross Tate. ‘Java and scala’s type systems are
unsound: the existential crisis of null pointers’. In: ACM SIGPLAN
Notices 51.10 (Dec. 2016), pp. 838–848. ISSN: 0362-1340. DOI: 10.1145/
3022671 .2984004. URL: https : //dl . acm .org/doi /10 . 1145/3022671 .
2984004.

[2] Arrow function expressions - JavaScript | MDN. URL: https://developer.
mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow%
7B%5C_%7Dfunctions (visited on 19/10/2020).

[3] Eyvind W Axelsen and Stein Krogdahl. ‘Adaptable generic program-
ming with required type specifications and package templates’. In:
Proceedings of the 11th International Conference on Aspect-oriented Soft-
ware Development, {AOSD} 2012, Potsdam, Germany, March 25-30, 2012.
Ed. by Robert Hirschfeld et al. ACM, 2012, pp. 83–94. ISBN: 978-1-
4503-1092-5. DOI: 10.1145/2162049.2162060. URL: https://doi.org/10.
1145/2162049.2162060.

[4] Eyvind W. Axelsen and Stein Krogdahl. ‘Groovy package templates:
supporting reuse and runtime adaption of class hierarchies’. In: ACM
SIGPLAN Notices 44.12 (Dec. 2009), pp. 15–26. ISSN: 0362-1340. DOI:
10 .1145/1837513 .1640139. URL: https ://dl . acm.org/doi/10 .1145/
1837513.1640139.

[5] Eyvind W. Axelsen and Stein Krogdahl. ‘Package templates: A defi-
nition by semantics-preserving source-to-source transformations to
efficient java code’. In: Proceedings of the 11th International Confer-
ence on Generative Programming and Component Engineering, GPCE’12.
New York, New York, USA: ACM Press, 2012, pp. 50–59. ISBN:
9781450311298. DOI: 10.1145/2371401.2371409. URL: http://dl.acm.
org/citation.cfm?doid=2371401.2371409.

[6] Gilad Bracha. ‘The programming language jigsaw: mixins, modular-
ity and multiple inheritance’. In: Modularity, and Multiple In March
(1992). URL: https : / / www . researchgate . net / publication / 2739177%
20http ://scholar .google . com/scholar?hl=en%7B%5C&%7DbtnG=
Search%7B%5C&%7Dq=intitle:THE+PROGRAMMING+LANGUAGE+
JIGSAW%7B%5C#%7D9%7B%5C%%7D5Cnhttp://content.lib.utah.
edu/utils/get�le/collection/uspace/id/4356/�lename/4228.pdf.

[7] Max Brunsfeld. Tree-sitter. URL: https://tree-sitter.github.io/tree-sitter/
(visited on 19/02/2021).

93

https://doi.org/10.1145/3022671.2984004
https://doi.org/10.1145/3022671.2984004
https://dl.acm.org/doi/10.1145/3022671.2984004
https://dl.acm.org/doi/10.1145/3022671.2984004
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow%7B%5C_%7Dfunctions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow%7B%5C_%7Dfunctions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow%7B%5C_%7Dfunctions
https://doi.org/10.1145/2162049.2162060
https://doi.org/10.1145/2162049.2162060
https://doi.org/10.1145/2162049.2162060
https://doi.org/10.1145/1837513.1640139
https://dl.acm.org/doi/10.1145/1837513.1640139
https://dl.acm.org/doi/10.1145/1837513.1640139
https://doi.org/10.1145/2371401.2371409
http://dl.acm.org/citation.cfm?doid=2371401.2371409
http://dl.acm.org/citation.cfm?doid=2371401.2371409
https://www.researchgate.net/publication/2739177%20http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:THE+PROGRAMMING+LANGUAGE+JIGSAW%7B%5C#%7D9%7B%5C%%7D5Cnhttp://content.lib.utah.edu/utils/getfile/collection/uspace/id/4356/filename/4228.pdf
https://www.researchgate.net/publication/2739177%20http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:THE+PROGRAMMING+LANGUAGE+JIGSAW%7B%5C#%7D9%7B%5C%%7D5Cnhttp://content.lib.utah.edu/utils/getfile/collection/uspace/id/4356/filename/4228.pdf
https://www.researchgate.net/publication/2739177%20http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:THE+PROGRAMMING+LANGUAGE+JIGSAW%7B%5C#%7D9%7B%5C%%7D5Cnhttp://content.lib.utah.edu/utils/getfile/collection/uspace/id/4356/filename/4228.pdf
https://www.researchgate.net/publication/2739177%20http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:THE+PROGRAMMING+LANGUAGE+JIGSAW%7B%5C#%7D9%7B%5C%%7D5Cnhttp://content.lib.utah.edu/utils/getfile/collection/uspace/id/4356/filename/4228.pdf
https://www.researchgate.net/publication/2739177%20http://scholar.google.com/scholar?hl=en%7B%5C&%7DbtnG=Search%7B%5C&%7Dq=intitle:THE+PROGRAMMING+LANGUAGE+JIGSAW%7B%5C#%7D9%7B%5C%%7D5Cnhttp://content.lib.utah.edu/utils/getfile/collection/uspace/id/4356/filename/4228.pdf
https://tree-sitter.github.io/tree-sitter/

[8] Free Software Foundation. Bison 3.7.1. URL: https ://www.gnu.org/
software/bison/manual/bison.html (visited on 24/02/2021).

[9] Paul Hudak. Domain Specific Languages *. Tech. rep. Yale University,
Department of Computer Science, 1997.

[10] Inheritance and the prototype chain - JavaScript | MDN. URL: https://
developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance%7B%
5C_%7Dand%7B%5C_%7Dthe%7B%5C_%7Dprototype%7B%5C_
%7Dchain (visited on 01/05/2021).

[11] Eirik Isene. PT#-Package Templates in C# Extending the Roslyn Full-Scale
Production Compiler with New Language Features. 2018.

[12] Stein Krogdahl. ‘Generic Packages and Expandable Classes’. In:
(2001).

[13] Stein Krogdahl, Birger Møller-Pedersen and Fredrik Sørensen. ‘Ex-
ploring the use of package templates for flexible re-use of collections
of related classes’. In: Journal of Object Technology 8.7 (2009), pp. 59–85.
ISSN: 16601769. DOI: 10.5381/jot.2009.8.7.a1.

[14] Donna Malayeri and Jonathan Aldrich. ‘Is Structural Subtyping
Useful? An Empirical Study’. In: Programming Languages and Systems,
18th European Symposium on Programming, {ESOP} 2009, Held as Part
of the Joint European Conferences on Theory and Practice of Software,
{ETAPS} 2009, York, UK, March 22-29, 2009. Proceedings. 2009, pp. 95–
111. DOI: 10.1007/978-3-642-00590-9_8. URL: https://doi.org/10.
1007/978-3-642-00590-9%7B%5C_%7D8.

[15] MDN Web Docs. with - JavaScript. URL: https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference/Statements/with (visited on
24/02/2021).

[16] Microsoft. microsoft/TypeScript. URL: https ://github . com/microsoft/
TypeScript/wiki/Writing-a-Language-Service-Plugin.

[17] Microsoft Corporation. Typescript Language Specification Version 1.8.
Tech. rep. Oct. 2012. URL: https : / / web . archive . org / web /
20200808173225if%7B%5C_%7D/https : / / github . com/Microsoft /
TypeScript/blob/master/doc/spec.md.

[18] Mozilla. What is JavaScript? - Learn web development | MDN. 2019.
URL: https ://developer .mozilla .org/en- US/docs/Learn/JavaScript/
First % 7B % 5C _ %7Dsteps / What % 7B % 5C _ %7Dis % 7B % 5C _
%7DJavaScript%20https://developer.mozilla.org/en-US/docs/Learn/
JavaScript/First%7B%5C_%7Dsteps/What%7B%5C_%7Dis%7B%
5C_%7DJavaScript%7B%5C#%7DA%7B%5C_%7Dhigh- level%7B%
5C_%7Dde�nition%7B%5C%%7D0Ahttps://developer.mozilla.org/en-
US/docs/Learn/Java.

[19] Mozilla Contributors and ESTree Contributors. The ESTree Spec. Tech.
rep. URL: https://github.com/estree/estree.

[20] Node. C++ Addons | Node.js v11.3.0 Documentation. URL: https : / /
nodejs.org/api/addons.html (visited on 04/03/2021).

94

https://www.gnu.org/software/bison/manual/bison.html
https://www.gnu.org/software/bison/manual/bison.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance%7B%5C_%7Dand%7B%5C_%7Dthe%7B%5C_%7Dprototype%7B%5C_%7Dchain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance%7B%5C_%7Dand%7B%5C_%7Dthe%7B%5C_%7Dprototype%7B%5C_%7Dchain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance%7B%5C_%7Dand%7B%5C_%7Dthe%7B%5C_%7Dprototype%7B%5C_%7Dchain
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Inheritance%7B%5C_%7Dand%7B%5C_%7Dthe%7B%5C_%7Dprototype%7B%5C_%7Dchain
https://doi.org/10.5381/jot.2009.8.7.a1
https://doi.org/10.1007/978-3-642-00590-9_8
https://doi.org/10.1007/978-3-642-00590-9%7B%5C_%7D8
https://doi.org/10.1007/978-3-642-00590-9%7B%5C_%7D8
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with
https://github.com/microsoft/TypeScript/wiki/Writing-a-Language-Service-Plugin
https://github.com/microsoft/TypeScript/wiki/Writing-a-Language-Service-Plugin
https://web.archive.org/web/20200808173225if%7B%5C_%7D/https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://web.archive.org/web/20200808173225if%7B%5C_%7D/https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://web.archive.org/web/20200808173225if%7B%5C_%7D/https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First%7B%5C_%7Dsteps/What%7B%5C_%7Dis%7B%5C_%7DJavaScript%20https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First%7B%5C_%7Dsteps/What%7B%5C_%7Dis%7B%5C_%7DJavaScript%7B%5C#%7DA%7B%5C_%7Dhigh-level%7B%5C_%7Ddefinition%7B%5C%%7D0Ahttps://developer.mozilla.org/en-US/docs/Learn/Java
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First%7B%5C_%7Dsteps/What%7B%5C_%7Dis%7B%5C_%7DJavaScript%20https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First%7B%5C_%7Dsteps/What%7B%5C_%7Dis%7B%5C_%7DJavaScript%7B%5C#%7DA%7B%5C_%7Dhigh-level%7B%5C_%7Ddefinition%7B%5C%%7D0Ahttps://developer.mozilla.org/en-US/docs/Learn/Java
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First%7B%5C_%7Dsteps/What%7B%5C_%7Dis%7B%5C_%7DJavaScript%20https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First%7B%5C_%7Dsteps/What%7B%5C_%7Dis%7B%5C_%7DJavaScript%7B%5C#%7DA%7B%5C_%7Dhigh-level%7B%5C_%7Ddefinition%7B%5C%%7D0Ahttps://developer.mozilla.org/en-US/docs/Learn/Java
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First%7B%5C_%7Dsteps/What%7B%5C_%7Dis%7B%5C_%7DJavaScript%20https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First%7B%5C_%7Dsteps/What%7B%5C_%7Dis%7B%5C_%7DJavaScript%7B%5C#%7DA%7B%5C_%7Dhigh-level%7B%5C_%7Ddefinition%7B%5C%%7D0Ahttps://developer.mozilla.org/en-US/docs/Learn/Java
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First%7B%5C_%7Dsteps/What%7B%5C_%7Dis%7B%5C_%7DJavaScript%20https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First%7B%5C_%7Dsteps/What%7B%5C_%7Dis%7B%5C_%7DJavaScript%7B%5C#%7DA%7B%5C_%7Dhigh-level%7B%5C_%7Ddefinition%7B%5C%%7D0Ahttps://developer.mozilla.org/en-US/docs/Learn/Java
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First%7B%5C_%7Dsteps/What%7B%5C_%7Dis%7B%5C_%7DJavaScript%20https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First%7B%5C_%7Dsteps/What%7B%5C_%7Dis%7B%5C_%7DJavaScript%7B%5C#%7DA%7B%5C_%7Dhigh-level%7B%5C_%7Ddefinition%7B%5C%%7D0Ahttps://developer.mozilla.org/en-US/docs/Learn/Java
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First%7B%5C_%7Dsteps/What%7B%5C_%7Dis%7B%5C_%7DJavaScript%20https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First%7B%5C_%7Dsteps/What%7B%5C_%7Dis%7B%5C_%7DJavaScript%7B%5C#%7DA%7B%5C_%7Dhigh-level%7B%5C_%7Ddefinition%7B%5C%%7D0Ahttps://developer.mozilla.org/en-US/docs/Learn/Java
https://github.com/estree/estree
https://nodejs.org/api/addons.html
https://nodejs.org/api/addons.html

[21] Terence (Terence John) Parr. The definitive ANTLR 4 reference. Dallas,
Texas, 2012.

[22] Benjamin C Pierce. Types and Programming Languages. MIT Press,
2002. ISBN: 9780262162098.

[23] S-expression - Wikipedia. URL: https : / / en . wikipedia . org / wiki / S -
expression (visited on 25/01/2021).

[24] Håkon Stordahl. BooPT: Implementasjon av Package Templates for Boo.
Dec. 2011. URL: https://www.duo.uio.no/handle/10852/9025.

[25] TypeScript. Typed JavaScript at Any Scale. 2020. URL: https : / /www .
typescriptlang.org/ (visited on 09/03/2021).

[26] TypeScript: Handbook - Declaration Merging. URL: https : / / www .
typescriptlang .org/docs/handbook/declaration -merging .html (visited
on 28/10/2020).

[27] Wikipedia. JavaScript - Wikipedia. URL: https://en.wikipedia.org/wiki/
JavaScript (visited on 09/03/2021).

95

https://en.wikipedia.org/wiki/S-expression
https://en.wikipedia.org/wiki/S-expression
https://www.duo.uio.no/handle/10852/9025
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/docs/handbook/declaration-merging.html
https://www.typescriptlang.org/docs/handbook/declaration-merging.html
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/JavaScript

	Abstract
	Acknowledgments
	I Introduction and Background
	Introduction
	Research Questions
	Contributions
	Chapter Overview
	Project Source Code

	Background
	Package Templates
	Basics of Package Templates
	Concepts of PT

	TypeScript
	JavaScript
	What is TypeScript?

	Structural and Nominal Type Systems

	II The Project
	The Language - PTS
	Syntax
	The PTS Grammar
	Example Program

	Planning the Project
	TypeScript vs. JavaScript
	Type-checking Templates
	Renaming
	Language Choice Conclusion

	What Do We Need?
	Approach
	Implementing PT as an internal DSL
	Preprocessor for the TypeScript Compiler
	TypeScript Compiler Plugin/Transform
	Babel plugin
	TypeScript Compiler Fork
	Making a Custom Compiler

	Conclusion

	Implementation
	Methodology
	Compiler Architecture
	Lexer and Parser
	Parser Generator

	Transforming Parse Tree to AST
	The AST Nodes
	Transforming

	Closing Templates
	Create a Correctly Scoped AST
	Transforming Nodes to Reference Nodes
	Perform the Rename
	Go Back to the Original AST
	Merge Classes

	Type-checking of Templates
	Code Generation
	Testing
	Lexer and Parser
	Compiler

	Completing the Implementation
	addto-statements
	Supporting All Attribute Declarations
	Supporting All References
	Supporting Multi File Programs

	Using PTS
	Installing and Using PTS Globally
	Creating a PTS Project
	A "Real World" Example
	Short Introduction to React
	The FetchJSON Template
	The StateLogger Template
	Creating the Pokemon Component
	How the Example Benefited From PT

	III Results
	Evaluation and Discussion
	Does PTS Fulfill The Requirements of PT?
	The Requirements of PT
	PTS' Implementation of the Requirements
	Conclusion

	Nominal vs. Structural Typing in PT
	Advantages of Nominal Type Systems
	Advantages of Structural Type Systems
	Disadvantage of Structural Type Systems
	Which Better Fits PT?

	Concluding Remarks
	Addressing Research Questions
	In Retrospect
	Approach

	Future Work
	Finishing the PTS Compiler
	Improve the Compilers Error Messages
	Making Syntax Highlighting for the PTS Language

