
Implementation of a Security
Information Event Management
System in an Industrial Control

System

Detecting attacks and correlating events

Magnus Korneliussen

Oppgave for graden
Master i Informatikk: informasjonssikkerhet

60 studiepoeng

Institutt for informatikk
Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO

Våren 2021

Implementation of a Security
Information Event Management
System in an Industrial Control

System

Detecting attacks and correlating events

Magnus Korneliussen

ii

© 2021 Magnus Korneliussen

Implementation of a Security Information Event Management System in an
Industrial Control System

http://www.duo.uio.no/

Trykk: Reprosentralen, Universitetet i Oslo

i

Sammendrag
Utfordringene ved å fortsatt holde dagens systemer sikre under den konstante
utviklingen de har bringer med seg utfordringer som ikke har blitt taklet før. Bruken
av små enheter med lav prosesseringskraft har vært populært for å holde kostnadene
nede i større systemer. Nyskapningen av disse som tillater at de kobler seg opp mot
mer komplekse enheter åpner opp muligheter som aldri har blitt sett før både for
produsentene og angripere. For å holde tritt med trusselbildet trenger vi bedre
sikkerhetstiltak og verktøy som passer til oppgavene de skal utføre. Når enheter er
essensielle for å forsyne en hel by med elektrisitet kan dukke under av et angrep
som kan utføres gjennom enkle midler, burde samfunnet i helhet være ute etter
gode og sikre løsninger. En vei å gå for å finne disse løsningene kan være ved
å implementere disse enhetene virtuelt som gir mulighet til testing og utprøvning
av forskjellige implementasjoner og variabler. Hensikten med dette prosjektet er
derfor å undersøke hvordan slike enheter kan bli satt sammen i systemer som kan
produsere tilnærmet lik trafikk til et levende miljø, og finne ut hvilke løsninger
som egner seg best for å sikre de mot potensielle angrep.

Testene i dette prosjektet ble utført ved implementasjonen og installasjonen av en
Programmable Logic Controller satt sammen med en vanntank, en human machine
interface og to forskjellige sikkerhetsløsninger som skal tilsvare et industrielt kontr-
ollsystem. Dette systemet ble da undersøkt for hvor komplett systemet er i forhold
til hvor mye det ligner på et reelt system og trafikken det produserer. Med systemet
testet ut ble det installert et Intrusion Detection System og en Security Information
Event Management løsning som sikkerhetstiltak. Disse ble sammenlignet i forhold
til bruk av tid på installasjon, dokumentasjon tilgjengelig, helhetlighet av løsningen,
mulig informasjon som kunne hentes ut og hvor godt de detekterte angrep.

Resultatene fra testene viser at det virtuelle industrielle kontrollsystemet produserer
tilnærmet lik trafikk og at det oppfører seg likt som et fullverdig industrielt kontrol-
lsystem. Gjennom installasjonen og implementasjonen av en IDS og SIEM vises
det at kompleksiteten til sistnevnte er av en mye større grad. Likevel er mulighetene
og egenskapene til en godt oppsatt SIEM så instrumentelle til god sikkerhet at det
sees på som en bedre løsning enn en IDS i et industrielt kontrollsystem. Begge
løsningene klarer å detektere angrep, men når det blir testet et komplekst Man-
In-The-Middle angrep er det bare SIEMen som har nok informasjon til å gjøre
en riktig vurdering. Disse resultatene begrunnes med resultater av simuleringene,
resultater av forsøk på detektering av angrep og kriterier satt for å måle forskjellige
aspekter ved implementasjon og installasjon.

ii

Abstract
The challenges of keeping today’s systems secure under the constant evolution
brings forth new challenges that need new solutions. The use of small devices with
low processing power has been popular for a long time to keep costs down in larger
systems. The development of these devices that allow them to connect to more
complex devices opens up possibilities and risks that have never been seen before.
To keep up with the threat image we need better security and tools that fit the
tasks they should perform. When devices that are essential to supplying a whole
town with electricity can kneel under because of an attack executed with not much
effort, the society as a whole should be looking for well thought out solutions. A
way to go to finding these can be by implementing these devices virtually which
gives the opportunity to test different implementations and variables. The purpose
of this project is to examine how these devices can be put together in systems to
produce resembling traffic to live environments, and figure out which solutions are
best suited to deal with potential threats.

The tests in this project were performed through implementation and installation of
a Programmable Logic Controller put together with a water tank, a human machine
interface and two different security solutions that correspond to an industrial control
system. This system was then examined as to how complete the system is compared
to real one and the traffic it produces. With this being done an Intrusion Detection
System and a Security Information Event Management system was then installed
as security solutions. These were compared with metrics of time used on installation,
documentation available, completeness of the solution, possible log data available
and how well they detected attacks.

The results from the tests show that the virtual industrial control system produces
traffic and behavior that resembles a live environment. Through the installation and
implementation of a IDS and a SIEM, it is shown that the complexity of the latter is
of a large degree. With the opportunities and traits a well tuned SIEM possesses,
it will still be seen as a better security solution in an industrial control system.
Both solutions were capable of detecting attacks, but when a complex Man-In-
The-Middle attack was tested only the SIEM had enough available information to
determine if an event is a threat or not. These results are justified by the results
of simulations, results of attempts on detection of attacks and the criterias set for
measuring different aspects of implementation and installation.

iii

Preface
This thesis is submitted in partial fulfillment of the requirements for the degree of
Master of Science at Universitetet i Oslo(UiO).

The project work was performed during the spring-semester of 2021, with the
purpose of contributing with experimental and theoretical knowledge on securing
industrial control systems with Security Information Event Management systems.

I want to send a big thank you to my external supervisor Storm Jon-Martin Pettersen,
for excellent guidance, helpful feedback and being a positive influence throughout
the work of this project. I would also like to thank Nils Gruschka for his feedback
on my thesis. A special thank you goes out to my girlfriend and friends for helping
to keep me sane through a difficult pandemic while completing my degree.

Oslo, May 2021

Magnus Korneliussen

iv

Contents

Sammendrag i

Abstract ii

Preface iii

Figurer xii

1 Introduction 1

1.1 Topic covered by the thesis . 1

1.2 Motivation . 2

1.3 Contribution of thesis . 3

2 Background 5

2.1 ICS . 5

2.1.1 PLC . 5

2.1.2 DCS . 6

2.1.3 SCADA . 6

2.1.4 Human Machine Interface 6

2.1.5 Modbus and MODBUS/TCP 6

2.1.6 IT and IoT . 7

v

vi CONTENTS

2.2 IDS . 8

2.2.1 Simplifying approaches 8

2.2.2 Accuracy in IDS . 9

2.2.3 Detecting the threats to your system through three different
angles . 9

Signature-based detection 9

Anomaly-based detection 10

Stateful Protocol Analysis 10

Intrusion Prevention System 11

NIDS . 11

2.2.4 IDS in an industrial environment - an intersection between
safety and security . 11

Security Operations Center(SOC) 12

2.3 SIEM and SOC . 13

2.3.1 Security Operations Center(SOC) 13

2.3.2 Different tools for monitoring and collecting event information 14

2.3.3 Using SIEM systems to track auxiliary contextual information 14

2.3.4 SIEM systems components 14

2.3.5 Operational challenges for the SOC when using a SIEM
system . 15

2.3.6 Challenges with storing, collecting, correlating, and analyzing
events . 16

2.3.7 SIEM in an industrial environment 16

2.3.8 SIEM in a nutshell . 17

2.4 Elastic Stack as a SIEM . 17

2.4.1 Elasticsearch . 18

2.4.2 Kibana . 18

2.4.3 Beats . 18

CONTENTS vii

2.4.4 Elastic Security and Elastalert 19

2.4.5 Logstash . 19

2.5 Related work . 19

3 Method 21

3.1 Experiments . 21

3.2 Literature Study . 22

4 Experiment 23

4.1 Experimental set up . 23

4.2 Implementation of devices . 26

4.2.1 Water tank . 26

4.2.2 Switch . 27

4.2.3 OpenPLC . 27

4.2.4 OpenVSwitch . 27

4.2.5 Node-RED . 28

4.2.6 pfSense . 28

4.3 Security Solutions and their implementations 28

4.3.1 IDS . 29

4.4 SIEM . 30

4.5 Attacks . 32

4.5.1 Port scan . 32

NMAP Port scan . 32

4.5.2 DoS . 32

Hping3 . 33

4.5.3 MITM Setpoint attack 33

Setpointattack.py . 33

viii CONTENTS

4.5.4 Modifications done to IDS and SIEM to detect attacks . . 34

Snort rules . 34

Elastalert rules . 34

4.6 Attack execution . 35

4.6.1 Dos Attack . 35

4.6.2 Port Scan . 36

4.6.3 MITM attack . 37

5 Results of implementation and detection 39

5.1 General implementation . 39

5.2 IDS Implementation . 40

5.3 SIEM implementation . 40

5.4 IDS detection . 41

5.4.1 DoS . 41

5.4.2 Port scan . 41

5.4.3 MITM . 42

5.5 SIEM detection . 42

5.5.1 DoS . 42

5.5.2 Port scan . 43

5.5.3 MITM . 43

6 Discussion 45

7 Conclusion 47

8 Further work 49

8.1 ElastAlert rules . 49

8.2 Improving data in Kibana . 50

CONTENTS ix

8.3 Expanding from one PLC . 50

8.4 Integrating with other zones and subnets 50

8.5 Implementing Elastic Security 50

Bibliografi 53

Appendix A - Overview of different devices 55

Appendix B - Overview of software and versions 56

Appendix C - Open PLC project GUI for adding the water tank as a slave
device 57

Appendix D - GUI from Node-RED to select setpoints for minimum and
maximum values, and show current value of the water tank 59

Appendix E - Screenshot of WireShark-capture between the OpenPLC
device and the rest of the network 59

Appendix F - Screenshot of WireShark-capture between the OpenPLC
device and the water tank device 60

Appendix G - Screenshot with example data collected by Auditbeat from
the OpenPLC device shortly after starting up 61

Appendix H - Screenshot with example data collected by Filebeat form the
OpenPLC device shortly after starting up 62

Appendix I - Screenshot with example data collected by Metricbeat from
the OpenPLC device shortly after starting up 63

Appendix J - Screenshot with example data collected by Packetbeat from
the SPAN port on OpenVSwitch after starting up 64

Appendix K - Structured Text program used as input for the PLC 66

x CONTENTS

Appendix L - Script for executing set point attack on the water tank 66

Appendix M - Rule for ElastAlert to alert on DoS attacks 67

Appendix N - Rule for ElastAlert to alert on Port Scan attacks 67

Appendix O - Rulefile in Snort with rules for DoS and Port Scan attacks 67

List of Figures

4.1 Depiction of basic topology . 24

4.2 Shows how the flows in Node-RED is set up to enable the GUI in
appendix 4 . 28

4.3 Depiction of basic topology . 29

4.4 Depiction of SIEM and beats installed on various devices 31

4.5 Example output from hping-command 35

4.6 Showing output from “nmap -sT 192.168.1.0/24” command, successfully
scanning 256 addresses and identifying the four hosts that are up. . 36

4.7 Shows output from the setpointattack.py script, which successfully
writes to a register in the water tank to change its value. 37

5.1 Example output from Snort. 41

5.2 Example output from Snort. 41

5.3 Screenshot from Telegram with alert on an Event Spike. 42

5.4 Screenshot from Telegram with alert on an Port scan. 43

1 Overview of different devices. 55

2 Overview of different devices. 56

3 Open PLC project GUI for adding the water tank as a slave device. 56

4 GUI from Node-RED to select setpoints for minimum and maximum
values, and show current value of the water tank. 58

xi

xii LIST OF FIGURES

5 Screenshot of WireShark-capture between the OpenPLC device
and the rest of the network. 59

6 Screenshot of WireShark-capture between the OpenPLC device
and the water tank device. 59

7 Screenshot with example data collected by Auditbeat from the
OpenPLC device shortly after starting up. 60

8 Screenshot with example data collected by Filebeat form the OpenPLC
device shortly after starting up. 61

9 Screenshot with example data collected by Metricbeat from the
OpenPLC device shortly after starting up. 62

10 Screenshot with example data collected by Packetbeat from the
SPAN port on OpenVSwitch after starting up. 63

11 Structured Text program used as input for the PLC. 65

12 Script for executing set point attack on the water tank. 66

13 Rule for ElastAlert to alert on Port Scan attacks. 66

14 Rule for ElastAlert to alert on Port Scan attacks. 67

15 Rulefile in Snort with rules for DoS and Port Scan attacks. 67

Chapter 1

Introduction

This chapter contains the topic covered by the thesis, motivation behind it, contribution
to the field and the research questions which will be answered.

1.1 Topic covered by the thesis
The threat landscape of today’s cybercrimes is ever-evolving. Our systems keep
getting more insecure each day they are not updated with protection and safeguards
against the next attack. Especially systems handling critical infrastructure will be
more prone to attacks in the future, with the major consequences it produces. A
modern industrial environment for critical infrastructure has many physical devices
and a lot of endpoints within the system that are affected by various factors. The
field of Security Information and Event Management (SIEM) is based on collecting
log data from all these devices that are connected to the network, which reflects
the activity on the devices themself and the communication between them. The
log data is then aggregated and normalized and analyzed with different aspects of
security in mind. The key point of this is to be able to correlate occurring events
and give more context to how or why these are taking place.

The context of a singular event can be crucial in how it is handled. In industrial
environments, uptime is the ultimate goal, with availability in the information
security triangle being the most important one. If an event is acted upon unnecessarily
causing lower production or a halt in the service, the consequences can be catastrophic.
This also insinuates that even though a SIEM system can be good in an environment
with many different variables and devices, it also needs to go through the steps
it takes fast and precisely enough to ensure uptime. This work will discuss the
limitations and effectiveness of implementing and using a SIEM system compared

1

2 1.2. MOTIVATION

to installing a less complex IDS in industrial environments.

A SIEM usually consists of multiple ways of generating the log data, with an
example being an implementation of an IDS. This furthers the complexity of implementing
it compared to only having one source to detect threats. With the vast importance
of correct implementation being a crux in SIEM systems this will also be part of
the topic and problematization of it.

1.2 Motivation
With the constant evolution of the Internet of Things and Industrial Internet of
Things(ref til bakgrunn), and their applications in cyber-physical systems such as
Industrial Control Systems, modern vehicles, and critical infrastructure. With the
possibilities, these next-generation combinations of embedded devices provide,
the benefit of negatively impacting them will increase. With the evolving effort
to attack these systems, the security and general testing of solutions will be of
great importance in the future [1]. I will try in this project to clarify some of
these problems and find out if it is possible to make a simulation of an actual
industrial control system together with a SIEM. If this is possible I would also
like to explore how the SIEM picks up on certain attacks compared to an IDS and
if it can detect and alert that they are happening. The contribution of this to the
industrial information security community will hopefully be to showcase that it is
possible to fully simulate an ICS environment. This can have the opportunity to
help with simulating and testing different devices, security solutions, and network
topologies. The end goal of this is an easily deployable solution to compare
performance and security metrics.

1.3. CONTRIBUTION OF THESIS 3

1.3 Contribution of thesis
A SIEM system compared to an IDS gives more opportunity to correlate occurring
events in a system, which makes it possible to contextualize what is going on
and if taking action is necessary. The IDS can only pick up internet traffic that
is directed towards or through it, it can not know if the action it alerts has any
effect on the target. With a SIEM on the other hand, you can use the logs from
the IDS and compare them to logs from the actual device the attack was executed
on to find out if it had any impact. The problem with comparing and correlating
these events in an Industrial Automation Control System is the delicate nature of
the physical devices, and how they are affected by delay and time sensitivity. The
vast complexity and size of a system where a SIEM could be applicable also raise
concerns about how difficult it is to achieve a proficient solution in regards to
efficiency, cost, and time. The size and complexity also speak to issues with the
need for personnel who entirely grasp all components and how they’re supposed
to interact with each other. The SIEM generates more noise the more devices it
has connected to it, so the previous issues mentioned also point to more alerts and
possibly false alerts.

4 1.3. CONTRIBUTION OF THESIS

Chapter 2

Background

The following chapter reveals the information derived from research relevant to
the thesis, which includes IDS, SIEM and some solutions, ModBus traffic and
PyModbus, PLC, event correlation, effective attacks against industrial control
systems, longevity of the current solutions and how they are impacted.

2.1 ICS
Industrial Control Systems is a general term used to describe several types of
control systems often used in industrial sectors and critical infrastructures. These
include supervisory control and data acquisition systems, distributed control systems,
and Programmable Logic Controllers. It consists of a combination of control
components that in conjunction achieve an industrial objective. There are two
main components of how they work, and that is a system for producing output,
and a part for controlling the system which produces the output. The part of the
system primarily concerned with maintaining conformance with specifications is
referred to as the controller. Because of the possible applications of an ICS, they
are an important part of numerous countries’ critical infrastructure. [2]

2.1.1 PLC

Programmable Logic Controllers are industrial small digital computers that are
adapted to be used in the control of manufacturing processes or other tasks that
need control. They are considered the smallest version of an ICS, and are used
because of their flexibility, ruggedness, and easy programmability. With many of
their applications being safety-critical, such as traffic control systems or chemical
plants, their ability to be adapted to the situation are of vast importance. The
hardware of a PLC consists of a CPU that is microprocessor-based, a memory,

5

6 2.1. ICS

input- and output-points where signals can be received, and sent to actuators.
Usually, a PLC is equipped with an operating system that allows it to load and
run programs and that performs self-checks. The programs are developed and
compiled on external devices, because of the lack of processing power it contains.
The main difference in a PLC to a conventional system is the operation mode:
the program on it is executed in a permanent loop: input is read, the already
compiled program computes a new internal state and output, and then the output
is updated.[3]

For programming the PLC the previous primary programming language was Ladder
Diagram.[4] It brings many benefits but also some well-understood problems.
With the evolution of the use-cases of PLCs, there has also been an evolution in
how the programs for them are written. This has also led to standards being written
with recommendations as to what programmable logic to implement. Some of the
available solutions are the Signal Interpreted Petri Net(SIPN), Structured Text(ST),
Function Block Diagram(FBD) and Sequential Function Chart(SFC).[5]

2.1.2 DCS

Distributed Control Systems are systems of sensors, controllers, and associated
computers that are distributed throughout an industrial control system. The DCS
is the same as intertwining a lot of PLCs together, because it has the ability to
make adjustments to the input of numerous units at a time.[6]

2.1.3 SCADA

SCADA stands for Supervisory Control And Data Acquisition. It is not a full
control system as such, but rather has the focus on a supervisory level. It is a purely
software package that is positioned on top of hardware to which it is interfaced,
generally via a PLC. [7]

2.1.4 Human Machine Interface

The human-machine interface is the platform for cognition and communication
between human and machine. It’s an approach to transmit information back and
forth between the parties, and in regards to automation systems they can have a
critical role in keeping a stable and safe system.[8]

2.1.5 Modbus and MODBUS/TCP

Modbus has become a de facto standard for industrial control systems. Many of
the Modbus systems implement the communications layer using TCP as described
in the Modbus over TCP/IP specification. The specification defines an embedding
of Modbus packets in TCP segments where the TCP port number 502 is assigned

2.1. ICS 7

to the Modbus protocol.[9] For the compatibility to stay intact with Modbus over
serial lines, the payloads have to be limited to at most 253 bytes. For communication,
the Modbus protocol uses a simple master-slave relationship between devices. This
begins with the master device initiating a transaction where the slave(s) respond by
supplying the requested data to the master or executing the command requested. It
is only possible for one device to be designated as the master, while the remaining
devices are slaves which usually are PLCs that control devices with simple input
and output options.

The Modbus PDU is what the PLC provides as an interface based on the Modbus
data model. It consists of “coil”(single-bit) and “register”(16-bit) tables, which
each contain elements numbered 1 to n. For each table, the data model allows up
to 65536 data items. The read and write operations that are associated with these
items can access multiple consecutive data items that either are function code or
payload. The function code is a single-byte integer with a range of 1 to 127. The
Modbus standard has defined 19 of these 127 codes, where the most usual ones
are codes for reading(1, 2 and 3) writing functions(5 and 6). When a successful
request execution is made this is indicated by the slave returning a response packet
that echoes the function code of the request, followed by relevant data according
to the command that was executed.[10]

An easy solution for implementing Modbus/TCP is applying it through the use of
Pymodbus. It is a full Modbus protocol implementation that uses twisted/tornado/asyncio
for the asynchronous communications core.

2.1.6 IT and IoT

In ICS it is important to differentiate between operational technology(OT) and
information technology. In previous years the heart of ICSs were only the OT, but
in the modern day businesses incorporate IT based on the system functions desired
in the overall system. For further referencing, the definitions are this[11]:

• OT - hardware and software that detects or causes a change through the
direct monitoring and/or control of physical devices, processes and events
in the enterprise

• IT - the technology involving the development, maintenance, and use of
computer systems, software and networks for the processing and distribution
of data

8 2.2. IDS

2.2 IDS
NIST describes an intrusion as an attempt to compromise CIA(Confidentiality,
Integrity and Availability), or to bypass the security mechanisms of a computer or
network.[12] Intrusion detection is the process of monitoring the events occurring
in a computer system or network, and analyzing them for signs of intrusions.[13]
Intrusion detection systems are a practical example on fuzzy evaluation of different
criteria, and taking decisions by evaluating multi-dimension problems. It consists
typically of a set of entities distributed through the system, whether it is in the
network or on the hosts themselves. The different types of IDSs are all based
on finding different ways to alarm about your network or computer system being
the victim of an intrusion. The ways of implementing a system like this is either
through a software or hardware system that automates this process. The detected
threats are passed on as alarms to a security manager(s), to be handled and what
actions must be taken and by whom.

2.2.1 Simplifying approaches

For the different detection technologies, they all come from two different ways
of solving the problem; detection based on anomaly and misuse. A table created
by H.J. Liao et. al.[13] divides it into another five different sub-classes; statistics,
pattern, rule, state and heuristics.

Statistics-based uses anomaly and signature detection, and gets its information
from audit data, user profiles and usage of disk and memory. It’s not as complicated
as the other types, but this in turn gives less accuracy.

Pattern-based only uses signatures, and gets information from audit records and
signatures of known attacks. Also considered a simple solution, and provides less
flexibility.

Rule-based uses mostly anomaly and signature for detection, and gets its information
from audit records, rule patterns and from user profiles and policy. Is a lot more
complex to get up and running, because the rules are not easily created and updated.
If the rules created are extremely thorough this can still be an effective approach
to intrusion detection.

State-based with state-transition analysis has the ability to use signature, anomaly
and stateful protocol detection with information from audit records and state-
transition diagrams of known attacks. It provides a lot of flexibility, and can detect
across user sessions.

The heuristics-based approach has the ability to be used both as an IDS with
anomaly and/or signature detection. It gets information from audit data, sequence

2.2. IDS 9

of commands and should in time be possible to predict events. It can be self-
learning, and should be fault tolerant. Another positive is that it can be easily
configurable, which makes it scalable and flexible.

2.2.2 Accuracy in IDS

One of the biggest concerns when setting up intrusion detection for your system
is using the most effective and accurate detection method suited to your specifics.
From a security analysts point of view accuracy means the rate of alarms that are
correct in comparison to how many you actually receive. False-positives means
that an event is considered as an intrusion that has to be dealt with when it is
actually not. This leads to more work for security analysts and with too many fake
alerts the real ones have a possibility to be missed. Another great concern with
accuracy is on the opposite side of the spectrum, with false-negatives. This means
that an intrusion is not detected when it should be, opening up your system for
malicious activity.

2.2.3 Detecting the threats to your system through three different
angles

With an intrusion detection system three main methodologies exist; using Signature-
based detection, Anomaly-based detection or Stateful Protocol Analysis. They all
have their own drawbacks and positives attached to them, so there will never be a
perfect way of handling detection for every system possible.

Signature-based detection

This methodology is based on storing signature profiles identifying patterns associated
with network intrusions in a signature database, from which these signature profiles
classification rules are generated. The data packets which are transmitted on the
network that have corresponding classification rules are classified according to the
previously generated classification rules. The now classified packets are forwarded
to the signature engine, which compares them with the signature profiles. This
methodology has some similarities with blacklisting, with the focus on threats and
not what traffic and events are allowed in the system. This is a positive when
it comes to protecting against well-known attacks. Mainly it will struggle with
dealing with new threats that are yet to be discovered, which is a major problem
in large systems that have a lot of possible devices and communication that can
be exploited in different ways. With this method false-negative rates will be more
of a problem than false-positives. Signature-based detection also requires a large
library of signature profiles that continuously has to be worked on to stay up-to-
date with current emerging threats.[14]

10 2.2. IDS

Anomaly-based detection

Similar to a signature-based method, the anomaly-based compares the current
events and traffic to another previously saved behaviour. The difference lies in
what the previously saved behaviour consists of, instead of comparing to signatures
that are known ways of “attacking” the system it will rather compare to what is
known as the “normal” behaviour. This normal behaviour and flow of traffic and
events has to previously be established, and when the IDS finds an “anomaly”
which can be defined with “an event that is suspicious from the perspective of
security” it raises an alarm. This benefits the detection with that previously unknown
attempts at intrusion is detected, because this will deviate from the established
baseline behaviour of the system. Downfalls of using this approach is that it
will generate more false-positives than the signature-based one if the “normal”
behaviour isn’t broad or established in a way that it reflects regular use properly.
This way is better suited for an industrial environment because the baseline for
“normal” behavior is less deviant with the strict confines of allowed operations.[15]

Stateful Protocol Analysis

A methodology that operates by comparing predetermined profiles of acceptable
protocol behaviours for protocol states against observed activities to detect deviations
and misbehaviors. In this sense “stateful” means that the IDS has the capabilities
to identify and track the states of network, transport or application protocols that
have a concept of state. This method is opposed to the “blacklisting” done with
signature-based IDS, but instead “whitelisting” accepted protocol state behaviours
to identify any abnormal packets that go outside this range. Shares a lot of similarities
to anomaly-based, but the stateful protocol analysis relies on vendor-developed
universal profiles that specify how particular protocols should and should not be
used. This makes the IDS able to detect unknown attacks, which is more difficult
when using an IDS based on “blacklisting”. Again, using whitelisting requires
a lot of work to capture every possible state transition that the system should be
allowed to execute.

From an industrial point of view, stateful protocol analysis can be merged with
tracking of cyber-physical states. Being able to do this the IDS can be used as
a safeguard for the safety of human resources and physical assets in addition to
IT assets. Another reason SPA can be a good method for industrial applications
is that production and operations are normally streamlined, and has a well-known
allowed set of state changes it goes through in the course of a production cycle.
An enterprise IT system won’t have such little deviation in how it is used, because
the confines aren’t as strict for what the devices and humans involved are allowed
to do.[16]

2.2. IDS 11

Intrusion Prevention System

Another system that is enabled by having an IDS is an intrusion prevention system(IPS).
When the IDS detects behavior that is deemed malicious, an IPS brings the opportunity
of an automated response to specific behaviors. This is not as applicable in the
industrial automation setting, because if you give full control over your system to
conduct cyber-physical state changes if an alarm goes off, it can have devastating
consequences. When actions for the system are automatically executed when a
specific intrusion is detected, this can be manipulated by attackers to exploit the
known behavior that the automatic action detection can lead to. With the physical
dimension and the focus on always being operational these types of responses
can either cause harm to employees on-site or cause the system to shut down.
IPS can also become a serious bottleneck for an environment that is reliant on
having no delays and a minimum of jitter to confer quality of service requirements.
The reason for this is because IPSs must be placed in-line in order to actively
stop attacks, but IDSs can be placed on mirrored ports, preventing a potential
bottleneck.

NIDS

A specific way of implementing an IDS that targets the network that the hosts use
to communicate with as well as the hosts themselves, the operating system and
the applications. It captures network traffic at a specified network segment, and
inspect for malicious activity.

2.2.4 IDS in an industrial environment - an intersection between safety
and security

Challenges of an industrial environment is a different aspect than the regular enterprise
IT systems. This includes quality of service, time-sensitive applications, cyber-
physical states and a lot more traffic which requires specific monitoring. Attacks
on e.g. a SCADA system is usually not based on the exploitation of a single
packet[17], but instead a collection of packets attacking several vulnerabilities
either over time or at once. The specific limitations of a SCADA system with
the strict rules for traffic and state-changes opens up for a “whitelisting” practice,
because the baseline traffic of a control system usually has low amounts of deviation.
This methodology in a normal enterprise IT environment will cause a lot of false-
positives, but in an industrial environment a practice like this is made possible
because of the focus on cost-effective operations and the usually streamlined processes.

The approach of considering the entire control system as different devices and
subsystems having states or cyber-physical states[18] is a way of viewing the
security and safety of a control system intertwined. With well-known attacks such

12 2.2. IDS

as the Stuxnet worm[19] and the sewage spill at the Maroochy Water Station in
Australia[20] being possible primarily because of the control systems not having
the correct information of equipment operation monitoring values, or the systems
completely ignoring the physical systems operating tolerances. A proposed way
of solving this is by tracking the cyber-physical states of the system, ensuring that
when a state is evolving in the direction of failure, it can be stopped. This can
be done with a NIDS solution that parses all packets going through the network
with addition of sensors tracking physical information about the devices. Physical
constraint algorithms can be applied to device command and data streams, with
a stateful layer to represent and track the physical systems operational modes. A
solution like this requires a lot of pre-existing knowledge of every device in the
system, contextual information on how the devices interact with each other and it
offers problems with scaling in terms of when a device is added or replaced the
entire library of physical constraints and algorithms has to be revamped.

Security Operations Center(SOC)

Performing the tasks necessary to run a SIEM efficiently is having a SOC whose
goal is to monitor security-related events from the companies assets which includes
networking, perimeter defense systems like firewalls and IPS devices, application
servers, databases, user accounts, sensors, and various devices that comprise the
operations of the specific organization/company.[21] Each of these devices or assets
can be monitored using a variety of sensors, and maintain their log files of activity.
The SOC receives event information filtered out from the log files and sensor
activity and triggers alerts that indicate if there is a possibility of malicious behavior
from the inside or an intrusion from the outside. When an alert is triggered, the
personnel in the SOC decides if the triggered alert is a false positive regarding
e.g. updates or maintenance and it can be considered as harmless, or if the alert
is indicating that malicious activity is happening. If the SOC gets an alert and
it is considered to be of malicious intent, a message is forwarded to a team that
coordinates a response to the incident and informs necessary parties that an attack
is happening. This can be to the owner or operator of the involved assets or
equipment, which can also be forwarded to law enforcement if a larger attack is
discovered.

For a solution like this to be functioning the personnel of the SOC has to have
good analytic and forensic capabilities and has to be aware of the threat-image to
the devices and sensors they receive possible security-related events from. They
also need to be aware of who needs the information they receive, to know the best
practice when an attack happens to a specific part of the system, and who to inform
to counteract and find the best solution on how to handle a security-related event
or incident. The size of a SOC and the necessity of having one come down to the

2.3. SIEM AND SOC 13

question of the size of your operation and the security budget that is appropriate for
your company’s assets. A SOC can consist of a single person on-site or a dedicated
facility with hundreds of employees. If your system is large enough to consider
implementing a SIEM it certainly is possible that also means that having a SOC is
a possibility.

2.3 SIEM and SOC
SIEMS revolve around the same concept as an IDS. They are used as an important
tool in e.g. security operations centers, which monitor security events related to an
organization’s IT assets. In an industrial environment the OT assets also should be
monitored, to be collected, normalized and analysed from various sources in the
organization. The difference between IT and OT assets lie in that IT deals with
information assets and OT deals with the physical components. This means that
IT assets consist of digital information flow and its data, and OT assets manage the
operation of physical processes and the machinery used to execute the operations.
In a power plant this can be a transformer which transforms voltage to the wanted
specifications. The baseline of how a Security Information and Event Management
System works is by collecting data, processing it to be human-readable and analyzed
by either an automated system that correlates the events and gives alerts, or by
personnel that has knowledge of what data can be considered malicious.

2.3.1 Security Operations Center(SOC)

Performing the tasks necessary to run a SIEM efficiently is having a SOC whose
goal is to monitor security-related events from the companies assets which includes
networking, perimeter defense systems like firewalls and IPS devices, application
servers, databases, user accounts, sensors, and various devices that comprise the
operations of the specific organization/company.[21]. Each of these devices or
assets can be monitored using a variety of sensors, and maintain their log files of
activity. The SOC receives event information filtered out from the log files and
sensor activity and triggers alerts that indicate if there is a possibility of malicious
behavior from the inside or an intrusion from the outside. When an alert is triggered,
the personnel in the SOC decides if the triggered alert is a false positive regarding
e.g. updates or maintenance and it can be considered as harmless, or if the alert
is indicating that malicious activity is happening. If the SOC gets an alert and
it is considered to be of malicious intent, a message is forwarded to a team that
coordinates a response to the incident and informs necessary parties that an attack
is happening. This can be to the owner or operator of the involved assets or
equipment, which can also be forwarded to law enforcement if a larger attack is
discovered.

14 2.3. SIEM AND SOC

For a solution like this to be functioning the personnel of the SOC has to have
good analytic and forensic capabilities and has to be aware of the threat-image to
the devices and sensors they receive possible security-related events from. They
also need to be aware of who needs the information they receive, to know the best
practice when an attack happens to a specific part of the system, and who to inform
to counteract and find the best solution on how to handle a security-related event
or incident. The size of a SOC and the necessity of having one come down to the
question of the size of your operation and the security budget that is appropriate for
your company’s assets. A SOC can consist of a single person on-site or a dedicated
facility with hundreds of employees. If your system is large enough to consider
implementing a SIEM it certainly is possible that also means that having a SOC is
a possibility.

2.3.2 Different tools for monitoring and collecting event information

SIEMS used security tools like IDSs and AVSs for detection previously. Every
system used for gathering information from the system from different devices and
sensors previously used their own interface specified by the vendor. Problems
come from this because expertise was needed in how to operate each interface,
and there existed no software to correlate the events identified across these tools.
The smaller individual tools operated with little or no awareness of how the entire
architecture was set up, so it meant more false positives to handle which in return
meant a larger workload for the SOCs. SIEM systems are designed to face these
obstacles, and they are solved by collecting the events from all the different tools,
normalizing the data into a single readable format, sending all the events to a single
interface so it can be analyzed by the personnel in the SOC.

2.3.3 Using SIEM systems to track auxiliary contextual information

SIEM systems can also be used to track and keep up-to-date information about
your devices, because it can collect and normalize all data input coming from
the various devices and sensors you have. This makes it so it can use something
which is similar to a library function, with all new threats and vulnerabilities to
your specific devices being up-to-date and giving your SOC the opportunity to act
accordingly. In conjunction with the massive amounts of logs collected, post hoc
forensic analysis and investigation is also a possibility to better combat attacks
from APTs(Advanced Persistent Threats).

2.3.4 SIEM systems components

The devices mentioned below will send events through specialized connectors
to either a database for logging or directly to a terminal managed by Security
Analysts or to the SOC if the event that occurs is deemed as a security risk or has

2.3. SIEM AND SOC 15

malicious intentions towards the system.

• Authentication device - a device that should authenticate users that are using
the system.

• Firewall - a perimeter defense system that detects in- and egress traffic to the
systems network.

• Network device - device logging network traffic inside the systems own
network, can be set up with a network intrusion detection system(NIDS) to
more efficiently deal with network traffic that should set off an alarm before
it reaches the SOC or SAs.

• Web application firewall - a firewall that’s a perimeter defence for detecting
unallowed traffic to the web applications

• Application server - a device that hosts the application

• Host - computer or workstation

• Specialized connectors - The backbone of making the SIEM system work.
These are devices that receive the events. To make these able to parse the
input events from all the other devices, they have to be customized for each
version, device type and vendor to manage to convert them into a common
format that is readable from either the logdatabase or directly from the event-
dashboard by the SOC or SAs.

2.3.5 Operational challenges for the SOC when using a SIEM system

Most problems with using a SIEM system for the SOC, are problems related to
scalability and complexity of keeping track of all events being received when the
systems become too large to be able to have a full overview of all its security
devices and sensors. When a system needs expanding in regards to security devices
and sensors, adding them to the event logs is not the hard part. Having security
analysts in the SOC being able to understand when an event is a false positive
because of bad rules, lack of context information for correlating it to another event
is what makes it difficult. The rules have to be set up in a way that they catch all
real-positives, and keep false-negatives to a minimum. With this in mind, when the
rules are created for flagging an event, you will not try to make them as efficient as
possible to minimize the workload of the SOC, but instead accept a large amount
of false-positives to try to be as certain as possible u get no false-negatives. With
the problem of the main-goal of most companies is that they want to be as cost-
efficient as possible, security often gets a lower priority than it should. Being able

16 2.3. SIEM AND SOC

to go through all the possible malicious events you work in a SOC, gets harder the
bigger the system is. They will get more events in general, which also means more
false-positives that still have to be checked out.

Another problem already mentioned is the contextual awareness of events happening.
This comes from the fact that the SOC usually isn’t connected to the regular
operations of the company. They are only concerned with the security events the
SIEM provides them with. Here communication is key, if one of the devices is
supposed to be updated, it can trigger alerts that are a false-alarm. If this update
has not been communicated to the SOC, they will treat it as a regular alarm, and
waste even more time with excess false-positives that could’ve been avoided.

2.3.6 Challenges with storing, collecting, correlating, and analyzing
events

As the world evolves, so does the scale of the systems that SIEM can be applied
to. Progress in the technical development of devices like IoT devices has the
computational capabilities to give even more log data than before, so having hardware
capable of collecting all these events will be more costly than before. With these
capabilities already being constrained by cost, it can lead to less secure practices
which include less filtering of the ingress data, and accepting malicious data to
enter the system. Another problem with getting in even more events is the possibility
to store them. Even though an event might not be of importance when it doesn’t
give off an alarm, it can still be used later on for forensic purposes. Events can
not be stored forever to be used like this, so all companies will need to find a
balance that gives the right tradeoff concerning the storage costs and requirements
for analysis. More data into the SIEM systems also provide problems with all the
facets it should help improve, with more events from devices and humans, which
needs more specific pattern recognition to find the real positives instead of flooding
the event-stream with false positives.

2.3.7 SIEM in an industrial environment

The ability to process large amounts of data and being able to aggregate and
normalize it and also being able to correlate it sounds like a perfect solution for
an industrial environment. Industrial automation systems have a lot of traffic
from different sources which usually has different vendors, protocols, physical
limitations, and a low amount of processing power. Centralizing and aggregating
the massive logs of data after collecting them, makes it possible to view events
that can pose a security risk to your system. So the question is why isn’t the
use of SIEM systems more widespread in today’s IACS environment landscape.
The question probably comes down to cost-efficiency. The level of protection and

2.4. ELASTIC STACK AS A SIEM 17

amount of money willing to be spent to protect an asset should be aligned with
the amount of money that will be lost if that asset is compromised in regards to
confidentiality or integrity or lost for any reason with thought around availability.
The massive cost of implementing a SIEM system with all its available capabilities
may not be more cost-effective than dealing with the attacks that slip by a cheaper
way of securing the system.

2.3.8 SIEM in a nutshell

To conclude the information gathered around SIEM systems is that they need to
be applied by exquisite technical personnel to function properly. It gives a lot of
responsibility to the people working in the companies SOC, and on its own, it is
useless as it only gives the alert that something is happening that also needs to
be analyzed to figure out further action. To have the opportunity to analyze and
correlate events the logging needs to be done in a way that covers every device that
picks up useful information for the security of the system. The SIEM system needs
to be adaptable in a way that allows continuous reconfiguration of rules, amount
of data collected from each device, being able to customize the event flow so that
when the SOC finds correlating events the system can learn to show the specific
events contextual information. Good communication between the SOC and the
other moving parts in the company is essential. Without this, a regular update or
patching to something novel can be viewed as a security risk that takes focus away
from events that need it.

2.4 Elastic Stack as a SIEM
When considering the combined effort of different software and modules created
by the company Elastic with help from others, it is usually referred to as the
Elastic Stack, or ELK(Elastic, Logstash, Kibana)Stack for short. It is open-source
software that provides a partially free and has managed to prove its efficiency
in a large number of applications worldwide. This is some of the reasons it is a
good fit for testing security in an experimental implementation. The main software
components are:

• Elasticsearch used as a search and analytical system

• Logstash used as a software pipeline for data processing

• Kibana, which is a tool for visualization and navigation through the system

• Beats, which is a set of programs that are used for collecting and transporting
logs, files, and packets

18 2.4. ELASTIC STACK AS A SIEM

2.4.1 Elasticsearch

A distributed search and analytical system core which supports the architectural
style REST API and sending data via JSON. By centralizing incoming data and
supporting the clustered architecture, it allows the system to scale out. With
innate abilities like transparency and reliability with a failure detection system,
ensures that it maintains a high uptime rate. The kernel performs a real-time search
over large volumes of heterogeneous data structures(documents). Document is
the basic unit of information that can be indexed and is specified in the JSON
format. The system has a well-developed API, and the list of supported languages
for interoperability includes Java, Python, C++, and others.[22]

2.4.2 Kibana

Kibana is a software component that implements the visualization and navigation(user
interface) in the Elastic Stack and other applications where it is applicable. The
data is presented as a customizable and interactive dashboard in real-time with a
lot of ready-for-use widgets.

2.4.3 Beats

The set of programs or collectors which are installed on client devices. The way
the programs interact with elasticsearch and what data, logs, or files they collect
and forward depends on what type of information you want to let Elasticsearch
analyze. Examples are:

• Auditbeat which audits the activities of users and processes on the system
it is installed on. It can also be used to detect changes to critical files,
like binaries and configuration files, and identify potential security policy
violations.[23]

• Packetbeat is a real-time network packet analyzer that provides visibility
between the servers in your network. It captures the network traffic between
the application servers, decoding the application layer protocols, and correlates
the requests with the responses and it records interesting fields for each
transaction.[24]

• Metricbeat periodically collects metrics from the operating system and services
running on the server. It takes the metrics and statistics which it collects and
sends them to the specified output.[25]

• Heartbeat daemon which is installed on a remote server to periodically check
the status of your services, to determine whether they are available and
reachable.[26]

2.5. RELATED WORK 19

2.4.4 Elastic Security and Elastalert

Elastic security is a package solution provided by Elastic that combines SIEM,
endpoint security, threat hunting, cloud monitoring, and alerting for your Elastic
Stack applications. Where it previously was free and readily available for use with
smaller applications of the ELK Stack, it is now being placed behind a paywall.
To have a way of monitoring the security of your applications placed in the elastic
stack and not having to pay for the door to this wall there are solutions out there.
Elastalert created by Yelp is a free and open-source solution and a simple framework
for alerting anomalies, spikes, or other patterns of interest from data in Elasticsearch.[27]
It is provided based on the ideology that if it can be seen in Kibana, ElastAlert can
alert on it. It works by combining Elasticsearch with two types of components,
rule types and alerts. Elasticsearch is periodically queried and the data is passed
on the rule type, which determines when a match is found. When a match occurs,
it is given to one or more alerts, which take action based on the match.

2.4.5 Logstash

The software pipeline is commonly used for data processing in the ELK stack
before passing the data on to Elasticsearch. It simultaneously collects data from
many different sources, primarily processes them, and sends it to a storage subsystem.
It has a built-in parser that allows it to normalize heterogeneous data, determine
the geographical coordinates by IP, to process information from various sources
regardless of format and structure.[22]

2.5 Related work
This section of the literature study offers an overview of the literature that relates
to my thesis and its research points. Some papers talk about general information
security and how a SIEM solution can be the salvation to many problems. With my
brief tenure on researching this topic, I have still been unable to find a complete
and easy-to-navigate system for testing how a SIEM works without engineering
one myself. It was observed that some of the papers talked about the pitfalls and
difficulties of using a SIEM solution, but the consensus in the papers seems to be
that for specific problems a specific solution does the job. The harder part is being
able to implement a general out-of-the-box solution that is easy to set up and test.

Montesino, FEnz and Baluja mentions the need of achieving greater efficiency
in the world of information security management. This involves reducing the
complexity and points to automation as a possible solution.[28] This is not only
difficult to achieve with regular office infrastructure but automating a SIEM system
for a larger scale industrial setting can prove to be even more difficult. “The
applicability of a SIEM solution: Requirements and Evaluation” states that an

20 2.5. RELATED WORK

organization not only should consider factors than the technical side when evaluating
what SIEM solution fits them best. They should instead also dive into the organizational
and technical requirements that should be addressed and examine the applicability
of a SIEM solution. This includes looking at how the company is structured in
size, location and verticality, doing a general risk and asset run-down, how it can
be possible to manage and hire a Security Operation Centre, and the compliance
to regulations combined with the forensics capability of their data.[29]

I also had the joy of talking to someone from KraftCERT regarding SIEM solutions
and their work within this field. The price of installing and the hardware of sensors
needed for a SIEM to run properly are expensive as well as the usability of the
sensor completely relies on the fact that the designer of the solution knows where to
place it for maximum efficiency. This leads to the point that implementing a SIEM
as your security solution not only demands financial resources, it also requires
personnel who can dedicate time and effort. This is a necessity for being able to
have even the possibility to put together hardware devices, sensors, technicians,
security personnel, response teams, and the communication flow that a well-tuned
SIEM requires.

On actually implementing a simulation of an IACS with a SIEM, I was not able
to find any literature which was indicative of the complexity of even an entry-
level solution. This thesis hopefully can help with broadening the specter of the
difficulties and hardships of testing similar topologies.

Chapter 3

Method

This chapter will contain the different methods pursued to answer the questions I
have previously described in this thesis.

3.1 Experiments
Goes under the classification of scientific method, where a factor or a few chosen
variables variate and the others are kept at a constant so that the influence of the
examined factor can be decided. The data from the experiment should be collected
with accepted methods that can give reproducible results. In addition I will need to
choose correct points of reference. The experiments should make the foundation
of the scientific method, with hypotheses and theories. The sets of data and the
methods should be commonly available, so the results from the experiment can be
proven. Before these experiments can be conducted there has to be a hypothesis in
place about an observed phenomenon or case study. All experiments also need to
contain control groups:

• Negative controls that aren’t expected to give any impact during the case
study

• Positive controls that are expected to give an impact during the case study

Before the experiment the different variables that are in question have to be mapped,
and of what types they are. They can either be continuous or categorical. Categorical
variables have limitations in the number of possible values. Another thing that also
has to be identified is the independent variables that variate in the background of
the experiment that can result in confusion. It also has to be investigated if the
variables covariate.

21

22 3.2. LITERATURE STUDY

A baseline has to be established regarding how data is collected, and this is done
by designing the study. All aspects and parts of the experiment are described as
precisely as possible so it is reproducible for further research and testing.

The reason an experiment fits well into answering the research questions in this
thesis is that they are best answered with practical scenarios rather than theoretical
solutions. The main reason is that the possibility to manipulate an independent
variable, control the others, and then being able to observe the results has great
merit. This is because when you find an outcome, it gives the opportunity to find
out the reason behind it.[30]

3.2 Literature Study
To conduct a literature study can be divided into two different types, where the
focus is different. The method I chose is most similar to an approach that focuses
on getting the answers with a more practical viewpoint aligned with the project I
am working on. All the literature is in regards to either the theory behind or about
the experiment I am writing about in my thesis. The sources the literature is derived
from have great variance, with some sources being Google Scholar and UIOs
research library and for more specialized content even videos from technology
conferences. This is because the resources needed to explain and implement the
solutions at the level I am interested in required a lot of different material.[31]

Chapter 4

Experiment

This chapter explains how the experiment is set up, what devices the topology
contains, how they were configured and implemented, how the attacks work and
an explanation of the two security solutions.

4.1 Experimental set up
To answer some of the questions that arose during the research period for my
thesis and the writing of the preliminary essay, I wanted to conduct an experiment.
The purpose of the experiment is to simulate how a live implementation of an
ICS operates and behaves to enable conducting tests on performance and security.
The basic topology needs devices that produce, store, manufacture, or transport
and a way of controlling how they do it. The components required for an exact
simulation in terms of size and complexity are not feasible to implement, because
the number of devices and resources needed would exceed what was available. To
execute the experiment the smallest version of an ICS was chosen, an application
of a PLC regulating an individual process. For this kind of system to function
properly a PLC is needed to work together with an input device and an output
device. The state of the input device is continuously monitored and decisions
are made based upon the custom program used to control the state of the output
devices. The PLC and output devices are usually segregated into their own network,
to defend the output device from tampering. The PLC itself should be connected
to a version of an HMI to be able to control what input devices and programs it is
monitoring. To also segregate this entire topology it should be separated from other
network zones with a firewall. The first part of this chapter contains an explanation
of how the experiment is designed, and how the devices have to be configured to be
used in an intended way for the experiment. The implementation of software on the

23

24 4.1. EXPERIMENTAL SET UP

devices and what their purpose is will also be explained, and what modifications
have been made to out-of-the-box solutions. The last part contains the execution
of the attacks and the results of this.

The process which the input and output devices should monitor in the experiment is
the levels and in-/outflow of a water tank. This tank is connected to and controlled
by the “OpenPLC” PLC and the program it contains, which is connected to the
HMI Node-RED to be able to do human interaction with the system. The network
is segregated into a separate zone with the pfSense firewall.

Figure 4.1: Depiction of basic topology

The water tank is only connected to the “OpenPLC” controller through a switch
creating a separate subnet because it does not need to be directly connected to the
internet. The “OpenPLC” controller and the “Node-RED” devices are connected to
the OpenVSwitch, which again connects through the internet through the “pfSense”-
firewall.

Enabling the devices to communicate with each other is set up through GNS3. It
is a tool used for network simulation and emulation and supports both directly
imported devices from the GNS library or virtual machines imported through
one of the available virtualization platforms. The two main components that I’ve

4.1. EXPERIMENTAL SET UP 25

utilized that make GNS3 work are the GNS3-all-in-one software combined with
the GNS3 virtual machine. The GNS3 VM works as a local server that creates
the topologies which are designed through the software solution. When using
virtualized machines imported through VirtualBox a UDPTunnel simulating network
connections are set up on each of the network adapters available.

Devices that are not imported through the GNS3 library are virtual machines
created through the software VirtualBox. Their documentation says it is a cross-
platform virtualization application that enables the capability to run multiple OSes
on an existing computer.[32] I have chosen this virtualization platform because it
is integrated to work with GNS3 and because I had previous knowledge of how it
operates before initiating my experiment.

The first device implemented is “Device 1: Water Tank”, which is a Ubuntu-based
live server. To make this work in the intended way of my system the water tank
needs one network port to connect to the switch that is in turn connected to the
OpenPLC controller. This is because the water tank does not need any other
connections, to lower its attack surface. It has to simulate a server and gateway that
generates ModBus traffic that is aimed to resemble a live industrial one. This is
done through installing software called “Simulation-server-modbus-gateway”.[33]
The gateway holds three registers that are in use, where input register 1 holds the
value of the tank, 2 holds the value of the inflow and 0 controls the value of the
outflow.

The “Device 2: Switch” is imported through GNS3 and used as an out-of-the-box
solution with no modification performed to have the needed functionality.

The “Device 3: OpenPLC” is also a Ubuntu-based live server. The setup necessary
for it to function together with the water tank and the node-red machine is software
that can work as a functional standardized Programmable Logic Controller.[34]
It goes through three steps: check inputs, execute the program and update the
outputs. Programming it to do the wanted task is done by feeding it with a Structured
Text program, which sets the registers in the water tank to wanted levels. The
program also automates that when the water tank reaches maximum or minimum
level, it increases either the in- or outflow so that the level does not exceed either
limit. All these tasks are made possible in my environment with the work of Thiago
Alves. The OpenPLC soft-PLC for Linux is used to feed the slave device which is
the water tank with input and deliver the output to the Node-RED machine for it to
be visible. It is the only available controller that provides the entire source code.

“Device 4: OpenVSwitch” is imported through GNS3 and is a multilayer virtual
switch produced by OpenVSwitch. It is designed to enable network automation

26 4.2. IMPLEMENTATION OF DEVICES

through programmatic extension, it supports virtualization with VirtualBox and
has kernel datapath distributed with Linux. It also supports creating SPAN ports,
which in this case means a port that mirrors all traffic entering and exiting the
switch, hence the position it has in the proposed topology. This means a security
solution can plug into this port to attain the traffic of all devices connected to the
switch.

For visualizing the output from the OpenPLC, “Device 5: Node-RED” is used as
a human-machine interface. The device is implemented using an Ubuntu-based
desktop computer. It is connected with the OpenPLC which fetches the output
produced from the water tanks data. Node-RED is a programming tool used for
wiring together hardware devices, APIs, and online services with a browser-based
editor. Within the editor-tool the data from the different registers are used to show
the different metrics of the water tank:

• Current level

• Minimum level

• Maximum level

• Outflow in liters

• Inflow in liters

This device is also used to control the web interface for the OpenPLC controller,
which needs a graphical interface to operate. This means that the Structured Text
script, slave device specifications, and program settings are managed through this
device as well.

The final device of the basic topology is “Device 6: pfSense firewall”. It is used
to set up the routing tables of the main subnet and provides a connection to the
internet as well. With the choice of implementing static IPs in my topology DHCP
is not needed, so it is used as an out-of-the-box solution with DHCP not enabled.
Due to it being open-source with a web interface to customize it can be used as a
simple security solution as well as basic routing and being a security perimeter it
made a good fit in my topology.

4.2 Implementation of devices

4.2.1 Water tank

To implement the water tank, the software “Simulation-server-modbus-gateway”
was used to simulate the required functionality. It was imported directly through

4.2. IMPLEMENTATION OF DEVICES 27

Github, and docker was also set up for it to be run via docker-compose. For
simplicity, it also received a static IP address because the configurations for the
software are not set up for non-static IPs. With both of these set up correctly, the
PLC should be able to connect with the proper IP address and port number.

4.2.2 Switch

The basic ethernet switch was directly imported through the GNS3 library with no
modifications.

4.2.3 OpenPLC

The OpenPLC device was implemented by following the guide on “OpenPLCproject.com/runtime/linux”.
After installing git and downloading the OpenPLC software and then installing it,
it is necessary to set up the IP for the OpenPLC device to be able to connect to
the web interface from the HMI device. With the water tank being designated
as a slave I/O from the web-interface, it is necessary to add this device in the
configuration to establish a connection when running a program. With the water
tank having a static IP and designated port, except for this, all settings should be
the default. With all this in mind, the OpenPLC needs a PLC program which is
fetched from Github[34]. The Structured Text program enables the water tank to
function in the way intended.

4.2.4 OpenVSwitch

OpenVSwitch was directly imported through the GNS3 library, with modifications
to ethernet port 7. This was turned into a mirrored SPAN port for future use in
conjunction with a security solution.

28 4.3. SECURITY SOLUTIONS AND THEIR IMPLEMENTATIONS

4.2.5 Node-RED

For implementing Node-RED into the device node.js was installed and used to run
npm to install the software. The IP address was set to be static for the sake of
simplicity in the topology. For having access to a web-interface a flow has to be
set up to be able to determine the input to the OpenPLC device and set the allowed
levels of the water tank.

Figure 4.2: Shows how the flows in Node-RED is set up to enable the GUI in appendix 4

This is the HMI device of the topology, and it is later on supposed to also be the
device for attacking the tested system. Pymodbus was installed for executing the
attackers’ python script, hping3 for executing a DoS-attack, and NMAP for the
port scanner attack.

4.2.6 pfSense

The pfSense device was implemented as an out-of-the-box solution from pfsense.org
as an ISO image to install on a FreeBSD virtual machine.

4.3 Security Solutions and their implementations
With the basic topology previously explained the next part of the experiment is
implementing a security solution and testing their capabilities of detection with
different attacks. The security solutions which are decided on earlier are an implementation
of a IDS and a SIEM solution. This is the part where the experiment requires a
different setup and implementation on the other devices in regards to what solution
is chosen, so the chapter is split in two; one for the IDS and one for the SIEM.

4.3. SECURITY SOLUTIONS AND THEIR IMPLEMENTATIONS 29

4.3.1 IDS

When choosing what IDS solution to implement there are a lot of different ones
out there to choose from like Snort, Suricata, Zeek, and Security Onion only
to mention a few. With my limited time and hardware resources the four most
important factors are performance, the difficulty of implementation and use, resource
intensiveness, and adaptability of the rulesets. With Snort being known for easiness
of installing and deployment with a lot of good resources available, it fits the needs
of my experiment. Snort is an open-source Intrusion Prevention System, with the
option to enforce rules that can be decided, created, or modified by the user. In
my case, it will be set up as a packet sniffer and packet logger, and not as an IPS
because this can be problematic in an industrial environment(REF TIL ESSAY
HER). The implementation of Snort is done through downloading the software
and creating directories for rules and logs.

Figure 4.3: Depiction of basic topology

“Device 7: Snort IDS” is an Ubuntu-based desktop computer connected to the
OpenVSwitch with two different ports because it utilizes the previously set up

30 4.4. SIEM

SPAN port to attain the network traffic. The network card enp0s8 listens to the
port that receives information from the span port, and this is the chosen interface
that Snort also listens to. With how the topology is set up, for Snort to do its
job no modification to the other devices is needed to get the detection up and
running. Because it only operates with network traffic, which is mirrored through
the OpenVSwitch, the other devices can stay as they are meaning it requires very
little time and effort to implement.

4.4 SIEM
The difficulty of choosing a SIEM solution was an even harder choice because
most solutions are extremely resource-intensive as well as being strenuous to implement.
As well as not being something that is regularly implemented on systems it is
not strictly necessary or extremely beneficial, the variety of available solutions
which are both free and easy to set up does not match the counterpart in this
experiment, the IDS. Because implementation of the SIEM is a part of this thesis
two solutions were initially tested in production to determine the best direction to
work with. Research on the topic led to some interesting options with older papers
stating a lot of open source and free tools ready to be implemented. But with the
industry moving forward and seeing the potential profits of this new and essential
field within security, most solutions have moved on to locking away functionality
behind paywalls. My original solution was supposed to be a modified version of
the ELK stack previously mentioned in the related work chapter, but with their
free security add-on being secluded behind a paywall I was interested in moving
on to something else. Another solution that still was entirely free with decent
documentation was Malcolm.

The first solution tested was Malcolm; it is a powerful and easily deployable
traffic analysis tool suite for full packet capture artifacts (PCAP files) and Zeek
logs. It is an open-source project created at the Idaho National Laboratory for
Homeland Security and could be a good fit for what the experiment needed with
some modification. The easiest way of deploying it was through downloading an
ISO file and following the steps from their documentation[35]. After setting up and
trying to capture the network traffic similar to how the Snort IDS receives it I was
unable to get this working, as no traffic was showing up. After troubleshooting
and finding no solutions to my problem, the only possibility left was installing
and setting up another device for forwarding the networking logs with Hedgehog
Linux. With the complications mentioned and lack of hardware resources, my lab
environment would not be able to handle the already taxing device that is Malcolm
with the addition of the Hedgehog log forwarder.

With other free solutions being sparse I found an alerting solution made by Yelp[27]

4.4. SIEM 31

that is set up to work with the Elastic Stack, so for the second implementation, the
SIEM consists of Elasticsearch, Kibana, Beats, and elastalert. Elasticsearch is
used for receiving logs and data from the Beats placed on necessary devices and
then processed and visualized through Kibana. Elastalert is a framework used for
alerting anomalies, spikes, and other patterns of interest from data in ElasticSearch.

Figure 4.4: Depiction of SIEM and beats installed on various devices

“Device 7: ELK Stack” is an Ubuntu-based device that runs Elasticsearch, Heartbeat,
Packetbeat, Kibana, and Elastalert. Because Kibana and Elasticsearch are set up
on the same local device, all logs and output are forwarded here. The different
beats installed on the main device of the ELK stack are Heartbeat and Packebeat.
Heartbeat is a simple daemon that periodically checks the status of the services
in my topology to determine whether they are available or not. For picking up
network traffic from the SPAN port in a similar manner as the Snort IDS does,
Packebeat listens to the network card that is connected to the mirrored port on the
OpenVSwitch. In addition for Elasticsearch to have the necessary logs and data,
the Beats has to be installed on the remote devices I wanted to monitor.

With “Device 3: OpenPLC” being where the different metrics for the water tank
is decided, it is a possible point of weakness for attackers to exploit. The beats

32 4.5. ATTACKS

chosen for this device are Auditbeat, Metricbeat, and Filebeat. Auditbeat is used
for monitoring and auditing the activities of users and processes on it, as well
as detecting changes to critical files to its operation. Filebeat on the other hand
forwards and centralizes log data from the specified output, in this case, the syslogs
for the device and the possibility of sending the information about the PLC. Metricbeat
is used to collect metrics from the operating system and from the services that run
on the server. It takes the metrics and statistics and ships them to the specified
output. “Device 4: Node-RED” can also be used to forward the different levels in
the water tank, so here Auditbeat and Filebeat are also installed.

4.5 Attacks
This subchapter explains the attacks used to test the limitations and detection
capabilities of the different security solutions chosen. For deciding what attacks to
execute the metrics considered were severability to the uptime of the water tank,
ease of execution, and type of attack.

4.5.1 Port scan

Port scanning is used to probe a server or host for open ports, which in an industrial
setting can be proven devastating with how many devices and hosts usually are
available. Ports that are unnecessary and dangerous to keep open are harder to
keep track of the larger our system is and can be used to exploit vulnerabilities.
[36]

NMAP Port scan

The port scan attack is done with the tool NMAP, which is specified to attack the
subnet that the devices you want to target are a part of. To detect an attack like
this the security solution needs to be able to find out if there is a sudden spike,
or increase in frequency for querying many ports on different devices at the same
time. This sort of attack can usually be detected by a firewall that limits between
zones, but due to simplicity the attack will be executed from within the topology
instead of from the outside.[37]

4.5.2 DoS

Denial of Service attacks is defined as denying the use of a service. This is usually
done by flooding the specific service with requests and traffic to the point where
the working load is beyond the capabilities of the device running the service. With
their low processing power, PLCs and RTUs are explicitly vulnerable to an attack
like this, but the effects will be minimized in this simulation because of how the
devices are set up. The device controlling the water tank is not run on an actual

4.5. ATTACKS 33

PLC, but on a Ubuntu-based server with a magnitude more processing power. So
the actual strength of the attack needed to take it out of service is more significant
than in an actual Industrial Automation Control System. To detect this attack the
security solution has to alert when a specific device is having a sudden spike in
queries or if it receives too many queries over a certain timeframe. A DoS attack
from the outside can easily be blocked out by the correct firewall implementation
because of how zone control should be in an ICS, but again for simplicity the attack
is executed from within the network itself.[38]

Hping3

For executing this attack the Node-RED device was used to leverage a tool called
hping3, which is a command-line oriented TCP/IP packet assembler/analyzer. The
interface is inspired by the ping(8) Unix command, but hping3 is not only able
to send ICMP echo requests. It also supports TCP, UDP, ICMP, and RAW-IP
protocols, has a traceroute mode, the ability to send files between a covered channel,
and many other features. In this case, it is used for sending a large number of
packets as fast as possible in an attempt to deny the use of a service.[39]

4.5.3 MITM Setpoint attack

A man-in-the-middle attack is defined by the attacker being in between services or
devices either impersonating the device or having actual control of it. In this attack,
we assume that an adversary has gained control over the Node-RED device with no
other devices being aware of it. The Node-RED device will then instead of going
through the Node-RED password-protected interface try to directly change the
level of the water tank without no one noticing. This can have a large impact on the
water tank because with wrong information about the metrics the OpenPLC device
will keep filling up the water tank even though it has reached its maximum levels.
To detect a man-in-the-middle attack the devices in your system need rules of
what operations and actions they are allowed to permit. Integrity and authenticity
checks to make sure that no devices are compromised can also be used to mitigate
consequences.[40]

Setpointattack.py

To execute this attack the script in the file “setpointattack.py” is used. It connects
directly to the PLC and sets the maximum level of the tank to a value out of the
legal scope. The idea is that the script directly changes the input to the “OpenPLC”-
device, so that it is possible to damage the water tank by setting illegal values.

34 4.5. ATTACKS

4.5.4 Modifications done to IDS and SIEM to detect attacks

For Snort to be able to detect these specific attacks extra rules have to be created
in addition to the general rules created by the Snort community. This is done
through editing the Snort.rules and writing custom rules based on the behavior it
is supposed to report on. The ELK stack receives all necessary information for
it to raise alerts when these attacks happen, but they have to be set up through
Elastalert to do so. This is done through configuring one of the rule types and their
desired metrics as of when something is wrong. The modifications to the rules
used in both Snort and Elastalert are a simplified version of what would be made
in a real environment to be a proof of concept that the security solutions can detect
the attacks executed.

Snort rules

A rule file was written in “/etc/snort/rules” which contains an alert that goes off
when other TCP traffic than to the port “502” is executed to protect from NMAP
TCP scan. And for alerting the ping scan, it detects if any devices ping the
“192.168.1.60” device which is the “OpenPLC” because its only functionality
in this topology should be to control the levels of the water tank and sending
information to the “Node-RED” device. To detect the DoS attack a rule is written
that tracks if any port is connected to with a larger count than normal(in this case
70) every 10 seconds.

Elastalert rules

The rules in elastalert are placed in the example rules folder where two rules are
used. The modified version of the example rule for spikes fetches the logs from
the elasticsearch index “packetbeat-*” which is network traffic, to alert when an
event spikes. The timeframe is 30 seconds, with the threshold being set at 30. If
the value of connections to port 502 exceeds 30 by 20, it will forward a message to
the service of your choice. I chose Telegram because it provides easy setup with
the telegram bot to send the alerts into a Telegram channel of your choice.

The second rule for detecting a port scan can be used in two different ways,
depending on the settings chosen. It fetches the logs from elasticsearch index
“packetbeat-*”, to alert when the frequency of an event exceeds the specified
amount in the time frame selected. In my case, it detects the number of events
on either the TCP- or ICMP-traffic to alert to telegram as mentioned in the last
rule.

The third rule for detecting whether the specified MITM attack is still a work in
progress and will be referenced in the future work section.

4.6. ATTACK EXECUTION 35

4.6 Attack execution
The observations in this experiment focus on tracing the commands used to execute
the attacks to find out if they were successful, and if the security solution managed
to send an alert that fires off based on the parameters set in its respective ruleset.

4.6.1 Dos Attack

During the DoS attack, the hping3 tool sent 5000 packets with the command
“hping3 -i u20 -S -p 80 -c 5000 192.168.1.60”.

• -i u20 specifies interval of 20 microseconds to wait between each packet

• -S sets the SYN tcp flag

• -p 80 determines to send packets to port 80

• -c 5000 specifies to send 5000 packets

Figure 4.5: Example output from hping-command

36 4.6. ATTACK EXECUTION

4.6.2 Port Scan

The execution of the port scan attack on scanning the entire 192.168.1.0/24 range
was successful, and it found open ports. This was done with the command “nmap
-sT 192.168.1.0/24”; -sT specifies that it does a TCP connect port scan of specified
IP/subnet.

Figure 4.6: Showing output from “nmap -sT 192.168.1.0/24” command, successfully
scanning 256 addresses and identifying the four hosts that are up.

4.6. ATTACK EXECUTION 37

4.6.3 MITM attack

The attack is done with a script written in python. It connects to the “OpenPLCs”
port 502 from the same device it usually receives change of input from. It then
writes to the register that controls the allowed maximum level of the water tank.

Figure 4.7: Shows output from the setpointattack.py script, which successfully writes to
a register in the water tank to change its value.

38 4.6. ATTACK EXECUTION

Chapter 5

Results of implementation and
detection

This chapter is about the results of the implementation of an ICS combined with
a security solution. The results of the general implementation of an ICS will be
shown with screenshots of traffic and interfaces that are used to control the PLC.
The two different security solutions will be based on the following criteria for the
implementation:

• Installation time

• Available documentation

• Being able to detect and alert on attacks

• Subjective difficulty of implementation

• Subjective difficulty of use

• Completeness of solution and available logs or data for correlation

5.1 General implementation
During the implementation period different devices and solutions were tested before
being able to implement a system that simulates traffic and logs that can be compared
to a live environment. The system does the following:

• produces Modbus/TCP traffic that resembles traffic that can be logged and
used from a live PLC

39

40 5.2. IDS IMPLEMENTATION

• has a PLC that runs in a loop that receives input and produces output based
on a specific program

• has a HMI device that can be used as an interface to control the PLC directly

• has the possibility to install applications/forwarders that can send logs and
interesting information to a security solution

• resembles a water tank with sensors and actuators that can be run attacks
and different simulations on

5.2 IDS Implementation
Implementing Snort as a IDS with the topology and attacks in question is estimated
to have taken 20 hours including time spent researching. The available documentation
helped greatly with the implementation, as both installing the software and creating
custom rules had a lot of specialized documentation in articles and educational
videos from Snort. This in turn helped lower both the difficulty of use, implementation
and time used for implementation. With Snort being installed and rules set up
for specific attacks, alerts were coming in when the attacks applied to the rules
written. With the way it was implemented it lacked the capability to detect when
the setpoints of the water tank were changed outside of the allowed values. The
completeness of the solution comes down to that it contains all functionality of
Snort, except the IPS part because this will interfere with the availability and
uptime of the ICS. It executes the tasks it is supposed to perform, with only logging
network packets and no other form of data making correlation with other input
difficult.

5.3 SIEM implementation
While implementing the SIEM two different solutions were tested, a modified
version of the ELK stack and Malcolm. As previously mentioned Malcolm had
a level of difficulty that required more resources than initially thought, so ELK
stack was chosen. This was because it also had a free version that was able to send
alerts. The time estimated to implement the entire ELK stack including beats are
close to approximately 120 hours including the time spent researching different
ways to set up and configure. Here the time spent configuring the different beats,
Elasticsearch and Kibana to enable the availability of interesting logs and data
was the largest portion. The documentation for the Elastic Stack is well written
and makes the software easily configurable with their basic solution, as to what
information you want to collect and send to Kibana. However the documentation
in finding the necessary data you want to analyze and alert on, and how to use

5.4. IDS DETECTION 41

it is severely lacking and hard to figure out on your own and takes a lot of time
tinkering. The subjective difficulty of implementation is not considered easy, but a
carefully and well written documentation makes the installation of Elasticsearch,
Kibana and the different beats easy compared to how complex it seems.

The difficulty of use in the way intended for this experiment is considered to be
larger than for the installation. This is because of the amount of data in kibana
combined with lacking documentation for users not using the paid version of
elastic security. Setting up the alerts with the free elastalert version proved to
be extremely difficult and time-consuming, and the documentation on writing
rules and fetching data from elasticsearch was not understandable without extra
research. This combined with the hardship of using kibana to get the correct data,
keeps the difficulty of implementation high, usability low, getting alerts hard and
completeness not sufficient for what the possible utilization is. The completeness
of the solution is not enough to correlate events and decide whether to alert based
on this. With the beats installed the ELK stack implementation collects various
types of logs from the different devices that can be used for correlation. The
correlation can help with either detecting security threats or helping lower the rates
of false-positive alerts.

5.4 IDS detection

5.4.1 DoS

The logs collected from the IDS confirm that it detects that there is a possible DoS
attack ongoing with TCP traffic.

Figure 5.1: Example output from Snort.

5.4.2 Port scan

The logs from Snort show that the attack was detected as a possible NMAP TCP
scan.

Figure 5.2: Example output from Snort.

42 5.5. SIEM DETECTION

5.4.3 MITM

Snort IDS has no possibility to alert that the MITM attack is happening.

5.5 SIEM detection

5.5.1 DoS

The message sent to Telegram from the elastalert service indicates that there is a
possible spike in events which can indicate a DoS attack.

Figure 5.3: Screenshot from Telegram with alert on an Event Spike.

5.5. SIEM DETECTION 43

5.5.2 Port scan

The message sent to Telegram from the elastalert service indicates that there is a
port scan happening based on the frequency of events occurring on the network.

Figure 5.4: Screenshot from Telegram with alert on an Port scan.

5.5.3 MITM

To implement an elastalert rule that detects a MITM attack with the specifications
in “setpointattack.py”, elasticsearch has to be updated with data that correlates
with the actual levels of the water tank directly from the sensors. This is not
implemented yet in the current solution, but will be referenced in chapter 8.

44 5.5. SIEM DETECTION

Chapter 6

Discussion

Some of the criteria are subjective from the author of this thesis, which for reference
is a student completing a masters degree in information security with previous
experience on the topic. This means reproduction of the experiment may not yield
the same exact results. If a SIEM for instance was supposed to be implemented
in a live environment on a bigger scale the timeframe would be longer, or if the
active observer has more experience it would probably be shorter. The time is
estimated using an approximate from the notes and project logs. A virtual system
like this will never be completely similar to a live environment, but it should still be
strived for. In this sense the completeness of the solution means completeness in
comparison to what is possible to accomplish with the different devices, software
and solutions used.

When implementing a virtualization of an ICS over a period of five months with
no previous knowledge on the subject there will be some shortcuts. Even with this
the utilization of the resources available, a working simulation was completed.
It produces Modbus traffic, but the OpenPLC device can be used in tandem with
another solution if a different type of traffic is wanted. The topology has all devices
connected, and the possibility to control the input and output of a PLC device. With
limited literature available on the subject of implementing a system that resembles
ICS traffic and behavior, it makes troubleshooting difficult. The documentation
available from the “OpenPLCproject” combined with software from GitHub[33]
made the set up easier. Without the documentation and available software the
process would have been time consuming because of the learning required to even
start writing a gateway and server to simulate the water tank.

Using the metrics mentioned in chapter five, the two different security solutions

45

46

provide completely different pictures of what they should be used for and how
hard they are to implement. When comparing implementation time spent on the
ELK stack with the Snort IDS, it is clear that the first requires more effort and time
to get up and going. With the available documentation being somewhat similar
as of installation goes, the biggest differential here is actually using the system
you have installed. Getting the information into the SIEM is not hard, but actually
utilising it is extremely difficult. The IDS on the other hand is also easy to get the
information it can be implemented with, but even fully utilised it does not cover
the security needs of the system it is supposed to protect. Correlation of logs in an
industrial environment can help with detecting anomalies and figure out if they are
threats or not. This in turn means that the security system less often forces halts
based on false-positives, which increases uptime. With the available logs and data
from ELK stack, correlation should be possible. In this thesis I was not able to find
a way to do this, and I encourage future studies to try and utilize this aspect of a
SIEM implementation. The logs and data available from elasticsearch visualized
in Kibana is of great benefit when wanting to secure every part of your system,
it brings the possibility to track and monitor everything that happens on all your
devices from commands executed to the metrics of the hardware.

My experience with the security part of ELK stack is not necessarily something
which reflects the general opinion because I chose not to take advantage of the
already integrated Elastic Security. Instead elastalert was chosen because of the
idea that being open source and free, this was something that easily could be
applied. Writing the rules for the different attacks were on a difficulty level not
needed for the effect it had. The documentation was not well enough written and
with bad examples as of how to proceed when rules that were different from the
examples were needed. Going for the more established and complete solution of
Elastic Security from elastic can make detection and alerting on threats easier.

With the DoS and port scan attack being only network-based, they can be detected
with rules that apply only the information gained from network packets. With
the IDS and SIEM both being able to detect and alert that suspicious activity has
occurred when they are executed, the only difference between them can be how
fast it is detected, and if it can be correlated with another event. The biggest
difference arrives in the third attack, where executing the “setpointattack.py” script
from inside the system. With the information available there is no possible way of
denying the HMI to set the value of the water tanks levels. When only reviewing
the network packets, this looks like a basic operation. To detect this type of attack
more data and information is necessary.

Chapter 7

Conclusion

One of the most important conclusions that can be decied upon regarding the
research problems is that the implementation of a SIEM is going to be time consuming
and difficult if you want it to be a perfect fit for your system. An important note is
that it has the possibility to be significantly more powerful than an IDS solution,
solely based on the opportunities more types of logs and correlation introduces.

The other part of the experiment also points to other conclusions that can be drawn:

• The difficulty of implementing the virtualization of the ICS was not time
consuming based on the fact that there was excellent documentation available
on the subject

• Correct implementation that allows correlation of logs increases the complexity
of implementing a SIEM

• When detecting attacks that are executed with network packets the IDS
performs at a similar level as the SIEM

• The bad documentation from ElastAlert directly influences the difficulty
level of getting alerts from Elasticsearch without subscribing to Elastic Security

• Man-in-the-Middle attacks are hard to detect with only the logs from network
packets

• The noisiness of systems creates massive amounts of logs and data available
in Kibana from Elasticsearch. The importance of clearing away the noise to
be able to see critical and vital information can not be underrated

47

48

The results of implementation and attacks on both the ICS itself and the security
solutions implicates that there still is a lot of room for improvement. With more
time the security and traffic simulation could be more realistic and hardened, and
further work and research can be recommended. Some of the areas where this
applies will be mentioned in chapter 8.

Chapter 8

Further work

This chapter contains areas that can be improved and should be researched further
than what was done in this thesis.

8.1 ElastAlert rules
The previously mentioned elastalert rule for detecting the MITM-attack in chapter
4.4.3.2 can be worked more on in the future. For a rule to detect the MITM-attack
specified in the experiment, there are several possibilities:

• It has access to an index in elasticsearch which carries the logs from the
physical sensors as to how and when they were accessed by using anomaly-
based detection the timing of the usually automated water tank can seem
off

• The maximum value of the water tank can be polled and sent to an elasticsearch
index where if the number allowed as maximum exceeds a certain value it
can fire off an alert

• It can alert if the payload message from the Node-RED machine contains
setting the value of the water tank outside an accepted scope

The reason I was not capable of getting in place a rule that will alert me to an attack
like this is because of limited time, knowledge, resources, and documentation
available on the subject. Because of the price of using Elastic Security which
probably has good documentation and support, I had to go forward with the free
and open-source solution Elastalert. It does not have proper documentation available
for it to be easily set up without a lot of research and trial and error. Just to

49

50 8.2. IMPROVING DATA IN KIBANA

implement the two basic rules that detect port scans and DoS attacks which were
simpler with Snort I had to use approximately 20 hours to get them working. This
should be worked on because it really has some promise to detect attacks that an
IDS does not have the capabilities to.

8.2 Improving data in Kibana
The data shown from Kibana in the appendixes can be improved so that they are
more visible and easier to extract important information from. Being that the ELK
stack thrives and survives on being able to correlate data from a vast amount of
sources in different formats a good utilization of Kibana can be helpful in securing
your system.

8.3 Expanding from one PLC
The singular PLC can be expanded to multiple ones, for more accurate simulation
of a system that is more similar to a DCS. This would be of more interest because
it would generate more traffic and noise, hence testing what security solution and
attacks will have greater resemblance to a live environment.

8.4 Integrating with other zones and subnets
A big part of the evolution in the IIoT industry is that it supports integrating IT
and OT traffic. This will also need further testing to find out safe procedures and
policies. Further work could be done on creating zones outside of the OT zone,
to simulate attacks and traffic coming from another zone or subnet to determine
values and rules.

8.5 Implementing Elastic Security
Instead of using elastalert for detection, elastic provides its own solution to security.
This was not used in my thesis because of time available and cost of implementing
it. This service can provide a better solution to detecting and alerting on security
threats than self-written rules in elastalert. It also has direct integration in Kibana,
and it can be easier to handle all your data and alerts from one interface instead of
having to send them somewhere else.

Bibliography

[1] A.-R. Sadeghi, C. Wachsmann, and M. Waidner, “Security and privacy
challenges in industrial internet of things,” 5. 2015. (Accessed on
16/05/2021).

[2] K. Stouffer, L. S., P. V., A. M., and H. A., “Guide to industrial control systems
(ics) security,” n.d. 2014. (Accessed on 16/05/2021).

[3] A. Mader, “A classification of plc models and applications,” n.d. 2000.
(Accessed on 16/05/2021).

[4] C. Peshek and M. Mellish, “Recent developments and future trends in plc
programming languages and programming tools for real-time control,” 5.
1993. (Accessed on 16/05/2021).

[5] M. Minas and G. Frey, “Visual plc-programming using signal interpreted
petri nets,” 05. 2002. (Accessed on 16/05/2021).

[6] H. Benitez-Perez and F. Garcia-Nocetti, “Reconfigurable distributed control,”
n.d. 2005.

[7] A. Daneels and W. Salter, “What is scada?,” n.d. 1999. (Accessed on
16/05/2021).

[8] C. Gong, “Human-machine interface: Design principles of visual
information in human-machine interface design,” 2009.

[9] A. Swales, “Open modbus/tcp specification,” 3. 1999. (Accessed on
16/05/2021).

[10] N. Goldenberg and A. Wool, “Accurate modeling of modbus/tcp for intrusion
detection in scada systems,” 6. 2013. (Accessed on 16/05/2021).

[11] A. Hahn, “Operational technology and information technology in industrial
control systems,” 8. 2016. (Accessed on 16/05/2021).

51

52 BIBLIOGRAPHY

[12] M. Scarfone, “Guide to intrusion detection and prevention systems(idps),” 2.
2007. (Accessed on 16/05/2021).

[13] L. L. and L. Lin, “Intrusion detection system: A comprehensive review,” 1.
2013. (Accessed on 16/05/2021).

[14] S. Wu P., “Signature based network intrusion detection system and method,”
3. 2002. (Accessed on 16/05/2021).

[15] M. Tedoro and V. Diaz-Verdejo, “Anomaly-based network intrusion
detection: Techniques systems and challenges,” 2-3. 2009. (Accessed on
16/05/2021).

[16] Y. Yang and S. Mclaughlin, “Stateful intrusion detection for iec 60870-5-104
scada security,” 6. 2014. (Accessed on 16/05/2021).

[17] N. Fovino, M. Masera, A. Carcano, and A. Trombetta, “An experimental
investigation of malware attacks on scada systems,” 12. 2009. (Accessed on
16/05/2021).

[18] C. Mcparland, S. A., and S. Peisert, “Monitoring security of networked
control systems: It’s the physics,” 11-12. 2014. (Accessed on 16/05/2021).

[19] C. Falliere and Murchu, “W32.stuxnet dossier.” Published by Symantec, 2.
2011. (Accessed on 16/05/2021).

[20] M. Slay, “Lessons learned from the maroochy water breach,” n.d. 2008.
(Accessed on 16/05/2021).

[21] S. Bhatt, P. Mandahata, and L. Zomlot, “The operational role of security
information and event management systems,” 9. 2014. (Accessed on
16/05/2021).

[22] A. Kuleshov, I. Ushakov, and K. I.., “Aggregation of elastic stack instruments
for collecting, storing and processing of security information and events,”
n.d. 2017. (Accessed on 16/05/2021).

[23] E. B.V., “Auditbeat overview.” Webpage. (Accessed on 16/05/2021).

[24] E. B.V., “Packetbeat overview.” Webpage. (Accessed on 16/05/2021).

[25] E. B.V., “Metricbeat overview.” Webpage. (Accessed on 16/05/2021).

[26] E. B.V., “Heartbeat overview.” Webpage. (Accessed on 16/05/2021).

[27] Yelp, “Yelp elastalert.” Webpage. (Accessed on 16/05/2021).

BIBLIOGRAPHY 53

[28] R. Montesino, S. Fenz, and W. Baluja, “Siem-based framework for security
conrols automation,” 10. 2012. (Accessed on 16/05/2021).

[29] H. Mokalled, R. Catelli, V. Casola, D. Debertol, E. Meda, and R. Zunino,
“The applicability of a siem solution: Requirements and evaluation,” n.d.
2019. (Accessed on 16/05/2021).

[30] UIO, “Eksperiment.” Webpage, 2. 2011. (Accessed on 16/05/2021).

[31] UIO, “Retningslinjer prosjektoppgave.” Webpage. (Accessed on
16/05/2021).

[32] VirtualBox, “Virtualbox manual.” Webpage. (Accessed on 16/05/2021).

[33] J.-M. Storm, “simulation-server-modbus-gateway.” Webpage. (Accessed on
16/05/2021).

[34] A. Thiago, “What is a plc?.” Webpage. (Accessed on 16/05/2021).

[35] R. Medlin, “Csi-siem.” Webpage. (Accessed on 16/05/2021).

[36] J. Gadge and A. A. Patil, “Port scan detection.” 2008 16th IEEE International
Conference on Networks, n.d. 2008. (Accessed on 16/05/2021).

[37] NMAP, “Nmap reference guide.” Manual Pages. (Accessed on 16/05/2021).

[38] A. D. Wood and J. A. Stankovic, “Denial of service in sensor networks.”
Computer, vol. 35, no. 10, 10. 2002. (Accessed on 16/05/2021).

[39] S. Sanfilippo, “hping3 package description.” Webpage. (Accessed on
16/05/2021).

[40] N. Asokan, V. Niemi, and N. K., “Man-in-the-middle in tunnelled
authentication protocols.” International Workshop on Security Protocols, n.d.
2005. (Accessed on 16/05/2021).

54 BIBLIOGRAPHY

APPENDIX 55

Appendix A

Figure 1: Overview of different devices.

56 APPENDIX

Appendix B

Figure 2: Overview of different devices.

Appendix C

Figure 3: Open PLC project GUI for adding the water tank as a slave device.

APPENDIX 57

58 APPENDIX

Appendix D

Figure 4: GUI from Node-RED to select setpoints for minimum and maximum values,
and show current value of the water tank.

APPENDIX 59

Appendix E

Figure 5: Screenshot of WireShark-capture between the OpenPLC device and the rest of
the network.

Appendix F

Figure 6: Screenshot of WireShark-capture between the OpenPLC device and the water
tank device.

60 APPENDIX

Appendix G

Figure 7: Screenshot with example data collected by Auditbeat from the OpenPLC device
shortly after starting up.

APPENDIX 61

Appendix H

Figure 8: Screenshot with example data collected by Filebeat form the OpenPLC device
shortly after starting up.

62 APPENDIX

Appendix I

Figure 9: Screenshot with example data collected by Metricbeat from the OpenPLC
device shortly after starting up.

APPENDIX 63

Appendix J

Figure 10: Screenshot with example data collected by Packetbeat from the SPAN port on
OpenVSwitch after starting up.

64 APPENDIX

APPENDIX 65

Appendix K

Figure 11: Structured Text program used as input for the PLC.

66 APPENDIX

Appendix L

Figure 12: Script for executing set point attack on the water tank.

Appendix M

Figure 13: Rule for ElastAlert to alert on Port Scan attacks.

APPENDIX 67

Appendix N

Figure 14: Rule for ElastAlert to alert on Port Scan attacks.

Appendix O

Figure 15: Rulefile in Snort with rules for DoS and Port Scan attacks.

	5efe2195e312a0ebfe99bf653041d06fd3d6c30c375699f9151d9c1ce56683d8.pdf

