
Semantics Preservation
in

Model-based Composition

by Jon Oldevik

THESIS

submitted to Department of Informatics

Faculty of Mathematics and Natural Sciences,

University of Oslo

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (PhD)

December 2009

© Jon Oldevik, 2010

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 938

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Inger Sandved Anfinsen.
Printed in Norway: AiT e-dit AS.

Produced in co-operation with Unipub.
The thesis is produced by Unipub merely in connection with the
thesis defence. Kindly direct all inquiries regarding the thesis to the copyright
holder or the unit which grants the doctorate.

Abstract

Separation of concerns is an important factor in the development of complex software
systems. Being able to reason about system concerns in isolation and compose them
to a whole are key elements for succeeding with the specification and implementation
of such systems. In software product line engineering, management of features is an
essential activity in the product development process. Features represent concerns, or
parts of concerns, which are composed into products.

The mechanisms supporting separation of concerns become increasingly more so-
phisticated, e.g. through aspect-oriented tools and techniques featuring flexible com-
position of crosscutting concerns in programming and modelling.

Composition of concerns do not come without challenges; in current aspect-oriented
composition languages, the syntactic nature of pointcut expressions leads to vulnerable
relationships between aspects and base systems. When multiple concerns are involved,
in the form of an aspect-oriented design, a product line feature design, or other, these
may be in conflict with each other. In many cases, the state-of-the-art composition
technologies leave little control for constraining the effects imposed on a system by
compositions.

This thesis defines theoretical and practical solutions for detecting and solving con-
flicting or problematic situations when composing software systems. First, it gives a
definition for semantics preservation for sequence diagram aspect composition, which
is a tool that helps ensuring consistent application of scenario – or trace-based – as-
pects even if the base model changes. Second, it defines mechanisms for composing
and analysing product line features, which help toward ensuring consistency of fea-
ture composition by addressing confluence and conflict situations. Third, it defines a
technique for defining and associating composition contracts with models. It allows
constraining the model composition by pre- and post-conditions, which gives increased
control over changes that can be imposed by model composition, e.g. by aspects.

These aspects all contribute toward the overall goal of the thesis – semantics preser-
vation of systems during model composition.

iii

Abstract

iv

Acknowledgements

The work represented by this thesis was made possible thanks to the people at and the
funding from Department of Informatics, University of Oslo and SINTEF. The work
has been done in the context of the SWAT project (Semantics-preserving Weaving
- Advancing the Technology), funded by the Norwegian Research Council (project
number 167172/V30).

I extend enormous gratitude toward my principle adviser, Øystein Haugen, who
guided me safely through the process in a collaborative and constructive manner, and
to my secondary advisers, Stein Krogdahl and Birger Møller-Pedersen for their sup-
port and guidance in the process. I also extend gratitude toward my fellow scholars
on the SWAT project, Roy Grønmo, Frederik Sørensen, and Eyvind W. Axelsen for
participating in discussions and collaboration along the way.

I want to thank Bjørn Skjellaug, the research director of my department in SINTEF
ICT, Cooperative and Trusted Systems, for encouragement during the initiation and
fulfilment of this PhD, and my colleagues at SINTEF for their valuable collaboration
in projects and discussions.

I am highly grateful for the courtesy shown by Ingolf H. Krüger and his research
team at University of California, San Diego (UCSD), by giving me the opportunity for
an inspirational year of collaboration.

Most of all, thanks to my loved ones, Hege, Ellef and Eva, who have encouraged
me unconditionally along the way, and ensured a good balance of the constituents of
life.

v

Acknowledgements

vi

Contents

Abstract iii

Acknowledgements v

Contents vii

List of Figures ix

I Overview 1

1 Introduction 3

1.1 Contribution Overview and Motivation 5

1.1.1 Semantics Preservation of Trace-Based Aspect Composition . . 5

1.1.2 Confluence and Conflict in Feature Composition 7

1.1.3 Model Composition Contracts 8

1.1.4 Model-based Aspect Representation 9

1.2 Thesis Structure . 9

2 Background 11

2.1 Introduction . 11

2.2 Separation of Concerns and Modularisation 11

2.3 Model-Driven Engineering . 14

2.4 Languages and Composition . 15

2.5 Product Line Engineering . 17

2.6 Design by Contract . 18

2.7 Sequence Diagrams and STAIRS Semantics. 19

2.8 The SWAT Project . 20

3 Problem Statement and Research Topics 23

3.1 Motivation . 23

3.2 Research Topics . 24

3.2.1 Research Topic 1 – Semantics Preservation of Trace-Based As-
pect Composition (RT1) . 25

3.2.2 Research Topic 2 – Confluence and Conflict in Feature Compo-
sition (RT2) . 25

3.2.3 Research Topic 3 – Model Composition Contracts (RT3) 26

3.2.4 Research Topic 4 – Model-based Aspect Representation (RT4) . 26

vii

Contents

4 Research Method 27
4.1 Research Method Overview . 27
4.2 The Research Methods Applied in this Thesis 28

4.2.1 Problem Analysis . 29
4.2.2 Innovation . 29
4.2.3 Validation . 29

4.3 Evaluation . 30

5 Literature Review and State-of-the-Art 33
5.1 Separation of Concerns in Modelling 33
5.2 Model Transformation . 39
5.3 Product Line Engineering . 41
5.4 Interactions, Conflicts and Controlled Compositions in AOD 44
5.5 Semantics Preservation . 47

6 Contribution Overview 49
6.1 Semantics Preservation of Trace-Based Aspect Composition 49
6.2 Confluence and Conflict in Feature Composition 51
6.3 Model Composition Contracts . 52
6.4 Model-based Aspect Representation . 53

7 Discussion 55
7.1 Research Topic 1 – Semantics Preservation of Trace-Based Aspect Com-

position (RT1) . 55
7.2 Research Topic 2 – Confluence and Conflict in Feature Composition (RT2) 56
7.3 Research Topic 3 – Model Composition Contracts (RT3) 57
7.4 Research Topic 4 – Model-based Aspect Representation (RT4) 58

8 Conclusion 59
8.1 Summary of Contributions . 59
8.2 Directions for Future Work . 60

Bibliography 63

II Research Papers 77

A Paper I: Architectural Aspects in UML 79

B Paper II: Higher-Order Transformations for Product Lines 95

C Paper III: Semantics Preservation of Sequence Diagram Aspects 107

D Paper IV: From Sequence Diagrams to Java-STAIRS Aspects 125

E Paper V: Confluence in Domain-Independent Product Line Transfor-
mations 139

F Paper VI: Model Composition Contracts 155

viii

List of Figures

1.1 Thesis contribution overview . 4
1.2 A crash detection scenario is defined in a) and refined in b). Will the

crash monitoring aspect in c) have the intended effect on the modified
scenario? . 6

1.3 Conflict between call forwarding and call blocking features in a telecom-
munication network 1.3(a), and illustration of confluence 1.3(b) 7

1.4 Conflicts between cruise control and ESP features. 8
1.5 The crash detection scenario described earlier in Figure 1.2 is modified

by the aspect in Figure 1.5(a). It inserts event logging and an emergency
call, resulting in undesired behaviour in Figure 1.5(b), because it may
delay the unlocking of doors in an emergency situation. 9

2.1 Concerns 1,2, and 3 are scattered across classes A,B, and C. Concern 3
is tangled with concerns 1 and 2 in classes A and B. 12

2.2 Model-driven engineering activities and artifacts. 15
2.3 Feature modelling example using cardinality-based notation 18
2.4 Pre- and post-condition specified for a model operation. 18
2.5 UML sequence diagram notation . 19
2.6 Two traces defined by the sequence diagram in Figure 2.5 20
2.7 SWAT project context overview . 21

4.1 Technology research process elements 28

5.1 Trace-based aspects and their representation in AspectJ 38
5.2 Open doors aspect in Tracematches . 39
5.3 Model transformation architecture overview 40
5.4 Feature composition and refinement in AHEAD 42

6.1 Monotonicity of sequence diagram aspect composition with respect to
refinement . 50

6.2 A model with an associated composition contract 53

ix

List of Figures

x

Part I

Overview

1

Chapter 1

Introduction

An important feature in software engineering is the ability to separate concerns during
development, i.e. being able to conceptually focus on one aspect of the system while
ignoring others, and then being able to compose these concerns to a coherent whole.
Languages and methodologies provide developers with tools aiding the separation of
concerns (SoC) process.

In this thesis, we address how composition – and model composition in particular
– is used for providing SoC in software engineering, and how semantics of models is
influenced when they are subject to composition. Our goal is semantics preservation
in the context of composition.

As system complexity is continuously increasing, so are the demands for flexible
languages and tools for system design, implementation, and run-time. This is partly
addressed by static and dynamic composition mechanisms that can be used to compose
systems from concerns. These can for example be applied in the context of service-
oriented, web-based, or embedded systems to support service composition, adaption,
and configuration. There is, however, a trade-off between flexibility and control; with
increased flexibility of composition mechanisms, comes an increased risk of losing con-
trol over the effects they have on the system.

Aspect-orientation has become a popular mechanism for concern composition, as
seen in AspectJ1, the enterprise Java framework Spring2, or in enterprise service bus
(ESB) platforms such as Mule3. In aspect-orientation, composition is commonly spec-
ified by combinations of selection mechanisms called pointcut and insertion directives
called advice. Pointcuts specify where in a base specification or implementation new
elements, such as code, shall be composed, or inserted. Advice defines what the new ele-
ments to be inserted are, e.g. crosscutting transactional code. Crosscutting means that
the same concern (e.g. transaction) is required many places in the system specification
or implementation, e.g. there may be many methods that use the same transaction
code.

With such flexible composition mechanisms, it can be difficult to manage and con-
trol what happens to existing models or code, and there is a risk that assumptions
made by the original developers are broken.

In this thesis, we give a definition of semantics preservation in the context of aspect-
oriented composition of sequence diagrams. This definition provides a way of reasoning

1http://www.eclipse.org/aspectj/
2http://www.springsource.org/
3http://www.mulesource.org

3

Introduction

about compositions of behaviours and their ability to preserve semantics. The defini-
tion is also applied to trace-based aspect at the programming level, giving a mechanism
for reasoning about semantics preservation of aspect compositions in Java. This ap-
proach to semantics preservation is one way of controlling change imposed by aspect
compositions. We also provide a more general approach by means of composition con-
tracts. Composition contracts use the ideas from Design by Contract (DbC) [123] by
associating contracts with models. These act as extended interfaces that define what
kind of modifications that compositions are allowed to make.

Feature composition is an inherent property of product line engineering (PLE). In
PLE, products are commonly specified in terms of their features, which represent func-
tional or non-functional properties of the product. Some of these features are common
for all products in the product line, while others are variable, i.e. they occur only in
some products. The product definition process involves a selection – or resolution –
of the set of features that shall be part of a product. The feature resolutions result in
transformation – or composition – of features in the context of the product model.

The set of features in a product line may have dependencies between them; we
say that they interact. Some feature interactions are conflicts, which means that the
features cannot be part of the same product configuration. Other interactions may
require a certain ordering of the feature resolutions. We address how conflicting feature
interactions between can be detected and avoided by analysing confluence properties
of the feature composition. Confluence theory stems from term rewriting [165], and
implies that transformations, or feature compositions, can be applied order-independent
and yield the same result.

Together, our contributions provide technologies that can partake in making SoC
with composition less error prone and easier to control for the developer. Figure 1.1
illustrates the contributions of the thesis.

Figure 1.1: Thesis contribution overview

The work in this thesis has been done in the context of the SWAT4 project. SWAT
is a research project that focuses on how mechanism for software composition can be
improved by taking into account semantics, and how composition can be safeguarded
against changes that might break the system or change it in incomprehensible ways.

No single technology is likely to provide the optimal and general solution for any
particular problem, i.e. there is no silver bullet for software engineering problems [29].
Rather than searching for the silver bullet, software engineers should continue to invest

4Semantics-preserving Weaving - Advancing the Technology, Norwegian Research Council project
167172/V30

4

1.1 Contribution Overview and Motivation

in a technology tool box with specialised tools and methods tailored for specific needs.
The contributions of this thesis provide pieces of this tool box.

1.1 Contribution Overview and Motivation

Existing software engineering techniques, such as aspect-oriented programming and
modelling, provide SoC by allowing developers to construct software by composing
concerns statically or dynamically to provide complete systems. The process of com-
position, however, may be error prone, and lead to less than optimal systems, systems
that do not work as expected, or even non-working systems.

In order to meet this challenge, the system and its specification – and its stakehold-
ers – would benefit from mechanisms that help protecting the system from unintentional
modifications. Of course, one cannot expect to foresee all future changes for a system,
but one can hope to establish a system specification with a certain level of trust that
its semantics – or part of its semantics – will be stable throughout the system lifetime.
We call this notion of trust semantics preservation.

We say that a system specification is semantics preserving with respect to composi-
tion if selected semantic characteristics of that specification are kept during composi-
tion. The characteristics that scope semantics preservation may vary between semantic
domains – defined by languages – and the usage of those languages in application do-
mains. For example, semantics preservation for sequence diagrams with respect to
aspect composition may be defined based on the set of traces they represent and that
events in these may not be removed.

Our work on semantics preservation in model composition is addressed through
these complementary focus areas:

• definition and application of semantics preservation for compositions of trace-
based specifications, such as sequence diagrams,

• consistent feature compositions supported by confluence and conflict analysis,

• composition contracts that govern modifications imposed to models by composi-
tions, and

• representation mechanisms for aspect-oriented models.

The challenges in these areas are detailed further below.

1.1.1 Semantics Preservation of Trace-Based Aspect Compo-
sition

UML Sequence Diagrams [134] and Message Sequence Charts (MSC) [91] are languages
for specifying interactions between roles, or components, in a system using message
passing between system roles. Sequence diagrams represent behavioural scenarios and
are often used to specify the important, typical, and prohibited behaviours of a system.
They are excellent for specifying inter-component protocols or service interactions in
service-oriented systems or detailing of requirements.

5

Introduction

Using aspect-oriented mechanisms for SoC at the sequence diagram level to mod-
ularise crosscutting behaviours can have many usage areas, such as providing error
detection and mitigation, security, or data conversion.

When a sequence diagram is modified by an aspect, the behaviours – and hence
the semantics – it specifies will change. In many cases, however, it is desirable to
preserve whole or parts of the original semantics. Figure 1.2 illustrates – with a car
crash detection scenario – how we address semantics preservation in the context of
sequence diagram aspect composition: when a sequence diagram is modified, can we
know the effect existing aspects have on that modified model?

Figure 1.2: A crash detection scenario is defined in a) and refined in b). Will the
crash monitoring aspect in c) have the intended effect on the modified scenario?

The crash detection monitor aspect in Figure 1.2 c) looks for the message crashDe-
tected followed by unlockAll and inserts a mon call to a monitor for each of these. The
monitor times the incoming events, and in case of a timeout, guarded by the expression
[t2-t1 > 5ms], the monitor triggers an unlockAll on the LockController.

For the example in Figure 1.2, the aspect sd crashMonitor in c) will have an effect on
the sequence diagram sd unlockOnCrash in a), since the message sequence (or trace)
defined by the aspect pointcut will be matched. The effect is illustrated in d). In
the refinement sd unlockOnCrash ref in b), however, it is not obvious if there will be
a match; it depends on the matching semantics used. Hence, the effect of the aspect
composition is uncertain, as illustrated in e). Matching based on the syntactic elements
of the diagram will not find a match, while matching based on the semantics of the
diagram will find a match. Even if the aspect has an effect, the relationship between

6

1.1 Contribution Overview and Motivation

the composed models in d) and e) is uncertain. Will the refinement relationship between
the base models in a) and b) also hold between the composed models in d) and e)?

The problem arises when a system specification or implementation is modified in
some way; we cannot know if existing aspects will still have the intended effect after
the change or if semantic relationships such as refinement will hold after a composition.

To this end, we describe an approach for reasoning about semantics preservation
of sequence diagrams during aspect composition; we give a definition for semantics
preservation of sequence diagram aspects and show how different sequence diagram
aspect approaches meet this definition. We map these ideas to trace-based semantics
in Java and show how this definition of semantics preservation can be applied in the
context of trace-based aspects in Java.

1.1.2 Confluence and Conflict in Feature Composition

The features of a software product represent its functional or quality characteristics.
It can be further related to system-level artifacts, e.g. models, architectural or design
elements, or code.

The construction of a product from a product line requires selection of the features
that define the product. A composition of the associated system level artifacts has to
be done in order to build a product configuration.

Since features may depend on other features or be conflicting, the order by which
features are resolved and composed may be important for ensuring that valid product
configurations are defined. Being able to detect potential inconsistencies in a resolution
scenario e.g. by analysing confluence of feature resolution transformations, is valuable
for increasing the quality of the product line construction process. Figure 1.3 illustrates
the problem using an example from the telecommunication domain, where the features
call forwarding and block subscriber interact and cause a potential conflict situation:
should the call from C to A, which is forwarded to B who blocks C, be blocked or
forwarded?

(a) Feature interaction conflict in a telecommu-
nication scenario.

(b) Feature composition confluence

Figure 1.3: Conflict between call forwarding and call blocking features in a telecom-
munication network 1.3(a), and illustration of confluence 1.3(b)

Confluence provides a kind of measure for the compositional process with respect
to SoC: As separated concerns establish independence between them, they can be
analysed and understood in separation from the rest of the system; this may in turn
facilitate local reasoning of concerns. Confluent composition systems imply indepen-
dence between individual composition steps, i.e. between composition of concerns, or

7

Introduction

features. This implies that the involved composition steps – or feature resolutions –
can be done order-independently. Hence, ensuring confluence implies that concerns are
well separated and can be freely composed.

Another example that illustrates the importance of detecting potential conflicts is
shown in Figure 1.4. Here, the conflict is due to the mechanical effects of the system
(the car): the cruise control feature attempts to accelerate the car to maintain speed,
whereas the Electronic Stability Program (ESP), potentially at the same time, tries to
decelerate the car after detecting a skid. They both affect the speed of the car, but
with contradicting goals.

Figure 1.4: Conflicts between cruise control and ESP features.

We address the confluence of product line feature composition and show how po-
tential conflicts between features can be analysed.

1.1.3 Model Composition Contracts

State-of-the-art aspect-oriented mechanisms are powerful and flexible. They allow con-
cerns to be modularised in aspects and help removing tangling and scattering, i.e. the
spreading of concerns throughout the system specification or implementation. The use
of these mechanisms may, however, have problematic side-effects that reduce system
robustness: fragile pointcuts is one problem that makes the modularised aspects vul-
nerable to base model evolution; aspect interaction is another problem, which require
careful consideration of the ordering of aspect compositions.

An orthogonal problem is that the aspect-oriented mechanisms are hard to control
from the point of view of the base system developer, since there is little or no control
over what kind of changes an aspect can impose on the base model. For example, in
AspectJ, an aspect can override private methods using around advice, which may be
in opposition to the assumptions made by the base system owner.

Figure 1.5 illustrates how the car crash scenario (from Figure 1.2a) has been mod-
ified by an aspect (Figure 1.5(a)), which leads to undesired behaviour that would be
advantageous to prevent (Figure 1.5(b)), since new behaviour is inserted that may
delay the unlocking of the doors.

If we are able to specify constraints on the effects that aspects can impose on a
base model or program and enforce these constraints during composition, we can gain
increased confidence that compositions produce reliable systems that work as expected.

We introduce an approach called Composition by Contract (CbC) to control model
composition, inspired by the Design by Contract methodology from the Eiffel lan-
guage [123]. The idea of CbC is that models can be associated with composition
contracts that govern the eligibility for compositions to change the model. The con-

8

1.2 Thesis Structure

(a) Crash detection notification aspect (b) Modified crash detection

Figure 1.5: The crash detection scenario described earlier in Figure 1.2 is modified
by the aspect in Figure 1.5(a). It inserts event logging and an emergency call, resulting
in undesired behaviour in Figure 1.5(b), because it may delay the unlocking of doors in
an emergency situation.

tracts define the modifications that are allowed by compositions and hence insulate
models from unintended and potentially harmful changes.

1.1.4 Model-based Aspect Representation

Allen and Garlan [4] define software architecture as a collection of computational com-
ponents together with a collection of connectors that describe the interaction of the
components. They identify three properties an expressive notation for connectors
should have: it should allow specification of common types of communication, such
as procedure calls, pipes, and event broadcast, it should allow describing complex in-
teractions between components, and it should allow to make distinctions on connector
variations. Connectors in UML have been argued to be too simple to express these
kinds of architectural connectors [9].

We device an aspect representation for architectural models in UML that provide
architectural variability with respect to connectors. It allows complex connector struc-
tures to be specified separately and be inserted into an architectural specification in
many places.

We also introduce aspect representation for sequence diagram aspects in UML as
support for the works on trace-based Java aspects and composition contracts.

1.2 Thesis Structure

This thesis is delivered as a collection of papers with an accompanying overview, and
is divided in two main parts. Part I contains the overview, which gives the motivation,
background, and overview to the work done. Part II is the main contribution in the
form of a set of papers.

Part I contains the following chapters in addition to this introductory chapter.

• In Chapter 2, we give an overview of the background for the work done.

• In Chapter 3, we elaborate the problem area, motivate the work, and define the
research topics investigated in this thesis.

• In Chapter 4, we describe the research methods applied in the course of this PhD
work.

9

Introduction

• In Chapter 5, we give a review of the literature and state-of-the-art.

• In Chapter 6, we give an overview of our contribution and our research papers.

• In Chapter 7, we discuss and evaluate the accomplished work.

• In Chapter 8, we conclude and give some directions for future work.

Part II contains six papers in Appendices A through F, which define the main
contribution of this thesis.

10

Chapter 2

Background

2.1 Introduction

Software has become a part of everyday life, and advanced computer programs are
found within cars, cell phones, toys, etc; services that were previously handled by peo-
ple are being replaced by software services, such as airline booking systems or on-line
banking systems. More and more, society depends on software in its operation. The
systems are becoming more complex to accommodate concerns such as distribution,
security, availability, and performance. New styles of computing, such as cloud com-
puting with focus on offering software, infrastructure, and platforms as services, have
emerged to accommodate users with high demand on data throughput, response time,
and no down time. In service-oriented architectures, such as provided by Enterprise
Service Bus (ESB) infrastructures, flexible web service technologies are combined with
horisontal enterprise services.

As the technologies for implementing systems evolve, the basic principles for soft-
ware engineering prevail, such as the ability to see abstractions, separating problems
into concerns, and applying appropriate methodology. In this work, the focus is on how
separate concerns in software programs can be composed, and how such compositions
may preserve semantics of its parts within the whole.

In this Chapter, we give a brief background to the problem domain. A more detailed
view is given in Chapter 5.

2.2 Separation of Concerns and Modularisation

Separation of concerns (SoC) and modularisation are well established strategies for
managing complex specifications [48,141]. It is commonly accepted that the term SoC
was coined by Edsger W.Dijkstra in his paper ’On the role of scientific thought’ [48].
In that essay, Dijkstra focuses on the importance for software engineers to be able to
put focus on individual concerns, such as correctness, without having to think about all
other concerns at the same time. Parnas [141] addresses the importance of obtaining
a modularisation of the problem that is appropriate for that particular problem.

Object-oriented language mechanisms such as classes, interfaces, and packages pro-
vide one way of modularising software according to object-oriented principles. However,
it may be difficult to separate the different concerns from each other. This leads to
scattering of concerns across many modules and tangling of multiple concerns within

11

Background

one module (e.g. a single class). The language and the methodology force the devel-
oper to focus on one particular dimension when decomposing the system (such as the
class dimension) – this problem has been coined the tyranny of the dominant decom-
position [164].

Aspect-orientation is currently one of the dominating technology trends addressing
SoC and composition of concerns both in the modelling and implementation space.

Aspect-Oriented Development. Although software is designed with SoC in mind,
the language mechanisms at hand often lead to scattering and tangling of concerns.
Scattering occurs when a concern is defined across multiple artifacts (e.g. classes).
Tangling occurs when a concern is not isolated, but intertwined with other concerns.
This is illustrated in Figure 2.1.

Figure 2.1: Concerns 1,2, and 3 are scattered across classes A,B, and C. Concern 3
is tangled with concerns 1 and 2 in classes A and B.

This has motivated a range of language extensions to support concern specification
and composition, such as aspects [103] and subjects [33] in programming and modelling.
These approaches modularise crosscutting concerns into units, e.g. aspects, that can
later be composed by a transformation process commonly referred to as weaving.

Aspect-Oriented Development (AOD) came out of several research efforts, notably
the law of Demeter and adaptive programming by Lieberherr et.al. at Northeastern
University [120], composition filters by Aksit et.al. at University of Twente [1], subject-
oriented programming by Harrison and Ossher at IBM Watson Research Center [76],
and aspect-oriented programming and AspectJ by Kiczales et.al. at Xerox PARC [104].

The law of Demeter [120], also known as the principle of least knowledge, is a
programming style that increases modularity by restricting who an object should talk
to; a method M in an object O is only allowed to invoke methods on O itself, objects
passed as parameters to M , or objects owned by (as state) O. Method invocations
to objects returned by other methods should be avoided. The object-composition filter
approach [1] was defined as an object-oriented abstraction for database management.
It defines filters as first class parts of class definitions. Filters are defined by filter
handlers and accept set functions, which determine if a given invocation is accepted,
and how to dispatch the invocation. The approach supports multiple views on objects
and various database-specific functionality. Subject-oriented programming [76] defined
subjects as a new programming model where views are specified as subjects with their
own state and behaviour, which are composed when activated in the context of a
particular object. That work later led to the work on multi-dimensional separation of
concerns and hyperslices [164]. The composition semantics, e.g. that behaviour should
be merged, is specified as part of the composition. AspectJ [104] defined aspects as
a modularising unit where pieces of crosscutting code are defined by advice, which is
inserted into locations in the base code that are specified by so-called pointcuts.

12

2.2 Separation of Concerns and Modularisation

Aspect-oriented development, or aspect-oriented software engineering, has emerged
into many sub-domains of software engineering. Within analysis and design, so-called
early aspects and aspect modelling have been research topics for several years, es-
pecially within targeted workshops on early aspects1 and aspect modelling2, result-
ing in notations, semantics, and tools for aspect-oriented requirements, architecture,
and design modelling. Various aspect-oriented development methods have appeared,
such as aspect-oriented use case development by Jacobson and Ng [94], the Theme
approach by Clarke and Baniassad [33], aspect-oriented requirements engineering by
Rashid et.al. [144], and aspect-oriented design by France et.al. [62].

Aspect-oriented – or concern-oriented – approaches are often categorised by how
their concerns reference other artifacts, e.g. other concerns or a base program or model.
In symmetric approaches, concerns are symmetrically associated with each other by
some type of composition operator, such as merging. In asymmetric approaches, con-
cerns are composed with, or inserted into a base – or primary – model. The Hyperslice
concept (by Tarr et.al. [164]) is an example of the former, while AspectJ is an example
of the latter.

Aspect-orientation in the asymmetric sense has brought with it some characterising
terms:

• a join point generally refers to elements in the semantic model of the base lan-
guage, which can be addressed and modified by an aspect. The set of join points
is often referred to as a join point model. In an aspect-oriented programming
language, such as AspectJ, valid join points are method calls or executions, ex-
ception handlers, or field access. In a modelling language, these may be any
element defined by the language meta-model.

• a pointcut is a selection mechanism – or query – that references a set of join
points, i.e. it identifies points – or locations – in the base program, or model,
which can be modified by aspect advice.

• an advice defines the elements that are composed with, or inserted into the base
model or program at identified pointcuts, e.g. a piece of code that executes
before, after, or instead of existing base code.

• quantification refers to the ability to establish one-to-many relationships between
aspects and join points in the base model, such that the same advice can be
applied at several join points.

• obliviousness refers to a base model or program’s unawareness of any aspect that
may modify that base model or program. Filman and Friedman [57] argued that
quantification and obliviousness are the defining characteristics of AOP.

The aspect-oriented mechanisms are powerful and flexible modularisation tools if
used correctly. These flexible composition mechanisms do, however, not come without
a cost. The detailed knowledge that aspects have of the internals of the base sys-
tem makes them fragile to base system changes. This problem is known as the fragile
pointcut problem [112], and has been addressed by works on more robust and semantic

1Early Aspects Workshop - http://www.early-aspects.net/
2Aspect-Oriented Modelling Workshop - http://www.aspect-modeling.org/

13

Background

pointcut models, for example by Ostermann et.al. [140]. Aspect interaction, or inter-
ference, is another challenge facing software engineers when several aspects interfere
with each other such that the composition result depends on the order by which the
aspects are composed [51].

2.3 Model-Driven Engineering

Model-Driven Engineering (MDE) – aka Model-Driven Development (MDD) or Model-
Driven Architecture (MDA) – is a discipline in which abstract, often graphical models
are used as a basis in the software engineering process. Models can be refined toward
more detailed, platform-near representations in manual or automatic transformations
until implementation code and deployment information is produced.

Model-driven engineering has been around for a long time. Graphical models for
database design were proposed in the mid 1970’s e.g. in Chens work on the entity
relationship (ER) model [30]. In 1976, the first standard for graphical specification of
telecommunication systems, ITU-T Specification and Description Language (SDL) [90],
was defined. Methods for object-oriented design started appearing in the mid 1980’s
and early 1990s, e.g. by Booch [25], Wirfs-Brock et.al. [179], Coad and Yourdon [35],
Rumbaugh et.al. [148], and Jacobson [93].

In the mid 1990’s, the Unified Modeling Language (UML) [134] was defined in a
melting-pot process that attempted to incorporate the best-of-breed approaches at the
time. It was standardised in its first version in 1997 within the Object Management
Group (OMG). Since then, UML has continuously evolved to improve its design and
cater for new requirements, and is currently in version 2.2, with version 2.3 on its
way. UML is a general-purpose language that supports different facets of software
engineering processes through different, interrelated sub languages: classes, compo-
nents, composite structures, deployments, use cases, interactions, state machines, and
activities. (When referring to UML in the following, we mean UML 2.x)

UML has become the de-facto modelling language for software analysis and design,
and a natural choice for software development projects. The generality and size of
UML, however, is not always found suitable for specific domains. Therefore, specific
domains define their own, domain-specific language (DSL). An example is a language
defined for architectural specification within the real-time embedded systems domain,
the Architecture Analysis and Design Language (AADL) [136].

Both UML and DSLs have their strengths and weaknesses [60, 86]. UML provides
a standard, general purpose notation, comes with a standard exchange format, and
is supported by different open source and commercial tools. With DSLs, the domain
knowledge is built into the language. The development and use of DSLs have become
more widespread with open source tools like Eclipse/Graphical Modeling Framework
(EMF/GMF) [119]. In practise, UML is often used as a DSL, by providing domain-
specific extensions through the stereotype extension mechanisms provided by the lan-
guage. The Modeling and Analysis of Real-time and Embedded systems (MARTE) [135]
standard is an example of a profile meeting the requirements of the real-time and em-
bedded systems domain.

To support the refinement steps in a model driven process, generative techniques
and model transformation tools can be used. This is part of the vision of the Model
Driven Architecture (MDA) [128] framework defined by OMG, where central elements

14

2.4 Languages and Composition

are the meta-model standard – Meta Object Facility (MOF) [129], UML, and standards
for model to model transformation (MOF Query, View, Transformation – QVT) and
model to text transformation (MOF Model to Text).

Figure 2.2 illustrates (some) central activities and artifacts in a model-driven de-
velopment process.

Figure 2.2: Model-driven engineering activities and artifacts.

In this thesis, UML and DSLs have been used side by side. UML has been used
to specify examples and case studies, e.g. in terms of sequence diagram behaviours
and for specifying architectural and behavioural aspects. DSLs have been defined and
used e.g. to represent new language concepts, such as composition contracts. Model
transformation and code generation have been used to support e.g. product variability
resolutions and composition contract generation.

2.4 Languages and Composition

Composition of software parts is a basic characteristic of software construction, e.g. by
aggregation of features inside a class, inheriting classes, and calling functions. Support
for composition is also a premise for reuse of modularised (or de-composed) pieces of
software.

Composition in Modelling Languages. UML [134] provides several mechanism
to support modelling of the structures and behaviours of systems. Composition and
de-composition of systems can be supported in terms of composite structures and parts.
Similarly, UML behaviours can be nested within behaviours, allowing behavioural ele-
ments to be composed from other behavioural elements. Another modelling mechanism
in UML that might be used to support system configurations is the template mecha-
nism. It is similar to templates in C++ or generics in Java or C#, and can be used to
parametrise packages, classes and operations. UML also provides a mechanism called
Package merge, which allows the contents of UML packages to be merged, primarily
based on syntactic matches. UML defines the semantics of merging for structural types
(packages, classes, and features), but do not address merging of behaviour.

The Catalysis [54] method defined some powerful extensions to standard UML (1.x)
semantics, which provides more advanced (than UML 1.x) mechanisms for refinement
and compositions of specifications: one aspect is support for specialisation/extension
of packages; another is refinement of different modelling views, such as collaboration
refinement; a third is package joining, a predecessor to UML package merge.

15

Background

Role modelling, as described in OOram [146], defined a foundation for modelling
patterns of collaborating objects as role models, with focus on separation of concerns
and role responsibilities. OOram defined a process called synthesis, supporting compo-
sition of new systems (role models) from (multiple) existing role models and role model
refinement. Some ideas from OOram role modelling, such as role collaborations, were
proposed as part of the UML standardisation process.

The last 10 years, a wide range of techniques for aspect-oriented, or concern-oriented
analysis and design have emerged, such as the Theme approach [33]. There is, however,
no agreed standard in this area, and technologies are still too immature. Chapter 5
goes into detail on existing approaches in this area.

Composition in Programming Languages. Object-oriented programming lan-
guages, such as Java or C#, have a variety of mechanisms for composition and reuse.
Inheritance provides reuse of code from super classes. Composition by delegation of re-
sponsibility – using the delegation pattern – is a common way of reusing existing code.
Generics, or templates, allow code frameworks to be reused by type instantiation.
Some languages, such as C++ and Eiffel, allow classes to have many direct ancestors
– multiple inheritance. This may be very useful in order to aggregate functionality,
but may lead to semantic problems when symbols from several classes overlap. Mixin
classes [27] provide a way of reusing functionality through so-called mixin inheritance
or inclusion.

Traits [151] is an approach for composition of collections of behaviours. A trait
provides and requires a set of methods. In the original proposal, a trait did not define
any state, not did they access state variables directly. This helped avoiding some of the
problems in multiple inheritance and mixins. In more recent proposals, however, traits
have been extended with state information [22]. Traits are implemented in several
languages, such as Squeak Smalltalk3, Perl4, and Scala5.

Aspects, as described in Section 2.2, have been implemented as extensions to a range
of languages, such as AspectJ [103] and AspectC++. Aspect-oriented programming
is also integrated into popular enterprise server solutions, such as JBoss and Spring.
Aspects are expressed in terms of pointcuts that reference a set of join points in the
implementation code and sets of advice that specify the modifications at those join
points.

Service Composition. Web services have become a popular development paradigm
for development and integration of distributed services. A range of web service stan-
dards have evolved for the specification of web services, their interfaces, their quality
characteristics, etc.6

Composition of web services is a research and development field in its own right.
Web service composition technologies such as Business Process Execution Language
for Web Services (BPEL4WS), Web Service Choreography Interface (WSCI), and Web
Services Conversation Language (WSCL) provide support for specifying business pro-
cesses, composite services, and service orchestration. The industry collaboration Open

3http://www.squeak.org/
4http://www.perl.org/
5http://www.scala-lang.org/
6http://www.w3.org/, http://www.oasis-open.org/specs/

16

2.5 Product Line Engineering

Service Oriented Architecture7 has specified the Service Component Architecture, a
language-neutral programming model for services and their composition. Curbera
et.al. [39] how the web service standards move toward being able to provide robust
service composition using process execution, coordination, and transaction services.
Adding to that, support for web service policy standards8, services and composition of
services can be controlled by policies and negotiations based on those policies.

2.5 Product Line Engineering

Product line engineering (PLE) [142] evolved from domain engineering as a method for
managing reusable artifacts common to several products. Products are characterised by
their features, which may be common for all products or vary between products. The
terms commonality and variability are often used to denote the common and variable
features within a product line. The feature variability is resolved in a product resolution
– or derivation – process, wherein feature variability is resolved to produce a product
configuration. A product line normally also has a common product line architecture,
on top of which all products are built.

The specification of product lines has traditionally been oriented toward feature
modelling and feature management. Feature modelling was introduced by Kang et.al.
in the Feature-Oriented Domain Analysis (FODA) [97] approach. FODA defined a
method and notation for describing features. More recent approaches are mostly mod-
ernised and generalised flavours of this. Examples are the Orthogonal Variability Model
(OVM) defined by Pohl et.al. [142], cardinality-based feature modelling by Czarnecki
et.al. [42], and the variability model defined by Haugen et.al. [80]. Clements and
Northrop [34] present an organisational and process-oriented view on product line man-
agement with a focus on technical, management, and organisational practises and how
to put these into operation.

A feature model describes the common and variable features of a product line.
Variations are commonly represented as optional or alternative features. Feature con-
straints are used to specify dependencies between features, for instance that one feature
requires or conflicts with another. Figure 2.3(a) shows an example feature model de-
scribing (a small part of) the features of a car product line, using the cardinality-based
feature modelling notation [42]. One configurable aspect of this feature model is the fea-
ture group CarLockSystem, which specifies Manual and Automatic as possible choices
for that group. The optional Alarm feature (i.e. having cardinality [0..1], denoted by
an open circle) requires the Automatic feature to be selected in a configuration. A
feature model configuration is shown in Figure 2.3(b), where all variabilities have been
resolved.

Product line engineering is often coupled with Generative Programming (Czarnecki
and Eisendecker [41]) as a means of generating products from higher-level product line
specifications. Generative programming focuses on using models as assets driving the
development of products, similar to MDD. The main difference from general MDD and
generative programming is the explicit focus on and support for variability management
and feature representation in generative programming.

Feature-oriented programming (FOP) (Batory et.al. [18]) is a style of programming

7http://www.osoa.org
8http://www.w3.org/TR/2007/REC-ws-policy-20070904

17

Background

(a) Car feature model using cardinality-based
feature modelling notation

(b) A car feature model configuration

Figure 2.3: Feature modelling example using cardinality-based notation

focusing on feature configuration for incrementally constructing a software program.
Features are considered program transformations, and the complete program is con-
structed by an expression of such transformations.

2.6 Design by Contract

Design by Contract (DbC) is a methodological approach that was coined by B.Meyer
during the development of the Eiffel programming language [123, 124]. The focus in
DbC is to increase the quality and robustness of interfaces between system components,
and hence increase the robustness and quality of the overall system. This was done
by introducing constraints – or assertions – on interfaces in terms of pre-conditions
and post-conditions, and invariants for the state of components. Pre-conditions define
assumptions on the part of the client of an interface operation, which the client is re-
quired to comply with. In Eiffel, the behaviour of routines are specified using requires
and ensures clauses, specifying the obligations and benefits – or assumptions and guar-
antees – for a client. Post-conditions define guarantees on the part of the provider, i.e.
a guarantee with respect to the effect of the operation. Under the DbC paradigm, any
contract violation constitute a software bug. A violation of the pre-condition mani-
fests a bug in the client, and a violation of the post-condition manifests a bug in the
provider.

In the Object Constraint Language (OCL) [130], contracts are provided by pre-
and post-conditions and invariants that are specified in the context of model elements,
such as illustrated in Figure 2.4.

Figure 2.4: Pre- and post-condition specified for a model operation.

Some of the inspired sources for DbC were the works of Floyd [58] and Hoare [88],
who give an axiomatic foundation for reasoning about program correctness, in which
assertions are used for reasoning about the values of variables before and after a pro-
gram execution, just like pre- and post-conditions.

18

2.7 Sequence Diagrams and STAIRS Semantics.

The Ariane 5 disaster was caused by a data conversion error, one of the most
expensive software bugs in history. In [95], Jezequel and Meyer argue that this bug –
and hence the disaster – could have been avoided if DbC principles had been used.

Helm et.al. [85] give a different perspective on contract-based development, where
contracts specify behavioural compositions of object-oriented systems. In their work,
a contract defines expected behaviours of sets interacting participants; it specifies pre-
and post-conditions of participant operations, and also the required interactions – or
causal obligations.

2.7 Sequence Diagrams and STAIRS Semantics.

A UML sequence diagram [134], or interaction, is a visual representation of interaction
between roles, components, or actors in a software system. Sequence diagrams represent
example system behaviours and are excellent tools for specifying and communicating
typical or illegal behaviour of a system. Sequence diagrams are often used as a detail-
ing of use cases to describe requirements [94], or for describing detailed behavioural
design of component or service interaction. Message Sequence Charts (MSC) [91] is
the standard for scenario descriptions within the telecommunication domain, which
strongly influenced the standardisation of UML 2.x sequence diagrams.

Since sequence diagrams play a central role in this thesis, an overview of their char-
acteristics is given here. An example sequence diagram annotated with explanations
is shown in Figure 2.5. It describes a scenario for the unlocking of a car in the case
of an accident; if the car is not empty, the doors are unlocked; however, if the car
is stationary (parked) and empty, the doors are kept locked to prevent burglars from
provoking door opening.

Figure 2.5: UML sequence diagram notation

A sequence diagram consists of a set of lifelines representing interacting parts of
a system. At the meta-model level, a lifeline represents a connectable element, e.g. a
property within a classifier. The sequence diagram defines a set of ordered interaction
fragments that involves the different lifelines. The basic kind of interaction fragments
are occurrence specifications that represent events on lifelines. Messages represent
communication between two lifelines or between the environment (represented by a

19

Background

gate) and a lifeline. A message involves one send and one receive event – or message
occurrence specification. Combined fragments allow different kinds of composition of
interaction fragments, e.g. sequential (seq), alternative (alt), optional (opt), parallel
(par), and loop. Execution specifications represent units of behaviour on a single
lifeline. The events in a sequence diagram are constrained by the order of events on
each lifeline (weak sequencing) and the causality of send and receive events.

STAIRS. STAIRS [79, 82, 149] is a denotational semantics for UML sequence dia-
grams based on event traces. A trace is a sequence of events, each defined by its kind
– send or receive, a message defining the signal, the sending lifeline, and the receiving
lifeline. In STAIRS, The semantics of a sequence diagram d, �d�, is defined by two sets
of traces: the set of positive and the set of negative traces. Positive traces represent al-
lowed behaviour. Negative traces represent behaviour that is not allowed. In addition,
any trace that is not covered by the sequence diagram is defined as inconclusive. The
set of traces in �d� is determined by all possible executions of d. The resulting event
sequences are constrained by the causality and weak sequencing properties of sequence
diagrams: a send event must occur before its corresponding receive event (causality)
and the events on a lifeline have the same (relative) ordering in a trace as on the lifeline
(weak sequencing). STAIRS defines three kinds of refinement: supplementing, which
adds positive or negative behaviour by making inconclusive traces either positive or
negative, narrowing, which changes positive behaviour to negative, and detailing, which
details existing behaviour in decompositions.

Figure 2.6: Two traces defined by the sequence diagram in Figure 2.5

Figure 2.6 shows the STAIRS traces from the sequence diagram in Figure 2.5. Send
events are prefixed with a ’ !’ symbol and receive events with a ’?’ symbol. The example
sequence diagram produces two traces.

The refinement relationship (denoted by the binary operator ’�’) in STAIRS is
transitive: if A� B and B� C, then A� C. It is also monotonic with respect to the
sequence diagram composition operators alt, opt, neg, seq, and par : if A ⊕ B is the
composition with one of those operators of interactions A and B, and A’ and B’ are
refinements of A and B, respectively, then A’ ⊕ B’ is a refinement of A ⊕ B. (Proof
can be found in [78,149].) This characteristic is valuable to ensure system consistency
during system evolution, so that a system can be specified and refined in parts and
later composed.

The full detail of STAIRS semantics can be found in [79] and [149].

2.8 The SWAT Project

This thesis work has been done within the SWAT – Semantics-preserving Weaving
- Advancing the Technology – project9. SWAT is a project financed by the Norwe-
gian Research Council through their research program STORFORSK. Its goal is to

9SWAT Homepage: http://www.ifi.uio.no/swat/index.html

20

2.8 The SWAT Project

Figure 2.7: SWAT project context overview

address and improve programming and modelling language mechanisms for reuse and
separation of concerns. A specific concern of the project is that semantics often is
compromised when concerns are composed together. An example of this is aspect-
oriented programming languages, such as AspectJ [103], where aspects are allowed to
access and modify virtually any part of a system, and do so in many places using the
quantification mechanism of the aspect pointcut language. This may lead to system
modifications that are out of control.

To this end, the project seeks to advance the state-of-the-art on language mech-
anisms for reuse and SoC toward semantics preservation. The project currently has
four PhD scholars that are addressing different topics to support this goal. Figure 2.7
illustrates the topics on a high level.

The four PhD scholars in SWAT are Roy Grønmo, Fredrik Sørensen, Eyvind W.
Axelsen, and Jon Oldevik. The focus of Jon Oldevik is defined by this thesis. The
foci of the other scholars within the SWAT context are described below. The work
in thesis this is most closely related to the work done by Grønmo, as he focuses on
model-based aspect composition. Sørensen’s and Axelsen’s foci are on programming
level mechanisms.

The Focus of Roy Grønmo. Grønmo has in his PhD work focused on three areas
in the SWAT context: one is composition of sequence diagram aspects that is semantics
based [67, 68] and a confluence theory for sequence diagram aspects [72], the other is
representation of aspects and transformations in concrete syntax [70, 71], and finally
extensions to graph transformation theory to improve the capability of composing sub
graphs [69].

The work on semantics-based composition of sequence diagrams is based on the
semantic model of STAIRS, which is also the basis for the work on semantics preser-
vation in this thesis (papers III and IV, chapters C and D). Grønmo et.al. establish a
definition of partial order equivalence to make trace matching feasible, since the num-

21

Background

ber of traces in a sequence diagram easily makes aspect matching intractable. In [70],
Grønmo and Møller-Pedersen define a modelling notation for activity diagram aspects,
which is mapped to graph transformation rules that implement the activity diagram
weaving. In [71], Grønmo et.al. present the concrete syntax-based graph transformation
(CGT), a graph transformation language based on concrete language, such as UML
activity diagrams.

The Focus of Fredrik Sørensen. Sørensen has in his PhD work followed two dis-
tinct paths: he contributed to the work on semantics-based weaving in [67, 68]. The
main focus of his work, however, has been on template packages [114,115]. A template
package is a mechanism for reuse of collections of related classes. It is a parametrised
package where its elements can be renamed and template parameters given actual
values in package instantiations.

A package template must be instantiated within a package before it can be used. A
template instantiation creates a local copy of the template classes – called expansion
classes – with potential modifications specified. The instantiating package may expand
template definitions by adding variables and methods, or overriding or defining ab-
stract template methods. An important property of template packages is that all type
references within the template are re-typed according to the bound expansion classes.

The Focus of Eyvind W. Axelsen. Axelsen’s research targets different utilisations
of the template package concept (from Sørensen and Krogdahl). Specifically, he has
addressed how package templates can be paired with limited aspect-oriented extensions
to provide flexible implementations of patterns [12, 13]. He has also addressed the
implementation of package templates in a dynamic language – Groovy10 – showing
how the dynamic language characteristics can be exploited to make package templates
more flexible [11].

10http://groovy.codehaus.org

22

Chapter 3

Problem Statement and Research
Topics

3.1 Motivation

In the field of software engineering, there is a constant search for improved tools and
methods to support the increasing complexity of software solutions to be built. New
engineering paradigms emerge, along with new tools and improved infrastructures.
Along with the Internet revolution came advanced middleware solutions supporting
distributed enterprise applications and services, e.g. using web services technology.
The software solutions require more complex architectures to handle not only the core
business concerns, but also crosscutting concerns such as security, transactions, and
availability. New modularisation techniques, such as aspect-orientation, have emerged
for better to be able to separate such concerns in their own modules.

Aspect-oriented technologies provide great flexibility to the software engineer by
allowing concerns to be separated in units that can later be composed with the system,
either at design-time, compile-time, or even at run-time. The flexibility lays partly in
the query – or pointcut – mechanisms, which in many cases (e.g. in AspectJ [103]) use
name matching patterns to generalise the query and match multiple join points. An
aspect may then compose a single advice with many join points in the base system.

This flexibility does not come without cost, and there are several well-known issues
with aspect-oriented composition mechanisms: aspects may overlap with each other
and create interference that will disrupt the composition of these aspects. This is
addressed e.g. by Douence et.al. in [51]. Vulnerability to base model changes, so-called
pointcut fragility is also a well-known issue for the pointcut mechanisms in aspect-
oriented languages. This may become a problem if pointcuts are referencing obsolete
or non-existing elements in the base model or code, or if new unintended matches are
introduced [101,102,112,150,160].

In product lines, products are constructed by composition of features. Features
have several similarities to aspects, as features often represent concerns of a product,
which may also be crosscutting. Features often stand in relation with other features,
i.e. they interact; sometimes, these interactions are conflicting, or interfering, similar
to interfering aspects. In product lines, however, feature interactions have been ad-
dressed explicitly by feature models that state the relationship between features, such
as requires or conflicts. The corresponding feature resolution process can then take
these interactions into account in the product derivation process.

23

Problem Statement and Research Topics

An issue that is still not fully addressed in the literature is the effect compositions
have on the semantics of the code or model they apply to. A composition may have
effects that were not intended and that may distort the semantics of the original code or
model. A composition, e.g. resulting from a feature resolution, may have interactions
with other compositions, requiring a specific ordering of compositions, or leading to an
invalid composition result, i.e. a non-functioning system.

For example, an AspectJ aspect may change the methods in a Java program by
replacing method contents by alternative behaviour using an around advice. The be-
haviour is changed and the semantics may no longer be as intended. This may break
assumptions about protocols and result in an inconsistent system. Similar arguments
can be made for model-based aspects, e.g. for sequence diagram aspects that modify
system behaviour described by sequence diagrams.

In this thesis, we address semantics preservation of model composition from several
perspectives: by defining and applying semantics preservation for aspect compositions,
by analysing conflicts of feature compositions, and by guarding models from unintended
changes.

This is detailed further in the research topics in the following Section.

3.2 Research Topics

The main research topic is defined as follows:

To what extent – and how – can model-based composition mechanisms guarantee
consistency and semantics preservation of the models subject to modification?

The fundamental parts of the main research topic can be further decomposed and
analysed:

• Model-based composition mechanisms refer to techniques for specifying system
concerns using modelling languages such as UML, and then composing these
concerns.

• Preserving semantics of the composition reflects back on the definition from
Chapter 1: a system specification is semantics preserving with respect to com-
position if selected semantic characteristics of that specification are kept during
composition.

• Consistency implies that the models subject to composition should be in a con-
sistent state after composition, i.e. that the effects of concern compositions are
not inconsistent or erroneous.

The main research topic sets the context of the research agenda and is decomposed
into finer-grained and more focused topics that constitute the main concerns of this
thesis.

24

3.2 Research Topics

3.2.1 Research Topic 1 – Semantics Preservation of Trace-
Based Aspect Composition (RT1)

Composition mechanisms for models provide flexible means of composing concerns by
allowing pointcuts – or queries – to syntactically or semantically decide what part of a
software system that can be modified. The result of such compositions can distort the
intended semantics of the model, and destroy established internal model constraints,
such as refinement relationships. When specifying system behaviour, maintaining se-
mantic relationships through composition processes can be essential in order to obtain
a meaningful final system.

Sequence diagrams, or interactions, are commonly used to specify partial system
behaviours and are good tools for specifying things like communication protocols be-
tween components. If these interactions represent actual system behaviour, it is of
essence that their semantics is not changed beyond the expected.

This research topic is detailed by the following research questions.

• RT1.1 – How can semantics preservation for sequence diagrams be defined?

• RT1.2 – What is currently lacking for composition of behaviour models to be
semantics preserving?

• RT1.3 – What are the benefits of semantics preservation?

3.2.2 Research Topic 2 – Confluence and Conflict in Feature
Composition (RT2)

A product line is normally specified in terms of features and dependencies between these
features. Features are then linked with software artifacts, such as design elements and
implementation code. A resolution process defines a product by selecting features; the
product is built using the corresponding design and implementation artifacts.

Each feature represents a concern, or part of a concern, in the product line, which
is either common across all products (a commonality) or variable in the product line
(i.e. only present in some products). In the construction of the product, the product
line variabilities are resolved by selecting the features that will be part of the product.
Then, these features are composed.

The features, or concerns, may depend directly or indirectly on each other, and the
product composition result may depend on the order by which features are composed.
This is similar to aspect interference, where two or more aspects interfere with each
other, such that the composition result depends on the composition order. These
models can be said to be non-confluent with respect to the composition. Why is this
a problem? If the fact that two concerns are conflicting is not known, this may lead
to undesired or even invalid results. Hence, being able to characterise occurrences
of non-confluence can improve awareness of the problem and help avoiding erroneous
compositions.

This research topic is detailed by the following research questions:

• RT2.1 – How can confluence of feature composition be analysed?

• RT2.2 – What are the conditions for being able to determine confluence?

25

Problem Statement and Research Topics

3.2.3 Research Topic 3 – Model Composition Contracts (RT3)

When a system is designed and implemented, it is planned to adhere to certain explicit
and implicit constraints and expectations, in accordance with the system requirements.
Each modification to the system should be according to those constraints. The re-
quirements may change over time, and the governing constraints change with them.
However, the compliance with these constraints may be difficult, especially for changes
imposed by automated mechanisms, such as a composition engine.

Changes that breech these constraints should not be allowed; they should at least
be possible to detect and control. If they can, it is possible to gain increased control
of the system specification and any process (e.g. composition) that modifies it.

This research topic is detailed by the following research questions:

• RT3.1 – What does it mean that a composition is constrained by contracts?

• RT3.2 – How can such contracts be specified?

3.2.4 Research Topic 4 – Model-based Aspect Representation
(RT4)

Although there has been a variety of research and publications on model-based aspect
representation (as described in Sections 2.2 and 5.1), there is still no community-
wide consensus or standard for aspect-oriented modelling. Since software modelling
is a very broad topic, there are likely to be unfilled gaps with respect to representing
aspect models. In this thesis, we address some of these gaps pertaining to aspect
representation in UML.

This research topic is detailed by the following research questions:

• RT4.1 – How can UML architectural aspects be represented and with what ben-
efit?

• RT4.2 – How can UML interaction aspects be represented and with what benefit?

26

Chapter 4

Research Method

4.1 Research Method Overview

According to [169], there are two general types of theory-building research: analytic
and empirical. Analytic research uses primarily deductive methods while empirical
research primarily uses inductive methods to arrive at theories. Analytic reasoning was
introduced by Aristotle in his work on prior analytics [7]; this work was later superseded
by propositional logic and predicate logic. Empirical research, or the empirical method,
can also be traced back to the age of Aristotle, but was formalised by Ibn Sina in about
1000AD [147].

Since its origin, computer science has been closely related to mathematical logic
and algorithm theory [46]. Through its applications in almost every thinkable domain,
computer science also targets the engineering discipline of constructing and using com-
puter programs. If claiming that a particular technology is effective in a scientific
sense, we need a method to show, explain, or prove this. In computer science, there
are several ways to do this.

Zelkowitz et.al. [181] identify four categories of research methods:

• The scientific method, where a theory is developed to explain some phenomenon.
The theory is supported by a hypothesis, which is tested based on data collection.

• The engineering method, where solutions are developed and tested to support a
hypothesis.

• The empirical method is similar to the scientific method, except there may not
be a developed theory. The empirical method is often considered as being a part
of the scientific method.

• The analytical method, wherein a theory is developed, which is supported by
empirical observation.

Empirical methods gather information about the research object be means of ob-
servation, experiment, or experience. One or more hypothesis are proposed, and a
validation method is used to gather data to accept or reject the hypothesis. A num-
ber of different validation methods exists, with their own characteristics. Zelkowitz
et.al. [181] group these into three different categories: observational, historical, and
controlled. Project monitoring, field study, case study, and assertions are considered
observational approaches. Literature search, legacy analysis, and static analysis are

27

Research Method

considered historical approaches. Replicated experiment, synthetic experiment, dy-
namic analysis, and simulation are considered controlled approaches. The list is not
exhaustive.

A slightly different view is presented by Denning [46], who describes three major
paradigms in the field of computer science: theory, experimentation, and design. The
theory paradigm corresponds to the analytic method, the experimentation paradigm
corresponds to the scientific and empirical methods, and the design paradigm corre-
sponds to the engineering method.

The goal of computer science is often to analyse technology, such as languages, al-
gorithms, and methodologies, in order to improve it or to gain a better understanding
of its principles and application areas. Technology research is defined by Solheim and
Stølen [161] as research to bring forth new and improved artifacts. Technology research
is related to – or equivalent to – what above is referred to as the engineering method.
Figure 4.1 illustrates the main process steps involved. The overall goal of technology
research is to obtain new and improved artifacts, which are established through innova-
tion. The nature of these improvements is based on collected requirements, established
through problem analysis. The overall hypothesis is that the artifacts satisfy the re-
quirements. To validate the research, the hypothesis must be tested, i.e. the validity of
the statements should be evaluated, either using an empirical or an analytic approach.

Figure 4.1: Technology research process elements

4.2 The Research Methods Applied in this Thesis

Technology research combined with an analytic approach have provided the underlying
framework for this thesis work, and a mix of different non-experimental and analytic
methods has been applied. Literature search and static analysis of existing techniques
and tools have been applied related to all research results. A continuous process of re-
viewing other research results and technology developments has been undertaken. Case
studies and examples were also applied to support the research claims. The analytic
approach was also applied for some of the thesis results. Finally, technology analysis
was used in some cases to compare technologies. In several cases, prototype tools have
been developed to support proposed models or theories. For example, related to paper
II (Appendix B), an aspect-oriented extension was developed for the transformation
tool MOFScript [137] to improve its support for product line configurations.

A summary of the research process followed is outlined below.

• A problem analysis was conducted, from which requirements for new technology
or theory were identified.

• New technology and theory were defined.

• The results were validated with case studies, analysis, prototypes, and to some
extent proofs.

28

4.2 The Research Methods Applied in this Thesis

4.2.1 Problem Analysis

Literature Review and Analysis of Existing Approaches. In the initial phase of
the PhD work, a work through of state-of-the-art within research and practical results
within composition and separation of concerns was undertaken. This provided the
foundation on which to define the research focus of this thesis work. For each detailed
piece of research conducted, as presented in the published papers in Appendices A–F,
literature reviews of related research works were performed.

Identifying Problem Areas. From the literature review and analysis of existing
approaches, we identified a lack of support for and focus on consistency and semantics
preservation in model composition. The technologies provided flexible modularisation
and composition mechanisms, but without concern for how compositions affect the
semantics of the models they modify. Our analysis resulted in four problem areas being
identified, as described by the research topics in Chapter 3: (1) semantics preservation
of trace-based aspect composition, (2) confluence and conflict in feature composition,
(3) model composition contracts, and (4) model-based aspect representation.

4.2.2 Innovation

The innovation phase addressed the identified problem areas within state-of-the-art
model composition. The results were new technology and theory described by the
research papers in Appendices A through F.

4.2.3 Validation

Examples and Case Studies. We have established and reused several small and
medium-sized case studies in order to test and evaluate our own theories and those of
others. For example, in paper V (Appendix E), variability transformations and conflu-
ence checking were applied on a train station DSL model defined by the MoSiS1 project.
In paper IV (Appendix D), a drawing application was used for evaluating the approach.
Paper VI (Appendix F) uses a case study focusing on distributed collaboration between
department stores.

Prototypes. The work in this thesis has been supported by several prototypes to
illustrate, test, and validate the concepts and languages defined. In the work in paper
II (Appendix B), we developed an aspect-oriented extension to MOFScript [137]2 and
implemented transformations for evaluating the research using that extension. In paper
IV (Appendix D), we developed transformations for mapping sequence diagrams to an
implementation of trace-based aspects. In paper V (Appendix E), we further extended
MOFScript to support model transformations, and implemented the transformations
to validate the theories in the paper. In paper VI (Appendix F), we developed a proto-
type for model-based contracts, which supports specification and checking of contracts
related to models and model composition.

1MoSiS project web page: http://itea-mosis.org/
2http://www.eclipse.org/gmt/mofscript/

29

Research Method

Technology Analysis. Technology analysis has been used to assess information
about static and behavioural features of existing tools and products – typically to gather
information on whether particular features are supported or not. When Zelkowitz
et.al. [181] refer to dynamic analysis, they refer to analysis of the executing system
with respect to some property, such as performance. The analysis done here can more
appropriately be referred to as functional analysis.

Analytic Validation. Parts of the work in this PhD thesis are based on analytic
validation, where a theory was defined to explain the phenomenon under study. The
theory has been validated by empirical observations from applying examples, and also,
in some cases, supported by proofs. For example, in paper III (Appendix C), we give
a definition of semantics preservation of sequence diagram aspect composition, which
is used for evaluating different existing approaches for aspect-oriented modelling of
sequence diagrams. In paper IV (Appendix D), these definitions are applied on a
defined trace-based semantics for Java. In paper V, we define a set-based theory for
reasoning about confluence of feature resolutions.

4.3 Evaluation

We largely base the validation of the thesis research on case studies, examples, and
prototypes. In some cases, this may be considered insufficient validation. It does
provide, however, example contexts in which the research has been validated; this
can be basis for generalisation toward other domains and cases. In research paper III
(Appendix C) the defined theory was applied on six different aspect-oriented modelling
approaches, which caters for a good coverage of technologies. The case study in paper
VI (Appendix F) is a fairly large example case study, which is specified in UML and
implemented by 12KLOC Java code.

Potential Weaknesses. The validity of any kind of research can be strengthened by
gathering more empirical data, executing additional case studies as input for analysis,
performing interviews, etc. This is also the case with the research performed in the
course of this thesis. The lack of generalisation in parts of the research represents a
weakness of method and potentially of the results. This can be considered a threat
to the external validity of the research, i.e. the applicability of the results in other
contexts. The same can be said about the size of the case studies/examples used in
the research; they are typically small examples. No industrial size case studies have
been used. This is due to several factors: the availability of suitable industrial size
case studies, the limited time available to perform such cases, and the nature of the
research – new language mechanisms – which makes case study candidates difficult
to establish. Another, related potential weakness is that the examples used are too
narrow to cover all potential shortcomings, which may lead to biased conclusions. The
validity may be further strengthened by applying quantitative or qualitative methods
to gather statistical data that can support the research claims.

Although it is possible to strengthen the validity, the main thesis results – the re-
search papers – have been subject to validation as described above (Section 4.2.3).
Additionally, the papers have been subject to review processes that further strengthen

30

4.3 Evaluation

their validity. In summary, the validation provided shows a reasonable relevance of the
results.

31

Research Method

32

Chapter 5

Literature Review and
State-of-the-Art

Here, we address in detail related work from literature that is influential and related
to what has been achieved in this thesis. In particular, we focus on SoC in modelling,
model transformation, product line engineering, conflicts and restrictions in composi-
tion, and semantics preservation.

5.1 Separation of Concerns in Modelling

SoC in modelling spans a wide variety of techniques and language mechanisms, and
SoC is directly or indirectly incorporated into the modelling process. Some of these
have defined mechanisms specifically to address the composition of concerns. Respon-
sibility Driven Design (RDD) [177, 178] is a design process focusing on roles, their
responsibilities, and how they interact with other roles. The main abstraction – for
representing concerns – is role collaborations; Class (Candidates), Responsibility, and
Collaboration (CRC) cards [21] are used to in the process of finding and elaborating
the role collaborations. In the Catalysis [54] method, concerns can be separated in
packages which can later be joined; this is similar to the package merge mechanism
in UML [134]. Package merge is a syntactic-based mechanism, and the standard only
specifies how static models (classes, packages) are merged. In OOram [146], role models
are used to describe patterns of collaborating objects – as concerns – that are com-
posed into systems in a synthesis process. The synthesis process in OOram, however,
considered only the synthesis of structural models, not the behaviour. In product line
processes, such as KobrA [8], concerns are separated as features, which are composed
through a resolution, or product derivation process. KobrA is a component-based
product line development process, which represents variability partly in the graphical
design model by optional elements. The complete variability management, however, is
handled by textual decision models, which map variability resolutions to effects in the
design models.

A range of different architecture frameworks have also been widely used for separa-
tion of concerns for architectural specification; they address the high-level elements in a
specification rather than the specific language mechanisms used to describe them. The
Zachman framework [180] defined a framework for representing information systems
architecture by descriptions capturing different stakeholders needs, or views, of differ-

33

Literature Review and State-of-the-Art

ent system perspectives. The system perspectives were data, process, and network,
while the views defined were scope, business, information, technology, implementa-
tion, and running system. The 4+1 view model of architecture [116] defined Rational
Software’s view on software intensive architecture. It specifies five views that address
concerns of different stakeholders: fours views are used to organise architectural deci-
sions, the logical, process, physical, and development views, and the scenario view is
used to illustrate the other views. Architectural blueprints are used to describe each
view. Several architectural frameworks are also defined by international standards: the
ISO Reference Model for Open Distributed Processing (RM-ODP) [92] prescribes five
viewpoints by which architecture of distributed systems should be specified – enter-
prise, information, computational, engineering, and technology viewpoints; ISO/IEEE
42010 is a standard currently under development, which is a revision and update of
the IEEE 1471 standard entitled Recommended practise for architectural description of
software-intensive systems – it defines guidelines and recommendations for structuring
architectural specifications.

In the end of 1990’s, aspect-oriented development emerged in the modelling area.

Aspect-Oriented Modelling. Aspect-oriented modelling was spawned by the same
needs and ideas as aspect-oriented programming, i.e. that the complexity of models
led to scattering and tangling of model elements, and that this could be solved by
separating concerns as aspects. An early work in the aspect-oriented modelling arena
is documented in Grundy’s paper on aspect-oriented requirements engineering [73]. In
this work, aspects represent required and provided characteristics of components, which
act as a specification for refinement to design and implementation. There is, however,
no notion of aspect composition in this work. Clarke et.al. [32] present subject-oriented
design, inspired by the concepts of subject-oriented programming [76]. Subject-oriented
design supports decomposition of software design into modules, called subjects, that
encapsulate parts of a system design belonging to a particular concern. Subjects may
overlap each other and are integrated, or composed, by merging, selection, or overrid-
ing. Subject-oriented design further evolved into the Theme approach [16, 33]. The
Theme approach is an aspect-oriented analysis and design method, which addresses
requirements analysis, design, and composition of themes. A theme is a representation
of a concern, or a feature, which may have crosscutting properties. Requirements are
specified using Theme/Doc views, in terms of relationships and crosscutting elements
of requirements. Design is specified in Theme/UML by base and aspect themes. Cross-
cutting behaviour is provided by sequence diagrams that are parametrised by template
parameters defined on the theme package definition. Themes are composed symmet-
rically by merging or overriding. Potential conflicts between matching elements are
manually specified, and template bindings are explicitly specified.

Aspect-oriented modelling has been dominated by a series of workshops from early
2001, the aspect-oriented modelling1 and early aspects2 workshops. Within these com-
munities a variety of aspect modelling research has been produced. Early aspects refer
to aspects at the requirements and architecture level. Rashid et.al. [144, 145] define
a model for aspect-oriented requirements engineering (AORE) that separates aspec-
tual requirements, non-aspectual requirements, and composition rules. They establish

1Aspect-Oriented Modelling Workshop - http://www.aspect-modeling.org/
2Early Aspects Workshop - http://www.early-aspects.net/

34

5.1 Separation of Concerns in Modelling

positive and negative contributions among requirements and concerns, and use these
for reasoning about early trade-offs between requirements. In Moreira et.al. [126],
the AORE approach is generalised in a multi-dimensional concern model, wherein all
concerns are treated uniformly. In [94], Jacobson and Ng describe an approach for
aspect-oriented development with use cases with use case slices, inspired by hyperslices
by Tarr et.al. [164]. A use case slice modularises use case realisations and their related,
possibly crosscutting, design elements. It contains a collaboration that defines the re-
alisation of the related use case, and may contain additional required classes and class
extensions that are defined by aspects.

Aspect-orientation has been defined for several architectural modelling approaches:
France et.al. [62] use role templates – applying the Role-Based Metamodeling Language
(RBML) [61] – in UML models to describe architecture aspects. Aspects define patterns
with template slots that are bound when aspects are instantiated. A template element
is denoted using a vertical bar (|) notation in the element name, e.g. |Server as the
name of a class defines that class as a template that needs to be bound.

Garcia et.al. [63] present AspectualACME, which define aspect extensions to the
general purpose architecture language ACME [64]. In ACME, architectures are de-
scribed with the concepts system, component, connector, port, role, representation,
and representation maps. AspectualACME extends the connector concept with aspec-
tual connectors. While a standard connector connects two roles, an aspectual connector
connects a base role and a cross cutting role. Aspectual connectors may be attached
to multiple base model roles using quantification mechanisms.

In [15], Baniassad et.al. describe how to identify and capture early aspects, and
how they are carried from one phase to another.

The AOSD Europe project produced a survey of analysis and design approaches
in 2005 [31], which gives a comprehensive overview of aspect-oriented and non-aspect-
oriented approaches to analysis and design.

A lot of aspect-oriented analysis and design work has been based on UML extensions,
where some of the early works address design aspects related to structural concerns
by means of classes, e.g. Clarke et.al. [32], Suzuki and Yamamoto [162], and Herrero
et.al. [87]. In [157], Stein et.al. describe a UML-based notation for AspectJ called the
Aspect-Oriented Design Model (AODM). That work was succeeded by more focused
work on expressing pointcuts in UML in the work on Join Point Designation Diagrams
(JPDD) [75,158,159]. JPDD provides a notation, semantics, and a tool implementation
for specifying queries graphically using extensions to UML. These queries are specified
using the concrete syntax of UML, i.e. classes and interactions, using name patterns
and various types of constraints, such as indirect generalisation constraints for classes
or control flow constraints for interactions.

The JPDD work is relevant for several parts of this thesis, specifically in the work
on mapping sequence diagram aspects to Java trace-based aspects (paper IV, Ap-
pendix D).

The topic of behavioural design aspects is addressed in a range of works. Sol-
berg et.al. [155,156] present the Aspect-Oriented Model Driven Framework (AOMDF),
which includes an approach for describing sequence diagrams aspects based on stereo-
type tags. Aspects are composed with base models using explicit binding to the aspects.
As such, there is no querying, or pointcuts, involved. The approach uses patterns as
described by France et.al. in [61] to parametrise the aspects.

35

Literature Review and State-of-the-Art

Klein et.al. [109, 110] address weaving of scenarios. They look at the problems
of syntax-based composition and provide techniques for semantic-based composition.
This is also the focus of Grønmo et.al. [67, 68], who use a trace-based semantics for
sequence diagrams as basis for the semantic-based weaving. Semantic-based weaving
addresses how pointcut matching is according to the semantics of the sequence diagrams
(i.e. their behavioural meaning) rather than their syntactic representation.

Other approaches for sequence diagram aspect specification and composition, such
as that defined by Solberg et.al. [155], Whittle et.al. [176], and the Theme method [33],
are syntactic-based. These approaches are discussed in detail in paper III (Appendix C).
In [6, 175], Whittle and Araújo present an approach for capturing requirements with
aspect-oriented scenarios. Their approach is based on the interaction pattern specifica-
tions (IPS) approach from [61], and uses binding of pattern roles to bind aspects – or
IPS’es – to concrete scenarios. Their approach is also syntactical, and the binding is
explicit, rather than query based. However, although the approach is syntactic-based,
it will meet the definition of semantics preservation given in paper III; this is because
of the restricted, static binding, which binds single pattern element (messages) in the
sequence diagram. This is in accordance with the analysis results of the approaches
from paper III.

Deubler et.al. [47] present an approach for MSC aspects targeted specifically at
service-oriented platforms, where specialised lifelines represent different kinds of point-
cut and advice. Compositions are not done at the MSC level, but as behaviour inserted
at service run-time. A similar approach is taken by Krüger et.al. in [118], where
crosscutting behaviours for embedded system services are described by MSCs that are
joined, using the join operator for MSCs defined by Krüger [117]. This join operator
allows composition of overlapping interactions by joining matching messages. In [118],
the MSC aspects are used for generating crosscutting run-time monitors.

Kienzle et.al. [106] propose a multi-view approach called Reusable Aspect Models
(RAM), which integrates existing aspect modelling techniques for classes, sequence
diagrams, and state charts in a coherent model, and packages these an aspect model.
Aspect models may be reused by, or instantiated by, other aspects, or by non-aspect
models. The RAM approach supports dependency checks between aspects and allows
aspects to be reused in multiple contexts. An aspect is defined by a structural view,
a state view, and a message view. Each view defines template parameters that must
be bound when an aspect is used. Consistency is checked and enforced between the
views and on aspect bindings. The approach is implemented with tools developed in
Kermeta, such as Kompose3 [59]. Kompose defines a generic composition framework
that can be specialised for any EMOF-compliant meta-model. It defines interfaces
that must be implemented for specific meta-model composition, implements a generic
merging operator, and defines a composition directive language to control types of
changes that may occur.

Whittle et.al. [173, 174] define a flexible aspect-oriented modelling approach called
MATA (Modelling Aspects Using a Transformation Approach), wherein they use graph
transformations for composing aspect models in UML. Aspects and base models are
defined using the concrete syntax of the modelling languages, in this case UML classes,
sequence diagrams, and state machines. They provide a pattern language that allows
pointcuts to specify sequences of model elements, and composition directives in the

3http://www.kermeta.org/mdk/kompose

36

5.1 Separation of Concerns in Modelling

form of stereotyped elements to specify the searching for, creation of, or deletion of
elements. Base models and composition directives are mapped to graph transformation
rules. Critical pair analysis is used to check and determine interactions between the
rules, and hence interactions between the specified aspects. Two types of interactions
are analysed: conflicts, which prevent two aspects to be used together, or dependencies,
which require aspects to be applied in a specific order. After analysis, the transfor-
mations are executed and the result is mapped back to a UML representation. Their
approach, which is based on syntactic matching, is not semantics preserving according
to our definition for sequence diagrams, but it provides a useful and complementary
functionality with the conflict analysis, which will help ensuring consistent results of
model-based aspect composition.

Trace-based Aspects. Scenario specifications describe event traces of system be-
haviours, which normally represent example runs of system behaviour leading to a
specific state. The usage of historic execution information when describing aspects
is addressed by many different research and development efforts. These kinds of as-
pects are referred to as trace-based aspects in the case of using execution traces, or
more generally state-based or history-based when using state information in the as-
pects. Trace-based aspects are the topic of papers III and IV (Appendices C and D),
which define semantics preservation for sequence diagram aspect composition and map
sequence diagram aspects to a trace-based aspect implementation.

In [50, 52], Douence et.al. define a formal approach for generic composition of
stateful and trace-based aspects and introduce applicability conditions for aspects,
which are used for analysing aspect interactions and resolving conflicts. Its basis is
defined by a framework for detection and resolution of aspect interactions described
in [51], which specifies a formal execution model based on observable traces, and an
accompanying aspect language. Aspects are defined by rules on the form – C � I –
where C is a crosscut and I a program that is executed whenever C matches a join
point. The crosscuts are defined by conjunction, disjunction, and negation of terms,
but without quantifiers, which makes the analysis of conflict detection feasible. They
define independence of aspects and describe an algorithm for checking if two aspects
are independent.

Trace-based, or state-based aspects can be supported by several aspect-oriented
programming language implementations. In AspectJ, for example, trace-based aspect
support can be implemented by storing execution history, which can be used as guards
in pointcuts specifications. The specification language in AspectJ, however, does not
provide specification mechanisms suitable for specifying pointcuts representing execu-
tion traces without explicitly storing and using state variables, except for traces that
are part a single control flow, which can be captured by cflow pointcut designators.

This is illustrated in Figure 5.1, where the AspectJ code in 5.1(b) specifies pointcuts
and advice to capture the trace behaviour specified in the sequence diagram in 5.1(a).
The sequence diagram captures that two subsequent calls to the open method of door
controller should result in all car doors being opened (represented by state invariants).
The AspectJ code needs to keep track of the state of previous open calls, and stores
this in a local variable.

This shortcoming was addressed in the work on Join Point Designation Diagrams
(JPDD) [75], which generated complex pointcut expressions based on JPDD sequence
diagrams. This simplifies the specification of complex pointcut expressions that cap-

37

Literature Review and State-of-the-Art

(a) Open door sequence diagram

(b) Open door AspectJ aspect

Figure 5.1: Trace-based aspects and their representation in AspectJ

tures histories, i.e. traces, of the system execution, since they can be expressed graph-
ically in terms of sequence diagrams, similar to Figure 5.1(a). From JPDD, implemen-
tation code can be generated in a designated aspect-oriented programming language.

Vanderperren et.al. [167] describe how the aspect-oriented programming language
JAsCo is extended with support for stateful aspects based on the formal model defined
in [50, 52]. Stateful aspects in JAsCo are described declaratively using protocol-based
pointcut expressions, where labelled transitions are associated with standard JAsCo
pointcuts – such as method calls – and related with destination transitions that should
be matched subsequently. The stateful aspect is compiled to a deterministic final state
automaton, which is interpreted at run-time.

A similar approach called Tracematches is defined by Allan et.al. [3]. It provides
an AspectJ-based extension for specifying trace-based aspects. Traces are defined as
regular expressions over pointcuts, or symbols referring to pointcuts. The language
allows filtering of events that are outside of a chosen context, which was fitting for what
was needed for the mapping of sequence diagram aspects in paper IV. In Tracematches,
symbols that are not explicitly declared, are ignored when matches are sought for.
This was found very useful for representing pointcuts reflecting behaviour specified by
sequence diagrams, since it allowed filtering events that were not relevant in the context
of a specific interaction. Figure 5.2 illustrates the specification of a tracematch for the
open door scenario.

Walker and Viggers [171] present an approach called Declarative event patterns
(DEP) in a language extension to AspectJ. This approach extends AspectJ pointcuts

38

5.2 Model Transformation

Figure 5.2: Open doors aspect in Tracematches

with specification of tracecuts, which can be used to specify histories of execution
events, similar to Tracematches. A tracecut is either a regular pointcut, or a sequence
or repetition of other tracecuts, representing histories of execution events. DEP allows
semantic action blocks to specify detailed acceptance or rejections of events in the
context of a tracecut.

In the work by Cottenier et.al. [37, 38], stateful aspects are described in terms of
state machines. The approach is implemented in the Motorola WEAVR, and provides
a means of describing pointcuts and advice as state machines. The weaver produces a
composed model that can be used for code generation.

Krüger et.al. [118] propose a solution for run-time monitoring of trace-based system
behaviour, where the monitors are defined with MSCs. From the MSCs, distributed
run-time monitors are injected into component implementations using aspect-oriented
programming techniques. The model-based monitors are used to verify system adher-
ence with the behavioural models.

5.2 Model Transformation

Model Transformation technologies enable declarative or imperative specifications of
model manipulations that can be used to implement any kind of transformation of a
model – including model compositions. In this thesis work, model transformation has
been used primarily as a vehicle for model composition or transforming between model
domains.

MDA-style Model Transformation. The Object Management Group (OMG) has
defined a range of standards related to model-driven engineering – Model Driven Ar-
chitecture (MDA) in OMG terms. This includes a standard for model transformation
called MOF Query/View/Transformation (QVT) [131] and for model to text transfor-
mation [132] (Mof2Text). With QVT, transformations can be authored as relations
and mapping rules between meta-models and their properties, or as operational rules.
QVT defines two main transformation languages: the relations language and the oper-
ational mapping. The relations language allows relations between meta-model domains
to be specified in a textual or graphical syntax. Transformations can be either uni-
directional or bi-directional. The operational mapping language allows the specification
of complete imperative transformations or complementing relational transformation
with operational behaviour. The OMG Mof2Text standard defines a language and

39

Literature Review and State-of-the-Art

meta-model for specifying code – or text – generation in an imperative style using tem-
plates. Open source implementations of these standards are being implemented within
the Eclipse M2M4 and M2T5 projects. Figure 5.3 illustrates the general architecture of
these types of model transformations: a model to model transformation (Figure 5.3(a))
specifies transformation rules mapping between two (or more) meta-models. The exe-
cution of such a transformation takes model instances conforming to the meta-models
and performs the specified mappings. A model to text transformation (Figure 5.3(b))
specifies rules, or templates, based on one or more input meta-models, which in turn
produce output text, for example implementation code, when executed.

(a) Model to model transformation

(b) Model to text transformation

Figure 5.3: Model transformation architecture overview

A wide range of tools provide alternatives to the OMG standards, such as At-
las Transformation Language (ATL)6, Kermeta7, Epsilon Transformation Language
(ETL)8 for model transformation, or MOFScript9, Velocity10, Xpand11, or Jet12 for
text transformations.

In this thesis, model and text transformations have been implemented using the
MOFScript tool [137], which is an imperative – or operational – style transformation
language. MOFScript was originally developed based on one of the proposals for the
OMG Mof2Text standard. It has been extended during this thesis work with support
for model to model transformations and aspects. MOFScript was used in paper II,
paper IV, paper V, and paper VI for code generation of product line code, and model
transformation for transformation aspects, feature composition, and contract model
generation.

4http://www.eclipse.org/m2m/
5http://www.eclipse.org/modeling/m2t/
6http://www.eclipse.org/m2m/atl/
7http://www.kermeta.org/
8http://www.eclipse.org/gmt/epsilon/
9http://www.eclipse.org/gmt/mofscript/

10http://velocity.apache.org/
11http://wiki.eclipse.org/Xpand
12http://www.eclipse.org/modeling/m2t/

40

5.3 Product Line Engineering

Graph Transformation. Graph transformation, graph grammars, or graph rewrit-
ing, evolved as a result of shortcomings of term rewriting systems to express non-linear
structures. They were developed as an algebraic theory where graphs are considered
algebras that are glued with an operation called pushout [36]. Graph transformations
– in the algebraic sense – are defined by productions (graph transformation rules),
matches, which are occurrences of the left-hand sides of graph productions, and rule
applications (direct derivations) of graph occurrences.

A graph production p can be specified as p : L � R, where L specifies the graph
that will be matched, and R specifies the modifications that will be done to matches
of graph occurrences. If a match m is found for an occurrence of L in a given graph G,
a derived graph H is obtained by replacing all occurrences of L with R in G. Graph
transformations are convenient for formal analysis of the transformation and composi-
tions, since their underlying mathematical theories allow reasoning about confluence,
termination, etc. In Heckel et.al. [84], confluence properties for typed attributed graph
transformation systems are defined. This is based on well established theories of paral-
lel independence and critical pair analysis of graph transformations, which have been
used to show commutativity and confluence of transformations.

The work in this thesis has not applied graph transformation theory, but the results
from paper V (Appendix E), which focus on confluence of product line transformations,
are related to graph transformations. In that paper, the transformations were realised
using imperative – and dynamic – model transformations on EMF models. Although
there exist graph transformation tools that can operate on EMF models, such as the
Tiger EMF Transformation Project13 [24], these are not easily applied dynamically and
independent of the meta-model.

5.3 Product Line Engineering

As described in Section 2.5, product line engineering is an established approach for
management of common and variable features of sets of products that are part of a
product line.

In this thesis, product lines are addressed from several perspectives. In paper II,
we address the usage of higher-order transformations – or aspectual transformations
– for providing variability in product lines. The product line is specified as a UML
model, which includes variability information by using stereotypes. We use a generative
approach, where products are generated using model to text transformations. The
transformations themselves are modified by other transformations – specified by aspects
– to accommodate product line variability. Generative programming – or Software
Factories – is an established technique for product lines [41, 65], or product/system
families, wherein members of the system family can be automatically generated from
a specification in some domain-specific language. In paper V, we provide a domain-
independent solution for configuring product line models based on the variability model
from Haugen et.al. [80], where the variability is defined by model element substitutions.

The work by Czarnecki and Antkiewicz [40] use model templates with feature an-
notations for generating model configurations. Feature annotations are matched and
evaluated against a feature configuration. Variability is modelled as so-called presence
conditions that are superimposed on the base language (e.g. UML), which determine

13http://user.cs.tu-berlin.de/˜emftrans/

41

Literature Review and State-of-the-Art

the presence or absence of a model element in a configuration. The approach is gener-
ally applicable to any model domain based on Meta Object Facility (MOF); this is the
same for the approach presented in paper V. The underlying implementation, however,
is dependent on the domain – or meta-model (e.g. UML), which is avoided in the
domain-independent transformation approach in paper V. Another difference is that
the superimposed variants are embedded in the base language, which is not the case
for the work in paper V.

Batory et.al. define an approach for feature-oriented programming (FOP) in their
work on step-wise refinement with GenVoca [19] and AHEAD (Algebraic Hierarchical
Equations for Application Design) [17,18,20]. GenVoca is a method for compositional
refinement of classes, where refinements are specified by equations and implemented
by mixins [27]. It is generalised in AHEAD, which allow composition using hierarchi-
cal equations that represent any kind of artifacts, code and non-code, by associating
composition operators with artifact types. Features can be specified as separate units
and composed to obtain specific configurations.

The example in Figure 5.4 illustrates feature specification using AHEAD contain-
ment hierarchies and composition operator (•). The car JonsCar is composed from
the two features Security and Safety, which again consist of features.

Figure 5.4: Feature composition and refinement in AHEAD

Refinements in AHEAD can be provided by feature composition. For example,
a different variant of the security feature can be provided by composing Securitya

with the Alarm feature, as illustrated in Figure 5.4. The composition operator • is
defined to be polymorphic and depends on the underlying artifacts of a feature, e.g.
code, design models, or requirements documentation. The AHEAD approach could
be applied in the context of both paper II and paper V, in which hitransforms and
variability substitutions would represent composition operator semantics in AHEAD
feature compositions.

Prehofer [143] introduced a programming model for Feature-Oriented Programming
(FOP), which allowed objects to be defined by composition of features. A feature is
defined similar to a traditional class, by implementing interfaces. In addition, features
can lift other features, a way of adapting functionality of one feature to the context to
another, similar to method overriding. Features may also declare assumptions on the
presence of other features.

Haugen and Møller-Pedersen [81] show how to use UML structural classes to specify
architectural configurations. This is done by specialising property types and defining
subset constraints on parts. They generalise the role concept in UML by letting named
subsets of instances play different roles. This is complementary to our work on archi-
tectural aspects in paper I, which also use structural classes, but focus on architectural
configuration by connector refinement.

Supporting product lines with technologies for crosscutting concerns, as addressed
in paper II, has been addressed from several perspectives by others: Anastasopoulos
and Muthig [5] evaluate aspect-oriented programming as an implementation strategy

42

5.3 Product Line Engineering

for product lines, using AspectJ as the evaluation language. They analyse its appli-
cability with respect to reuse, positive and negative variability, granularity, testabil-
ity, integration impact, binding time, and automation. They found AOP suitable for
handling variability across several components. They identify shortcomings with re-
spect to testability of aspects, capturing variability related to control structures, and
for handling potential conflicts between aspects. Voelter and Groher [168] describe a
model-based development framework for product lines, which integrates feature mod-
elling and aspect composition with different development stages. They combine the
usage of feature models with analysis and design models, and apply model weaving for
generating product configurations. They also apply code generation techniques and
weaving of code generation templates for generating application code.

The relationship between features and concerns has been the topic of several early
aspect workshops14 and has also been addressed by the thesis author in [138], which
looked at feature representation with model-based aspects.

Kalleberg and Visser [96] present an aspect-oriented extension to the Stratego lan-
guage, which is a program transformation language based on term rewriting. The
rewrite rules operate on terms defined by a language grammar, such as the Java lan-
guage grammar. The aspect-oriented extension allows crosscutting rewriting rules to
be modularised and composed. By integrating the MOFScript transformation language
grammar in Strategy, the higher-order transformations described in paper II could be
implemented by rewrite rules and aspects.

Morin et.al. [127] present an approach for managing dynamic variability using
aspect-oriented and model-driven techniques. Re-configuration of the running system is
managed by having a causal connection to a configuration model, which is constructed
using aspect composition of variant models with a base model.

Feature Interactions and Confluence. In both papers II and V, we address con-
fluence of variability transformations. In paper II, this is addressed by showing that
the feature transformations are confluent for certain types of variability. In paper V,
we specify a domain-independent variability transformation, and discuss the criteria
for confluence or conflict in the application of this transformation.

Feature, or service interactions have been a well-known problem in the telecommu-
nication sector for some time, and have been addressed by methods and formalisms
since the early 1990’ies: Bowen et.al. [26] identify it as a problem in several develop-
ment phases, i.e. in specification, design, testing, and execution. Wakahara et.al. [170]
describe a method for feature interaction detection, and classify feature interactions
in six categories: duplication, redundancy, incorrect execution order, inconsistency,
non-determinism, and looping.

Similar to telecommunication systems, interactions between features represent a
challenge both in product line engineering and aspect-oriented development. In AOD,
the problem occurs as interactions – or conflicts – between aspects.

Metzger et.al. [122] describe an approach for semi-automated detection of feature
interactions in a product line context. Using goal modelling in the Goal Oriented
Requirements Language (GRL), where goals reflect features, they describe an algorithm
for detecting feature interactions. This is mapped to a feature modelling context,
wherein variation points and variants are explicitly specified with a feature modelling

14e.g. Early Aspects at AOSD 2008 and at SPLC 2008

43

Literature Review and State-of-the-Art

notation [74]. They specifically address vague feature dependencies, categorised as
hints-dependency and hinders-dependency, referring to positive and negative influence
between features, respectively.

Czarnecki and Pietroszek [43] present an approach for verification of well-formedness
of the feature-based model template approach previously described [40]. They define
a semantic extension to OCL, template interpretation, which allows constraints to be
interpreted for model templates (MOF-based models annotated with presence condi-
tions). Model templates with OCL are verified using a SAT (Boolean Satisfiability
Problem) solver based on Binary Decision Diagrams (BDDs), which provide a way of
detecting illegal template configurations. This is complementary to our work on con-
flict detection in paper V; we use set theory to detect model element overlap between
pairs of features while they analyse the legality of complete configurations.

Thaker et.al. [166] address type safety of product line composition by analysing
global consistency of feature modules and the their combinations. In their work, fea-
ture modules are represented by AHEAD expressions [18]. Global consistency, which
addresses type references and ambiguities, is checked by code compilation. Type safety
of module combinations is analysed based on a set of defined constraints that must be
satisfied to ensure type safety. Code analysis is used to extract constraint instances,
and a SAT solver is used to check if constraints are violated.

5.4 Interactions, Conflicts and Controlled Compo-

sitions in AOD

S. Katz [99] presents a survey of approaches for verification and static analysis of
aspects, which gives an overview of verification and analysis techniques for aspect-
oriented technologies. He describes some essential issues related to this topic, three of
which are strongly related to the work in this thesis.

• Ensuring that desired properties of the base system are maintained (or preserved)
in the composed system.

• Establishing whether aspects interfere with each other.

• Ensuring that the desired properties of the aspect are added to the base system.

Aspect Interactions and Conflict Detection. Havinga et.al. [83] use graphs to
model and detect composition conflicts that may arise when introducing elements with
aspects. Several examples of potential conflicts are given in [83]; one example is the
introduction of a method in a class that unintentionally overrides a method in a su-
perclass. They map Java programs to graphs and AspectJ introductions to graph
transformation rules. Their approach is implemented in the graph transformation tool
GROOVE15 to execute the matching and application of transformation rules on the
program graphs. Conflicts are modelled as graphs representing language violations,
such as naming conflicts, which can be checked by the graph transformation tool dur-
ing rule application. Their approach is complementary to our work on composition

15http://groove.cs.utwente.nl/groove-home/

44

5.4 Interactions, Conflicts and Controlled Compositions in AOD

contracts, as they explicitly specify conflicts, while we implicitly specify conflicts by
invariants.

Mehner et.al. [121] address detection of interactions and potential inconsistencies
in model-based aspects at the requirements-level. They map activity diagrams and
aspects to attributed typed graphs implemented in AGG [56], and specify pre- and
post-conditions for activities as graph productions. They define graph transformation
rules for before, after and replace types of composition, and use critical pair analysis
to detect conflicts among the activities. The pre- and post-conditions are assertions on
the domain model that define the criteria for detecting conflicts.

Conflicts in aspectual requirements composition is also addressed by Brito et.al. [28],
who use the Analytic Hierarchy Process (AHP), a structured technique for dealing with
complex decisions. Based on pairwise prioritisation of different concerns (alternatives)
in the context of different criteria (in the their example, those were concern contri-
butions and stakeholder importance), priority vectors are calculated, resulting in a
prioritised ranking of concerns. This can be used to resolve conflicts arising from
concerns that contribute negatively to each other.

Bernardi and Di Lucca [23] propose a taxonomy for interactions introduced by as-
pects, which considers three interaction categories: interactions introduced by altering
static structure, the control flow, or the object states. Their work addresses the in-
teraction between aspects and the base system, not on interactions among aspects.
However, a similar taxonomy could be useful also for analysing and understanding
aspect interactions.

Kienzle et.al. [107] analyse interactions an aspect-oriented framework for transac-
tion handling and address how AspectJ provides support for managing such interac-
tions. They define a set of language features desirable for handling such interactions:
separate aspect binding, inter-aspect configurability, inter-aspect ordering, per-object
aspects, dynamic aspects, and per-thread aspects. The established case study can also
be useful for similar analysis of other aspect-oriented technologies, such as modelling
notations.

Kniesel [111] defines an approach for detection and resolution of interactions in
aspect weaving. Weaving interaction and interference are identified as basic problems
in aspect-oriented development and interaction and interference are both defined for-
mally. The work is based on formalisation of language-independent aspect-oriented
terms, such as aspect effects and predicates. On this basis, Kniesel defines a fully
automated algorithm for detection of weaving interactions, and presents strategies for
static and dynamic resolution of the interactions.

Aksit et.al. [2] use graph transformations for analysing aspect interference at shared
join points in aspect-oriented programs. They represent join points as graphs, and the
run-time semantics as graph production rules, which are derived from aspect oriented
programs defined using composition filters. From these graph transformations, a state
space represented as a labelled transition system (LTS) is generated, which represents
all orders of execution of different aspect advice at shared joint points. The resulting
LTS can be used to determine if there are interactions between the original aspects.

In [72], Grønmo et.al. establish a theory for reasoning about confluence of sequence
diagram aspects. They show that confluence is undecidable for sequence diagram
aspects where pointcuts can contain arbitrary event symbols along lifelines or negative
pointcut diagrams. By restricting the expressiveness of pointcuts, they show that
confluence can be decided by critical pair analysis.

45

Literature Review and State-of-the-Art

Constraining Compositions. Flexible composition mechanisms, such as in aspect-
orientation, provide power to the concern engineer, but leaves little control over what
may happen to the base model or code. The result may be that assumptions the base
model engineer made about the base model or program are broken. Design by Con-
tract (DbC) was introduced to assert behavioural compliance between consumers and
providers. Similar to DbC, which governs interactions between components, composi-
tions may also be controlled or restricted by constraints. In this thesis, we address the
usage of DbC-like principles to help controlling the behaviour of aspect composition
(paper VI, Appendix F).

Katz and Sihman [100, 154] describe an approach for validation of aspects using
model checking with superimpositions. A superimposition is a collection of parametrised
aspects and classes, which is specified independently of any base program. A superim-
position specifies applicability conditions and desired result assertions globally and for
each aspect. A superimposition is defined to be correct if, for any base program that
satisfies all assumptions and requirements made by the superimposition, the composed
program – called augmented program in [100] – obtained by a legal binding of the
superimposition with the base program, is correct. Correctness of the base program
is based on a specification of its desired properties, which should hold for the base
program and the composed program. They implement superimpositions with a pre-
processor called SuperJ [154], which translates to AspectJ and Java. The validation of
aspects is supported by the Bandera temporal specification language [77] for specifying
the desired properties of the base program. Katz and Sihman’s work relates to our
notion of composition contracts; their specification of desired properties for the base
program is close to our composition contract post-conditions.

Griswold et.al. [66] present crosscutting interfaces (XPIs), which insulate aspects
from implementation details and expose only desired behaviours, using defined inter-
faces (XPIs). The approach supports specification of invariants, checking them, and
reporting any violation. Although XPIs are defined using AspectJ, the approach can
be applied in other technology contexts as well. An XPI is defined by four elements:
a name, a scope, a set of abstract join points, and a partial implementation. The ab-
stract set of join points is expressed in terms of a pointcut descriptor (PCD) signature
and a semantic specification. The latter states pre-conditions that must be satisfied
at each point an advice can run, and post-conditions that must be satisfied after an
advice has run. The XPI approach also prescribe constraints – or design rules – that
define how code shall be written in order to ensure consistent application of aspects.
Our work on composition contracts is inspired by their work on XPIs, but differ in
that we utilise meta-models to define contracts, which are independent of a specific
modelling or programming language. This allows contracts to define constraints on
elements from different models, or even different modelling languages. The XPI work
relies on object-oriented interfaces for specifying the design rules, which are not directly
applicable for our modelling context.

Klaeren et.al. [108] define an aspect composition and validation mechanism based
on assertions. Their composition approach uses a knowledge base of valid aspect con-
figurations to specify, for each class, which aspects are valid. In particular, it supports
specifying valid configurations of several aspects. A similar knowledge base could com-
plement our finer-grained approach for composition contracts, in which we currently
do not consider interactions of multiple aspects.

Kizcales and Mezini [105] establish the concept of aspect-aware interface, as a way

46

5.5 Semantics Preservation

of representing the interface between an aspect and the java code it crosscuts. The
interface is a specification of all references between classes and aspects, which they use
to show that modular reasoning is feasible also for aspect-oriented programs. They do
not address constraints or restrictions on the composition of aspects. The aspect-aware
interface, however, can be used in in conjunction with composition contracts, similar
to how assumption contracts are used in paper VI.

Ossher [139] describes a hiding mechanism that requires a base program to explicitly
confirm or deny pointcuts that aspects can use in advising it. In addition, the decision
can be based on organisational roles and responsibilities, e.g., any aspect defined by a
particular organisation is confirmed. The concept of confirmed roles and organisations
is not addressed by the composition contracts in paper VI, and could be a useful
extension to the contract approach. Contracts may be extended with human or system
roles, and access policies governing their right to modify the base system.

Dantas and Walker [44] present a language with harmless advice, which is designed
to prevent interference with the computation of the main program. Hence, harmless
advice can be added to a system without fear of breaking any system invariants. The
approach allows advice to modify termination behaviour or to use input/output, but
may not otherwise change the final result of the main code. They introduce a language
based on typed lambda calculus, which is used to specify aspect-oriented systems. The
main benefit of the approach is that local reasoning of the main program is preserved
regardless of any aspects applied.

Djoko et.al. [49] identify categories of aspects that preserves some classes of prop-
erties: observers, aborters, confiners, and weak intruders. It is then sufficient to prove
that an aspect belongs to a category to know which properties that are preserved by
composed programs. They formally prove that, for any program, the weaving of any
aspect in a category preservers the properties of that category class.

5.5 Semantics Preservation

Engels et.al. [55] address preservation of model consistency of UML Real Time (UML-
RT) models [152] during evolution. They use UML-RT to describe architecture and
behaviour using capsules, connectors, protocol roles, and protocols. The protocols are
defined by state machines, which specify the protocol behaviour between capsules (pro-
tocol behaviour) and the internal capsule behaviour. They describe a mapping to
Communicating Sequential Processes (CSP) [89], which provide a formal language for
describing communicating, concurrent processes. Its semantics is defined in terms of
traces, failures, and divergences, and define several notions of process refinement : a
process Q is a refinement of a process P if the traces(Q) ⊆ traces(P). This semantics is
used to analyse protocol consistency and deadlock freedom in UML-RT specifications.
The notion of consistency defined in their work is similar to our notion of semantics
preservation for sequence diagram aspect composition, which is based on refinements
of sequence diagrams represented by trace semantics.

There is a body of work related to program transformation that particularly address
semantics preservation. Among the early works on program transformation, Baltzer
et.al. [14] introduced transformation implementation (TI). In the TI approach, an
abstract program specification is constructed, which is subject to optimisations by fol-
lowing automated transformations. The transformations are maintained in a catalogue

47

Literature Review and State-of-the-Art

along with the conditions under which they are equivalence preserving. In compiler
verification, or certification, mechanical or automated proof systems are used to for-
mally prove that compiled code preserve the semantics given in a specification [125].
Program or model refactoring can be considered a special class of transformation, in
which semantics preservation is a requirement.

Verification is also addressed in the context of aspect-oriented implementation and
specification:

Katz and Katz [98] describe an approach for verifying the conformance of a system
to scenario-based aspect specifications. They define a system to be conform with a
scenario-based specification if all its computations are equivalent to a convenient com-
putation. A convenient computation is one in which only specified scenarios occur in
some order. Aspects are categorised as spectative, regulative, or invasive. A spectative
aspect do not affect state or conditions that modifies exiting behaviour. Regulative
aspects may modify the control flow, but may not impact existing behaviour. Finally,
invasive aspects may modify state and behaviour. Using fair transition system the-
ory, they verify the conformance of a system to aspect-oriented scenario specifications.
Their work addresses a complimentary problems to ours on semantics preservation for
sequence diagram aspects; they address the adherence of aspect scenario semantics to
a refinement (the implementation), while we address the preservation of refinement
relationships when applying sequence diagram aspects.

Another approach for verification of aspect-oriented systems is given by Krishna-
murthi et.al. [113]. They modularise verification of aspect-orientation by separating
verification of a base program and aspect advice. They employ model checking based
on Computation Tree Logic (CTL) and express aspect-oriented programs as state ma-
chines. The desired system behaviours, which are subject to verification, are spec-
ified as temporal behaviours in CTL. By modularising the verification, the cost of
re-verification is reduced when changes are imposed on aspect advice.

48

Chapter 6

Contribution Overview

The contributions of this thesis are manifested by the research papers in Appendices A
through F. They are all concerned with notions of concern composition, primarily at
the modelling level, and target our four research topics. In this chapter, we give a brief
summary of these contributions.

6.1 Semantics Preservation of Trace-Based Aspect

Composition

Sequence diagrams are used to describe interactions between system parts, and repre-
sent execution traces of a system. They are commonly used to specify requirements
in terms of obligated or prohibited system behaviours, or the detailed specification of
such behaviour. In order to address behaviours that crosscut the system, we look at
how trace-based aspects – in terms sequence diagram or Java-based aspects – affect the
system. Specifically, in papers III and IV (Appendices C and D), we address how se-
mantics can be preserved when sequence diagrams aspects are composed with existing
base model or code. In the former, a definition of semantics preservation for sequence
diagram aspects is given, which is used for evaluating several existing sequence diagram
modelling approaches. In the latter, these ideas are mapped to trace-based aspects in
Java.

Semantics Preservation of Sequence Diagram Aspects. In paper III, we use
the trace-based semantics defined by STAIRS [82] to establish a definition of semantics
preservation of sequence diagram aspects. Two properties are considered as contribut-
ing factors to semantics preservation: monotonicity of aspect composition with respect
to refinement relationships, and preservation of events in base models. Monotonicity
of aspect composition with respect to refinement means that refinement relationships
between sequence diagrams are preserved when aspects are applied to them. For two
sequence diagrams SD and SD′ and an aspect A, where SD′ � SD (� is the refine-
ment operator), the composition of A with SD′ (SD′ ⊕A) should also be a refinement
of SD ⊕ A, i.e. SD � SD′ =⇒ SD ⊕ A� SD′ ⊕ A.

We address the monotonicity both with respect to base model and aspect advice
refinement, and define semantics preservation of sequence diagram aspect composition
based on the two properties monotonicity and event preservation.

49

Contribution Overview

This is illustrated in Figure 6.1: Figures 6.1(a) and 6.1(b) illustrate the refinement
of the sequence diagram SD and aspect A, respectively. The refinement relation is
maintained in the composition in both cases.

(a) Refinement of the sequence di-
agram (SD)

(b) Refinement of the aspect (A)

Figure 6.1: Monotonicity of sequence diagram aspect composition with respect to
refinement

We restrict refinement of aspects to refinement of the advice and show that re-
finement of aspect pointcuts generally leads to compositions that are not semantics
preserving. This is because pointcut refinement potentially adds or removes matches,
resulting in compositions that are not refinements. This is further detailed in paper
III.

We use our definition to analyse six different sequence diagram approaches with re-
gards to the semantics preservation property, three syntactic and three semantic-based
approaches. The results of that analysis show that both syntactic and semantic ap-
proaches can be semantics preserving. The one thing that led the syntactic approaches
to be semantics preserving was tight restrictions on binding and querying.

Semantics Preservation of Trace-Based Aspects in Java. In paper IV, we de-
fine a trace-based semantics for Java inspired by STAIRS sequence diagram semantics,
called Java-STAIRS. This semantics is used for reasoning about semantics preservation
for Java systems and their refinements, based on the definitions of semantics preser-
vation for sequence diagram aspects given in paper III. In Java-STAIRS, a trace is
modelled as a sequence of events, where each event contains information about the
sender object, the receiver object, the message called, and the execution thread.

A mapping from sequence diagram aspects to a Java trace-based aspect technol-
ogy called Tracematches [3, 10] is defined. This allows pointcuts and advice initially
described by a sequence diagram to be handled by the Java run-time. An example of
a tracematch specification was given in Figure 5.2, Section 5.1.

We define trace filters for filtering Java execution traces that are not relevant in
the context of a specific sequence diagram. The filters are mapped to appropriate
mechanisms in the trace-based aspect system. Using a similar refinement semantics
for Java-STAIRS as that defined in STAIRS, we show that Java-STAIRS aspects are
semantics preserving.

The benefit of only allowing modifications that are valid refinements under the given
definitions is, related to the trace-based aspects, that a concern will work consistently
for a system also after it has been refined, or, in other words, semantics is preserved.

Validation of the Contribution. Our definitions of semantics preservation applies
to sequence diagram aspect composition and trace-based aspect composition in Java.
It gives a means of assessing if a specification or implementation change will impact

50

6.2 Confluence and Conflict in Feature Composition

the effects of existing aspects. If the change is according to our definitions, we know
that the effects imposed by existing aspects will be preserved. It not, we know that
the effects of existing aspects might be altered. With this, we can help ensuring a
consistent evolution of our system in the presence of trace-based aspects.

Our definitions are based on the semantics of the languages they address, i.e. traces
in sequence diagrams and in Java executions. For evaluation of applicability for se-
quence diagrams, we analysed six different sequence diagram aspect approaches. For
evaluation of applicability for trace-based aspects in Java, we analysed the impact of
changes in a graphical Java application with respect to the effect of existing trace-based
aspects.

6.2 Confluence and Conflict in Feature Composi-

tion

In the works represented by papers II and V (Appendices B and E), we address feature
composition using transformations, with a particular focus on how ordering of feature
selection influences the resulting product. When a set of features is selected for a
product, there may be several paths toward the fully composed product. If these paths
yield the same result, the transformations are confluent, and the product developer
does not have to spend resources checking this. If the different paths yield different
results, i.e. they are not confluent, the product developer must decide the ordering of
the feature resolution, and hence the transformations.

We address confluence in paper II by using aspectual transformations that modify
a generative product line transformation. This is referred to as higher-order transfor-
mations (Hi-Transforms). The product lines are defined by models, a transformation
that generates product code, and higher-order transformations defined by aspects that
represent features of the product line. The effect of these are variants of the base trans-
formation, which in turn can produce variants of generated code. The paper showed
that the higher-order transformations were especially suited for variability related to
the implementation platform (such as representation of properties in the code), and
that, given a clear separation between platform and domain information, the variability
transformations will be confluent.

We address confluence in paper V by implementing a domain-independent prod-
uct line transformation, based on a general variability model introduced by Haugen
et.al. [80]. Based on the properties of this transformation, we show that certain kinds
of features, represented by model fragments, are confluent. We also show under what
conditions the features in this model are in conflict. Finally, the paper describes an
algorithm for checking confluence. The results of this paper apply theoretical analysis
based on an implementation of product line transformations represented by the vari-
ability model. The results can be used in practise when building product lines with
the variability model, for reasoning about confluence, and for making decisions about
the ordering of feature resolutions or detecting conflicts.

Validation of the Contribution. We have described two cases of generative fea-
ture composition. In both cases, we implemented transformations for generating the
product configurations based on variability resolutions. In the first case, we inserted

51

Contribution Overview

transformation directives into product line transformations to accommodate variabil-
ity. The transformations were applied on an example model and a specific product
line code generator. The approach, however, is general and can be applied for other
models and transformations. We showed that, if the base transformations separate
platform-specific from domain-specific logic, the features can be composed (i.e. the
transformation can be applied) order-independently. In the second case, the transfor-
mation is general, and can be applied to any domain model; it implements variability
resolutions specified by the general variability model from [80]. We defined a theory
for reasoning about confluence and conflicts of defined variability, and implemented a
confluence checking algorithm. We used an example train station DSL [163] to validate
the approach.

6.3 Model Composition Contracts

Contracts are well acknowledged tools for regulating business-level transactions, where
several parties agree on mutual obligations and expectations. In software engineering,
the contract between components is often defined by interfaces with operation signa-
tures. To strengthen these, interaction protocols may define how components should
collaborate, or state machines may specify in detail how an event changes the state of a
component. An approach that extends interface definitions, which was called design by
contract (DbC), was defined as part of the Eiffel programming language [123]. In DbC,
the notions of obligations and expectations from business-level contracts are taken into
class and method definitions as pre- and post-conditions, and invariants.

This strengthening of the interface – the contract – was used as a quality assurance
mechanisms, to build more robust systems, and for providing better documentation for
systems.

In Paper VI (Appendix F), we apply the ideas from DbC in the context of model
composition, and define Composition by Contract (CbC). (The term Composition by
Contract was, however, established within this thesis, not in the paper.) Given a sys-
tem design, in which concerns are specified by different teams than those responsible
for the base application, it is hard to specify a clear interface with obligations and
expectations related to concern compositions. This may result in concerns, or aspects,
that perform unintended changes to the application, and that may be difficult to dis-
cover and expensive to fix. The resulting specifications may have inconsistencies or
broken assumptions, which may in turn lead to system faults, integration errors, etc.
Model-based composition contracts are intended to remedy this.

The model composition contracts associate constraints with models, which govern
the eligibility of compositions to modify the models. Figure 6.2 illustrates the approach.
A composition contract is related to a model, and defines constraints governing the
access and modification of that model. The constraints specify which elements that
are allowed to be accessed by a composition, and accessors that restrict further what
kind of access can be granted specific types of elements (e.g. only classes within the
’CarSystem’ namespace). Modifications specify, for various accessible elements, what
features that can be modified. Post-conditions define constraints on the model that
should be valid after a composition has been executed. Finally, helper queries can be
used to define helper operations used within constraints.

The approach uses OCL, with two extensions, for specifying the constraints in

52

6.4 Model-based Aspect Representation

Figure 6.2: A model with an associated composition contract

a contract: one extension is the matches operation, which provides string matching,
which can be useful for quantification within queries. The other is the preval operation,
which provides access to model element values prior to composition, which is necessary
for expressing post-conditions relative to pre-composition states.

To check a composition contract in the course of a composition, the contract is
compared with an assumption contract that represents the assumptions of the aspect
being composed. The export of the assumption contract is the responsibility of the
composition engine. The checking process is implemented by a prototype tool, which
analyse the contracts; a violating assumption contract yields a negative verdict, which
should result in abortion or rollback of the composition.

Validation of the Contribution. We defined and implemented a language and tool
support for specifying and checking model composition contracts. The approach helps
guarding system specifications against unintended or harmful modifications imposed
by aspect compositions. This can help increasing system robustness and ensuring that
system specifications stay according to expectations also in the presence of aspects. We
evaluated the approach using an established example system for store collaboration [45],
which displays many of the complexities of enterprise systems, such as patterns for
product exchange between stores.

6.4 Model-based Aspect Representation

In the course of our work, we have addressed language representation of aspect models.
In paper I (Appendix A), we address architectural aspects in UML. Papers IV and
VI (Appendices D and F) introduce a UML notation for specifying sequence diagram
aspects. This notation is used for representing behavioural concerns in the case studies.

Architectural Aspects. The architectural aspects are defined by structured classes
containing parts, ports, and connectors. Formal ports defined on the aspect class
represent elements that have to be bound during composition. This part of the aspect
corresponds to an advice in aspect-oriented terms. A textual or graphical binding

53

Contribution Overview

language specifies how an aspect is composed with a base model by binding port pairs in
the aspect to sets of port pairs, or connectors, in the base model. The binding language
corresponds to the pointcut language in aspect-oriented terms. This approach provides
a way of refining connectors to complex structures, thereby providing a mechanism
for architectural variability, which is not supported by the standard UML language
mechanisms.

Sequence Diagram Aspects. Sequence diagram aspects are defined using a UML
sequence diagram notation in papers IV and VI. The notation builds on existing works
by others, specifically that of Whittle et.al. [176] and Hanenberg et.al. [75]. In this
thesis work, we used the sequence diagram aspects for generating other artifacts. In
the work described by paper IV, the aspects were used to generate code for trace-based
aspects in Java, called Tracematches [3], which in turn could be compiled and executed
to match traces in Java programs. In the work represented by paper VI, the aspects
were used to generate the assumption part of a contract specification, which in turn
was used for checking against a specified composition contract.

Validation of the Contribution. Our architectural aspect approach provides ar-
chitectural variability of UML architecture specifications defined by structured classes.
Each aspect act as a refinement of architectural connectors, and allows complex con-
nectors to be modularised and reused many places in an architecture. To validate the
approach, we compared it with the built-in mechanisms of UML and showed that it
provides useful extensions. We applied the approach on a mobile positioning system
example with crosscutting concerns such as access control and transaction. The se-
quence diagram aspect representation provided a way of specifying trace-based aspects
and generating code-based aspects and contracts.

54

Chapter 7

Discussion

In this thesis we addressed a set of research topics – specified in Section 3.2 – through
contributions reflected by our research papers. They all contribute toward the main
research topic, which was defined as follows:

• To what extent – and how – can model-based composition mechanisms guarantee
consistency and semantics preservation of the models subject to modification?

Here, we revisit and discuss the research topics.

7.1 Research Topic 1 – Semantics Preservation of

Trace-Based Aspect Composition (RT1)

RT1 addressed how behavioural composition can be semantics preserving. This was
decomposed in three sub topics that address how semantics preservation can be de-
fined (RT1.1), what currently is lacking for composition of behaviour models to be se-
mantics preserving (RT1.2), and what the benefits of semantics preservation are (RT1.3).

We target these topics in paper III and IV (Appendices C and D), wherein we give
a definition of semantics preservation (RT1.1) for sequence diagram aspect composition
based on trace-semantics. The definition uses refinement as a key element for being
semantics preserving, such that aspects that are applied on a system S will still work
on any system S ′, if S ′ is a refinement of S. This is based on the definition of refinement
given in STAIRS [79], in which any legal refinement must preserve traces – either as
positive or negative. The other key element for semantics preservation in our definition
was preservation of events.

Our definition of semantics preservation is tied to the refinement semantics de-
fined by STAIRS. It may not work equally for other sequence diagram semantics and
may require reworking. For example, in the stream-based MSC semantics defined by
Krüger [117], property refinement can restrict behaviour by e.g. removing alternatives
or interleaving. In these cases of refinement, the semantics preservation property will
not be satisfied. Herein lies interesting areas for future research; how to cope with
different notions of refinement in the context of semantics preservation.

In paper IV, we extended this work toward Java implementations by mapping
sequence diagram aspects to trace-based aspects in Java. By mapping STAIRS trace
semantics to Java (Java-STAIRS), the paper showed how the semantics preservation

55

Discussion

definition applied in the implementation context. This result depends on the same
refinement notion, only mapped to traces of Java events.

Our analysis of existing approaches revealed that semantics-based sequence diagram
aspect approaches will be semantics preserving as long as they do not remove events, i.e.
delete messages. However, if we relax our definition to this only consider refinement,
all the semantics-based approaches analysed will be semantics preserving. We also
saw that syntactic-based approaches can be semantics preserving, if their method for
querying and binding is restricted to static binding of elements. For the trace-based
aspects in Java, restrictions on allowed program refinements need to be enforced in
order to be semantics preserving (RT1.2). We argued that our definition of semantics
preservation caters for increased consistency of our system during evolution (RT1.3).

Our definition of semantics preservation allows systems to be modified by refinement
in the presence of trace-based aspects without compromising the effect of the aspects.
If arbitrary changes were allowed, no guarantees could be made with regard to aspect
effects. However, this can potentially be extended in a controlled manner beyond
STAIRS refinement. In the context of a set of existing trace-based aspects, we can
define regions in the base models or code, which encapsulate the join points selected
by the aspects. Changes that result in non-refinement can then be made outside the
join point regions, while changes inside the regions must conform to a definition of
local refinement. Such extensions are potential subjects for future work.

7.2 Research Topic 2 – Confluence and Conflict in

Feature Composition (RT2)

This research topic was decomposed in the following sub topics: how to analyse conflu-
ence of such compositions (RT2.1), and how to establish the conditions for determining
confluence (RT2.2).

The research papers addressed these topics in two different product line approaches.
In paper II (Appendix B), feature variability representation and composition are han-
dled by hitransforms, which modify a product line code generator (transformation)
to a specific configuration. Platform-specific variability – such as the implementation
choice for associations – is separated from domain-specific variability – such as my on-
line bank includes feature electronic invoice. The paper argues that there is confluence
between platform and domain variability transformations, given that the base trans-
formations separate these concerns in the first place. In this case, confluence can be
analysed and determined (RT2.1, RT2.2) based on how well the transformations sepa-
rate platform-specific concerns from domain-specific concern, e.g. by avoiding mixture
of both within a single transformation rule.

In paper V (Appendix E), confluence is addressed more generally, based on domain-
independent transformations for product line feature composition. The transformation
resolves variability by manipulating the object structure of the product line. Variabil-
ity is modelled as substitutions, and a feature resolution selects one particular object
structure – replacement fragment – that should replace another – placement fragment.
The paper shows how interacting features – defined by overlapping fragments – result
in conflicts, and specifies how to check if two features are confluent and without con-
flict such that they can be resolved without considering their ordering. It shows how
confluence can be analysed (RT2.1) by navigating the object structures associated with

56

7.3 Research Topic 3 – Model Composition Contracts (RT3)

features, and that confluence can be determined (RT2.2) by analysing overlap between
their respective object structures.

Knowledge about the confluence characteristics of features does not guarantee error-
free feature composition. There may still be conflicts between features that are not
captured by structural analysis, e.g. architectural conflicts that need to be explicitly
represented by feature conflict relationships. The proposed approach can be augmented
with additional conflict analysis techniques to detect and handle these kinds of con-
flicts. Finding such conflicts is important in order to prevent failures in the deployed
products; finding them early in the development process can be crucial for reasons such
as safety, cost, and reputation. In the extension of feature conflict analysis, product
line configurations may be diagnosed post composition, to detect potential errors in
the composition, for instance such as described by White et.al. [172], where feature
configurations are translated to constraint satisfaction problems, which in turn are
used to diagnose potential problems. Another, complimentary approach, is to increase
the tolerance for conflicts in the running system such as in the approach by D’Souza
and Gopinathan [53], where they define a priority-based composition scheme to ensure
utilisation of features even if conflicts occur.

7.3 Research Topic 3 – Model Composition Con-

tracts (RT3)

This research topic was decomposed in the following sub topics: what does it mean
to constrain compositions by contracts (RT3.1), and how can such contracts be speci-
fied (RT3.2).

These topics were addressed by paper VI (Appendix F), which establishes the com-
position contract concept. Composition contracts allow model compositions to be con-
strained by specifying policies that identify explicitly allowed changes, hence hindering
undesired changes (RT3.1). An unwanted modification may be simple structural or
behaviour properties that the base model engineer wants to preserve, or details of be-
haviour, such as interaction protocols, that should be protected from modifications to
ensure that the protocols are not broken. The enforcement of the composition contract
makes this a controlled composition with respect to the wishes of the policy stakeholder,
which might be the base model or program developer. The contracts are specified in
a contract language, and reflect on the properties of the base model and how they can
be accessed and modified (RT3.2).

Our composition contract approach is based on general MOF-based models, and
can be applied to any kind of model artifact. As such, the mechanism is very general,
as it allows contracts to be specified for different kinds of models based on any kind
of meta-model, possibly combining several models or model views in a single contract.
One can argue that this generality results in a complicated contract authoring process
as well as a complicated contract specification. To a certain extent, this can be remedied
by meta-model-specific libraries – or helper queries – that provide simplified views on
the meta-model elements of interest. This kind of complexity can also be supported
by simplifications on the meta-model and model, along the lines of the meta-model
pruning algorithm described by Sen et.al. [153].

The composition contracts define constraints on behalf of base models, and the
checking process requires an assumption contract to be exported, or generated, based

57

Discussion

on the aspect. In the current contract checker implementation, each aspect is associated
with a separate assumption contract. This is, however, not a limitation in the approach,
which could allow the assumption of several aspects to be specified in a single contract.
Grouping assumptions based on the aspects is a reasonable modularisation, but the
approach would benefit from being able to share elements common to many aspects.

7.4 Research Topic 4 – Model-based Aspect Rep-

resentation (RT4)

This research topic was decomposed in two sub topics: how UML architectural aspects
can be represented and with what benefit (RT4.1), and how UML sequence diagram
aspects can be represented and with what benefit (RT4.2).

We address UML architectural aspects (RT4.1) in paper I, where we propose Arch-
Spects, which is an aspect notation and semantics based on UML composite structures.
One of the main benefits of the approach is the provision of architectural variability
by connector refinement through the aspects. This allows complex connectors to be
modularised and reused in many architecture configurations. This kind of connector
refinement extends the built-in abilities of UML to refine architectures. With the pro-
posed mechanisms come challenges related to semantics preservation: modifications of
the structural architecture have implications for the underlying semantics. In the paper,
we address the consistency of the types defined on architectural elements. However,
behavioural consistency is not addressed. If the underlying architectural elements have
associated behaviours, e.g. described by sequence diagrams or state machines, these
behaviours ought to be consistently modified along with the architecture.

One path in this direction can be found in alignment with the work of Kienzle
et.al. [106], who describe a multi-view approach for aspect-oriented modelling, which
maintains consistency between the different views (see Section 5.1). Another path can
be found in the work by Engels et.al. [55], who address model consistency preservation
of UML-RT models with architecture and state machine behaviour (see Section 5.5).

UML sequence diagram aspect representations (RT4.2) were addressed in papers IV
and VI. The introduced notation built on other, related notations, but was adapted
to fit standard UML notation and tools. The main benefits gained were usage of the
sequence diagram aspects for generative purposes: generating trace-based aspects in
Java and generating assumption contracts in a contract checking process.

58

Chapter 8

Conclusion

8.1 Summary of Contributions

In this thesis, we have addressed semantics preservation in model-based composition
through a set of complimentary focus areas:

• we gave a definition of semantics preservation for sequence diagram aspects, which
is based on sequence diagram refinement and event preservation. When comply-
ing with this definition, a sequence diagram – base model or aspect advice –
can be modified by refinement, and aspects that had an effect on the original
base model, will also have the expected effect after the modification. We gave a
definition of Java-based trace semantics to which we mapped our definition of se-
mantics preservation. We established a mapping from sequence diagram aspects
to trace-based aspects in Java and showed the usefulness of semantics preserva-
tion for Java executions. Semantics preservation helps ensuring that the intended
effect of aspects is not lost due to modifications.

• we established techniques for product line feature composition and theories for
analysing confluence and potential conflicts among features. We showed how po-
tential conflicts among features can be detected, and hence analysed and avoided,
and how confluence between features can be analysed. Knowledge about conflu-
ence helps a product developer to determine if the order of feature composition
is important or not.

• we defined a technique for model composition contracts – Composition by Con-
tract (CbC), which included a language to specify and a prototype tool to check
contracts. The CbC approach allows access constraints to be associated with
models in terms of pre-conditions and post-conditions; these govern the eligi-
bility for compositions to access and modify a model, and help the base model
engineer to protect her/his assumptions regarding the base model. CbC helps
guarding models from inconsistencies and errors introduced by compositions.

• we defined specification techniques for model-based aspects, specifically for archi-
tectural and behavioural aspects using UML composite structures and sequence
diagrams. The architectural aspects – called ArchSpects – provide a way of mod-
ularising complex connector structures, which can be used to make crosscutting
refinements of architectural connectors and providing architectural variability.

59

Conclusion

Sequence diagram aspects in UML were utilised for mapping to trace-based as-
pects in Java and for representing assumption contracts in the work on model
composition contracts.

8.2 Directions for Future Work

From the work we have accomplished in this thesis, we see several threads worth inves-
tigating as part of future work. We relate this to the domain of complex and adaptive
systems, which is – and will increasingly become – an important part of everyday life.
Complex, adaptive systems may involve mobile devices, stationary services, embedded
software, and sensors, that interact and collaborate to provide a set of services. They
may be context dependent, and require adaption and re-configuration to accommo-
date changes in the environment, users, or architectural elements. One challenge in
such re-configuration is to ensure that adaptions do not break functionality or quality
properties of the system.

In complex, adaptive systems, semantics preservation can be an essential property.
In particular for systems that need to ensure that adaptions do not break fundamental
functional system properties, mechanisms that can help analyse and confirm semantics
preservation will be useful. We want to pursue our work on semantics preservation in
the context of complex, adaptive systems. We want to assess if our definition of se-
mantics preservation for trace-based specification is adequate for practical applications
of adaptive systems. As previously discussed, we may find that the model requires ex-
tensions in order to cope with different notions of refinement. It can also be interesting
to address more flexible modes of modifications, e.g. by defining interface boundaries
between aspects and base models and allow more extensive changes (than refinement)
on the outside of such boundaries.

In addition, a more detailed view of semantics preservation can be useful, e.g. by
complementing with state machine behaviour and architecture descriptions. To this
end, existing work such as the consistency preservation of UML-RT specifications by
Engels et.al. [55] can complement our work. This may also be complemented with
feature-oriented views of adaptions, in which analysis of feature configurations can be
used to detect inconsistencies.

There is ongoing work on standardisation of a variability meta-model within the
OMG in what is called the Common Variability Language (CVL) [133]. A natural ex-
tension of the results on conflict and confluence analysis is development for supporting
the outcome of the CVL standardisation process.

Composition contracts can be developed in several directions. One direction is
improved usability and tool support. Tighter integration of contract specification with
modelling tools will improve usability, e.g. by allowing in-place constraint annotation of
graphical model elements. Integration with a traceability visualisation tool may be used
to visualise the dependencies implied by a contract. Another direction is the mapping of
composition contracts to implementation platforms in order to check and enforce run-
time composition. We have initiated work on mapping composition contracts based
on sequence diagrams to corresponding run-time contracts in an Enterprise Service
Bus platform. Composition contracts may be mapped to run-time monitors using
aspect-oriented technologies, which are used to check compositions – or adaptions – at
run-time.

60

8.2 Directions for Future Work

There are several different perspectives to which our techniques, and their potential
extensions, can be applied: one is at the level of design models, wherein analysis of
semantics preservation, confluence, and contract adherence can be applied design-time.
Another is at run-time, on model representations of the executing system (models at
run-time). Yet another is on the executing system itself.

Semantics preservation related to refinement and composition of models or code is
likely to become increasingly more important in increasingly more complex system
domains with demands for adaptivity and re-configuration. Our contributions, and
extensions of these, can provide some of this support.

– What we call the beginning is often the end. And to make an end is to make a
beginning. The end is where we start from.

T.S.Eliot

61

Conclusion

62

Bibliography

[1] Mehmet Aksit, Lodewijk Bergmans, and Sinan Vural. An Object-Oriented
Language-Database Integration Model: The Composition-Filters Approach.
In Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), pages 372–395. Springer-Verlag, 1992.

[2] Mehmet Aksit, Arend Rensink, and Tom Staijen. A Graph-Transformation-Based
Simulation Approach for Analysing Aspect Interference on Shared Join Points.
8th International Conference on Aspect-Oriented Software Development (AOSD),
pages 39–50, 2009.

[3] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding Trace Matching
with Free Variables to AspectJ. In 20th Annual Conference on Object Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages 345–364.
ACM, 2005.

[4] Robert Allen and David Garlan. A Formal Basis for Architectural Connection.
ACM Transaction on Software Engineering Methodology, 6(3):213–249, 1997.

[5] Michalis Anastasopoulos and Dirk Muthig. An Evaluation of Aspect-Oriented
Programming as a Product Line Implementation Technology. In Software Reuse:
Methods, Techniques and Tools, pages 141–156. Springer, 2004.

[6] João Araújo, Jon Whittle, and Dae-Kyoo Kim. Modeling and Composing
Scenario-based Requirements with Aspects. In Proceedings of the 12th IEEE
International Requirements Engineering Conference, pages 58–67, 2004.

[7] Aristotéles. Prior Analytics, Translated by A.J. Jenkinson. eBooks@Adelaide,
http://ebooks.adelaide.edu.au/a/aristotle/a8pra/, 2007.

[8] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua,
D. Muthig, B. Paech, J. Wüst, and J. Zettel. Component-based Product Line
Engineering with UML. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2002.

[9] P. Avgeriou, N. Guelfi, and N. Medvidovic. Software Architecture Description
and UML. In UML Modeling Languages and Applications, volume 3297/2005 of
LNCS, pages 23–32. Springer, 2004.

[10] Pavel Avgustinov, Julian Tibble, and Oege de Moor. Making Trace Monitors
Feasible. Technical Report abc-2007-1, University of Oxford, UK, 2007.

63

Bibliography

[11] Eyvind W. Axelsen and S. Krogdahl. Groovy Package Templates: Supporting
Reuse and Runtime Adaption of Class Hierarchies. Proceedings of the 5th Sym-
posium on Dynamic Languages (DSL), OOPSLA, ACM, pages 15–26, 2009.

[12] Eyvind W. Axelsen and Stein Krogdahl. Pluggable Design Patterns Utilizing
Package Templates. Norsk informatikkonferanse (NIK) (Norwegian Conference
of Informatics), 2009.

[13] Eyvind W. Axelsen, Fredrik Srensen, and Stein Krogdahl. A Reusable Ob-
server Pattern Implementation Using Package Templates. Proceedings of the
8th Workshop on Aspects, Components, and Patterns for Infrastructure Software
(ACP4IS), pages 37–42, 2009.

[14] Robert Balzer, Neil Goldman, and David Wile. On the Transformational Imple-
mentation Approach to Programming. In Proceedings of the 2nd International
Conference on Software Engineering (ICSE), pages 337–344, Los Alamitos, CA,
USA, 1976. IEEE Computer Society Press.

[15] E. Baniassad, P.C. Clements, J. Araújo, A. Moreira, A. Rashid, and B. Tekiner-
dogan. Discovering Early Aspects. IEEE Software, 2006.

[16] Elisa Baniassad and Siobhán Clarke. Theme: an Approach for Aspect-Oriented
Analysis and Design. 26th International Conference on Software Engineering
(ICSE), pages 158–167, 23-28 May 2004.

[17] Don Batory. Feature-Oriented Programming and the AHEAD Tool Suite. In Pro-
ceedings of the 26th International Conference on Software Engineering (ICSE),
pages 702–703. IEEE Computer Society, 2004.

[18] Don Batory, Roberto E. Lopez-Herrejon, and Jean-Philippe Martin. Generating
Product-Lines of Product-Families. In Proceedings of the 17th IEEE Interna-
tional Conference on Automated Software Engineering (ASE), pages 81–92. IEEE
Computer Society, 2002.

[19] Don Batory and Sean O’Malley. The Design and Implementation of Hierarchical
Software Systems with Reusable Components. ACM Transactions on Software
Engineering and Methodology, 1(4):355–398, 1992.

[20] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling Step-wise Re-
finement. In Proceedings of the 25th International Conference on Software Engi-
neering (ICSE), pages 187–197. IEEE Computer Society, 2003.

[21] Kent Beck and Ward Cunningham. A Laboratory for Teaching Object Ori-
ented Thinking. Conference Proceedings on Object-oriented Programming Sys-
tems, Languages and Applications (OOPSLA), pages 1–6, 1989.

[22] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Stateful Traits and Their
Formalization. Computer Languages, Systems and Structures, Elsevier, 34:83–
108, 2008.

[23] Mario Luca Bernardi and Giuseppe Antonio Di Lucca. A Taxonomy of Interac-
tions Introduced by Aspects. International Computer Software and Applications
Conference, pages 726–731, 2008.

64

Bibliography

[24] Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Precise Semantics
of EMF Model Transformations by Graph Transformation. ACM/IEEE 10th
International Conference on Model Driven Engineering Languages and Systems
(MODELS), 5301:53–67, 2008.

[25] Grady Booch. Object-Oriented Development. IEEE Transactions on Software
Engineering, SE-12(2):211–221, February 1986.

[26] T. F. Bowen, F. S. Jhorack, C. H. Cbow, N. GniReth, G. E. Herman, and Y-J U.
The Feature Interaction Problem in Telecommunication Systems. Proceedings of
the 7th IEEE Int. Conf. Soft Eng. Telecom Systems, 1989.

[27] Gilad Bracha and William Cook. Mixin-based Inheritance. Proceedings of the
Conference on Object-Oriented Programming: Systems, Languages, and Applica-
tions (OOPSLA) and the European Conference on Object-Oriented Programming
(ECOOP), pages 303–311, 1990.

[28] I. S. Brito, F. Vieira, A. Moreira, and R A. Ribeiro. Handling Conflicts in As-
pectual Requirements Compositions. Transactions on Aspect-Oriented Software
Development, 4620:144–166, 2007.

[29] Frederick P. Brooks. No Silver Bullet: Essence and Accidents of Software Engi-
neering. IEEE Computer, 20:10–19, 1987.

[30] Peter Pin-Shan Chen. The Entity-Relationship Model—Toward a Unified View
of Data. ACM Transaction of Database Systems, 1(1):9–36, 1976.

[31] R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, M. Pinto Alarcon, J. Bakker,
B. Tekinerdogan, S. Clarke, and A. Jackson. Survey of Analysis and Design
Approaches. Technical report, AOSD Europe, 2005.

[32] S. Clarke, W. Harrison, H Ossher, and P. Tarr. Subject-Oriented Design: To-
wards Improved Alignment of Requirements, Design, and Code. OOPSLA ’99:
Proceedings of the 14th ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, pages 325–339, 1999.

[33] Siobhán Clarke and Elisa Baniassad. Aspect-Oriented Analysis and Design, The
Theme Approach. Addison-Wesley, ISBN 0-231-24674-8, 2005.

[34] Paul C. Clements and Linda Northrop. Software Product Lines: Practices and
Patterns. SEI Series in Software Engineering. Addison-Wesley, ISBN 0-201-
70332-7, August 2001.

[35] Peter Coad and Edward Yourdon. Object-Oriented Design. Prentice Hall, ISBN
0-13-630070-7, 1991.

[36] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Loewe. Alge-
braic Approaches to Graph Transformation, Part I: Basic Concepts and Double
Pushout Approach. Technical Report TR-96-17, Department of Informatics, Uni-
versity of Pisa, Italy, 1996.

65

Bibliography

[37] Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad. Motorola WEAVR:
Model Weaving in a Large Industrial Context. Proceedings of the International
Conference on Aspect-Oriented Software Development (AOSD), Industry track,
2006.

[38] Thomas Cottenier, Aswin van den Berg, and Tzilla Elrad. Stateful Aspects: the
Case for Aspect-Oriented Modeling. In 10th international workshop on Aspect-
oriented modeling (AOM), pages 7–14. ACM, 2007.

[39] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The Next Step
in Web Services. Communications of the ACM, 46(10):29–34, 2003.

[40] Krzysztof Czarnecki and Michal Antkiewicz. Mapping Features to Models: A
Template Approach Based on Superimposed Variants. Generative Programming
and Component Engineering, pages 422–437, 2005.

[41] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming - Meth-
ods, Tools, and Applications. ACM Press/Addison-Wesley Publishing Co, ISBN
0201309777, 2000.

[42] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged Configura-
tion Using Feature Models. In Proceedings of the Third Software Product Line
Conference (SPLC), pages 266–283. Springer, 2004.

[43] Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying Feature-based Model
Templates Against Well-formedness OCL Constraints. GPCE ’06: Proceedings
of the 5th international conference on Generative programming and component
engineering, pages 211–220, 2006.

[44] Daniel S. Dantas and David Walker. Harmless Advice. 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), pages
383–396, 2006.

[45] B. Demchak, V. Ermagan, E. Farcas, T. Huang, I. Krüger, and M. Menarini.
The Common Component Modeling Example: Comparing Software Component
Models, chapter A Rich Services Approach to CoCoME, pages 85–115. LNCS.
Springer-Verlag, 2008.

[46] Peter J. Denning. Encyclopedia of Computer Science, chapter Computer Science:
the Discipline. Nature Publishing Group, 156159248X, 2000.

[47] M. Deubler, M. Meisinger, S. Rittmann, and I. Krüger. Modeling Crosscutting
Services with UML Sequence Diagrams. In Model Driven Engineering Languages
and Systems (MODELS). Springer, 2005.

[48] Edsger Dijkstra. On the Role of Scientific Thought. Republished in Selected
Writings on Computing: A Personal Perspective, Springer-Verlag, 1982. ISBN
0387906525, 1974.

[49] Simplice Djoko Djoko, Rémi Douence, and Pascal Fradet. Aspects Preserving
Properties. Proceedings of the 2008 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-based Program Manipulation (PEPM), pages 135–145,
2008.

66

Bibliography

[50] R. Douence, P. Fradet, and M. Südholt. Aspect Oriented Software Development,
chapter Trace-based Aspects, pages 201–217. Addison-Wesley, ISBN 0321219767,
2004.

[51] Rémi Douence, Pascal Fradet, and Mario Südholt. A Framework for the Detec-
tion and Resolution of Aspect Interactions. Proceedings of the 1st ACM SIG-
PLAN/SIGSOFT conference on Generative Programming and Component Engi-
neering (GPCE), pages 173–188, 2002.

[52] Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, Reuse and
Interaction Analysis of Stateful Aspects. In 3rd International Conference on
Aspect-oriented Software Development (AOSD), pages 141–150. ACM, 2004.

[53] Deepak D’Souza and Madhu Gopinathan. Conflict-Tolerant Features. In Proceed-
ings of the 20th international conference on Computer Aided Verification (CAV),
pages 227–239. Springer-Verlag, 2008.

[54] Desmond F. D’Souza and Alan Cameron Wills. Objects, Components, and Frame-
works with UML: the Catalysis Approach. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

[55] G. Engels, R. Heckel, J. Malte Küster, and L. Groenewegen. Consistency-
Preserving Model Evolution through Transformations. 5th International Con-
ference on The Unified Modeling Language, pages 212–226, 2002.

[56] C. Ermel, M. Rudolf, and G. Taentzer. Handbook of graph grammars and comput-
ing by graph transformation: vol. 2: applications, languages, and tools, chapter
The AGG Approach: Language and Environment, pages 551–603. World Scien-
tific Publishing Co., Inc., 1999.

[57] R. Filman and D. Friedman. Aspect-Oriented Programming is Quantification
and Obliviousness. In Workshop on Advanced Separation of Concerns, OOPSLA,
2000.

[58] Robert W. Floyd. Assigning Meanings to Programs. In Mathematical Aspects of
Computer Science, volume 19 of Proceedings of Symposia in Applied Mathematics,
pages 19–32. American Mathematical Society, 1967.

[59] R. France, F. Fleurey, R. Reddy, B. Baudry, and S. Ghosh. Providing Sup-
port for Model Composition in Metamodels. 11th IEEE International Enterprise
Distributed Object Computing Conference (EDOC), pages 253–266, 2007.

[60] R. France, S. Ghosh, T. Dinh-Trong, and A. Solberg. Model-Driven Development
Using UML 2.0: Promises and Pitfalls. IEEE Computer, 39(2):59, 2006.

[61] R. France, D-K. Kim, S. Ghosh, and E. Song. A UML-Based Pattern Specification
Technique. IEEE Transactions on Software Engineering, pages 193–206, 2004.

[62] R. France, I. Ray, G. Georg, and S. Ghosh. Aspect-oriented Approach to Early
Design Modelling. IEE Proceedings Software, 151(4):173–185, August 2004.

67

Bibliography

[63] A. Garcia, C. Chavez, T. Batista, C. Sant’anna, U. Kulesza, A. Rashid, and
C. Lucena. Software Architecture, chapter On the Modular Representation of
Architectural Aspects, pages 82–97. Springer, 2006.

[64] David Garlan, Robert Monroe, and David Wile. Acme: an Architecture Descrip-
tion Interchange Language. CASCON ’97: Proceedings of the 1997 conference of
the Centre for Advanced Studies on Collaborative research, page 7, 1997.

[65] J. Greenfield, K. Short, S. Cook, and S. Kent. Software Factories: Assembling
Applications with Patterns, Frameworks. Wiley Technology Publishing. Wiley,
ISBN 0471202843, 2004.

[66] W. G. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari, Y. Cai, and H. Ra-
jan. Modular Software Design with Crosscutting Interfaces. IEEE Software,
23(1):51–60, 2006.

[67] R. Grønmo, F. Sørensen, B. Møller-Pedersen, and S. Krogdahl. A Semantics-
Based Aspect Language for Interactions with the Arbitrary Events Symbol. Eu-
ropean Conference of Model Driven Architecture Foundations and Applications
(ECMDA), Springer, 5095:262–277, Springer–Verlag 2008.

[68] R. Grønmo, F. Sørensen, B. Møller-Pedersen, and S. Krogdahl. Semantics-Based
Weaving of UML Sequence Diagrams. International Conference on Model Trans-
formation (ICMT), Springer, 5063:122–136, Springer–Verlag 2008.

[69] Roy Grønmo, Stein Krogdahl, and Birger Møller-Pedersen. A Collection Operator
for Graph Transformation. In Proceedings of the 2nd International Conference on
Theory and Practice of Model Transformations (ICMT), pages 67–82. Springer-
Verlag, 2009.

[70] Roy Grønmo and Birger Møller-Pedersen. Aspect Diagrams for UML Activity
Models. In nternational Workshop and Symposium on Applications of Graph
Transformation with Industrial Relevance (AGTIVE), volume 5088 of LNCS,
pages 329–344. Springer, 2007.

[71] Roy Grønmo, Birger Møller-Pedersen, and Gøran K. Olsen. Comparison of Three
Model Transformation Languages. In European Conference on Model Driven
Architecture Foundations and Applications (ECMDA-FA), volume 5562 of LNCS,
pages 2–17. Springer, 2009.

[72] Roy Grønmo, Ragnhild K. Runde, and Birger Møller-Pedersen. Confluence of
Aspects for Sequence Diagrams. Research Report 390 ISBN 82-7368-351-6, Uni-
versity of Oslo, 2009.

[73] John Grundy. Aspect-Oriented Requirements Engineering for Component-Based
Software Systems. Requirements Engineering, IEEE International Conference
on, pages 84–91, 1999.

[74] Günter Halmans and Klaus Pohl. Communicating the Variability of a Software-
Product Family to Customers. Software and System Modeling, 2(1):15–36, 2003.

68

Bibliography

[75] Stefan Hanenberg, Dominik Stein, and Rainer Unland. From Aspect-oriented
Design to Aspect-oriented Programs: Tool-supported Translation of JPDDs Into
Code. In 6th International Conference on Aspect-Oriented Software Development
(AOSD), pages 49–62, New York, NY, USA, 2007. ACM Press.

[76] William Harrison and Harold Ossher. Subject-oriented Programming: a Critique
of Pure Objects. Proceedings of the Eighth Annual Conference on Object-oriented
Programming Systems, Languages, and Applications (OOPSLA), pages 411–428.,
1993.

[77] John Hatcliff and Matthew B. Dwyer. Using the Bandera Tool Set to Model-
Check Properties of Concurrent Java Software. CONCUR 2001 – Concurrency
Theory (12st CONCUR’01), 2154:39–58, August 2001.

[78] Ø. Haugen, K. E. Husa, R. K. Runde, and K. Stølen. Why Timed Sequence
Diagrams Require Three-Event Semantics. Research Report 309, ISBN 82-7368-
261-7, University of Oslo, 2004.

[79] Ø. Haugen, K. E. Husa, R. K. Runde, and K. Stølen. STAIRS Towards Formal
Design with Sequence Diagrams. Software and Systems Modeling, pages 355–367,
2005.

[80] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. Olsen, and A. Svendsen. Adding
Standardized Variability to Domain Specific Languages. Software Product Line
Conference (SPLC), pages 139–148, 2008.

[81] Øystein Haugen and Birger Møller-Pedersen. Configurations by UML. 3rd Eu-
ropean Workshop on Software Architecture (EWSA), 2006.

[82] Øystein Haugen and Ketil Stølen. STAIRS - Steps To Analyze Interactions with
Refinement Semantics. UML 2003 - The Unified Modeling Language, 2863:388–
402, Springer Verlag 2003.

[83] W. Havinga, I. Nagy, L. Bergmans, and M. Aksit. A Graph-based Approach to
Modeling and Detecting Composition Conflicts Related to Introductions. Pro-
ceedings of the 8th ACM International Conference on Aspect-oriented Software
Development (AOSD), 208:85–95, 2007.

[84] Reiko Heckel, Jochen Malte Küster, and Gabriele Taentzer. Confluence of Typed
Attributed Graph Transformation Systems. Proceedings of the First International
Conference on Graph Transformation, pages 161–176, 2002.

[85] Richard Helm, Ian M. Holland, and Dipayan Gangopadhyay. Contracts: Spec-
ifying Behavioral Compositions in Object-oriented Systems. ACM SIGPLAN
Notices, 25(10):169–180, 1990.

[86] Brian Henderson-Sellers. UML - the good, the bad or the ugly? perspectives
from a panel of experts. Software and System Modeling, 4(1):4–13, 2005.

[87] José Luis Herrero, Fernando Sánchez, Fabiola Lucio, and Miguel Toro. Intro-
ducing Separation of Aspects at Design Time. in Proc. of AOP Workshop at
ECOOP ’00, 2000.

69

Bibliography

[88] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communica-
tions of the ACM, 12(10):576–580, 1969.

[89] C. A. R. Hoare. Communicating Sequential Processes. Communications of the
ACM, 21(8):666–677, 1978.

[90] ITU-T. Formal description techniques (FDT) Specification and Description
Language (SDL), Z-Series Recommendations. Standard Z.100, International
Telecommunication Union (ITU-T), 2003.

[91] ITU-T. Formal description techniques (FDT) Message Sequence Chart (MSC),
Z-Series Recommendations. Standard Z.120, International Telecommunication
Union (ITU-T), 2004.

[92] ITU-T and ISO/IEC. Reference Model for Open Distributed Processing (RM-
ODP), Overview. Standard ITU-T Rec. X.901 — ISO/IEC 10746-1, International
Telecommunication Union (ITU-T), International Standards Organisation (ISO),
1998.

[93] Ivar Jacobson. Object-oriented Software Engineering. Addison-Wesley, ISBN
0201544350, New York, NY, USA, 1992.

[94] Ivar Jacobson and Pan-Wei Ng. Aspect-Oriented Software Development with Use
Cases (Addison-Wesley Object Technology Series). Addison-Wesley Professional,
ISBN 0321268881, 2004.

[95] Jean-Marc Jézéquel and Bertand Meyer. Design by Contract: the Lessons of
Ariane. IEEE Computer, 30(1):129–130, Jan 1997.

[96] Karl Trygve Kalleberg and Eelco Visser. Combining aspect-oriented and strate-
gic programming. Electronic Notes in Theoretical Computer Science, 147(1):5
– 30, 2006. Proceedings of the 6th International Workshop on Rule-Based Pro-
gramming (RULE 2005).

[97] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Petersen. Feature-Oriented Do-
main Analysis (FODA) Feasibility Study, CMU/SEI-90-TR-21. Technical report,
Software Engineering Institute (SEI), 1990.

[98] Emilia Katz and Shmuel Katz. Verifying Scenario-Based Aspect Specifications.
International Symposium of Formal Methods Europe (FM), pages 432–447, 2005.

[99] Shmuel Katz. A Survey of Verification and Static Analysis for Aspects. Technical
report, AOSD Europe Network of Excellence, 2005.

[100] Shmuel Katz and Marcelo Sihman. Aspect Validation Using Model Checking.
Verification: Theory and Practice, 2772:373–394, 2003.

[101] Andy Kellens, Kim Mens, Johan Brichau, and Kris Gybels. Managing the Evo-
lution of Aspect-Oriented Software with Model-Based Pointcuts. European Con-
ference on Object-Oriented Programming (ECOOP), pages 501–525, 2006.

70

Bibliography

[102] Raffi T. Khatchadourian and Awais Rashid. Rejuvenate Pointcut: A Tool for
Pointcut Expression Recovery in Evolving Aspect-Oriented Software. Eighth
IEEE International Working Conference on Source Code Analysis and Manipu-
lation, pages 261–262, Sept. 2008.

[103] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An Overview of AspectJ. Lecture Notes in Computer Science, 2072:327–353,
January 2001.

[104] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J-M. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In European Conference on Object-
Oriented Programming (ECOOP), pages 220–242, 1997.

[105] Gregor Kiczales and Mira Mezini. Aspect-oriented Programming and Modu-
lar Reasoning. In Proceedings of the 27th International Conference on Software
Engineering (ICSE), pages 49–58, 15-21 May 2005.

[106] Jörg Kienzle, Wisam Al Abed, and Jacques Klein. Aspect-oriented Multi-view
Modeling. AOSD ’09: Proceedings of the 8th ACM international conference on
Aspect-oriented software development, pages 87–98, 2009.

[107] Jörg Kienzle, Ekwa Duala-Ekoko, and Samuel Gélineau. AspectOptima: A
Case Study on Aspect Dependencies and Interactions. Transactions on Aspect-
Oriented Software Development V, pages 187–234, 2009.

[108] H. Klaeren, E. Pulvermueller, A. Rashid, and A. Speck. Aspect Composition Ap-
plying the Design by Contract Principle. Proceedings of the Second International
Symposium on Generative and Component-Based Software Engineering (GCSE),
pages 57–69, 2001.

[109] Jacques Klein, Franck Fleurey, and Jean-Marc Jézéquel. Weaving Multiple As-
pects in Sequence Diagrams. Transactions on Aspect Oriented Software Devel-
opment (TAOSD), pages 167–199, 2007.

[110] Jacques Klein, Lüıc Helouet, and Jean-Marc Jézéquel. Semantic-based Weaving
of Scenarios. In The 5th International Conference on Aspect-oriented Software
Development (AOSD), pages 27–38, New York, NY, USA, 2006. ACM Press.

[111] Günter Kniesel. Detection and Resolution of Weaving Interactions. Transactions
on Aspect-Oriented Software Development V, pages 135–186, 2009.

[112] Christian Koppen and Maximilian Storzer. PCDiff: Attacking the Fragile Point-
cut Problem. European Interactive Workshop on Aspects in Software (EIWAS),
Berlin, Germany, 2004.

[113] Shriram Krishnamurthi, Kathi Fisler, and Michael Greenberg. Verifying Aspect
Advice Modularly. Proceedings of the 12th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (SIGSOFT/FSE), pages 137–146,
2004.

[114] Stein Krogdahl, Birger Møller-Pedersen, and Fredrik Sørensen. Exploring the
use of Package Templates for Flexible re-use of Collections of Related Classes.
Journal of Object Technology, 2009.

71

Bibliography

[115] Stein Krogdahl and Frederik Sørensen. Generic Packages with Expandable
Classes Compared with Similar Approaches. Norsk informatikkonferanse (NIK)
(Norwegian Conference of Informatics), 2007.

[116] Philippe Kruchten. The 4+1 View Model of Architecture. IEEE Software,
12(6):42–50, 1995.

[117] Ingolf H. Krüger. Distributed System Design with Message Sequence Charts. PhD
thesis, Technischen Universität München, 2000.

[118] Ingolf H. Krüger, Michael Meisinger, and Massimiliano Menarini. Interaction-
based Runtime Verification for Systems of Systems Integration. Journal of Logic
Computation, 2008.

[119] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez. Model-based DSL Frame-
works. Companion to the 21st ACM SIGPLAN symposium on Object-oriented
Programming Systems, Languages, and Applications (OOPSLA), pages 602–616,
2006.

[120] Karl J. Lieberherr, Ian Holland, and Arthur J. Riel. Object-oriented Program-
ming: An Objective Sense of Style. International Conference on Object Oriented
Programming, Systems, Languages and Applications (OOPSLA), pages 323–334,
September 1988.

[121] Katharina Mehner, Mattia Monga, and Gabriele Taentzer. Analysis of Aspect-
Oriented Model Weaving. Transactions on Aspect-Oriented Software Develop-
ment V, pages 235–263, 2009.

[122] A. Metzger, S. Bühne, K. Lauenroth, and K. Pohl. Considering Feature Inter-
actions in Product Lines: Towards the Automatic Derivation of Dependencies
between Product Variants. 8th International Conference on Feature Interactions
in Telecommunications and Software Systems, pages 198–216, 2005.

[123] Bertand Meyer. Applying ‘design by contract’. IEEE Computer, 25:40–51, 1992.

[124] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, New
York, 1988.

[125] J. Strother Moore. A Mechanically Verified Language Implementation. Journal
of Automated Reasoning, 5(4):461–492, 1989.

[126] Ana Moreira, Awais Rashid, and João Araújo. Multi-Dimensional Separation of
Concerns in Requirements Engineering. In Proceedings of the 13th IEEE Inter-
national Conference on Requirements Engineering (RE), pages 285–296, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

[127] B. Morin, F. Fleurey, N. Bencomo, J-M. Jézéquel, A. Solberg, V. Dehlen, and
G.S. Blair. An Aspect-Oriented and Model-Driven Approach for Managing Dy-
namic Variability. 11th International Conference on Model Driven Engineering
Languages and Systems (MODELS), 5301:782–796, 2008.

[128] Object Management Group (OMG). MDA Guide V1.0.1. OMG document,
omg/2003-06-01, OMG, 2003.

72

Bibliography

[129] Object Management Group (OMG). Meta Object Facility (MOF) Core Specifi-
cation. Standard, formal/06-01-01, Object Management Group (OMG), 2006.

[130] Object Management Group (OMG). Object Constraint Language, Version 2.0.
Standard, formal/06-05-01, OMG, 2006.

[131] Object Management Group (OMG). Meta Object Facility (MOF) 2.0
Query/View/Transformation, Version 1.0. Standard, ptc/05-11-01, Object Man-
agement Group, 2008.

[132] Object Management Group (OMG). MOF Models to Text Transformation Lan-
guage, Version 1.0. Standard, formal/2008-01-16, Object Management Group,
2008.

[133] Object Management Group (OMG). Common Variability Language. Draft RFP
ad/2009-11-02, OMG, 2009.

[134] Object Management Group (OMG). The Unified Modeling Language: Super-
structure, Version 2.2. Standard, formal/2009-02-02, OMG, 2009.

[135] Object Management Group (OMG). UML Profile for Modeling and Analysis of
Real-time and Embedded systems (MARTE). Standard, ptc/08-06-09, OMG,
2009.

[136] Society of Automotive Engineers (SAE). Architecture Analysis and Design Lan-
guage (AADL). Standard AS5506, SAE, 2009.

[137] J. Oldevik, T. Neple, R. Grønmo, J. Aagedal, and A. Berre. Toward Standardised
Model to Text Transformations. In European Conference on Model Driven Archi-
tecture - Foundations and Applications (ECMDA), pages 239–253, Nuremberg,
2005. Springer.

[138] Jon Oldevik. Can Aspects Model Product Lines? Proceedings of the 2008 AOSD
Workshop on Early aspects, pages 1–8, 2008.

[139] Harold Ossher. Confirmed Joinpoints. AOSD Workshop on Software Engineering
Properties of Languages and Aspect Technologies (SPLAT), 2006.

[140] Klaus Ostermann, Mira Mezini, and Christoph Bockisch. Expressive Pointcuts
for Increased Modularity. European Conference on Object Oriented Programming
(ECOOP), 3586/2005:214–240, 2005.

[141] David L. Parnas. On the Criteria To Be Used in Decomposing Systems into
Modules. Communications of the ACM, 1972.

[142] Klaus Pohl, Gunter Bockle, and Frank van der Linden. Software Product Line En-
gineering - Foundations, Principles, and Techniques. Springer, ISBN 3540243720,
2005.

[143] Christian Prehofer. Feature-Oriented Programming: A Fresh Look at Objects.
In European Conference on Object Oriented Programming (ECOOP), pages 419–
443, 1997.

73

Bibliography

[144] A. Rashid, P. Sawyer, A. Moreira, and J. Araújo. Early Aspects: A Model for
Aspect-Oriented Requirements Engineering. IEEE Joint International Confer-
ence on Requirements Engineering, pages 199–202, 2002.

[145] Awais Rashid, Ana Moreira, and João Araújo. Modularisation and Composition
of Aspectual Requirements. Proceedings of the 2nd international conference on
Aspect-oriented software development (AOSD), pages 11–20, 2003.

[146] Trygve Reenskaug, Per Wold, and Odd Arild Lehne. Working with Objects: The
OORAM Software Engineering Method. Englewood Cliffs: Prentice Hall, ISBN
0-13-452930-8, 1995.

[147] Sajjad H. Rizvi. Avicenna (Ibn Sina). Internet Encyclopedia of Philosophy, 2006.

[148] J. Rumbaugh, M. Blaha, W. Lorenson, F. Eddy, and W. Premerlani. Object-
Oriented Modeling and Design. Prentice-Hall, 1990.

[149] R.K. Runde. STAIRS - Understanding and Developing Specifications Expressed
as UML Interaction Diagrams. PhD thesis, Department of Informatics, Univer-
sity of Oslo, 2007.

[150] Kouhei Sakurai and Hidehiko Masuhara. Test-based Pointcuts for Robust and
Fine-grained Join Point Specification. Proceedings of the 7th international con-
ference on Aspect-oriented software development (AOSD), pages 96–107, 2008.

[151] N. Schärli, S. Ducasse, O. Nierstrasz, and A.P. Black. Traits: Composable units
of behaviour. Lecture Notes in Computer Science, pages 248 – 274, 2003.

[152] Bran Selic. Using UML for Modeling Complex Real-Time Systems. LCTES
’98: Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers,
and Tools for Embedded Systems, pages 250–260, 1998.

[153] S. Sen, N. Moha, B. Baudry, and J-M.Jézéquel. Meta-model pruning. In Andy
Schürr and Bran Selic, editors, MoDELS, volume 5795 of Lecture Notes in Com-
puter Science, pages 32–46. Springer, 2009.

[154] Marcelo Sihman and Shmuel Katz. Superimpositions and Aspect-Oriented Pro-
gramming. The Computer Journal, 46(5), 2003.

[155] A. Solberg, D. Simmonds, R. Reddy, R. France, S. Ghosh, and J. Aagedal. Devel-
oping Distributed Services Using an Aspect Oriented Model Driven Framework.
International Journal of Cooperative Information Systems, 15:535–564, 2006.

[156] Arnor Solberg. An Aspect-Oriented Model-Driven Approach for QoS-Aware
Sofwtare Engineering. PhD thesis, University of Oslo, 2007.

[157] Dominik Stein, Stefan Hanenberg, and Rainer Unland. A UML-based Aspect-
Oriented Design Notation for AspectJ. In Proceedings of the 1st international
conference on Aspect-oriented software development (AOSD’02), pages 106–112,
New York, NY, USA, 2002. ACM Press.

74

Bibliography

[158] Dominik Stein, Stefan Hanenberg, and Rainer Unland. Query Models. In
7th International Conference of Modelling Languages and Applications, volume
3273/2004, pages 98–112, Lisbon, Portugal, 2004. Springer.

[159] Dominik Stein, Stefan Hanenberg, and Rainer Unland. Expressing Different Con-
ceptual Models of Join Point Selections in Aspect-oriented Design. In 5th Inter-
national Conference on Aspect-Oriented Software Development (AOSD), pages
15–26, New York, NY, USA, 2006. ACM Press.

[160] Maximilian Stoerzer and Juergen Graf. Using Pointcut Delta Analysis to Sup-
port Evolution of Aspect-oriented Software. Proceedings of the 21st IEEE In-
ternational Conference on Software Maintenance (ICSM), pages 653–656, Sept.
2005.

[161] Ketil Stølen and Ida Solheim. Technology Research Explained. SINTEF Report
A313, ISBN 82-14-04039-6, SINTEF, 2007.

[162] Junichi Suzuki and Yoshikazu Yamamoto. Extending UML with Aspects: Aspect
Support in the Design Phase. In Proceedings of the Workshop on Object-Oriented
Technology, pages 299–300, 1999.

[163] A. Svendsen, G. K. Olsen, J. Endresen, T. Moen, E. Carlson, K. J. Alme, and
Ø. Haugen. The Future of Train Signaling. In 11th international conference on
Model Driven Engineering Languages and Systems (MODELS), pages 128–142,
Berlin, Heidelberg, 2008. Springer-Verlag.

[164] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton Jr. N Degrees of Separation:
Multi-Dimensional Separation of Concerns. International Conference on Software
Engineering, pages 107–119, 1999.

[165] Paul Taylor. Practical Foundations of Mathematics. Number ISBN 0-521-63107-
6 in Cambridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 1999.

[166] A. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe Composition of Product
Lines. Proceedings of the 6th International Conference on Generative Program-
ming and Component Engineering (GPCE), pages 95–104, 2007.

[167] W. Vanderperren, D. Suvée, M. A. Cibrán, and B. De Fraine. Stateful Aspects
in JAsCo. 4th Intl. Workshop of Software Composition, 2005.

[168] Markus. Voelter and Iris Groher. Product Line Implementation using Aspect-
Oriented and Model-Driven Software Development. Software Product Line Con-
ference, 2007. SPLC 2007. 11th International, pages 233–242, 10-14 Sept. 2007.

[169] John G. Wacker. A Definition of Theory: Research Guidelines for Different
Theory-Building Research Methods in Operations Management. Journal of Op-
erations Management, 16, 1998.

[170] Y. Wakahara, M. Fujioka, H. Kukuta, H. Yagi, and S.-I. Sakai. A Method for
Detecting Service Interactions. Communications Magazine, IEEE, 31(8):32–37,
Aug 1993.

75

Bibliography

[171] Robert J. Walker and Kevin Viggers. Implementing Protocols via Declarative
Event Patterns. In 12th ACM International Symposium on Foundations of Soft-
ware Engineering (SIGSOFT/FSE), pages 159–169, New York, NY, USA, 2004.
ACM.

[172] J. White, D.C. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz-Cortès. Auto-
mated Diagnosis of Product-Line Configuration Errors in Feature Models. Soft-
ware Product Line Conference, International, pages 225–234, 2008.

[173] J. Whittle, P. Jayaraman, A. Elkhodary, A. Moreira, and J. Araújo. MATA: A
Unified Approach for Composing UML Aspect Models Based on Graph Transfor-
mation. Transactions on Aspect-Oriented Software Development VI, 5560:191–
237, 2009.

[174] J. Whittle, A. Moreira, J. Araújo, P. Jayaraman, A. Elkhodary, and R. Rabbi. An
Expressive Aspect Composition Language for UML State Diagrams. MODELS.
International Conference on Model Driven Engineering Languages and Systems,
Nashville, TN, 2007.

[175] Jon Whittle and João Araújo. Scenario Modelling with Aspects. Software, IEE
Proceedings, 151(4):157–171, Aug. 2004.

[176] Jon Whittle and Praveen K. Jayaraman. MATA: A Tool for Aspect-Oriented
Modeling based on Graph Transformation. 11th International Workshop on
Aspect-Oriented Modeling (AOM), 2007.

[177] Rebecca Wirfs-Brock and Alan McKean. Object Design – Roles, Responsibilities
and Collaborations. Addison-Wesley, ISBN 0-201-37943-0, 2003.

[178] Rebecca Wirfs-Brock and Brian Wilkerson. Object-Oriented Design: A
Responsibility-Driven Approach. Conference Proceedings on Object-oriented Pro-
gramming Systems, Languages and Applications (OOPSLA), pages 71–75, 1989.

[179] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener. Designing Object-
Oriented Software. Prentice Hall, ISBN 0-13-629825-7, New Jersey, 1990.

[180] John A. Zachman. A Framework for Information Systems Architecture. IBM
Systems Journal, 26(3):276–292, 1987.

[181] Marvin V. Zelkowitz and Dolores R. Wallace. Experimental Models for Validating
Technology. IEEE Computer, 31(5):23–31, 1998.

76

Part II

Research Papers

77

Appendix A

Paper I: Architectural Aspects in
UML

Authors. Jon Oldevik and Øystein Haugen.

Paper Summary. In this paper, we present an approach for modelling and compos-
ing architectural aspects based on UML structured classes, which provides a flexible
way of modularising architectural concerns. The approach is shown especially useful
for providing refinements or variants of connectors in the architecture.

Author Contribution. Jon Oldevik was the main author and responsible for the
main part of the research and writing of this paper, accounting to about 90% of the
work. Specifically, Jon Oldevik was the main contributor in development of the con-
cepts, notations, and techniques for architectural aspects and the evaluation of these.

Publication Arena. Published in the proceedings of the ACM/IEEE 10th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS)
2007. Acceptance rate 28% (45/158).

79

This article is removed.

Appendix B

Paper II: Higher-Order
Transformations for Product Lines

Authors. Jon Oldevik and Øystein Haugen.

Paper Summary. In this paper, we present higher-order transformations in the
form of transformational aspects, which provide product line variability by modifying
the transformations that generate products. We distinguish platform from domain
variability and show that if these concerns are well separated in base transformations,
the feature transformations are confluent, i.e. they can be applied order-independent.

Author Contribution. Jon Oldevik was the main author and responsible for the
main part of the research and writing of this paper, accounting to about 90% of the
work. Specifically, Jon Oldevik was the main contributor in the techniques for higher-
order transformation, their implementation, and their evaluation.

Publication Arena. Published in the proceedings of the 11th Software Product Line
Conference (SPLC) 2007. Acceptance rate 35% (28/80).

95

Higher-Order Transformations for Product Lines

Jon Oldevik
University of Oslo

Department of Informatics
Oslo, Norway

jonold at ifi.uio.no

Øystein Haugen
University of Oslo

Department of Informatics
Oslo, Norway

oysteinh at ifi.uio.no

Abstract

An aspect-based extension to a text transformation lan-
guage provides higher-order transformations that can be
used to represent variability in generative product line en-
gineering. We show by example how these higher-order
transformations compare with first order transformations.
We also detail how the approach has been implemented as
an extension of MOFScript, an existing model-to-text trans-
formation language.

1. Introduction

Researchers, tool vendors, and end users pay more at-
tention to model-driven development (MDD) than before
as the field is maturing. The standardisation and com-
mercialisation of technologies within the MDD domain,
especially UML 2, have a great impact in this regard.
More recently, standardisation of technologies for automat-
ing MDD has appeared within Object Management Group
(OMG), such as the MOF Query/View/Transformation
language[15], which is a language for defining model-
to-model transformations, and the MOF Model to Text
Transformation[16], which is a language for transforming
models to text.

For product lines (PL), generative programming[8] is an
established approach for generating product implementa-
tions based on higher-level specifications. There is a close
relationship and clear overlap in the philosophies of gener-
ative programming and MDD. The most significant differ-
ence is the explicit focus on product lines found in gener-
ative programming[7], which is not there in MDD. MDD
focuses on using models as assets driving the development,
and may use generative approaches to refine models or gen-
erate code. It does not, however, explicitly address variabil-
ity management and product line feature representation.

The paper investigates the applicability of higher-order
transformation for product line variability, using the MOF-

Script language[14]. We devise an aspect-oriented exten-
sion to MOFScript that we call Hi-Transform. The imple-
mentation of the aspect weaving is done by a transformation
in MOFScript itself. An example product line model is used
to analyse the appropriateness of model-to-text transforma-
tions with aspects for product line variability. We address
two kinds of product line variability: Variability related to
the product line platform (cross-platform variability) and
variability related to the product line domain model (intra-
domain variability). Cross-platform variability is variability
pertaining to the commonalities and variabilities between
e.g. programming language versions, component infras-
tructures, etc. Intra-domain variability is variability pertain-
ing to the commonalities and variabilities of the PL domain
concepts (i.e. the features of the domain).

Our investigation seeks to answer the following:

• Can Hi-Transform provide fruitful representation and
realisation of variability for platform variability and
intra-domain variability?

Our conjecture is that higher-order transformations such
as devised in Hi-Transform can be more independently de-
scribed than corresponding first-order transformations. In
the following, we go in depth on the higher-order text trans-
formation approach for product lines. In Section 2, we de-
scribe the basics of model-to-text transformation. In Sec-
tion 3, we study through an example how variants can be
supported with aspects in model-to-text transformations. In
Section 4, we give the details of Hi-Transform, the aspect-
based extension to MOFScript. In Section 5, we describe
related work and in Section 6 we conclude the paper.

2. Model-to-Text Transformation Basics

A model-based text transformation language has a set of
basic properties[16]. As illustrated by Figure 2, a model-to-
text transformation takes one or more models as input and
generates output text. The input models are instances of

11th International Software Product Line Conference

0-7695-2888-0/07 $25.00 © 2007 IEEE
DOI 10.1109/SPLINE.2007.11

243

metamodels that define the concepts used in the models. A
transformation contains rules that define the logic produc-
ing text output by combining literal expressions and input
model properties.

Figure 1: Model-to-Text Transformation Basics

In MOFScript, model-to-text transformation rules are
similar to Java methods. However, their primary objec-
tive is to operate on model types from the input model(s)
of the transformation. A transformation rule in MOFScript
is defined with a model type as its context, e.g. Class from
UML2’s metamodel. Logically, this associates the rule with
the Class type and allows it to operate on Class properties.
A transformation rule invokes other transformation rules
imperatively to perform the desired behaviour and output. A
simple example that produces Java code from UML models
is given in Program 1. It creates an output file for each class
and generates private Java variables for each UML property.

Program 1: Example Transformation
texttransformation SimpleJava (in uml:"UML2") {

public uml.Class::genClass() {
file (self.name + ".java")
’public class ’ self.name ’ { ’
self.ownedAttribute->forEach(a)
a.genAttribute()

’}’
}

public uml.Property::genAttribute() {
’private ’ self.type.name ’ ’ self.name ’;’

}
}

In order to provide support for string manipulation,
MOFScript implements a range of string operations, such as

toUpper(), toLower, trim(), replace, etc. To facilitate modu-
larisation and reuse of transformations, MOFScript has ad-
ditional mechanisms: Import of transformations facilitates
reuse of transformation libraries. Inheritance of transforma-
tions provides the means of specialising and thereby reusing
and overriding defined transformation rules.

Alternative Technologies. The main benefit of a specific
model-based text generation language is the provision of
tailored mechanisms for the specific purpose of text gen-
eration, i.e. it is domain-specific and it has explicit support
for using models and model properties.

A programming language (e.g. Java) can provide the
same functionality. A Java representation of the transfor-
mation in Program 1 will become less compact, but the
difference is not dramatic (maybe 35 per cent). If a Java-
based approach provides a tailored framework with abstrac-
tions, e.g. through generic classes, it would further sim-
plify the Java approach. This is similar to the idea presented
by Akehurst[1], where a simple Java-based framework for
model transformation is presented. This approach suggests
that using standard programming languages in many cases
is just as suitable as tailored transformation languages, due
to the well-known language mechanisms and good tool sup-
port.

In addition to Java, or Java frameworks, a wide range
of alternative technologies are available for performing text
generation. One example is Java Emitter Templates (JET),
which provides an XML-based scripting language tightly
integrated with Java, Eclipse end EMF. Another example,
closer to the approach in MOFScript, is the openArchitec-
tureWare tool, which provides a template-based language
based on EMF metamodels. Interestingly, it implements as-
pect functionality in the language[18]. Their argument in
favour of aspects is to support generation of code for sev-
eral platform variants within the same transformation. This
suggests that aspects certainly can be useful in model-to-
text transformations for product line engineering.

Introducing Hi-Transform. An aspect in the aspect-
oriented programming sense is a specification of a trans-
formation that will alter the structure and behaviour of a
specification when applied (weaved). In the context of text
transformation, an aspect is a specification of a transforma-
tion that will alter the structure and behaviour of a text trans-
formation; it thus represents a higher-order transformation
where the source and target are both text transformations.

To provide such higher-order transformations in MOF-
Script, we have extended MOFScript with aspect-like func-
tionality and called it Hi-Transform. It defines the following
concepts:

• Hi-Transform is a representation of text transforma-

244

tional aspects. It is itself a text transformation repre-
senting a specific concern, and it contains Hi-Queries,
Hi-Rules, as well as standard text transformation rules.

• Hi-Query is a description of places in a transformation
that may be modified by the hi-transform. This con-
cept is analogous to the aspect-oriented programming
concept pointcut.

• Hi-Rule is a representation of text transformation code
which is used to modify a text transformation identi-
fied by Hi-Queries. This concept is analogous to the
aspect-oriented programming concept advice. It spec-
ifies text transformation code to be inserted before, af-
ter, or to replace existing code.

A detailed description of Hi-Transform is given in Sec-
tion 4.

Higher-Order Transformations. The implementation of
Hi-Transform is a higher-order transformation that applies
to two text transformations, the base transformation and the
hi-transform, and produces a modified text transformation.

The input for the transformations in Figure 2 is a prod-
uct line model. The base transformation may produce base
product code, which may be abstract (i.e. not executable),
or it may not be produced at all. When combined with hi-
transforms, a higher-order transformation produces a mod-
ified transformation, which in turn produces a variant of the
product code.

Section 3 investigates how hi-transforms can be used to
provide variability in product line development.

3. Providing Variability

Aspects in text transformations are instruments for pro-
viding variability with respect to generating code for differ-
ent platforms, different QoS requirements, language vari-
ations, or target frameworks. All these can be viewed as
platform variations for the product line.

Another, not so obvious application of higher-order text
transformations is to provide variability with respect to the
product line domain model, thus being able to provide intra-
domain as well as platform variability for the product line.
We examine how higher-order transformations can express
both these kinds of variability.

Expressing choices in generative languages will often re-
sult in lots of variant checking and conditional code gener-
ation scattered throughout the transformation, which makes
it less readable. A more elegant alternative is to write the
general transformation, and specialise it for different vari-
ants. This, however, will result in an explosion of speciali-
sation and overriding if the variants are many, and different

Figure 2: Higher-order transformation.

variant code occurs in many places. Our Hi-Transform ap-
proach should remedy these undesired effects.

The next section describes an example and shows how
transformational aspects can be applied to support product
variability.

3.1. Variability Example

In this example, we illustrate the usage of Hi-Transform
to generate variants of the same system. The example used
for illustration is a simple BookStore system described in
UML(Figure 3). The BookStore system defines a BookStore
class, which contains a set of books, a set of authors, and
a set of categories. Furthermore, a book has a bookCover.
The Category class represents an optional feature, and the
BookCover class represents an alternative feature with two
alternatives, its two subclasses.

We will use the example in Figure 3 to illustrate two
kinds of product line variability that can be provided by text
transformation aspects: product line platform and product
line intra-domain variability.

3.2. Platform Variability

The variability we want to illustrate is in how relations
are mapped to implementation in the product line plat-
form. In the base text transformation, which generates Java
classes from a UML model, associations are mapped to

245

Figure 3: Bookstore Product Line UML model

HashMap variables in the class and a set of operations (get
/ getAll / remove / add / create) for each association.

To illustrate, the transformation code for association
variable declaration and a retrieval operation is shown in
Program 2.

Program 2: Base Transformation Rules for Asso-
ciations
uml.Property::classPrivateAssociations () {
’ private HashMap ’ + self.propertyPrivateName() ’;
’

}

uml.Property::associationGetAllMethod () {
’
public Collection get’ self.propertyPluralName() ’(){

return ’ self.propertyPrivateName() ’.values();
}’
}

When the transformation is executed, these rules are in-
voked once for each UML association property, which re-
sults in the generation of a private variable of type HashMap
and a getter operation that returns a general Collection.

We want our system to be flexible with respect to how
associations are implemented to cope with different Java
platforms, and possibly the performance and flexibility of
association operations. A set of transformational aspects
are written to provide different variants of these implemen-
tation properties.

Figure 4 illustrates the principle: The base UML2Java
transformation produces a base Java implementation with
HashMap (variant 1). Three different hi-transforms provide
variant implementations: one using Java Generics for the
collection classes, one using Java List instead of HashMap,
and one using a custom implementation of a Collection
class that is also provided by the hi-transform.

Figure 4: Variability Example with Hi-Transforms

The code in Program 3 shows (part of) the hi-transform.
It specifies some hi-queries that target the relevant rules of
the UML2Java transformation and hi-rules that contain the
new code to be generated. In this example, the original
HashMap representation is replaced with a typed HashMap
using Java Generics syntax available in Java 5.

Program 3: Hi-Transform with Generic Associa-
tions
hi-transform GenericAssoc {
hi-query privateAssociation(Property) def
("classPrivateAssociations")

hi-query associationInit (Property) def
("associationInit")

hi-query associationGetAllMethod (Property) def
("associationGetAllMethod")

hi-rule replace privateAssociation {
’
private HashMap<String, ’ self.type.name ’>’ +

self.propertyPrivateName() ’;
’

}
hi-rule replace associationInit {
result = self.propertyPrivateName() + ’ = new

HashMap<String, ’ self.type.name + ’> ();’
}
hi-rule replace associationGetAllMethod {
’
public Collection <’self.type.uml2JavaType()’> get’

self.propertyPluralName()’(){
return ’ self.propertyPrivateName() ’.values();

}’
}

}

The replace keyword signifies a Hi-Rule that replaces
the contents at the locations given by the referenced Hi-
Query. (For further details on Hi-Transform, please re-
fer to Section 4.) When the hi-transform is applied on
the base text transformation, a modified text transformation
with different implementations of the rules matched by the
hi-transform is obtained. Executing the modified transfor-
mation then yields a modified Java implementation. The
code extracts in Programs 4 and 5 show parts of the code
generated by the original UML2Java transformer and the
one generated by the new one.

246

Program 4: Bookstore Base Product
class BookStore {

private HashMap _book;
private HashMap _author;
public BookStore () {
_book = new HashMap ();
_author = new HashMap ();

}
public Collection getBooks () {

return _book.values();
}

}

Program 5: Bookstore Modified Product
class BookStore {

private HashMap<String, Book> _book;
private HashMap<String, Author> _author;
public BookStore () {
_book = new HashMap<String, Book> ();
_author = new HashMap<String, Author> ();

}
public Collection <Book> getBooks () {

return _book.values();
}

}

The second hi-transform, which uses a List implemen-
tation of associations instead of HashMap, requires more
modifications, since all association methods need to be
modified to use the List type. This hi-transform defines hi-
queries for all association rules and hi-rules with an appro-
priate List implementation mapping.

The final association implementation hi-transform pro-
vides yet another mapping, which replaces the original as-
sociation representation with a custom collection class.

Platform Features. The variability illustrated in the ex-
ample fits well with the notion of features in product lines.
In this case, the features are alternative implementations of
associations. A product line architecture description could
specify these along other product line features in a feature
diagram. This can then be used by the product designer to
select the variants desired, which can be mapped to the ap-
propriate hi-transform.

Figure 5 shows a FODA-style[10] feature diagram,
which has the Association Implementation Feature as one of
several features in the Implementation Architecture. It de-
fines four alternative features corresponding to the standard
UML2Java transformation plus the three hi-transforms.

3.3. Intra-Domain Variability

A product line may define variability at many different
levels. In Section 3.2, we illustrated platform variability
with respect to specific implementation variants. Another
application of hi-transforms is for handling intra-domain
model variability of the product line. This is somewhat

Figure 5: A Feature Diagram for the Platform Vari-
ants

more complex as it requires that domain knowledge is built
into the transformations.

To illustrate, we show a feature-style representation of
the domain model from Figure 3, where the Category class
is optional and the BookCover represents alternative vari-
ants: HardCover and PaperBack (Figure 6).

Figure 6: Bookstore Features

When generating platform variability in Hi-Transform,
general (i.e. domain-independent) Java transformations and
hi-transforms can be used, since the transformations can be
oblivious to domain-specific concepts. The platform vari-
ability previously illustrated can therefore apply to a wide
range of domain models. This is not true for variability
of the product line domain model itself. To support prod-
uct generation for the domain model that can handle the
variability, a domain-specific (in this case, a Bookstore-
specific) transformation is required. We want a transfor-
mation that can generate all variants, where the variants are
provided by hi-transforms.

In order to handle the commonalities, we define a sin-
gle BookStore transformation. It consists of some domain-
specific parts and some general, reusable parts. Program
6 shows some domain-specific parts of the transformation,
covering the BookStore class. The code for the other classes
follows the same pattern. All the variable parts of the

247

Program 6: Domain-Specific Base Transformation
uml.Class::classGeneration(packageName:String){
if (className.equals("BookStore"))

self.generateBookStore (packageName)
...

}
uml.Class::generateBookStore(packageName:String) {
self.genClassStart(packageName)
self.generateBookstoreAttributes ()
self.generateBookstoreAssociations()
self.genClassEnd()

}

uml.Class::generateBookstoreAssociations() {
var books:uml.Property = self.ownedAttribute->select(
p:uml.Property|p.name="book").first()

books.genAssociation()
var authors:uml.Property = self.ownedAttribute->select(
p:uml.Property|p.name="author").first()

authors.genAssociation()
}

product line is kept out of this transformation and pro-
vided by separate hi-transforms. Some of the rules called
within the domain-specific code uses general rules, such
as self.genClassStart() and books.genAssociation(). The
transformation is logically divided into two parts: one with
general transformation rules, and one with domain-specific
rules that use the general ones. The general rules could
be defined separately and imported by the domain-specific
transformation.

To provide the variability, we define hi-transforms for
each variant in the product line model, which is the optional
Category feature and the two alternatives for BookCover. If
we focus on the Category feature hi-transform, it needs to
do the following:

• Insert code that invokes the category class rule.

• Insert code that adds a category association to the
BookStore.

• Insert code that adds a category association to the
Book.

• Provide the rules that generate the Category class.

Program 7 shows an excerpt of the hi-transform for the
Category feature doing exactly this. It defines two Hi-
Queries that reference the classGeneration and the gener-
ateBookstoreAssociations rules. Two Hi-Rules provide the
code to be inserted into the base transformation after the
existing code.

We can now represent each variability of the product line
in terms of hi-transforms. To produce a transformation for a
specific product, the hi-transforms corresponding to the de-
sired features should be applied to the base transformation
using the higher-order transformation. Selecting and apply-
ing the hi-transforms become the variability resolution pro-
cess for the product line. To resolve several variations in

Program 7: Hi-Transform for Category Feature
hi-transform CategoryHit(in uml:"UML2")
{
hi-query classGeneration(Class) def
("classGeneration")

hi-query generateBookstoreAssociations (Class) def
("generateBookstoreAssociations")

hi-rule after classGeneration {
if (className.equals("Category")) {
self.generateCategory(packageName)

}
}

hi-rule after generateBookstoreAssociations {
var category:uml.Property = self.ownedAttribute->
select(p:uml.Property | p.name="category").first()

category.genAssociation()
}

}

the product line domain model, several hi-transforms must
be applied in sequence. The same might also be the case
for the platform variability, if there are several categories of
platform features having variants (e.g. attribute implemen-
tation in addition to association implementation). If there
are further constraints on the features, such as conflict or
requirement dependencies, these should be catered for in
the selection and application of hi-transforms.

The base transformations and hi-transforms pertaining to
the domain variability are naturally flavoured by the con-
cepts of the product line domain. As illustrated by programs
6 and 7, the base transformation contains Bookstore-specific
rules representing the commonalities, while the Category
hi-transform explicitly references features related to Cate-
gory. These parts of the base transformation may however
be derived from the product line feature model.

3.4. Discussing the Variability Approach.

The previous examples show usage of hi-transforms pro-
viding both platform and domain model variability for prod-
uct lines. By combining these, complete product code can
be generated from a product line model. Figure 7 shows the
pieces put together and illustrates the difference between
higher-order transformations with hi-transforms (a) and first
order transformations (b). With hi-transforms, a series of
higher-order transformations can be applied to obtain new
text transformations. All steps take text transformations
(MOFScript) as input and produce MOFScript output, This
finally results in a Product Transformation, which is used
to generate the Product. With a first-order transformation, a
model-to-model transformation can create a Modified Prod-
uct Line Model, which in turn is input to a Platform Trans-
formation. The figure shows the correspondence between
the two approaches; a variable feature will result in either
a hi-transform or alternatively a first-order transformation.
The notable difference here is that the type of transforma-

248

Figure 7: Hi-Transforms vs. First Order Transfor-
mations

tion changes for the first order case, not for the higher order
case.

Higher-order model-to-text transformations in Hi-
Transform seems flexible with respect to representing and
implementing product line variability. Two kinds of vari-
ability have been shown, platform variability and intra-
domain variability. If transformations are designed by
carefully separating platform-specific from domain-specific
logic, these can be combined using hi-transforms with-
out considering ordering. I.e, a platform variability hi-
transform can be applied before or after an intra-domain
variability hi-transform; the resulting transformation will be
the same, so the variability transformations are confluent.

An alternative approach is to manage variability with
model-to-model transformations and code generation. As-
suming that the product line is represented by a model,
model-to-model transformations could handle the intra-
domain variability to create product-specific models. An
approach using higher-order transformations to provide
variability could also be applied in this scenario. The plat-
form variants could then be supported either by transforma-
tions to platform-specific models followed by code genera-
tion, or by a Hi-Transform-like approach.

Using an aspect-oriented programming language such as
AspectJ[12] proves to be difficult. The intra-domain vari-
ability can be provided by inter-type member declarations,
which insert variant elements into existing classes. This
would, however, require introduction of new classes repre-
senting variable features, which is not possible in AspectJ;
the classes would have to be pre-defined. Platform variabil-
ity is impossible, since it requires modifications to declared

variables and method signatures, which is illegal in AspectJ.
Assuming a language without such limitations, it could

be used to provide the intra-domain and platform variabil-
ity. It would however be more restrictive in how transforma-
tions are applied. The intra-domain and platform variability
transformations are no longer confluent. Platform variabil-
ity aspects must always succeed intra-domain variability as-
pects, as these also contain platform details.

Figure 8: Non-Confluent Transformations

This is illustrated by Figure 8, where the two branches of
transformation ends with different result. On the left hand
side, the domain variability is handled first by adding the
category feature. This is followed by applying the plat-
form transformation (replacing the HashMap type), yield-
ing a correct result. On the right hand side, the order is
reversed, and we see that the two results are different.

Our conjecture that higher-order transformations can be
more independently described than corresponding first or-
der transformations seems plausible. In practice this means
that hi-transforms are more often confluent than a set of first
order transformations (e.g. a set of MOFScript transforma-
tions). However, there must be constraints on the base trans-
formation for this to be true, e.g. that domain-specific rules
should be clearly separated from general rules.

4 Detailing Hi-Transform

As described in Section 2, Hi-Transform is an aspect-
based extension of the model-to-text transformation lan-
guage MOFScript. It contains concepts similar to those in
aspect-oriented programming[12], adapted to the text trans-
formation domain.

Hi-Transform is defined in terms of three assets:

• A MetaModel: The Hi-Transform metamodel defines
each hi-transform concept. It is used for populating
hi-transform instances that are used at runtime.

• A Language Grammar: The grammar defines the con-
crete syntax of Hi-Transform and is used in the parser

249

implementation.

• A Higher-Order Transformation: The execution of a
hi-transform is handled by a MOFScript transforma-
tion that takes a hi-transform and a base transforma-
tion as input, and produces a modification of the base
transformation.

Hi-Transform MetaModel. The metamodel defines Hi-
Transform as a special kind of MOFScript transformation
(Figure 9).

Figure 9: Hi-Transform Metamodel

A hi-query is a analogous to the concept pointcut in As-
pectJ addressing either the invocation or definition of trans-
formation rules. The following hi-query types are defined
in this model by the HiQueryOperator enumeration.

• Definition hi-query: This type identifies a set of trans-
formation rule definitions.

• Call hi-query: This type identifies a set of calls to
transformation rules.

In addition, a hi-query may define a typeMatch (sim-
ilar to a target pointcut in AspectJ, which further con-
strains the hi-query to transformation rules with a specific
context type. The notation for the hi-query expression is
based on Java regular expressions within quotation marks
(”.*” matches any sequence of characters). The example
hi-query propChange(Class) def("property.*") iden-
tifies all transformation rules with a context type Class,
which starts with the name property.

A hi-rule is analogous to advice types in AspectJ and
specifies text transformation code to be inserted at positions
identified by a hi-query.

• Before hi-rule: Targets the transformation part imme-
diately before the referenced hi-query. It represents an

insertion of the hi-rule code before all places identified
by the hi-query.

• After hi-rule: Targets the transformation part imme-
diately after the referenced hi-query. It represents an
insertion of the hi-rule code after all places identified
by the hi-query.

• Replace hi-rule: Targets the transformation part iden-
tified by the reference hi-query and replaces this trans-
formation code by the body of the Hi-Rule.

The example hi-rule before propChange {log
("Property rule executed.")} applies to the
propChange hi-query and inserts a logging statement.

Hi-Transform Concrete Language. The hi-transform
language is defined as an extension to the MOFScript lan-
guage. Program 8 describes the elements of the language
extensions as an EBNF grammar. Several of the produc-
tions are reused from mofscript and are not detailed here.

Program 8: Hi-Transform grammar
hitransform = "hi-transform" simpleName "("

modelParameters ")" "{"
(hiquery | hirule | trRule)*
"}" ;

hiquery = "hi-query" simpleName ["("
<typeName> ")"] ("def" | "call")
"(" <matchCriterion> ")" ;

hirule = "hi-rule" ("before" | "after" |
"replace") hiqueryRef ruleBody;

typeName = simpleName ;
matchCriterion = "\"" regular expression "\""
hiqueryRef = simpleName
modelParameters = mofscript model parameters
simpleName = mofscript simple name
trRule = mofscript transformation rule
ruleBody = mofscript transformation rule body

Implementation of Hi-Transform. The transformation
represented by a hi-transform is implemented by a higher-
order transformation in MOFScript. The higher-order trans-
formation modifies the base transformation by adding and
removing features as instructed by the hi-transform. The re-
sult is a modified text transformation with the changes from
the hi-transform. The hi-transform parser checks the overall
structure of the hi-transform and that hi-rules contain valid
transformation code before execution.

We implemented Hi-Transform as a language extension
to MOFScript, where the hi-transforms are specialised text
transformations, which in addition to hi-queries and hi-rules
may define ordinary transformation rules. The hi-transform
metamodel could have been defined as a separate, inde-
pendent metamodel, which would make it more reusable
for other tools. The higher-order transformation could also

250

have been realised by a model to model transformation tool
with access to the hi-transform metamodel, such as ATL[6].

In this implementation, all hi-transform code is applied
at design time by generating modified transformations from
a hi-transform and a base transformation. The benefit of the
static weaving is that complete transformations for specific
products can be inspected or stored for reuse, without hav-
ing to perform the weaving transformation each time.

Hi-transforms might also be applied dynamically, i.e.
during the execution of the transformation. Dynamic weav-
ing would save the user from viewing the composed result-
ing transformation, which is probably a good thing. The
user is more likely to be interested in the finally gener-
ated code rather than the composed transformation. Dy-
namic weaving support for hi-transforms would require an
extension to the transformation runtime, to match hi-queries
dynamically and execute the relevant hi-rules. The result
should be the same, except that runtime support would al-
low for more advanced hi-queries taking advantage of dy-
namic information such as the control flow. (E.g. inserting
code in a rule only if that rule is called from a specific con-
text). At this time we have not seen the need for this in
Hi-Transform.

5 Related Work

To our knowledge, there is little work done on using
higher-order text transformations to support product line
variability. A similar approach is provided in the xPand
language[18], which provides support for aspect-oriented
concepts and argues its usefulness for supporting platform
variability in product lines. There is no analysis or exam-
ples relating this to domain model variability.

This work is strongly related to ideas in generative pro-
gramming, coined by Czarnecki and Eisendecker in [8]. It
is specifically contrasting in the usage of higher-order trans-
formations as a variability mechanism.

Aspect-oriented programming[11] can solve the same
issues as targeted by this paper using for instance
AspectJ[12]. This would however require a generative ap-
proach based on Java rather than a dedicated transformation
language, i.e. a text transformation written in Java (as dis-
cussed in Section 3.4.

The work by Batory et al on step-wise refinement[4] pro-
vides an approach for composing refinements based on hi-
erachical equations and shows how it can be applied for
code and non-code artifacts, given that composition opera-
tors are defined for the artifact type. Layers/features can be
specified as separate units and composed to obtain specific
configurations. We could integrate Hi-Transform with this
approach using the higher-order transformation as our com-
position operator and provide the benefits of the formalisms
and tool support for step-wise refinement.

A lot of work has been done in the area of supporting
product lines with technologies for cross-cutting of con-
cerns, such as aspects.

Griss[9] outlines an approach for feature-driven, aspect-
oriented product line engineering. He advocates the usage
of feature-driven analysis and design combined with aspect-
oriented implementation techniques, where code fragments
(aspects) represent features at the code level. Application
design is done by selecting features and by selecting and
weaving aspects.

Anastasopoulos and Gacek[2] evaluate implementation
approaches with respect to providing product line variabil-
ity. They address among other things AOP, frames, dy-
namic libraries, and parameterisation, and define a frame-
work for comparing the approaches. They conclude that no
approach can sufficiently capture product line variability re-
quirements and that approaches need to be improved or used
together. Higher-order transformations are not considered.

Loughran and Awais[13] describe Framed Aspects,
which combine the cross cutting features of aspects with
the configuration capacities of frames, which cater for bet-
ter support for variability.

Anastasopoulos and Muthig[3] analyse the suitability of
AOP for implementing product lines, concluding aspects
suitable for cross-component variability. An observation
made is the limited adequacy for supporting so-called nega-
tive variability (e.g. removing a method). Although proba-
bly an often undesired property, this is not a limitation with
higher-order text transformations.

Saleh and Gomaa[17] describe an approach for separa-
tion of concerns for product lines. It uses a model-based
representation of feature models that represents commonal-
ities and variabilities, which is mapped to a domain-specific
programming language tailored for handling variability.

Bayer et al[5] describe a consolidated metamodel for
product lines, which provides a reference model for product
line variability. It defines the concept Transformer, which is
one way to specify variability in a separate variation model.
A hi-transform can be interpreted as a special kind of trans-
former.

6 Conclusions

This paper has described a model-based approach for
product line variability with higher-order text transforma-
tions in Hi-Transform. Hi-Transform implements aspect-
based functionality as an extension to the text transforma-
tion language MOFScript. We have used a product line ex-
ample model as basis for analysing the applicability of Hi-
Transform for variability.

The ideas presented combine generative programming
with aspects to provide variability in product line engineer-
ing. The variability is described in terms of a model of the

251

product line, capturing the common and variable features of
the domain and platform. This variability can be realised by
higher-order transformations.

In conclusion, we recap the question raised in the intro-
duction (Section 1) based on the results shown in the paper:

• Can Hi-Tranform provide fruitful representation and
realisation of variability for platform variability and
intra-domain variability?

Our analysis shows that product line variability related
to differences in implementation platform is well supported
by hi-transforms. The platform variability can often be seen
independently of the variability of the domain model. As
such, it can be treated at a more general level with trans-
formations that are independent of specific product line do-
main concepts. Our analysis also shows that hi-transforms
indeed can provide variability also for a product line do-
main model. This requires more complexity on the part of
the base transformation and hi-transforms, as they must re-
flect domain concepts from the product line domain model.

The usage of Hi-Transform for product line variability
seems to be a powerful approach, especially when consid-
ering the combination of platform and domain variability
support, and how these can be independently applied.

Future work is required in order to analyse how well this
approach scales for larger product lines, especially with re-
spect to supporting many variants, and feature variants con-
taining or depending on other feature variants. Work is also
needed to investigate how feature resolution can be better
integrated with the approach, e.g. with tool support. Further
experience and empirical evidence are needed to conclude
additionally on the characteristics of higher-order transfor-
mations for product lines.

Acknowledgement. This work has been carried out in the
context of the SWAT project (Semantics-preserving Weav-
ing - Advancing the Technology), funded by the Norwegian
Research Council (project number 167172/V30).

References

[1] D. Akehurst, B. Bordbar, M. Evans, W. Gareth, J. Howells,
and K. McDonald-Maier. SiTra: Simple Transformations
in Java. Model Driven Engineering Languages and Systems
(MODELS), 2006.

[2] M. Anastasopoules and C. Gacek. Implementing Product
Line Variabilities. In SSR ’01: Proceedings of the 2001 sym-
posium on Software reusability, pages 109–117, New York,
NY, USA, 2001. ACM Press.

[3] M. Anastasopoulos and D. Muthig. An Evaluation of
Aspect-Oriented Programming as a Product Line Implemen-
tation Technology. In Software Reuse: Methods, Techniques
and Tools, pages 141–156. Springer, 2004.

[4] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-
wise Refinement. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, pages
187–197, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[5] J. Bayer, S. Gerard, Ø. Haugen, J. Mansell, B. Møller-
Pedersen, J. Oldevik, P. Tessier, J. Thibault, and T. Widen.
Consolidated Product Line Variability Modeling. In Soft-
ware Product Lines, Research Issues in Engineering and
Management. Springer, 2006.

[6] J. Bezivin, G. Dupe, F. Jouault, G. Pitette, and J. Rougui.
First Experiments with the ATL Model Transformation Lan-
guage: Transforming XSLT into XQuery. 2nd OOPSLA
Workshop on Generative Techniques in the context of Model
Driven Architecture,, 2003.

[7] K. Czarnecki. Overview of Generative Software De-
velopment. Unconventional Programming Paradigms,
3566/2005, 2005.

[8] K. Czarnecki and U. Eisenecker. Generative Programming
- Methods, Tools, and Applications. ACM Press/Addison-
Wesley Publishing Co., New York, NY, USA, 2000.

[9] M. L. Griss. Implementing Product-Line Features by Com-
posing Aspects. In Proceedings of the first conference on
Software product lines : experience and research directions,
pages 271–288, Norwell, MA, USA, 2000. Kluwer Aca-
demic Publishers.

[10] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Pe-
tersen. Feature-Oriented Domain Analysis (FODA) Feasi-
bility Study, CMU/SEI-90-TR-21. Technical report, Soft-
ware Engineering Institute (SEI), 1990.

[11] G. Kiczales. Aspect-oriented programming. ACM Comput.
Surv., 28(4es):154, 1996.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An Overview of AspectJ. Lecture
Notes in Computer Science, 2072:327–, Jan. 2001.

[13] N. Loughran and A. Rashid. Framed Aspects: Supporting
Variability and Configurability for AOP. In Software Reuse:
Methods, Techniques and Tools, pages 127–140. Springer,
2004.

[14] J. Oldevik, T.Neple, R. Grønmo, J. Aagedal, and A.Berre.
Toward Standardised Model to Text Transformations. Eu-
ropean Conference on Model Driven Architecture - Founda-
tions and Applications, Nuremberg, 2005.

[15] OMG. Meta Object Facility (MOF) 2.0
Query/View/Transformation. Technical Report OMG
document id ptc/05-11-01, Object Management Group,
http://www.omg.org/cgi-bin/doc?ptc/05-11-01.pdf, 2005.

[16] OMG. MOF Models to Text Transformation Language Final
Adopted Specification, OMG document number ptc/06-11-
01. Technical report, Object Management Group, 2006.

[17] M. Saleh and H. Gomaa. Separation of Concerns in Software
Product Line Engineering. In MACS ’05: Proceedings of
the 2005 workshop on Modeling and analysis of concerns
in software, pages 1–5, New York, NY, USA, 2005. ACM
Press.

[18] M. Volter. Best Practices for Model-to-Text Transforma-
tions. In Eclipse Summit Europe, Modeling Symposium,
2006.

252

Paper II: Higher-Order Transformations for Product Lines

106

Appendix C

Paper III: Semantics Preservation
of Sequence Diagram Aspects

Authors Jon Oldevik and Øystein Haugen.

Paper Summary. In this paper, we give a definition of semantics preservation with
respect to sequence diagram aspects. The definition is based on sequence diagram
refinement and event preservation. With basis in that definition, we evaluate exist-
ing techniques for sequence diagram aspects with respect to the semantics preserving
property. This notion of semantics preservation helps ensuring that aspects will have
the expected effect when specifications evolve.

Author Contribution. Jon Oldevik was the main author and responsible for the
main part of the research and writing of this paper, accounting to about 90% of the
work. Specifically, Jon Oldevik was the main contributor of the formal definitions
for semantics preservation, analysing its application in the context of syntactic and
semantic aspect approaches, and for evaluating existing approaches.

Publication Arena. Published in the proceedings of the 4th European Conference
on Model Driven Architecture Foundations and Applications (ECMDA-FA) 2008. Ac-
ceptance rate 33% (31/87).

107

This article is removed.

Appendix D

Paper IV: From Sequence Diagrams
to Java-STAIRS Aspects

Authors. Jon Oldevik and Øystein Haugen.

Paper Summary. In this paper, we give a definition of trace-based semantics in
Java, which is used to reason about semantics preservation in Java systems. We define
a trace semantics for Java programs, which is based trace semantics used in Paper III.
We show how sequence diagrams can be mapped to the defined Java trace semantics,
and how it can be used to reason about semantics preservation when the Java system
is refined.

Author Contribution. Jon Oldevik was the main author and responsible for the
main part of the research and writing of this paper, accounting to about 90% of the
work. Specifically, Jon Oldevik was the main contributor of the definitions of trace-
based semantics and semantics preservation for Java and for applying and evaluating
the approach.

Publication Arena. Published in the proceedings of the 8th International Confer-
ence on Aspect-Oriented Software Development (AOSD) 2009. Acceptance rate 22%
(19/86).

125

From Sequence Diagrams to Java-STAIRS Aspects

Jon Oldevik
University of Oslo/SINTEF ICT

Oslo, Norway
Univ. of California, San Diego, La Jolla, USA

jonold at ifi.uio.no

Øystein Haugen
SINTEF ICT / University. of Oslo

Oslo, Norway
oysteinh at sintef.no

ABSTRACT
Execution traces are naturally represented at the design level
with UML sequence diagrams. During a system execution,
trace-based aspects can be used to monitor behavioral pat-
terns and protocols and may e.g. provide mitigation strate-
gies for unwanted behavior. Trace-based and stateful as-
pects have evolved to handle such reoccurring interaction
patterns at the implementation level. We define a STAIRS-
inspired semantics for trace-based Java aspects, and a se-
quence diagram aspect notation with a mapping to a trace-
based Java implementation. We use this to show that aspect
composition is semantics preserving with respect to refine-
ment under the given semantics.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.2.10 [Software Engineering]: Design—Repre-
sentation

General Terms
Design, Languages

Keywords
Sequence Diagram Aspects, Trace-Based Aspects, Refine-
ment

1. INTRODUCTION
In the aspect-oriented community, concerns have tradi-

tionally centered around capturing single system events (e.g.
method calls), such as provided by the joinpoint model in
AspectJ [14]. More recent works, however, focus on the need
for more advanced models of aspects, to be able to capture
traces or histories of events in a program execution [29, 30,
9, 24, 16, 1]. These kinds of aspects are commonly called
stateful or trace-based aspects, and have been shown use-
ful for detecting behavioral patterns and protocols and then

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’09, March 2–6, 2009, Charlottesville, Virginia, USA.
Copyright 2009 ACM 978-1-60558-442-3/09/03 ...$5.00.

possibly changing the course of a program. Aspects describ-
ing traces of system executions have a natural representa-
tion in graphical specification languages such as UML se-
quence diagrams (SDs) or message sequence charts (MSCs),
which describe interactions between objects in the system.
For many years, techniques for describing object interac-
tions have been used in domains where systems inherently
are reactive and asynchronous, such as in the telecommu-
nication domain. In service-oriented systems engineering,
interactions provide an intuitive way of specifying services
[4]. A mapping of these abstractions to the programming
and program execution level can help minimizing the gap
between design and implementation. Several research efforts
have addressed modularization of design-level cross cutting
concerns for sequence diagrams or message sequence charts.
[15, 31, 10]. These approaches focus only on the modeling
level. In [18], programming level aspects are generated from
MSCs to provide runtime monitors for MSC behaviors. Join
Point Designation Diagrams (JPDDs) [25] were developed as
a means of raising the abstraction when describing aspect
pointcuts, and mappings from JPDDs to AspectJ pointcuts
[11] show that the sequence diagram abstraction has defi-
nite advantages. We are missing in existing sequence dia-
gram aspect approaches, however, provision of trace-based
pointcuts and advice in a standard sequence diagram nota-
tion with a clear conceptual and semantic mapping to Java.
To that end, we propose Java-STAIRS Aspects, a sequence
diagram notation for aspects with an associated STAIRS-
inspired [13], trace-based semantics for Java that allows se-
quence diagram semantics and Java semantics to be corre-
lated. We use the semantics to show that aspect composition
is semantics preserving with respect to Java system refine-
ment. This is tied to earlier work on STAIRS and sequence
diagram aspects [21], and allows us to check if a Java pro-
gram p2 is a refinement of another program p1, and by this
gaining knowledge that a Java-STAIRS aspect that matches
p1 will match similarly for p2. We map sequence diagram
aspects to an existing trace-based aspect implementation,
Tracematches [1], and use a figure drawing application to
test and illustrate how the approach works.

Outline. In Section 2, we elaborate the background and
motivation for this work. In Section 3, we define a trace-
based semantics for Java that is based on STAIRS seman-
tics for sequence diagrams. In Section 4, we propose a nota-
tion for sequence diagram aspects and define how these are
mapped to Java and Tracematches. In Section 5, we discuss
our results and compare with other work, and in Section 6,
we summarize.

2. MOTIVATION AND BACKGROUND

2.1 Trace-Based Aspects
The motivations for trace-based aspects are manifold and

are adequately described in other works, where some mo-
tivators are: to improve the robustness (vulnerability to
changes) of aspects [29, 24]; to provide better abstractions
for specifying and implementing protocols [30, 28]; and be-
ing able to capture histories or traces in the execution [9, 1,
2]. At the modeling level, trace based aspects have found
their natural place in the design space in sequence diagram
or MSC aspects.

Several approaches for aspects at the sequence diagram
level have appeared for handling cross cutting concerns at
design-level [15, 31, 10, 6, 3]. Join Point Designation Dia-
grams (JPDDs) [25] bridge the gap between design abstrac-
tions and implementation-level, trace-based aspects. How-
ever, as we will see later, although JPDDs provide power-
ful mechanisms for describing implementation pointcuts, its
matching semantics does not provide what we consider a
natural conceptual mapping of a matching pattern. For ex-
ample, it is not possible to specify a pointcut that matches
the sending/receiving of two consecutive messages between
two roles only if there are no other messages in between.
Also it is not possible to ignore messages being sent to other
roles that are not part of the concern captured by the se-
quence diagram. Furthermore, JPDD was designed to ex-
press pointcuts only and does not provide a way of express-
ing advice. Finally, it is based on a non-standard notation,
and it lacks notational support for useful things such as com-
bined fragments to express conditionals, loops etc.

We believe that trace-based aspects have a more intu-
itive representation in a sequence diagram than in an aspect-
oriented implementation. Therefore, we propose to express
trace-based aspect using UML sequence diagrams, which can
be mapped to a Java implementation. However, there is no
standard interpretation of a sequence diagram in the con-
text of a Java system. An execution trace in Java will often
be much more detailed, involving more events and more ob-
jects than those represented by a sequence diagram. In such
cases, we would like to reason about the Java traces in the
context of the sequence diagram by only seeing events be-
tween the specific objects or roles specified by the sequence
diagram.

When using sequence diagrams as matching patterns for
Java systems, there are several possible ways this can be
mapped to matching semantics in Java. Here we motivate
our way of doing it. Let us assume we have a set of in-
teracting components (a,b,c,d,e), each of which participates
in different collaborations to fulfill different tasks. Lets say
we want to capture one particular interaction pattern P in-
volving a,b, and c, which we describe as a sequence diagram
aspect. This can be considered one specific concern of these
components. The question is what the criteria are for P to
be detected. In this scenario, we assume that we do not
know if or how a,b, or c interacts with d or e. These may
again be interacting with other, perhaps external compo-
nents. The actual component interaction may be richer and
span other concerns than the P that we are looking for. A
component should therefore be allowed to participate in in-
teractions with parties outside the concern P without inter-
fering with the detection of P. For interactions between the
components in P, however, this is not always the intended

semantics. If the pattern we are interested in is the exact
trace(s) specified by the sequence diagram, we cannot allow
arbitrary other message passings to occur between our com-
ponents. Instead, the matching semantics should be strict
with respect to the interactions between the components in
P, while the pattern language should allow arbitrary mes-
sages to be specified, hence supporting both types of seman-
tics. Since different contexts might require different seman-
tics, however, there should be ways to configure matching
semantics to different needs.

To support this, we propose a semantics for represent-
ing traces in Java, which is based on sequence diagram se-
mantics, and we give an interpretation of sequence diagram
aspects in terms of this semantics. Flexible matching se-
mantics is supported by an event filtering mechanism. We
define a mapping of sequence diagram aspects to a trace-
based aspect implementation solution and support this with
model-driven techniques that generate the trace-based im-
plementation from sequence diagram models.

Aspect vulnerability with respect to changes in the base
program, known as the fragile pointcut problem [17], is also
a motivator for this work. We propose a notion of refinement
in our semantics, based on refinement in STAIRS, which en-
sures that potential execution traces are not removed. This
will in turn make a system and its trace-based aspects less
vulnerable to changes.

2.2 Sequence Diagram Overview
A UML [23] Sequence Diagram (SD) is an Interaction that

consists of a set of lifelines representing interacting roles or
objects in a system. At the metamodel level, a lifeline rep-
resents a part within a classifier. The SD defines a set of
ordered interaction fragments that involve the different life-
lines. The basic kind of interaction fragments are occurrence
specifications that represent events on lifelines. Messages be-
tween lifelines represent a communication between two life-
lines involving one send and one receive event. Combined
fragments allow different kinds of composition of interaction
fragments, e.g. sequential (seq), alternative (alt), parallel
(par), and loop composition. The events in a sequence di-
agram are constrained by the order of events on each life-
line (weak sequencing) and the causality of send and receive
events.

2.3 STAIRS and refinement
STAIRS [13] is a denotational semantics for UML sequence

diagrams based on event traces. A trace is a sequence of
events, each defined by its kind (send or receive), a message
defining the signal, the sending lifeline, and the receiving
lifeline. In STAIRS, The semantics of a sequence diagram
d, �d�, is defined by two sets of traces: the set of positive
and the set of negative traces. Positive traces represent al-
lowed behavior. Negative traces represent behavior that is
not allowed. In addition, any trace that is not covered by
the sequence diagram is defined as inconclusive. The set of
traces in �d� is determined by all possible executions of d.
The resulting event sequences are constrained by the causal-
ity and weak sequencing properties of sequence diagrams: a
send event must occur before its corresponding receive event
(causality) and the events on a lifeline have the same (rela-
tive) ordering in a trace as on the lifeline (weak sequencing).
STAIRS defines three kinds of refinement: supplementing,
which adds positive or negative behavior by making incon-

clusive traces either positive or negative, narrowing, which
changes positive behavior to negative, and detailing, which
details existing behavior in decompositions. In this con-
text, we will only address supplementing refinement, and
only positive traces of Java programs. For more details on
STAIRS semantics, the interested reader may refer to [13].
STAIRS provides the formal foundation for Java-STAIRS
semantics and Java-STAIRS Aspects.

2.4 Semantics Preservation of Sequence Dia-
gram Aspects

In [21], Oldevik et al. give a definition of semantics preser-
vation for sequence diagram aspects. It is based on mono-
tonicity of aspect composition with respect to (STAIRS) re-
finement and the preservation of events. The monotonicity
of aspect composition is essentially preservation of the re-
finement relationship before and after aspects are applied.
We will show that the same ideas of semantics preservation
can be applied to Java based on our definitions.

3. JAVA-STAIRS TRACE SEMANTICS AND
REFINEMENT

In this Section, we define a trace-based semantics for Java
that we call Java-STAIRS, which is inspired by the STAIRS
semantics for sequence diagrams [13]. The purpose of Java-
STAIRS is to define a semantics for Java executions that can
be used to represent traces described by sequence diagrams.
The Java-STAIRS semantics is defined based on the execu-
tion traces of methods of individual objects, only considering
messages between different objects, and not assignments or
other expressions. We restrict our focus in this paper to
synchronous, possibly multi-threaded Java systems. This is
a simplification of the asynchronous semantics of sequence
diagrams. However, we will show that our Java semantics
can be mapped to a general STAIRS sequence diagram se-
mantics.

3.1 Trace-Based Semantics in Java
We define a Java system S by a configuration of objects

typed by classes and a set of execution threads operating on
those objects: S = {OS , ThS}, where OS = {o1 : C1, o2 : C2,
o3 : C3,...,on : Cn}, where each Ci ∈ S is a class and each oi

is a unique instance of Ci. Each class C is defined by a set of
methods MC = {mc1, mc2, ..., mck}. The threads of S are
defined by a non-empty set, ThS = {Th1, ... Thk}, where
each Thi contains a subset of OS . We do not consider the
variables defined by a class, even though their values may
influence the execution trace.

Although we may infer some information about system in-
teractions by static analysis, we cannot generally determine
the behavior of a particular system configuration before in-
stantiating and running it, due to inheritance and polymor-
phism. We can statically see which send events (method
invocations) that are potential from analyzing a method
specification, but we cannot generally know statically the
implementation of the methods that are called. Hence, we
must define the Java-STAIRS trace semantics relative to the
objects making up the system. We define the semantics of a
method m in the context of object o:C by the set of traces
of message sending that represent possible executions of m.

One trace of m, Tm, represents one possible execution of
m. Tm is defined by the transitive closure of each method

invocation occurring between the start and end of the exe-
cution of m (i.e. all method calls that are put on the stack
between the start and end of the method execution). Since
we only consider synchronous communication in Java, we do
not have to separate the sending and receiving of a message
as different events.

We choose to model a trace as a sequence of events, where
each event contains information about the sender object, re-
ceiver object, the message called, and the execution thread.
A trace of message m called on object o can be defined by
T (m,o) = {<e0(os1,or1,m1,th1), e1(os2,or2,m2,th2),....,ei(osi,

ori,mi, thi) >}, where each ei is an event, each osi is a sender
object, each ori is a receiver object, each mi is the message
sent, and each thi is the execution thread. For a single-
threaded Java application, each thi will be identical.

The semantics of m in the context of the object o, �m(o)�,
is defined by the set of potential traces of m in the context
of object o. This contrasts with the semantics of sequence
diagrams in STAIRS, which is exactly the sets of positive
and negative traces defined by the sequence diagram. In
our definition of the semantics of m, we want to ignore any
message being sent to self, as these can mostly be considered
irrelevant in the context of interactions (since we want to
focus on the interaction between objects). This is done by
applying a default trace filter (Fexclude−this - see Section 3.3
below), which filters away any such events from the trace.

For a specific object o ∈ S, with methods Mo={m0, m1,
m2,...mk}, the semantics of o, �o� = �m0� ∪ �m1� ∪ �m2� ∪
... ∪ �mk�, i.e. all potential traces for all methods on that
object. Similarly, the semantics of system S is defined as the
union of the semantics of all its objects: �S� = �o1� ∪ �o2�
∪ ... ∪ �on�, i.e. all potential traces of all objects in the
system.

Program 1 Example One

class DrawController {
protected Figure f = new Figure();
protected Display d = new Display (f);

public void addPoint (int x, int y) {
Point p1 = f.makePoint (x, y);
d.display(p1);

}

public void addPoint2(int x, int y) {
addPoint(x, y);
Point p3 = f.makePoint (x+100, y+100);
d.display(p3);

}

public void addPoint3 (int x, int y, boolean addOne) {
addPoint(x, y);
if (addOne) {

Point p3 = f.makePoint(x*2, y*2);
d.display(p3);

}
}

}

Looking at Program 1, we can consider the semantics of
an object O of type DrawController. It is defined by the
union of the semantics of each of its methods. This gives
the following semantics: �O� = �addPoint� ∪ �addPoint2�
∪ �addPoint3�, which in turn equals {<makePoint, display>}
∪ {<makePoint, display, makePoint, display>} ∪ {<makePoint,

display>, <makePoint, display, makePoint, display>}. Set dupli-
cates can be removed, resulting in the two traces {<make-

Point, display>, <makePoint, display, makePoint, display>}. For
brevity, an event is just denoted by the message name with-
out the sending/receiving objects or thread. The calls to
addPoint from addPoint2 and addPoint3 are not events in
these traces, since they are filtered by Fexclude−this.

If we were to extend Java-STAIRS to model asynchronous
communication, the events can be extended with send and
receive flags and an id to match corresponding send and
receive events. Time is not considered in this paper, but it
could also be an extension to the event by using time ticks
or time stamps.

3.2 Java-STAIRS Refinement
Refinement of a sequence diagram in STAIRS is defined

by new sequence diagrams that supplement, narrow, or de-
tail another sequence diagram. For Java-STAIRS, we re-
strict this to supplementing refinement. Refinements are
established when methods are redefined. A supplementing
refinement of a sequence diagram adds new traces to the se-
quence diagram e.g. by adding optional fragments, adding
operands to an alternative, or creating an alternative to an
existing (set of) fragment(s). Basically, any modification
that produces a superset of the traces of the original se-
quence diagram is a supplementing refinement.

For Java-STAIRS, a refinement is defined based on the po-
tential traces that can be produced by methods executions.
For methods M and M’ : a method M’ is a refinement of M
(M � M’) iff �M’� � �M�, that is, the potential traces of M
are also potential traces of M’, i.e. T (M’) � T (M). This is
consistent with the definition of supplementing refinement in
STAIRS [13]; this is also the basis for the semantics preser-
vation definition for sequence diagram aspects in [21].

Two traces τ(M) and τ(M’) are considered equal if their
sizes are the same (i.e. they contain the same number of
events) and the message in each τ(M’) event refers to the
same method, or a redefined method, as the corresponding
event in τ(M). By allowing methods to be redefined, two
traces can also be equal if objects of corresponding events
are in a sub/supertype relationship.

Refinement of objects is based on refinement of methods.
We say that an object o’ is a refinement of o (o� o′) iff �o’�
� �o�. For systems S and S’, we say that S’ is a refinement
of S (S � S’) iff �S’� � �S�.

For the refinement relationship, we can further define the
following properties:

1. The refinement identity - a system s is always a refine-
ment of itself: S � S.

2. Refinement is transitive - S � S ′ and S ′ � S ′′ ⇒ S
� S ′′.

The identity property is trivial. The transitivity property
has been proven for sequence diagrams in [12]. Here, refine-
ment is defined by the superset operator on traces, which
gives the transitivity property. Our definition of refinement
only supports supplementing. This, however, is not a limita-
tion on the effect any aspect may have on the base program,
only on the changes that can be made to the base program
that will constitute a refinement. As we will see later (in
Section 4.3), refinements will allow us to know that an as-
pect will have effect when the base program evolves.

In STAIRS, refinement semantics is defined for various se-
quence diagram composition operators, such as sequential,
alternative, and parallel composition. This allows for com-
positional reasoning when refining a system specification.
Similar composition rules could be defined for Java by using
conditional statements and sequential method calls. We will,
however, not focus on composition operators in this paper.
The Java-STAIRS semantics is a simplification of STAIRS
in that it does not describe asynchronous communication.
It also only covers the actual potential positive behavior,
while STAIRS categorize behavior (traces) as being either
positive, negative, or inconclusive. We can, however, map
traces in Java-STAIRS to STAIRS by, for each trace, cre-
ate a positive STAIRS trace that contains one send and one
receive event for each Java-STAIRS event. The resulting
STAIRS traces describe asynchronous events, but in a syn-
chronous order. With such a mapping to STAIRS we could
rely on STAIRS analysis techniques for Java-STAIRS traces.

3.3 Trace Filters for Interaction Contexts.
In order to focus on the traces essential for a set of inter-

acting objects, we want to be able to abstract away events
that are not considered part of that particular object inter-
action. For example, if we want to analyze the interaction
between objects o1, o2, and o3, we want to hide traces in-
volving other objects. To this end, we introduce filter con-
straints, which allow to specify filters for the kinds of ob-
jects who’s interactions are (or are not) interesting in this
context. These filters are constraints on trace sets that re-
strict the sets of traces visible, and create projected views
on a complete set of execution traces. This gives focus to
the essential communication between the objects involved in
a specific interaction. We define a set of default filters that
helps projecting Java-STAIRS traces to match a particular
sequence diagram context.

The default exclude filter for excluding message events
from an object to itself, Fexclude−this, is defined by filtering
(removing) from T (m,o) all events e(os, or, m, th) where
os = or. Formally, this can be defined by the following
constraint on the system S:

• Fexclude−this(S) = ∀ t ∈ �S�, ∀ e ∈ t | e.os �= e.or.

Two other filters are considered important for capturing
sequence diagram semantics: restricting the type of objects
involved in interaction and restricting the instances involved.
Related to a specific interaction (defined by a sequence dia-
gram), we want to restrict the traces on the Java level to only
involve objects of the types from that particular interaction.
We call that the Frestrict−type function. Furthermore, we
want to restrict our traces to the particular objects inter-
acting. We don’t want other objects of the same type to
interfere with the traces. We call that the one-object-per-
type (oopt) filter. The former function is defined by:

• Frestrict−type(S, Set<Class> typeSet) = ∀ t ∈ �S�, ∀
e ∈ t | e.os.type ∈ typeSet ∧ e.or.type ∈ typeSet.

The latter function is defined by:

• Foopt(S) = ∀ t in �S�, ∀ e1, e2 ∈ t | e1.os.type =
e2.or.type ⇒ os = or.

The need for oopt filter can be seen e.g. if capturing traces
in a graphical editor with several (concurrent) active editor
windows, and we want to avoid matching traces involving

more than one of the editors. If the system is multi-threaded
and these objects live in different threads, a per-thread filter
may be used instead. Other filters and filter functions can
be defined as required by the application context.

The filters provide a means for semantic variability in the
trace matching. Other filters can be defined to filter out
events outside the scope of interest for an interaction. The
semantics of Java-STAIRS Aspects is controlled by the se-
quence diagram(s) in question. If a sequence diagram speci-
fies multiple roles of the same type, the oopt constraint must
be relaxed to allow this.

3.4 Examples of Refinement.
We will now address how this applies to the example Java

code in Program 2, which shows some classes extending the
DrawController class from Program 1. The original class
defines the addPoint method, which is redefined in these
subclasses. We will look at the refinement relationships be-
tween the different addPoint in the original class and the
ones introduced in Program 2.

Program 2 Refinement Examples

class DrawCtrl2 extends DrawController {
public void addPoint (int x, int y) {

super.addPoint(x,y);
}

}

class DrawCtrl3 extends DrawController {
public void addPoint (int x, int y) {

super.addPoint(x, y);
Point p3 = f.makePoint(x,200);
d.display(p3);

}
}
class DrawCtrl4 extends DrawController {

public void addPoint (int x, int y) {
Point p1 = f.makePoint (x, y);
d.display(p1);
logger.log(Level.INFO, "Point created");

}
}

By our definition of refinement, addPoint2 in DrawCon-
troller (Program 1) (mp2) is not a refinement of addPoint
(mp1). It will never produce the same trace, since it intro-
duces a new call to makePoint that will always be invoked.
The possible traces of mp2 are, as we saw earlier (Section
3.1) {<makePoint, display, makePoint, display>}, which is not
a superset of the mp1 traces - {<makePoint, display>}. In
DrawController::addPoint3 (mp3), a call to mp1 is supple-
mented with a conditional that may or may not add ad-
ditional events to the trace. As earlier seen, the poten-
tial traces of mp3 (T (mp3)) are a superset of mp1 traces
(T (mp1)). We can therefore say that mp3 is a refinement
of mp1.

The subclass DrawCtrl2 redefines the addPoints method,
but it only invokes the addPoint method of the superclass.
The traceset for the two will be the same; for DrawCtrl3, the
situation is similar to that of addPoint2. It introduces new
method invocations and will never be able to produce the
same trace as addPoint in the superclass. Thus, it is not a
refinement. Finally, lets look at class DrawCtrl4, which also
redefines addPoint. It makes the same two calls to make-
Point and display, but in addition it has a call to a logger.

The trace of that method (in any object context) will be
{<makePoint, display, log>}, which would not be a refinement
of the superclass addPoint. However, if we apply a trace
filter that focuses on the collaboration between DrawCon-
troller and Figure, it would be a refinement, as equal traces
constitute valid refinements.

3.5 Summary of Java-STAIRS
We have defined a semantics for execution traces in Java,

which is based on STAIRS semantics for UML sequence di-
agrams. This provides a foundation for reasoning about the
execution traces in a collaboration of interacting Java ob-
jects. Furthermore, we have defined a mechanism for speci-
fying the relevant interaction patterns by using trace filters.
This makes it possible to define the scope of the interaction
within which we want to reason about trace semantics.

We then defined refinement for Java-STAIRS based on
supplementing refinement in STAIRS. This provides a way of
reasoning about refinement relations with respect to system
execution traces. At a design level with sequence diagrams,
this is useful for being able to determine system consistency
during refinement. At the Java level, we will see that this
is very useful in order to provide a consistent application of
trace-based aspects.

4. Java-STAIRS Aspects
Java-STAIRS Aspects is an application of trace-based as-

pects for Java programs using the trace semantics defined in
Section 3. We extend the standard aspect-oriented paradigm
to support aspects defined by traces such as those express-
ible by sequence diagrams. In contrast to other trace-based
approaches, we define a trace-based semantics that can be
filtered according to specific sequence diagram contexts, and
describe aspects using standard UML sequence diagrams
that are later mapped to trace-based aspects in Java.

There is an obvious, fundamental difference between se-
quence diagram aspects and trace-based Java aspects. A
sequence diagram describes a static model of a system exe-
cution scenario. As such, any part of that scenario can be
modified by an aspect. For example, a sequence diagram
aspect can look for an interaction pattern and then insert
new interaction fragments before or between fragments of
any match found in the base sequence diagram. Since the
traces of a Java program execution can only be determined
during the actual execution, it is only possible to advice new
behavior after the occurrence of a trace.

We use UML sequence diagrams as our instrument for de-
scribing pointcuts, similar to the work of Stein et al. [26]
with Join Point Designation Diagrams (JPDD). We eval-
uated JPDD semantics and tool support for implementing
our approach, and found two main reasons for not choosing
JPDD: most importantly, the semantics defined and imple-
mented by JPDD does not provide any means for filtering
the communication to support desired communication se-
mantics for the sequence diagram objects. Secondly, the
JPDD approach uses a non-standard UML notation that is
hard to support in a standard UML tool, and their nota-
tion and tool do not support UML control structures like
conditionals, loops, or alternatives.

The Tracematches approach, proposed by by Allan et
al. [1], defines a language and a semantics for trace-based
matching that seems to meet our specification needs on the
implementation level. Avgustinov et al. [2] have imple-

mented the tracematch semantics within the AspectBench
platform. The Tracematches approach allows filtering of
events with event symbols that are defined by ordinary As-
pectJ pointcuts. A match for a tracematch is defined by
a regular expression combining these symbols. We will see
later how Tracematches can capture interactions specified
by sequence diagrams, and we will analyze its strengths and
weaknesses in this respect.

4.1 Pointcut/Advice Description in Sequence
Diagrams

There are several approaches that define notations for
specifying sequence diagram or MSC aspects and define the
semantics for composing or weaving these aspects at a mod-
eling level [15, 10, 31]. Join Point Designation Diagrams
(JPDDs) [25, 26] defines a UML-based notation for expres-
sion advanced pointcuts, without addressing weaving at the
model level. A mapping of JPDDs to code-level pointcuts
is described in [11]. That work has been supported by a
prototype JPDD modeling tool and a pointcut generator to
AspectJ [14] and JAScO [27].

For our purposes, we employ standard UML sequence di-
agrams to represent trace-based aspects. If the pointcut
semantics needs to be extended, we rely on the existing
work in this area. We illustrate with examples from a fig-
ure drawing application, which we used for experiment with
our approach. Figure 1 shows an aspect with a pointcut
and advice, which applies to the example application. The
pointcut is defined by fragments (messages and combined
fragments) as a standard sequence diagram. The advice is
defined after the fragments defining the pointcut by apply-
ing the <<create>> stereotype (from Whittle et al. [31]) on
a seq combined fragment. Any interaction fragment within
this is treated as part of the advice. To accommodate speci-
fication of explicit advice code, the model advice can embed
Java code in addition to the advice interaction fragments.

The notation used for return types (<?p1>) is borrowed
from the JPDD notations for identifiers. The return value
of a message is stored in the identifier and can be refer-
enced later in the sequence diagram, typically in the advice
part. Message names and parameters may be specified using
wildcard conventions as in AspectJ and JPDD. Parameters
for messages may also be defined by the associated method
definition in the model, if any.

This simple aspect looks for a sequence of calls where a
DrawController invokes makePoint on a Figure object fol-
lowed by a call to display on a Display object. The two
calls should occur twice. The trace we need to find is thus
{<makePoint, display, makePoint, display>}. If this occurs, the
advice will create a line that links the two points (makeLine)
and display it on a display object.

In addition to basic sequences of messages, we allow a se-
quence diagram aspect to specify combined fragments that
represent loops (repetitions), alternatives, optionals, or par-
allel composition. Other kinds of combined fragments from
UML are not supported. To specify quantified message frag-
ments or lifelines, the notation from JPDDs, which adheres
to the conventions of AspectJ, can be used for message
names and type names of lifelines.

Figure 2 illustrates a Java-STAIRS aspect that looks for
an interaction pattern with a loop. It also illustrates that the
advice introduces a new lifeline that invokes behavior on the
involved objects. A sequence diagram with only sequential

Figure 1: Detecting Creation of Two Points

Figure 2: More Complex Example

messages will define a single trace (since we consider only
synchronous semantics). Introducing alternatives, optionals,
loops, or parallel merge in the sequence diagram will result
in several traces being defined as part of the Java-STAIRS
aspect pointcut. An alternative defines one alternative sub
trace for each operand. An optional will define two alter-
native sub traces (where one is empty). A loop defines a
range of possible traces defined by the loop bounds. A par-
allel merge defines a set of traces based on a interleaving the
events of the operands without obstructing the event order
within each operand. Events from different parallel merge
operands are associated with different thread identifiers.

Figure 3 shows examples of sequence diagrams with dif-
ferent kinds of combined fragments. The names of messages
may use wildcard notation similar to that of AspectJ such
as ’..’ or ’make*’. The altex defines the traces {<make-

Point, display, make*>, <makePoint, display, repaint>}. The op-
tex defines the traces {<makePoint, display>, <makePoint, dis-

play, make*>}. The loopex defines an unbounded set of traces:
{<makePoint, display, make*>, <makePoint, display, make*, make*

>, ...}. The parex defines the traces resulting from inter-
leaving the events of the operands: {<makePoint, displayt1,

updatet1, make*t2, repaintt2>, <makePoint, displayt1, make*t2,

updatet1, repaintt2> , <makePoint, displayt1, make*t2, repaintt2,

updatet1>, <makePoint, make*t2, displayt1, repaintt2, updatet1>,

<makePoint, make*t2, displayt1, updatet1, repaintt2>, <make-

Point, make*t2, repaintt2, displayt1, updatet1>}. All display and
update events in this trace have the same thread id (t1); so
will all make* and repaint events (t2). Since a trace defined
by a Java-STAIRS aspect may describe quantified events, it
may match many different traces in a base program, similar
to AspectJ pointcuts that quantify message calls.

The knowledge of how to create or access the new lifeline

Figure 3: Combined Fragment Examples

Figure 4: Using the Formal Gates

can be embedded in the advice code if needed. The advice
of a Java-STAIRS aspect may also define behavior originat-
ing from the environment (the formal gates of the sequence
diagram). The pointcut part may also define fragments in-
volving the formal gates of the sequence diagram. These are
considered as originating from any kind of object, i.e. the
same as specifying a lifeline with wildcards (Figure 4).

The composition of a Java-STAIRS aspect with a Java
system is done by mapping the sequence diagram aspect to
an implementation level trace-based aspect. Formally, we
define the composition of a system S with a Java-STAIRS
aspect A - S ⊕ A - by the set of (potential) traces in �S
⊕ A�, with the exclusion and type restriction filters applied
(Foopt (Frestrict−type (Fexclude−this (�S ⊕ A�))). The next
section describes the mapping in detail.

4.2 Mapping to Trace-Based Java Aspects
To implement Java-STAIRS Aspects, we analyzed several

existing technologies, such as JPDD, Tracematches, Declar-
ative Event Patterns [30], and JaSCo [28]. As JPDDs are
closely related, it was a natural starting point. The seman-
tics of JPDDs is defined by the generators to different aspect
language platforms, and we analyzed the JPDD generator to
AspectJ. As earlier mentioned, we found one major obsta-
cle with JPDD. The JPDD interpretation of the aspect (the
pointcut part) of Figure 1 is to match a call to makePoint
followed by another call to makePoint, even if there are other
calls in between. In Java-STAIRS Aspects, we want to fil-
ter any events that are not between the types of the objects
involved in the interactions (Frestrict−type) and the events
that are just calls to self (Fexclude−this). This has proven
difficult, since the JPDD semantics allows any message to
come between messages that are part of the trace pattern
we are looking for. We ran several rounds of test cases and
discussed with the JPDD developers, but were unable to
support the desired semantics. It would, however, be pos-
sible to redefine the JPDD semantics and re-implement the
tool to support this semantics, which would be like imple-
menting a new tool. Instead of pursuing this, we looked to
other alternatives.

Tracematches was defined by Allan et al. in [1] to sup-
port trace-based matching of execution traces as an exten-
sion to AspectJ. It has the ability to filter events that are
out of context, which seemingly is exactly what is needed as
a platform for Java-STAIRS Aspects. Tracematches extends
AspectJ with the ability to define symbols that refer to stan-
dard AspectJ pointcuts. The symbols declare the joinpoints
of interest. All other joinpoints in an execution are ignored
when looking for a match to a trace. A regular expression
pattern of these symbols defines the traces of interest. By
defining symbols that are not used in the matching pattern,
events of interest that are not wanted in a match can be
specified. Occurrences of these events will break an ongoing
trace match.

Program 3 shows a tracematch for the example from Fig-
ure 1. As this is a simple example, it could easily been
handled by standard AspectJ with some state information.
However, as argued by [1, 25] and others, it is not straight-
forward to design these aspects when the interactions get
more complicated. The tracematch defines one pointcut for
each specific message (e.g. makePoint) from the sequence
diagram. In addition, it defines one pointcut (others) for fil-
tering other calls between the involved types. Corresponding
symbols and the trace to match are defined within the trace-
match definition. We use a type pattern (+) in the within
clauses to also capture calls made from subclass objects.

The tracematch in Program 3 defines three symbols, each
related to a specific pointcut. The mp symbol is associ-
ated with the makePoint pointcut, which is triggered by
any call to the method makePoint on a Figure object from
within DrawController. The symbol dis represents the dis-
play event occurring when a DrawController invokes display
on a Display object, while the oth symbol captures any other
events that are calls to any of DrawController, Display, or
Figure from within any of the two others. The regular ex-
pression of symbols within the tracematch is defined by: mp
dis mp dis, which maps to the trace defined by our aspect
in Figure 1. The tracematch will ignore any event not cap-
tured by a symbol, and so it will only look for events that

Program 3 TraceMatch

public aspect PointMatcher {
pointcut makePoint(Figure f): target(f) &&

call (* Figure.makePoint(..)) &&
within (DrawController+);

pointcut display(Display d): target(d) &&
call (* Display.display(..)) &&
within (DrawController+);

pointcut others(): (target(DrawController) &&
(within(Figure+ || Display+))) ||
(target(Figure) && (within(DrawController+ ||
Display+))) || (target(Display) &&
(within(Figure+ || DrawController+)));

tracematch (Figure f, Display d) {
sym mp after: makePoint(f);
sym dis after: display(d);
sym oth after: others();
mp dis mp dis {

System.out.println ("Two points were created.
Now add a line..");

}
}

}

match the mp, dis, and oth symbols.
Figure 5 illustrates what we would like to happen: when

the user adds a point, which is followed by a another one,
the tracematch should add a line between the two points.

Figure 5: Drawing Two Points

Now, the actions defined by the tracematch does not yet
implement the desired behavior of the advice. The availabil-
ity of information for individual pointcuts is limited within
a tracematch, and in order to implement the desired behav-
ior, we need to access the return value of the makePoint
calls. This must be handled by additional standard AspectJ
advice that can store the relevant information (e.g. storing
the points in a list). Similar additions are needed to access
joinpoint information for single call events, such as accessing
the caller and callee object of each event in a trace.

Program 4 shows the tracematch for the sequence diagram
with loop from Figure 2. Other symbols and pointcuts are
as illustrated before. The loop in the trace is modeled as
a one-or-more repetition (+) of a group of symbols (mStar
dis).

Expectation Mismatch.
The matches given by the defined tracematch meet our

criteria of matching the traces <makePoint, display, make-
Point, display>. However, the implementation tested (the
AspectBench compiler v1.3.0) provided matches that we did
not desire: the trace {<makePoint, display, makePoint, display,

makePoint, display>} results in two matches rather than one,
and any subsequent call to makePoint+display will result

Program 4 Example with Loop

pointcut makeStarPoint(Figure f): target(f) && call (
Point+ Figure.makeStarPoint(..)) &&
within (DrawController+);

tracematch (Figure f, Display d) {
sym mStar after: makeStarPoint(f);
mp dis (mStar dis)+ mp dis {
f.moveAllPoints(10);

}
}

Figure 6: Wrongly (left) and Correctly Matched
(right)

in a new match, if there is no event breaking the sequence.
This is according to the semantics of Tracematches, which
looks for matches against all suffixes of the program trace.
However, this semantics goes against the intuition of how
trace-based aspects work on the sequence diagram level;
since an aspect on a sequence diagram typically will mod-
ify the matched traces by inserting or removing fragments
before, after, or in between the matched trace(s); the result
will be a modified trace set where already matched events
may have been removed, so it is in general not feasible to
include the same events in multiple matches. We would like
the events included in an aspect match to be unique for each
aspect.

Figure 6 illustrates graphically the implications of the un-
intended trace match given by the tracematch implementa-
tion. The leftmost viewer shows that every point created
gets connected to the previously created point, while the
rightmost viewer only has connected each pair of points, as
intended. We cannot avoid the tracematch from detecting a
match, but we can restrict the specification to connect two
and two points pairwise by defining a superfluous symbol in
the tracematch that is not part of the tracematch expres-
sion. This is similar to how the same problem was solved
in [1] to provide automatic save after five command execu-
tions: for our example, we define a symbol breaker that is
triggered by the pointcut traceStop. It matches any call to
the method breakTrace, which is defined within the aspect
and invoked each time a match is found (Progam 5).

Program 5 Extra Symbol

public aspect PointMatcher {
pointcut traceStop ():

call (void PointMatcher.breakTrace());
public void breakTrace () {}
tracematch (Figure f, Display d) {
sym breaker after: traceStop();
// other symbols as before

mp dis mp dis {
breakTrace();
// code as before

}
}

Instance-Level Reasoning.
Tracematch semantics allows symbols to be associated

with instances through variables that are referenced by sym-
bols through their pointcut variables (if any). If a variable
is bound more than once in a trace, the value of the instance
is compared with the old value. If it is not equal, the symbol
(the event) is ignored for this particular trace. This allows a
tracematch to match only if the same objects are involved in
an interaction, which in many cases can be important. Con-
sider for example the graphical application executing with
two different viewers, or displays. Each viewer is an instance
of Display and draws graphical elements on a Figure.

Figure 7 shows what may happen when a trace-based as-
pect does not distinguish different instances when finding
trace matches. Here, two points are created consecutively,
but in two different displays. The tracematch assumes that
this is a match for the trace and creates a line between the
two points, even though only one of them is visible on that
display.

Figure 7: Points Created in Different Displays

For the sake of Tracematches, however, a problem arises
when combining the superfluous symbol that breaks the all
suffixes matching and catching traces consistently for sev-
eral objects of the same type. Since we trigger the same
superfluous symbol to reset the matching process when a
match is found, regardless of which object is involved, find-
ing a match on one object will reset the trace for the other
object(s) as well.

Handling interactions in which there are multiple instances
of the same type and being able to distinguish them are also
important features of handling system traces. Just consider
a scenario that describes behavior involving two or more
client objects talking to one service instance in a specific
way; we would like to capture this too. Support for specify-
ing distinct object involvement in interactions has recently
been implemented as part of the Tracematches in the As-
pectbench framework, but it has not been tested here.

Mapping Rules.
The following rules are followed in the mapping from Java-

STAIRS Aspects to Tracematches:

1. The mapping follows the weak sequencing and causal-
ity rules of sequence diagrams. For one sequence dia-
gram, one aspect containing one tracematch is defined.

2. Each message with one send and one receive event is
mapped to an aspect pointcut, using the name of the
message and the sender and receiver roles as identity
keys. If the same method (with the same identity)
appears more than once, only one pointcut is defined.
For each pointcut, a named symbol is defined in the
tracematch.

3. For each combined fragment, a mapping is done re-
cursively for its operands until leaf nodes (messages)
are mapped to their symbol representation within the
combined fragment mapping.

4. An optional fragment is mapped to two alternative
branches, each representing the trace with or without
the optional: (a opt(b) c) => (a b c | a c). As there
is no support for specifying an optional pattern in a
tracematch, the specification can become awkward if
there are many optionals in the Java-STAIRS aspect.

5. An alternative fragment is mapped to group alterna-
tives in the tracematch. Java-STAIRS Aspect operand
fragments are mapped to symbols in each tracematch
group: alt(ab|bc|cd) => ((ab)| (bc)| (cd)).

6. A loop fragment is mapped to group repeats in a trace-
match, either using the ’*’ or ’+’ repetition for the
group if the loop is unbounded: loop[*](abc)=> (abc)*.
If the loop has a lower bound, but no upper bound, it
can be mapped to a numbered repetition followed by
an unbounded repetition: loop[2..*](abc)=> ((abc[2]
(abc)*)). If the loop has an upper bound as well, it
can be mapped to group alternatives, with a numbered
repetition for each iteration: loop[1..3](abc)=> ((abc)
(abc)[2] (abc)[3]).

7. A parallel fragment is mapped to group alternatives
for each possible alternative resulting from interleaving
the events of the different fragment operands: par(ab|
cd) => (abcd|acbd|acdb|cabd|cadb|cdab).

8. For all pairs of objects involved in the Java-STAIRS
Aspect, a single pointcut is defined to represent ac-
tions that are not described by the sequence diagram.
A corresponding symbol is defined in the tracematch,
but not included in the trace expression. This symbol
is defined to avoid matches if there is other communi-
cation between the involved objects in a specific trace.

The mapping rules can easily be implemented by a model
transformation to automatically generate tracematches from
Java-STAIRS Aspects. We have implemented such a map-
ping using a model-to-text transformation from UML se-
quence diagrams to Tracematches using MOFScript [22].
The transformation is straightforward by following the rules
above.

4.3 Refinement and Semantics Preservation
Let us recap the motivation to maintain refinement rela-

tionships during system evolution. In this context, we may
consider the interaction between a group of objects in our
system as a behavioral contract, or a protocol agreement
between system roles.

Aspects defined on the trace-level rely on that contract
in order to be functional. Modifying a system by using the
above defined Java-STAIRS refinement ensures that traces
that were potential system traces before refinement still are
potential after refinement. In the following we show that
applying Java-STAIRS Aspects maintains refinement. If S’
is a refinement of S, then applying an aspect A to S’ will
result in something that is a refinement of the result from
applying A to S.

In [21], the authors address semantics preservation of se-
quence diagram aspects. Semantics preservation was defined
by two characteristics: monotonicity of aspect composition
with respect to refinement and event preservation (i.e. that
events are not removed).

For Java systems S and S ′, where S � S ′ (S ′ is a refine-
ment of S), and a Java-STAIRS aspect A, we can observe
the following properties:

• �S ′ ⊕ A� � �S ⊕ A�.

• All traces τ ∈ �S� have a corresponding trace τ ’ ∈ �S
⊕ A� such that τ is a subtrace of τ ’ meaning that τ
can be formed from τ ’ by just inserting events.

In other words, the composition of S ′ with A is a refine-
ment of S composed with A, and there is no loss of events.
This is consistent with the definition of semantics preser-
vation for sequence diagram aspects given in [21]; and we
can declare Java-STAIRS Aspects to be semantics preserv-
ing with respect to refinement. Rationale: Since S � S ′,
we know that the traces in S must also be in S ′. If A matches
a trace in S, the same match will be found in S ′. Each trace
in S that is modified by A will have a corresponding trace
in S ′ that also will be modified by A. Hence, each modified
trace in S will have an equal modified trace in S ′. It follows
that S ⊕ A � S ′ ⊕ A.

Consider again the example where parts of our system
are redefined (Program 6). In this case, the class DrawCon-
troller is specialized and the method addPoint is redefined.
The redefinition calls the addPoint of the super class and in-
vokes in addition a repaint on the display (Program 6). Now
consider that the user draws points on the display canvas and
triggers the addPoint twice, and that we have defined the
Java-STAIRS aspect from Figure 1. Using DrawController2,
the aspect will never match, because there is always a call
to display.repaint that breaks the trace being searched for.

Program 6 Refinement Examples
---- original DrawController::addPoint------
protected void addPoint (int x, int y) {

Displayable d = figure.makePoint(x, y);
if (displayable != null) {

myDisplay.display(d);
}

}

---- redefined DrawController2::addPoint ------
protected void addPoint (int x, iny y) {

super.addPoint(x, y);
myDisplay.repaint();

}

We could have anticipated such a modification, and built
our aspects so that they could allow for a larger space of
traces. However, this is not an ideal situation, as it is not
feasible to foresee all future changes. The aspect could also
be modified to cope with the new situation, by modifying
the trace(s) that should be matched. By allowing only mod-
ifications that are Java-STAIRS refinements, we ensure that
behaviors (traces) are not removed from the system, so that
trace-based aspects can work consistently also in refined sys-
tems, i.e. that semantics is preserved.

Refinement Analysis.
In software engineering, it is invaluable to accurately ver-

ify that a system behaves as expected. In a software design
with sequence diagrams, system refinement can be checked
by analyzing and comparing trace sets of behaviors. Se-
quence diagrams specification with asynchronous commu-
nication may represent a lot of traces, so computing and

comparing traces become intractable [10]. In his PhD the-
sis, Lund defined a method for refinement testing based on
test generation and execution of sequence diagrams [19]. A
similar approach may be taken at the implementation level;
testing can be applied for analyzing the refinement relation-
ships between code modifications. Static analysis can also
to a certain extent be used to determine refinement validity.
Although potential traces cannot be determined in the gen-
eral case, the examples in Program 6 illustrated that local
contributions to traces can be analyzed and used to deter-
mine refinement relationships.

4.4 Multiple Aspects and Interference
In the case that multiple sequence diagram aspects are

involved, interference or conflict between them may occur.
We cannot prevent interference or conflict from happening,
but we have reasonable control over when it may occur. If
two sequence diagrams involve the same set of lifelines, they
are at risk of interfering with each other. If one (or both)
introduces new message interactions between the common
lifelines, this may result in removal of matches or addition
of new matches, but only if it triggers relevant communi-
cation initiated outside of the aspects; communication from
the aspect is discarded by filters. Detecting of such conflicts
is out of scope for this paper. The topic of aspect conflict res-
olution is thoroughly addressed by others, e.g. by Douence
et al. [7].

5. DISCUSSION AND RELATED WORK.
The work presented is strongly related to works on state-

ful and trace-based aspects, as we provide an integration
between design-level and implementation-level trace-based
aspects. The work on semantics preservation of sequence
diagrams aspects by Oldevik and Haugen [21] was a mo-
tivator for addressing this topic in the space between de-
sign and implementation. The semantic definitions for Java-
STAIRS Aspects and the notion of refinement are based on
that of STAIRS [13]. Our approach is complementary to
trace-based aspects at the implementation and design level.

There is a range of programming language work on trace-
based aspect languages that relates to our choice of tech-
nology for mapping Java-STAIRS Aspects to an implemen-
tation level, namely Tracematches [1]. One of our criteria
was that it should be feasible to use in practice and open
for a natural mapping from sequence diagrams. Other, re-
lated approaches such as Declarative Event Patterns [30]
and JaSCo with stateful aspects [28] were also considered.
Walker and Viggers [30] introduce Declarative Event Pat-
terns (DEP) as a means of implementing protocols. They
define a language extension to AspectJ called tracecuts and
provide a proof-of-concept implementation. This language is
more expressive as it based on context-free grammars rather
than regular expressions. However, it does not seem to sup-
port the filtering mechanisms that we want for our Java-
STAIRS Aspects semantics. Vanderperren et al. defined and
implemented stateful aspects in JaSCo [28, 27], modeled by
the theoretical work of Douence et al. [8, 9]. They can dis-
tinguish interactions on a per thread, class, object, method,
cflow, or everything basis, which is not possible in Trace-
matches. However, the approach does not seem to be able
to describe interactions that need to distinguish different ob-
jects of the same type. Both of the latter approaches will
provide matches for traces with occurring events in between,

which is not what we want for events between our objects
of interest. Klose and Ostermann [16] define the Gamma
language in which pointcuts can be considered as predicates
over the complete execution trace, including past and fu-
ture events. The execution trace is stored in a database as
Prolog facts, and pointcuts are in effect Prolog queries. A
major drawback with the approach is that the system must
be run at least once before pointcuts can be determined.
The concepts, however, match well that of aspects on the
sequence diagram level, where the complete execution trace
is available.

In the design space, relevant work on trace-based aspects
has been done with state machine modeling [5] and with se-
quence diagrams [25, 11]. Cottenier et al. [5] argue that
stateful aspects at the programming level is a symptom of
unsuitable abstractions of the problem, and that a model-
based state machine oriented approach is a better model
and abstraction for stateful aspects within reactive systems.
Even if a reactive system is implemented by a state-machine
abstraction, there might be a need to capture the interaction
between the reactive components or services of the system;
these may well be captured by interactions (e.g. sequence
diagrams) and be subject to trace-based aspects too. This
is shown by Krüger et al. [18], who model trace-based as-
pects pertinent to reactive components (services) and imple-
ment the behavior by a (reactive) trace monitor. Maoz and
Harel [20] generate aspect-based systems from Live Sequence
Charts (LSC) in what they call scenario aspects, where the
aspects are used as implementation technology for the LSCs.
Pre-charts of an LSC act as guards for main-charts, which
in that sense resemble trace-based aspects.

The Join Point Designation Diagram (JPDD) approach
[25, 11] defines a notation for describing pointcuts based
on UML sequence diagrams, acknowledging that some type
of pointcuts are really hard to describe at the code level.
They provide mappings from the JPDD specifications to
implementations in both AspectJ and JaSCo. We evalu-
ated JPDDs and the supporting tools for generating Java-
STAIRS Aspects, but found that they could not express the
semantics desired for our sequence diagram mappings. Fur-
thermore, the JPDD tools provide only limited UML sup-
port without notation for expressing things like alternatives,
loops, conditionals, etc. We compared JPDD with our ap-
proach by testing aspects on the figure drawing example with
both approaches.

In this work, we only addressed synchronous communica-
tion of possibly multi-threaded Java programs. This could
be generalized to explicitly explicitly support asynchronous
communication by extending the Java-STAIRS semantics.
A limitation in the approach is its inherent single-process
(multi-threaded) nature, constrained by the mapping to Java
and Tracematches. Providing trace-based aspects in dis-
tributed systems is a different ballgame, which requires some
kind of common event monitor service, similar to that de-
scribed in [18].

6. CONCLUSION AND FUTURE WORK.
We have proposed a modeling notation for trace-based

aspects using UML sequence diagrams, which is used for
representing traces that are pointcuts of Java executions,
and advice that inserts behavior when aspects are matched.
We defined Java-STAIRS, a trace semantics for Java based
on STAIRS sequence diagram semantics, which gives the

theory for reasoning about the sequence diagram aspects at
Java level. Filtering mechanisms on Java-STAIRS traces
were defined to allow a Java system and its execution traces
to be analyzed in the context of the roles and interactions
defined by a sequence diagram. We defined refinement of
Java in terms of the Java-STAIRS semantics, and showed
that Java-STAIRS Aspects are semantics preserving with
respect to this refinement notion. We defined a mapping of
Java-STAIRS Aspects to Tracematches in Java and imple-
mented this using a model-to-text transformation. Finally,
we tested and illustrated the approach on a figure drawing
application.

For future work, we will investigate further how compo-
sition operators in sequence diagrams relate to Java mech-
anisms, and how refinement and aspect application is influ-
enced by such composition operators. We also need to ana-
lyze further the scalability of the implementation approach
with respect to complexity of the trace expression, e.g. when
handling many alternatives or larger parallel fragments. We
will also look further into models for supporting trace-based
aspects in distributed and asynchronous systems.

7. ACKNOWLEDGMENTS
This work has been done in the context of the SWAT

project (Semantics-preserving Weaving - Advancing the Tech-
nology), funded by the Norwegian Research Council (project
number 167172/V30).

8. REFERENCES
[1] C. Allan, P. Avgustinov, A. S. Christensen,

L. Hendren, S. Kuzins, O. Lhoták, O. de Moor,
D. Sereni, G. Sittampalam, and J. Tibble. Adding
Trace Matching with Free Variables to AspectJ. In
20th Annual Conference on Object Oriented
Programming, Systems, Languages, and Applications
(OOPSLA), pages 345–364, New York, USA, 2005.
ACM.

[2] P. Avgustinov, J. Tibble, and O. de Moor. Making
Trace Monitors Feasible. Technical Report abc-2007-1,
University of Oxford, UK, 2007.

[3] E. Baniassad and S. Clarke. Theme: an Approach for
Aspect-Oriented Analysis and Design. 26th
International Conference on Software Engineering
(ICSE), pages 158–167, 23-28 May 2004.

[4] M. Broy, I. H. Krüger, and M. Meisinger. A Formal
Model of Services. ACM Transactions on Software
Engineering and Methodology (TOSEM), 16(1):5,
2007.

[5] T. Cottenier, A. van den Berg, and T. Elrad. Stateful
Aspects: the Case for Aspect-Oriented Modeling. In
10th international workshop on Aspect-oriented
modeling (AOM), pages 7–14, New York, USA, 2007.
ACM.

[6] M. Deubler, M. Meisinger, S. Rittmann, and I. Krüger.
Modeling Crosscutting Services with UML Sequence
Diagrams. In Model Driven Engineering Languages
and Systems, MODELS, Jamaica, 2005. Springer.

[7] R. Douence, P. Fradet, and M. Südholt. A Framework
for the Detection and Resolution of Aspect
Interactions. GPCE ’02: Proceedings of the 1st ACM
SIGPLAN/SIGSOFT conference on Generative

Programming and Component Engineering, pages
173–188, 2002.

[8] R. Douence, P. Fradet, and M. Südholt. Composition,
Reuse and Interaction Analysis of Stateful Aspects. In
3rd International Conference on Aspect-oriented
Software Development (AOSD), pages 141–150, New
York, NY, USA, 2004. ACM.

[9] R. Douence, P. Fradet, and M. Südholt. in Trace-based
Aspects, chapter Trace-based Aspects., pages 201–217.
Addison-Wesley, ISBN 0-32-121976, 2004.

[10] R. Grønmo, F. Sørensen, B. Møller-Pedersen, and
S. Krogdahl. A Semantics-Based Aspect Language for
Interactions with the Arbitrary Events Symbol.
European Conference of Model Driven Architecture,
Foundations and Applications (ECMDA), Springer,
5095/2008, 2008.

[11] S. Hanenberg, D. Stein, and R. Unland. From
Aspect-oriented Design to Aspect-oriented Programs:
Tool-supported Translation of JPDDs Into Code. In
6th International Conference on Aspect-Oriented
Software Development (AOSD), pages 49–62, New
York, NY, USA, 2007. ACM Press.

[12] Ø. Haugen, K. E. Husa, R. K. Runde, and K. Stølen.
Why Timed Sequence Diagrams Require Three-Event
Semantics. Research Report 309, ISBN 82-7368-261-7,
University of Oslo, 2004.

[13] Ø. Haugen, K. E. Husa, R. K. Runde, and K. Stølen.
STAIRS Towards Formal Design with Sequence
Diagrams. Software and Systems Modeling, pages
355–367, 2005.

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An Overview of
AspectJ. Lecture Notes in Computer Science,
2072:327–, Jan. 2001.

[15] J. Klein, L. Helouet, and J. Jezequel. Semantic-based
Weaving of Scenarios. In AOSD ’06: The 5th
International Conference on Aspect-oriented Software
Development, pages 27–38, New York, NY, USA, 2006.
ACM Press.

[16] K. Klose and K. Ostermann. Back to the Future:
Pointcuts as Predicates over Traces. Foundations of
Aspect-Oriented Languages workshop (FOAL), 2005.

[17] C. Koppen and M. Storzer. PCDiff: Attacking the
Fragile Pointcut Problem. European Interactive
Workshop on Aspects in Software (EIWAS), Berlin,
Germany, 2004.

[18] I. H. Krüger, M. Meisinger, and M. Menarini.
Runtime Verification of Interactions: From MSCs to
Aspects. Workshop on Runtime Verification, 2007.

[19] M. S. Lund. Operational Analysis of Sequence
Diagram Specifications. PhD thesis, Department of
Informatics, University of Oslo, 2008.

[20] S. Maoz and D. Harel. From multi-modal scenarios to
code: Compiling lscs into aspectj. In 14th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering (SIGSOFT/FSE, pages
219–230, New York, NY, USA, 2006. ACM.

[21] J. Oldevik and Ø. Haugen. Semantics Preservation of
Sequence Diagram Aspects. Fourth European
Conference on Model Driven Architecture Foundations
and Applications (ECMDA), pages 215–230, 2008.

[22] J. Oldevik, T.Neple, R. Grønmo, J. Aagedal, and
A.Berre. Toward Standardised Model to Text
Transformations. In European Conference on Model
Driven Architecture - Foundations and Applications
(ECMDA), pages 239–253, Nuremberg, 2005. Springer.

[23] OMG. The Unified Modeling Language:
Superstructure, Version 2.1. Standard ptc/06-01-02,
OMG, 2006.

[24] K. Ostermann, M. Mezini, and C. Bockisch.
Expressive Pointcuts for Increased Modularity.
European Conference on Object Oriented Programming
(ECOOP), 3586/2005:214–240, 2005.

[25] D. Stein, S. Hanenberg, and R. Unland. Query
Models. In 7th International Conference of Modelling
Languages and Applications, volume 3273/2004, pages
98–112, Lisbon, Portugal, 2004. Springer.

[26] D. Stein, S. Hanenberg, and R. Unland. Expressing
Different Conceptual Models of Join Point Selections
in Aspect-oriented Design. In 5th International
Conference on Aspect-Oriented Software Development
(AOSD), pages 15–26, New York, NY, USA, 2006.
ACM Press.

[27] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo:
an Aspect-oriented Approach Tailored for Component
Based Software Development. International
Conference on Aspect-Oriented Software Development
(AOSD), pages 21–29, 2003.

[28] W. Vanderperren, D. Suvée, M. A. Cibrán, and B. D.
Fraine. Stateful Aspects in JAsCo. 4th Intl. Workshop
of Software Composition, 2005.

[29] R. J. Walker and G. C. Murphy. Joinpoints as
Ordered Events: Towards Applying Implicit Context
to Aspect-Orientation. Workshop on Advanced
Separation of Concerns at ICSE, 2001.

[30] R. J. Walker and K. Viggers. Implementing Protocols
via Declarative Event Patterns. In 12th ACM
International Symposium on Foundations of Software
Engineering (SIGSOFT/FSE), pages 159–169, New
York, NY, USA, 2004. ACM.

[31] J. Whittle and P. Jayaraman. MATA: A Tool for
Aspect-Oriented Modeling based on Graph
Transformation. 11th International Workshop on
Aspect-Oriented Modeling (AOM), 2007.

Paper IV: From Sequence Diagrams to Java-STAIRS Aspects

138

Appendix E

Paper V: Confluence in
Domain-Independent Product Line
Transformations

Authors. Jon Oldevik, Øystein Haugen, and Birger Møller-Pedersen.

Paper Summary. In this paper, we describe an implementation of a transformation
for a domain-independent variability language. This implementation is then used for
reasoning about the confluence properties of variability resolutions. We give the criteria
for when these variability transformations are confluent and when they are conflicting.
We also describe how to analyse confluence in the context if given variability resolutions.

Author Contribution. Jon Oldevik was the main author and responsible for the
main part of the research and writing of this paper, accounting to about 90% of the
work. Specifically, Jon Oldevik was the main contributor in the implementation of the
variability transformation and for the formal definitions and approaches supporting
analysis of confluence and conflicts.

Publication Arena. Published in the proceedings of Fundamental Approaches to
Software Engineering (FASE) 2009. Acceptance rate 24% (30/124).

139

This article is removed.

Appendix F

Paper VI: Model Composition
Contracts

Authors. Jon Oldevik, Massimiliano Menarini, Ingolf Krüger

Paper Summary. In this paper, we describe a technique for specifying and checking
composition contracts for models. The composition contracts provide a level of control
for what kind of modifications a composition can be allowed, or should be denied, to
perform on a base model. This is done in terms of constraints defined in contracts,
which restrict the eligibility for composition.

Author Contribution. Jon Oldevik was the main author and responsible for a
major part of the research and writing of this paper. Specifically, Jon Oldevik was
a major contributor to the composition contract concept, the language, and the tool
prototype development.

Publication Arena. Published in the proceedings from ACM/IEEE 12th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS)
2009. Acceptance rate 23% (46/211).

155

This article is removed.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars true
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 8.503940
 8.503940
 8.503940
 8.503940
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

