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Abstract

In this thesis, we work with empirical likelihood functions and hybrid
combinations of these with parametric likelihoods. We state and prove an
analogue to Wilks theorem for the empirical likelihood function. In addition,
we derive an alternative characterization of the map, and use it to reformulate
maximization of the empirical likelihood function as an M-estimation problem.
We also work with the hybrid likelihood function, a combination of empirical
and parametric likelihoods. We prove a profiling result for this map and
investigate the case of possible model misspecification. The limit distribution
of the maximizer of the hybrid likelihood function is derived in this situation.
In addition, we define a focused information criterion for hybrid likelihood and
use it to propose a method for selecting the tuning parameters involved in the
definition of the hybrid likelihood function.
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CHAPTER 1

Introduction

In the field of statistics, we want to infer information from data. For instance,
we might want to estimate the mean or median pay in a country or whether
a medicine has an effect or not. What questions we ask and how they are
formulated are, of course, dependent on the specific problem or data set. That
being said, we are usually interested in properties of the underlying distribution.
A common statistical approach is to estimate this distribution. There are
many ways to proceed, but a simple and popular method is to fit a parametric
family to the data. This approach is both practical and theoretically convenient,
but in many cases, it can be hard or even impossible to find a fitting class
of distributions. Furthermore, some situations may require our results to be
unaffected by prior assumptions. This motivates the study of non-parametric
statistics, and in this thesis, we will be concerned with one particular strategy:
empirical likelihood.

Empirical likelihood was first introduced by Art B. Owen in Owen 1988. In
this article, the author defines what he calls the empirical likelihood function.
The map can be created non-parametrically, and Owen showed that the quantity
has a limiting chi squared distribution when evaluated at the true parameter.
This result holds under very general assumptions and allows for construction
of confidence intervals and regions in a non-parametric way. In addition, it
justifies the use of the word “likelihood ”. The limit distribution of the empirical
likelihood function at the true parameter is the same as that of the likelihood
ratio function used in parametric likelihood theory. Thus, the results of Owen
1988 allowed statisticians to work with something resembling the likelihood
ratio test non-parametrically and under very weak assumptions.

Soon after the release of the original article, Owen published an additional
text, Owen 1991. Here, he extends the original definitions and theorems
to multidimensional parameters and regression settings. In the same year,
Barlett correctability of empirical likelihood was shown in DiCiccio, Hall, and
Romano 1991. This was an important article, as the use of Barlett corrections
makes the coverage error of confidence regions constructed with empirical
likelihood asymptotically smaller than that of many other nonparametric
methods like bootstrap or jackknife. Three years later, Qin and Lawless
1994 extended the general theory to multidimensional estimating equations of
general dimensions and proved several non-parametric versions of important
theorems from parametric likelihood theory. Examples include consistency and
asymptotic normality of the maximizer of the empirical likelihood function.
This made the parallels between the empirical and parametric likelihood even
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1. Introduction

clearer.
Because of its elegant and general definition, empirical likelihood theory has

become quite popular and generated a lot of literature. A recurring theme is
the extension of the results and definitions to situations different from those
described by Owen. This has been done by numerous authors, and we will not
attempt to list them all, but two important examples include Mykland 1995
and Kitamura 1997 providing results for and different ways of dealing with
dependent data. For a more comprehensive overview of sources concerning
empirical likelihood we refer to Owen 2001. This textbook summarizes a lot of
the theory and literature concerning empirical likelihood and is written by Art
B. Owen himself.

Rather than focusing on a specific situation and showing how the empirical
likelihood machinery can be applied, the goal of this thesis will be to expand the
fundamental theory. We will do this in both a practical and a theoretical manner.
First, we will provide a result extending the class of parameters we can make
inference about using empirical likelihood. Afterwards, we will present theory
regarding an alternative characterization of the empirical likelihood function.
This will be done in part I of the thesis. In the second part, we will use
what we have derived to expand on the ideas concerning hybrid combinations
of parametric and empirical likelihoods from Hjort, I. McKeague, and Van
Keilegom 2018. We will now describe and motivate each of these steps. This
will also serve as an outline of the thesis.

The results of Qin and Lawless 1994 allow us to use empirical likelihood
when constructing confidence intervals for, and conducting hypothesis tests
about, parameters, µ ∈ Rp, which can be expressed as the solution to equations
on the form

Em(Y, µ) = 0,

for some function m : Rd+p → Rq and Y ∈ Rd following the same distribution as
the data. This is a quite general class of parameters and includes e.g. moments
and the median. That being said, there are many quantities that cannot be
expressed in this manner. Two simple examples are the standard deviation or the
ratio of two means. In Chapter 3, we will develop a way to make inference about
quantities like these. We will do this by formulating and proving a profiling
result for the empirical likelihood function. Using this we can make inference
about, not only solutions to estimating equations, but functions thereof. The
result has clear parallels to Wilks theorem used in parametric likelihood theory.
In addition, it serves as an elegant way to get rid of nuisance parameters. This
is a problem that has been considered in articles like Qin and Lawless 1994,
Hjort, I. W. McKeague, and Keilegom 2009 and Molanes Lopez, Van Keilegom,
and Veraverbeke 2009.

In Chapter 5 we will take a second look at the definition of the empirical
likelihood function and find an asymptotically equivalent expression for the
quantity. This will allow us to rediscover the main result of Owen 1988. In
addition, it provides some intuition and knowledge about the empirical likelihood
function at values other than the true parameter. In particular, we will show
that the logarithm of the empirical likelihood function, divided by the sample
size, is asymptotically equivalent to a mean. To our knowledge, this material is
new, and in Chapter 6 we use the results to prove consistency and asymptotic
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normality of the maximizer of the empirical likelihood function. Such results
have been shown before, most famously by Qin and Lawless 1994, but our
method of proof will be very different from theirs and based on the alternative
characterization from Chapter 5.

Empirical likelihood is a useful tool. It allows for construction of confidence
intervals for very general quantities, assuming little about the distribution of the
data. This is, of course, a strength, but in some situations, we might know, or at
least have a good idea about, how the data is distributed. Such information can
strengthen our results significantly and should be incorporated in the analysis.
There already exists multiple ways to combine parametric and non-parametric
methods, see e.g. Hjort and Glad 1995 or Olkin and Spiegelman 1987, but in this
thesis we will work with combinations of parametric and empirical likelihoods.
Some amount of research on this topic exits. Qin 1994 considered a situation
with two data sets where a parametric model is available for one sample only.
In Qin 2000 multiplication of a conditional with an empirical likelihood is
investigated, and Qin and Wong 1996 provides results for a situations where
a parametric model exists only when the variables take certain values. In
this thesis, however, we will consider a newer approach involving the hybrid
likelihood function, introduced by Hjort, I. McKeague, and Van Keilegom 2018.
As mentioned previously, this will be the topic for the second part of the thesis.

Hybrid likelihood theory was developed in Hjort, I. McKeague, and Van
Keilegom 2018 and enables the simultaneous use of parametric and empirical
likelihood to make inference. In Chapter 7 we will present the main theory from
the paper and formulate and prove a profiling result for the hybrid likelihood
function. This allows for construction of non-symmetric confidence intervals of
focus parameters and will be based on similar ideas as those used to prove the
limit result concerning the profile empirical likelihood function in Chapter 3.
We will also provide some examples illustrating how the theory can be applied.

The theorems proved in Hjort, I. McKeague, and Van Keilegom 2018 are
mostly concerned with the behavior of the hybrid likelihood function and its
maximizer when the true distribution is a member of the parametric model
used in construction of the likelihood. This is mathematically convenient and
ensures natural limits for many quantities. The results do, however, not hold
true when the model is specified incorrectly. In Chapter 8 we will use the results
of Chapter 5 and Chapter 6 to investigate what happens in this situation. We
will discuss what the maximizer of the hybrid likelihood function is aiming for
and prove consistency towards this quantity. In addition, we will derive the
limit distribution of the maximizer.

When combining parametric and empirical likelihood, we need to choose how
much credit each should be given. If the model is specified correctly, standard
theory guarantees maximum likelihood is asymptotically the most efficient way
to proceed. When the true distribution is not a member of the parametric
family, however, empirical likelihood should be given additional weight to ensure
robustness. How to choose this balance of power is not a trivial question. In
Chapter 9, we will discuss how this can be done and provide algorithms for
choosing how much weight should be put on the empirical and parametric
part of the hybrid likelihood function. To do this, we will introduce a model
selection tool called the focused information criterion and make adjustments to
the hybrid likelihood situation. In Chapter 10, we will go though some examples
illustrating the results of Chapter 8 and Chapter 9 and show how they can be
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1. Introduction

used to make inference.
We have chosen not to include code in the thesis. Instead, algorithms are

described or references with implementation details cited. This might conceal
the extent of programming involved in production of this thesis, as most of the
algorithms have been implemented from scratch by the author. Code can be
obtained upon request, should it be of interest. All figures and scripts have
been created with the Anaconda distribution of Python (Anaconda Inc. 2020).

1.1 Remarks on notation

Before we begin, we will introduce some notation that will be used throughout
the thesis.

We will differentiate between Jacobian matrices and gradients. For a function
f : Rp → Rq, both f ′(y) and ∂f(y)/∂y will denote the q × p Jacobian matrix
evaluated at y. For g : Rp → R, ∇g(y) will be the gradient of g at y. This is a
vector in Rp and the transpose of the Jacobian matrix of the function.

We will also adopt some commonly used notation for different modes of
convergences of random variables. Let Yn be a sequence of random variables.
The expression Yn = oPr(an) means that Yn/an converges to 0 in probability.
Similarly, Yn = OPr(an) if Yn/an is bounded in probability, i.e. for every ε > 0
there exists M > 0 such that

sup
n∈N

Pr(‖Yn/an‖ > M) < ε.

Furthermore, Yn
a.s.→ Y , Yn

Pr→ Y and Yn
d→ Y are notation for Yn converging

to the random variable Y almost surely, in probability and in distribution
respectively. For definitions and explanation of these concepts, see e.g. chapter
2 of Vaart 1998. Lastly, d≈ will be short-hand for “approximately distributed as”.
For instance, Y d

≈ χ2
1 means that Yn is approximately chi squared distributed

with one degree of freedom.
Unless stated otherwise, ‖·‖ will always denote the euclidean norm. This is

also true for matrices. If A = (ai,j)i,j is a p× q-matrix,

‖A‖ =

∑
i,j

|ai,j |2
1/2

.

In particular, a sequence of random matrices An converges to a limit A if the
convergence happens with respect to the euclidean norm.
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Empirical Likelihood
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CHAPTER 2

The definition and main result

Empirical likelihood is a non-parametric way of both estimating and constructing
confidence intervals for certain quantities. The machinery can be applied in very
general settings without making strict assumptions about the distribution of
the data. The definition and main theorems were first stated and proved by Art
B. Owen in Owen 1988. Since then, the framework has been both extended and
improved upon by several authors. In this chapter we will introduce the main
concepts and theorems concerning empirical likelihood. The two first sections
will follow Owen 2001 closely, while we in Chapter 3 formulate and prove a
result concerning profiling of the empirical likelihood function. In Chapter 4 we
will provide some examples illustrating the theory.

2.1 The definition

We start by defining empirical likelihood. Let Y1, . . . ,Yn ∈ Rd be independent
and identically distributed random variables, following some distribution with
cumulative distribution function, F . Assume we are interested in some
parameter, θ ∈ Rp, of this distribution. In maximum likelihood theory
one assumes that F is a member of a parametric family indexed by some
parameter. When using empirical likelihood, on the other hand, we do not make
such presumptions about F . Instead we assume that there exists a function
m : Rd+p → Rq such that θ can be characterized in the following way:

Em(Y, θ) = 0, (2.1)

where Y ∼ F . (2.1) is called the estimating equation and m is referred to as
the estimating function.

(2.1) is a very general equation. Because of this, many interesting quantities
can be characterized using such expressions. One immediate example is
E(Y− θ) = 0. This equation is solved by θ = EY and is a special case of (2.1)
with m(y, θ) = y − θ. In Section 4.1 we will make inference about the mean
yearly income in Oslo using empirical likelihood with this estimating function.
Another, perhaps less obvious, example is obtained withm(y, θ) = I(y ≤ θ)−0.5.
Entering this function into (2.1), results in the equation Pr(Y ≤ θ) = 0.5, which
is solved by the median when F is a continuous distribution. In Section 4.3
empirical likelihood with this estimating equation will be used to investigate
whether the world has become more peaceful or not.

Assume Y follows a continuous distribution whose density belongs to some
parametric family fθ with θ ∈ Θ ⊆ Rp. For many such families the expected
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2.2. Alternative characterizations

value of the score function evaluated at the true parameter is zero. Hence, with

m(y, θ) = ∂

∂θ
log fθ(y),

(2.1) is solved by θ0 such that the true density of Y is given by fθ0 . An example
illustrating this with simulated data can be found in Section 4.2.

In the examples above θ was the unique solution to the estimating equations
and q, the dimension of m(y, θ), was equal to p, the dimension of θ. This is the
typical situation but by no means a requirement. The map

m(y, θ) = (y − θ, (yθ)2 − θ)T

is a perfectly valid estimation function, with

Em(Y, θ0) = 0

when Y is Poisson-distributed with rate parameter θ0. Furthermore,

m(y, µ, σ) = (y − µ, (y − µ)2 − σ2)T

will result in both (µ0, σ0)T and (µ0,−σ0)T being solutions to (2.1). Here µ0 is
the true mean and σ0 the true standard deviation in the distribution of Y .

We are now ready to define the empirical likelihood function as given in
Owen 2001.

Definition 2.1.1 (Owen 2001, p. 41). Let Y1,Y2, . . . ,Yn ∈ Rd be i.i.d. random
variables from some distribution, F , and suppose θ ∈ Rp is a parameter such
that

Em(Y, θ) = 0,

for some m : Rd+p → Rq and Y ∼ F . The empirical likelihood function for θ is
defined as

ELn(θ) = max
{

n∏
i=1

nwi

∣∣∣∣∣
n∑
i=1

wim (Yi, θ) = 0,
n∑
i=1

wi = 1 and wi ≥ 0
}
,

(2.2)

where the last conditions should hold for i = 1, . . . , n.

In the above we assumed that Y1, . . . ,Yn were i.i.d. data points. This is
not strictly necessary and generalizations of empirical likelihood to non-i.i.d.
situations exists, see e.g. chapter 4 and 8 of Owen 2001. In the remainder of
this chapter we will however be satisfied with the above definition as it both
simplifies presentation and is sufficient for many interesting applications.

2.2 Alternative characterizations

Definition 2.1.1 is compact and elegant, but at first glance it might look slightly
incomprehensible. Before we move on to the main result of empirical likelihood
theory, we will therefore present two alternative characterizations of ELn(θ).
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2. The definition and main result

The empirical likelihood ratio function

The empirical likelihood function is sometimes called the empirical likelihood
ratio function. There is a good reason for this, providing insight and additional
intuition about Definition 2.1.1.

The last two conditions on the wi-s in (2.2) are equivalent to requiring the
weights to be probabilities in a discrete distribution on {Y1, . . . ,Yn }. The first
condition ensures that the discrete distribution with weights w1, . . . , wn satisfies
the estimating equation (2.1) with the chosen m. In addition, the product of
the wi is the non-parametric likelihood of the distribution. (2.2) can therefore
be reformulated as

ELn(θ) = max
F

{
nnL(F )

∣∣∣EF m(Y, θ) = 0, F ∈ F
}
,

where F is the set of discrete distributions on {Y1, . . . ,Yn }, L(F ) is the
likelihood, i.e.

∏n
i=1 Pr(Y = Yi) for Y ∼ F and EF m(Y, θ) denotes the

expected value of m(Y, θ)] when Y ∼ F .
If we do not require that the estimating equation is satisfied, L(F ) is

maximized by the empirical distribution function. A proof of this can be found
in Owen 2001, p. 8. The empirical distribution his has likelihood (1/n)n. Hence,

ELn(θ) = max
F
{R(F ) | EF m(Y, θ) = 0, F ∈ F } , (2.3)

where

R(F ) = L(F )
max
G

L(G) .

R(F ) is the non-parametric likelihood ratio. So (2.3) shows that the empirical
likelihood (ratio) function can be seen as the result of a profiling of the non-
parametric empirical likelihood ratio.

An implicit function

The formula in (2.2) gives little to no information about how ELn behaves as a
function of θ or can be computed in practice. We will therefore explain briefly
how the empirical likelihood is typically calculated. Incidentally, this also leads
to a very different formula for ELn(θ). This alternative characterization will be
used frequently in this thesis.

Firstly, notice that when 0 is not in the interior of the convex hull of
m(Y1, θ), . . . ,m(Yn, θ), ELn(θ) = 0 by definition. If, on the other hand, there
exists weights w1, . . . , wn > 0 satisfying the conditions in (2.2), the maximizer
of

n∏
i=1

nwi such that
n∑
i=1

wim(Yi, θ) = 0

is also the maximizer of
∑n
i=1 logwi under the same condition. This optimization

problem can be solved using the method of Lagrange multipliers. After some
algebraic efforts, one finds that the solution is given by

ELn(θ) =
n∏
i=1

(
1 + λn(θ)Tm(Yi, θ)

)−1
, (2.4)
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2.3. The main result

for some λn(θ) ∈ Rq satisfying

0 =
n∑
i=1

m(Yi, θ)
1 + λn(θ)Tm(Yi, θ)

. (2.5)

A proof of this will not be given here, but can be found in Owen 2001, pp.
21–21.

Let Cn denote the interior of the convex hull of m(Y1, θ), . . . ,m(Yn, θ).
Because of the above, we can express the empirical likelihood function in the
following way:

ELn(θ) =

0, 0 /∈ Cn∏n
i=1

(
1 + λn(θ)Tm(Yi, θ)

)−1
, 0 ∈ Cn

,

with λn(θ) defined implicitly as a solution to (2.5).
The above representation can be used to compute the value of the empirical

likelihood function. To find ELn(θ), we typically solve (2.5) for λn(θ). If there
is a solution, λn(θ), with 1 + λn(θ)Tm(Yi, θ) > 0 for i = 1, . . . n, we use (2.4)
to compute ELn(θ) otherwise ELn(θ) is set to 0.

In practice, solving (2.4) requires a numerical optimization algorithm. Since
the function given in this equation is smooth in λ, there are multiple algorithms
to choose from. That being said, checking whether 0 is in the interior of the
convex hull of m(Y1, θ), . . . ,m(Yn, θ) and finding a zero of (2.5) resulting in
positive weights summing to one, can be quite complicated. This is particularly
difficult when the estimating equation is multidimensional. Luckily, there
are methods dealing with these computational issues. We will not go into
detail about the specific algorithms in this thesis, but information regarding
implementation of the empirical likelihood function can be found in chapter
3.14 in Owen 2001. There a numerical strategy for computation of logELn(θ)
is discussed in detail.

2.3 The main result

As shown in the previous section, the empirical likelihood function can be seen
as a profiled non-parametric empirical likelihood ratio. The deviance function
based on profile likelihood in parametric models has a chi-square distributed
limit distribution. It is therefore expected that something similar should hold
for ELn(θ). This is indeed the case, as can be seen from the following theorem.

Theorem 2.3.1 (Owen 2001, p. 41). Let Y1,Y2, . . . ,Yn ∈ Rd be i.i.d. random
variables from a distribution, F , and suppose θ0 ∈ Rp is a parameter such that

Em(Y, θ0) = 0,

for some m : Rd+p → Rq and Y ∼ F . Assume further that Varm(Y, θ0) is finite
and has full rank. Then the empirical likelihood function, ELn, constructed with
Y1,Y2, . . . ,Yn and estimating function, m, satisfies

−2 logELn(θ0) d→ χ2
q.
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2. The definition and main result

This was first shown by Art B. Owen, and a proof can be found in Owen
2001, pp. 219–222.

As remarked previously, the i.i.d. assumption on the data in the definition
of the empirical likelihood function can be relaxed somewhat. The same is
true for Theorem 2.3.1. There are numerous articles dealing with versions of
the above theorem for non i.i.d. cases. Among the most famous are Owen
1991, for linear regression settings, and Kitamura 1997, providing limits for
the empirical likelihood function with certain types of dependent data. For a
general overview, we again refer to chapter 4 and 8 in Owen 2001.

Theorem 2.3.1 can be seen as the main result of empirical likelihood theory,
and can be used to construct non-parametric approximate confidence intervals
and regions for almost all θ-s that can be characterized as solutions to estimating
equations. To give an indication about what Theorem 2.3.1 can be used to
make inference about, we will now go through some examples.

(i) We can construct confidence intervals for the expected value, µ, in a
distribution with the estimating function m(y, µ) = y − µ. If we in
addition want to make inference about the standard deviation, σ, and
skewness, γ,

m(y, µ, σ, γ) =
(
y − µ, (y − µ)2 − σ2,

(
y − µ
σ

)3
− γ

)T
can be used.

(ii) Since E[I(Y ≤ θ)] = Pr(Y ≤ θ), the function m(Y, θ) = I(y ≤ θ) − q
identifies F−1(q) in a continuous distribution, F . Using this estimating
function Theorem 2.3.1 allows us to easily construct completely non-
parametric confidence intervals for quantiles. When using maximum
likelihood theory or large sample distributions of quantiles (see for example
Ferguson 1996, pp. 87-92) density estimation is needed. This is not the
case for empirical likelihood, and shows how general and easily applicable
this non-parametric estimation technique really is.

(iii) Consider a linear regression setting where we have data points
(X1, Y1), . . . , (Xn, Yn) from the joint distribution FX,Y , and want to esti-
mate β = (β0, β1)T , minimizing expected squared loss,

E (Y − β0 −Xβ1)2.

The minimizer of this expression is the solution to

∂

∂β
E (Y − β0 −Xβ1)2 = 0.

Assuming we can apply Leibniz integral theorem, see e.g. Lindstrøm 2017,
p. 276, to pass the derivative under the integral sign, this is equivalent to
requiring

E
(
−2(Y − β0 −Xβ1)
−2X(Y − β0 −Xβ1)

)
= 0.
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2.3. The main result

So any β minimizing squared loss satisfies the equations

E (Y − β0 −Xβ1) = 0 and E [X (Y − β0 −Xβ1)] = 0.

With this we can use empirical likelihood with the estimating function

m(y, x, β0, β1) = (y − β0 − xβ1, x (y − β0 − xβ1))T

to make inference about the regression coefficients.
This example warrants some additional comments. In regression settings,
we usually consider the xi-s as non-stochastic covariates and the Yi |Xi =
xi-s as independent random variables. This is not the case in this example.
Here we assume the vectors (Xi, Yi) for i = 1, . . . , n are independently
drawn and identically distributed. In other words, we consider both Xi

and Yi as random variables. For methods and theory regarding linear
regression with non-random predictors, see Owen 1991 or chapter 4 of
Owen 2001. For extensions of empirical likelihood to generalized linear
models, see Kolaczyk 1994.

Looking at examples (i) and (iii) above, an obvious question comes to mind. Is it
possible to consider only one parameter at a time? Can we make inference about
the variance or skewness in a distribution without computing or caring about
the mean? And if we in (iii) are interested in β1 only, it seems unnecessary to
construct a two dimensional confidence region for the full parameter vector, β.
The profile empirical likelihood function is an elegant solution to these problems
and will be the topic of the upcoming chapter.
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CHAPTER 3

Profile empirical likelihood

As argued at the end of the previous section, we are sometimes interested in a
subset of, rather than the full, parameter vector, θ ∈ Rp. With π denoting the
projection onto the relevant coordinates, we can express this as being interested
in π(θ). This is an example of a more general idea. Rather than wanting
to make inference about the full parameter vector, we want to study a focus
parameter which can be expressed as a function of θ.

Focus parameters are used frequently in parametric likelihood theory. One
way to make inference about ψ = g(θ) in this case is to use the profile likelihood
function. This map is computed by maximizing the likelihood function over all
θ such that g(θ) = ψ. It can be shown that, after proper scaling and centering,
the profile log-likelihood has a limiting chi-square distribution. This is called
Wilks theorem, see e.g. section 2.4 in Schweder and Hjort 2016 for a reference,
and in this section we will define a similar quantity for the empirical likelihood
function. In addition, we will prove and state a version of Wilks theorem for
this map.

We start by defining the profile empirical likelihood function. This is done
analogously as in parametric likelihood theory. For more details about the
parametric case see for example Schweder and Hjort 2016, pp. 32–40.

Definition 3.0.1 (Schweder and Hjort 2016, p. 329). Let Y1,Y2, . . . ,Yn ∈ Rd
be i.i.d. random variables. For θ ∈ Rp and g : Rp → R, the profile empirical
likelihood function for the focus parameter ψ = g(θ) is defined as

PELn(ψ) = sup
θ
{ ELn(θ) | g(θ) = ψ } .

As mentioned at the beginning of this chapter, the profile log-likelihood
converges to a chi square limit, after proper scaling and centering. We would
therefore expect similar behavior from the logarithm of PELn(ψ). Results like
these are often called Wilks theorems, and in this section we will indeed show
a Wilks theorem for the profile empirical likelihood. Before we can do this,
however, we will prove a lemma which will be useful in the arguments to come.

Lemma 3.0.2. Let Y1,Y2, . . . ,Yn ∈ Rd be i.i.d. random variables following
some distribution, F . Assume θ0 ∈ Rp can be characterized as the unique
solution to the estimating equation

Em(Y, θ) = 0

12



for some m : Rd+p → Rq and Y ∼ F . Define the following stochastic process
on Rp:

An(s) = −2 logELn
(
θ0 + s√

n

)
, (3.1)

where ELn is the empirical likelihood function constructed with m and Y1, . . . , Yn.
For a compact set, K ⊆ Rp, assume the conditions of Lemma 1 in Hjort, I.
McKeague, and Van Keilegom 2018 hold true and

sup
s∈K

∥∥∥∥∥ 1√
n

n∑
i=1

m

(
yi, θ0 + s√

n

)
− 1√

n

n∑
i=1

m(yi, θ0)− ξns

∥∥∥∥∥ = oPr(1), (3.2)

for some q × p matrix ξn tending to ξ0 in probability. Then

An
d→ A

in `∞(K).

Remark 3.0.3. Here `∞(K) denotes the vector space of bounded functions from
K into R equipped with the uniform norm, i.e.

‖f‖∞ = sup
x∈K
|f(x)|.

Remark 3.0.4. Assumption (i) from Lemma 1 in Hjort, I. McKeague, and
Van Keilegom 2018 follows from a combination of (3.2) and the central limit
theorem. Hence, this condition need not be checked. This is proved in the proof
of Theorem 2 in Hjort, I. McKeague, and Van Keilegom 2018.

Proof. Fix a compact subset, K, of Rp. We start by defining some quantities
which will be useful in the arguments that follow. For each s ∈ K, let

Un(s) = 1√
n

n∑
i=1

m

(
Yi, θ0 + s√

n

)
and (3.3)

Wn(s) = 1
n

n∑
i=1

m

(
Yi, θ0 + s√

n

)
m

(
Yi, θ0 + s√

n

)T
. (3.4)

As E‖m(Y, θ0)‖2 <∞ by the assumptions of Lemma 1 in Hjort, I. McKeague,
and Van Keilegom 2018, Un(0) converges to a normal limit, U , by the central
limit theorem. Furthermore, Wn(0) goes in probability to W = VarU by the
weak law of large numbers.

From Lemma 1 in Hjort, I. McKeague, and Van Keilegom 2018, we have

An(s) = Un(s)TWn(s)−1
Un(s) + oPr(1)

uniformly in K. Furthermore, ‖Wn(s)−W‖ = oPr(1) uniformly over compact
sets by the assumptions of Lemma 1 in Hjort, I. McKeague, and Van Keilegom
2018. Hence,

An(s) = Un(s)TW−1Un(s) + oPr(1) (3.5)

13



3. Profile empirical likelihood

uniformly in K. Here we have used that

sup
s∈K
‖Un(s)‖ = OPr(1)

which is one of the assumptions made in Lemma 1 in Hjort, I. McKeague, and
Van Keilegom 2018.

By assumption (3.2), there exists ξn tending to ξ0 in probability such that

sup
s∈K
‖Un(s)− Un(0)− ξns‖

Pr→ 0.

Combining this with (3.5), shows

An(s) = [Un(0) + ξns]TW−1[Un(0) + ξns] + rn(s) (3.6)

where

sup
s∈K
|rn(s)| Pr→ 0. (3.7)

So An = Zn + rn where Zn is the process defined as

Zn(s) = [Un(0) + ξns]TW−1[Un(0) + ξns]. (3.8)

By definition, (3.7) is equivalent to rn converging in probability to 0 as a
random sequence in `∞(K). So by Slutsky’s theorem, An and Zn converge
to the same limit process if Zn converges in distribution to some element of
`∞(K).

We claim that Zn
d→ A as processes in `∞(K), where A is defined as

A(s) = (U + ξ0s)T W−1 (U + ξ0s) .

Since Zn is convex for each n ∈ N, Theorem 1 in Arcones 1998 ensures that Zn
converges as a process to A if and only if

(Zn(t1), . . . , Zn(tk))T d→ (A(t1), . . . , A(tk))T

for every finite choice of t1, . . . , tk ∈ K. So fix such such a choice of
t1, . . . , tk ∈ K. Since (Zn(t1), . . . , Zn(tk))T is a smooth function of (Un(0), ξn)T
converging in distribution to (U, ξ0)T ,

Zn(t1)
Zn(t2)
. . .

Zn(tk)

 d→


(U + ξ0t1)T W−1 (U + ξ0t1)
(U + ξ0t2)T W−1 (U + ξ0t2)

. . .

(U + ξ0tk)T W−1 (U + ξ0tk)

 =


A(t1)
A(t2)
. . .
A(tk)

 .

Hence,

Zn
d→ A

as elements of `∞(K). Combining this with the arguments above, shows

An
d→ A (3.9)

as a process on K. �
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Lemma 3.0.2 can be seen as a special case of Theorem 1 in Hjort, I. McKeague,
and Van Keilegom 2018. Our proof is, however, more detailed and formulated
slightly different. It is therefore included for the sake of completion.

With Lemma 3.0.2, we are ready to show a Wilks theorem for the profile
empirical likelihood function.

Theorem 3.0.5. Let Y1,Y2, . . . ,Yn ∈ Rd be i.i.d. random variables following a
distribution, F . Assume θ0 ∈ Rp can be characterized as the unique solution to
the estimating equation

Em(Y, θ) = 0

for some m : Rd+p → Rq and Y ∼ F . Suppose the focus parameter, ψ, is equal
to g(θ) for some function g : Rp → R, whose second order partial derivatives
are all continuous. We then have

−2 logPELn(ψ0) d→ χ2
1,

where ψ0 = g(θ0), provided the conditions of Lemma 3.0.2 hold for all compact
subsets of Rp, the matrices

ξ0ξ
T
0 and ξT0 W

−1ξ0

are invertible and
√
n
(
θ̂ − θ0

)
= OPr(1), (3.10)

where θ̂ is a maximizer of ELn(θ) over the set of θ-values such that g(θ) = ψ0.

A result similar to Theorem 3.0.5 is stated in Schweder and Hjort 2016
without proof or a full set of conditions. We will therefore take the time to show
Theorem 3.0.5. The proof we present follows the arguments in Remark 2.5 of
Schweder and Hjort 2016, p. 36–37, but includes modifications and additions.

Proof. First, fix

K = { s ∈ Rp | ‖s‖ ≤M } ,

for some M > 0. Define the following sets:

Sn =
{
s ∈ Rp

∣∣∣∣ g(θ0 + s√
n

)
= ψ0, ||s|| ≤M

}
for each n ∈ N and

T =
{
s ∈ Rp

∣∣ bT s = 0, ||s|| ≤M
}
.

Our first goal will be to show

inf
s∈Sn

An(s) = inf
s∈T

An(s) + oPr(1), (3.11)

with An defined as in (3.1).
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3. Profile empirical likelihood

Let b denote the gradient of g at θ0. Using a first order Taylor expansion
around θ0, we notice

g

(
θ0 + s√

n

)
= g(θ0) + bT

s√
n

+ εn(s),

where εn(s) is a remainder term, bounded in norm by

C(|s1|+ . . .+ |sp|)2

n
,

where s = (s1, . . . , sp)T and C is a fixed positive number. This follows from
continuity of the second order partial derivatives of g and a version of Taylors
theorem for vector-valued functions, see e.g. Corollary 6.5.8 in Lindstrøm 2017,
p. 199. Since K is compact, |s1|+ . . .+ |sp| is bounded. Hence,

g

(
θ0 + s√

n

)
= ψ0 + bT

s√
n

+ εn(s)

where εn(s) tends uniformly to 0 over K at speed O(1/n). Because of this,

Sn =
{
s ∈ Rp

∣∣ bT s+
√
nεn(s) = 0, ||s|| ≤M

}
,

where, again, εn(s) tends uniformly to 0 over K at speed O(1/n). In particular,

sup
s∈Sn

∣∣bT s∣∣ =
∣∣√nεn(s)

∣∣ = O
(
1/
√
n
)
. (3.12)

To show (3.11) we will first prove

inf
s∈Sn

An(s) = inf
s∈Sn

An[ProjT (s)] + oPr(1) (3.13)

where ProjT (s) denotes the projection of s onto T . This is given by

ProjT (s) = s− bT s

‖b‖2
b.

In the proof of Lemma 3.0.2, we showed that An and Zn, given in (3.8), were
asymptotically equivalent as stochastic processes on K. Hence, for (3.13), it
suffices to show

inf
s∈Sn

Zn(s) = inf
s∈Sn

Zn[ProjT (s)] + oPr(1).

We will now do this.
Some algebraic efforts lead to the following identity

Zn(s)− Zn[ProjT (s)] = (3.14)
bT s

‖b‖2
· 2bT ξTnW−1Un −

(bT s)2

‖b‖4
bT ξTnW

−1ξnb+ bT s

‖b‖2
· 2bT ξTnW−1ξns. (3.15)

Where Un is Un(0) defined in (3.3) and W is the limit of Wn(0). We know
that Un tends in distribution to a normally distributed variable and that ξn
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goes in probability to ξ0. Because of this, and Slutsky’s theorem, 2bT ξTnW−1Un
converges in distribution to some random variable. Furthermore,

sup
s∈Sn

∣∣bT s∣∣ = O(1/
√
n).

by (3.12). Hence,

sup
s∈Sn

∣∣∣∣∣ bT s‖b‖2 · 2bT ξTnW−1Un

∣∣∣∣∣ Pr→ 0.

Arguing similarly, we can show that also

sup
s∈Sn

∣∣∣∣∣ (bT s)2

‖b‖4
bT ξTnW

−1ξnb

∣∣∣∣∣
tends to 0 in probability. For the last term of (3.15), notice that∣∣2bT ξTnW−1ξns

∣∣ ≤ 2
∥∥ξTnW−1ξnb

∥∥ · ‖s‖ ≤ 2M
∥∥ξTnW−1ξnb

∥∥,
for all s ∈ K. Arguing as before, we get

sup
s∈Sn

∣∣∣∣∣ bT s‖b‖2 · 2bT ξTnW−1ξns

∣∣∣∣∣ ≤ sup
s∈Sn

∣∣√nεn(s)
∣∣ ·OPr(1) Pr→ 0.

Combining all our results, with (3.15) and applying the triangle inequality,
shows

sup
s∈Sn

|Zn(s)− Zn[ProjT (s)]| = oPr(1). (3.16)

Fix ε > 0 and assume

sup
s∈Sn

|Zn(s)− Zn[ProjT (s)]| < ε

2 . (3.17)

Then

inf
s∈Sn

Zn(s) ≤ Zn[ProjT (u)] + ε

2 (3.18)

for all u ∈ Sn. To see this, notice that otherwise there exists u ∈ Sn such that

inf
s∈Sn

Zn(s) > Zn[ProjT (u)] + ε

2 ,

and then (3.17) ensures

Zn(u) ≤ Zn[ProjT (u)] + ε

2 .

Hence,

Zn(u) ≤ Zn[ProjT (u)] + ε

2 < inf
s∈Sn

Zn(s),
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3. Profile empirical likelihood

which is a contradiction. Because of this, (3.18) holds for all u ∈ Sn, and we
must have

inf
s∈Sn

Zn(s) ≤ inf
s∈Sn

Zn[ProjT (s)] + ε

2 .

Hence,

sup
s∈Sn

|Zn(s)− Zn[ProjT (s)]| < ε =⇒ inf
s∈Sn

Zn(s) ≤ Zn[ProjT (s)] + ε

2 .

Similarly, one can show

sup
s∈Sn

|Zn(s)− Zn[ProjT (s)]| < ε =⇒ inf
s∈Sn

Zn[ProjT (s)] ≤ inf
s∈Sn

Zn(s) + ε

2 .

Combining these two implications, guarantees

sup
s∈Sn

|Zn(s)− Zn[ProjT (s)]| < ε

2 =⇒
∣∣∣∣ inf
s∈Sn

Zn(s)− inf
s∈Sn

ZnProjT (s)
∣∣∣∣ ≤ ε.

So,

Pr
(∣∣∣∣ inf

s∈Sn

Zn(s)− inf
s∈Sn

ZnProjT (s)
∣∣∣∣ ≤ ε) ≥

Pr
(

sup
s∈Sn

|Zn(s)− Zn[ProjT (s)]| < ε

2

)
.

The right-hand side of this equation goes to 1 as n→∞ by (3.16). Hence

inf
s∈Sn

Zn(s) = inf
s∈Sn

Zn[ProjT (s)] + oPr(1),

showing (3.13).
We have now shown (3.13). If the image of Sn under ProjT is T ,

inf
s∈Sn

An[ProjT (s)] = inf
s∈T

An(s),

and (3.13) is sufficient for (3.11). We will now show that, eventually, this holds
true.

Notice that,

g

(
θ0 + s√

n

)
= ψ0 + bT s√

n
+
√
nεn(s)√
n

,

with
√
nεn(s) tending to 0 uniformly in K. Because of this, we can choose

N ∈ N such that for all n ≥ N , sup
s∈K
|
√
nεn(s)| < 1. Fix t ∈ T and consider the

functions fn : R→ R defined as

fn(x) = g

(
θ0 + 1√

n
(t+ x · b)

)
= ψ0 + bT√

n
(t+ x · b) +

√
nεn(t+ x · b)√

n
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= ψ0 + x‖b‖2√
n

+
√
nεn(t+ x · b)√

n
.

for each n ≥ N . These are continuous functions with

fn

(
− 2
‖b‖2

)
≤ ψ0 −

2√
n

+ 1√
n
< ψ0

and

fn

(
2
‖b‖2

)
≥ ψ0 + 2√

n
− 1√

n
> ψ0.

Hence, by the intermediate value theorem, there exists xn ∈ [−2/‖b‖2, 2/‖b‖2]
such that fn(xn) = ψ0 for all n ≥ N . Define the following vector,

un = t+ xn · b.

By construction g
(
θ0 + un√

n

)
= fn(xn) = ψ0, so un ∈ Sn. Furthermore,

ProjT (un) = t as b ⊥ T and t ∈ T . Hence, the image of Sn under ProjT
is T , for n ≥ N . By the previous arguments, this ensures (3.11).

We have now shown

inf
s∈Sn

An(s) = inf
s∈T

An(s) + oPr(1), (3.19)

and from Lemma 3.0.2 we know An
d→ A as a process in `∞(K). Since,

f 7→ inf
bT s=0

f(s)

is a continuous as a function from `∞(K) into R, the continuous mapping
theorem guarantees

inf
s∈T

An(s) d→ inf
s∈T

A(s).

Combining this with (3.19) and Slutsky’s theorem, reveals

inf
s∈Sn

An(s) d→ inf
s∈T

A(s)

The compact set K used above, was arbitrary. What we have, in fact, shown
is

inf
gn(s)=ψ0, ‖s‖≤M

An(s) d→ inf
bT s=0, ‖s‖≤M

A(s) (3.20)

for all M > 0. Here gn(s) is short-hand for

g

(
θ0 + s√

n

)
.

By definition

−2 logPELn(ψ0) = min
gn(s)=ψ0

An(s).
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3. Profile empirical likelihood

Furthermore, the sequence of maximizers

sn =
√
n
(
θ̂ − θ0

)
from (3.10) is stochastically bounded. Hence,

lim
n→∞

Pr(‖sn‖ ≤M) ≥ 1− εM

with εM tending to 0 as M →∞. In particular, this ensures

lim
M→∞

lim
n→∞

Pr(‖sn‖ ≤M) ≥ 1,

which implies

lim
M→∞

lim
n→∞

Pr(‖sn‖ ≤M) = 1.

Now,

Pr(−2 logPELn(ψ0) ≤ x) =

Pr
(

inf
gn(s)=ψ0, ‖s‖≤M

An(s) ≤ x
)

Pr(‖sn‖ ≤M) +O[Pr(‖sn‖ > M)].

So,

lim
n→∞

Pr(−2 logPELn(ψ0) ≤ x) =

lim
M→∞

lim
n→∞

Pr[−2 logPELn(ψ0) ≤ x] =

lim
M→∞

lim
n→∞

Pr
(

inf
gn(s)=ψ0, ‖s‖≤M

An(s) ≤ x
)
· 1 + 0.

By (3.20),

lim
n→∞

Pr
(

inf
gn(s)=ψ0, ‖s‖≤M

An(s) ≤ x
)

= Pr
(

inf
bT s=0, ‖s‖≤M

A(s) ≤ x
)
,

provided x is a continuity point in the distribution of the limit. And hence,

lim
n→∞

Pr(−2 logPELn(ψ0) ≤ x) = lim
M→∞

Pr
(

inf
bT s=0, ‖s‖≤M

A(s) ≤ x
)
.

Let ŝ denote the minimizer of A in Rp. Then, for every ε > 0 and M ∈ R,

Pr
(∣∣∣∣ min

bT s=0,‖s‖≤M
A(s)− min

bT s=0
A(s)

∣∣∣∣ ≥ ε) ≤ Pr(‖ŝ‖ > M).

The right hand side of the above equation goes to 0 as M →∞. Convergence
in probability implies convergence in distribution, so this guarantees that

lim
M→∞

Pr
(

min
bT s=0,‖s‖≤M

A(s) ≤ x
)

= Pr
(

min
bT s=0

A(s) ≤ x
)
. (3.21)

All of this shows that

−2 logPELn(ψ0) d→ min
bT s=0

A(s) (3.22)
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We will now find the distribution of this limit.
To compute the limit distribution, we use the method of Lagrange multipliers.

Some algebra reveals that the minimum of A over the set of s ∈ Rp with bT s = 0
is given by

UTW−1U − UTW−1ξ0
(
ξT0 W

−1ξ0
)−1

ξT0 W
−1U + X2

bT
(
ξT0 W

−1ξ0
)−1

b
, (3.23)

where

X = bT
(
ξT0 W

−1ξ0
)−1

ξT0 W
−1U.

By assumption ξ0ξT0 is an invertible q × q-matrix, so

W−1ξ0
(
ξT0 W

−1ξ0
)−1

ξT0 W
−1 =

(
ξ0ξ

T
0
)−1

ξ0ξ
T
0 W

−1ξ0
(
ξT0 W

−1ξ0
)−1

ξT0 W
−1

=
(
ξ0ξ

T
0
)−1

ξ0ξ
T
0 W

−1

= W−1.

Hence, the two first terms in (3.23) cancels, and

min
bT s=0

A(s) = X2

bT
(
ξT0 W

−1ξ0
)−1

b
.

U is central normal distributed variable with variance matrix W . Because of
this, the variance of X is

bT
(
ξT0 W

−1ξ0
)−1

ξT0 W
−1WW−1ξ0

(
ξT0 W

−1ξ0
)−1

b = bT
(
ξT0 W

−1ξ0
)−1

b.

Therefore,

X ∼ N
(

0, bT
(
ξT0 W

−1ξ0
)−1

b
)
.

This means that

min
bT s=0

A(s) = X2

bT
(
ξT0 W

−1ξ0
)−1

b
∼ χ2

1.

Combining the above with (3.22), shows

−2 logPELn(ψ0) d→ χ2
1

and concludes the proof. �

Let πj be the projection onto the j-th coordinate. As explained above, we
can use Theorem 3.0.5 with h = π3 to make inference about the skewness using
Theorem 3.0.5 and the estimating function given in example (i) in the previous
section. Similarly, profiling with h = π2 can be used in example (iii) to construct
confidence intervals for the slope without the second dimension introduced by
the intercept. However, the use of Theorem 3.0.5 is not limited to getting rid
of nuisance parameters. For two-dimensional data, we could, for instance, use θ
equal to the mean and ψ = g(θ) = θ1/θ2. In this case Theorem 3.0.5 gives a
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3. Profile empirical likelihood

way to make inference about ψ, allowing us to compare the expectations in the
two distributions. In Chapter 4 we will use the empirical likelihood machinery
in multiple examples. We therefore refer to that section for illustrations of how
Theorem 3.0.5 can be used.

Versions of Theorem 3.0.5 have been established before. In Qin and Lawless
1994 a profiling result for focus parameters on the form g(θ1, θ2) = θ1 is stated
and proved for smooth estimating functions, m. This is applicable in many
cases, but the theorem cannot be used with, for instance, m(y, θ) = I(y ≤ θ)−q.
Molanes Lopez, Van Keilegom, and Veraverbeke 2009, on the other hand, arrive
at a profiling result for non-smooth estimating functions. Their theorem does,
however, need m to be bounded. This excludes multiple interesting quantities
like means and variances in distributions with unbounded support. We would
therefore claim that the theorem proved in this section is slightly more general
that these two results. We do require some sort of smoothness in terms of (3.2),
but this is not as strict as demanding differentiability of the estimating function.
As an example, take m(y, θ) = I(y ≤ θ)− q. This map is not differentiable in
θ, but by Stute 1982 or arguments similar to those of example 19.29 in Vaart
1998, p. 283,

1√
n

n∑
i=1

[
I
(
Yi ≤ θ0 + s/

√
n
)
− I(Yi ≤ θ0)

]
= f(θ0) + oPr(1)

uniformly over compact sets when the distribution of the data is continuous
with density function, f . In addition, boundedness of m is not required for
Theorem 3.0.5, making the result applicable in situations where the main
theorem of Molanes Lopez, Van Keilegom, and Veraverbeke 2009 is not.

Theorem 3.0.5 can also be used for more complicated functions than
projections. We can use the theorem to make inference about every focus
parameter that can be expressed as g(θ) as long as g is “smooth enough”. This
is neither possible with the results in Qin and Lawless 1994 nor Molanes Lopez,
Van Keilegom, and Veraverbeke 2009. So Theorem 3.0.5 generalizes these
propositions in that regard as well.

We have also been made aware that a result similar to Theorem 3.0.5 is
shown in Guolo and Adimari 2010. Sadly, this was not discovered until the
proof, illustration and discussion in this thesis were already in place. This is,
of course, unfortunate, but as the method of proof presented here is both very
different and more detailed than the one found in Guolo and Adimari 2010, we
believe this section still serves a purpose and deserves its place in the thesis.
We do, for example, prove convergence of the sequence of processes, An, to the
limit, A. This is not done in Guolo and Adimari 2010, and might be of use in
other applications than the proof of Theorem 3.0.5.

It is also worth noting that Theorem 3.0.5 can be significantly strengthened.
Closer inspection of the proof of Lemma 1 in Hjort, I. McKeague, and Van
Keilegom 2018 and the arguments above, reveals that, rather than needing the
data to be i.i.d., we need only

1√
n

n∑
i=1

m(Yi, θ0) d→ U
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for some random vector, U , with nonsingular variance matrix, W , such that

1
n

n∑
i=1

m(Yi, θ0)m(Yi, θ0)T Pr→W.

This allows Theorem 3.0.5 to be applied in regression settings, as well as in
certain situations with dependent data. The same conclusion is reached by
Guolo and Adimari 2010. We will therefore refrain from giving a full proof
here, and only assure the reader that the calculations go through after small
modifications.

Lastly, we want to comment on another approach to making inference about
focus parameters with empirical likelihood. Assume a parameter vector

(
θ0

1, θ
0
2
)

can be expressed as the solution to

Em(Y, θ1, θ2) = 0,

and that we have a good estimate, θ̂2, of θ2. In such situations, one might
wish to use this estimate of θ2 rather than profiling out the parameter. This
is possible, and a limit distribution for ELn(θ0

1, θ̂2) does exist. That being
said, the limit is not always on the simple χ2

1 form, but can be expressed as a
weighted sum of chi-square distributed variables. See Hjort, I. W. McKeague,
and Keilegom 2009 for illustrations, proofs and a full statement of such a result.
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CHAPTER 4

Examples

Empirical likelihood methods is a very general way of making inference about
quantities that can be expressed as solutions to estimating equations. In
addition, Theorem 3.0.5 allows us to easily construct confidence intervals for
functions of such parameters as well. In this chapter we will present some
examples illustrating how the results from the previous chapters can be used.

4.1 Income in Oslo

In this section we will use empirical likelihood to make inference about the
mean yearly income in the capital of Norway. We will also investigate how
much the earnings vary between sub-districts. Lastly we will use Theorem 3.0.5
to make inference about the coefficient of variation for yearly income in the
sub-districts of Oslo. All data is extracted from Statistikkbanken 2020.

There are 98 sub-districts in Oslo. We will treat the mean yearly income
from 2019, given in NOK, as i.i.d. random variables Y1, . . . , Yn for n = 98.
Furthermore, we will work with the numbers divided by one million for numerical
stability. For this data set the observed values range from 0.293 to 1.149 between
regions of the city. Our first goal will be to estimate and construct confidence
intervals for the mean and variance of yearly income in the sub-districts of Oslo.
The empirical likelihood theory of Chapter 2 will be used to do this.

To construct the empirical likelihood function, we need to decide on an
estimating function. We will use m : R3 → R2 defined as

m
(
y, µ, σ2) =

(
x− µ

(y − µ)2 − σ2

)
.

Let Y be a random variable following the same distribution as Y1, . . . , Yn. For
the true mean, EY = µ0, and variance, VarY = σ2

0 , we then have

Em
(
Y, µ0, σ

2
0
)

=
(

EY − µ0
VarY − σ2

0

)
= 0.

Because of this, the estimating equation E[m(Y, µ, σ2)] = 0 is solved by (µ0, σ
2
0).

Hence, the empirical likelihood function of (µ, σ2) can be constructed with this
m and be computed as described in Section 2.2. We implemented this for our
data set, and the resulting plot of the graph of the empirical likelihood function
can be found in Figure 4.1.
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Figure 4.1: A plot of the joint empirical likelihood function of (µ, σ2) together
with contours of 90%- and 95%-confidence regions for the parameter vector.

We can now use Theorem 2.3.1 to construct confidence regions for the
parameter vector (µ, σ2). By this result, −2 logELn

(
µ0, σ

2
0
)
is approximately

chi square distributed with two degrees of freedom. Hence,

Pr
[
−2 logELn

(
µ0, σ

2
0
)
≤ Γ−1

2 (1− α)
]

= Pr
{

Γ2
[
−2 logELn

(
µ0, σ

2
0
)]
≤ 1− α

}
≈ 1− α,

where Γ2 is the cumulative distribution function in the χ2
2-distribution. Hence,

the following is an approximate 1− α confidence region for (µ0, σ
2
0):{ (

µ, σ2) ∣∣ Γ2
[
−2 logELn

(
µ, σ2)] ≤ 1− α

}
.

Contours of 90%- and 95%-confidence regions are shown in Figure 4.1 together
with the empirical likelihood function.

Although the preceding calculations allow us to make educated guesses about
the parameter vector (µ, σ2), they do not give a way to construct confidence
intervals for µ or σ alone. One solution is to use Theorem 3.0.5, and we will
now apply the result to make inference about each of the parameters separately.

We start with µ. To compute PELn(µ) for a fixed value of µ, we maximize
ELn(µ, σ2) over all values of σ2. This can be done numerically by maximizing the
function x 7→ ELn(µ, x) for each fixed µ, and a plot of the function can be found
in Figure 4.2. After computing the profile empirical likelihood function, we can
construct approximate confidence intervals for the mean yearly income in Oslo.
By Theorem 3.0.5, −2 logPELn(µ0) is approximately chi square distributed
with one degree of freedom. So, with Γ1 denoting the cumulative distribution
function in the χ2

1-distribution,

1− α = Pr
(
−2 logPELn(µ0) ≤ Γ−1

1 (1− α)
)

= Pr{Γ1[−2 logPELn(µ0)] ≤ 1− α}.

Hence,

{ µ | Γ1[−2 logPELn(µ0)] ≤ 1− α }

is a 1−α confidence set for the mean yearly income. To illustrate, we computed
approximate 90% and 95% confidence intervals for µ, and obtained [0.504, 0.559]
and [0.499, 0.565] respectively.
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Figure 4.2: The profile empirical likelihood function of µ together with a
confidence curve for the parameter.

The above can also be used to construct a confidence curve for µ. A
confidence curve is a graphical summary visualizing the result of a statistical
analysis. In particular, confidence intervals of all levels for a parameter can be
read of the corresponding confidence curve. This is done by tracing a horizontal
line from the desired confidence level and setting the two intersections with the
curve as bounds for the interval. A full introduction to confidence curves can
be found in Schweder and Hjort 2016, but for our purposes it suffices to use
these as visual representations of our certainty about parameters from which
confidence intervals of all levels can be read of. For the mean yearly income in
Oslo, µ, the confidence curve is given by

Γ1[−2 logPELn(µ)],

as the solutions to

Γ1[−2 logPELn(µ)] = 1− α

are the bounds for an approximate (1− α)-confidence interval for µ as shown
in the previous paragraph. We computed this curve for a selection of µ-values,
and the resulting plot can be found in Figure 4.2.

We can repeat the above process to make inference about σ. The procedure
is more or less identical to the situation with µ. The only difference is that we
now use

PELn(σ) = max
{
ELn

(
µ, σ2) ∣∣ µ ∈ R

}
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Figure 4.3: The profile empirical likelihood function of σ together with a
confidence curve for the parameter.

rather than PELn(µ). This function can be computed by maximizing

x 7→ ELn
(
x, σ2)

for each fixed σ. As the remaining arguments are more or less identical as those
presented above, we will not go through all the details. However, a plot of the
empirical likelihood function, together with a confidence curve can be found in
Figure 4.3. Furthermore, 90% and 95% confidence intervals were computed to
be [0.144, 0.197] and [0.140, 0.204] respectively.

We now turn our attention to the focus parameter ψ = σ/µ. This is called
the coefficient of variation and is a normalized measure of variability in a
distribution. High values of ψ means that the income between sub-districts is
very variable, while low values indicate the opposite. It can, in fact, be shown
that this quantity can be used as a measure of inequality, see e.g. Campano
2006.

To make inference about ψ, we will again use Theorem 3.0.5. We start by
constructing the profile empirical likelihood function,

PELn(ψ) = max
{

ELn
(
µ, σ2) ∣∣∣∣∣

√
σ2

µ
= ψ

}
.

For each fixed ψ, PELn(ψ) can be computed by numerically maximizing
x 7→ ELn(x, (ψx)2). We did this for a selection of ψ-values, and a plot of
the profile empirical likelihood function can be found in Figure 4.4.

After computing the profile empirical likelihood function, we can constructed
confidence curves and intervals for the coefficient of variation. This is done
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Figure 4.4: The profile empirical likelihood function of ψ = σ/µ together with
a confidence curve for the parameter.

similarly as for µ and σ, and details will therefore be left out. With our data
set we find that [0.278, 0.360] is an approximate 90%-confidence interval, while
[0.272, 0.369] is a 95% one. We also computed a confidence curve. This is
displayed in Figure 4.4 together with PELn(ψ) for a range of ψ values.

The analysis done in this section can easily be modified to other situations
and data sets. This is particularly interesting when one wishes to estimate the
coefficient of variation or quantities related to this value. An example of where
this might be useful is in archeology. In this field the coefficient of variation is
used to assess whether a group of artifacts are made by standardized production
or not, see Eerkens and Bettinger 2001.

4.2 Score functions as estimating functions

In this section we will illustrate the theorems and definitions on simulated data.
We will generate n = 100 i.i.d. data points from a Gamma-distribution with
shape 2 and rate 3 and attempt to estimate the parameters in the distribution
using empirical likelihood. We will also compare these estimates with what we
get using maximum likelihood.

In a Gamma(α, β)-distribution the density function takes the form

fα,β(y) = βα

Γ(α)y
α−1 exp(−βy), for y > 0.

This results in the following log-density:

log fα,β(y) = α log β − log Γ(α) + (1− α) log y − βy, for y > 0,
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Figure 4.5: To the left we see the joint empirical likelihood function of (α, β)T .
On the right-hand side contours of confidence regions of level 90% and 95% are
displayed.

with gradient (
log β + ψ(α)− log y, α

β
− y
)T

, for y > 0.

Here ψ denotes the digamma function, the derivative of the logarithm of Γ. The
expected value of the score function is 0 at the true parameter vector. Therefore

Em(Y, α, β) = 0,

when Y ∼ Gamma(α, β) and

m(y, α, β) =
(

log β + ψ(α)− log y, α
β
− y
)T

.

Since our simulated data follows a Gamma, distribution, we can use this m as
our estimating function in the construction of the empirical likelihood function.

Now that we have decided on an estimating function, we can compute the
empirical likelihood function as described in Section 2.2. The graph of the
function for a selection of values of αs and βs can be found in Figure 4.5 together
with confidence regions of two levels. These were constructed as explained in
the previous example, and we refer to this section for further explanation.

We will now use Theorem 3.0.5 to construct approximate confidence
intervals and curves for two quantities, the mean and standard deviation in the
distribution.

We start with the mean. In a Gamma distribution with shape parameter α
and rate parameter β the expectation is given by α/β. For this focus parameter
the profile empirical likelihood function takes the form

PELn(ψ) = max
{
ELn(α, β)

∣∣∣∣ αβ = ψ

}
.

This can be computed numerically by maximizing x 7→ ELn(ψx, x) for each
fixed ψ. Using Theorem 3.0.5 we can construct confidence intervals and curves
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for the expected value of the data with this function. The procedure is more or
less identical to that of the previous example. Because of this, the arguments
will not be repeated here, but a confidence curve can be found in Figure 4.6.
Confidence intervals of all levels can be read off this.

The analysis can be repeated for the standard deviation. We then use

PELn(ψ) = max
{
ELn(α, β)

∣∣∣∣ √αβ = ψ

}
,

which can be computed by numerically maximizing x 7→ ELn[(xψ)2, x].
Otherwise the procedure is the same as for α/β. Again details will be omitted,
but relevant plots can be found in Figure 4.7.

The empirical likelihood function is not the only way to make inference about
focus parameters. In this example, another obvious choice is to use maximum
likelihood theory, as we do, in fact, know what distribution the data follows. To
get an idea of how accurate the confidence intervals and curves obtained with
empirical likelihood theory are, we will use the standard parametric version of
Wilks theorem to make inference about the mean and standard deviation in
the distribution of Y1, . . . , Yn, and compare the results obtained with the two
methods.

Let `n denote the parametric log-likelihood of the data,

`n(α, β) =
n∑
i=1

log fα,β(Yi),

and define the profile likelihood function for a focus parameter ψ = g(α, β) as

`n,prof (ψ) = max { `n(α, β) | g(α, β) = ψ } .

Furthermore, let Dn denote the profile deviance function, i.e.

Dn(ψ) = `n,prof

(
ψ̂ml

)
− `n,prof (ψ),

where ψ̂ml is the maximum likelihood estimate of ψ. By Wilks theorem, see e.g.
Schweder and Hjort 2016, p. 35,

2 ·Dn(ψ0) d→ χ2
1

for the true value of ψ, ψ0. We can use this result to construct approximate
parametric confidence curves and intervals for focus parameters. This procedure
is similar to those involving the profile empirical likelihood function. Because of
this, arguments will not be repeated, but the resulting confidence curves have
been added to the plots in Figure 4.6 and Figure 4.7.

From the figures we see that the results obtained using empirical and
maximum likelihood are very similar. That being said, the confidence curves
constructed with the parametric approach are slightly narrower than the ones
we get using empirical likelihood. This is not too surprising as the likelihood
ratio test is asymptotically optimal, i.e. uniformly most powerful, for testing
simple hypothesis like the ones we have considered here, see e.g. Vaart 1998,
p. 236 for more information and discussion around this. In this example,
however, we are in an ideal situation where we know what parametric family
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Figure 4.6: Confidence curves for the mean, α/β, based on empirical and
maximum likelihood. The full drawn line is constructed with PELn and the
dotted one maximum likelihood theory.
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PELn and the dotted one maximum likelihood theory.
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the distribution of the data belongs to. This might not always be the case,
and under misspecification of the model the non-parametric approach might
outperform maximum likelihood. In such cases α and β can no longer be
interpreted as parameters in the true distribution, but the focus parameter
α/β is still an interesting quantity. The reason for this is the second entry in
the score function, α/β − y. Since the expectation of this expression is 0 if
and only if α/β = EY , the empirical likelihood confidence intervals for α/β
will, indeed, be confidence intervals for the mean in the distribution. The same
is true when using maximum likelihood. Even when the model is specified
incorrectly, maximum likelihood estimates are consistent for the minimizer of
the Kullback-Leibler distance, (α0, β0), and this is at its smallest when

0 = ∂

∂(α, β)T
∣∣∣
α0,β0

E log fα,β(Y )

= E
(

∂

∂(α, β)T
∣∣∣
α0,β0

log fα,β(Y )
)

= E
(

log β0 + ψ(α0)− log Y
α0/β0 − Y

)
.

In particular, this means that the maximum likelihood estimate is consistent
for (α0, β0)T such that α0/β0 = EY . It is therefore possible to use maximum
likelihood theory to make inference about the true mean in the distribution, even
when the true underlying distribution is not really a Gamma-distribution. To
do this one needs to use a version of Wilks theorem for misspecified models, see
e.g. Schweder and Hjort 2016, pp. 43–44. Construction of confidence intervals
and curves is still doable, but the procedure changes and requires additional
effort. When using empirical likelihood, on the other hand, the analysis carries
through unmodified.

4.3 A deadly example

In Pinker 2011, the writer argues that violence in the world has declined.
Numerous authors have since attempted to prove or disprove this statement,
see Cunen, Hjort, and Nygård 2020 for a general overview, and in this section
we will use empirical likelihood to give an answer of our own. The data we will
use is part of the Correlates of War data set (Sarkees and Wayman 2010). In
particular, we will use the number of battle deaths in inter-state wars between
1816 and 2007 to determine whether the world has become more peaceful or
not.

To talk about violence we need to specify what we mean when we use
this word. We are working with a data set containing casualties in wars.
Number of battle deaths will therefore be our measure of violence. This is, of
course, somewhat limited as neither civilian casualties nor wounded soldiers are
included in this number. Furthermore the data set only considers inter-state
wars. Struggles within nations and conflicts that are not formally wars are not
included in the data set. Nevertheless, we will use this definition and investigate
whether the number of battle deaths in inter-state wars has declined.

We are interested whether newer conflicts are more deadly than older ones.
To test this we will compare parameters in the distribution of older and newer
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4.3. A deadly example

wars. We will first investigate whether the “typical” number of battle deaths
have declined. We will use the median as measure of this “typical” number of
casualties. At the end of the example we will also analyze the third quartile.
With this we are investigating something slightly different: whether the larger
conflicts have become more deadly or not.

We want to investigate whether the number of battle deaths has changed
over time. It is therefore not sufficient to simply estimate the median number
of casualties in wars. Firstly, we need to separate wars into “older” and “newer”.
Secondly, we have to compare the medians in the two groups. To differentiate
between newer and older conflicts, we use the results of Cunen, Hjort, and
Nygård 2020. In this article the authors find that the Korean War is the
maximum likelihood estimate for the change point in the number of battle
deaths. Because of this, we will take the 60 conflicts before, and including, the
Korean War as “older” wars. The remaining 35 will be the newer conflicts.

We will treat the data points as observations of 95 independent random
variables, and assume that the first sixty follow a continuous distribution, F1.
The remaining 35 variables will be assumed to follow another distribution, F2.
Provided the distribution of a stochastic variable, Y , is continuous,

E[I(Y ≤ θ)− 0.5] = Pr(Y ≤ θ)− 0.5 = 0,

when θ equals the median in the distribution of Y . We will therefore use the
estimating function m : R2 → R defined as

m(y, θ) = I(y ≤ θ)− 0.5

to construct two empirical likelihood functions. One for the median number
of battle deaths in conflicts before the Korean War, and one for the median
number of casualties in newer wars.

The empirical likelihood functions can be computed as explained in
Section 2.2. We will not go through the implementation details, but a plot of
the graphs of the functions can be found in Figure 4.8. Looking at this figure,
we notice that the empirical likelihood function for the median number of battle
deaths in newer wars does not reach 1. This happens because ELn(θ) = 1 for
some θ if and only if

1
n

∑
i=1

m(Yi, θ) = 0 (4.1)

for this θ. The estimating function m(y, θ) = I(y ≤ θ)− 0.5 takes two values
only: −0.5 and 0.5. Hence, (4.1) can only be solved if n is even. We have used
the 35 most recent conflicts as “newer” wars and 35 is an odd number. Because
of this, (4.1) cannot be solved in this case. A common way of correcting for
this is to use half-correction. This corresponds to replacing m(y, θ) with the
estimating function

m(y, θ) = I(y < θ)− 1
2I(y = θ),

as explained in Owen 2001, pp. 45–48. This sets the value of ELn at the
empirical median to 1. Such a correction is needed to identify the median
uniquely in discrete distributions, but as we have assumed the true underlying
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Figure 4.8: The plot on the left is ELn(θ) for a selection of θ-values. To the
right we see the corresponding confidence curves based on Theorem 2.3.1. We
have used purple for the values corresponding to wars before the Korean war
and orange for the ones corresponding to the newer conflicts.

distribution to be continuous, we decided not to use this technique. Our reason
being that the original choice of m is slightly easier to work with. Furthermore,
although resulting in more aesthetic pleasing plots, there is no real reason to
need ELn to be 1 at the empirical median.

Since,

Varm(Y, θ) = Var[I(Y ≤ θ)− 0.5] = Pr(Y ≤ θ)[1− Pr(Y ≤ θ)] <∞

for both Y ∼ F1 and Y ∼ F2, we can apply Theorem 2.3.1 to make inference
about the medians in the two distributions. For j = 1, 2,

−2 logELnj ,j(θj)
d
≈ χ2

1,

where θj is the true median in the j-th population, by this result. With this we
can construct confidence curves for the parameters with the following expression:

ccj(θ) = Γ1[−2 logELnj ,j(θ)] for j = 1, 2.

Plots of the curves can be found in Figure 4.8 together with the empirical
likelihood functions. Confidence intervals of all levels can be read off this figure.

From Figure 4.8 it looks like the median number of casualties has declined.
To test this hypothesis formally, we will use the profiling result from Chapter 3.
So, let Xi denote the number of deaths in the i-th conflict before the Korean
war and Yi the same for after this conflicts. Since the Xi-s and the Yi-s are not
assumed to come from the same distribution, we cannot use Definition 2.1.1
directly to form the empirical likelihood function for the parameter vector
θ = (θ1, θ2). Inspired by the classical parametric likelihood, we can, however,
define

EL(θ) = ELn1(θ1) · ELn2(θ2).
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Figure 4.9: A plot of the joint empirical likelihood function of (θ1, θ2) where
θj is the median in data set j. The left-hand axis in the xy-plane corresponds
to θ2 values and the right-hand side to values of θ1.

Using this definition we get

−2 logEL(θ) = −2 logELn1(θ1)− 2 logELn2(θ2),

and as −2 logELnj
(θj)

d→ χ2
1 for j = 1, 2 and the Xi and Yi are independent,

−2 logEL(θ) d→ χ2
2,

showing that a version of Theorem 2.3.1 holds for EL(θ) as well. With this
we can compute approximate confidence regions and curves for θ based on
EL(θ) d

≈ χ2
2. A plot of the joint empirical likelihood function can be found in

Figure 4.9. Contours of approximate confidence regions of level 90%, 95% and
99% are plotted in Figure 4.10.

We are now ready to compare the median number of casualties before and
after the Korean war. We will do this by making inference about the focus
parameter

ψ = g(θ1, θ2) = θ1

θ2
.

We would like to apply Theorem 3.0.5 to this situation. We cannot do this
directly as we are working with two different data sets: X1, . . . , Xn1 and
Y1, . . . , Yn2 . That being said, Xi and Yj are assumed to be independent for
i = 1, . . . , n1 and j = 1, . . . , n2. Hence, the process (s1, s2) 7→ Bn1(s1)+Cn2(s2)
converges to (s1, s2) 7→ B(s1) + C(s2), where Bn1 and B are the processes An
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Figure 4.10: Boundaries of confidence regions for (θ1, θ2) where θj is the
median in data set j. The x-axis corresponds to θ1 and the y-axis values of θ2.

and A constructed in the proof of Theorem 3.0.5 for data points before the
Korean War, and Cn2 and C are the corresponding processes for the second
data set. Using these process in place of An and A, the rest of the proof of
Theorem 3.0.5 goes through without notable changes, and we arrive at the
conclusion

−2 logPEL(ψ) = −2 ·max
θ1,θ2

{
logEL(θ1, θ2)

∣∣∣∣∣ θ1

θ2
= ψ

}
d→ χ2

1,

as n1 and n2 goes to infinity.
Using the approximation −2 logPEL(ψ) d

≈ χ2
1, we can compute approximate

confidence intervals and curves based on PEL(ψ). The approximate 95%
confidence interval for ψ was computed to be [0.69, 6.20]. So on a 5% level,
we are not able to reject the null hypothesis H0 : ψ = 1 against the alternative
H1 : ψ > 1. Furthermore computation of the 90% confidence interval gives us
[0.92, 4.99]. So nor on a 10% level are we able to conclude that the median
number of battle deaths has decreased since the Korean war. Consult Figure 4.11
for a plot of the confidence curve for ψ.

The p-value for testing the hypothesis H0 : ψ0 = 1 vs H1 : ψ0 > 1 can be
read of Figure 4.11. The value is 10.2%, which is too high to reject H0 on
most relevant significance levels. This is similar to the results obtained in
Cunen, Hjort, and Nygård 2020. The authors are not able to conclude that
the median number of battle deaths has declined on all relevant significance
levels. They do, however, find that for higher quantiles, the ratio of quantiles is
significantly larger than 1. We will therefore repeat the above analysis for the
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Figure 4.11: The plot on the left-hand side is PEL(ψ) for different values of
ψ = θ1/θ2, where θj is the median in Fj . To the right we see the corresponding
confidence curve.

third quartile instead of the median. After changing the estimating equation
to m(x, θ) = I(x ≤ θ)− 0.75 the approach is identical to the one we just used.
We will therefore not repeat the arguments here, but a plot of the empirical
likelihood function for the ratio of the quantiles before and after the Korean
war can be found in Figure 4.12, together with the corresponding confidence
curve. The new 95% confidence interval is [1.2, 18.9], and the p-value for testing
H0 : ψ = 1 against H1 : ψ > 1 is 0.028. So, significance levels of both 5 and 10%
leads us to reject the null hypothesis. Hence, using the third quantile as the
measure of violence, we can conclude that the world has, indeed, become more
peaceful.

In conclusion, we notice that, while it is not clear whether the median number
of casualties has declined, we are quite certain that the more deadly conflicts
have become less lethal. This agrees with the conclusion of Cunen, Hjort,
and Nygård 2020. In this article the authors conclude that the distribution
of battle deaths has changed, but that the changes are greater for the upper
than lower parts of the distribution. In particular, they find that the ratio of
medians is significantly greater than 1 only on a level slightly larger than 5%.
They are therefore unable to certainly conclude that the median number of
battle deaths has declined. This agrees with our analysis as we were unable to
reject the hypothesis that the median has remained unchanged on most relevant
significance levels. In addition, their and our conclusions regarding the upper
quartile match. They find that the ratio of these values before and after the
Korean War is significantly larger than 1 on a 5%-significance level. This is the
same conclusion we reached in this section.
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Figure 4.12: The plot on the left-hand side is PEL(ψ) for different values
of ψ = θ1/θ2, where θj is the third quartile in Fj . To the right we see the
corresponding confidence curve.
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CHAPTER 5

A mean in disguise

In Section 2.2 we derived an alternative characterization of the empirical
likelihood function. This was accomplished by introduction of a parameter, λn,
given implicitly as the solution to a certain function. We will now build on
the ideas from this section to derive asymptotic equivalent expressions to the
empirical likelihood function. In particular we will show that n−1 logELn(θ) is
close to the mean of a certain function. This result will be used in Chapter 6 to
show consistency and asymptotic normality of the maximizer of the empirical
likelihood function and again in Chapter 8 in a hybrid setting.

The proofs and theory in this chapter is, to our knowledge, new, but
Molanes Lopez, Van Keilegom, and Veraverbeke 2009 used similar ideas to show
a profiling result in their article.

Throughout this chapter we will assume that Y1, . . . ,Yn ∈ Rd are i.i.d.
variables following some unknown distribution, F , such that, for a certain
function m : Rd+p → Rq,

Em(Y, µ0) = 0

for Y ∼ F and some µ0 ∈ Rp. We will also let Mi(µ) denote m(Yi, µ) and M(µ)
be shorthand for m(Y, µ) for a general Y ∼ F .

5.1 An overview

In this, and the following chapter, we will present multiple theorems and proofs.
Before we start with the mathematics, we will therefore attempt to explain the
general ideas in more informal terms. The goal of this section is to provide the
reader with some intuition, while also serving as an overview of the theory that
is to come.

We start by repeating some of the results and ideas from Section 2.2. By
definition of the empirical likelihood function,

ELn(µ) =
{

n∏
i=1

nwi

∣∣∣∣∣
n∑
i=1

wi = 1,
n∑
i=1

wiMi(µ) = 0 and wi ≥ 0
}
,

where the last condition should hold for i = 1, . . . , n. Hence ELn(µ) is the
solution to the following optimization problem.
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5. A mean in disguise

Optimize

f(w) =
n∏
i=1

nwi

subjected to the equality constraints

h(w) =
n∑
i=1

wiMi(µ) = 0 and g(w) =
n∑
i=1

wi − 1 = 0. (5.1)

and inequality constraints

wi ≥ 0 for i = 1, . . . , n. (5.2)

If there are no set of strictly positive weights, w, satisfying (5.1), the empirical
likelihood function of µ is zero. Otherwise the maximum of f subjected to the
constraints h(w) = 0 and g(w) = 0 is also the maximum of log f over the same
set. Using the method of Lagrange multipliers, one can show that in this case

logELn(µ) = −
n∑
i=1

log
(

1 + λn(µ)TMi(µ)
)

(5.3)

for some λn(µ), such that

0 = 1
n

n∑
i=1

Mi(µ)
1 + λn(µ)TMi(µ)

. (5.4)

This is shown in Owen 2001, pp. 21–22. The argument will not be repeated
here.

Reformulating the above slightly, reveals

ELn(µ) =
n∏
i=1

(
1 + λn(µ)TMi(µ)

)−1
(5.5)

for some λn(µ) solving

1
n

n∑
i=1

(
Mi(µ)/[1 + λTMi(µ)]
I[1 + λTMi(µ) ≤ 0]

)
= 0 (5.6)

and 0 if no solution exists. By the law of large numbers (5.6) goes almost surely
to (

E{M(µ)/[1 + λTM(µ)]}
Pr[1 + λTM(µ) ≤ 0]

)
= 0 (5.7)

for every λ such that the expectations in (5.7) exists. For large sample sizes
we would therefore expect (5.6) to have a zero if (5.7) has one. This would
imply that ELn(µ) can be expressed as (5.5) asymptotically provided (5.7) has
a solution. In the ensuing section we will show that this is indeed the case, and
that, under sufficient conditions, the probability of solving (5.6) goes to 1 if
(5.7) has a solution.
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5.2. The solution to the Lagrange equation

The solution to (5.6), λn(µ), is what we call a Z-estimator, see e.g. Vaart
1998, p. 41 for a definition of Z-estimators. Such estimators are popular in
statistics and enjoy properties like consistency and asymptotic normality under
weak conditions. We would therefore expect λn(µ) to converge in probability
to the solution of (5.7) and to have a normal limit distribution after proper
scaling and centering. In the next section will show that such properties do,
indeed, hold.

If λn(µ) goes sufficiently fast to λ(µ), n−1 logELn(µ) will be very close to

− 1
n

n∑
i=1

log
(

1 + λ(µ)TMi(µ)
)
.

This is a mean, and means converge to expected values by the law of large
numbers. Because of this, some sort of convergence of n−1 logELn(µ) towards

−E log
(

1 + λ(µ)TM(µ)
)

is to be expected. This will be the topic of Section 5.3.
If the above results hold true, standard theory concerning M-estimators, see

e.g. Vaart 1998, p. 41, can be applied to prove consistency and asymptotic
normality of maximizers of the empirical likelihood function. This will be the
topic of Chapter 6, and in Chapter 8 the results will be applied in a hybrid
setting combining parametric and empirical likelihood.

Although the ideas presented in this section are intuitively easy to grasp,
providing rigorous proofs of the statements is far from straightforward. We
therefore recommend keeping the ideas presented here in mind when reading
the following sections.

The expression in (5.7) will be used frequently in this thesis. Because of
this, having a name for the equation will be useful. As (5.7) is derived as the
limit of an expression used in the method of Lagrange multipliers, we will refer
to it as the Lagrange equation from now on.

5.2 The solution to the Lagrange equation

We start by showing some limit properties of λn(µ), the solution to

1
n

n∑
i=1

(
Mi(µ)/[1 + λTMi(µ)]
I[1 + λTMi(µ) ≤ 0]

)
= 0. (5.8)

As this vector is a Z-estimator, standard theory concerning such estimators can
be applied. The following result uses theorem 5.41 and 5.42 in Vaart 1998, p. 68
to guarantee that (5.8) has a zero with probability tending to 1. Furthermore,
consistency of λn towards the solution of the population version of (5.8) is
proved, as well as limit normality after proper scaling and centring.

Theorem 5.2.1. Fix µ ∈ Rp and define the following set

Λµ =
{
λ ∈ Rp

∣∣ Pr
(
1 + λTM(µ) ≤ 0

)
= 0

}
and let λ(µ) be a vector such that

0 = E
(

M(µ)
1 + λ(µ)TM(µ)

)
. (5.9)
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5. A mean in disguise

Assume further that E‖M(µ)‖3 is finite and that

E
(

M(µ)M(µ)T

[1 + λ(µ)TM(µ)]2

)

is non-singular. Lastly, let there be a neighborhood, N , of λ(µ) and a positive
real number, L, such that Pr[1 + λTM(µ) > L] = 1 for all λ ∈ N . Under these
conditions

ELn(µ) =
n∏
i=1

(
1 + λn(µ)TMi(µ)

)−1
,

for some λn(µ) solving

1
n

n∑
i=1

(
Mi(µ)/[1 + λTMi(µ)]
I[1 + λTMi(µ) ≤ 0]

)
= 0 (5.10)

happens with probability tending to 1. Furthermore, if (5.10) has at most one
solution for each n, any sequence of λn(µ) solving (5.10) converges in probability
to λ(µ) and has the property

√
n[λn(µ)− λ(µ)] = S(µ)−1Vn(µ) + oPr(1) (5.11)

where

S(µ) = E
(

M(µ)M(µ)T

[1 + λ(µ)TM(µ)]2

)
and Vn(µ) = 1√

n

∑
i=1

Mi(µ)
1 + λ(µ)TMi(µ)

.

Proof. For every λ ∈ Λµ, Pr[1 + λTM(µ) ≤ 0] = 0. Because of this

1
n

n∑
i=1

I
(
1 + λTMi(µ) ≤ 0

)
= 0

is satisfied with probability 1 for every λ ∈ Λµ. Hence, it suffices to show that
the probability of

1
n

n∑
i=1

Mi(µ)
1 + λTMi(µ) = 0 (5.12)

having a solution in Λµ tends to 1 to have Pr[ELn(µ) = 0] → 0. In addition,
it suffices to work only with roots of (5.12) in Λµ to find limits of solutions to
(5.10).

We would like to apply theorem 5.41 and 5.42 in Vaart 1998, p. 68 and will
therefore start by showing the conditions of these result. In the following we
will assume Λµ is an open set. If this is not the case, we can replace it with
an open subset containing λ(µ). By assumption there exists a neighborhood of
λ(µ), N , with Pr[1 + λTM(µ) > L] = 1 for some L > 0. Because of this λ(µ)
lies in the interior of Λµ. Replacing Λµ with an open subset containing λ(µ) is
therefore always possible.
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5.2. The solution to the Lagrange equation

Since Pr[1 + λTM(µ) ≤ 0] = 0 for all λ ∈ Λµ,

ψ(y, λ) = m(y, µ)
1 + λTm(y, µ)

is smooth in λ for every fixed y in the support of Y1, . . . ,Yn. In particular the
function is twice differentiable. Furthermore,

Eψ[Y, λ(µ)] = E
(

M(µ)
1 + λ(µ)TM(µ)

)
= 0,

by definition of λ(µ), and

E

∥∥∥∥∥ M(µ)
1 + λ(µ)TM(µ)

∥∥∥∥∥
2

≤ E‖M(µ)‖2

L2 <∞

as ‖M(µ)‖2 has finite mean and Pr[1 + λ(µ)TM(µ) > L] = 1 for some L > 0 by
assumption. The matrix

E
(
∂

∂λ

∣∣∣
λ(µ)

ψ(Y, λ)
)

= −S

is assumed to be non-singular, so the only condition left to check is that
there is a neighborhood of λ(µ) on which the second order partial derivatives
of λ 7→ ψ(y, λ) are dominated by a function, h, such that h(Y) has finite
expectation.

Let mj denote jth estimating function. Then

∂2ψ

∂λj∂λk
(y, λ) = 2 · mh(y, µ)mj(y, µ)mk(y, µ)

[1 + λTm(y, µ)]3 .

By assumption there is a neighborhood, N , of λ(µ) and a strictly positive
number, L, such that Pr[1 + λTm(Y, µ) > L] = 1. On this set, we have∣∣∣∣ ∂2

∂λj∂λk

mh(y, µ)
1 + λTm(y, µ)

∣∣∣∣ ≤ 2 ·
∣∣∣∣mh(y, µ)mj(y, µ)mk(y, µ)

L3

∣∣∣∣ ≤ 2‖m(y, µ)‖3

L3 .

And since

E‖M(µ)‖3 <∞

by the conditions in Theorem 5.2.1, this proves that the second order partial
derivatives of λ 7→ ψ(y, λ) are bounded by a function, h, for which Eh(Y) <∞.
We have now shown that the conditions of theorem 5.41 and 5.42 in Vaart 1998,
p. 68 hold.

Theorem 5.2.1 now follows more or less directly from theorem 5.41 and
5.42 in Vaart 1998, p. 68. By theorem 5.42 the probability of (5.10) having a
solution tends to 1. Hence

ELn(µ) =
n∏
i=1

(
1 + λn(µ)TM(µ)

)−1
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5. A mean in disguise

for some λn(µ) solving (5.10) happens with probability tending to 1. Further-
more, the same theorem ensures that there exists a sequence of roots tending to
λ(µ) in probability. Since the roots are unique by assumption, any sequence of
solutions, λn(µ), must be this consistent sequence. In conclusion λn(µ) Pr→ λ(µ).
Theorem 5.41 in Vaart 1998, p. 68 then guarantees

√
n[λn(µ)− λ(µ)] = S(µ)−1Vn(µ) + oPr(1).

This concludes the proof. �

One drawback with the above result is that, we need to know if(
E{M(µ)/[1 + λTM(µ)]}

Pr[1 + λTM(µ) ≤ 0]

)
= 0

can be solved. In Section 5.4 we provide some discussion and illustration of
when a solution exists and it behaves as a function of µ. These arguments
mostly involves mathematical analysis of functions and serve no further purpose
in the proofs. Because of this, we will postpone the discussion to the end of
this chapter.

Before we move on to deriving limits of quantities related to the empirical
likelihood function, we will take the time to discuss one of the conditions in
Theorem 5.2.1.

The lower bound

In Theorem 5.2.1 we imposed the following condition on the solution to(
E{M(µ)/[1 + λTM(µ)]}

Pr[1 + λTM(µ) ≤ 0]

)
= 0.

There should exist a neighborhood of λ(µ), N , on which

Pr
(
1 + λTM(µ) > L

)
= 1

for some L > 0 and all λ ∈ N . This condition is convenient when proving
the result, but can be hard to check in practice as λ(µ) is generally unknown.
In this section we will propose an alternative condition that is often easier to
check.

Assume there exists a continuous function, B, such that

1 + λTM(µ) ≥ B(λ) > 0

for all λ ∈ Λµ and y in the support of Y. By assumption B[λ(µ)] > 0 and since
the function is continuous, there exists a neighborhood, N , of λ(µ) such that
B(λ) > B[λ(µ)]/2 for all λ ∈ N . This neighborhood together with the bound
L = B[λ(µ)]/2 satisfies the conditions of Theorem 5.2.1.

In many cases, proving the existence of such a function is easier than the
existence of N and L directly. If, for instance, m(y, µ) = h(y) − µ where the
support of h(Y) is [a, b],

1 + λ(h(y)− µ) ≥ B(λ) =
{

1 + λ(b− µ), λ ≤ 0
1 + λ(a− µ), λ ≥ 0
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5.3. The emprical likelihood function

for all y in the support of Y . This is a continuous function and since the support
of h(Y ) is [a, b], Pr[1 + λ(h(Y )− µ) ≤ 0] = 0 if and only if

− 1
b− µ

< λ < − 1
a− µ

. (5.13)

As long as (5.13) holds true, B(λ) > 0. Hence, B satisfies the conditions above,
guaranteeing that N and L as in Theorem 5.2.1 exist.

When m is on the form I(y ≤ µ)− q for some q ∈ (0, 1), m(y, µ) takes the
values −q and (1− q). Hence

1 + λ[I(y ≤ µ)− q] ≥ B(λ) =
{

1 + λ(1− q), λ ≤ 0
1− λq, λ ≥ 0

,

for all y in the support of Y . Furthermore, Pr{1 + λ[I(y ≤ µ)− q] ≤ 0} = 0 is
equivalent to

− 1
1− q < λ <

1
q
, (5.14)

and under this condition, B(λ) > 0. So, as long as λ(µ) satisfies (5.14), N and
L as in Theorem 5.2.1 exist.

5.3 The emprical likelihood function

We will now use Theorem 5.2.1 to provide an alternative characterization of the
logarithm of the empirical likelihood function. In this section we will work with
a fixed µ satisfying the conditions of Theorem 5.2.1. To improve readability we
will omit the vector from the notation and use λ, λn, Mi and M as short-hand
for λ(µ), λn(µ), Mi(µ) and M(µ) respectively.

By Theorem 5.2.1, the following holds with probability tending to 1:

logELn(µ) = −
n∑
i=1

log
(
1 + λTnMi

)
.

Adding and subtracting
∑n
i=1 log(1 + λTMi) from this expression, shows

logELn(µ) = −
n∑
i=1

log
(
1 + λTMi

)
+

n∑
i=1

log
(

1 + λTMi

1 + λTnMi

)

= −
n∑
i=1

log
(
1 + λTMi

)
+

n∑
i=1

log
(

1 + (λ− λn)T Mi

1 + λTnMi

)
,

with probability tending to 1. We can now use a second order Taylor expansion
of log(1 + x) around 0 to see,

n∑
i=1

log
(

1 + (λ− λn)T Mi

1 + λTnMi

)
= (5.15)

(λ− λn)T
n∑
i=1

Mi

1 + λnMi
− 1

2 · (λ− λn)T
(

n∑
i=1

MiMT
i

(1 + λTnMi)2

)
(λ− λn) + εn

(5.16)
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5. A mean in disguise

where εn is the sum of remainder terms in the Taylor expansions. Because λn
solves

0 = 1
n

n∑
i=1

Mi

1 + λTMi
,

the first term of (5.16) disappears. This leaves us with the ensuing expression:
n∑
i=1

log
(

1 + (λ− λn)T Mi

1 + λTnMi

)
=

− 1
2 ·
√
n(λ− λn)T

(
1
n

n∑
i=1

MiMT
i

(1 + λTnMi)2

)
√
n(λ− λn) + εn.

By Theorem 5.2.1 there exists a neighborhood, N , of λ on which

Pr(1 + xTM > L) = 1

for all x ∈ N and some L > 0. We will assume, without loss of generality,
that N is convex and work with the expressions as though λn ∈ N . As λn is
consistent for λ by Theorem 5.2.1, this holds with probability tending to 1.

We can now show that the remainder term εn goes to 0 in probability. On
[1,∞) the third order derivative of log(1 + x) is bounded by 2. So if

(λ− λn)T Mi

1 + λTnMi
≥ 0,

the norm of the remainder term in the Taylor expansion of

log
(

1 + (λ− λn)T Mi

1 + λTnMi

)
around 0 is bounded by

2
3!

∣∣∣∣(λ− λn)T Mi

1 + λTnMi

∣∣∣∣3.
Since Pr(1 + λTnMi > L) = 1, this is bounded by

1
3L4 ‖λ− λn‖

3‖Mi‖3.

If, on the other hand,

(λ− λn)T Mi

1 + λTnMi
< 0,

one can show that the remainder term is bounded by

1
3

∣∣∣∣ x

1 + x

∣∣∣∣3
where

x = (λ− λn)T Mi

1 + λTnMi
.
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5.3. The emprical likelihood function

Some algebra reveals

x

1 + x
= (λ− λn)T Mi

1 + λTMi
.

Hence, the norm of the remainder term is bounded by

1
3

∣∣∣∣(λ− λn)T Mi

1 + λTMi

∣∣∣∣3 ≤ 1
3L‖λ− λn‖

3‖Mi‖3.

Because of this,

|εn| ≤
1

3L‖λ− λn‖
3

n∑
i=1
‖Mi‖3.

As λ − λn = OPr(1/
√
n), by Theorem 5.2.1, and the third moment of ‖Mi‖

is finite by assumption, εn = OPr(1/
√
n). In particular, this implies that the

logarithm of the empirical likelihood function is asymptotically equivalent to

−
n∑
i=1

log
(
1 + λTMi

)
− 1

2 ·
√
n(λ− λn)T

(
1
n

n∑
i=1

MiMT
i

(1 + λTnMi)2

)
√
n(λ− λn).

As before let

Vn = 1√
n

n∑
i=1

Mi

1 + λTMi
and S = E

(
MMT

(1 + λTM)2

)
,

and define

Sn = 1
n

n∑
i=1

MiMT
i

(1 + λTnMi)2 .

Using this notation and the limit (5.11) from Theorem 5.2.1, we arrive at the
following expression for the logarithm of the empirical likelihood function:

logELn(µ) = −
n∑
i=1

log
(
1 + λTMi

)
− 1

2V
T
n S
−1SnS

−1Vn + oPr(1) (5.17)

Let f : [0, 1]→ Rq2 be defined as

f(t) = 1
n

n∑
i=1

MiMT
i

{1 + [tλ+ (1− t)λn]TMi}2
.

For each t ∈ [0, 1],

‖f ′(t)‖ ≤ 1
n

n∑
i=1

‖Mi‖3‖λ− λn‖
|1 + [tλ+ (1− t)λn]TMi|3

≤ ‖λ− λn‖
L3

1
n

n∑
i=1
‖Mi‖3.

Hence, by the mean value theorem for functions of several variables, see e.g.
Lindstrøm 2017, p. 187–189,∥∥∥∥∥Sn − 1

n

n∑
i=1

MiMT
i

(1 + λTMi)2

∥∥∥∥∥ = ‖f(0)− f(1)‖ ≤ ‖λ− λn‖
L3

1
n

n∑
i=1
‖Mi‖3. (5.18)
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Here we have used that convexity of N ensures

Pr
(
1 + [tλ+ (1− t)λn]TM > L

)
= 1

for all t ∈ [0, 1] and identified q × q-matrices with vectors in Rq2 . Since
E ‖M‖3 <∞ and ‖λ− λn‖ = OPr(1/

√
n), (5.18) implies∥∥∥∥∥Sn − 1

n

n∑
i=1

MiMT
i

(1 + λTMi)2

∥∥∥∥∥ = OPr(1/
√
n).

Furthermore,

1
n

n∑
i=1

MiMT
i

(1 + λTMi)2

converges to S by the law of large numbers. So,

Sn = S + oPr(1).

Entering this into (5.17), shows

logELn(µ) = −
n∑
i=1

log
(
1 + λTMi

)
− 1

2V
T
n S
−1Vn + oPr(1), (5.19)

as Vn has a normal limit by the central limit theorem and hence is stochastically
bounded.

V Tn S
−1Vn converges in distribution, and 1/n converges to 0 in probability.

Therefore, V Tn S−1
n Vn/n

Pr→ 0 by Slutsky’s theorem. Hence,

1
n

logELn(µ) = − 1
n

n∑
i=1

log
(
1 + λTMi

)
+ oPr(1).

By the Law of large numbers, the right-hand side converges to its population
version, and so

1
n

logELn(µ) Pr→ −E log
(
1 + λTM

)
.

For easier reference we will summarize the above findings.

Theorem 5.3.1. Assume the conditions of Theorem 5.2.1 hold for µ ∈ Rp and
let λ(µ) denote the solution to(

E{M(µ)/[1 + λTM(µ)]}
Pr[1 + λTM(µ) ≤ 0]

)
= 0.

As before, let

Vn(µ) = 1√
n

n∑
i=1

Mi(µ)
1 + λ(µ)TMi(µ) and S(µ) = E

(
M(µ)M(µ)T

[1 + λ(µ)TM(µ)]2

)
.
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5.3. The emprical likelihood function

Then, the following holds with probability tending to 1

logELn(µ) = −
n∑
i=1

log
(
1 + λ(µ)TMi(µ)

)
− 1

2Vn(µ)TS(µ)−1Vn(µ) + δn(µ),

(5.20)

with δn(µ) tending in probability to 0. In particular,
1
n

logELn(µ) Pr→ −E log
(

1 + λ(µ)TM(µ)
)
. (5.21)

Since the expressions in Theorem 5.3.1 differ somewhat from the traditional
formulations of theorems concerning empirical likelihood, we will comment
briefly on how they compare to corresponding results in literature. To our
knowledge, limits related to the empirical likelihood function at other values
than the true parameter have not been derived before. However, by the main
result of empirical likelihood (see Theorem 2.3.1 or Owen 2001, p. 41),

−2 logELn(µ0) d→ χ2
q,

at the true parameter, µ0, such that

EM(µ0) = 0.

Applying Theorem 5.3.1 to this µ0 results in the same conclusion, as we will
now show.

Since E[M(µ0)] = 0,

E
(

M(µ0)
1 + 0 ·M(µ0)

)
= EM(µ0) = 0.

Hence λ(θ0) = 0. Because of this (5.20) simplifies to

logELn(µ) = −
n∑
i=1

log[1 + 0 ·M(µ0)]− 1
2Vn(µ0)TS(µ0)−1Vn(µ0) + oPr(1)

= 0− 1
2Vn(µ0)TS(µ0)−1Vn(µ0) + oPr(1),

at the true parameter, µ0. Furthermore, with λ(µ0) = 0, we get

Vn(µ0) = 1√
n

n∑
i=1

M(µ0)
1 + 0 ·M(µ0) = 1√

n

n∑
i=1

M(µ0) d→ Nq(0,Σ),

and

S(µ0) = E
(

M(µ0)M(µ0)T

[1 + 0 ·M(µ0)]2

)
= E

[
M(µ0)M(µ0)T

]
= Σ.

So, at the true parameter, we do, indeed, get

−2 logELn(µ0) d→ χ2
q

from Theorem 5.3.1, just as when using the classic result. Furthermore the
expression

−2 logELn(µ0) = Vn(µ0)S(µ0)−1Vn(µ0) + oPr(1)

is asymptotically equivalent to the one given in, e.g. Schweder and Hjort 2016,
p. 328.
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5. A mean in disguise

5.4 Investigating the solution to the Lagrange equation

In the previous sections, we derived limits for the empirical likelihood function.
In the proofs, as well as statements of theorems, a function defined implicitly
as the solution to (

E{M(µ)/[1 + λTM(µ)]}
Pr[1 + λTM(µ) ≤ 0]

)
= 0, (5.22)

is used. In this section we will discuss the existence, and behavior, of this
solution.

We will start by going through an example investigating the solution to
(5.22) in a specific situation. Afterwards, we state and prove a theorem about
the existence of such solutions and discuss its implications when the estimating
function is on the form m(y, µ) = h(Y) − µ. Lastly, a discussion concerning
necessity of the last entry in (5.22), as well as a strategy for what to do when
5.22 cannot be solved, is provided.

A first example

Assume Y follows a uniform distribution on the unit interval, and let m(y, µ) =
y − µ. For λ = 0,

E
(

Y − µ
1 + 0 · (Y − µ)

)
= EY − µ = 1

2 − µ.

Otherwise, standard integration techniques results in the following expression

E
(

Y − µ
1 + λ(Y − µ)

)
= 1
λ
− 1
λ2 log

(
1 + λ(1− µ)

1− λµ

)
. (5.23)

We can now solve

0 = E
(

Y − µ
1 + λ(Y − µ)

)
(5.24)

for a fixed µ 6= 1/2 by numerically finding the root of (5.23). In Figure 5.1 we
have plotted the solutions for a selection of µ-values.

For each fixed µ ∈ (0, 1) we need the solution to (5.24) to lie in the set

Λµ = { λ ∈ R | Pr[1 + λ(Y − µ) ≤ 0] = 0 } (5.25)

for it to solve (5.22). Since Y is uniformly distributed on [0, 1], Pr[1+λ(Y −µ) ≤
0] = 0 is satisfied if

1 + λ(0− µ) > 0 and 1 + λ(1− µ) > 0.

This is equivalent to requiring

1
µ− 1 < λ <

1
µ
. (5.26)

In Figure 5.1 the shaded area is the set of λs satisfying this inequality for the
corresponding values of µ. From the plot we see that the solution to (5.24)
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Figure 5.1: A plot of the solution to (5.24) as a function of µ. The shaded
area framed indicates where the inequalities in (5.25) hold true.

satisfies (5.26) for each µ. All solutions to (5.24) are therefore solutions to
(5.22). Furthermore, as µ moves away from µ0 = 1/2, λ(µ) approaches the
boundary of Λµ.

Inspecting the graph, we notice that for µ < µ0, the solution to (5.24) is
negative, while µ > 1/2 results in a positive root. We also see that the zeros are
continuous as a function of µ. These properties actually hold quite generally
and can be confirmed theoretically. For each µ ∈ (0, 1), we can apply Leibniz
integral theorem, see e.g. Lindstrøm 2017, p. 276, to get

∂

∂µ
E
(

Y − µ
1 + λ(Y − µ)

)
= −1

[1 + λ(Y − µ)]2 < 0

and

∂

∂λ

∣∣∣
λ(µ)

E
(

Y − µ
1 + λ(Y − µ)

)
= E

(
− (Y − µ)2

[1 + λ(µ)(Y − µ)]2

)
< 0.

Hence, by the implicit function theorem, see e.g. Lindstrøm 2017, p. 212, the
solutions to

E
(

Y − µ
1 + λ(Y − µ)

)
are differentiable as a function of µ with derivative

λ′(µ) = − ∂

∂µ
E
(

Y − µ
1 + λ(Y − µ)

)[
∂

∂λ

∣∣∣
λ(µ)

E
(

Y − µ
1 + λ(Y − µ)

)]−1
< 0
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when they exist. Since λ(µ0) = 0, this implies that λ(µ) is positive for µ < µ0
and negative for µ > µ0.

The above arguments can easily be modified to similar situations. In many
cases the solution to (5.22) will therefore have similar properties as a function
of µ to what we have seen here. That being said, analyzing λ is often more
complicated than what we have done in this example. The reason for this is
that it is often hard, if not impossible, to compute

E
(

Y − µ
1 + λ(Y − µ)

)
analytically. In such cases numerical integration techniques, or approximation
of infinite sums by finite ones, can be used to estimate this quantity.

Solving the Lagrange equation

In the previous example we saw that(
E{M(µ)/[1 + λTM(µ)]}

Pr[1 + λTM(µ) ≤ 0]

)
= 0 (5.27)

could be solved for all µ in the support of Y. This property actually holds for
many bounded distributions. We will now give a lemma proving, and disproving,
the existence of solutions to (5.27) under certain conditions.

Lemma 5.4.1. Let m : Rd+p → R be a one dimensional estimating function and
fix µ ∈ Rp. Let M denote the stochastic variable m(Y, µ) and f : R → R the
function

f(λ) = E
(

M

1 + λM

)
.

The following then holds:

(1) Assume EM > 0 and that M ≥ a for some a < 0 with probability 1. If f
is continuous on [0,−1/a), f(λ) = 0 has a solution in (−∞,−1/a) if and
only if

lim
λ→−1/a

E
(

1
1 + λM

)
> 1, (5.28)

where the limit is taken from below.

(2) Assume EM < 0 and that M ≤ b for some b > 0 with probability 1. If f
is continuous on (−1/b, 0], f(λ) = 0 has a solution in (−1/b,∞) if and
only if

lim
λ→−1/b

E
(

1
1 + λM

)
> 1,

where the limit is taken from above.
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5.4. Investigating the solution to the Lagrange equation

Proof. We will only show (1) as (2) follows from this case after replacing M
with −M , so assume the conditions of (1) hold.

The function

λ 7→ x

1 + λx

is decreasing on (−∞,−1/x) for all fixed x. Hence

λ 7→ M

1 + λM

is decreasing on the set (−∞,−1/a) as M ≥ a implies that −1/M ≥ −1/a.
Because of this, and monotonicity of expected values, f is a decreasing function
on (−∞,−1/a). Since f(0) = EM > 0 by assumption, this implies that f has
a root on this interval if and only if it has a positive root. It therefore suffices
to check for such a zero.

We notice that

f(λ) = E
(

M

1 + λM

)
= 1
λ
− 1
λ
E
(

1
1 + λM

)
.

Hence,

lim
λ→−1/a

f(λ) = −a
[
1− lim

λ→−1/a
E
(

1
1 + λM

)]
Assume first that (5.28) holds. Then

lim
λ→−1/a

f(λ) < −a(1− 1) = 0,

where the limit is taken from below. As f(0) = EM > 0 by assumption and f
is continuous on [0,−1/a), the intermediate value theorem ensures that f has a
root in λ ∈ [0,−1/a).

If, on the other hand,

lim
λ→−1/a

E
(

1
1 + λM

)
≤ 1,

we have

lim
λ→−1/a

f(λ) ≥ −a(1− 1) = 0.

Then f(λ) > 0 for all λ ∈ [0,−1/a) as it is a decreasing function. Hence, no
solution to f(λ) = 0 exists in [0,−1/a). This concludes the proof. �

Assume m(y, µ) = I(y ≤ µ)− q for some q ∈ (0, 1). Then −q ≤ m(Y, µ) <
1− q regardless of the distribution on Y . Furthermore

f(λ) = −Pr(Y ≤ µ) q

1− λq + [1− Pr(Y ≤ µ)] 1− q
1 + λ(1− q) ,

which is continuous on the interval (−1/(1− q), 1/q). Lastly,

E
(

1
1 + λ[I(y ≤ µ)− q]

)
= Pr(Y ≤ µ) 1

1− λq + [1− Pr(Y ≤ µ)] 1
1 + λ(1− q) .
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5. A mean in disguise

As λ goes to both 1/q from below and to −1/(1− q) from above, this expression
goes to infinity. Hence, the conditions of (1) and (2) both hold for all µ.
Because of this Lemma 5.4.1 guarantees that f(λ) = 0 can be solved in the set
−1/(1− q) < λ < 1/q for all µ. Since,

Pr{1 + λ[I(Y ≤ µ)− q] ≤ 0} = 0 ⇔ − 1
1− q < λ <

1
q
,

this shows that(
E{[I(Y ≤ µ)− q]/[1 + λ(I(Y ≤ µ)− q)]}

Pr{1 + λ[(Y ≤ µ)− q] ≤ 0}

)
= 0

can be solved for all values of µ. We can also see this directly as the solution is
given explicitly as

λ(µ) = F (µ)− q
q(1− q) .

With the estimating function m(y, µ) = h(y)− µ, the existence of solutions
varies with the distribution of the data. To get a better idea of when solutions
can and cannot be found, we will go through some specific examples and
situations with this estimating function.

The solution to the Lagrange equation for means

In this section we will discuss the existence of solutions to(
E{(Y − µ)/[1 + λ(Y − µ)]}

Pr[1 + λ(Y − µ) ≤ 0]

)
= 0 (5.29)

in different situations. We will let fµ denote the function

fµ(λ) = E
(

Y − µ
1 + λ(Y − µ)

)
for each µ. This is a decreasing function for each fixed µ as is shown in the
proof of Lemma 5.4.1.

It is worth noting that replacing Y with h(Y) allows the analysis of this
section to be applied to all estimating functions on the form m(y, µ) = h(y)− µ
for functions h : Rd → R.

Situation 1 - When the support of Y is bounded

We start with the case when the support of Y is bounded. So let Y ∈ [L, U ]
with probability 1. For each fixed µ ∈ (L, U), we then have

L− µ ≤ Y − µ ≤ U − µ

with L−µ < 0 and U−µ > 0. Hence, for each fixed µ, Pr[1+λ(Y −µ) ≤ 0] = 0
is equivalent to

− 1
U − µ

< λ < − 1
L− µ

. (5.30)
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5.4. Investigating the solution to the Lagrange equation

So (5.29) has a solution if and only if fµ(λ) = 0 can be solved under condition
(5.30).

Let µ < EY . Then fµ(0) = E(Y − µ) > 0. As fµ is decreasing, any zero of
fµ must be positive. Because of this, (5.29) can be solved if and only if fµ has a
root in [0,−1/(L− µ)). By case (1) of Lemma 5.4.1 this happens if and only if

lim
λ→−1/(U−µ)

E
(

1
1 + λ(Y − µ)

)
> 1

After some algebra, we see that this is equivalent to

µ > U −
[
E
(

1
U − Y

)]−1
.

A similar relation holds true when µ > EY . Since fµ is decreasing, all potential
roots must be negative. By case (2) and (5.30) this happens if and only if

lim
λ→−1/(L−µ)

E
(

1
1 + λ(Y − µ)

)
> 1.

Which can be shown to be equivalent to

µ < L+
[
E
(

1
Y − L

)]−1
.

In the uniform distribution on [0, 1], both EY −1 and E(1− Y )−1 diverges
to ∞. Hence Lemma 5.4.1 guarantees that a solution to (5.27) exists for all
µ ∈ (0, 1). This is also what we found in Section 5.4.

Assume now that Y follows a Beta(2, 2) distribution. Numerical integration
shows that in this case

E
(

1
Y

)
= E

(
1

1− Y

)
= 3

The analysis in this section therefore guarantees that a solution to (5.27) should
exist only for µ ∈ (1/3, 2/3). In Figure 5.2, we have displayed the numerically
found roots of

E
(

Y − µ
1 + λ(Y − µ)

)
, (5.31)

together with the bounds given in (5.30). From the figure, we see that a solution
was found only for the expected range of µ-values.

Assume now that Y follows a Beta(1, 3) distribution. As the density in this
distribution is non-zero at 0,

E
(

1
Y

)
=∞.

This will be shown in the next section. Because of this (5.27) should have a
solution for all µ ∈ (0, µ0] where µ0 = EY = 1/4. On the other hand

E
(

1
1− Y

)
= 3

2 .
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Figure 5.2: A plot of the zeros of (5.31) found numerically as a function of µ.
The shaded area indicates the set of λs satisfying (5.30) for different µs. The
dotted lines frame the area where 1/3 < µ < 2/3, the range for which a solution
should theoretically exists.

So, by the above analysis, a solution to (5.27) should only exist when µ < 1/3
for µ > µ0. Combining all of this, we get that a solution should exist if and
only if 0 < µ < 1/3. We have again attempted to find roots of

E
(

Y − µ
1 + λ(Y − µ)

)
(5.32)

numerically for all µ ∈ (0, 1). The result can be fund in Figure 5.3 and agrees
with our theoretical analysis.

Situation 2 - When the support of Y is unbounded in one direction

Let Y have support [L, ∞) for some L ∈ R. As Y is unbounded to the right,
Pr[1 + λ(Y − µ) ≤ 0] > 0 for all λ < 0. Because of this, we must have
λ > 0 to ensure that the last entry in the Lagrange equation is zero. Since
fµ is a decreasing function, fµ(λ) = 0 does not have a solution satisfying
Pr[1 + λ(Y − µ) ≤ 0] > 0 when fµ(0) > 0. As fµ(0) = EY − µ, this implies
that (5.27) cannot be solved for µ > µ0. The opposite is of course true when
the support of Y is (−∞, U ] for some U ∈ R.

In Figure 5.4 we have displayed numerically obtained solutions to fµ(λ) = 0
in two situations. The purple line is the graph of zeros of fµ when Y follows a
Gamma distribution with shape 2 and rate 2. The orange line is a plot of the
roots of fµ when Y instead is exponentially distributed with rate parameter
1. The mean in both of these distributions is 2, but while EY −1 = 2 when
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Figure 5.3: A plot of the zeros of (5.32) found numerically as a function of
µ. The shaded area indicates the set of λs satisfying (5.30) for different µs and
the dotted line where µ = 1/3. This is the theoretical computed upper bound
for where a solution should exist.

Y ∼ Gamma(2, 2), the integral diverges if Y ∼ Expo(1). From the figure we
see that no solution was found when µ > EY = 2 for both distributions. In
addition, we see that while a solution was found for all µ < µ0 in the case of
the exponential distribution with rate parameter 1/2, fµ(λ) = 0 could only be
solved when µ > 1/EY −1 = 1/2 for the case of Y ∼ Gamma(2, 2). This is in
agreement with our theoretical analysis.

Situation 3 - When the support of Y is unbounded in both directions

When the support of Y is unbounded in both directions, Pr[1+λ(Y −µ) ≤ 0] > 0
for all λ 6= 0. Because of this, no solutions to (5.27) can be found unless

E
(

Y − µ
1 + 0 · (Y − µ)

)
= EY − µ = 0,

and this only holds if µ is the true parameter. Hence (5.27) can only be solved
when µ = EY . This makes it impossible to apply the limit results derived in
this chapter. In Section 5.4 we will discuss the use of truncated distributions to
deal with this problem.
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Figure 5.4: A plot of the solutions to fµ(λ) = 0 found numerically as a function
of µ in two cases: when Y ∼ Gamma(2, 2) and Y ∼ Expo(1). The shaded area
indicates the set of λs satisfying Pr[1 + λ(Y − µ) ≤ 0] = 0 for different µs.

Do we need the extra condition?

In the previous examples we found that the roots of

0 = E
(

M

1 + λM

)
(5.33)

all satisfied Pr(1 + λM ≤ 0) = 0. Because of this, one might ask if we need to
impose the extra condition of Pr(1 + λ(µ)M ≤ 0) = 0 on the solution, λ(µ). In
many cases it is true that this condition is unnecessary. For instance, fix µ and
let M follow a continuous distribution with density g. Let λ 6= 0 and assume
g(−1/λ) 6= 0. Then there exists ε > 0 such that the density is bounded from
below by L > 0 on [−1/λ− ε, −1/λ+ ε]. Hence,

E
∣∣∣∣ M

1 + λM

∣∣∣∣ ≥ L∫ −1/λ+ε

−1/λ−ε

∣∣∣∣ x

1 + λx

∣∣∣∣ dx,
and this integral diverges. Because of this (5.33) is undefined for many λs that
do not satisfy Pr(1 + λM ≤ 0) = 0 when the true underlying distribution of
the data is continuous. In this case, all roots to (5.33) automatically satisfy the
property Pr(1 + λM ≤ 0) = 0. That being said, there are cases for which

E
(

M

1 + λM

)
= 0,
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but Pr[1 + λM ≤ 0] > 0. To see this let Y take the values 1 and 1/3 with
probability 1/2 each. Then

E
(

Y

1− 2Y

)
= 1

2 ·
1

1− 2 + 1
2 ·

1/3
1− 2 · 1/3 = −1

2 + 1
2 = 0,

but

Pr(1− 2Y ≤ 0) = Pr(Y = 1) = 1/2 > 0.

So in general,

E
(

M

1 + λM

)
can have roots that do not satisfy Pr(1 + λM ≤ 0) = 0.

Distributions with unbounded support

Looking at Lemma 5.4.1, we see that there is one very important situation
with a surprising result: when Y is normally distributed and the estimating
function is m(y, µ) = y − µ. This is, perhaps, the simples and most standard
situation one can come up with, but since the support of Y is unbounded in
both directions,

Pr[1 + λ(Y − µ) ≤ 0] > 0,

for any λ 6= 0. Because of this, the set Λµ defined in Theorem 5.2.1 consists of
a single element, 0, for all µ. Furthermore,

E
(

Y − µ
1 + 0 · (Y − µ)

)
= µ0 − µ

is equal to 0 if and only if µ = µ0. Hence(
E{(Y − µ)/[1 + λ(Y − µ)]}

Pr[1 + λ(Y − µ) ≤ 0]

)
= 0.

can only be solved at the true parameter. This is an example of a general trend.
If the support of M(µ) is unbounded, there are many values of µ for which(

E{M(µ)/[1 + λTM(µ)]}
Pr[1 + λTM(µ) ≤ 0]

)
= 0.

has no solution. In such cases the theorems concerning limits of the empirical
likelihood function and related quantities derived in this chapter cannot be
applied.

One solution to this problem is to work with truncated distributions.
In practice, there is very little difference between, for instance, a standard
normal distribution and the truncated version with support equal to [−10, 10].
Hence, the empirical likelihood function constructed with data following these
two distributions will behave very similarly. In Figure 5.5 we have plotted
n−1 logELn(µ) with m(y, µ) = y − µ and data following a central normal
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Figure 5.5: The purple line is a plot of the empirical likelihood function,
scaled by the sample size, for the mean constructed with 500 simulated data
points from the central normal distribution with standard deviation 2. The
blue dotted lines are the limits of this function under the assumption that the
true underlying distribution is the truncated version of N(0, 4) on [−K, K] for
K = 2.5, 3, 3.5, . . . , 6. The opacity of the lines increases with K.

distribution with standard deviation 2 together with the theoretical limits of
this function, for the truncated normal distribution with support on [−K,K]
for different values of K. From the plot we see that the theoretical curves draw
closer as K increases. Furthermore, the empirical likelihood function is not far
off from the theoretical curves.

The trend we see in Figure 5.5 is the typical one. In many cases,
approximating unbounded distributions with truncated versions solves the
problem with the lack of solution to(

E{M(µ)/[1 + λTM(µ)]}
Pr[1 + λTM(µ) ≤ 0]

)
= 0

and gives good approximate results.
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CHAPTER 6

The maximum empirical likelihood
estimator

The limit results derived in the previous chapter are interesting in their own
rights. They provide intuition about what goes on behind the scenes of the
empirical likelihood machinery. Furthermore, they guarantee that the theory we
know about the empirical likelihood function at the true parameter, generalizes
to alternatives. That being said, the results are more than just interesting
theory. By Theorem 5.3.1, the empirical likelihood function is very close to
an empirical mean. Because of this, its maximizer is almost what we call an
M-estimator, the maximizer of functions on the form

Ψn(θ) = 1
n

n∑
i=1

ψ(θ)

where ψ : Rp → R. A general introduction to this concept can be found in
chapter 5 of Vaart 1998.

M-estimators are widely studied, both in the context of maximum likelihood
theory and robust statistics. Because of this, there is a loot of theory to build,
on and we will now use this theory to show both consistency and asymptotic
normality of the maximizer of the empirical likelihood function. In this section
we will assume that the estimating equation is one dimensional. This simplifies
many of the proofs, but the theorems should be possible to generalize to higher
dimensions. In that case, however, many of the arguments require the use of
more advanced matrix calculus than what is considered here. This is particularly
true for the proofs utilizing Taylor expansions.

Limits of the maximum empirical likelihood estimator, and scaled and
centered versions of it, has been derived before, see e.g. Qin and Lawless 1994.
Furthermore, the maximizer of the empirical likelihood function will often be
the solution to the empirical equation

0 = 1
n

n∑
i=1

m(Yi, µ),

and this is both consistent and asymptotically normal under very general
assumptions, se e.g. section 3.2 in Huber 2009. Nevertheless, we will provide
our own proofs here based on Theorem 5.2.1 and Theorem 5.3.1. This will serve
as an illustration of how the results from the previous chapter can be applied.
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6. The maximum empirical likelihood estimator

Furthermore, the lemmas and theorems proved in this chapter will be useful in
Chapter 8, where we will work with the maximizer of a hybrid combination of
empirical and parametric likelihoods.

As before, we will let Y1, . . . ,Yn ∈ Rd be i.i.d. variables, following
some unknown distribution, F , throughout this chapter. We will also let
m : Rd+p → R be a function and µ0 the unique p-dimensional vector such that,

Em(Y, µ0) = 0

for Y ∼ F . Lastly, Mi(µ) will be short-hand for m(Yi, µ) and M(µ) for m(Y, µ)
where Y ∼ F .

6.1 The remainder term

Before we can show consistency and asymptotic normality of the maximum
empirical likelihood estimator, we need to show that the remainder term in
Theorem 5.3.1 goes quickly enough to zero in probability. This will be the topic
for this section. Although some additional level of detail will be required here
compared to the previous chapter, the ideas behind the proofs are essentially
the same now as in Chapter 5. Furthermore, most of the assumptions and
results can be seen as stronger versions of those given in the previous chapter.

Our first goal will be to show that λn(µ) converges uniformly to λ(µ) in
probability over compact sets. In Theorem 5.2.1 we imposed the following
condition on λ(µ). We needed there to be a neighborhood of the vector on
which

Pr[1 + λm(Y, µ) > L] = 1

for all λ. To show uniform consistency of λn(µ) towards λ(µ) in a compact set,
M, we will need a similar, but stronger condition. We will assume there exists
some δ > 0 such that, for all µ ∈M,

Pr[1 + λm(Y, µ) > L] = 1

for all λs in an open ball centered at λ(µ) with radius δ. This might seem
like a strict conditions, but, under sufficient smoothness of the function
(λ, µ) 7→ B(λ, µ) defined in Section 5.2 and λ, this does, indeed, hold.

To illustrate how this condition can be confirmed, we will show that it holds
when m(y, µ) = h(y)−µ and h(Y) has support in [a, b]. We will takeM = [a, b],
as showing that the condition holds in this set is sufficient for it to hold in all
compact subsets of [a, b]. Since a ≤ h(Y) ≤ b with probability 1,

1 + λ[h(Y)− µ] > B(λ, µ) =
{

1 + λ(b− µ), λ ≤ 0
1 + λ(a− µ), λ ≥ 0

.

If λ is a continuous function, µ 7→ B[λ(µ), µ] is continuous as well. Furthermore,
B[λ(µ), µ] > 0 for each µ ∈ [a, b]. Hence, there exists a strictly positive number,
L1, such that B[λ(µ), µ] ≥ L1 for each µ ∈ [a, b]. Furthermore, Since the
support of h(Y) is bounded, |h(Y)− µ| ≤ K for some K > 0 with probability 1
and for all µ ∈ [a, b]. Let δ = L1/2K. For every µ ∈ [a, b] and every λ in the
open ball centered at λ(µ) with radius δ, we then have

1 + λ[h(Y)− µ] = 1 + λ(µ)[h(Y)− µ] + [λ− λ(µ)][h(Y)− µ]
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6.1. The remainder term

> L1 − δ ·K

= L1

2
with probability 1.

With the above condition, uniform consistency of λn(µ) towards λ(µ) is not
to hard to prove.

Lemma 6.1.1. LetM be a compact set such that the equation(
E{M(µ)/[1 + λM(µ)]}

Pr[1 + λM(µ) ≤ 0]

)
= 0

has a solution, λ(µ), for each µ ∈ M. Assume further that there exists δ > 0
and L > 0 such that for all (λ, µ) with µ ∈M and |λ(µ)− λ| < δ,

Pr[1 + λM(µ) > L] = 1.

Let λn(µ) be a solution to

0 = Ψn(λ, µ) = 1
n

n∑
i=1

Mi(µ)
1 + λMi(µ)

and assume that, for almost all y, µ 7→ m(y, µ) is a continuous function with

|m(y, µ)| ≤ p1(y)

for all µ ∈M and some p1 satisfying E p1(Y) <∞. Then

sup
µ∈M
|λn(µ)− λ(µ)| Pr→ 0.

Proof. This proof is slight modification of lemma 5.10 in Vaart 1998, p. 47.
We will start by deriving some properties of the functions λ and

Φ(λ, µ) = E
(

M(µ)
1 + λM(µ)

)
.

Fix µ ∈M and some λ ∈ (λ(µ)− δ, λ(µ) + δ). Let xn be a sequence converging
to this λ. Since (λ(µ)− δ, λ(µ) + δ) is a neighborhood of λ, xn will eventually
lie in this set. So, for large enough n and almost all y,∣∣∣∣ m(y, µ)

1 + xnm(y, µ)

∣∣∣∣ ≤ |m(y, µ)|
L

.

This is a function with finite expectation, not depending on λ. Because of this,
Lebesgue’s dominated convergence theorem, see e.g. McDonald and Weiss 2013,
p. 169, can be applied to show

lim
n→∞

Φ(xn, µ) = Φ
(

lim
n→∞

xn, µ
)

= Φ(λ, µ).

This shows that λ 7→ Φ(λ, µ) is continuous in the set (λ(µ) − δ, λ(µ) + δ) for
each fixed µ. Furthermore, for every y and µ,

λ 7→ m(y, µ)
1 + λm(y, µ)
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6. The maximum empirical likelihood estimator

is a strictly decreasing function on

Λµ = { λ ∈ R | Pr[1 + λM(µ) ≤ 0] = 0 } .

Expectation is monotone, so this implies that λ 7→ Φ(λ, µ) is a strictly decreasing
function. Hence,

λ 7→ Φ(λ, µ)

is one-to-one, and λ(µ) is the unique root of the function for each fixed µ.
Combining this with continuity of λ 7→ Φ(λ, µ) on (λ(µ) − δ, λ(µ) + δ) and
Corollary 1.1 in Kumagai 1980, ensures that λ is continuous as a function of µ.

Define the following set

A = { (λ, µ) | µ ∈M and |λ− λ(µ)| ≤ δ/2 } .

This is compact as λ is continuous and compactness is preserved by images of
such functions. We will use this to show

sup
(λ,µ)∈A

|Ψn(λ, µ)−Ψ(λ, µ)| a.s.→ 0. (6.1)

Since A is compact and

(λ, µ) 7→ m(y, µ)
1 + λm(y, µ)

is continuous with probability 1, the uniform law of large numbers (Ferguson
1996, p. 108) ensures (6.1), provided∣∣∣∣ m(y, µ)

1 + λm(y, µ)

∣∣∣∣ ≤ p(y)

for all (λ, µ) ∈ A and some p with finite expectation. For every (λ, µ) ∈ A,∣∣∣∣ m(y, µ)
1 + λm(y, µ)

∣∣∣∣ ≤ m(y, µ)
L

with probability 1. By assumption, |m(y, µ)| is bounded by p1(y) which is
integrable with respect to the probability measure corresponding to F . Hence,

Ψn(λ, µ) a.s→ Ψ(λ, µ)

uniformly in A. Now fix ε ∈ (0, δ/2). Then

Pr
(

sup
µ∈M
|λn(µ)− λ(µ)| < ε

)
≥

Pr
(

sup
µ∈M

Ψn[λ(µ) + ε, µ] < 0 < inf
µ∈M

Ψn[λ(µ)− ε, µ]
)

as

Ψn[λ(µ) + ε, µ] < 0 and Ψn[λ(µ)− ε, µ] > 0
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6.1. The remainder term

is sufficient for λ 7→ Ψn(λ, µ) to have a root between λ(µ)− ε and λ(µ)+ ε. This
follows from continuity of Ψn and the intermediate value theorem. Arguing
as in the beginning of the proof, we notice that λ 7→ Φn(λ, µ) is a strictly
decreasing function for each µ. In particular, it is one-to-one. Because of this,
a zero in the interval [λ(µ)− ε, λ(µ) + ε] must, indeed, be λn(µ).

The uniform convergence proved previously is sufficient for

sup
µ∈M

Ψn[λ(µ) + ε, µ] Pr→ sup
µ∈M

Ψ[λ(µ) + ε, µ]

and

inf
µ∈M

Ψn[λ(µ)− ε, µ] Pr→ inf
µ∈M

Ψ[λ(µ)− ε, µ].

Hence

lim
n→∞

Pr
(

sup
µ∈M
|λn(µ)− λ(µ)| < ε

)
≥

Pr
(

sup
µ∈M

Ψ[λ(µ) + ε, µ] < 0 < inf
µ∈M

Ψ[λ(µ)− ε, µ]
)
.

As was shown before, Ψ is decreasing and continuous in λ for every fixed µ.
Furthermore the function is equal to 0 in λ(µ). SinceM is compact, this ensures
that the right-hand side of the above inequality is equal to 1. Hence,

sup
µ∈M
|λn(µ)− λ(µ)| Pr→ 0.

�

The above result cannot be applied when m(y, µ) = I(y ≤ µ) − q as this
function is not continuous. Direct computation, however, shows that in this
case,

λn(µ) = Fn(µ)− q
q(1− q) . (6.2)

Here Fn denotes the empirical distribution function of the data. This converges
uniformly in probability to

λ(µ) = F (µ)− q
q(1− q) (6.3)

by the Glivenko-Cantelli theorem, see e.g. Vaart 1998, p. 266. Hence,

sup
µ∈M
|λn(µ)− λ(µ)| Pr→ 0.

in this case as well.
Now that we have shown λn(µ) Pr→ λ(µ) uniformly over compact sets, we

can prove that the convergence is of order OPr(1/
√
n).
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6. The maximum empirical likelihood estimator

Lemma 6.1.2. LetM be compact and assume the conditions of Lemma 6.1.1
hold with this set. Furthermore, let λ be continuously differentiable as a function
of µ. If there exists p2 such that

|m(y, µ1)−m(y, µ2)| ≤ p2(y)|µ1 − µ2| (6.4)

for all µ1, µ2 ∈M and

E p1(Y)4,E p1(Y)2p2(Y), E p2(Y)2 <∞,

we have

√
n[λn(µ)− λ(µ)] d→ V (µ)

S(µ) (6.5)

as a process in `∞(M). Here

S(µ) = E
(

M(µ)2

[1 + λ(µ)M(µ)]2

)
is assumed to exists and be finite and non-zero for each µ ∈ M, and V is a
Gaussian process with mean 0 and variance S(µ). In particular, (6.5) implies
that

sup
µ∈M

∣∣√n(λn(µ)− λ(µ))
∣∣ = OPr(1).

Remark 6.1.3. The function λ is continuously differentiable at µ1 if S is non
singular and the map

µ 7→ E
(

M(µ)
1 + λ(µ1)M(µ)

)
is continuously differentiable at µ1. This follows from the implicit function
theorem, see e.g. Lindstrøm 2017, p. 212 or Section 5.4 where the behavior of
λ as a function of µ was discussed in detail.

Proof. This proof is a slight modification of Theorem 5.41 in Vaart 1998, p. 68.
By assumption there exists δ and L such that for all (λ, µ) with |λ−λ(µ)| < δ,

1 + λM(µ) > L with probability 1. Hence,

sup
µ∈M
|λn(µ)− λ(µ)| < δ =⇒ 1 + λn(µ)M(µ) > L for all µ ∈M.

The first event has limiting probability 1 by Lemma 6.1.1. So,

1 + λn(µ)M(µ) > L for all µ ∈M

happens with probability tending to 1. We can therefore assume 1 +
λn(µ)M(µ) > L for all µ ∈ M and show that the result holds under this
assumption.

Using the first order Taylor expansion of λ 7→ Ψn(λ, µ) around λ(µ), we see

0 =Ψn[λn(µ), µ]
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6.1. The remainder term

=Ψn[λ(µ), µ] + [λn(µ)− λ(µ)]∂Ψn

∂λ
[λ(µ), µ]+

+ 1
2[λn(µ)− λ(µ)]2 ∂

2Ψn

∂λ2 [λ(µ)∗, µ]

for some λ(µ)∗ on the line segment between λ(µ) and λn(µ). By the triangle
inequality,∣∣∣∣∂2Ψn

∂λ2 [λ(µ)∗, µ]
∣∣∣∣ =

∣∣∣∣∣ 1n∑
i=1

2Mi(µ)3

[1 + λ(µ)∗Mi(µ)]3

∣∣∣∣∣ ≤ 2
L3 ·

1
n

n∑
i=1
|Mi(µ)|3

for all µ ∈M. Here we have used that all λs on the line segment between λn(µ)
and λ(µ) satisfy the property

|λ− λ(µ)| < δ

and hence also

1 + λM(µ) > L

with probability 1. As m is continuous,M compact and Ep1(Y)3 <∞, with p1
as in Lemma 6.1.1, the uniform law of large numbers ensures that

1
n

n∑
i=1
|Mi(µ)|3

converges in probability uniformly inM to its expected value. In addition,

|m(y, µ)|3 ≤ p1(y)3

for all µ ∈M, so

E |M(µ)|3 ≤ E p1(Y)3,

for all µ ∈ M. The right hand side of this inequality is finite by assumption,
ensuring

sup
µ∈M

E |M(µ)|3 <∞.

This proves

sup
µ∈M

∣∣∣∣∂2Ψn

∂λ2 [λ∗(µ), µ]
∣∣∣∣ = OPr(1). (6.6)

Furthermore, λn(µ) converges uniformly in probability to λ(µ). Hence, (6.6)
implies that the last term in the Taylor expansion is [λn(µ)− λ(µ)]εn with εn
tending to 0 in probability.

Notice further that

∂Ψn

∂λ
[λ(µ), µ] = − 1

n

n∑
i=1

Mi(µ)2

[1 + λ(µ)Mi(µ)]2 .
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6. The maximum empirical likelihood estimator

As µ 7→ m(y, µ) is continuous for almost all y,M compact and∣∣∣∣ m(y, µ)2

1 + λ(µ)m(y, µ)

∣∣∣∣ ≤ |m(y, µ)|2 ≤ p1(y)2,

this converges uniformly in probability to its expected value, −S(µ), by the
uniform law of large numbers.

After manipulating the Taylor expansion as in the proof of 5.41 in Vaart
1998, p. 68 and applying our results, the following holds uniformly inM:

√
n[λn(µ)− λ(µ)] =

√
nΨn[λ(µ), µ]

S(µ) + oPr(1). (6.7)

Here we have used

sup
µ∈M
|S(µ)|−1

<∞.

This follows from the extreme value theorem and assumption of S(µ) 6= 0 for
all µ ∈M, provided S is continuous as a function of µ. It is, and this can be
proved similarly to how continuity of λ 7→ Φ(λ, µ) was shown in the proof of
Lemma 6.1.1. We will leave out the details.

Consider

√
nΨn[λ(µ), µ] = 1√

n

n∑
i=1

Mi(µ)
1 + λ(µ)Mi(µ) .

Some algebraic efforts reveal∣∣∣∣ m(y, µ1)
1 + λ(µ1)m(y, µ1) −

m(y, µ2)
1 + λ(µ2)Tm(y, µ2)

∣∣∣∣ =∣∣∣∣m(y, µ1)−m(y, µ2) +m(y, µ1)m(y, µ2)(λ(µ2)− λ(µ1))
[1 + λ(µ1)m(y, µ1)][1 + λ(µ2)m(y, µ2)]

∣∣∣∣ ≤
1
L2 {|m(y, µ1)−m(y, µ2)|+ |m(y, µ1)m(y, µ2)| · |λ(µ2)− λ(µ1)|}.

By assumption there exists functions of y, p1 and p2, such that

|m(y, µ1)−m(y, µ2)| ≤ p2(y)‖µ1 − µ2‖ and |m(y, µ1)m(y, µ2)| ≤ p1(y)2.

Furthermore, λ is continuously differentiable andM compact, so by the mean
value theorem there exists K <∞ such that

|λ(µ2)− λ(µ1)| ≤ K‖µ1 − µ2‖.

Hence∣∣∣∣ m(y, µ1)
1 + λ(µ1)Tm(y, µ1) −

m(y, µ2)
1 + λ(µ2)Tm(y, µ2)

∣∣∣∣ ≤ 1
L

(
p2(y) +Kp1(y)2)‖µ1 − µ2‖.

By example 19.7 in Vaart 1998, p. 270, this, in combination with compactness
ofM, ensures that the class{

m(y, µ)
1 + λ(µ)m(y, µ)

∣∣∣∣ µ ∈M}
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6.1. The remainder term

is P-Donsker, provided.

E
(
p2(Y) +Kp1(Y)2

L

)
= E p2(Y)2 +K E p2(Y)p1(Y)2 +K2E p1(Y)4

L2 <∞.

By assumption each term in the above expression is finite. Because of this,

√
nΨn(µ) = 1√

n

n∑
i=1

Mi(µ)
1 + λ(µ)Mi(µ)

converges to a Gaussian process, V (µ), in `∞(M) with mean 0 and variance
S(µ). Combining this with (6.7), proves that

√
n[λn(µ)− λ(µ)] d→ V (µ)

S(µ)

as a process in `∞(M). In particular,

sup
µ∈M

∣∣√n[λn(µ)− λ(µ)]
∣∣ = sup

µ∈M

∣∣∣∣V (µ)
S(µ)

∣∣∣∣ = OPr(1).

This follows from the fact that

sup
µ∈M
|S(µ)|−1

<∞,

as shown previously, and

sup
µ∈M
|Vn(µ)| d→ sup

µ∈M
|V (µ)| = OPr(1),

by the continuous mapping theorem. �

As in Lemma 6.1.1, we need m to be continuous to apply Lemma 6.1.2. This
excludes the case of m(Y, µ) = I(Y, µ)− q, but, once again, the conclusion of
Lemma 6.1.2 holds for this estimating function as well. This follows from the
expressions given in (6.2) and (6.3) derived previously in combination with the
Donsker theorem (see Vaart 1998, p. 266).

We have now shown the uniform counterpart to Theorem 5.2.1. What
remains to prove is that Theorem 5.3.1 holds uniformly in M as well. This
amounts to showing that the remainder term in (5.20) tends uniformly to 0 in
probability.

Lemma 6.1.4. Fix a compact setM and assume the conditions of Lemma 6.1.1
and Lemma 6.1.2 hold with this set. Then

sup
µ∈M
|δn(µ)| = oPr(1),

where δn(µ) is the remainder term in (5.20).

Proof. Inspecting the derivations of Theorem 5.3.1, we see that three thing
need to be shown. Firstly, we must prove that εn(µ) = oPr(1) uniformly inM,
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6. The maximum empirical likelihood estimator

with εn(µ) being the remainder term in the Taylor expansion given in (5.16).
Secondly,∣∣∣∣∣ 1n

n∑
i=1

Mi(µ)2

[1 + λn(µ)Mi(µ)]2
− 1
n

n∑
i=1

Mi(µ)2

[1 + λ(µ)Mi(µ)]2

∣∣∣∣∣ = oPr(1)

uniformly inM needs to be shown. Lastly, we have to establish that

1
n

n∑
i=1

Mi(µ)2

[1 + λ(µ)Mi(µ)]2
= S(µ) + oPr(1)

uniformly in µ. The last assessment was shown in the proof of Lemma 6.1.2
and is therefore omitted.

As in the proof of Lemma 6.1.2, we can assume λn(µ) all satisfy

1 + λn(µ)M(µ) > L

as the probability of this event tends to 1. Hence,

|εn(µ)| ≤ 1
L3 |λn(µ)− λ(µ)|3

n∑
i=1
|Mi(µ)|3

uniformly in µ. This can be shown similarly as in the proof of Theorem 5.2.1.
By Lemma 6.1.2

sup
µ∈M
|λn(µ)− λ| = OPr(1/

√
n).

Furthermore,

sup
µ∈M

1
n

n∑
i=1
|Mi(µ)|3 = OPr(1) (6.8)

was shown in the proof of the same result. Hence,

sup
µ∈M
|εn(µ)| = OPr(1/

√
n).

Similarly, we can show∣∣∣∣∣ 1n
n∑
i=1

Mi(µ)2

[1 + λn(µ)Mi(µ)]2 −
1
n

n∑
i=1

Mi(µ)2

[1 + λ(µ)Mi(µ)]2

∣∣∣∣∣ = OPr(1/
√
n)

uniformly in µ by arguing as in the proof of Theorem 5.3.1 and using Lemma 6.1.2
in combinations with (6.8). This is very similar to what was done above, and
the details will therefore be left out. �

Once again the continuity assumption in Lemma 6.1.4 excludes the case of
m(y, µ) = I(y ≤ µ)− q. However, the conclusion can be shown to hold in this
case as well by using (6.2) and (6.3) in combination with the Glivenko-Cantelli
theorem.
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6.2 Consistency

We are now ready to show that the maximum empirical likelihood estimator
goes in probability to the true parameter as the sample size increases. This
estimator will be denoted by µ̂n.

Before we show consistency of µ̂n towards µ0, we will show that the true
parameter is, indeed, the maximizer of

Γ(µ) = −E log[1 + λ(µ)M(µ)].

First notice that

0 = E
(

M(µ)
1 + λ(µ)M(µ)

)
,

implies that

0 = E
(

1 + λ(µ)M(µ)− 1
1 + λ(µ)M(µ)

)
,

which is equivalent to

0 = 1− E
(

1
1 + λ(µ)M(µ)

)
or 1 = E

(
1

1 + λ(µ)M(µ)

)
.

Further manipulation of the expression shows

E
(

1
1 + λ(µ)M(µ)

)
= E exp{− log[1 + λ(µ)M(µ)]}.

Since x 7→ exp(x) is a strictly convex function, Jensen’s inequality guarantees

1 = E exp{− log[1 + λ(µ)M(µ)]}
> exp(E{− log[1 + λ(µ)M(µ)]})
= exp[Γ(µ)],

when λ(µ) 6= 0. This is equivalent to

Γ(µ) < 0,

for all µ such that λ(µ) 6= 0. Furthermore, µ0 is the unique solution to

0 = EM(µ),

and λ(µ) = 0 if and only if

0 = E
(

M(µ)
1 + 0 ·M(µ)

)
= EM(µ).

Hence, λ(µ) = 0 if and only if µ = µ0. Lastly,

Γ(µ0) = E{− log[1 + 0 ·M(µ)]} = 0,

so µ0 is the unique maximizer of Γ.
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6. The maximum empirical likelihood estimator

Theorem 6.2.1. For each n ∈ N let µ̂n denote a maximizer of ELn in a compact
setM such that the conditions of Lemma 6.1.1 and Lemma 6.1.2 hold for this
set. Then

µ̂n
Pr→ µ0,

where µ0 is the unique solution to

EM(µ) = 0.

Proof. We will show that the conditions of Theorem 5.7 in Vaart 1998, p. 45
hold.

First notice that,

1
n

logELn(µ̂n) ≥ 1
n

logELn(µ0)

by definition of µ̂. This proves the last assessment in the theorem.
By the proof of Lemma 6.1.2, Vn(µ) converges to a Gaussian limit process

in `∞(M). In particular, this implies that

1√
n
Vn(µ) Pr→ 0

uniformly in µ. Furthermore,

sup
µ∈M
|S(µ)|−1

<∞

was shown in the proof of Lemma 6.1.2. Hence,

sup
µ∈M

1
n

∣∣Vn(µ)S(µ)−1Vn(µ)
∣∣ = oPr(1).

Furthermore, δn(µ) = oPr(1) uniformly inM by Lemma 6.1.4. So,

sup
µ∈M

∣∣∣∣ 1n logELn(µ)− Γ(µ)
∣∣∣∣ = sup

µ∈M
|Γn(µ)− Γ(µ)|+ oPr(1)

where

Γn(µ) = − 1
n

n∑
i=1

log[1 + λ(µ)M(µ)].

Because of this, it suffices to show that the uniform law of large numbers can
be applied to Γn, for the first condition in the theorem to be satisfied.

By the mean value theorem

|log[1 + λ(µ)m(y, µ)]| = |log[1 + λ(µ)m(y, µ)]− log(1)|

= |λ(µ)m(y, µ)| ·
∣∣∣∣ 1
1 + t(y, µ)λ(µ)m(y, µ)

∣∣∣∣
for some t(y, µ) ∈ [0, 1]. If λ(µ)m(y, µ) ≤ 0,

1 + t(y, µ)λ(µ)m(y, µ) ≥ 1 + λ(µ)m(y, µ) > L,
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where the existence of L is guaranteed by the assumptions of Lemma 6.1.1. If,
on the other hand, λ(µ)m(y, µ) ≥ 0,

1 + t(y, µ)λ(µ)m(y, µ) ≥ 1 + 0 ·m(y, µ) = 1.

In either case

1 + t(y, µ)λ(µ)m(y, µ) ≥ K = min(1, L) > 0.

Because of this,

|log[1 + λ(µ)m(y, µ)]| ≤ |λ(µ)m(y, µ)|
K

≤ |λ(µ)| · |m(y, µ)|
K

.

The function λ is continuous andM is compact. So λ attains its maximum,
C, onM by the extreme value theorem. Furthermore, |m(y, µ)| ≤ p1(y) where
E p1(Y) < ∞ by the assumptions of Lemma 6.1.1. Combining this with the
above shows:

|log[1 + λ(µ)m(y, µ)]| ≤ Cp1(y)
K

.

This is an integrable function with respect to the probability measure on Y that
do not depend on µ. SinceM is compact and µ 7→ λ(µ)m(y, µ) continuous for
almost all y by continuity of both λ and µ 7→ m(y, µ), the uniform law of large
numbers can be applied to get

sup
µ∈M

∣∣∣∣∣− 1
n

n∑
i=1

log[1 + λ(µ)M(µ)]− Γ(µ)

∣∣∣∣∣ Pr→ 0.

By the arguments above, log[1 + λ(µ)m(y, µ)] is bounded by the integrable
function Cp1(y)/K. Since λ and µ 7→ m(y, µ), for almost all fixed y, is
continuous, Lebesgue’s dominated convergence theorem can be applied to show
continuity of Γ. This is similar to what was done in the proof of Lemma 6.1.1
and details will be omitted. Furthermore, µ0 is the unique maximizer of Γ, and
M is compact. Hence,

sup
‖µ−µ0‖≥ε

Γ(µ) < Γ(µ0)

for all ε > 0 by the extreme value theorem. This proves the remaining condition
in theorem 5.7 in Vaart 1998, p. 45 and concludes the proof of Theorem 6.2.1. �

Theorem 6.2.1 does not cover the case of m(y, µ) = I(y ≤ µ) − q. As we
believe this to be an interesting and important estimating function, we will take
the time to prove consistency in this particular case.

Theorem 6.2.2. Let the parameter space be compact and µ̂n a maximizer of
logELn(µ), constructed with the estimating function

m(y, µ) = I(y ≤ µ)− q,

for some q ∈ (0, 1). Furthermore, let F be continuous. Then µ̂n is a consistent
estimator of µ0.
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6. The maximum empirical likelihood estimator

Proof. As remarked after Lemma 6.1.2 and Lemma 6.1.4, the remainder term,
δn(µ), tends uniformly to 0, and

Vn(µ) d→ V (µ)

as a Gaussian process inM. Furthermore,

S(µ) = F (µ)
(

1− q
1 + λ(µ)(1− q)

)2
+ [1− F (µ)]

(
−q

1− λ(µ)q

)2
.

F is continuous by assumption, ensuring continuity of both λ(µ) given in (6.3)
and S. Furthermore S(µ) > 0 for every µ. By compactness of M and the
extreme value theorem, |S(µ)|−1 is uniformly bounded inM, ensuring

sup
µ∈M

∣∣Vn(µ)S(µ)−1Vn(µ)
∣∣ = OPr(1).

Similarly, direct computation shows

Γ(µ) = −F (µ) log[1 + λ(µ)(1− q)]− [1− F (µ)] log[1− λ(µ)q]

which is continuous, and hence satisfies

sup
‖µ−µ0‖≥ε

Γ(µ) < Γ(µ0)

for all ε > 0 by arguments similar to those given in the proof of Theorem 6.2.1.
What remains is to show that

sup
µ∈M
|Γn(µ)− Γ(µ)| Pr→ 0, (6.9)

with Γ defined as

Γ(µ) = −E log{1 + λ(µ)[I(Y ≤ µ)− q]}

and Γn as

Γn(µ) = − 1
n

n∑
i=1

log{1 + λ(µ)[I(Yi ≤ µ)− q]}.

First notice that

Γ(µ) = − log[1 + λ(µ)(1− q)] Pr(Y ≤ µ)− log[1− λ(µ)q] Pr(Y > µ)

and

Γn(µ) =

− log[1 + λ(µ)(1− q)] 1
n

n∑
i=1

I(Yi ≤ µ)− log[1− λ(µ)q] 1
n

n∑
i=1

I(Yi > µ).

The functions

µ 7→ |− log[1 + λ(µ)(1− q)]| and µ 7→ |− log[1− λ(µ)q]|
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6.3. Asymptotic normality

are continuous. Because of this, they attain their maximums, K1 and K2
respectively, onM. Combining this with the above expressions and applying
the triangle inequality shows

|Γn(µ)− Γ(µ)| ≤

K1

∣∣∣∣∣ 1n
n∑
i=1

I(Yi ≤ µ)− Pr(Y ≤ µ)

∣∣∣∣∣+K2

∣∣∣∣∣ 1n
n∑
i=1

I(Yi > µ)− Pr(Y > µ)

∣∣∣∣∣
for all µ ∈M. Both of these terms goes in probability to zero uniformly inM
by the Glivenko-Cantelli theorem. This shows (6.9) and concludes the proof. �

The sample q-quantile always maximizes the empirical likelihood function.
Consistency of this estimator is not exactly a revolutionary discovery, but we
include the proof for the sake of completion and as an example of a situation
where consistency holds even when the conditions of Theorem 6.2.1 do not.
Furthermore, we established the following in the proof of Theorem 6.2.2

sup
µ∈M
|logELn(µ)− Γ(µ)| Pr→ 0.

This will be used in Chapter 8 to show consistency of the maximizer of a hybrid
combination of parametric and empirical likelihood.

6.3 Asymptotic normality

We are now ready to prove asymptotic normality of the maximum empirical
likelihood estimator. To show this, we will first show

√
n-consistency of the

estimator towards the true parameter. Afterwards, we will modify the proof
of theorem 5.23 Vaart 1998, p. 53 to arrive at a normal limit for

√
n(µ̂− µ0).

The theorems in this subsection assumes continuity of the estimating function
at the true parameter. This excludes the case with m(y, µ) = I(y ≤ µ)− q.

Lemma 6.3.1. Let µ̂n, µ0 and M be as in Theorem 6.2.1 and assume the
conditions of Lemma 6.1.1 and Lemma 6.1.2 hold true. Then

√
n(µ̂n − µ0) = OPr(1).

provided Γ admits a second order Taylor expansion at µ0 with nonsingular
Hessian matrix, HΓ(µ0), µ0 is in the interior ofM and

E p1(Y)p2(Y) <∞

where p1 and p2 are as in Lemma 6.1.1 and Lemma 6.1.2 respectively.

Proof. We will use corollary 5.53 in Vaart 1998, p. 77 to show this result.
By the mean value theorem,

|log[1 + λ(µ1)m(y, µ1)]− log[1 + λ(µ2)m(y, µ2)]| =
1

1 + ξ
· |λ(µ1)m(y, µ1)− λ(µ2)m(y, µ2)|,
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6. The maximum empirical likelihood estimator

for some ξ on the line segment between λ(µ1)m(y, µ1) and λ(µ2)m(y, µ2). We
can write ξ as

ξ = tλ(µ1)m(y, µ1) + (1− t)λ(µ2)m(y, µ2)

for some t ∈ [0, 1]. Because of this,

1 + ξ = t[1 + λ(µ1)m(y, µ1)] + (1− t)[1 + λ(µ2)m(y, µ2)]
≥ tL+ (1− t)L
= L.

Hence,

|log[1 + λ(µ1)m(y, µ1)]− log[1 + λ(µ2)m(y, µ2)]| ≤
1
L
· |λ(µ1)m(y, µ1)− λ(µ2)m(y, µ2)|.

Addition and subtraction of λ(µ1)m(y, µ2) reveals

|λ(µ1)m(y, µ1)− λ(µ2)m(y, µ2)| ≤
|λ(µ1)| · |m(y, µ1)−m(y, µ2)|+ |λ(µ1)− λ(µ2)| · |m(y, µ2)|.

By the conditions of Lemma 6.1.1 and Lemma 6.1.2 there exists integrable p1
and p2 such that

|m(y, µ1)−m(y, µ2)| ≤ p2(y)‖µ1 − µ2‖ and |m(y, µ)| ≤ p1(y).

Furthermore, λ is continuous andM compact. So by the extreme value theorem
there exists K2 < ∞ such that |λ(µ)| ≤ K2 for all µ ∈ M. In addition, the
function is continuously differentiable. So by a combination of the mean value
theorem for vector valued functions and the extreme value theorem

|λ(µ1)− λ(µ2)| ≤ K1‖µ1 − µ2‖

for some K1 <∞. Hence,

|log[1 + λ(µ1)m(y, µ1)]− log[1 + λ(µ2)m(y, µ2)]| ≤
1
L

[K2p2(y)‖µ1 − µ2‖+K1‖µ1 − µ2‖p1(y)] ≤
1
L

[K2p2(y) +K1p1(y)]‖µ1 − µ2‖.

Furthermore,

E
(

[K1p2(Y) +K2p2(Y)]2

L2

)
=

K2
1

L2 E p1(Y)2 + K2
2

L2 E p2(Y)2 + K1K2

L2 Ep1(Y)p2(Y).

By the assumptions of Lemma 6.1.2 and Lemma 6.3.1 each summand in the
above expression is finite. This shows that the first assertion of corollary 5.53
in Vaart 1998, p. 77 holds true.
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6.3. Asymptotic normality

By assumption Γ(µ) admits a second-order Taylor expansion at µ0, and as

nΓn(µ) = logELn(µ) + rn(µ)

with

rn(µ) = Vn(µ)S(µ)−1Vn(µ) + δn(µ),

we have

nΓn(µ̂n) ≥ nΓn(µ0) + rn(µ)− rn(µ̂n),

by definition of µ̂n. Since rn is uniformly OPr(1) by Lemma 6.1.4 and the proof
of Lemma 6.1.2, this shows

Γn(µ̂n) ≥ Γn(µ0) +OPr(n−1)

and concludes the proof. �

Now that we know the rate of convergence, we can prove that the maximum
empirical likelihood estimator is asymptotically normally distributed after
proper scaling and centering.

Theorem 6.3.2. Let µ̂n, µ0 and M be as in Theorem 6.2.1 and assume the
conditions of Lemma 6.1.1, Lemma 6.1.2 and Lemma 6.3.1 hold true. Let
µ 7→ m(y, µ) be differentiable at µ0 for almost all y with finite expected value.
Then,

√
n(µ̂− µ0) = −HΓ(µ0)−1λ′(µ0)TVn(0) + oPr(1).

In particular
√
n(µ̂− µ0) d→ N(0,Σ)

with

Σ = HΓ(µ0)−1λ′(µ0)TS(0)λ′(µ0)HΓ(µ0)−1.

Proof. This proof is a slight modification of the proof of theorem 5.23 in Vaart
1998, p. 53.

By the proof of Lemma 6.1.2,∣∣∣∣ m(y, µ1)
1 + λ(µ1)m(y, µ1) −

m(y, µ2)
1 + λ(µ2)m(y, µ2)

∣∣∣∣ ≤ 1
L

[p2(y) +Kp1(y)2]‖µ1 − µ2‖,

and by the assumptions of Lemma 6.1.2,

E
(
p2(y) +Kp1(y)2

L

)2

= 1
L2E p2(Y )2 + K2

L2 E p1(Y )4 + K

L2 p1(Y )p2(Y ) <∞.

In addition,

µ 7→ m(y, µ)
1 + λ(µ)m(y, µ)
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6. The maximum empirical likelihood estimator

is differentiable at µ0 for almost all y by differentiability of µ 7→ m(y, µ) and λ
at this point. Its gradient at µ0 is

ψ(y) = ∂m

∂µ
(y, µ0) + λ′(µ0)Tm(y, µ0)2.

Hence, by theorem 19.31 in Vaart 1998, p. 284,
n∑
i=1

[
Mi(µ0 + s̃n/

√
n)

1 + λ(µ0 + s̃n/
√
n)Mi(µ0 + s̃n/

√
n)
−Mi(µ0)

]
=

1√
n

n∑
i=1

[ψ(Yi)− Eψ(Y)] + oPr(1),

for every sequence s̃n bounded in probability. This can be reformulated as

√
nVn(µ0 + s̃n/

√
n)−

√
nVn(0) = 1√

n

n∑
i=1

[ψ(Yi)− Eψ(Y)] + oPr(1)

or

Vn(µ0 + s̃n/
√
n)− Vn(µ0) = 1

n

n∑
i=1

[ψ(Yi)− Eψ(Y)] + oPr(1).

By the law of large numbers the right hand side converges to 0 in probability,
and hence

Vn(µ0 + s̃n/
√
n) = Vn(µ0) + oPr(1)

for all sequences h̃n bounded in probability. Furthermore, continuity of S, which
was shown in the proof of Lemma 6.3.1, implies that

S(µ0 + s̃n/
√
n) = S(µ0) + oPr(1)

for all sequences s̃n bounded in probability, as

µ0 + s̃n/
√
n

Pr→ µ0.

In particular, this ensures that

Vn(µ0 + s̃n/
√
n)S(µ0 + s̃n/

√
n)−1Vn(µ0 + s̃n/

√
n) = (6.10)

Vn(µ0)S(µ0)−1Vn(µ0) + oPr(1). (6.11)

The result now follows more or less directly from the proof of theorem 5.23
in Vaart 1998, p. 53. Arguing as is done there we arrive at the following
expression:

nΓn(µ0 + s̃n/
√
n) = 1

2 s̃
T
nHΓ(µ0)s̃n + s̃Tnλ′(µ0)TVn(µ0) (6.12)

for all sequences, s̃n, bounded in probability. Here we have used that

∂

∂µ

∣∣∣
µ0

log[1 + λ(µ)m(y, µ)] = λ′(µ0)m(y, µ0) + ∂m/∂µ(y, µ0)λ(µ0)
1 + λ(µ0)Tm(y, µ0)
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6.3. Asymptotic normality

= λ′(µ0)m(y, µ0) + 0
1 + 0 .

for almost all y.
The remainder term, δn(µ), from (5.20) converges in probability to 0

uniformly inM. Combining this with (6.11), shows

logELn(µ0 + s̃n/
√
n) =

nΓn(µ0 + s̃n/
√
n) + Vn(µ0)S(µ0)−1Vn(µ0) + oPr(1).

(6.12) then ensures

logELn(µ0 + s̃n/
√
n) = (6.13)

1
2 s̃
T
nHΓ(µ0)s̃n + s̃Tnλ′(µ0)TVn(µ0) + Vn(µ0)S(µ0)−1Vn(µ0) + oPr(1) (6.14)

for all sequences h̃n bounded in probability. In particular, this holds for the
sequences

ŝn =
√
n(µ̂− µ0) and s∗n = −HΓ(µ0)−1λ′(µ0)TVn(µ0).

The vector µ̂n maximizes logELn(µ), and hence

1
2 ŝ
T
nHΓ(µ0)̂sn + ŝTnλ′(µ0)TVn(µ0) + Vn(µ0)S(µ0)−1Vn(µ0) + oPr(1) ≥

1
2(s∗n)THΓ(µ0)s∗n + (s∗n)Tλ′(µ0)TVn(µ0) + Vn(µ0)S(µ0)−1Vn(µ0) + oPr(1).

by (6.14). Manipulating the above expression, shows

1
2 (̂sn − s∗n)TΓ(µ0)(̂sn − s∗n) + oPr(1) ≥ 0. (6.15)

By the arguments preceding Theorem 6.2.1, µ0 is the maximizer of Γ. As µ0 is
in the interior ofM, this maximum is a local maximum. This implies that the
eigenvalues of HΓ(µ0) are all strictly negative. The only way for (6.15) to hold
asymptotically is therefore if

ŝn = s∗n + oPr(1).

This concludes the proof. �

The limit distribution proved in the previous theorem is not particularly
informative as it involves the derivative of the, in general, unknown function
λ. We will therefore present a corollary where we provide alternative
characterizations of certain quantities.

Corollary 6.3.3. Assume the conditions of Theorem 6.3.2 hold true. Then
√
n(µ̂− µ0) = −HΓ(µ0)−1ξT0 S(0)Vn(0) + oPr(1). (6.16)

where

ξ0 = ∂

∂µ

∣∣∣
µ0
EM(µ).
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6. The maximum empirical likelihood estimator

If Leibniz integral theorem can be applied twice to Γ, this simplifies to
√
n(µ̂− µ0) = −

(
ξT0 S(µ0)ξ0

)−1
ξ0S(µ0)Vn(0) + oPr(1), (6.17)

ensuring the following limit distribution:
√
n(µ̂− µ0) d→ N(0,Σ)

with

Σ =
(
ξ0S(µ0)−1ξ0

)−1
. (6.18)

Remark 6.3.4. Suppose λ is twice continuously differentiable and there is an
open subset U of M on which µ 7→ m(y, µ) is twice differentiable. Assume
further that every first and second order partial derivative of µ 7→ m(y, µ) is
bounded by some integrable function on U , not depending on µ. It can then
be shown that the conditions of both applications of Leibniz integral theorem
are satisfied. This can be achieved by computing derivatives and arguing as we
have done multiple times in this section. Details are omitted.

Proof. Application of the implicit function theorem, see e.g. Lindstrøm 2017, p.
212, shows

λ′(µ0) = S(µ0)−1ξ0.

This is enough for (6.16).
For (6.17), notice that

∂

∂µ
log[1 + λ(µ)M(µ)] = M ′(µ)λ(µ) + λ′(µ)M(µ)

1 + λ(µ)M(µ) .

So the hessian matrix of log(1 + λ(µ)M(λ(µ))) is given by

H(µ) = ∂

∂µ

M ′(µ)Tλ(µ) + λ′(µ)TM(µ)
1 + λ(µ)M(µ) .

Using the standard rules of matrix calculus and the fact that λ(µ0) = 0, we
arrive at the following expression

H(µ0) =Hλ(µ0)M(µ0) +M ′(µ0)Tλ′(µ0) + λ′(µ0)TM ′(µ0)
− λ′(µ0)TM(µ0)2λ′(µ0).

Taking the expected value of the above equation and entering in λ′(µ0) =
S(µ0)−1ξ0, EM(µ0) = 0, EM(µ0)2 = S(µ0) and EM ′(µ0) = ξ0, results in

EH(µ0) = 0 + ξT0 S
−1ξ0 + ξT0 S

−1ξ0 − ξ0S−1SS−1ξ0 = ξT0 S
−1ξ0.

By assumption

HΓ(µ0) = EH(µ0).

So,

HΓ(µ0) = ξT0 S
−1ξ0,
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6.3. Asymptotic normality

showing (6.17) and (6.18).
In the above we have used

ξ0 = ∂

∂µ

∣∣∣
µ0
EM(µ) = EM ′(µ0). (6.19)

The condition (6.4) ensures that the derivative of µ 7→ m(y, µ) is bounded by
p2. This has finite expectation, and hence (6.19) follows from Leibniz integral
theorem. �

As mentioned before, asymptotic normality of the maximum empirical
likelihood estimator is not a new discovery. The first, and most famous, article
establishing a normal limit of

√
n(µ̂− µ0)

is Qin and Lawless 1994. In this article it is shown that
√
n(µ̂− µ0) d→ N(0,Σ0)

where

Σ0 = EM ′(µ0)TEM(µ0)2EM ′(µ0). (6.20)

In the proof of Theorem 6.3.2 we showed

ξ0 = ∂

∂µ

∣∣∣
µ0
EM(µ) = EM ′(µ0).

Hence, Σ given in (6.18) is equal to Σ0 from (6.20). Because of this, the
conclusion of Qin and Lawless 1994s result agrees with ours.

As noted at the beginning of this chapter, a solution to the equation

0 = 1
n

∑
i=1

Mi(µ) (6.21)

will always maximize the empirical likelihood function. The maximum empirical
likelihood estimator is therefore also a Z-estimator in many situations. Such
estimators are both consistent for the solution to

EM(µ) = 0

and asymptotically normal, after proper scaling and centering. Again we refer
to section 3.2 in Huber 2009 for the relevant definitions and theorems. If we use
this approach to find the limit distribution of the maximum empirical likelihood
estimator, we get

√
n(µ̂n − µ0) d→ N(0,Σ0)

with Σ0 as in (6.20). Hence, Theorem 6.3.2 is in agreement with the results we
get using asymptotic properties of Z-estimators.

That being said, one thing distinguishes the results of this chapter from
both general theory concerning solutions to (6.21) and theorems derived by
Qin and Lawless 1994. We have utilized an alternative characterization of the
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6. The maximum empirical likelihood estimator

empirical likelihood function and showed that maximization of it is very similar
to an M-estimation problem. This alternative way of looking at the empirical
likelihood function allows us to work with hybrid combinations of ELn with
other quantities. In the upcoming part of the thesis we will use the empirical
likelihood function to robustify the, perhaps, most famous class of M-estimators:
maximum likelihood estimators. The theorems from this chapter will be crucial
in Chapter 8 when neither the result of Qin and Lawless 1994 nor general theory
concerning solutions to (6.21) suffice.
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Hybrid Likelihood
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CHAPTER 7

Under model conditions

Let Y1, . . . ,Yn be i.i.d. random variables following some unknown distribution.
Assume we want to fit a family, indexed by a parameter θ ∈ Rp, to these
variables. A standard way of doing this, is to estimate θ by the maximizer of the
likelihood function. When the parametric model is specified correctly, maximum
likelihood estimates are both consistent and has a limiting distribution with
variance attaining the Cramér-Rao lower bound. Hence, this technique is a good
choice when the true density is a member of the parametric family. There is,
however, no guarantee that the method works well when this assumption does
not hold true. Furthermore, there might be situations where robust estimation
of certain parameters are more important than the overall model fit. In such
cases, we might want to pay special attention to these variables and ensure
that their estimates are extra robust. In this part of the thesis we will discuss
one particular way of achieving this. The method uses the hybrid likelihood
function, combining parametric and empirical likelihoods.

The hybrid likelihood function was introduced in Hjort, I. McKeague, and
Van Keilegom 2018, and in this chapter will summarize and discuss the results
and definitions given there. At the end of the chapter, we will formulate and
prove a profiling result for the hybrid likelihood function. We will also provide
some examples, illustrating how the theory can be applied. Among other things,
we will take a second look at the Correlation of War data set from Section 4.3
and see if the added strength from a parametric model can strengthen our
results.

7.1 The definition

Before we can properly define the hybrid likelihood function, we need to
introduce some concepts and notation. Let Y1,Y2, . . . ,Yn ∈ Rd be i.i.d. random
variables following some unknown distribution with density function, f . Assume
we wish to fit some parametric family,

F = { fθ | θ ∈ Θ } ,

to this data, but that robust estimation of certain parameters, µ(f) ∈ Rq, are
of extra importance. We will call these control parameters, and pay special
attention to them when fitting the parametric model. We are not necessarily
interested in estimating these control parameters themselves, but we want to
estimate θ in a way ensuring that the parametric estimator of µ is a robust
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7.1. The definition

one. In mathematical notation, this means seeking θ̂ such that µ(fθ̂) is a robust
estimate of µ(f).

We will assume the control parameters can be characterized with the
estimating equation

Em(Y, µ) = 0,

for some estimating function, m : Rd+q → Rq, and Y ∼ f . Suppose further that
for each fixed θ ∈ Θ, there is a corresponding µ(θ) ∈ Rq such that

Em[Y, µ(θ)] = 0, (7.1)

when Y ∼ fθ and m is as before.
To ensure robust estimates of the control parameters, we will use the

empirical likelihood function,

ELn(µ) = max
{

n∏
i=1

nwi

∣∣∣∣∣
n∑
i=1

wim (Yi, µ) = 0, wi ≥ 0,
n∑
i=1

wi = 1
}
. (7.2)

Estimating θ with θ̂ such that the empirical likelihood function, evaluated at
µ(θ̂) is large, will ensure that µ(θ̂) is a robust estimate of the control parameter.
This follows from the arguments and theory given in the previous part of the
thesis. In every other aspect, however, there is no guarantee that fθ̂ will be a
good estimate of the true density. Another, and popular, way of estimating θ is
to maximize the parametric likelihood function,

Ln(θ) =
n∏
i=1

fθ(Yi),

and in this part of the thesis, we will use the parametric likelihood function to
ensure a good overall model fit.

We will combine the ideas from the previous paragraph to fit parametric
families, while taking both overall model fit and robust estimation of the control
parameters into account. This will be done by estimating θ in a way ensuring
that both the parametric and empirical likelihood function, evaluated at the
corresponding values, are large. We will combine the maps to form what we call
the hybrid likelihood function to achieve this. The ensuing definition formalizes
the idea.

Definition 7.1.1 (Hjort, I. McKeague, and Van Keilegom 2018). Let
Y1,Y2, . . . ,Yn ∈ Rd be i.i.d. random variables, θ ∈ Rp and fθ, for θ ∈ Θ, a
parametric family we wish to fit to the data. With control parameters µ(θ) ∈ Rq
characterized by (7.1), the hybrid likelihood function is defined as

Hn(θ) = Ln(θ)1−aELn[µ(θ)]a,

where a ∈ [0, 1) is a balance parameter, Ln(θ) =
∏n
i=1 fθ(Yi) is the parametric

likelihood of the data and ELn[µ(θ)] is as in (7.2).

The maximizer of this function is called the maximum hybrid likelihood
estimator and will be denoted by θ̂hl in this thesis.
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7. Under model conditions

The logarithm is an increasing function. Because of this, maximizing Hn(θ)
is equivalent to maximizing hn(θ) = logHn(θ). So,

θ̂hl = argmax
θ∈Θ

hn(θ) = argmax
θ∈Θ

{ a `n(θ) + (1− a) logELn[µ(θ)] } . (7.3)

Here `n is the log-likelihood. From (7.3) it is clear that θ̂hl is the maximizer of a
convex combination of the log-likelihood function and logarithm of the empirical
likelihood function, with the balance parameter deciding how much weight
should be put on each term. For small values of a, `n(θ) will be the dominant
term, resulting in θ̂hl being close to the maximum likelihood estimator of θ.
With larger values of the balance parameter, logELn(µ(θ)) will dominate, and
θ̂hl will be close to a value of θ such that µ(θ) equals the maximum empirical
likelihood estimator. For most values of a, however, θ̂hl will be a trade-off
between the two, and fθ̂hl

will be a good overall parametric fit and µ(θ̂hl) a
robust estimator of the control parameters.

Before we continue, we want to comment quickly on how to compute
ELn[µ(θ)]. Although the empirical likelihood function is a function of the
control parameters only, ELn[µ(θ)] is a function of θ. The value is computed
by first finding µ(θ) such that (7.1) holds. ELn[µ(θ)] can then be calculated as
explained in Section 2.2 using (7.2) with µ = µ(θ). To illustrate, let F be the
family of Weibull(λ, k) densities,

fλ,k(y) = kλ−kyk−1 exp
(
−λ−kyk

)
for y, λ, k > 0,

and the control parameter the third quartile. In this example, θ = (λ, k)T .
Furthermore, µ(θ) = λ(log 4) 1

k , as this is the third quartile in a Weibull(λ, k)
distribution. Lastly, we would use m(y, µ) = I(y ≤ µ)− 0.75 as this results in
an estimating equation characterizing the third quartile.

7.2 The main results

The definition and concepts from the previous section are less useful if we know
nothing about the distribution of hn(θ) or θ̂hl. Luckily, both these quantities
have large sample distributions after proper scaling and centering. This is stated
and proved in Hjort, I. McKeague, and Van Keilegom 2018, and in this section
we will present the main results from the paper.

We start with some notation and minor observations. As before, we will let
Y1, . . . ,Yn be i.i.d. random variables, following some distribution with density
f , and

F = { fθ | θ ∈ Θ ⊆ Rp }

the parametric family we wish to fit to these variables. In addition, we will
assume the control parameters can be characterized with the estimating equation

Em(Y, µ) = 0

for some m : Rd+q → Rq.
In this section, we will assume f = fθ0 for some θ0 ∈ Θ. In this case, the

solution to (7.1) is µ(θ0). Furthermore, for Y ∼ fθ0 , Eu(Y, θ0) = 0, where

u(y, θ) = ∂

∂θ
log fθ(y)T
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is the score function. By the central limit theorem,(
1√
n

∑n
i=1 u(Yi, θ0)

1√
n

∑n
i=1m[Yi, µ(θ0)]

)
=
√
n

(
1
n

n∑
i=1

(
u(Yi, θ0)

m[Yi, µ(θ0)]

)
−
(

0
0

))
d→
(
U
V

)
where(

U
V

)
∼ Np+q (0,Σ) with Σ = Var

(
u(Y, θ0)

m[Y, µ(θ0)]

)
=
(
J C
CT W

)
. (7.4)

Since we have assumed that f is, indeed, equal to fθ0 ,

J = Varu(Y, θ0) = −E
(

∂2

∂θ∂θT

∣∣∣
θ0

log fθ(Y)
)
,

the Fisher matrix. Furthermore C = Cov[u(Y, θ0),m(Y, θ0)] and W =
Varm(Y, θ0).

Assume Σ is positive definite and define the following process on Rp

An(s) = hn

(
θ0 + s√

n

)
− hn(θ0).

The main result of section 2 in Hjort, I. McKeague, and Van Keilegom 2018
involves convergence of An to a process, A, in the normed space `∞(K) for
arbitrary compact sets, K. To present the theory from Hjort, I. McKeague,
and Van Keilegom 2018, we will therefore start by going through the most
important conditions needed for An

d→ A in `∞(K).
Firstly, we need to make some assumptions about the behavior of m. Let

Vn be defined as

Vn(s) = 1√
n

n∑
i=1

m

[
Yi, µ

(
θ0 + s√

n

)]
.

We will need this quantity to be more or less linear for large values of n. In
Hjort, I. McKeague, and Van Keilegom 2018 this is achieved by assuming that
over compact sets, K,

sup
s∈K
||Vn (s)− Vn (0)− ξns||

Pr→ 0, (7.5)

for some q × p-matrix, ξn, going in probability to some q × p-matrix, ξ0. As
explained in Hjort, I. McKeague, and Van Keilegom 2018, p. 2396, this holds
with

ξn = n−1
n∑
i=1

∂m

∂θ
[Yi, µ(θ0)] and ξ0 = E

(
∂m

∂θ
[Y, µ (θ0)]

)
if m is sufficiently smooth in θ. For quantiles, (7.5) holds with

ξn = ξ0 = fθ0 [µ(θ0)]∇µ(θ0).
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7. Under model conditions

Before stating the main result of section 2 in Hjort, I. McKeague, and
Van Keilegom 2018, we need to define three quantities:

U∗ = (1− a)U − aξT0 W−1V, (7.6)
J∗ = (1− a)J + aξT0 W

−1ξT0 and (7.7)
K∗ = (1− a)2J + a2ξT0 W

−1ξ0 − a(1− a)
(
CW−1ξ0 + ξT0 W

−1CT
)
. (7.8)

U∗, J∗ and K∗ play similar roles in hybrid likelihood theory as U , J and

K = Varu(Y, θ0)

do in maximum likelihood theory. This should be evident from the following
theorem.

Theorem 7.2.1 (Hjort, I. McKeague, and Van Keilegom 2018). Under the
conditions stated above, as well as additional smoothness conditions on log fθ
and ELn(θ) given in Hjort, I. McKeague, and Van Keilegom 2018, An converges
in distribution to

A(s) = sTU∗ − 1
2s

TJ∗s

in the space `∞(K), equipped with the uniform topology, for each compact subset
K of Rp.

Theorem 7.2.1 ensures, not only pointwise convergence, but convergence of
An to A as stochastic processes in `∞(K). We will use Theorem 7.2.1 when
working with the profile hybrid likelihood function in the next section, but the
result also has the following corollary.

Corollary 7.2.2 (Hjort, I. McKeague, and Van Keilegom 2018). Under the
conditions stated in Hjort, I. McKeague, and Van Keilegom 2018, p. 11 the
follwing three properties hold

(1) θ̂hl is consistent for θ0.

(2)
√
n
(
θ̂hl − θ0

)
d→ (J∗)−1U∗ ∼ Np

(
0, (J∗)−1K∗(J∗)−1)

(3) 2
(
hn(θ̂hl)− hn(θ0)

)
d→ (U∗)T (J∗)−1U∗.

This result is very similar to corresponding versions in traditional maximum
likelihood theory, see e.g. Appendix A.5 of Schweder and Hjort 2016, p. 27.

7.3 Choosing the balance parameter

When fitting a model to data using maximum hybrid likelihood, we need to
decide what control and balance parameter to use. The hybrid likelihood
machinery is applied only when we want model robust estimates of the control
parameter. What value to choose will depend on what we want to infer from
our data and is highly problem specific. Constructing a general procedure for
choosing the control parameter, is therefore not something that neither can,
nor should, be done. The balance parameter, however, is a tuning parameter
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that ought be set to give the best trade-off between robustness and efficiency.
The optimal value of a will depend on how well the parametric model fits to
the data and how well relevant quantities are estimated. In this section we will
present a general way of choosing a when the model is specified correctly. As in
the previous section the ideas presented here are credited to Hjort, I. McKeague,
and Van Keilegom 2018. We therefore refer to this paper for further reading
and discussion.

Maximum hybrid likelihood is used in cases where estimation of the control
parameter is of extra importance. Because of this, we should select an a
resulting in a good estimate of µ. A natural way of doing this is to choose
balance parameter such that the mean squared error of the resulting maximum
hybrid likelihood estimate of the control parameter is small. Provided the
necessary regularity conditions, the maximum likelihood estimate of the control
parameter is unbiased and its variance attains the Cramer-Rao lower bound
as the sample size goes to infinity. Because of this, minimizing the asymptotic
mean squared error would always result in a choice of a = 0, when the model
is specified correctly. That being said, we use the hybrid likelihood machinery
because we are willing to give up on a certain amount of efficiency, in favor
of extra robust estimates of µ. To choose the balance parameter, we should
therefore start by deciding just how much we are willing to give up in terms of
efficiency. Afterwards, the largest value of a resulting in an estimator of µ with
variance less than this threshold can be chosen. The following scheme describes
this procedure in more detail:

(1) Decide on a focus parameter, ψ, such that this has the value g(θ) in the
parametric model and g : Rp → R is a differentiable function.

(2) Decide on an acceptable increase in variance.

(3) For each value of a in a grid of points between 0 and 1, estimate the
asymptotic variance of g(θ̂hl) with the formula

κ2
a = ∇g(θ̂hl)T (J∗)−1K∗(J∗)−1∇g(θ̂hl)

n
.

(4) Choose the largest value of a for which κ̂a is less than the threshold set
in (2).

To generalize the procedure as much as possible, we have allowed for all
focus parameters in (1). In practice, however, the most natural choice will often
be the control parameter. In step (2) a general way of setting a treshold is
to use relative increase in variance. Accepting an increase of 5% in standard
deviation from the maximum likelihood estimator of ψ, would for example result
in confidence intervals that are 10% stretched. Step (4) would then involve
computing κa/κ0 for each a and choosing a balance parameter for which this
quantity is no larger than 1.05.

The procedure presented in this section attempts to choose a such that the
limiting mean squared error has certain desirable properties. In some situations,
however, other loss functions might be of interest. Prediction error or absolute
loss are two examples of functions that are important in certain applications.
The procedure above can in many cases be modified to such situations.
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Methods for risk estimation, like cross validation or bootstrap are, of course,
also options when choosing what balance parameter to use. Such methods are,
however, computer-intensive as they require multiple models to be fit. Using
the procedure presented here, we need only fit as many models as the number of
balance parameters we wish to consider. This significantly reduces computation
time, and can therefore be desirable in many situations.

We will use this procedure to choose the balance parameter in Section 7.5. In
Chapter 8 we will consider the situation where the true underlying distribution
is not necessarily a member of the parametric family fit to the data. In such
cases, the arguments concerning limiting efficiency and unbiasedness from this
section does not hold true. Because of this, more complicated procedures
than the ones presented in this section are needed. This will be the topic for
Chapter 9.

7.4 Profile hybrid likelihood

As explained in Chapter 3, we are in often interested in a focus parameter,
ψ(θ), rather than the full parameter vector, θ. In standard maximum likelihood
theory we have the concept of profile likelihoods and Wilks theorem to help
in such situations. In this section, we will present analogous definitions and
results for the hybrid likelihood function.

We start by defining the profile hybrid likelihood function. This is done
similarly as in standard maximum likelihood theory.

Definition 7.4.1 (Profile hybrid likelihood). Let hn(θ) be the logarithm of the
hybrid likelihood function. For a focus parameter ψ = g(θ), we define the profile
hybrid likelihood function, hn,prof (ψ), in the following way

hn,prof (ψ) = max
g(θ)=ψ

hn(θ). (7.9)

The profile likelihood function is used frequently in maximum likelihood
theory. The reason for this is that the deviance can be constructed based on
this quantity. Under certain conditions, this has a known limit distribution.
We can therefore use the profile likelihood function to make inference about ψ.
The following theorem allows us to use Definition 7.4.1 in the same way.

Theorem 7.4.2. [Hjort, I. McKeague, and Van Keilegom 2018, Appendix S.6] As
before let hn(θ) be the logarithm of the hybrid likelihood function. Furthermore
assume g : Rp → R is a map for which the second order partial derivatives are
all continuous and the focus parameter is given by ψ = g(θ).

Let Dn denote the following quantity

Dn(ψ) = 2
(
hn(θ̂hl)− hn,prof (ψ)

)
, (7.10)

ψ0 = g(θ0), θ0 be the true value of θ and U∗, J∗ and K∗ be as defined in
Section 7.2. Assume the conditions of Theorem 7.2.1 and Corollary 7.2.2 hold
true. Then

κ ·Dn(ψ0) d→ χ2
1
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7.4. Profile hybrid likelihood

where

κ = bT (J∗)−1b

bT (J∗)−1K∗(J∗)−1b
. (7.11)

and b denotes the gradient of g at θ0.

The name Dn is chosen to emphasize that this quantity is the hybrid
counterpart to the deviance function used in maximum likelihood theory. With
this formulation, the similarity between Theorem 7.4.2 and Wilks theorem is
clear. See Theorem 2.4 in Schweder and Hjort 2016, p. 35 for a statement of
this result within and appendix A.5 in the same book for a statement of the
result outside of model conditions.

Theorem 7.4.2 is stated without proof in Hjort, I. McKeague, and Van
Keilegom 2018. We will now prove the result using a slight modification of the
arguments given in Remark 2.5 in Schweder and Hjort 2016, pp. 36–37.

Proof. We will assume g(θ) = bT θ. The result can be extended to hold for all g
with continuous second order partial derivatives by arguing as in the proof of
Theorem 3.0.5

Let K be the compact set

K = { s ∈ Rp | ‖s‖ ≤M } ,

for some M > 0 and

T =
{
bT s

∣∣ s ∈ K } .
Notice that T is the image of K under s 7→ bT s. This is a continuous map, and
compactness is preserved by images of such functions. Hence, T is a compact
set.

Now let f : `∞(K)→ `∞(T ) be the map

f(h)(t) = max
bT s=t

h(s).

This is a continuous function. Since An
d→ A in `∞(K) by Theorem 7.2.1, the

continuous mapping theorem ensures En
d→ E in `∞(T ), where

En(t) = f(An)(t) = max
bT s=t

An(s) and E(t) = f(A)(t) = max
bT s=t

A(s).

Furthermore, h 7→ h− h(0) is a continuous operator on `∞(T ). Hence,

Bn = En − En(0) d→ E − E(0) = B

in `∞(T ) by the continuous mapping theorem. Combining this with the fact
that h 7→ max

t∈T
h is continuous as a function from `∞(T ) into R, shows

max
t∈T

Bn(t) d→ max
t∈T

B(t),

as random variables in R.
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In the above, the compact set K was arbitrary. So, using similar arguments
as in the proof of Theorem 3.0.5, we can show that

max
t∈R

Bn(t) d→ max
t∈R

B(t)

when the maximizers of Bn are stochastically bounded. Notice that,

Bn(t) = max
bT s=t

An(s)− max
bT s=0

An(s) = hn,prof

(
ψ0 + t√

n

)
− hn,prof (ψ0).

Since hn,prof (ψ) is maximized for ψ = bT θ̂hl, the maximizer of Bn in R is

bT
√
n
(
θ̂hl − θ0

)
.

Furthermore,
√
n
(
θ̂hl − θ0

)
is stochastically bounded by Corollary 7.2.2, so

bT
√
n
(
θ̂hl − θ0

)
= OPr(1).

Hence,

max
t∈R

Bn(t) d→ max
t∈R

B(t) (7.12)

by the previous argument.
Theorem 7.4.2 follows more or less directly from this. Since

Bn(t) = hn,prof

(
ψ0 + t√

n

)
− hn,prof (ψ0),

and hn,prof (ψ) is maximized for ψ = bT θ̂hl,

max
t∈R

Bn(t) = hn,prof

(
bT θ̂hl

)
− hn,prof (ψ0)

= hn

(
θ̂hl

)
− hn,prof (ψ0)

= 1
2Dn(ψ0).

Combining all of this, shows

Dn(ψ0) = 2 ·max
t∈R

Bn(t) d→ 2 ·max
t∈R

B(t).

Computing the limit is all that remains to complete the argument. Notice
first that

2 ·max
t∈R

B(t) = 2 ·max
t∈R

max
bT s=t

A(s)− 2 · max
bT s=0

A(s).

A is a quadratic function, so its maximum over the set{
s ∈ Rp

∣∣ bT s = t
}
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can be found using the method of Lagrange multipliers. The solution is given
by

max
bT s=t

A(s) = 1
2U
∗(J∗)−1U∗ − 1

2 ·
(
t− bT (J∗)−1U∗

)2
bT (J∗)−1b

.

The second term is always non-positive, so max
bT s=t

A(s) is at its largest when this
is equal to zero. Hence

max
t

max
bT s=t

A(s) = max
bT s=bT (J∗)−1U∗)

A(s) = 1
2U
∗(J∗)−1U∗.

Furthermore,

max
bT s=0

An(s) = 1
2U
∗(J∗)−1U∗ − 1

2 ·
(
bT (J∗)−1U∗

)2
bT (J∗)−1b

.

Hence,

2 ·max
t∈R

B(t) = U∗(J∗)−1U∗ − U∗(J∗)−1U∗ +
(
bT (J∗)−1U∗

)2
bT (J∗)−1b

=
(
bT (J∗)−1U∗

)2
bT (J∗)−1b

.

We have now shown

Dn(ψ) d→
(
bT (J∗)−1U∗

)2
bT (J∗)−1b

.

Since

Var
(
bT (J∗)−1U∗

)
= bT (J∗)−1K∗(J∗)−1b

and U∗ ∼ N (0,K∗),(
bT (J∗)−1U∗

)2
bT (J∗)−1b

∼ bT (J∗)−1K∗(J∗)−1b

bT (J∗)−1b
· χ2

1.

Therefore,

Dn(ψ0) d→ bT (J∗)−1K∗(J∗)−1b

bT (J∗)−1b
· χ2

1,

or equivalently

κ ·Dn(ψ0) d→ χ2
1,

with κ defined as in (7.11). �

7.5 Examples

We will now illustrate how the theorems and definitions developed in this
chapter can be used to make inference. First, we will consider two examples
with simulated data. Afterwards we will go back to Section 4.3 and investigate
whether a hybrid approach can strengthen our results regarding the median
number of battle deaths.
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The third quartile in a Weibull distribution

We will start by working with a simulated data set of 100 i.i.d. variables
following a Weibull distribution with shape parameter 2 and scale parameter
15. The results from the previous sections will be used to make inference about
the third quartile in the distribution of the data.

The density in a Weibull(λ, k) distribution is

fλ,k(y) = kλ−kyk−1 exp
(
−λ−kyk

)
.

So the log-density is given by

fλ,k(y) = log k − k log λ+ (k − 1) log y − λ−kyk,

which results in a log-likelihood on the form

`n(θ, k) = n log k − nk log λ+ (k − 1)
n∑
i=1

log yi − λ−k
n∑
i=1

yki .

The maximizer of this function has no closed form expression, but can be
found numerically. For our simulated data set, the result was (λ̂ml, k̂ml) ≈
(2.117, 15.557).

The maximum likelihood estimate for the third quartile is

λ̂ml(log 4)1/k̂ml ≈ 18.153

as

g(λ, k) = λ[− log(1− q)]1/k

is the q-quantile in a Weibull(λ, k)-distribution. The empirical 0.75-quantile of
the data is 17.830 which is closer to the true value: 17.661. In this example, we
will use the hybrid likelihood function to control for this quantity in an attempt
to decrease the bias of the estimate of the third quartile. To achieve this, we
will use the control parameter µ(λ, k) = λ(log 4)1/k and estimating function
m(y, µ) = I(Y ≤ µ)− 0.75. Since the data really is Weibull(λ, k)-distributed,

Em[Y, µ(λ0, k0)] = Pr
(
Y ≤ λ0(log 4)1/k0

)
− q = 0,

for the true values, λ0 and k0, of λ and k and Y ∼Weibull(λ0, k0). Furthermore,
(7.5) is satisfied with

ξn = ξ0 = fλ0,k0 [µ(λ0, k0)] · ∇µ(λ0, k0).

This was explained in the previous chapter, right before the statement of
Theorem 7.2.1. For additional arguments, see Stute 1982 or argue similarly as
in example 19.29 in Vaart 1998, p. 283.

Before we can construct the hybrid likelihood function, we need to choose
what balance parameter to use. We will do this as explained in Section 7.3,
choosing a in such a way that the variance of the maximum hybrid likelihood
estimate of the third quartile is no more than 10% greater than that of the
maximum likelihood estimate. Confidence intervals for µ, obtained with

94



7.5. Examples

Corollary 7.2.2 and the delta method, will then be 20% wider than the
corresponding ones obtained with maximum likelihood. After implementing the
procedure of Section 7.3 for our data set, we end up with the value a = 0.68.

We can now construct confidence curves and intervals for focus parameters
ψ = g(λ, k) in two ways. The first approach is to use the normal approximation
in Corollary 7.2.2 and the delta method. This results in symmetric confidence
intervals centered around the maximum hybrid likelihood estimate. Another
approach is to use Theorem 7.4.2. In the following we will utilize both methods
to make inference about the third quartile.

We start with the normal approximation. By Corollary 7.2.2,
√
n
(
θ̂hl − θ0

)
d→ N

[
0, (J∗)−1K∗(J∗)−1], (7.13)

where θ̂hl is the maximum hybrid likelihood estimator and θ0 the true value
of (λ, k). The matrices J∗ and K∗ are as defined in Section 7.2. The true
value of the third quartile is given by g(θ0) as the data really follows a Weibull
distribution.

Applying the delta method to (7.13) shows
√
n
(
g(θ̂hl)− g(θ0)

)
d→ ∇g(θ0)N

(
0, (J∗)−1K∗(J∗)−1).

Because of this,

g(θ̂hl)
d
≈ N

(
g(θ0), 1

n
∇g(θ0)T (J∗)−1K∗(J∗)−1∇g(θ0)

)
.

We can use this approximate distribution to construct confidence intervals and
curves for the third quartile. In this example, we will only present the confidence
curve as it gives a visual summary of our results and confidence intervals of all
levels can be read off it. With

τ2 = 1
n
∇g(θ0)T (J∗)−1K∗(J∗)−1∇g(θ0)

the confidence curve is given by

cc1(µ) =

∣∣∣∣∣1− 2Φ
(
g(θ̂hl)− g(θ0)

τ

)∣∣∣∣∣,
where Ψ is the cumulative distribution function in the standard normal
distribution. See section 3.4 in Schweder and Hjort 2016 for more details.
The matrices J∗ and K∗, as well as the gradient of g at θ0, can be estimated
by their canonical estimators as explained in Hjort, I. McKeague, and Van
Keilegom 2018. All of this was done for our simulated data set, and the resulting
approximate confidence curve can be found in Figure 7.1 together with a curve
obtained similarly using corresponding results in maximum likelihood theory.

From Figure 7.1, we notice that the confidence curve constructed using
hybrid likelihood is slightly wider than the one obtained using maximum
likelihood theory. This is not surprising as maximum likelihood estimators are
asymptotically the most efficient in terms of mean squared error. An increase
in variance when using maximum hybrid likelihood rather than maximum
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Figure 7.1: Confidence curves for the third quartile. The full drawn lines
are based on hybrid likelihood, while the dotted graphs are confidence curves
obtained with traditional maximum likelihood results.

likelihood estimators is therefore to be expected. Looking at Figure 7.1, we also
notice that the curve constructed using maximum hybrid likelihood is shifted
slightly to the left compared to the one obtained using maximum likelihood
theory. As we saw previously in this example, the maximum likelihood estimate
of the control parameter overshoots the true value. The confidence curve
obtained using maximum hybrid likelihood is shifted to the left as a result of
the increased robustness.

Theorem 7.4.2 can also be used to construct confidence intervals and curves
for the control parameter. By this result,

κDn(µ0) d→ χ2
1 (7.14)

at the true value, µ0, of µ. Here, as in the theorem,

κ = ∇g(θ0)T (J∗)−1∇g(θ0)
∇g(θ0)T (J∗)−1

K∗(J∗)−1∇g(θ0)

and

Dn(µ) = 2
(
hn(θ̂hl)− hn,prof (µ)

)
.

As before, κ can be estimated by plugging in the the canonical estimates for
J∗, K∗ and ∇g(θ0). Furthermore, closer inspection of Dn shows

Dn(µ) = 2
(
hn(θ̂hl)− sup

λ(log 4)1/k=µ
hn(λ, k)

)
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= 2
[
hn(θ̂hl)− sup

k
hn

(
µ(log 4)−1/k

, k
)]
.

This quantity can be computed by minimizing

x 7→ 2
[
hn(θ̂hl)− hn

(
µ(log 4)−1/x

, x
)]

for each fixed µ in a grid of relevant values.
To compute a confidence curve, we utilize (7.14). Since

κDn(µ0) d
≈ χ2

1,

Slutsky’s theorem ensures

κ̂Dn(µ0) d
≈ χ2

1, (7.15)

where κ̂ is the consistent estimate of κ described in the previous paragraph.
Using the approximation in (7.15), one can show that

cc2(µ) = Γ1[κ̂Dn(µ)]

is an approximate confidence curve for the third quartile. This can be seen
by arguing as in Section 4.1 or section 3.4 of Schweder and Hjort 2016. This
confidence curve is displayed in Figure 7.1 together with the one obtained using
maximum likelihood and Wilks theorem.

Inspecting Figure 7.1, we see the same pattern in the right as in the left figure.
The confidence curve constructed using hybrid likelihood theory is wider and
shifted to the right compared to the curve based on maximum likelihood theory.
As before, this is a result of the added robustness and decreased efficiency when
using maximum hybrid likelihood rather than maximum likelihood. In addition,
we notice that the confidence curve constructed using Theorem 7.4.2 is quite
jagged. This is a consequence of the discontinuity in

m[y, µ(λ, k)] = I[y ≤ µ(λ, k)]− 0.75,

making hn, and therefore also hn,prof , a discontinuous function.
In this example, the focus and control parameter were the same. This will

often be the case, as both control and focus parameters are quantities whose
estimates are of extra importance. That being said, choosing the same quantity
as both control and focus parameter is by no means a requirement. Confidence
intervals and curves can be constructed for any ψ = g(λ, k) as long as g is
sufficiently smooth. In Section 7.5, we will revisit the example from Section 4.3
concerning battle deaths. Then the control and focus parameters will, indeed,
be different.

Correlation in a bivariate normal distribution

In the previous example, we worked with random variables in R. The theorems
and result from this section do, however, also apply for data points in Rd. To
illustrate this, we will use the hybrid likelihood machinery to make inference
about the correlation in a bivariate normal distribution.
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We will work with n i.i.d. random variables, Y1, . . . ,Yn ∈ R2, following a
bivariate normal distribution with mean µ0 = (0, 0). We will in this example
treat µ0 as known and work only with the parameters θ = (σ1, σ2, ρ). Since
Y1, . . . ,Yn are independent and follow a bivariate normal distribution, the
log-likelihood function takes the form

`n(σ1, σ2, ρ) =

− n log 2π − n

2 log|Σ(σ1, σ2, ρ)| − 1
2

n∑
i=1

YTi Σ(σ1, σ2, ρ)−1Yi,

where

Σ(σ1, σ2, ρ) =
(

σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

)
(7.16)

and |Σ| denotes the determinant of the variance matrix.
To construct the hybrid likelihood function, we need to decide on a control

and balance parameter. In this example, we will use

µ =
(

Pr(Yi,1 > 1)
Pr(Yi,2 ≤ −1)

)
for the first and a = 0.5 for the latter. These parameters are set somewhat
arbitrary as the goal of this example is to illustrate how the theory can be used
for multidimensional data rather than conducting any advanced analysis.

The following estimating equation identifies µ = (µ1, µ2):

m(y1, y2, θ) = (I(y1 > 1)− µ1, I(y2 ≤ −1)− µ2)T .

Furthermore, the control parameter is given by

µ(σ1, σ2, ρ) = (p1(σ1), p2(σ2))T

in a central bivariate normal distribution with variance matrix Σ(σ1, σ2, ρ) as
given in (7.16). Here pj(σj) for j = 1, 2 is the probability that a N(0, σ2

j )
distributed variable lands in the interval (1,∞) or (−∞,−1] respectively. With
these functions, we can construct the empirical likelihood function, used in
definition of the hybrid likelihood function, in the following way:

ELn[µ(θ)] = max
{

n∏
i=1

nwi

∣∣∣∣∣
n∑
i=1

wi = 0,
n∑
i=1

wim[Yi, µ(θ)] = 0, wi ≥ 0
}
.

Combining this with the log-likelihood function, allows us to construct the
hybrid log-likelihood function,

hn(θ) = (1− a)`n(θ) + a logELn[µ(θ)]. (7.17)

Inference about θ, and functions of this parameter, can now be made using
the results from this chapter. To illustrate how this can be done, we will use
Theorem 7.4.2 to make inference about ρ. The profile hybrid log-likelihood
function, hn,prof (ρ), can be computed by maximizing the function x 7→ hn(x, ρ)
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for each fixed ρ. With θ̂hl denoting the maximizer of hn, Theorem 7.4.2
guarantees that

2κ
(
hn(θ̂hl)− hn,prof (ρ)

)
d
≈ χ2

1,

where κ is as defined in the theorem. The value of κ is unknown, but can be
estimated consistently by

κ̂ = (0, 0, 1)(Ĵ∗)−1(0, 0, 1)T

(0, 0, 1)(Ĵ∗)−1K̂∗(Ĵ∗)−1(0, 0, 1)T
,

where Ĵ∗ and K̂∗ are the canonical estimators of J∗ andK∗. Hence, by Slutsky’s
theorem,

2κ̂
(
hn(θ̂hl)− hn,prof (ρ)

)
d
≈ χ2

1.

This approximation can be used to construct approximate confidence intervals
and curves for ρ. The latter is given by

cc(ρ) = Γ1

[
2κ̂
(
hn(θ̂hl)− hn,prof (ρ)

)]
.

We computed the quantities as described above for a simulated data set of
n = 100 i.i.d. random variables,following a central bivariate normal distribution
with variance matrix,

Σ0 =
(

0.52 0.5 · 0.5 · 0.5
0.5 · 0.5 · 0.5 0.52

)
=
(

0.25 0.125
0.125 0.25

)
.

In other words, both components have mean 0 and standard deviation 0.5, and
the correlation between them is also 0.5. A plot of cc(ρ) for this data set can
be found in Figure 7.2. In addition, we computed the profile log-likelihood
function and added the confidence curve based on this and Wilks theorem to
the plot.

From Figure 7.2, we see that the confidence curve based on hybrid likelihood
is slightly wider than the one based on maximum likelihood. This is a
consequence of the decreased efficiency of maximum hybrid likelihood estimators
compared to those maximum likelihood estimators.

Revisiting the deadly example

We will now try out the hybrid likelihood machinery on the Correlations of
War data set presented in Section 4.3. Our goal will be to compare the median
number of deaths in conflicts before and after the Korean war, and compare
our results to the ones obtained using empirical and parametric likelihood. As
before we will let X1, . . . , Xn1 denote the number of deaths in each conflict
before, and including, the Korean war, and Y1, . . . , Yn2 be the same for after
this conflict. Furthermore, we will refer to the true medians in the distributions
as ν1 and ν2 respectively.

Before we start with the mathematics, we need to decide what family to
model the distribution of the data as. In Cunen, Hjort, and Nygård 2020, it
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Figure 7.2: Confidence curves for ρ. The full drawn line is obtained with
hybrid likelihood and Theorem 7.4.2, while the dotted curve is constructed with
maximum likelihood and Wilks theorem.

is argued that, after subtraction of the smallest data point (1001), the inverse
Burr distribution is a good fit for these data sets. This model will therefore
be used. The inverse Burr distribution has three parameters, θ, α, b > 0, and
cumulative distribution function

Fθ,α,b(y) =
(
1 + ebαy−α

)−θ
. (7.18)

The density function in this distribution is

fθ,α,b(y) = αθebαy−(α+1) (1 + ebαy−α
)−(θ+1)

,

for y, θ and α positive and zero otherwise. Zero is not in the support of this
density, so, just as in Cunen, Hjort, and Nygård 2020, we will replace the smallest
data point with 1001.01 to avoid problems with the smallest observation. Notice
also that we work with the logarithm of the scale parameter rather than this
quantity itself. This is done to ensure numerical stability of the optimization
algorithms.

The maximum likelihood estimates for (θ, α, b)T in the two distributions
can be found by numerically maximizing the log likelihood functions, `n1,1 and
`n2,2. Here

`n1,1(θ, α, b) =
n1∑
i=1

log fθ,α,b(Xi)
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and

`n2,2(θ, α, b) =
n2∑
i=1

log fθ,α,b(Yi),

for fθ,α,b defined as above. The estimates we obtain are (θ̂1, α̂1, b̂1) =
(0.416, 0.773, 11.030) for the data set corresponding to conflicts before the
Korean War and (θ̂2, α̂2, b̂2) = (0.619, 0.931, 8 174.403)(0.619, 0.931, 9.009) for
the data set with more recent conflicts. From maximum likelihood theory we
know

√
n

 θ̂jα̂j
b̂j

−
θ0,j
α0,j
b0,j

 d→ N
(
0, J−1

j

)
(7.19)

for j = 1, 2. Here (θ0j , α0j , b0j)T and Jj for j = 1, 2 are the true parameter
vectors and Fisher matrices in the respective distributions.

We are interested in the median number of casualties. In an inverse Burr
distribution with parameters (θ, α, b), the median is given by

eb
(

21/θ − 1
)−1/α

So with

g(θ, α, b) = eb
(

21/θ − 1
)−1/α

+ 1001, (7.20)

we are interested in making inference about νj = g(θ0,j , α0,j , b0,j). 1001 is
added to correct for the subtraction of the smallest data point done in the
beginning of this example.

Using the delta method and (7.19), we get the following limit result

√
n
(
g(θ̂j , α̂j , b̂j)− νj

)
=
√
n
(
g(θ̂j , α̂j , b̂j)− g (θ0,j , α0,j , b0,j)

)
d
≈ ∇g (θ0,j , α0,j , b0,j)T N

(
0, J−1)

∼ N
(

0,∇g (θ0,j , α0,j , b0,j)T J−1∇g (θ0,j , α0,j , b0,j)
)
,

for j = 1, 2. Therefore

g(θ̂j , α̂j , b̂j)
d
≈ N

(
νj ,
∇g (θ0,j , α0,j , b0,j)T J−1∇g (θ0,j , α0,j , b0,j)

n

)

for j = 1, 2. As the maximum likelihood estimator is consistent for the true value
and ∇g is continuous, ∇g(θ0j , α0j , b0j) can be approximated by ∇g(θ̂j , α̂j , b̂j).
The matrices J−1

j /n, for j = 1, 2, can be estimated consistently by the the
negative inverse of H`n,j evaluated at the point (θ̂j , α̂j , b̂j). Hence, for j = 1, 2,

g(θ̂j , α̂j , b̂j)
d
≈ N

(
νj ,∇g(θ̂j , α̂j , b̂j)T

(
−H`n,j(θ̂j , α̂j , b̂j)

)−1
g(θ̂j , α̂j , b̂j)

)
.
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Figure 7.3: Confidence curves for the medians number of battle deaths before
and after the Korean war. We have used purple for the older conflicts and
orange for the more recent ones. The dotted graphs are confidence curves based
on maximum likelihood, while the full drawn lines are obtained using hybrid
likelihood.

Using this approximation we can construct confidence intervals and curves for
the median in the two populations. A plot of the curves together with the ones
based on hybrid likelihood can be found in Figure 7.3.

Before fitting the parametric models using hybrid likelihood, we will examine
how well the inverse Burr distribution fit the data. In Figure 7.4 we have
displayed a QQ-plot. From the figure, we notice that despite working well
for the smaller observations, the fit is worse for the larger data points. The
reason for this is that both data sets have many data points that are quite small
(between 1001 and 2000). In the maximum likelihood fit, these will dominate,
ensuring a good fit in this region at the cost of a more lacking fit in the upper
part. This “pulls” the weight of the distribution towards the smaller values
and results in underestimation of the median. To get more robust estimates of
the parameter of interest, we will use using maximum hybrid likelihood with
control parameter µj = Pr(Y ≥ qj) for j = 1, 2 to fit inverse-Burr models. µj
is the probability of observing a value greater than qj so this will ensure that
the expected number of data points greater than this qj is not underestimated,
hence “pulling” the weight of the distribution towards the larger values. For
each j we will use qj equal to the empirical 0.25 quantile. By (7.18),

µ(θ, α, b) = 1−
(
1 + ebαq−αj

)−θ
.

Furthermore E[I(Y > qj)− µj ] = 0 for the true value of µj , so m(y, µ) = I(y >
qj)− µ for j = 1, 2 will be our estimating functions.
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Figure 7.4: QQ-plots of the ordered number of battle deaths plotted against
the maximum likelihood estimate of the theoretical quantiles in the distribution.
We have plotted the values on log10 scale to make the figures more readable.

We have now decided on the control parameters, µj , but before we can
construct the hybrid likelihood functions, we need to choose the balance
parameters, aj . We believe that the model is correct and that the data does
follow an inverse Burr distribution. If the model is specified correctly, maximum
likelihood estimates are asymptotically optimal in terms of mean squared error,
under sufficient regularity. So to choose the tuning parameters aj , we will find
values such that the loss of efficiency is not too great when compared to the
maximum likelihood estimates. In this example we will use the median as the
focus parameter and choose a such that the standard deviation of the maximum
hybrid likelihood estimate of the median is no more than 10% larger than that
of the maximum likelihood estimate. This corresponds to requiring confidence
intervals of the median, based on Corollary 7.2.2 and the delta method to be
stretched no more than 10% in each direction. This is the procedure described
in Section 7.3, and after implementation, we found that a = 0.39 gave the
desired trade-off for the first and a = 0.38 for the second data set.

We are now ready to fit the parametric family to the data sets using
maximum hybrid likelihood. With the control parameters and values of a
found above, the resulting hybrid likelihood functions can be constructed and
numerically maximized. For our data sets, the maximum hybrid likelihood
estimates we computed to be (θ̂hl,1, α̂hl,1, b̂hl,1) = (0.422, 0.783 11.072) and
(θ̂hl,2, α̂hl,2, b̂hl,2) = (0.626, 0.939, 9.036), for the first and second data set
respectively. With these parameters, the median number of battle deaths is
estimated to be 11409 before the Korean war and 4961 afterwards. These values
are slightly closer to the empirical estimates (11375 and 5240 respectively) than
the corresponding numbers obtained with maximum likelihood, 10399 and 4749
respectively.

Using Corollary 7.2.2 and the delta method we can construct confidence
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intervals and curves for ν1 and ν2. The arguments are similar to the ones
presented previously in this example in the context of maximum likelihood
theory. Details are therefore omitted, but a plot of the resulting confidence
curves can be found in Figure 7.3.

We now turn our attention to the focus parameter

ψ0 = ν1

ν2
= f (θ0,1, α0,1, b0,1, θ0,2, α0,2, b0,2) .

Where f is the function

f (θ1, α1, b1, θ2, α2, b2) = g (θ1, α1, b1)
g (θ2, α2, b2) ,

with g as in (7.20).
Since the Xis and Yjs are assumed to be independent, we construct the

hybrid log-likelihood function for the joint sample in the following way:

hn1,n2 (θ1, α1, b1, θ2, α2, b2) = hn1 (θ0,1, α0,1, b0,1) + hn2 (θ0,2, α0,2, b0,2) .

Here hnj is the hybrid log-likelihood function based on the jth data set,
constructed with the balance and control parameters described previously
in this section. Similarly, as in Section 4.3, a profiling result holds for the joint
hybrid likelihood function as well. We will give a sketch of a proof here, but a
full argument will not be provided.

Let ηj denote the vector (θ0,j , α0,j , b0,j) for j = 1, 2 and η = (η1, η2). Since
the Xis and Yjs are independent, Theorem 7.2.1 ensures the process

An(s) = hn1,n2

(
η + s√

n

)
− hn1,n2(η)

= hn1

(
η1 + s1√

n

)
− hn1(η1) + hn2

(
η2 + s2√

n

)
− hn2(η2),

where s = (s1, s2), converges as a process to

A(s) = A1(s1) +A2(s2)

with

Aj(sj) = sTj U
∗
j −

1
2s

T
j J
∗
j sj for j = 1, 2,

and U∗1 and U∗2 independent. Some algebra shows

A(s) = sT1 U
∗
1 −

1
2s1J

∗
1 s1 + sT2 U

∗
2 −

1
2s2J

∗
2 s2

= sTU∗ − 1
2s

TJ∗s

with

U∗ =
(
U∗1
U∗2

)
and J∗ =

(
J∗1 0
0 J∗2

)
.
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With this, and arguments similar to those given in the proof of Theorem 7.4.2,
one can show that a profiling result holds also for hn1,n2 with U∗ and J∗ defined
as above and

K∗ = VarU∗ =
(
K∗1 0
0 K∗2

)
.

Here J∗j , K∗j and U∗j are of course the quantities defined in (7.6) corresponding
to data set j.

Both J∗ and K∗ are unknown, but replacing them with their canonical
estimates, gives us a consistent estimator, κ̂, of κ. Hence, κ̂Dn(ψ0) d→ χ2

1 by
Slutsky’s theorem and Theorem 7.4.2. We can now construct the corresponding
approximate confidence curve,

cc(ψ) = Γ1[κ̂Dn(ψ)],

where Γ1 is the cumulative distribution function in a χ2
1-distribution. A plot

of this curve can be found in Figure 7.5 together with the one obtained with
traditional maximum likelihood theory. The latter was constructed in a similar
fashion using the deviance function and Wilks theorem.

From Figure 7.5, we see that the confidence curve based on profile hybrid
likelihood is slightly wider than the one based on profile likelihood. As hybrid
likelihood methods are asymptotically less efficient than the corresponding
maximum likelihood versions, this is not surprising. Furthermore, the curve
corresponding to hybrid likelihood is shifted to the right compared to its
maximum likelihood counterpart. This is a consequence of the added robustness
of the estimate of the control parameter.

We can use the confidence curves to find confidence intervals for ψ and
p-values for testing hypothesis on the form ψ0 = ψ. For the profile maximum
likelihood function we find that [0.99, 4.79] and [0.85, 5.57] are 90%- and 95%-
confidence intervals respectively. We are therefore able to conclude that ψ0 > 1
on neither a 5% nor 10% level with using this method.

The results are a little more positive for the hybrid likelihood function.
Using the more robust method, we find that [1.06, 5.01] is a 90% confidence
interval. Increasing the level to 95% results in the interval [0.91, 5.83]. So, we
are able to reject the hypothesis ψ0 = 1 on a 10% but not on a 5% level. This
is a stronger result than we got using the profile empirical likelihood function
in Section 4.3. Since knowing the distribution of the data adds strength to the
estimation procedure, this does not come as a surprise.

Lastly we want to comment on how the result compares to the findings
of Cunen, Hjort, and Nygård 2020. The authors of this article also compute
the p-value for testing H0 : ψ0 = 1 against the alternative ψ > 1, albeit with
another method than ours. They find a p-value slightly bigger than 5. This is
similar to what we get, a p-value of 7.9%.
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Figure 7.5: Confidence curves for ψ = ν1
ν2
. The full drawn line is based on

the approximate χ2
1-distribution of the scaled profile hybrid likelihood function.

The dotted line is constructed using Wilks theorem for the profile likelihood
function.
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CHAPTER 8

Outside model conditions

The results from the previous chapters are elegant and easy to use. They are,
however, based on one the assumption that the model is specified correctly.
Hybrid likelihood was developed as a way to make the estimator of the control
parameter robust against model misspecification. Assuming that the model is
correctly specified is therefore a little counter-intuitive, as it undermines the
need for model robust estimates of the control parameter. In this chapter, we
will discard the problematic assumption and take a closer look at what happens
outside of model conditions. For this, the results derived in Chapter 5 and
Chapter 6 will be essential.

We will start by finding what value the maximizer of the hybrid likelihood
function is aiming for and prove consistency of θ̂hl towards it. This will be the
topic of Section 8.1. Afterwards, we will turn our attention to the variable

√
n
(
θ̂hl − θ0

)
. (8.1)

In Section 8.2, we will show that (8.1) has a normal limit, also when the model
is specified incorrectly. We will also propose some consistent estimators of
the matrices involved in the limit distribution of (8.1). This will be done in
Section 8.3. In Section 8.4, we will see that the results of this chapter reduces
to those of Chapter 7 when the model is, indeed, specified correctly.

As before, we will let Y1,Y2, . . . ,Yn ∈ Rd be i.i.d. random variables. In
this chapter, however, we will assume their true distribution, with cumulative
distribution function F , is not necessarily a member of the parametric family,
fθ for θ ∈ Θ, fit to the data. Y will always be a general random variable
following the true distribution, a the balance parameter and µ ∈ Rr the control
parameter. We will use µ(θ) to refer to the corresponding value of µ in the
distribution fθ. m : Rd+r → Rq will denote the estimating function used in
construction of the empirical likelihood function. As in Chapter 6 we will
assume q = 1, but generalizations to higher dimensions should be possible with
sufficient mathematical efforts. Furthermore, hn and θ̂hl will always refer to
the log-hybrid likelihood function and its maximizer respectively, and `n and
ELn to the log-likelihood and empirical likelihood functions. We will use Mi(θ)
as short-hand for m(Yi, θ), and M(θ) for m(Y, θ). Lastly, λn(θ) will denote the
unique solution to

1
n

n∑
i=1

Mi(θ)
1 + λMi(θ)

= 0,
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with 1 + λMi(θ) > 0 for i = 1, . . . , n and λ(θ) equal to the unique root of(
E{M(θ)/[1 + λM(θ)]}

Pr[1 + λM(θ) ≤ 0]

)
.

8.1 Consistency

In the previous chapter, we assumed the true underlying distribution was a
member of the parametric family. In this case, there exists a “true” parameter,
θ0, such that the underlying density is equal to fθ0 . Furthermore, Corollary 7.2.2
guarantees the maximizer of the hybrid likelihood function is consistent for
this value. In this chapter, however, we do not assume the true underlying
distribution is a member of the parametric family. Because of this, a “true”
parameter does not exist. This leaves us with some very important questions:
What does the maximizer of the hybrid likelihood function aim for when the
model is wrongly specified? Is θ̂hl consistent for any value, and in the case that
it is, what interpretation does such a value have? In this section, we will use
the results of Section 6.2 to address these question

Fix some θ ∈ Θ such that µ(θ) satisfies the conditions of Theorem 5.3.1.
Then

1
n

logELn[µ(θ)] Pr→ −E log[1 + λ(θ)M(θ)]

by the same result. Furthermore,

1
n
`n(θ) Pr→ E log fθ(Y)

provided the right hand side exists. Hence, for all θ ∈ Θ satisfying the conditions
above,

1
n
hn(θ) Pr→ (1− a)E log fθ(Y)− aE log[1 + λ(θ)M(θ)]. (8.2)

Because of the convergence in (8.2), we would expect the maximizer of hn
to be consistent for the maximizer of the limit. Under the sufficient conditions,
this does indeed hold true. This will be shown in Theorem 8.1.1. To simplify
notation, we will introduce the random function Γn : Θ→ R defined as

Γn(θ) = 1
n

n∑
i=1
{(1− a) log fθ(Yi)− a log[1 + λ(θ)Mi(θ)]},

as well as the non-random population version

Γ(θ) = (1− a)E log fθ(Y)− aE log[1 + λ(θ)M(θ)]. (8.3)

Theorem 8.1.1. Let Θ0 be a compact subset of Θ such that the conditions of
Lemma 6.1.1 and Lemma 6.1.2 hold for the image of Θ0 under µ. Let θ̂hl and
θ0 denote the maximizer of hn and Γ respectively in this set. Then

θ̂hl
Pr→ θ0,
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provided µ and log fθ(y), for almost all y, are continuous as a functions of θ,
θ0 is the unique maximizer of Γ and there exists a function p3 such that

|log fθ(y)| ≤ p3(y) (8.4)

for all y in the support of Y with E p3(Y) <∞.

Proof. We will use theorem 5.7 in Vaart 1998, p. 45.
By the proof of Theorem 6.2.1,

µ 7→ E log[1 + λ(µ)M(µ)]

is continuous. Furthermore, µ is continuous by assumption, and condition (8.4)
can be used to show continuity of

θ 7→ E log fθ(Y),

in a similar way as we did for Φ in the proof of Lemma 6.1.1. Because of this,
Γ is a continuous function. Furthermore, Θ0 is compact and θ0 the unique
maximizer of Γ, so

sup
θ∈Θ0

{ Γ(θ) | ‖θ0 − θ‖ ≥ ε } < Γ(θ0)

for all ε > 0. In addition,

1
n
hn(θ̂hl) ≥

1
n
hn(θ0)

by definition of θ̂hl. The only thing remaining to check is

sup
θ∈Θ0

∣∣∣∣ 1nhn(θ)− Γ(θ)
∣∣∣∣ Pr→ 0.

By the triangle inequality

sup
θ∈Θ0

∣∣∣∣ 1nhn(θ)− Γ(θ)
∣∣∣∣ ≤(1− a) sup

θ∈Θ0

∣∣∣∣∣ 1n
n∑
i=1

log fθ(Yi)− E log fθ(Y)

∣∣∣∣∣+
+ a sup

θ∈Θ0

|logELn[µ(θ)]− E log[1 + λ(θ)M(θ)]|

The second term goes in probability to 0 by the proof of Theorem 6.2.1, so if
we can show

sup
θ∈Θ0

∣∣∣∣∣ 1n
n∑
i=1

log fθ(Yi)− E log fθ(Y)

∣∣∣∣∣ Pr→ 0 (8.5)

the argument is complete. By the condition (8.4), compactness of Θ0 and
continuity of θ 7→ log fθ(y), the uniform law of large numbers can be applied
to ensure (8.5). This concludes the proof. �

The conditions stated in the previous theorem are sufficient, but not
necessary for consistency of θ̂hl towards θ0. Assumptions like continuity of
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8. Outside model conditions

θ 7→ m(y, µ(θ)) and compactness of the parameter space are convenient to
ensure

sup
θ∈Θ0

∣∣∣∣ 1nhn(θ)− Γ(θ)
∣∣∣∣ Pr→ 0,

but this might hold true even when the conditions of Theorem 8.1.1 do not.
One example of this is the case of m[y, µ(θ)] = I[y ≤ µ(θ)] − q for q ∈ (0, 1).
This function is not continuous in θ. Because of this, the previous result cannot
be applied. Nevertheless, the maximum hybrid likelihood estimator is still
consistent for the minimizer of Γ. This is proved in the ensuing theorem.

Theorem 8.1.2. Let Θ0 be a compact subset of Θ and θ̂hl a maximizer of hn(θ)
in this set, where the hybrid likelihood function is constructed with the estimating
function

m(y, µ) = I(y ≤ µ)− q,

for some q ∈ (0, 1). Assume F , µ and θ 7→ log fθ(y) for almost all y are
continuous functions, θ0 is the unique maximizer of Γ in Θ0 and that there
exists a function p3 such that

|log fθ(y)| ≤ p3(y),

for all y in the support of Y , with E p3(Y ) <∞. Then

θ̂hl
Pr→ θ0.

Proof. We have

Γ(θ) = (1− a)E log fθ(Y )− aE log(1 + λ(θ){I[Y ≤ µ(θ)]− q}).

The first summand is continuous as a function of θ by the arguments in the proof
of Theorem 8.1.1. Continuity of the second part was shown in Theorem 6.2.2.
Hence, Γ is a continuous function. This, in combination with compactness of
Θ0 and θ0 being the unique maximizer of Γ in Θ0, ensures that

sup
θ∈Θ0

{ Γ(θ) | ‖θ0 − θ‖ ≥ ε } < Γ(θ0)

holds for all ε > 0. Furthermore,
1
n
hn(θ̂hl) ≥

1
n
hn(θ0)

by definition of θ̂hl. In addition,

sup
θ∈Θ0

∣∣∣∣ 1nhn(θ)− Γ(θ)
∣∣∣∣ ≤

(1− a) sup
θ∈Θ0

∣∣∣∣∣ 1n
n∑
i=1

log fθ(Yi)− E log fθ(Y )

∣∣∣∣∣+
+ a sup

θ∈Θ0

|logELn[µ(θ)]− E log(1 + λ(θ){I[Y ≤ µ(θ)]− q})|.

The first term goes to 0 in probability by the proof of Theorem 8.1.1, and the
second term by the arguments in Theorem 6.2.2. This concludes the proof. �
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8.1. Consistency

In this section, we have used Theorem 5.7 in Vaart 1998 to prove consistency,
but there are other ways to proceed. If θ ∈ R, Lemma 5.10 in the same source
can be applied in more general settings than the ones listed here. Furthermore,
if the hybrid likelihood function is concave, consistency can be shown using
e.g. the results in Hjort and Pollard 1993. The general idea, however, is to
use that the hybrid likelihood function converges pointwise in probability to
Γ. Conditions for consistency of θ̂hl are nothing but requirements for this
convergence to be “quick enough” for the maximizers to converge as well. This
might happen even when the conditions of Theorem 8.1.1 or Theorem 8.1.2 fail
to hold.

The limit of the maximum hybrid likelihood estimate

By Theorem 8.1.1 and Theorem 8.1.2, the maximum hybrid likelihood estimator
is consistent for the maximizer of

Γ(θ) = (1− a)E log fθ(Y)− aE log[1 + λ(θ)M(θ)].

To better understand what happens with the hybrid likelihood theory outside
of model conditions, we need to investigate both Γ and its maximizer θ0. In this
subsection, we will assume the true underlying distribution is continuous with
density f , but the analysis generalizes to discrete distributions in the natural
way.

The maximizer of Γ is also the minimizer of −Γ. Furthermore, addition of a
constant to a function does not change its argmin. Hence

θ0 = argmin
θ∈Θ

{ −Γ(θ) + (1− a)E log f(Y) } (8.6)

= argmin
θ∈Θ

{ (1− a)KL(f, fθ) + aE log[1 + λ(θ)M(θ)] } , (8.7)

where

KL(f, fθ) =
∫
Rd

f(y) log f(y)
fθ(y) dy

is the Kullback-Leibler divergence from f to fθ. From (8.7), we notice that θ0 is
the minimizer of a convex combination of two quantities: the Kullback-Leibler
divergence and

dµ(f, fθ) = E log[1 + λ(θ)M(θ)].

The Kullback-Leibler divergence is a measure of how much two distributions
differ, and, under mild conditions, the maximum likelihood estimator aims
for the minimizer of this divergence. See e.g. appendix A.5 in Schweder and
Hjort 2016 for details about the Kullback-Leibler divergence. The function
θ 7→ dµ(f, fθ) is the pointwise limit of −n−1 logELn[µ(θ)] by Theorem 5.3.1. In
the arguments preceding Theorem 6.2.1, we showed that this map is minimized
when µ(θ) = µ0 and µ0 is the true value of the control parameter. Hence, when
minimizing the divergence

da,µ(f, fθ) = (1− a)KL(f, fθ) + a dµ(f, fθ),
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8. Outside model conditions

we find a value of θ such that both the overall model fit, measured by the
Kullback-Leibler divergence, and the quality of the estimate of the control
parameter, measured by dµ(f, fθ), are taken into account. The balance
parameter decides how much weight is put on overall model fit and how much
is put on estimation of the control parameter. This fits well with the original
idea behind hybrid likelihood: We are willing to give up some amount of overall
model fit in favor of robust estimation of the control parameter. How much we
are willing to pass up on is expressed in terms of the balance parameter.

For small values of a, the Kullback-Leibler divergence will dominate da,µ.
Hence, the minimizer, θ0, of da,µ will be close to what the maximum likelihood
estimator is aiming for. Since the true distribution is not assumed to be a
member of the parametric family, however, µ(θ0) may be far away from the
true value of the control parameter. On the other hand, da,µ and dµ will be
very similar when the balance parameter is close to 1. Hence, µ(θ0) and µ0 will
be similar, but the parametric fit may be lacking in other aspects. For most
values of a, however, minimization of da,µ will result in a density close to f , in
terms of Kullback-Leibler divergence, whose value of the control parameter is
not too far away from µ0.

To get some intuition about how the choice of balance parameter affects what
the hybrid likelihood estimator is aiming for, we have plotted the minimizer
of da,µ for different values of a in different situations. Consider first the case
where the true underlying distribution, f , is a Weibull distribution with shape
parameter 2 and scale parameter 7 and the parametric family is the collection of
all gamma distributions with shape-rate parametrization. In Figure 8.1 we have
plotted the minimizer of da,µ with two different choices of control parameter. In
the plot to the left, µ is the median in the distribution. For a = 0 the minimizer
is (3.136, 0.506), which is the minimizer of the Kullback-Leibler divergence
from the parametric family to the true distribution. As a→ 1, the minimizer
moves towards (3.206, 0.494). The median in a gamma distribution with shape
parameter 3.206 and rate parameter 0.494 is approximately 5.827, which is,
indeed, the median in a Weibull(2,7) distribution. So, as a increases from 0
to 1, the minimizer da,µ moves from the minimizer of the Kullback-Leibler
divergence towards the value of θ resulting in µ(θ) = µ0. The plot on the
right-hand side in Figure 8.1 is a similar parametrized curve, but with control
parameter equal to Pr(Y ≤ 3) instead of the median. This curve also starts in
the point (3.136, 0.506), the minimizer of the Kullback-Leibler divergence from
the parametric family to the true distribution, but as a increases, the minimizer
of da,µ moves towards (3.169, 0.509). The probability of a Gamma(3.169, 0.509)-
distributed variable being greater than 3 is 0.168, which is, indeed, the true
value of Pr(Y ≤ 3) when Y ∼Weibull(2, 7).

In Figure 8.2, we present another situation. We have computed minimizers
of da,µ for different choices of control and balance parameters and plotted them
all in the same figure. The true underlying density is a gamma distribution
with shape parameter 2 and rate parameter 1/2. The normal distribution is
used as the parametric family. As in Figure 8.1, we notice that with a = 0,
the minimizer of da,µ is the same regardless of control parameter. This is not
surprising as a balance parameter of 0 corresponds to no weight being put
on the empirical likelihood part of da,µ. Hence, the minimizer of da,µ is the
minimizer of the Kullback-Leibler distance regardless of control parameter.
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Figure 8.1: The plots display the minimizer of da,µ with different values of
balance parameter, a, and control parameter, µ. The true distribution is
a Weibull distributed with shape parameter 2 and scale parameter 7. The
parametric family used is the Gamma distribution with shape parameter c and
rate parameter b.
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Figure 8.2: The plot displays minimizers of da,µ with different values of balance
parameter, a, and control parameter shown in the legend. The dots on the curves
indicate where a = 0, 0.25, 0.5, 0.75, 1 respectively, with the curves meeting at
a = 0. The data is assumed to be Gamma distributed with shape parameter 2
and rate parameter 1/2. The parametric family used is the normal distribution.
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8. Outside model conditions

8.2 Limit distributions

In the previous section, we proved consistency of the maximum hybrid likelihood
estimator towards the minimizer, θ0, of a certain distance function. This ensures

θ̂hl − θ0
Pr→ 0,

but we know nothing about the speed of this convergence. The following
theorem ensures that indeed

√
n
(
θ̂hl − θ0

)
= OPr(1).

This is needed to prove asymptotic normality of the maximum hybrid likelihood
estimator, which is the goal for this section.

Lemma 8.2.1. Let θ̂hl, θ0 and Θ0 be as in Theorem 8.1.1 and let the conditions
of this result hold true. Assume furthermore that θ0 lies in the interior of Θ0 and
that Γ admits a second-order Taylor expansion at this point with non-singular
Hessian matrix, HΓ(θ0). If there exists a function p4, such that

|log fθ1(y)− log fθ2(y)| ≤ p4(y)‖θ1 − θ2‖ (8.8)

for almost all y and all θ1, θ2 in a neighborhood of θ0 on which µ is continuously
differentiable,

√
n
(
θ̂hl − θ0

)
= OPr(1),

provided

E p4(Y)2,E p4(Y)p2(Y),E p4(Y)p1(Y) <∞,

where p1 and p2 as defined in Lemma 6.1.2 and Lemma 6.1.1 respectively.

Proof. We will use corollary 5.53 in Vaart 1998, p. 77 and argue very similarly
as in the proof of Lemma 6.3.1. Here we derived the following:

|log{1 + λ(θ1)m[y, µ(θ1)]} − log{1 + λ(θ2)m[y, µ(θ2)]}| ≤
1
L

(K2p2(y) +K1p1(y))‖µ(θ1)− µ(θ2)‖,

for constants L,K1,K2 <∞ and θ1, θ2 in the neighborhood of θ0 described in
Lemma 8.2.1. Since µ is continuously differentiable on this set, a combination
of the mean value theorem for functions of several variables and the extreme
value theorem ensures the existence of K3 <∞ such that

‖µ(θ1)− µ(θ2)‖ ≤ K3‖θ1 − θ2‖.

Let

ψ(y, θ) = (1− a) log fθ(y)− a log{1 + λ(θ)m[y, µ(θ)]}.

Combining the above with condition (8.8), shows

|ψ(y, θ1)− ψ(y, θ2)| ≤
(

(1− a)p4(y) + a
K3

L
[K1p2(y) +K2p1(y)]

)
‖θ1 − θ2‖
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8.2. Limit distributions

for all θ1, θ2 in a neighborhood of θ0. Since

E
(

(1− a)p4(Y) + a
K3

L
[K2p2(Y) +K1p1(Y)]

)2

is finite by assumption, this proves the first condition of corollary 5.53 in Vaart
1998.

The vector θ̂hl maximizes the hybrid likelihood function and

Γn(θ) = 1
n
hn(θ) +OPr(1/n)

uniformly in θ by Lemma 6.1.2 and Lemma 6.1.4. Because of this,

Γn(θ̂hl) ≥ Γn(θ0) +OPr(1/n).

The remaining conditions of corollary 5.53 hold by assumption, so this concludes
the proof. �

Lemma 8.2.1 ensures that the sequence

√
n
(
θ̂hl − θ0

)
is bounded in probability. What remains to show is that this quantity goes to a
normal limit. This is guaranteed by the following theorem.

Theorem 8.2.2. Let θ̂hl, θ0 and Θ0 be as in Theorem 8.1.1 and assume the
conditions of this result and Lemma 8.2.1 hold true. Assume

θ 7→ m[y, µ(θ)] and θ 7→ log fθ(y)

are differentiable at θ0 for almost every y, and let

J∗ = −HΓ(θ0) and U∗n = 1√
n

n∑
i=1

∂

∂θ

∣∣∣
θ0
ψ(Yi, θ) (8.9)

with

ψ(y, θ) = (1− a) log fθ(y)− a log{1 + λ(θ)m[y, µ(θ)]}.

Then
√
n
(
θ̂hl − θ0

)
= (J∗)−1U∗n + oPr(1). (8.10)

In particular,

√
n
(
θ̂hl − θ0

)
d→ N

(
0, (J∗)−1K∗(J∗)−1), (8.11)

where

K∗ = Var
(
∂

∂θ

∣∣∣
θ0
ψ(Y, θ)

)
.
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8. Outside model conditions

Proof. The result follows more or less directly from the proof of Theorem 6.3.2.
Using arguments from this results and the proof of theorem 5.23 in Vaart 1998,
p. 53, we arrive at the following identity

hn
(
θ0 + s̃n/

√
n
)
− sn(θ0) = −1

2 s̃nJ
∗s̃n + s̃TnU∗n + oPr(1),

for all sequences s̃n bounded in probability. In particular, this holds for the
sequences

ŝn =
√
n
(
θ̂hl − θ0

)
and s∗n = (J∗)−1U∗n.

Since θ̂hl maximizes hn,

−1
2 ŝ
T
nJ
∗ŝn + ŝTnU∗n + oPr(1) ≥ −1

2(s∗n)TJ∗s∗n + (s∗n)TU∗n + oPr(1).

Manipulating this expression, leaves us with

−1
2 (̂sn − s∗n)TJ∗(̂sn − s∗n) + oPr(1) ≥ 0.

By arguments similar to those given in the proof of Theorem 6.3.2, this implies

ŝn = s∗n + oPr(1) = (J∗)−1U∗n + oPr(1),

showing (8.10).
Since θ0 is a maximizer of Γ in the interior of Θ,

0 = Γ′(θ0) = ∂

∂θ

∣∣∣
θ0
Eψ(Y, θ) = E ∂

∂θ

∣∣∣
θ0
ψ(Y, θ). (8.12)

Hence,

U∗n
d→ N(0,K∗)

with

K∗ = Var
(
∂

∂θ

∣∣∣
θ0
ψ(Y, θ0)

)
. (8.13)

This shows (8.11).
In (8.12) we interchanged differentiation and expectation. By Leibniz integral

theorem, this is unproblematic if there exists a function g such that E g(Y) >∞
and ∣∣∣∣ ∂∂θ ∣∣∣θ0

ψ(y, θ)
∣∣∣∣ ≤ g(y)

for all θ in a neighborhood of θ0 and almost all y. This condition holds true by
assumption as there is a neighborhood of θ0 on which

|ψ(y, θ)− ψ(y, θ0)| ≤ g(y)‖θ − θ0‖

for a function g with finite expectation. This was shown in the proof of
Lemma 8.2.1. Hence, ∣∣∣∣ ∂∂θ ∣∣∣θ0

ψ(y, θ)
∣∣∣∣ ≤ g(y)

as desired. �
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8.2. Limit distributions

In the proof of Theorem 8.2.2, we showed

hn(θ0 + s̃n/
√
n)− 1

n
sn(θ0) = −1

2 s̃
T
nJ
∗s̃n + s̃TnU∗n + oPr(1),

for all sequences s̃n bounded in probability. Inspecting the arguments, in
particular those given in the proof of lemma 19.31 in Vaart 1998, p. 284, we
notice something slightly stronger has been shown, namely,

An(s) = hn(θ0 + s/
√
n)− hn(θ0)

= −1
2s

TJ∗s+ sTU∗n + oPr(1)

uniformly over compacts sets K. Furthermore,

Zn(s) = −1
2s

TJ∗s+ sTU∗n

is a convex process converging pointwise to

A(s) = −1
2s

TJ∗s+ sTU∗.

Hence, by Arcones 1998,

An
d→ A

as a process in `∞(K) for each compact set K. See the proof of Theorem 3.0.5
for more details about arguments like these. Using the process convergence and
Lemma 8.2.1, we can prove a profiling result for the hybrid likelihood function
outside model conditions. The argument is similar to the one given in the proof
of Theorem 7.4.2 and will be omitted, but we state the result in the ensuing
theorem.

Theorem 8.2.3. Assume the conditions of Theorem 8.2.2 hold true, and let
g : Rp → R be a map for which the second order partial derivatives are
all continuous. With hn,prof defined as in Definition 7.4.1 and Dn as in
Theorem 7.4.2,

κ ·Dn(ψ0) d→ χ2
1

where

κ = bT (J∗)−1b

bT (J∗)−1K∗(J∗)−1b
,

b denotes the gradient of g at θ0 and ψ0 = g(θ0). Here θ0 is the maximizer of Γ
as defined in (8.3) and J∗ and K∗ are as in Theorem 8.2.2.

Theorem 8.2.3 can be used to construct approximate confidence intervals
and curves for focus parameters on the form g(θ) when g is sufficiently smooth.
In Section 10.2 we will use the result to, yet again, make inference about the
ratio of median battle deaths in wars before and after the Korean War.
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8. Outside model conditions

8.3 Consistent estimators

The limit distributions derived in the previous section involve the matrices J∗
and K∗. In practice, these quantities are unknown. Because of this, we need to
estimate them before Theorem 8.2.2 or Theorem 8.2.3 can be applied. In this
section, we will define some estimators of the matrices and give conditions for
consistency. All notation will be the same as in the previous sections.

We start with the matrix

J∗ = −E
(

∂2

∂θ∂θT

∣∣∣
θ0
{(1− a) log fθ(Y)− a log[1 + λ(θ)M(θ)]}

)
,

or equivalently

J∗ = −HΓ(θ0),

where Γ is defined as in Equation (8.3) on page 108 and HΓ(θ0) denotes its
Hessian matrix at θ0, the maximizer of Γ. From Section 8.1, we know that for
each θ ∈ Θ

1
n
hn(θ) = Γ(θ) + εn(θ) (8.14)

with εn(θ) tending uniformly to 0 in probability. Because of this, we would
expect the Hessian matrix of hn/n and Γ to be close. This is true provided

‖Hεn(θ)‖ = oPr(1) (8.15)

for θ ∈ Θ. Here Hεn(θ) denotes the Hessian matrix of εn at θ. In the following
we will assume (8.15).

Assuming (8.15), we have

1
n
Hhn(θ) = HΓ(θ) + oPr(1), (8.16)

for every fixed θ ∈ Θ. Hence, −Hhn(θ0)/n estimates J∗ consistently. In
practice, however, θ0 is not known. We would therefore like to replace it with
its canonical estimator, θ̂hl. Since the maximum hybrid likelihood estimator
converges in probability to θ0, we would expect −Hhn(θ̂hl)/n to converge to
−HΓ(θ0) = J∗. Sadly, this does not hold true in general. We need additional
regularity to have −Hhn(θ̂hl)

Pr→ J∗. One sufficient condition involves the
notion of stochastic equicontinuity.

Definition 8.3.1 (Stochastically equicontinuity Pollard 1984, p. 139). Let T
be a metric space and Zn : T → Rk for n = 1, 2, . . . a sequence of stochastic
processes. Fix t0 ∈ T . { Zn }∞n=1 is stochastically equicontinuous at t0 if, for
every η, ε > 0, there is a neighborhood U of t0 such that

lim sup
n∈N

Pr
(

sup
t∈U
‖Zn(t)− Zn(t0)‖ > η

)
< ε.

Stochastic equicontinuity guarantees that, for large values of n, Zn(t) and
Zn(t0) are close when t and t0 are not far apart. Hence, if tn is a sequence
converging in probability to t0, Zn(tn) and Zn(t0) should eventually take quite
similar values. We state this formally in the ensuing lemma.
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8.3. Consistent estimators

Lemma 8.3.2 (Pollard 1984, p. 140). Let { Zn }∞n=1 be a sequence of stochastic
processes from a metric space, T , to Rk. Assume further that tn ∈ T is a
sequence of estimators converging in probability to t0 and that { Zn }∞n=1 is
stochastically equicontinuous at this limit. Then

Zn(tn)− Zn(t0) = oPr(1).

The above result follows more or less directly from Definition 8.3.1. An
argument is given in Pollard 1984, p. 139–140.

Lemma 8.3.2 grantees that stochastic equicontinuity of Hhn/n at θ0 is
enough to have −Hhn(θ̂hl)/n and −Hhn(θ0)/n asymptotically equivalent. As
this last quantity tends to J∗ in probability by (8.16), the following is a consistent
estimator of J∗:

Ĵ∗ = − 1
n
Hhn(θ̂hl), (8.17)

provided {Hhn/n }∞n=1 is an equicontinuous sequence of processes and the
Hessian matrix of the remainder term in (8.14) tends to 0 in probability at θ0.

(8.17) is a practical estimator. The quantity can easily be calculated and
is, in fact, returned by most numerical optimization methods. In addition, its
form is similar to that of the observed information matrix,

Ĵ = − 1
n
H`n(θ̂ml),

used in maximum likelihood theory. In the above, `n is the likelihood and θ̂ml
its maximizer.

Now that estimation of J∗ is taken care of, we will address λ(θ0), the solution
to

0 = E
(

M(θ0)
1 + λM(θ0)

)
.

By Theorem 5.2.1, λn(θ) goes pointwise in probability to λ(θ) for θ ∈ Θ.
Hence, λn(θ0) Pr→ λ(θ0). Similarly as before, this quantity cannot be used in
practice, as θ0 is usually unknown. We would therefore like to use the estimator
λn(θ̂hl) instead. This vector is found as part of the constrained optimization
problem that arises in computation of ELn[µ(θ̂hl)] (see Section 2.2). It is
therefore available if the hybrid likelihood function can be computed. Under
the conditions of Lemma 6.1.1,

sup
θ∈Θ
|λn(θ)− λ(θ)| = oPr(1). (8.18)

By the triangle inequality,∣∣∣λn(θ̂hl)− λ(θ0)
∣∣∣ ≤ ∣∣∣λn(θ̂hl)− λ(θ̂hl)

∣∣∣+
∣∣∣λ(θ̂hl)− λ(θ0)

∣∣∣
The first term goes to 0 in probability by (8.18) and the second term by
consistency of θ̂hl towards θ0 and continuity of λ and µ. This ensures that
λn(θ̂hl) is a consistent estimator of λ(θ0).

119



8. Outside model conditions

We will also need a consistent estimator of λ′(θ0). By the implicit function
theorem,

λ′(θ0) = −
[
∂

∂λ

∣∣∣
λ(θ0)

E
(

M(θ0)
1 + λM(θ0)

)]−1
∂

∂θ

∣∣∣
θ0
E
(

M(θ)
1 + λ(θ0)M(θ)

)
.

Furthermore, the assumptions of Lemma 6.1.1 and Lemma 6.1.2 guarantees∣∣∣∣∣ m[y, µ(θ)]2

{1 + λ(θ)m[y, µ(θ)]}2

∣∣∣∣∣ ≤ p1(y)2

L2

for some L <∞ and p1 with E p1(Y) <∞. This is enough for Leibniz integral
theorem to be applicable, ensuring

∂

∂λ

∣∣∣
λ(θ0)

E
(

M(θ0)
1 + λM(θ0)

)
= −E

(
M(θ0)

1 + λ(θ0)M(θ0)

)2
.

Similarly, we can show

∂

∂θ

∣∣∣
θ0
E
(

M(θ)
1 + λ(θ0)M(θ)

)
=

E
(
M ′(θ0) +M ′(θ0)λ(θ0)M(θ0)−M(θ0)λ(θ0)M ′(θ0)

[1 + λ(θ0)M(θ0)]2

)
=

E
(

M ′(θ0)
[1 + λ(θ0)M(θ0)]2

)
,

using arguments like those above and as given in the proof of Corollary 6.3.3.
Because of this,

λ′(θ0) =
[
E
(

M(θ0)
1 + λ(θ0)M(θ0)

)2
]−1

E
(

M ′(θ)
[1 + λ(θ0)M(θ)]2

)
. (8.19)

Let Zn : Rp+1 → R be defined as

Zn(θ, λ) = 1
n

n∑
i=1

(
Mi(θ)

1 + λMi(θ)

)2
.

Assuming equicontinuity of { Zn }∞n=1 at (θ0, λ(θ0)), is enough to have

Zn

(
θ̂hl, λn(θ̂hl)

)
− Zn[θ0, λ(θ0)] = oPr(1).

As before, this follows from Lemma 8.3.2 and consistency of θ̂hl and λn(θ̂hl)
towards θ0 and λ(θ0) respectively. Furthermore, Zn[θ0, λ(θ0)] converges in
probability to

E
(

M(θ0)
1 + λ(θ0)M(θ0)

)2
,
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8.3. Consistent estimators

ensuring that

1
n

n∑
i=1

(
Mi(θ̂hl)

1 + λn(θ̂hl)Mi(θ̂hl)

)2

= E
(

M(θ0)
1 + λ(θ0)M(θ0)

)2
+ oPr(1),

under the assumption of equicontinuity of { Zn }∞n=1 at (θ0, λ(θ0)). Similarly,
one can show

1
n

n∑
i=1

M ′i(θ̂hl)
[1 + λn(θ̂hl)Mi(θ̂hl)]2

= E
[

M ′(θ0)
[1 + λ(θ0)M(θ0)]2

]
+ oPr(1),

provided equicontinuity at (θ0, λ(θ0)) of the corresponding sequence of processes.
The continuous mapping theorem now ensures that

λ̂′(θ0) =

 1
n

n∑
i=1

(
Mi(θ̂hl)

1 + λn(θ̂hl)Mi(θ̂hl)

)2
−1

1
n

n∑
i=1

M ′i(θ̂hl)
[1 + λn(θ̂hl)Mi(θ̂hl)]2

(8.20)

is a consistent estimator of λ′(θ0), provided the conditions outlined above.
We are now ready to find a consistent estimator of K∗. By definition,

K∗ = Var
(
∂

∂θ

∣∣∣
θ0
ψ(Y, θ)

)
with

ψ(y, θ) = (1− a) log fθ(y)− a log{1 + λ(θ)m[y, µ(θ)]}.

Define the following function

η(y, θ, λ, λ′) = (1− a)u(y, θ)− a
(λ′)Tm[y, µ(θ)] + ∂m

∂θ [y, µ(θ)]Tλ
1 + λm[y, µ(θ)]

Direct computation shows

∂

∂θ

∣∣∣
θ0
ψ(y, θ)T = η[y, θ0, λ(θ0), λ′(θ0)],

and so

K∗ = E η[Y, θ0, λ(θ0), λ′(θ0)]η[Y, θ0, λ(θ0), λ′(θ0)]T

By arguing as previous in this chapter, this ensures that

K̂∗ = 1
n

n∑
i=1

η
[
Yi, θ̂hl, λn(θ̂hl), λ̂′(θ0)

]
η
[
Yi, θ̂hl, λn(θ̂hl), λ̂′(θ0)

]T
(8.21)

is a consistent estimator of K∗ provided equicontinuity of the process

(θ, λ, λ′) 7→ 1
n

n∑
i=1

η(Yi, θ, λ, λ′)T η(Yi, θ, λ, λ′)

at (θ0, λ(θ0), λ′(θ0)).
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8. Outside model conditions

8.4 What if the model is correct?

In the previous sections, we derived several limit results. At no point was the
true underlying distribution assumed to be a member of the parametric family,
fθ for θ ∈ Θ. The theorems can therefore be applied in situations where no
member of the parametric family is the true density of the data. That being
said, the results hold true when this is the case as well. In this section, we
will assume the true underlying distribution, indeed, has a density fθ0 for some
θ0 ∈ Θ and show that the limit distributions from the current chapter agree
with those of Chapter 7. For this, it suffices to prove that the limit of U∗n
given in (8.9) is U∗ from (7.6), and that J∗ from (8.9) and (7.7) are the same
matrices.

We start by assuming the true underlying density, f , is a member of the
parametric family fit to the data. Then there exists θ0 ∈ Rp, such that
f = fθ0 . Since θ0 minimizes both the Kullback-Leibler divergence and µ(θ0)
is the true value of the control parameter, θ0 maximizes both the parametric
and the empirical likelihood part of Γ given in (8.3). See Section 8.1 for
further explanation. Because of this, application of both Corollary 7.2.2 and
Theorem 8.1.1 ensures consistency of the hybrid likelihood estimate towards
the θ0.

Let u be the score function of fθ and µ0 the true value of the control
parameter, µ(θ0). Then

∂

∂θ

∣∣∣
θ0
ψ(y, θ) = (1− a)u(y, θ0)T − aλ

′(θ0)Tm(y, µ0) + 0
1 + 0

= (1− a)u(y, θ0)− aλ′(θ0)Tm(y, µ0),

where we have used λ(θ0) = 0, shown in the arguments preceding Theorem 6.2.1.
By (8.19) and λ(θ0) = 0,

λ′(µ0) = EM ′(θ0)
S(θ0) ,

where S(θ0) = EM(θ0)2. By the remarks the preceding Theorem 7.2.1 on
page 88, the nominator in this expression is equal to the matrix ξ0 used in
Chapter 7, under weak conditions. Hence,

∂

∂θ

∣∣∣
θ0
ψ(y, θ)T = (1− a)u(y, θ0)− aξT0 S(µ0)−1m(y, µ0),

resulting in

U∗n = (1− a)Un(θ0)− aξT0 S(θ0)−1Vn(θ0)

with

Un(θ0) = 1√
n

n∑
i=1

u(Yi, θ0) and Vn(θ0) = 1√
n

n∑
i=1

m(Yi, µ0).

Since, (
Un(θ0)
Vn(θ0)

)
d→
(
U
V

)
,
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8.4. What if the model is correct?

with U and V as in (7.4), the limit of U∗n defined in (8.9) is U∗ given in (7.6).
Consider now the matrix J∗ given in (8.9). By definition,

J∗ = (1− a) ∂2

∂θ∂θT

∣∣∣
θ0
E log fθ(Y )− a ∂2

∂θ∂θT

∣∣∣
θ0
E log[1 + λ(θ)M(θ)].

The first term in this expression is the Fisher matrix, J , as f = fθ0 . For the
second term, notice

∂2

∂θ∂θT

∣∣∣
θ0
E log{1 + λ(θ)M(θ)} =

µ′(θ0)T
(

∂2

∂µ∂µT

∣∣∣
µ0
E log[1 + λ(µ)M(µ)]

)
µ′(θ0)

as

∂

∂µ

∣∣∣
µ0
E log[1 + λ(µ)M(µ)] = 0

since µ0 is the maximizer of the expression by the arguments preceding
Theorem 6.2.1. By the derivations from Corollary 6.3.3,

∂2

∂µ∂µT

∣∣∣
µ0
E log[1 + λ(µ)M(µ)] = EM ′(µ0)TS(θ0)−1EM ′(µ0),

and hence,

∂2

∂θ∂θT

∣∣∣
θ0
E log{1 + λ(θ)M(θ)} = µ′(θ0)TEM ′(µ)TS(θ0)−1EM ′(µ)µ(θ0)

= EM ′(θ0)TS(θ0)−1EM ′(θ0)
= ξT0 S(θ0)−1ξ0

by the chain rule. This shows

J∗ = (1− a)J − aξ0S(θ0)−1ξ0,

which is the same expression as the one given in (7.7).
In the previous paragraph, we abused notation somewhat to make

calculations more readable. We let M(µ) refer to m(Y, µ) and M(θ) to
m[Y, µ(θ)]. We hope the intentional use of the symbols µ and θ removes
confusion about this, otherwise ambiguous, notation.

The above ensures that using both Corollary 7.2.2 and Theorem 8.2.2 leads
to the conclusion

√
n
(
θ̂hl − θ0

)
d→ (J∗)−1U∗

with θ0 equal to the true parameter and U∗ and J∗ defined in (7.6) and
(7.7) respectively. Similarly, the calculations in this section ensures the limit
distributions in Theorem 7.4.2 and Theorem 8.2.3 agree when the model is
specified correctly.
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CHAPTER 9

Focused information criterion for
hybrid likelihood

When fitting parametric families to data, there are many decisions to make.
What family should we choose? Are there conditions on the parameters? How
many of the covariates in a regression setting are needed? When faced with
decisions like these, it is popular to make use of information criteria. In this
chapter, we will take a closer look at one particular such criterion and use it to
address the elephant in the room: How do we choose the balance parameter
used in construction of the hybrid likelihood function?

We will use the same short-hand notation here as in the previous chapter.

9.1 The focused information criterion

Information criteria are numbers that can be assigned to most models. For a
fixed information criterion, the number represent the quality of the model fit in
some way. We can evaluate different models by comparing their corresponding
values of the information criterion. Ranking model fits with a single quantity is
not only intuitively simple, but also quite convenient as comparing numbers is
easier than full models. There are many information criteria available. Among
the most popular are Akaike’s information criterion (AIC) and the Bayesian
information criterion (BIC), but there exists numerous others, like the deviance
information criterion (DIC) and Mallow’s Cp. See Claeskens and Hjort 2008b
for definitions and discussions of these and other criteria. One thing all of the
quantities mentioned here have in common, is that they evaluate the overall fit
of the model. When using maximum hybrid likelihood, we do, however, give
up some of the overall model fit in favor of robust estimation of the control
parameter. Evaluation of different models fit using maximum hybrid likelihood,
should therefore use a criterion giving credit to the robust estimation of the
control parameter. Luckily such a criterion already exists. This is called the
Focused Information criterion (FIC) and will be the topic of this chapter.

The focused information criterion, or FIC for short, was first introduced
in Claeskens and Hjort 2003. Results concerning the criterion for sub-models
fit with maximum likelihood are derived in this paper. Since publication of
the original article, FIC has been further developed and extended. There are
too many contributers for a complete list to be given her, but some important
articles include Claeskens, Croux, and Van Kerckhoven 2006, who derived an
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9.1. The focused information criterion

expression for FIC using more general loss functions than the mean squared
error, Claeskens and Hjort 2008a, who worked with expressions for a weighted
version of the criterion, and Jullum and Hjort 2017, who derived a version of
FIC allowing for parametric and non-parametric models to be compared. In
addition, numerous authors have worked with the criterion for specific classes of
models. Examples include Zhang and Liang 2011 for generalized partial linear
models and Claeskens, Croux, and Van Kerckhoven 2007 for autoregressive
models. We will briefly explain the focused information criterion in this section,
but a more comprehensive introduction can be found in Claeskens and Hjort
2008b along with an overview of literature.

FIC differs from most other information criteria in a monumental way.
Rather than assessing the overall fit of the model, FIC ranks models by the
quality of their estimator of a certain quantity. This quantity is called “the
focus parameter” and in this section we will denote it by ψ. The choice of focus
parameter depends on the setting and what we are interested in inferring from
our data. Taking the data set from Section 4.1 as an example, one statistician
might be interested in in the mean salary in Oslo, while another might want
to estimate the median well. There is no general rule for what to use as a
focus parameter, as what quantities are of interest is entirely dependent on the
specific application. Hence, each statistician is free to choose a focus parameter
tailored to their uses.

FIC ranks models by comparing the quality of estimators of the focus
parameter. To use the information criterion, we therefore need to properly
define what we mean by the “quality” of an estimator. For a general loss
function, L(ψ, ψ̂), describing how much is lost by estimating ψ by ψ̂, we define
the risk of the estimator ψ̂ to be

R(ψ, ψ̂) = EL(ψ, ψ̂).

In principle, FIC can measure quality of an estimator using any risk function,
but in this thesis, we will only consider squared error loss. This is by far the
most popular loss function and has the following formulation:

L(ψ, ψ̂) =
(
ψ − ψ̂

)2
.

Its risk function is called the mean squared error, or MSE for short, and is
defined as:

MSE(ψ, ψ̂) = E
(
ψ − ψ̂

)2
.

In this chapter, we will mostly be interested in MSE evaluated at the true
parameter value, ψ0. We will therefore use MSE(ψ̂) as short-hand for
MSE(ψ0, ψ̂).

For an estimator, ψ̂, of ψ mean squared error decomposes as

MSE(ψ̂) =
(
E ψ̂ − ψ

)2
+ Var ψ̂. (9.1)

The first term is the bias of the estimator, and the second is the variance.
To estimate the mean squared error of an estimator ψ̂, it therefore suffices to
estimate each of these terms separately. This decomposition will be used when
we derive an expression for FIC for models fit with maximum hybrid likelihood.
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9. Focused information criterion for hybrid likelihood

9.2 MSE of the maximum hybrid likelihood estimator

We are interested in deriving FIC for models fit with maximum hybrid likelihood.
For a fixed focus parameter, ψ, FIC estimates the mean squared error of a
model’s estimate of ψ. So, to derive an expression for FIC for models fit with
maximum hybrid likelihood, we need to estimate the bias and variance of the
maximum hybrid likelihood estimators of the focus parameter. The limit results
derived in the previous section will help us do exactly this.

Let Y1, . . . ,Yn be i.i.d. random variables following some distribution with
cumulative distribution function F and

F = { fθ | θ ∈ Θ }

a parametric family we wish to fit to the data using maximum hybrid likelihood
with some control parameter, µ, and balance parameter, a. Assume furthermore,
there is a differentiable function, g, such that g(θ) is the value of ψ in the
parametric model, fθ. The maximum hybrid likelihood estimate of ψ in the
parametric model is given by

ψ̂hl = g(θ̂hl).

The FIC for models fitted with hybrid likelihood is the mean square error of
this quantity.

In practice, the mean squared error of ψ̂hl is not known. To use the focused
information criterion, we will therefore have to estimate MSE(ψ̂hl). We will
start by using the limit results from the previous chapter to find an expression
asymptotically equivalent to MSE(ψ̂hl).

Assume the conditions of Theorem 8.1.1 and Theorem 8.2.2 hold true. Then,
the maximum hybrid likelihood estimator of θ has a normal limit distribution
after proper centering and scaling. By the delta method, this implies

ψ̂hl
d
≈ N

(
g(θ0), ∇g(θ0)T (J∗)−1

K∗(J∗)−1∇g(θ0)
n

)
,

where θ0 is the limit of θ̂hl defined in Section 8.1 and J∗ and K∗ are the
matrices defined in (8.9) and (8.13) respectively. Furthermore, ψ̂hl converges
in probability to g(θ0) by the continuous mapping theorem and consistency of
θ̂hl towards θ0. As a consequence, the expected value of the maximum hybrid
likelihood estimate of ψ converges to g(θ0) if ψ̂hl are uniformly integrable (see
e.g. Billingsley 1999, p. 31). Hence, provided the necessary conditions, the
following is a asymptotically equivalent to the mean squared error of ψ̂hl:

[g(θ0)− ψ0]2 + σ2

n
. (9.2)

Here ψ0 denotes the true value of the focus parameter and

σ2 = ∇g(θ0)T (J∗)−1
K∗(J∗)−1∇g(θ0).

9.3 Estimating the MSE

(9.2) is a theoretically convenient expression. In practice, it is, however, less
useful. The quantities involved are rarely, if not never, known. We will therefore
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attempt to replace the unknown values in (9.2) with estimators. This leads to
the definition of the focused information criterion for the hybrid likelihood, or
HFIC for short.

A first approach

We start with a simple estimator of MSE(ψ̂hl). Estimation of J∗ and K∗ was
discussed in Section 8.3. Consistent estimators of the matrices were derived in
this section, and their formulas are given in (8.17) and (8.21) respectively. If,
in addition, ∇g is a continuous function, ∇g(θ̂hl) converges in probability to
∇g(θ0). Because of this, the following is only oPr(1) away from the σ2.

σ̂2 = ∇g(θ̂hl)T (Ĵ∗)−1K̂∗(Ĵ∗)−1∇g(θ̂hl).

Hence, the second term of (9.2), the variance of the maximum hybrid likelihood
estimate, can be estimated consistently by σ̂2/n.

Estimation of the first term, the bias, is more complicated. A naive approach
is to use the estimator,

b̂ =
(
ψ̂hl − ψ̂

)2
, (9.3)

for some consistent estimator ψ̂ of ψ. By the continuous mapping theorem,
b̂ is asymptotically equivalent to the bias of the maximum hybrid likelihood
estimate. Using this formula leads to a first estimate of MSE(ψ̂hl),

b̂+ σ̂2

n
. (9.4)

In (9.4) we do not make any assumptions about ψ̂ other than it being consistent
for the true value of the focus parameter. In practice, this amounts to choosing
a robust estimator that is not affected by possible misspecification of the model.
Examples of such non-parametric choices are the sample mean or median
provided, of course, their population versions are used as focus parameter.

Correcting for the bias

Although appealing because of its simplicity, (9.4) tends to overshoot the actual
value of limiting mean squared error of ψ̂hl. This is a consequence of the
variability in b̂. To correct for this, we will find an approximation to the
variance of the bias term and subtract it from (9.3). This approach is popular
in newer versions of FIC and have been used in e.g. Jullum and Hjort 2017 and
Claeskens, Cunen, and Hjort 2019. The following arguments and calculations
are similar to what can be found in these articles.

To correct for the variance of the bias term, κ2/n, we need to find and
estimate it. Using the formula,

κ2

n
= Var

(
ψ̂hl − ψ̂

)
= Var ψ̂hl + Var ψ̂ − Cov

(
ψ̂hl, ψ̂

)
,

we notice that this amounts to understanding the variance of the maximum
hybrid likelihood estimate and the consistent estimator of the focus parameter
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9. Focused information criterion for hybrid likelihood

in addition to their covariance. In practice, this can be quite complicated if
additional assumptions are not made on ψ̂. The assumption we will make, is
that there exists a function φ : Rd+1 → R such that the following approximation
holds:

√
n
(
ψ̂ − ψ0

)
= 1√

n

n∑
i=1

[φ(Yi, ψ0)− Eφ(Y, ψ0)] + oPr(1), (9.5)

when Y ∼ F . At first glance, this condition might seem strict. It does, however,
hold true for many natural focus parameters. If ψ is the expected value of the
data, we have

√
n
(
Ȳn − ψ0

)
= 1
n

n∑
i=1

(Yi − EY ),

where Ȳn denotes the sample mean of Y1, . . . , Yn. Similarly,

√
n
(
h(Y)n − ψ0

)
= 1√

n

n∑
i=1

[h(Yi)− Eh(Y)],

for functions h : Rd → R. So, with ψ̂ equal to the sample mean of
h(Y1), . . . , h(Yn), (9.5) is satisfied when the expected value of h(Y) is used as
focus parameter. A less obvious example is the median, F−1(0.5). For this
focus parameter,

√
n
[
F−1
n (0.5)− F−1(0.5)

]
= − 1√

n

n∑
i=1

I[Yi ≤ F−1(0.5)]− 0.5
f [F−1(0.5)] + oPr(1), (9.6)

see e.g. Vaart 1998, p. 307. Here f denotes the density function in the
distribution of the data, and, as before, F is the cumulative distribution
function. Furthermore, Fn is the empirical cumulative distribution function,

Fn(x) = 1
n

n∑
i=1

I(Yi ≤ x).

By Theorem 8.2.2,
√
n
(
θ̂hl − θ0

)
= (J∗)−1

U∗n + oPr(1),

where

J∗ = − ∂2

∂θ∂θT

∣∣∣
θ0
E{(1− a) log fθ(Y)− a log[1 + λ(θ)M(θ)]},

and

U∗n = 1√
n

n∑
i=1

[η(Yi, θ0)− E η(Y, θ0)],

with

η(y, θ) = (1− a)u(y, θ)− a
λ′(θ)Tm[y, µ(θ)] + ∂m

∂θ [y, µ(θ)]Tλ
1 + λ(θ)m[y, µ(θ)] .
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We can now apply the central limit theorem to get

√
n

(
ψ̂ − ψ0
θ̂hl − θ0

)
d→
(

1 0
0 (J∗)−1

)
N(0,Σ),

where Σ is the variance matrix of the vector (φ(Y, ψ0), η(Y, θ0))T . Applying
the delta method, results in

√
n

(
ψ̂ − ψ0

ψ̂hl − g(θ0)

)
d→
(

1 0
0 ∇g(θ0)T (J∗)−1

)
N(0,Σ). (9.7)

Furthermore, Σ is a (1 + p)× (1 + p)-matrix which can be written as the block
matrix

Σ =
(
τ2 C
CT K∗

)
.

The limit distribution in (9.7) is therefore a central normal distribution with
covariance matrix(

1 0
0 ∇g(θ0)T (J∗)−1

)(
τ2 C
CT K∗

)(
1 0
0 ∇g(θ0)T (J∗)−1

)T
=(

τ2 C(J∗)−1∇g(θ0)
∇g(θ0)T (J∗)−1

CT ∇g(θ0)T (J∗)−1
K∗(J∗)−1∇g(θ0)

)
.

.
Provided sufficient regularity of φ, τ2 can be estimated by the in-sample

variance of φ(Y1, ψ̂), . . . , φ(Yn, ψ̂). We will denote this estimator by τ̂2. The
1 × p matrix C can be estimated by, Ĉ, the in-sample covariance between
ψ(Yi, ψ̂) and η(Yi, θ̂hl) for i = 1, . . . , n. The estimators derived in Section 8.3
can be used in place of λ(θ0) and λ′(θ0). Consistent estimation of J∗, ∇g(θ̂hl)
and σ̂2 have already been discussed. Putting all of this together, results in the
following estimator of κ2:

κ̂2 = σ̂2 + τ̂2 − 2 · Ĉ(Ĵ∗)−1∇g(θ̂hl). (9.8)
Using (9.8), we can finally define an asymptotically unbiased estimator of the
limiting mean squared error of the maximum hybrid likelihood estimator. This
is the expression we will use as the focused information criterion for models fit
with maximum hybrid likelihood.

Definition 9.3.1. With the definitions given previously in this chapter, we define
two focused information criteria for models fit with maximum hybrid likelihood.
The first one is HFICu:

HFICu =
(
ψ̂hl − ψ̂

)2
+ σ̂2

n
− κ̂2

n
.

The second criterion, HFIC, is given by

HFIC = σ̂2

n
+ max

{ (
ψ̂hl − ψ̂

)2
− κ̂2

n
, 0
}
.

As shown in the arguments preceding Definition 9.3.1, HFICu is an
asymptotically unbiased estimator of the limiting mean squared error of ψ̂hl.
This is, of course, only true provided the conditions outlined in this chapter.
The second criterion, HFIC, corrects for negative estimates of the limiting
squared bias of ψ̂hl by truncating such values to 0.
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9. Focused information criterion for hybrid likelihood

9.4 Choosing the balance parameter

There is one obvious question regarding maximum hybrid likelihood estimation
that we have avoided thus far: How should the balance parameter be chosen?
In Section 7.5, we made this choice based on a predefined accepted loss of
efficiency. Under model assumptions, the maximum hybrid likelihood estimate
of a parameter converges in probability to the true value. This happens
regardless of balance and control parameter. Hence, under sufficient regularity,
the maximum hybrid likelihood estimate of a focus parameter is asymptotically
unbiased, no matter the choice of of tuning parameters. Because of this, it is
sufficient to compare variances to compare the limiting mean squared errors of
different maximum hybrid likelihood estimators.

The same approach is not possible when the true distribution is not a
member of the parametric family fit to the data. In such situations, the
maximum likelihood estimate of a focus parameter is not guaranteed to be
consistent for the true value. Furthermore, as we saw in Section 8.1, the hybrid
likelihood estimate converges to different values depending on a and µ. Because
of this, the asymptotic bias of the different estimators are not the same. Hence,
comparison of variances only is not sufficient. We need to estimate and compare
limiting mean squared errors for each choice of a and µ.

For this, the derivations from the previous section will be useful. Both
HFICu and HFIC can be used to estimate the mean squared error of the
maximum hybrid likelihood estimator of the focus parameter. To choose a
balance parameter, a, we therefore propose the following strategy:

(1) Choose a focus parameter with an estimator that can be written as in
(9.5) for some φ : Rd+1 → R.

(2) Choose one of the two focus criteria defined in this chapter: HFICu or
HFIC.

(3) Fit the parametric model to data using maximum hybrid likelihood for
each value of a in a grid of points between 0 and 1 and compute the
chosen criterion.

(4) Choose a minimizing the chosen criterion.

In the next chapter, we will use this procedure when we revisit the examples
with incomes in Oslo from Section 4.1 and number of battle deaths in wars
from Section 4.3 and Section 7.5.

In practice, the control parameter will often be used as the focus parameter.
That being said, there is nothing in the above requiring ψ and µ to be equal.
In Section 10.2, we will go through an example where these two parameters,
indeed, are different.
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CHAPTER 10

Examples

In this chapter, we will present some examples illustrating the results and
methods from the two previous chapters.

10.1 Theory and practice

We will start by working with simulated data and compare the empirical results
to the theoretical ones in Chapter 8 and Chapter 9. We will not focus on
making inference about parameters in this section. For examples related to
such problems, the two remaining sections of this chapter can be consulted.

We will work with Poisson distributed data with rate parameter equal to
2.5. The parametric model will be the family of geometric distributions. This
has the following parameterization:

pθ(y) = (1− θ)yθ for y = 0, 1, . . . and θ ∈ (0, 1].

For the empirical likelihood part of the hybrid likelihood function, we will use
the estimating function

m(y, µ) = I(y > 2)− µ,

to increase robustness of the parametric estimate of Pr(Y > 2). In the geometric
distribution this probability is given by µ(θ) = (1− θ)3. To begin with, we will
put equal weight on the empirical and parametric part of the hybrid likelihood
function. This corresponds to fixing the balance parameter at 1/2.

The form of the estimating equation allows us to find an explicit formula
for λ(µ), the solution to the equation(

E{m(Y, µ)/[1 + λm(Y, µ)]}
Pr[1 + λm(Y, µ) ≤ 0]

)
= 0.

Straight forward computation shows

E
(

m(Y, µ)
1 + λm(Y, µ)

)
= 0

is solved by

λ(µ) = p− µ
µ(1− µ)
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with p = Pr(Y > 2) for Y ∼ Pois(2.5). Using this explicit formula, Γ, defined
in Section 8.1, takes the form

1
2 [2.5 log(1− θ) + log θ] + 1

2

[
p log

(
(1− θ)3

p

)
+ (1− p) log

(
1− (1− θ)3

1− p

)]
.

The minimizer of this function is θ0 = 0.2650. So by the results of Section 8.1
the maximum hybrid likelihood estimator of θ should aim for this value.

In the previous paragraph we found an explicit expression for Γ. Using this
we can compute the exact value of J∗ as defined in (8.9). Furthermore, the
function ψ defined in Theorem 8.2.2 is given by the ensuing expression

1
2 [y log(1− θ) + log θ]

− 1
2 log

(
1 + p− (1− θ)3

(1− θ)3[1− (1− θ)3] [I(y > 2)− (1− θ)3]
)
,

and hence, the true value of K∗ can also be computed exactly. In particular,
this means that the exact limiting variance of

√
nθ̂hl can be calculated with

the formula K∗/(J∗)2. For our situation the exact limiting variance of
√
nθ̂hl

is 0.0048. To compare this with empirical results, we simulated 100 i.i.d. data
points from a Pois(2.5)-distribution 300 times. In each iteration we found the
maximum hybrid likelihood estimator. The empirical mean and variance of
these data points were 0.2650 and 0.0041 respectively, which are both close to
the theoretical values computed above.

The previous arguments can be applied to functions of θ as well. By the
delta method

√
n
(
µ(θ̂hl)− µ(θ0)

)
d→ N

(
0, µ

′(θ0)2K∗

(J∗)2

)
,

and so the limiting mean squared error of µ(θ̂hl) is given by

[µ(θ0)− 0.456187]2 + µ′(θ0)2K∗

n(J∗)2 ,

as 0.456187 is the probability of a Pois(2.5)-distributed variable being greater
than 2. As we have computed the exact value of θ0, J∗ and K∗ previously in
this example, the true value of the limiting mean squared error of µ(θ̂hl) can
be calculated to be 0.005660. This analysis is of course not limited to the case
of a = 1/2, and all limits can be calculated similarly as above for other value
of the balance parameter. In Figure 10.1 we have plotted the limiting mean
squared error of µ(θ̂hl) as a function of a. The information criterion defined
in the previous chapter attempts to estimate this quantity. We have therefore
also displayed a plot of HFIC-values calculated using a fixed set of 100 i.i.d.
Pois(2.5)-distributed variables, using µ as focus parameter in the same figure.

From Figure 10.1, we notice that although the estimated and the exact
curves are similar, the estimate works best for balance parameters close to 0.5
in this particular case. The minimizers of the two curves were 0.78 and 0.70
for the estimated and exact curve respectively. Using the information criterion
from the previous chapter, therefore results in selection of a slightly higher
value of a than the true optimal balance parameter. The difference between
the two curves and minimizers are, however, not tremendous and indicates that
the estimates work well in this particular case.
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Figure 10.1: A plot of HFIC values together with the exact values of the
limiting mean squared error of the maximum hybrid likelihood estimate of the
control parameter. The sharp bend in the purple line is a consequence of the
truncation done by HFIC.

10.2 Revisiting the deadly example yet again

In Section 7.5, we fitted inverse Burr models to two data sets, the number
of battle deaths in 60 wars before the Korean war and 35 struggles after this
conflict. In this section, we will use the methods developed in Chapter 8 and
Chapter 9 to ensure the conclusions are more robust against misspecification of
the model. We will use the same parametric model and control parameters as
in Section 7.5. Many of the arguments will be similar to those given earlier in
the thesis, so some details will be left out.

In Section 7.5, we used the procedure described in Section 7.3 to choose the
balance parameter, a, used in construction of the hybrid likelihood function. In
this section, we will no longer assume the data really is inverse Burr distributed,
and hence, this method can no longer be applied. Instead, we will compute
HFIC, as defined Definition 9.3.1, for each value of a in a grid of points between
0 and 1 and choose the balance parameter minimizing the information criterion.
We chose to use the median as focus parameter. In this case, (9.6) must be used
to compute HFIC. Since the true density of the data is unknown, we estimated
f [F−1(0.5)] with a nonparametric kernel estimator. In Figure 10.2, we have
plotted the result.

The minimizers found were a1 = 0.49 and a2 = 0.46 for the older and newer
conflicts respectively. For neither of the data sets a = 0 was chosen. This
indicates the inverse-Burr fit might not be ideal for estimation of the median.

Now that we have chosen balance parameters, we can find the maximum
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Figure 10.2: The plot on the left-hand side shows HFIC as a function of the
balance parameter for the data set with battle deaths in wars before the Korean
War. To the right, a corresponding plot for the newer conflicts is displayed.
The minimum is a1 = 0.48 for the first and a2 = 0.34 for the second data set.

hybrid likelihood estimates of the median in the two models. For the older wars,
the resulting estimate was 11702. For the newer conflicts, the estimate was
4930. Both these numbers are closer to their empircal estimates, 11375 and 5240
respectively, than the corresponding values obtained with maximum likelihood,
10399 and 4749. We can also compute approximate confidence curves using
Theorem 8.2.2 and the delta method. This is very similar to what was done in
Section 7.5. Details are therefore omitted, but a plot can be found in Figure 10.3.
In place of J∗ and K∗ we used the estimators defined in Section 8.3.

When computing the variance of the maximum likelihood estimates, we
used the matrix J−1KJ−1 in place of J−1. Because of this, the dotted curves
in Figure 10.3 are approximate confidence curves for the true medians in the
distributions if the model is specified correctly. If this is not the case, however,
they are approximate confidence curves for the minimizer of the Kullback-Leibler
divergence by the results of White 1983. A similar idea applies to the fully
drawn lines. If the data really follows an inverse-Burr distribution, they are
approximate confidence curves for the median in the two distributions. If this
is not the case, they can be used to make inference about g(θ0) where θ0 is the
minimizer of the distance function described in Section 8.1 and g returns the
median in the inverse Burr distribution with parameter θ for each θ.

Looking at Figure 10.3 we notice the confidence curves constructed using
maximum hybrid likelihood theory are narrower than the corresponding curves
obtained using maximum likelihood. At first glance, this might seem slightly
surprising, as we are used to thinking of maximum likelihood estimators as
asymptotically most efficient. This is, however, only true under model conditions.
If the underlying distribution is not a member of the parametric model fit to the
data, there is no guarantee that maximum likelihood estimators are consistent.
Furthermore, the maximum hybrid likelihood estimators will typically aim for
yet another different value. Hence, there is no theoretical result ensuring the
variances of one should be greater than that of the other.

We can now use Theorem 8.2.3 to make inference about, ψ, the ratio of
medians in the two data sets. After slightly modifying of the arguments and
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Figure 10.3: Approximate confidence curves for g(θ0) where θ0 is the minimizer
of the distance function from Section 8.1 and g(θ) is the median in an Inverse-
Burr distribution with parameters θ.

matrices, this is done similarly as in Section 7.5. We will therefore leave out the
details, but a confidence curve for the focus parameter is given in Figure 10.4.
The curve based on profile likelihood was construed using a version of Wilks
theorem for misspecified models, see e.g. appendix A.5 of Schweder and Hjort
2016.

Figure 10.4 looks quite different from the corresponding plot in Section 7.5.
The approximate confidence curve obtained using profile hybrid likelihood is
much narrower than the one based on maximum likelihood. As in Figure 10.3,
this is a consequence of a lacking model fit.

We can read confidence intervals and p-values off Figure 10.4. Using the curve
corresponding to profile likelihood, we find that [1.06, 4.50] is an approximate
90% confidence interval. For the profile hybrid likelihood the corresponding
set is [1.54, 3.59]. Raising the level to 95%, results in the intervals [0.92, 5.17]
and [1.42, 3.90] respectively. The p-value for testing ψ = 1 were 7.9% for profile
likelihood and 0.1% for profile hybrid likelihood. These results do, however, not
have as clear an interpretation as those of Section 7.5. If the model is specified
correctly, these are indeed approximate confidence intervals for the true ratio of
medians. If the true underlying distribution is not a member of the parametric
family, however, they can be used to make inference about quantities expressed
as functions of minimizers of the Kullback-Leibler divergence and da,µ from
Section 8.1.
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Figure 10.4: Approximate confidence curves for the ratio of medians in the two
distributions. The full drawn line is constructed using Theorem 8.2.3, while the
dotted line is based on a version of Wilks theorem outside of model conditions.

10.3 Modeling income in Oslo

In this section, we will revisit the example of Section 4.1 with yearly income in
Oslo and fit different models to the data set using maximum hybrid likelihood.
We will use the concepts from Chapter 9 to choose, not only the balance
parameter, but also which of the models to use. Afterwards, we will apply the
limit results of Chapter 8 to make inference about the mean yearly income in
Oslo.

To apply the hybrid likelihood theory, we need to decide on a parametric
family of densities to fit to the data. In this section, we will fit and evaluate
four different models: the family of log-normal, Weibull, gamma and Dagum
densities. These are all commonly used when modeling income distributions.
For an overview of literature regarding this and arguments for using, and a
definition of, the Dagum distribution see Dagum 1977. To get a general idea of
how well the different models work, we fitted them all using maximum likelihood.
The resulting densities can be found in Figure 10.5 together with a histogram
of the observations.

Looking at Figure 10.5, it is not clear what model is the best one. All
seem to fit the data well enough and could be used for further analysis. In
this example, however, we are only interested in investigating the mean yearly
income in Oslo. The quality of this estimate is therefore more important to
us than that of the overall model fit. Furthermore, each of the maximum
likelihood estimates in the different models can be made more robust against
model misspecification by using the hybrid likelihood theory developed in this
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Figure 10.5: A histogram of the mean yearly income in the different sub-districts
of Oslo together with estimated densities in four different models.

thesis. Different choices of models, control parameters and balance parameters
will all result in different estimates and confidence intervals for the mean yearly
income in Oslo. To choose one of them, we will use the focused information
criterion for hybrid likelihood defined in the previous chapter.

We want to estimate the mean in the distribution of yearly income in Oslo.
This quantity is therefore a natural choice for both control and focus parameter
and was used for all the models in this example. To choose what model and
balance parameter to use, we computed HFIC as defined in Definition 9.3.1 for
each model and each value of a in a grid of points between 0 and 1. The results
can be found in Figure 10.6.

Looking at Figure 10.6, we notice some interesting trends. For both the
Weibull and Dagum model, we see that HFIC decreases as a function of a. In
both these cases, we are therefore better off using pure empirical likelihood,
rather than the more complicated hybrid likelihood strategy, to estimate the
mean yearly income. The reason for this is that the maximum likelihood
estimates of the mean in these two models, 527925 and 534479 respectively, are
quite far off from the empirical mean: 529490. This indicates that the bias of
the estimators are large, and hence, estimation would benefit greatly from the
increased robustness of the empirical likelihood part of the hybrid likelihood
function. On the other hand, we notice the opposite trend for the gamma model.
The HFIC-curve is increasing as a function of a. Because of this, a standard
maximum likelihood approach results in lower asymptotic mean squared error
than a hybrid one. There is a good reason for this. As explained in Section 4.2,
one of the entries in the score function in the gamma distribution is

y − α

β

where α is the shape and β the rate parameter in the distribution. Hence, the
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Figure 10.6: HFIC as functions of the balance parameter in the four different
models fitted with maximum hybrid likelihood, using the mean as control
parameter. The expected yearly income was used as focus parameter in
computation of HFIC.

maximum likelihood estimator in a gamma model aims for (α0, β0), satisfying

0 = E
[
Y − α0

β0

]
⇔ α0

β0
= EY.

The mean in a gamma distribution with shape parameter α and rate parameter
β is α/β. So, because of the above, the maximum likelihood estimate of the
mean in a gamma model is always consistent for the true expectation. Because
of this, there is no need for additional robustness when using the gamma model
to estimate means, and addition of a non-parametric part to the likelihood
function does nothing but increase the variance of the maximizer.

For a close to 1, the corresponding HFIC-values in the different models are all
quite similar. This is in agreement with theory as the hybrid likelihood function
is almost equal to the empirical likelihood function for high values of the balance
parameter. Hence, the resulting maximum hybrid likelihood estimates of the
mean will be quite close to the maximizer of the empirical likelihood function
when a is close to 1. The maximizer of the empirical likelihood function is the
same for all models, and so estimates and confidence intervals for the mean in
the different models will be similar when a is large. In particular, this ensures
that the corresponding HFIC scores are almost identical.

Figure 10.6 provides one additional insight. The HFIC-curves corresponding
to the log-normal model is completely dominated by those of the other families
of distributions. Furthermore, it is minimized at a = 0.49. This indicates
that, for estimation of the mean yearly income in Oslo, a log-normal model,
fitted with hybrid likelihood using the mean as control and 0.49 as balance
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parameter, should be chosen. It is important to remember that this choice is
only optimal for estimation of the mean yearly income. There is nothing in
the above analysis guaranteeing that the resulting log-normal model will be a
good overall fit to the data, nor that the maximum hybrid likelihood estimate
of other focus parameters will have low asymptotic mean squared error. In this
example, however, our goal is to make inference about the mean yearly income
in Oslo. The above analysis therefore suffices.

Now that we have decided on a parametric model, balance parameter and
control parameter, we are ready to fit the log-normal model to the data using
maximum hybrid likelihood. We used the ensuing parameterization of the
log-normal model,

fµ,σ(y) = 1
yσ
√

2π
exp
(
− (log y − µ)2

2σ2

)
,

and obtained the following hybrid likelihood estimate of (µ, σ): (13.1374, 0.2861).
Using standard maximum likelihood, we got (13.1364, 0.2859). The maximum
hybrid likelihood estimate of the mean yearly income was computed to be
528810. This is slightly closer to the empirical mean, 529490, than the maximum
likelihood estimate, 528248.

We can use the results of Chapter 8 to make inference about the mean
yearly income in Oslo. Combining Theorem 8.2.2 with the delta method allows
us to find the limit distribution of the maximum hybrid likelihood estimator
of the mean yearly income. This can be used to construct confidence curves
and intervals for the quantity. The procedure is very similar to what was done
in Section 7.5 and will not be repeated here, but a plot of an approximate
confidence curve can be found in Figure 10.7.

As in Section 10.2 the confidence curve obtained with maximum likelihood
theory is constructed using the results of White 1983. Because of this, the
curve is an approximate confidence curve for the true mean yearly income in
Oslo when the model is specified correctly. If the data is not really log-normally
distributed, however, the curve is an approximate confidence curve for g(µ0, σ0)
where g(µ, σ) is the mean in a log-normal distribution with parameters µ and
σ and (µ0, σ0) is the minimizer of the Kullback-Leibler divergence. The curve
constructed using maximum hybrid likelihood can be interpreted similarly. If
the model is specified correctly, confidence interval of the mean yearly income
can be read off it. Otherwise the same holds true for g(µ1, σ1) where (µ1, σ1) is
the minimizer of the distance function defined in Section 8.1.

The two curves in Figure 10.7 are very similar. This is a consequence of the
quality of the maximum likelihood estimate of the mean yearly income. Since
this is close to the empirical mean, the the effect of the empirical likelihood
part of the hybrid likelihood function is minor. Because of this, there is not
much difference between using maximum hybrid or standard likelihood to fit
the log-normal model. This results in similar conclusions and, in particular,
confidence curves that are almost indistinguishable.
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Figure 10.7: Approximate confidence curves for the mean yearly income in
Oslo. The full drawn line is constructed with maximum hybrid likelihood theory.
The dotted graph is based on maximum likelihood theory.
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CHAPTER 11

Concluding remarks

A lot of the research regarding empirical likelihood has been focused on
applications and adjustments of the concept to specific situations. This has
not been the topic of this thesis. Instead, we have developed theory providing
intuition about, as well as extensions of, the original concepts in Owen 1991.
The results have also been applied in a hybrid setting, combining parametric
and non-parametric methods.

The first achievement of the thesis was the statement and proof of
Theorem 3.0.5. The result guarantees that the profile empirical likelihood
function has a chi-squared limit at the true parameter. This can be used to
construct approximate confidence intervals for a broader class of parameters
than those described by Owen 1991 or Qin and Lawless 1994. In Chapter 4 we
illustrated how the result can be applied with three examples.

In Chapter 5, we expanded on the ideas of Molanes Lopez, Van Keilegom,
and Veraverbeke 2009 to develop an alternative characterization of the empirical
likelihood function. The results of this chapter give insight to what goes
on behind the scenes and more intuition about how the empirical likelihood
function behaves. In particular, the alternative characterization reveals that
the logarithm of the empirical likelihood function, divided by the sample size, is
close to the mean of a certain function. In Chapter 6 this was used to show the
results of Qin and Lawless 1994, involving consistency and asymptotic normality
of the maximum empirical likelihood estimator, in a new way.

In the second part of the thesis, we left the realm of purely non-parametric
statistics, and the remaining chapters were all dedicated hybrid likelihood. In
Chapter 7, we summarized the already existing theory regarding this concept.
In addition, we proved a profiling result and gave some examples of how hybrid
likelihood theory can be applied.

Most of the results in Hjort, I. McKeague, and Van Keilegom 2018 can only
be used when the true underlying distribution is a member of the parametric
family fit to the data. In many cases, this is not the case or at least an
assumption we do not want to make. In Chapter 8, we discarded the condition
and investigated what happens under possible misspecification of the parametric
model. The results of this chapter are useful in practice, as we can make model
robust inference with them, but they also serve another purpose. The proofs in
Chapter 8 were largely based on what was done in Chapter 5 and Chapter 6, and
the analysis would not have been possible, had we not developed the alternative
characterization of the empirical likelihood function in the first part of the
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thesis. Hence, Chapter 8 can also be seen as an example of how the theoretical
results of Chapter 5 and Chapter 6 can be used.

When working with the hybrid likelihood function, one needs to choose how
much weight is put on the parametric and non-parametric part of the map.
This is reflected by the choice of balance parameter, a, used in construction
of the hybrid likelihood function. What the ideal value of a is, will depend
on the situation and what we want to infer from the data. To use the hybrid
likelihood function in practice, we need to develop a general way of choosing
the balance parameter. In Chapter 9 we did just this. We found a fitting
information criterion and derived a formula for computing this value in the
context of hybrid likelihood estimation. We called the quantity HFIC, and in
Section 9.4 we proposed choosing the balance parameter in a way minimizing the
information criterion. Lastly, Chapter 10 was dedicated to examples illustrating
and applying the results of Chapter 8 and Chapter 9.

In this thesis, we have only considered i.i.d. data. Such an assumption is
convenient as it simplifies certain arguments, but many of the results can be
lifted to non-i.i.d. situations with the sufficient mathematical efforts. In the
remarks following the proof of Theorem 3.0.5 we discussed how this could be
done for this particular theorem, but extensions of the other results in the thesis
to e.g. regression settings, is certainly something that can be explored.

In Chapter 6 and Chapter 8 we assumed the estimating function was one
dimensional. This was mathematically convenient, but it should be possible
to extend the results to hold for multidimensional estimating functions as
well. Rigorous arguments would requite more advanced matrix calculus than
what we have considered in this thesis, but is something that deserves further
investigation.

In addition to the above, the remaining assumptions of the theorems in
Chapter 6 and Chapter 8 can probably be relaxed somewhat. Our proofs
were largely based on theorems in Vaart 1998, but there are other ways to
proceed. For instance, Hjort and Pollard 1993 can be used to show asymptotic
normality of the maximum empirical and hybrid likelihood estimator when the
corresponding function is concave. Furthermore, we showed convergence of the
stochastic processes

An(s) = −2 logELn
(
θ0 + s√

n

)
and

Bn(s) = hn

(
θ0 + s√

n

)
− hn(θ0)

to certain limits in this thesis. An alternative way of proving Theorem 6.3.2 and
Theorem 8.2.2 could be to work with An and Bn directly, and use them to derive
limit distributions of maximum empirical and hybrid likelihood estimators. This
might lead to alternative conditions for convergence of the maximizers. For
instance, limiting normality of maximum empirical likelihood estimators, when
the estimating function is on the form m(y, µ) = I(y ≤ µ) − q for q ∈ (0, 1),
can be shown with arguments like these.

When proving limiting normality of the maximizer of the empirical and
hybrid likelihood function, we only dealt with the case where the estimating
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function was differentiable and the convergence of order OPr(1/
√
n). Extensions

of the results to non-smooth situations or other orders of convergence, could
be interesting to investigate further. In Kim and Pollard 1990 and Vaart
and Wellner 1996 the authors prove limiting normality of M-estimators in
such situations. Similar arguments might be applicable for maximizers of
empirical and hybrid likelihood functions. In particular, we believe the case
with m(y, µ) = I(y ≤ µ)− q, for q ∈ (0, 1), could be interesting to investigate
further.

There were ideas we had to let go due to time constraints. One such topic was
mentioned in the remarks following the proof of Theorem 3.0.5. The convergence
of the stochastic process An to the limit A, can be used for other purposes than
what we have done in this thesis. One such example is, as mentioned above,
to give yet another proof of asymptotic normality of the maximum empirical
likelihood estimator. Profiling results for the sum of independent processes can
also be proved rigorously using this fact and derivations analogous to those in
the proof of Theorem 3.0.5. This was mentioned in Section 4.3 and Section 7.5,
but a rigorous argument was not given.

In Section 5.4, we proposed approximating distributions with truncated
versions to deal with the lack of solution to the equation(

E{m(Y, µ)/[1 + λTm(Y, µ)]}
Pr[1 + λTm(Y, µ) ≤ 0]

)
= 0 (11.1)

in the case wherem(Y, µ) has unbounded support. In most applications, such an
approximation is unproblematic, but the solution is not theoretically satisfying.
One possible research topic could therefore be to work with a better way of
dealing with the lack of solution to (11.1).

We have proved several limit results in this thesis and showed how they
can be used to construct approximate confidence intervals and curves. As the
number of observations grows to infinity, the results will be more and more
accurate, but for small sample sizes, the approximations might work quite badly.
In parametric likelihood theory, Barlett corrections are a way to deal with this.
As mentioned before, Barlett correctability of the empirical likelihood function
has been showed by DiCiccio, Hall, and Romano 1991, but we believe that
similar corrections can be made for both the profile empirical likelihood function
and the profile hybrid likelihood function, allowing for better approximation of
their distributions. Arguing along the lines of chapter 7 in Schweder and Hjort
2016 is a possible approach.

Hybrid likelihood is not the only way to increase robustness of maximum
likelihood estimates. There exists multiple robust parametric methods, and
for a general overview, we refer to section 2.7 in Schweder and Hjort 2016.
One approach that has particularly many similarities with hybrid likelihood is
proposed by Basu et al. 1998. This article considers fitting a parametric model,
fθ for θ ∈ Θ, to data, following a distribution with a density, f , in a way that
bears some resemblance to hybrid likelihood. The proposed estimator of θ aims
at the minimizer of the divergence

da(f, fθ) =
∫
fθ(y)1+a −

(
1 + 1

a

)
f(y)fθ(y)a + 1

a
f(y)1+a dy.

As a goes to 0, da approaches the Kullback-Leibler divergence. For a = 1, da
is L2-loss. Hence, this method can be seen as a robust extension of maximum
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likelihood estimation, with the parameter a deciding how much we should trust
the parametric model. This idea is very similar to that of hybrid likelihood. In
Section 8.1, we showed that the maximum hybrid likelihood estimator aims at
the minimizer of the distance function

da,µ(f, fθ) = (1− a)KL(f, fθ) + aE log{1 + λ[µ(θ)]m[Y, µ(θ)]},

where, just as in Basu et al. 1998, a decides the trade-off between robustness
and efficiency and d0,µ equals the Kullback-Leibler divergence. It would be
interesting to see how hybrid likelihood compares to the methods of Basu et al.
1998 and similar approaches. Studies like those of Jones et al. 2001 could be
made.

In Chapter 9, we derived an asymptotically unbiased estimator of the mean
squared error of maximum hybrid likelihood estimators of focus parameters.
We chose to work with this particular loss function as it is mathematically
easy to work with, in addition to being one of the most popular loss functions.
The ideas presented in this chapter are, however, not limited to mean squared
error, and generalizations of the information criterion to other loss functions is
something that can be investigated further.

Additionally, the procedure we used in Section 10.3 to choose between
different parametric models could use some additional investigation. Assume we
have N candidate models,M1, . . . ,MN , and want to fit them by maximizing the
corresponding hybrid likelihood functions. To choose what model and balance
parameter to use, one could use HFIC. To do this, choose a focus parameter and
compute the value of the corresponding information criterion for each model
and each a in a grid of points between 0 and 1. Let HFICj denote the minimal
value of HFIC for model j. To choose between M1, . . . ,MN , we can compare
the values HFICj for j = 1, . . . , N and choose the model (and corresponding
balance parameter) for which this estimate is the smallest. This procedure is
easily implemented and makes intuitively sense, but warrants some additional
investigation. The minimal values HFICj for j = 1, . . . , N are themselves
stochastic, and hence, investigation of how well this method works in practice
is certainly a topic to explore.
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