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Abstract

Software design patterns are a common tool to solving a common set of
problems, and are widely used in object-oriented programming. Likewise,
functional programming has its own set of patterns and techniques that solve
common problems in the functional programming space.

In this study, we have examined eight design patterns from Gang of
Four’s seminal work Design patterns: Elements of Reusable Object-Oriented
Software, and how they apply to functional programming, which functional
programming patterns can be used to implement these design patterns, and
how applicable are they to an functional programming language.

We implemented these patterns in the object-oriented programming
language Java and the functional programming language Haskell.

From this study, we found that while some design patterns are applicable
to functional programming, some were not, and only a few are reasonably
useful in an functional programming context.
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Chapter 1

Introduction

Ever since the inception of programming as a field of engineering and science,
techniques to handle program complexity have been explored, discovered and
refined to optimize the legibility, maintainability and efficiency computer
programs. In the pursuit of these techniques, software developers borrowed
the term “Design Patterns” from architecture [1] to describe reusable,
composable and extensible solutions to common programming problems.

1.1 Introduction to design patterns

Although the term “Design Pattern” most often describes a solution aimed
for object-oriented programming (OOP) systems, the definition itself is
applicable to many kinds of patterns and techniques found in programming.
The Gang of Four (GoF), Gamma et al., authors of the well-known book
Design patterns: Elements of Reusable Object-Oriented Software, describe
design patterns as follows:

[They are] descriptions of communicating objects and classes that
are customized to solve a general design problem in a particular
context. Gamma et al.[4, p. 24]

In this thesis we use GoF’s definition of OOP design pattern. A design
pattern has four essential elements:

• Name: A pattern must have a name, most often a word or two,
that refers to the pattern, its problem and the solution. This is to
increase our design language and better facilitate higher level design
abstractions.

• Problem: The pattern must have a context or problem in which it
is applied. The problem might describe a set of conditions, a set of
properties that must be upheld, or a set of invariants to enforce, for
the pattern to be applicable.

• Solution: The solution describes how the problem is mitigated, its
contexts, its relationships, its responsibilities and the interconnected
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components that make up the solution to the problem. The solution
is not a concrete definition of how to solve the particular problem in
question, but rather a basic template which can be adapted to the
myriad of similar problems that fit the design pattern in question.

• Consequences: The positive and negative aspects of applying the
design pattern to the problem. These range from performance trade-offs,
readability improvements, flexibility, portability, memory constraints
etc.

As well as design patterns, we use Haskell type classes as defined in Haskell
2010 Language Report[11], as well as the more up-to-date Typeclassopedia,
which is a refinement of Yorgey seminal article ‘The Typeclassopedia’ in The
Monad.Reader journal.

Even though the term “design pattern” is rarely used in the functional
programming (FP) field, we will group patterns, techniques, and solutions in
the FP field under “functional patterns”.

1.2 Motivation
While design patterns are a widely known subject in terms OOP languages,
the term “design patterns” rarely comes up when discussing solutions to
general programming problems in FP. Functional patterns have a tendency
to go by different names, and many originate from mathematics and other
studies of mathematical structures. GoF’s design patterns might not apply
directly to FP, the majority of the problems described by GoF do occur
in FP as well. Exactly how these kinds of problems are solved in FP, and
what functional patterns are used to solve these problems in FP, is what
this thesis aims to examine.

So for a given GoF design pattern, which functional patterns are used in
FP to solve the described problem, and how do these improve the qualities
of the code in question.

While different programming languages have different strengths and
weaknesses in and of their own, different programming paradigms have
different strengths and weaknesses as well. What might be a major problem
requiring a distinct pattern to maintain readability and flexibility in one
paradigm might be entirely trivial in another paradigm, or it might not even
exist as a concern altogether.

Differences in patterns between OOP and FP have rarely been studied
in academic papers, and even less so as empirical studies. We believe there
is more to learn from performing these comparisons and measurements.

1.3 Problem Statement
In this thesis, we generate and analyse data to learn problems solved by design
patterns in OOP translate to similar problems in FP. We limit this thesis
work to two languages that are characteristic of their programming paradigm.
We also limit the design patterns for OOP to a subset of those found in
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Design patterns: Elements of Reusable Object-Oriented Software by Gamma
et al. [4]. When comparing FP type classes to design patterns, we restrict
ourselves to only those type classes contained in ‘The Typeclassopedia’ by
Yorgey [23] as well as any type classes contained in Haskell’s base package
which ships with the Glasgow Haskell Compiler (GHC).

Our problem statement is thus as follows:

How are the problems solved by the object-oriented programming
Gang of Four design patterns solved in functional programming,
and which attributes of these paradigms cause these differences?

1.4 Goal

The goal of this thesis is to compare the ergonomics between OOP and
FP when solving the problems solved by design patterns. We contrast
and compare various measured qualities between the generated code of the
languages.

1.5 Approach

This thesis is an empirical study containing multiple sub-studies. Each
sub-study has one design pattern to be studied. We define requirements,
and implement a program in each of the two languages that satisfies these
requirements. We then gather data through metrics and code, and perform
a brief analysis. We then draw a conclusion for that specific design pattern.

1.6 Work Done

For the purposes of writing this thesis, we have investigated and examined a
number of design patterns for OOP and various type classes and techniques
for FP. We have looked into how others have compared these two paradigms,
and especially how others have compared OOP design patterns with FP
patterns.

1.7 Evaluation

For each selected design pattern, an implementation is made for each langauge.
We gather data from these implementations through some metrics defined
further in Section 5.3. We also gather data through qualitative observations
made during the implementations, as well as afterwards when evaluating
them in a more complete state.

1.8 Results

The measurements and results made during this study are difficult to
summarize in this introductory chapter. The results for each case is available
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in the case sections in Chapter 6. The summarized and collated results are
available in Chapter 7.

As a very brief summary: the Java implementations required more code,
while the Haskell implementations were generally more dense in complexity.

The code produced as part of this thesis work is available at https:
//github.com/Gipphe/PLMasterThesis.

1.9 Conclusion

Our main findings from this study are as follows. These conclusions are
described in more detail in Chapter 9.

Problem space Some problems in OOP simply do not exist in FP. As
such, some patterns are not applicable to FP because there is no problem to
solve.

Sizes and complexities Some patterns are simple to implement in OOP,
while the equivalent solution in FP might be complex, or require more than
one pattern. Some patterns require a sizeable amount of code in Java, while
being trivial to implement in Haskell. There is a clear mixture of both cases.

Concerns and values Most FP patterns are smaller than OOP patterns.
FP is heavily focused on composability, while OOP is more focused on
imperative procedures.

1.10 Limitations

While we feel confident in the results and conclusions in this study, it is merely
a master’s thesis. We acknowledge the limitations of our own capabilities, as
well as the short timescale in which this study was performed. Had we more
time, we would have examined all of the GoF design patterns instead of just
the selected eight.

We describe our observed limitations in further detail in Section 8.6.

1.11 Outline

This thesis consists of four parts.

1. Part I is an introduction and overview of the study. It aims to present
the motivation for this thesis, as well as an overview of the thesis
contents.

2. Part II contains the background and theoretical knowledge necessary
for discussing the results of this thesis.

3. Part III describes the methods used to gather data and evaluate the
results.
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4. Part IV describes the cases and implementations presented. It also
describes the results for each individual case.

5. Part V examines the results from Part IV, and draws conclusions based
on this data.
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Background
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Chapter 2

Programming paradigms

2.1 Introduction to programming paradigms

Programming languages can be categorized in a multitude of ways. From the
level of abstraction from the actual machinery in the computer, how programs
written in the language are structured, strictness and verbosity, and many
other qualities can be used to qualify a given programming language. Some
programming languages strive to disallow invalid programs through the use
of type systems, contract-based programming and pre- and post conditions,
while others take a more hand-off approach, allowing the programmer full
control over the life cycle, correctness and resource usage of the program,
coupled with the increased discipline those responsibilities demand. Some
languages prefer a specific paradigm of programming, while others allow for
multiple paradigms of programming, often interchangeably or even all at
once.

Before we tread too far forwards, we have to define “paradigm” in
programming languages. According to the online dictionary Merriam-
Webster, the general term “paradigm” means, among other definitions:

“A philosophical and theoretical framework of a scientific school
or discipline within which theories, laws, and generalizations and
the experiments performed in support of them are formulated.”
[13]

We personally find this definition quite fitting for the term “programming
paradigm” as well. In the scientific school of software development we have
theories, laws and generalizations which follow specific philosophical processes
to develop programs. These philosophical processes can be in conflict with
each other, with differing values that do not coexist well in a program. They
can be in harmony with each other, furthering the quality of the program
more when used in tandem than if used on their own. Such philosophical
processes and conventions are what constitutes programming paradigms.
Some have clear definitions on how a program should be structured, while
some merely describe a general style or pattern of programming. Some
define how information is treated, and how data is transformed, during the
life cycle of the program. How the program is split up and how program
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behaviour is represented is tied to the paradigm of the program in question,
and subsequently the paradigm the programming language used is able to
represent well. [3]

The two programming paradigms we take a look at in this study is the
“Object-oriented programming (OOP)” and the “Functional programming
(FP)” paradigms.

2.2 Object-Oriented Programming

Object-oriented programming, as its name implies, focuses on the concept of
objects containing data, where each object is a container with its own data,
and is responsible for manipulations and interactions with its contained data.
Objects then communicate with each other through the publicly available
methods and operations available on each object. [14]

While the specific meaning of “object-oriented programming” has changed
over the years, OOP encompasses some key concepts:

• An object is a collection of operations that share state. These operations
may interact with the contained state, but said state is inaccessible
to the outside world, and may only be interacted with through the
collection of operations. This property is referred to as “encapsulation”,
and allows objects to define a definitive way for the outside world to
interact with its state. [22]

• Classes, serving as templates for creating new objects of a specific type,
serve as a formal method of instantiating new objects of a specific
shape. [22]

• Through inheritance, one class may serve as the basis for other classes,
which may in turn serve as the basis for further more classes, building
a hierarchy of behaviour and operations. [22]

• Any inheriting class (subclass) can be treated as if it was any inherited
class (superclass) in its line of inherited classes. [22]

In 1967, Ole-Johan Dahl and Kristen Nygaard developed what is today
recognized as the first OOP language, Simula 67. It introduced what we
today consider core OOP concepts such as objects, classes, inheritance and
dynamic binding. [6]

2.3 Functional Programming

What differentiates FP from OOP, and more conventional Procedural
Programming languages, is that FP focuses more on functions, and composing
functions together into entire programs. In FP, “function” has a very specific
meaning, and describes a more mathematical function from one value to
exactly one other value, providing a mapping between the two sets of possible
values. FP emphasizes that a function should be “pure”, and cannot perform
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any side-effects. A function should only take in data as its arguments,
and return the result of its computation. It should not be necessary to
know exactly how this return value is computed from the outside. Some
FP languages enforce this restriction on functions, and are thus dubbed
“pure” languages, while those that do not enforce purity are deemed “impure”
languages. [20] In pure FP languages, purity has multiple implications on
how FP languages work:

• Data structures have to be immutable, because mutating data changes
that piece of data in all places it is referenced, which is considered a
side-effect. Thus, to update a piece of data, a new instance of that
data is created with the requested changes applied.

• Functions are referentially transparent, meaning that for any given
input, the function will always return the same result regardless when,
how or how many times it is called with the piece of input.

• In languages that support non-strict (lazy) evaluation, functions might
not even be called if their result is not required. An example of this in
Haskell:

1 add1 x = x + 1
2
3 main = do
4 let y = add1 4
5 return ()

Without describing Haskell’s syntax quite yet, here in main, we first
compute add1 4, which returns 5, but then we disregard that returned
value and simply return (), terminating the program. Haskell
supports lazy evaluation, meaning - in simple terms - that only the
values that are required by the program are actually computed. Here,
y is never used, and so is never computed, which means add1 is never
called.

Treating these properties as invariants on functions themselves, it is
possible to run a function exactly how many times is necessary, whether
it be zero, one or more times, and it may even be run in parallel without
interference since the functions do not interact with the outside world.

Functions in FP can themselves be treated as values to be passed around
a given program. Functions can take other functions as arguments, and use
them in their definition. Functions that take other functions as arguments,
and functions which return functions as their results, are called “higher-order
function (HOF)”, while a function that is able to be passed as a value is
called a “first-class function”, where “first-class” denotes whether the value
in question can be passed around and treated like any other value in the
program.

Programs in FP tend thus to revolve around data types with a set of
functions that interact with said datatype.

13



2.4 Summary of programming paradigms
In this chapter, we have presented and described programming paradigms.
We have described in detail the two programming paradigms OOP and FP,
and how briefly how they differ from each other.
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Chapter 3

Languages

3.1 Introduction to languages

A programming language is a method of communicating instructions to a
computer for the purposes of performing a set of computations or a set of
actions. The exact actions performed by the computer by a given instruction
depends on the programming language. A computer’s base instruction set
is defined by the computer’s processor and its architecture. While it is
possible to write computer programs directly in this instruction set, the
instruction set is very bare-bones and difficult to reason about for larger,
or even medium-sized, programs. As such, programmers have developed
higher level languages that can be translated by a “compiler” down to this
instruction set. These higher level languages abstract away the complex and
hard-to-reason-about details of the instruction set, and allow the programmer
to focus their efforts elsewhere. This instruction set is often called simply
“machine code” to differentiate it from human-readable code.

The higher level a language is, the more removed from the machine code it
is. While machine code consists of raw bytes being executed by the processor
directly, a programming language is often written in plain human-readable
text, with various keywords and symbols carrying specific predefined meaning
in the language.

3.2 Static typing

Most programming language has some notion of “types”. The type of a
piece of data describes the structure of the data in question. A number is a
different type from a piece of text, for example.

Programming languages are either statically typed or dynamically typed.
A statically typed language requires that the types of the program’s data is
known before the program is executed. A dynamically typed language has
no such requirement.

With static types, a compiler or a runtime system can analyse the
results of operations and transactions within the program ahead of time,
and discover whether there are mismatches between what is expected from
an operation and how the operation is defined. In regards to types, these
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kinds of mismatches are referred to as “type errors”. In a dynamically typed
language, these “type errors” would instead end up becoming either undefined
behaviour, or runtime errors.

3.3 Java

Java is a statically typed, compiled, class-based, object-oriented programming
language with heavy emphasis on portability and architectural independence.
Java’s core philosophy is “write once, run anywhere”, abbreviated “WORA”.
Java makes this possible by being a compiled language that compiles to
bytecode executable by a Java virtual machine (JVM). As long as there exists
a JVM implementation for a specific platform, it will be able to execute any
given Java program, as long as said program does not utilize platform-specific
binaries or libraries. [9]

With a heavy emphasis on OOP and its concepts, Java enforces all files
in a Java program to contain exactly one public class at the top level of the
file, with the same name as the file in question. Thus, each module in Java
is a class, and can thus be instantiated.

1 public class Main {
2 public static void main(String [] args) {
3 System.out.println("Hello ,␣world");
4 }
5 }

3.3.1 Inheritance

Here we use the access modifier “public”, which means the class in question
(as well as the contained method |main|) is available for any consuming
method or object. Java supports a total of four access levels:

• private: only the containing class has access to the item in question.

• package-private (the default when no access level is specified): the
containing class and all members of the package.

• protected: the containing class, all members of the package and all
subclasses of the class.

• public: everything has access.

Java also has the concept of a “package”, which in simplified terms is
the folder the source file is located in. A class in a sub-package has access
to package-specific content in its parent packages, but not the other way
around.

Inheritance is the core mechanism of code reuse, and Java supports single
inheritance from classes and multiple-inheritance from interfaces.

Inheriting from a class inherits all of that class’ methods, both its own
methods and inherited methods.
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1 public class Foo {
2 public int foo(int x) { /∗ . . . ∗/ }
3 }
4
5 public class Bar extends Foo {
6 public boolean bar(boolean x) { /∗ . . . ∗/ }
7 }
8
9 public class Main {

10 public static void main(String [] args) {
11 Bar bar = new Bar ();
12 int fooRes = bar.foo (12)
13 boolean barRes = bar.bar(true);
14 }
15 }

Because |Bar| inherits from |Foo|, it inherits |Foo|’s |foo| method as well.
Bar can override |Foo|’s |foo| method by defining a |foo| method of its own:

1 public class Bar extends Foo {
2 public boolean bar(boolean x) { /∗ . . . ∗/ }
3
4 public int foo(int x) { /∗ . . . ∗/ }
5 }

And thus |Bar|’s |foo| method would be called instead.
Java’s interfaces describe a contract that an implementing class must

adhere to for the program to be considered valid. This contract describes the
publicly visible methods of the implementing class and their signature. Any
method or operation may thus depend on this interface, and any implementing
class should suffice.

1 public interface Baz {
2 int quack(int quux);
3 }
4
5 public class Foo implements Baz {
6 public int quack(int x) { /∗ . . . ∗/ }
7 }

For Foo to be a valid instance of Baz, it must implement at minimum
int quack(int).

3.3.2 Generics

Java is a statically typed language. There are two kinds of types in Java:
primitive and non-primitive. All non-primitive values are objects, while the
primitive values are built-in for performance reasons. [2] Modern Java also
supports “Generics”, which allows you to pass types to a class or interface
and let the class or interface describe signatures and operations in relation
to this passed type.
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1 public class Foo <T> {
2 private T x;
3
4 public Foo(T x) {
5 this.x = x;
6 }
7
8 public T getX() {
9 return this.x;

10 }
11 }
12
13 public class Main {
14 public static void main(String [] args) {
15 Foo <Integer > foo = new Foo (12);
16 Integer x = foo.getX ();
17 System.out.println(x);
18 }
19 }

The above program prints 12 to the console. Here, the type T is generic.
Any fully qualified type can be passed, but note that we pass the type
“|Integer|”. This is a boxed type for int, and is required for passing an int
to Foo because primitive types cannot be passed to generic constructs. Java
supports automatically boxing primitive values to their boxed variants, and
as such we do not need to write |Integer.valueOf(12)| instead of simply 12.
[16] Java’s implementation of generics is considerably more advanced than
this description indicates, but for simplicity’s sake we will omit the remaining
details.

3.4 Haskell

Haskell is a statically typed, compiled, “pure” functional programming
language [7] with its roots as an academic language, but has seen extensive
use in practical and industrial applications.

Haskell by various researchers in academia during the 1990s as a means
to simplify writing about research and theorems in computer science (CS)
without having to describe the language used in code examples in their
articles. [8] The Haskell Committee was formed to steer the design of the
language.

A Haskell program is required to at minimum have a function called main
with the type IO (). The simplest “Hello world” program in Haskell looks
like this:

1 main :: IO ()
2 main = putStrLn "Hello␣world"

Including the function’s type signature is optional, but recommended. Type
signatures are defined separate from the function, and use the :: operator,
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which can be read as “has type”, to bind the type on the right-hand side to
the identifier on the left-hand side.

While Java’s syntax might be very familiar to the reader, Haskell’s
syntax warrants some explanation. Haskell’s syntax is simple yet extensible;
Haskell lets the programmer create user-defined operators with customizable
precedence rules. An example alias for the modulo operator (%):

1 (#) :: Int -> Int -> Int
2 x # y = x % y
3
4 main = print (3 # 2)

This would print 1 to stdout.
Because of Haskell’s functional nature, function application is just the

function name and its arguments, separated by white space, optionally
encapsulated by parentheses - or not optional if you pass the result of one
function to another function:

1 foo :: Int -> Int -> Int
2 foo x y = x + y
3
4 main = print (foo 1 2)

Operators are merely binary functions in Haskell, and regular named binary
functions can be treated in much the same way as an operator by using
backticks (‘)s:

1 main = print (1 ‘foo ‘ 2)

Using square brackets, you can form a list:

1 foo :: [Int]
2 foo = [1, 2, 3, 4]

And with parentheses and commas, you can form tuples:

1 foo :: (String , Double)
2 foo = ("Hello", 2.43)

Function types are defined with ->, while functions themselves can be
defined in two ways:

1 foo :: Int -> Bool
2 foo x = x > 3
3
4 bar :: Int -> Bool
5 bar = \x -> x > 3

Functionally, foo and bar are identical.
All functions in Haskell are “curried”, meaning they take one argument

and return a function which takes the rest of the arguments. Since function
application is only space-separating the function from its argument, this
effect is transparent when applying multiple arguments at a time, but when
partially applying a function by only supplying some of its arguments, you
create new functions that await the rest of the arguments.
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1 add :: Int -> Int -> Int
2 add x y = x + y
3
4 double :: Int -> Int
5 double x = add x x
6
7 increment :: Int -> Int
8 increment = add 1

Here, add takes two arguments and simply adds them together, returning
the result. double takes one argument, and doubles it through the use of
add. But increment takes one Int, and returns an Int, but there is no
argument defined in increment’s function definition. increment is written in
an “eta-reduced” style: since add 1 returns a function Int -> Int, and since
increment is a function Int -> Int, then add 1 is a sufficient definition for
increment.

3.4.1 Types

Haskell has many built-in data types that might seem familiar to programmers
coming from other languages, as well as some types which might seem foreign.
The list is too long for this essay, but some types which might seem unfamiliar
to programmers not used to FP are:

• (): called the “unit” type, it has only one value, namely (). [8] Useful
when a function performs some action in an environment (for example,
prints to the console), but doesn’t return a meaningful value.

• Maybe a: can either be a Nothing, which denotes the absence of a
value, or Just a which denotes the presence of a value of type a. [10]

• Either a b: can either be a Left a or a Right b. Often used when a
function can fail to perform its task, thus returning a Left someError,
or a Right result if the operation completed successfully. [10]

• (a, b): a two-tuple containing an element of type a and an element
of type b. Tuples can be of varying sizes, and each are considered
separate types. (a, b) is separate from (a, b, c), and they cannot
be treated the same. A function applied to a three-element tuple will
not compile if it expects a two-element tuple, and vice versa. There
is theoretically no upper limit to the number of elements a tuple can
have, and it might vary from implementation to implementation, but
the limit is at least fifteen, as stipulated by the Haskell 98 report. [8]

• Void: a completely empty type. There exists no values with the type
Void, meaning any type consisting of Void must have an alternative
value that it can return. Example:

1 foo :: Either Int Void
2 foo = Left 12
3
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4 bar :: Either Int Void
5 bar = Right ???

foo is a valid value of type Either Int Void, since the Left value can
be Int, but bar cannot exist because there is no value for type Void,
and as such we have nothing to replace ??? with. Haskell has a concept
of “bottom”, formally represented as ⊥. Bottom refers to a computation
which never completes due to some error or an infinite loop, or a value
which can never exist at runtime. undefined encapsulates the concept
of “bottom” in Haskell, and allows programs which could otherwise not
exist to compile. If undefined is ever encountered at runtime, however,
the program will raise an error and halt.

1 bar :: Either Int Void
2 bar = Right undefined

So if bar’s value is ever required to complete a computation, then the
runtime system would encounter undefined and raise an error.

One of Haskell’s strong points is its powerful and extensive type system
which allows the programmer to make assumptions and set pre- and post
conditions for their programs. This type system is built upon, among many
other things, “Algebraic Data Types”. In this sense, an “Algebra” refers to
how such a data type is made up of “algebraic” operations, namely “sums”
and “products”. The number of possible values a type can have is called the
“cardinality” of that type. A “sum” in this sense is the sum of the type in
question’s contained types’ cardinalities. Likewise, “product” is the product
of the contained types’ cardinalities.

Defining new data types is done through the use of the data keyword.

1 data C = CS Int | CT String

Following the data keyword, we have the name of the new type in question,
here D. The right-hand side of = denotes the possible values of this new type,
here CS Int and CT String. CS and CT in this case act as data constructors
for our new type. CS 12 and CT "foo" are thus valid C values.

Data types can also have one or more “type variables” attached to them.
Type variables resemble generics in Java, but are more closely related to the
mathematics of type-level programming.

1 data D a b = DS a | DT b

Here, D is a type constructor, taking two types as its arguments. So D Int
String is equivalent to our C type above. Thus, to make a value of type |D
String Bool|, you can either use DS String or DT Bool, so DS "foo" and
DT False are valid D String Bool values.

While Haskell does not have “objects” in the OOP sense, it does have
“records”, which are a collection of data indexed by accessor functions:

1 data Foo = Foo
2 { foo :: Int
3 , bar :: String
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4 }
5
6 f :: Foo -> String
7 f x = bar x ++ "␣" ++ show (foo x)
8
9 main = print (f (Foo { foo = 12, bar = "foobar" }))

When defining a record, Haskell automatically creates accessor functions for
its fields, here foo and bar, which have the types foo :: Foo -> Int and
bar :: Foo -> String respectively.

3.4.2 Type classes

Haskell’s core method of abstracting behaviour is using “type classes”.
Without going into too much detail on the implementation and specifics of
type classes, they enable overloading functions and operators for each type
that implements the type class. [21] An example of this is the Num type class.
Num encompasses multiple operators, but key among them are the + and -
operators. These operators, because they are defined in terms of the Num
type class, work on any types that implement the Num type class. Number
types like Int and Double both implement Num. The + operator has the
type Num a => a -> a -> a, where a is the type of the values being added
together, and as such the expression 2 + 2 can either have the type Int
or the type Double, and the exact mechanism of adding the two numbers
together would be handled by their corresponding type’s instance for that
type class.

3.4.3 Example data type

Example: the list type in Haskell. Lists in Haskell are singly-linked cons-lists,
meaning each element consists of the value in that element of the list, coupled
with the rest of the list. The list can also be empty, of course.

1 data List a
2 = Empty
3 | Cons a (List a)

So to create a value of this list of ours, we can either use Cons to create a
list from a value and another list, and Empty to create an empty list.

1 foo :: [Int]
2 foo = [1, 2, 3]
3
4 bar :: List Int
5 bar = Cons 1 (Cons 2 (Cons 3 Empty ))

Thus, though rather verbose, bar is equivalent to the list foo.
Next we want to define equality for our list. Equality is handled by the

Eq type class. Eq has many functions, but we only have to define one to get it
to work: ==. But how should comparing a list for equality work? Naturally,
we come to the conclusion that we need to compare the elements of the two
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lists being compared element-for-element. That means the elements also
need to be instances of Eq. Using “pattern matching” here, we can specify
how == reacts to each possible value of List a. We use pattern matching by
specifying the function for each pattern to match, much like how you would
specify equations in mathematics. Underscore, _, simply means we ignore
the value in that position:

1 (&&) :: Bool -> Bool -> Bool
2 True && True = True
3 _ && _ = False
4
5 instance Eq a => Eq (List a) where
6 Empty == Empty = True
7 Empty == _ = False
8 _ == Empty = False
9 Cons x xs == Cons y ys = x == y && xs == ys

Recursive structures in Haskell are very common, and our list is indeed a
recursive data structure. Thus, we first need a base case to handle, and
terminate the recursion. Comparing two empty lists will be one of the base
cases in this instance, since two empty lists are indeed equal to each other.
Then, if either list is empty while the other is not empty, they are not
equal. On line five, we have the more interesting case that handles actual
non-empty lists. We use pattern matching to get the element in the Cons, as
well as the rest of the list. We compare the two values x and y, and compare
the rest of the lists xs and ys, boolean AND-ing the results together. Thus,
comparing the list Cons 1 (Cons 2 (Cons 3 Empty)) with itself expands
into the following (shortening “Cons” to “C” and “Empty” to “E” to save
horizontal space):

1 C 1 (C 2 (C 3 E)) == (C 1 (C 2 (C 3 E)))
2 1 == 1 && (C 2 (C 3 E) == C 2 (C 3 E))
3 1 == 1 && (2 == 2 && (C 3 E == C 3 E))
4 1 == 1 && (2 == 2 && (3 == 3 && (E == E)))
5 1 == 1 && (2 == 2 && (3 == 3 && True))
6 1 == 1 && (2 == 2 && (True && True))
7 1 == 1 && (2 == 2 && True)
8 1 == 1 && (True && True)
9 1 == 1 && True

10 True && True
11 True

Creating new type classes is done with the class keyword:

1 class Foo a where
2 bar :: a -> Int
3
4 data Baz = MkBaz Int
5
6 instance Foo Baz where
7 bar (MkBaz x) = x

23



1 foo = round (1 + limit 10 (((23 + 5) / 4)))
2 bar = round $ (+) 1 $ limit 10 $ (/) 4 $ 23 + 5
3
4 p = mkReport
5 ( avg
6 ( take 10
7 ( sort
8 ( fetchInvoices "url"
9 )

10 )
11 )
12 )
13
14 q = mkReport
15 $ avg
16 $ take 10
17 $ sort
18 $ fetchInvoices "url"

Figure 3.1: Function application operator example

Here we define the type class Foo, which has the function bar. Baz then
implements this type class through the instance declaration, and describes
the implementation of bar for Baz.

3.4.4 Operators

An “operator” in Haskell is just a binary function whose “name” is made
up of symbol characters that can be used in infix position. They hold
no special meaning to the compiler, outside of how some operators are
defined for more primitive data types. This means we can define our own
operators, and there are a myriad of operators already defined in Haskell’s
base package. Operators can be used in their normal infix position, 1 + 2,
or they can be used like regular function, enclosed in parentheses, (+) 1 2.
The lattern form can be used to partially apply an operator like a reglar
function, increment = (+)1.

Apart from the commonly used addition (+), subtraction (-), multiplica-
tion (*) and division (/ for floating point numbers and ‘div‘ for integral
numbers), Haskell comes with a few operators not commonly seen outside of
Haskell and FP:

• ($) :: (a -> b)-> b -> a: Function application. f $ a is equival-
ent to f a. While this might seem useless, $ has a specific use because
of its low operator precedence. This allows the programmer to reduce
the use of parentheses.

In Listing 3.1, foo and bar are equivalent, and p and q are equivalent.
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1 p x = foo (bar x)
2 q = foo . bar

Figure 3.2: Function composition operator example

The function application operator can make Haskell code look very
foreign to programmers not used to Haskell. As such, we will minimize
its use in this thesis work to only places where the parentheses would
make things harder to read.

• (.) :: (b -> c)-> (a -> b)-> (a -> c): Function composition.
This is equivalent to the mathematical function composition operator
(◦).
In Listing 3.2, p and q are equivalent.
The function composition operator allows Haskell code to be rather
terse and hard to read. As such, we will minimize its use in this thesis
work to only places where the expanded form would be less readable.

• (<$>) :: Functor f => (a -> b)-> f a -> f b: Functor function
application. Essentially the ($) operator lifted into a functor.
Explained further in Section 4.3.3.

• (>>=) :: Monad m => m a -> (a -> m b)-> m b: Monadic bind.
Used for chaining monadic actions. Explained in Section 4.3.3.

3.4.5 Purity

As mentioned previously, Haskell is a “pure” programming language. Here,
“purity” refers to how a function in Haskell cannot interact with the outside
world in any way.

Haskell programs are composed of instructions for the underlying runtime
system on how to interact with the world. If the programmer want to interact
with the outside world in a function, the function has to return instructions
on what to do with the outside world. This is encapsulated in the IO a
type. IO a is, in simplified terms, a record containing the state of the world
outside of the program, coupled with some value a that is available after
the interaction with the outside world has come to pass. When calling a
function that returns IO a, that function must be evaluated in regards to
previous IO-values. Haskell has a type of notation that simplifies writing
these operations (as well as many others) called do-notation:

1 getLine :: IO String
2 getLine = ...
3
4 putStrLn :: String -> IO ()
5 putStrLn str = ...
6
7 main :: IO ()
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8 main = do
9 input <- getLine
10 putStrLn input

getLine returns the type IO String, meaning a new state of the world
(where a String has been read from stdin) coupled with the read String.
Using <-, we unwrap the String from IO, and the state of the world in IO is
carried on from getLine. While getLine does not have much impact on the
world directly, putStrLn does, by printing the passed String to stdout in
its world state. This world state is then evaluated, the String is printed to
stdout, and the result is simply (). Out program is finished at this point,
and thus exits normally, having read from stdin and printed to stdout.

We must stress that this is a gross and somewhat incorrect oversimplific-
ation of what is actually happening in the runtime system.

3.4.6 Laziness in brief

Haskell is a lazily computed programming language, and as such Haskell
supports infinite data structures, as well as built-in short-circuiting, since
only the elements of the structure that are required to perform the program’s
tasks are actually used.

1 foo :: [Int]
2 foo = take 6 (repeat 9)

Here we first use repeat to make an infinite list of repeating 9s, followed
by take, taking the first 6 elements of that list. Since take only uses the
first six elements of the list, the rest of the list is never evaluated. Even more
so: if foo is never used, it is never evaluated either, and neither repeat nor
take are ever called.

3.4.7 Language extensions

There are a large number of available language extensions that augment the
Haskell language, change the behaviour of data types, further enhance the
type system etc. While many of these are used very, very often when writing
modern Haskell, we limit ourselves to as few of these language extensions as
possible for simplicity’s sake.

These are the language extensions used in the implementations in this
study:

• ExistentialQuantification: This allows us to conceal the actual type of
something in a datatype.

1 data Hidden = forall a . MkHidden a

Here, Hidden has one constructor, MkHidden, which will take any type
whatsoever. After creating a value of type Hidden, we can get to this
concealed value through pattern matching:

1 foo :: Hidden -> _
2 foo (MkHidden x) = undefined
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In foo, we have x available to us, but we have “forgotten” what x is.
According to Hidden, x is of type a, and nothing more. As such, there
is little we can do with x in this example, and we cannot even return it
from the function because a isn’t defined outside of Hidden, so it will
never type check.
Inside of the data declaration using existential quantification, we can
add constraints to the contained type.

1 data AnyShow = forall a . Show a => MkAnyShow a

To construct a value of type AnyShow using its constructor MkAnyShow,
the supplied value must be an instance of Show. Since this “proof” is
remembered by AnyShow, it will be available to us when we pattern
match as well.

1 foo :: AnyShow -> String
2 foo (MkAnyShow x) = show x

We use ExistentialQuantification to allow us to make lists containing
items of different types, as long as they have the necessary type class
instances. In Java, this is a very common pattern:

1 interface Display {
2 String display ();
3 }
4
5 class Foo implements Display {
6 public String display () { return "Foo"; }
7 }
8
9 class Bar implements Display {

10 public String display () { return "Bar"; }
11 }
12
13 class Baz implements Display {
14 public String display () { return "Baz"; }
15 }
16
17 public class JavaExample {
18 public static void main(String ... args) {
19 Display [] list = new Display [] {
20 new Foo(),
21 new Bar(),
22 new Baz()
23 };
24 for (Display x : list) {
25 System.out.println(x.display ());
26 }
27 }
28 }
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To have this kind of list in Haskell, we have to use ExistentialQuanti-
fication:

1 {−# LANGUAGE E x i s t e n t i a l Q u a n t i f i c a t i o n #−}
2
3 import Control.Monad (forM_)
4
5 class Display a where
6 display :: a -> String
7
8 data AnyDisplay =
9 forall a . Display a => MkAnyDisplay a

10
11 instance Display AnyDisplay where
12 display (MkAnyDisplay x) = display x
13
14 data Foo = Foo
15
16 instance Display Foo where
17 display Foo = "Foo"
18
19 data Bar = Bar
20
21 instance Display Bar where
22 display Bar = "Bar"
23
24 data Baz = Baz
25
26 instance Display Baz where
27 display Baz = "Baz"
28
29 main :: IO ()
30 main = forM_ list (putStrLn . display)
31 where
32 list :: [AnyDisplay]
33 list =
34 [ MkAnyDisplay Foo
35 , MkAnyDisplay Bar
36 , MkAnyDisplay Baz
37 ]

• MultiParamTypeClasses: according to the original Haskell 2010
Language Report, type classes in Haskell can have a single type
parameter.

1 class OneParam a where
2 foo :: a -> a

This is considered a bit of an unfortunate oversight, and multi-
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parameter type classes can be enabled through MultiParamType-
Classes.

1 class TwoParam a b where
2 bar :: a -> b -> b

We use this as an alternative to more complicated language extensions
to allow us to do more with type classes, as MultiParamTypeClasses is
adequate to achieve the simple type classes we define.

• FlexibleInstances: normally, type class instances must be in the
form instance Foo T or instance Foo (S a). Instances such as
instance Foo (S T) are not allowed. FlexibleInstances remedies this
by allowing arbitrarily nested types, as well as type synonyms, in type
class instances.

• FlexibleContexts: Similarly to FlexibleInstances, normally, a type’s
context can only have type variables in its constraints. This means the
following definitions are disallowed:

1 instance Foo Int a => Bar a
2
3 foo :: Bar n String => n -> String
4
5 bar :: Foo Int => Int -> Int

FlexibleContexts relaxes this restriction, making the definitions
above valid. This is especially useful when using
MultiParamTypeClasses.

3.5 Differences between the langauges
Java and Haskell were both born at roughly the same time, but with widely
different purposes and use-cases in mind. Java was designed for portability
and OOP, while Haskell was designed for mathematical expressiveness and
CS research.

3.5.1 Objects vs. records

In Java, everything (except the primitive types) is an object, while in Haskell
the closest thing to objects is record types, which do not have methods and
are not mutable. In Haskell, functions inside a record do not have special
access to the record they are contained in, while in Java methods can access
their object through this.

3.5.2 Inheritance vs. subtyping

Java’s omnipresent inheritance is completely absent from Haskell. The closest
Haskell has to any sort of inheritance is subtyping:

1 data Foo = Foo Int
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where Foo’s type class instances can be specified in terms of the contained
Int:

1 instance Num Foo where
2 Foo x + Foo y = Foo (x + y)
3 Foo x - Foo y = Foo (x - y)
4 ...

3.5.3 Lambda expressions vs. higher-order functions

There are however various qualities from each language which has been added
to the other language. Most notably Java’s lambda expressions and streams,
while not directly inspired by Haskell in particular, stem from the FP world.

Taking a look at lambda expressions in particular, whenever you want
to pass just a function to another method, you had to wrap this function
in a class because functions themselves are not first-class values in Java.
The method expecting the function in question would then also have to
know statically the type of the argument object, and what methods it needs.
As such, you have to define an interface to describe the structure of this
anonymous class as well.

1 interface Arg {
2 boolean isGood(int x);
3 }
4
5 public class WithoutLambda {
6 static boolean doStuff(Arg arg) {
7 return arg.isGood (12);
8 }
9

10 public static void main(String [] args) {
11 boolean res = doStuff(new Arg() {
12 public boolean isGood(int x) {
13 return x > 10;
14 }
15 });
16 System.out.println(res);
17 }
18 }

This is exceedingly verbose. The Arg interface has a single abstract
method defined, meaning it is considered a “functional interface”. Java
supports lambda expression syntax for functional interfaces, meaning you
need only write a heavily abbreviated method, (x) -> x > 10, and pass
that to the method in question.

1 interface Arg {
2 boolean isGood(int x);
3 }
4
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5 public class WithLambda {
6 static boolean doStuff(Arg arg) {
7 return arg.isGood (12);
8 }
9

10 public static void main(String [] args) {
11 boolean res = doStuff(x -> x > 10);
12 System.out.println(res);
13 }
14 }

In addition to supporting functional interfaces in this way, Java also
comes with multiple functional interfaces built-in for these kinds of purposes.
One of them is the Predicate<T> interface:

1 interface Predicate <T> {
2 boolean test(T t);
3 }

Which further simplifies our toy program, allowing us to completely omit
Arg:

1 import java.util.function.Predicate;
2
3 public class PredicateExample {
4 static boolean doStuff(Predicate <Integer > pred) {
5 return pred.test (12);
6 }
7
8 public static void main(String [] args) {
9 boolean res = doStuff ((x) -> x > 10);
10 System.out.println(res);
11 }
12 }

3.5.4 Imperative style

While Haskell has strived to stick to its FP nature, some concessions have
been made in terms of syntax. One of these concessions is the do-notation
previously mentioned and demonstrated. Do-notation emerged from the need
to perform effectful actions in sequence, especially IO-actions, mimicking
a more imperative programming style. Previously, the IO example above
would have been written as follows:

1 main = getLine >>= \line -> putStrLn line

with a new >>= \x -> for each value you want to carry on forward to
subsequent actions. It was recognized that this pattern is just an imperative
sequence of actions, and as such the do-notation was implemented in the
Haskell standard. Do-notation is, however, simply syntactic sugar for the
above pattern, and it is transformed at compile time.

1 main = do
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2 line <- getLine
3 putStrLn line

3.5.5 Design patterns vs. type classes etc.

The GoF design patterns are all applicable to Java, while barely any of
them are even possible to implement in Haskell without using unconventional
techniques. Haskell has “patterns” of its own, however, in the form of type
classes and other techniques.

3.5.6 Eager vs. lazy

Java is an eagerly computed language, with only simple forms of lazy
computation such as short-circuiting in the boolean operators:

1 boolean x = False && getSomeOtherValue ();
2 boolean y = True || getSomeDifferentValue ();

Here, neither getSomeOtherValue nor getSomeDifferentValue would
ever be invoked.

In comparison, Haskell is a lazily computed language, and such short-
circuiting as above will occur in many different scenarios as values are only
computed as they are needed. As a result of this, Haskell suffers from space
leaks where “thunks” of computation that have yet to be evaluated are
built up in memory, effectively acting as a memory leak. These “thunks”
represent computations which might never even be needed, and thus will
never be computed, but the garbage collector is unable to release them
because long-lived references to them might still exist.

3.6 Summary of languages
In this chapter we have taken a look at static typing, as well as the two
languages we will use in this thesis. We have also summarized the key
differences between the two languages.
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Chapter 4

Design Patterns

4.1 Introduction to design patterns

In pursuit of furthering the study and practice of software engineering, many
methods have emerged and are available as recipes on how to structure a
program to achieve or preserve some desired property of the source code.
These methods are often called “Design patterns”, and they describe reusable
structures and techniques with the aim to improve the quality of a program,
whether it is applied to just a subset or the entirety of the program.

In OOP, design patterns are an oft-mentioned source of programming
wisdom, gaining popularity in 1994 with the publishing of the book Design
patterns: Elements of Reusable Object-Oriented Software by Gamma et al.,
colloquially referred to as the “Gang of Four”. In the book, they outline three
major categories of design patterns; Behavioral patterns, Structural patterns
and Creational patterns; as well as describing various design patterns within
those categories. [4] Even today, in 2021, this book stands as the core
literature on design patterns in OOP.

In FP, on the other hand, functional patterns are as pervasive as in OOP,
but they are rarely explicitly called “design patterns”. Since patterns in FP
tend to be considerably smaller than in OOP, it is sometimes difficult to
establish whether a technique or method in FP is a “design pattern”. Some
patterns are widely used, and have become so ingrained in the programming
culture of the programming language, or FP as a whole, that it is difficult to
identify whether the pattern exists as a result of thought and consideration
or just because it is the most sensible way to structure a the program.

4.2 Object-Oriented Design Patterns

In the following sections, we present our chosen 8 OOP design patterns.

4.2.1 Abstract Factory

“Provide an interface for creating families of related or dependent
objects without specifying their concrete classes.” [4, p. 109]
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The Abstract Factory pattern is used to define a way to create a set of
related objects without having to know their concrete classes. The Abstract
Factory defines a set of methods which themselves return abstract classes
of products. The concrete products from these methods is decided by the
concrete Abstract Factory and its implementation. The consumer can thus be
supplied with an Abstract Factory, and have no dependence on the concrete
classes used for neither the factory nor its products.

4.2.2 Adapter

“Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces.” [4, p. 159]

The Adapter pattern is used as a compatibility layer between two
incompatible interfaces or systems. The adapter class usually either wraps
or extends the adapted, altering its observable interface to that which is
desired. The adapter aims to minimize changing the observable behaviour of
the adapted.

4.2.3 Command

“Encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or log requests,
and support undoable operations.” [4, p. 251]

The Command pattern is used to represent actions and commands as data
that can be manipulated. An individual command is then responsible for
performing its design action upon invocation of its “execute” (or equivalent)
method. Thus, a system that can trigger a command to execute does not
need to depend on the components the command uses to execute its action,
and it is up to the creator of the command object to instantiate it with the
required dependencies.

4.2.4 Composite

“Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.” [4, p. 181]

The Composite pattern is used to represent a hierarchy of objects in a
uniform way, whether the current hierarchy has child nodes or not. Thus,
it is inconsequential to the client which part of the hierarchy it is currently
holding, and it will be able to perform the same actions on that part of the
hierarchy regardless. This simplifies dealing with hierarchies of objects and
classes by having compositions of objects be responsible for dealing with
their child objects as necessary, while leaf objects only have to deal with
themselves as necessary.
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4.2.5 Decorator

“Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for
extending functionality.” [4, p. 193]

The Decorator pattern is a method of extending and/or altering the
behaviour of an object in a way that is transparent to the client. A decorator
wraps the objects it intends to alter, and overrides one or more methods of
the wrapped object, either altering the result returned by the wrapped object
or replacing it entirely. Since a decorator implements the same interface
as the wrapped object, decorators can be nested, each wrapping another
decorator until the innermost decorator, which wraps the original object.

4.2.6 Iterator

“Provide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation.” [4,
p. 275]

The Iterator pattern is a method of providing access to the elements of
a collection without having to depend on the structure or implementation
of said collection. This means structures like arrays, lists, trees, sets, etc.
can be accessed in the same way, provided they can produce an associated
iterator.

4.2.7 Prototype

“Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this prototype.” [4,
p. 137]

The Prototype pattern is a way of creating objects from an existing
object instance. This existing object must provide some method of copying
itself. Especially in languages with poor object instantiation syntax, this can
simplify the act of creating multiple objects with the same configuration, and
can also be used to provide a subset of preconfigured objects for duplication
wherever they are needed.

4.2.8 Strategy

“Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.” [4, p. 331]

The Strategy pattern is used to abstract families of algorithms over
a common interface. This allows us to decide at runtime which concrete
algorithm to use for a given scenario. The client using the strategy object
does not directly depend on the implementation of the strategy being used,
only that it satisfies the interface for the strategy.
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4.3 Functional Patterns

While OOP has many well-defined design patterns that solve various problems
encountered in OOP, FP has patterns of its own that are used to solve
problems encountered in FP. The following patterns are the functional
patterns we will use in this thesis.

4.3.1 Newtype and smart constructor

If you want to specify some behaviour to a subset of values in a specific type
you can make a newtype of that type and limit the creation of this new type.

For example: we want to represent positive numbers. If we have a value
of this “positive numbers” type, it should never accidentally be a negative
number.

1 module Positive
2 ( Positive
3 , getPositive
4 , mkPositive
5 ) where
6
7 newtype Positive n = MkPositive { getPositive :: n }
8 deriving (Show)
9
10 mkPositive :: (Ord n, Num n) => n -> Maybe (Positive n)
11 mkPositive x
12 | x >= 0 = Just (MkPositive x)
13 | otherwise = Nothing

This is a pattern which goes by many names, but most often it is
called “Newtyping” or “smart constructors”. Here, mkPositive is a “smart
constructor”, which only gives us an actual Positive value if, and only
if, (iff) x is a positive number.

Smart constructors allow us to create types with invariants that can be
enforced.

4.3.2 Defunctionalization

Given a specific context, many functions can be represented as data. Let’s
say we have a function that sorts a list given some comparison function:

1 data Ordering
2 = Eq
3 | Lt
4 | Gt
5
6 sortList :: (a -> a -> Ordering) -> [a] -> [a]
7 sortList f xs = ...

If we want to do more with the passed sorting function other than apply it,
we have to supply this extra information through other means, like additional
arguments. We also cannot serialize this function, since it is a function. There
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are also no guarantees that the passed function returns a sensible result,
although such concerns should not lie with sortList itself, and instead is a
concern for sortList’s caller.

Instead of passing a function, we can pass a data type which represents
what we want to achieve.

1 data Sort
2 = Asc
3 | Desc
4
5 sortList :: Sort -> [a] -> [a]
6 sortList sort xs = case sort of
7 Asc -> ...
8 Desc -> ...

The onus is then on sortList to implement the actual sorting, but it
presents a clearer interface to the caller where it’s clear that there are two,
and only two, options: ascending and descending order. This also makes it
simpler to test sortList, since there are only two kinds of sorting that need
to be tested.

4.3.3 Type classes

In addition to actual code patterns, Haskell has type classes. Type classes
are in essence design patterns as a language feature, to a certain extent.
They group together types and values that can be used in the same way,
abstracting over the actions we can perform on these types.

While Haskell has a lot of built-in type classes, we utilize only the
following type classes from [19] when implementing solutions in FP.

Functor

“A simple intuition is that a Functor represents a ‘container’ of
some sort, along with the ability to apply a function uniformly
to every element in the container.” [23, p. 18]

Functors abstract the action of applying a function to the contents of a
context or container. In Haskell, a functor has an implementation for the
fmap1 operation.

1 class Functor f where
2 fmap :: (a -> b) -> f a -> f b

To read this function signature in a rather verbose manner: if you give
fmap a function (a -> b) and a functor that has as, it will give you the
same type of functor, but every element is replaced by applying the passed
function to the contained as, making them into bs.

Consider a singly linked list:
1It should have been named map, but the name map was already taken by list’s specific

mapping function by the time the Functor type class made its way into Haskell.
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1 data List a = Cons a (List a) | Nil

To “apply a function uniformly to every element” in the list, we can simply
build a new list while applying the function to each element recursively.

1 instance Functor List where
2 fmap :: (a -> b) -> List a -> List b
3 fmap _ Nil = Nil
4 fmap f (Cons x xs) = Cons (f x) (fmap f xs)

Another example with Maybe:
1 data Maybe a = Just a | Nothing

1 instance Functor Maybe where
2 fmap :: (a -> b) -> Maybe a -> Maybe b
3 fmap _ Nothing = Nothing
4 fmap f (Just x) = Just (f x)

As we can see, functor is mostly about unwrapping the functor and
applying the function, as long as it makes sense to do so. It should be noted
that there doesn’t even have to be anything in the container to map over:

1 data Empty a = Empty

1 instance Functor Empty where
2 fmap :: (a -> b) -> Empty a -> Empty b
3 fmap _ Empty = Empty

For Empty, the passed function will never be called, but you will get a
Empty b back if you pass it a function (a -> b). Empty’s functor instance
doesn’t even evaluate the function, meaning we can pass in undefined
without issue.2

The Functor is the basis for many other type classes, and understanding
it is paramount to understanding all other type classes that depend on it.

Monad

1 class Applicative m => Monad m where
2 return :: a -> m a
3 (>>=) :: m a -> (a -> m b) -> m b

[18]
Monads have two operations:

• return: puts a value of any type into a monadic context.

• >>=: Pronounced “bind”, this is the operation that distinctly defines
the Monad class. In lay terms, >>= unwraps the contained a and
gives it to the supplied function a -> m b, and returns that result.
If, depending on the actual Monad in question, an a value cannot be
supplied, m must be able to change from m a to m b through other
means.

2While it might be difficult to see the use of a data type like Empty, it can be used to
pass along type information to other functions.
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Monads are an extension of Functors3 in the way that it abstracts working
with contexts in a similar fashion. Consider the similarities between Functor’s
fmap and a flipped version of Monad’s bind (>>=)4:

1 fmap :: Functor m => (a -> b) -> m a -> m b
2 bind ’ :: Monad m => (a -> m b) -> m a -> m b

With a functor, the function is not allowed access to the context of
the functor whatsoever. With a monad, however, the function is allowed
to return a new monadic context, which will be used as the result of the
operation.

Using Maybe as an example:

1 instance Monad Maybe where
2 return :: a -> Maybe a
3 return x = Just x
4
5 (>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b
6 Just x >>= f = f x
7 Nothing >>= _ = Nothing

return does nothing out of the ordinary: it puts a value inside a Maybe.
>>=, on the other hand, is the focus of monads. To call the provided function
in >>=, we have to be able to provide it a value. As such, we pattern match on
the Maybe a, extracting the a and calling the provided f :: a -> Maybe b
function on it. The result of this function call is thus returned as the result
of >>=.

Exactly how >>= is defined depends entirely on the monad in question,
and can be radically different for different monads. The essence is just that we
chain functions that return monadic contexts, whatever those contexts might
contain. They could be error states, additional information, concurrency
primitives, or even just plain values.

Haskell’s do-syntax is merely syntactic sugar for >>=. The following two
functions are equivalent, and the former is translated into the latter before
compilation.

1 foo :: IO ()
2 foo = do
3 x <- getLine
4 y <- getLine
5 let result = fmap toUpper x <> fmap toLower y
6 putStrLn result
7
8 bar :: IO ()
9 bar =

10 getLine >>= (\x ->

3In practice, they are an extension of Applicative Functors, but this thesis is already
struggling with its page count as it is.

4Monad’s bind operation normally has the type (>>=) :: Monad m => m a -> (a ->
m b)-> m b, but it is easier to visualize the similarities between Functor and Monad with
this flipped version.
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11 getLine >>= (\y ->
12 let result = fmap toUpper x <> fmap toLower y
13 in putStrLn result
14 ))

Semigroup

Semigroup describes things that can be combined into one.
Examples of this are numbers, where 1 + 1 = 2 having the type Int ->

Int -> Int, and string concatenation where "foo" + "bar" = "foobar".
Semigroups are defined as having “a binary, associative operation” defined
for them.

1 class Semigroup a where
2 (<>) :: a -> a -> a

If we define the semigroup instance for integers to be addition, then
the following would be true: 1 <> 2 = 1 + 2. Since Semigroups are so
abstract, many types have more than one possible Semigroup available for
them. Haskell does not allow a single type to have multiple instances of one
type class, and we instead have to use newtypes to distinguish between the
semigroup instances we want to use.

Considering Ints again, there are two possible Semigroup instances:
addition and multiplication. Subtraction and division are not Semigroup
instances, since they are not associative.

1 newtype Sum = Sum { getSum :: Int }

1 newtype Product = Product { getProduct :: Int }

These newtypes are just wrapping Ints, and for the semigroup and
monoid instances we can just unwrap them to achieve the desired result:

1 instance Semigroup Sum where
2 Sum x <> Sum y = Sum (x + y)

1 instance Semigroup Product where
2 Product x <> Product y = Product (x * y)

List concatenation is also a semigroup:

1 instance Semigroup [a] where
2 (<>) :: [a] -> [a] -> [a]
3 [] <> ys = ys
4 (x : xs) <> ys = x : (xs <> ys)

Semigroups allows us to abstract over combining things together.

Monoid

Monoids are semigroups which also have a value which makes the combining
operation return the other argument. This value is called the “identity” value
of the monoid.
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1 class Semigroup a => Monoid a where
2 mempty :: a

So for integers, the addition and multiplication instances have 1 and 0 as
identity values respectively.

1 instance Monoid Sum where
2 mempty :: Sum
3 mempty = Sum 0

1 instance Monoid Product where
2 mempty :: Product
3 mempty = 1

For lists, the identity value is the empty list.
1 instance Monoid [a] where
2 mempty :: [a]
3 mempty = []

Monoids appear in many shapes and sizes, and can be considered anything
that can be combined (a semigroup), with some special value which does not
affect the outcome.

Foldable

A foldable value is a value that can be “folded” into another value. It is a
generalization of converting from zero or more values into a different value,
while not enforcing any constraints as to what this resulting value can be.

The Foldable class in Haskell has a lot of operations in its declaration,
but only one of two need to be implemented to create a Foldable instance.

1 class Foldable t where
2 foldr :: (a -> b -> b) -> b -> t a -> b
3 foldMap :: Monoid m => (a -> m) -> t a -> m
4
5 foldl :: (b -> a -> b) -> b -> t a -> b
6 foldr1 :: (a -> a -> a) -> t a -> a
7 foldl1 :: (a -> a -> a) -> t a -> a
8 elem :: Eq a => a -> t a -> Bool
9 maximum :: Ord a => t a -> a

10 minimum :: Ord a => t a -> a
11 sum :: Num a => t a -> a
12 product :: Num a => t a -> a

The main operations for Foldable are foldr, foldl and foldMap, where
foldl folds the values from the left side, while foldr folds them from the
right. foldMap converts the values to Monoids and combines them from the
left. [19]

The minimum required to make a type foldable is to implement either
foldr or foldMap. For simplicity, we will only consider foldl when using
Foldable in this thesis, as folding from the left is the most common way to
consuming the elements of a list.
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Foldable does not have any strict laws that instances must adhere to, and
as a result there exists a lot of strange and unusual instances of foldables. A
prominent example of this is the foldable instance for two-tuples, (a, ).

1 instance Foldable ((,) e) where
2 foldr :: (a -> b -> b) -> b -> (e, a) -> b
3 foldr f z (_, x) = f x z

It is debatable whether tuples are foldable as they do not represent a
series or a collection of values in the normal sense, but rather an indexable
pair of values of possibly differing types. The function length :: Foldable
t => t a -> Int returns the number of elements in the passed foldable.

For two-tuples, it returns 1, since that is the number of foldable values in a
two-tuple. Most would surmise that there are two elements in a two-tuple,
but Foldable says otherwise.

For lists, however, the Foldable instance makes much more sense.

1 instance Foldable [a] where
2 foldr :: (a -> b -> b) -> b -> [a] -> b
3 foldr _ z [] = z
4 foldr f z (x : xs) = f x (foldr f z xs)

MonadIO

For any Haskell program to interact with the outside world, whether it be
printing to the screen or sending an HTTP request, the function making this
interaction must invariably end up using IO. However, if we are in a different
monad than IO, how would be use an IO action while still sticking to this
other monad of ours?

MonadIO and its function liftIO allows a monad to “lift” IO actions into
itself, where they will be executed as needed. As long as this other monad
is defined in such a way that IO action can be performed, it can have an
instance of MonadIO.

1 class Monad m => MonadIO m where
2 liftIO :: IO a -> m a

MonadIO has two laws that instances must abide by to be considered valid
MonadIO instances:

• liftIO . return = return: liftIO should not do any more work
than return would do.

• liftIO (m >>= f)= liftIO m >>= (liftIO . f): monadic bind
should work equivalently in IO as in the instance monad.

These two laws ensure MonadIO merely acts as a transformer between IO
and other monads.

To better illustrate this, assume we have a dedicated monad for sending
HTTP requests
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1 newtype HTTP a = HTTP { runHTTP :: IO a }
2
3 get :: String -> HTTP ByteString
4 get url = ...
5
6 post :: String -> JSON -> HTTP ByteString
7 post url payload = ...

and assume we have a function that uses HTTP and prints the result

1 import HTTP (HTTP , get)
2
3 printInvoices :: HTTP ()
4 printInvoices = do
5 invoices <- get "/invoices"
6 print invoices

the compiler would complain that print returns a value of type IO (),
which cannot be performed in this do-block because it is of type HTTP.

To circumvent this we can lift IO into HTTP

1 instance MonadIO HTTP where
2 liftIO io = HTTP io

and use liftIO to embed IO actions in HTTP

1 import HTTP (HTTP , get)
2
3 printInvoices :: HTTP ()
4 printInvoices = do
5 invoices <- get "/invoices"
6 liftIO (print invoices)

Thus, we can have IO effects and actions in other environments, as long
as IO can be embedded in the other environments.

4.4 Summary of Design Patterns
In this chapter we have described and presented design patterns both in
OOP and FP. We have presented the specific
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Chapter 5

Methodology

5.1 Introduction to methodology

This section describes the methods and practices performed during this thesis’
main experiment. The validity and significance of both the experiment itself
as well as the resulting data relies on understanding the limitations, biases
and process of the experiment and the data. It is therefore imperative that
the reader is provided as detailed of an understanding of the experiment and
the methodology used during the gathering process.

5.2 Cases

This section presents the outline of the experiment. In this study, we
have chosen eight design patterns to examine: Abstract Factory, Adapter,
Command, Composite, Decorator, Iterator, Prototype and Strategy. For each
of these design patterns, have designed a case with a high-level description
of a system to implement using said pattern. We have then implemented the
pattern in Java, satisfying the description provided in the design pattern’s
case. We have then also implemented the pattern in Haskell, using zero
or more combinations of other functional patterns as we have seen fit, in
an attempt to replicate the solution provided by the design pattern. Thus,
we have two implementations for each design pattern, written in Java and
Haskell, representing the OOP and FP programming paradigms respectively.

After the implementations are finalized, we collect data on the
implementations, using the metrics described in Section 5.3. We also present
our qualitative observations made when implementing the cases.

5.3 Metrics

5.3.1 Introduction

In this section we present the metrics used for data gathering and numeric
analysis for the cases.

Differences in solution implementation, whether it be with a design
pattern in OOP or other patterns in FP, are varied and numerous. Thus,
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we strive to include as many of these differences and qualities in our metrics
when evaluating the differences between the implementations, while also
limiting ourselves to those most applicable and impactful.

To achieve this we want to select metrics that are cheap to evaluate and
only concerns one area of differences with as little overlap between metrics
and the qualities they measure as possible.

5.3.2 Example

Through the rest of this section, we will be using two examples to illustrate
the qualities of the metrics used.

1 {−# LANGUAGE E x i s t e n t i a l Q u a n t i f i c a t i o n #−}
2
3 −− | Example code used t o e x p l a i n t h e me t r i c s used
4 −− in t h i s t h e s i s .
5
6 import Data.Foldable (traverse_)
7
8 class Speaker a where
9 speak :: a -> IO ()

10
11 newtype Canine = Canine { sound :: String }
12
13 instance Speaker Canine where
14 speak (Canine sound) = putStrLn sound
15
16 type Dog = Canine
17
18 type Wolf = Canine
19
20 mkDog :: Dog
21 mkDog = Canine "Woof"
22
23 mkWolf :: Wolf
24 mkWolf = Canine "Awoo"
25
26 newtype Cat = Cat { size :: Int }
27
28 mkCat :: Int -> Cat
29 mkCat = Cat
30
31 instance Speaker Cat where
32 speak (Cat size) = if size > 2
33 then rawr
34 else meow
35 where
36 meow = putStrLn "Meow"
37 rawr = putStrLn "Rawr"
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38
39 −− E x i s t e n t i a l Q u a n t i f i c a t i o n used here
40 data SomeSpeaker =
41 forall a . Speaker a => SomeSpeaker a
42
43 instance Speaker SomeSpeaker where
44 speak (SomeSpeaker x) = speak x
45
46 main :: IO ()
47 main = do
48 let
49 zoo =
50 [ SomeSpeaker (mkCat 1)
51 , SomeSpeaker (mkCat 3)
52 , SomeSpeaker mkDog
53 , SomeSpeaker mkWolf
54 ]
55 traverse_ speak zoo

Listing 5.1: Haskell example code

1 // Example code used t o e x p l a i n t h e me t r i c s used
2 // in t h i s t h e s i s .
3
4
5 interface Speaker {
6 public void speak ();
7 }
8
9 abstract class SpeaksWithSound implements Speaker {
10 protected String sound;
11
12 protected SpeaksWithSound(String sound) {
13 this.sound = sound;
14 }
15
16 public void speak () {
17 System.out.println(this.sound );
18 }
19 }
20
21 class Dog extends SpeaksWithSound {
22 public Dog() {
23 super("Woof");
24 }
25 }
26
27 class Wolf extends SpeaksWithSound {
28 public Wolf() {
29 super("Awoo");
30 }
31 }
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32
33 class Cat implements Speaker {
34 private static final String SMALL_SOUND = "Meow";
35 private static final String BIG_SOUND = "Rawr";
36 private int size;
37
38 public Cat (int size) {
39 this.size = size;
40 }
41
42 public void speak() {
43 if (size > 2) {
44 System.out.println(BIG_SOUND );
45 } else {
46 System.out.println(SMALL_SOUND );
47 }
48 }
49 }
50
51
52 class MetricExample {
53 public static void main(String ... args) {
54 Speaker [] zoo = new Speaker [] {
55 new Cat(1),
56 new Cat(3),
57 new Dog(),
58 new Wolf()
59 };
60
61 for (Speaker animal : zoo) {
62 animal.speak ();
63 }
64 }
65 }

Listing 5.2: Java example code

Both of these programs output the following:

Meow
Rawr
Woof
Awoo

5.3.3 Source Lines of code

Source lines of code (SLOC) is an extremely common metric of program size
measured by simply counting the number of lines the code spans in a given
program. The significance of SLOC depends heavily which lines specifically
are counted, as well as how the code is structured. By defining a set of
rules governing how we count SLOC, we can paint a picture of how large a
program is. In this thesis, we use the rules described by Nguyen et al. in ‘A
SLOC Counting Standard’ [15]. They define two types of SLOC to count:
PSLOC and LSLOC.
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Physical SLOC Counts all lines that are neither blank nor contain only
comments. [15] The lines which make up the significant syntax of the
language (provided blank lines are not a part of the syntax of the language).
PSLOC can thus be considered the physical size of the code in question, and
how much visual space it occupies.

Logical SLOC Counts lines according to their contents and significance
in the language and/or syntax. [15] This is where OOP and FP start to
differ. [15] only specify a set of LSLOC counting rules for C, C++, Java and
C# (and by extension most C-like languages). As such, we define a set of
LSLOC counting rules for Haskell, derived from the rules specified in [15], in
table 5.1

Structure Precedence Logical SLOC Rules
Selection statements: if
then, else if then, else
, catch, case of, pattern
matching

1 Count once per occurrence.
Nested statements are coun-
ted in a similar fashion.

Expression statements:
function call, assignment,
operators, record syntax,
ADT constructor applica-
tion

2 Count once per occurrence.
Includes TemplateHaskell
expressions. Do not count
bare expressions with no
function application.

Block delimiters, braces:
block of code, do block

3 Count once per do block.
Function definitions are
counted once, since they
constitute a “block”. Count
once per lambda function,
since they effectively consti-
tute a function declaration.

Compiler directive, CPP
pragma

4 Count once per occurrence

Data declaration 5 Count once per occurrence.
Type declaration: Type
synonym, data declaration,
newtype declaration

6 Count once per occurrence.
Count once per data con-
structor, and once per
newtype.

Table 5.1: Rules for counting LSLOC in Haskell

Long lines of text is sometimes wrapped over multiple lines in source
code to prevent horizontal scrolling while viewing the source code. As such,
we add another rule to the aforementioned LSLOC rules that any string
concatenation where both the operands are string literals will not be counted
as a LSLOC. Thus, the following would just be counted as one LSLOC:

1 return "foo" + "bar" + "baz";

While the following would indeed be counted as two:
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1 return "foo" + bar + "baz";

Assuming bar is some defined variable.

5.3.4 Cyclomatic complexity

The CC of a program is a measure of program complexity. First introduced
in [12], it is applied to the control flow graph of the program, where the
nodes of the graph represent groups of commands separated by control flow
statements like conditionals and decision points. Two nodes A and B would
then be considered connected if B can be executed immediately following A.

For a program P, the CC of program P, v(P), is defined as follows:

v(P ) = e− n + 2p

e = Number of edges in the graph
n = Number of nodes in the graph
p = Number of connected components in the graph

(5.1)

CC does not provide an adequate picture on its own as to how complex
a program is; a program with a low complexity number might be more
complex than a program with a high complexity number, and vice versa. CC
only describes how many different paths there are in the code, and not how
chaotically they might be connected.

In regards to our example programs,

5.3.5 Execution time

Comparing programming languages by execution time is difficult, and most
often a detriment to the comparison of the languages. It probably is in this
case as well. While both languages are compiled languages, Haskell compiles
to x86 instructions while Java compiles to JVM instructions, which are then
interpreted and compiled “just-in-time” at runtime.

Using benchmarking programs, we can measure the total run time of a
given program. In this thesis, we use the benchmarking program “Hyperfine”
[17]. In all measurements in this thesis, we invoke Hyperfine with the option
--warmup 10, which informs Hyperfine to execute the program ten times
before measuring to ensure the program is benchmarked against hot CPU
caches, file caches, and the like, minimizing deviation between the first run
of the benchmark from the rest.

Using Hyperfine, the example code in listing 5.1 and 5.2 are measured
at 9.9 ms and 89.0 ms, respectively. These numbers by themselves do not
properly communicate the actual run time of the two example programs. An
entirely empty Java program, with only an empty main method, takes 74.0
ms to execute to completion, while an empty Haskell program takes 6.9 ms.
Java has the JVM which needs to do its work, while Haskell has its runtime
which marshals IO, so the comparison is very hard to make with very small
programs like this.
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As such, we can assume there will always be at least an 74.0 ms overhead
to Java programs and a 6.9 ms overhead to Haskell programs. However, the
actual overhead of the runtime system for each language varies depending
on the compiled code and what actions we perform in the program. This
mostly depends on when the value is calculated, which varies wildly between
the eager JVM and the lazily computed Haskell runtime.

5.3.6 Cyclomatic complexity density

Measuring CC and LSLOC by themselves gives some insight into the
differences between the languages. Large programs with high LSLOC tend
also to have a higher CC. It can thus be stated that for any given program,
as LSLOC increases, so does CC, most of the time. The correlation between
CC and LSLOC, also called cyclomatic complexity density (CCrho) can be
given as follows, for a given case C in a given programming language P :

CCρ(C, P ) =
CC(C, P )

LSLOC(C, P )

CC(C, P ) = CC for language P in case C
LSLOC(C, P ) = LSLOC for language P in case C

(5.2)

5.3.7 Code

Comparing the programs presented in this thesis by the above metrics alone
would barely paint even a faint picture of the qualities that make up their
differences. As such, we compare and contrast various language constructs
as they appear in the programs. The code produced in this thesis is available
in full at https://github.com/Gipphe/PLMasterThesis.

5.4 Summary of methodology
In this chapter we have presented and described the methodology and
approach for this study. We have outlined how the cases are structured, and
the various metrics that will be used to collect data on them.
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Part IV

Cases
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Chapter 6

Cases

6.1 Introduction to cases

In this chapter we present the design patterns examined for this thesis,
the case wherein we have utilized the design pattern in question, the
implementations made to satisfy the case, as well as our findings and measured
metrics for the implementations. Finally, we summarize our findings and
compare between the cases.

In the case description, we define a set of requirements for the case’s
implementation. This description is high-level and not specific to any
particular thought model or paradigm, as OOP and FP often have very
different ways to model a domain. We present these requirements as a “case
statement” to be satisfied by the implementations.

Along with the case statement, we present a UML class diagram of the
design pattern in question, tailored to the case in question. This allows us
an overview of the relationships between the different components of the
case. Although FP does not have classes and objects in the same way as
OOP; and thus a UML class diagram is not as applicable to an FP context;
data types, functions and constructors will correspond to the elements of
the diagram in most cases, and as such provides an adequate overview of the
relationship between elements of the FP implementation as well.

All code produced and referenced in this chapter is contained in the
repository described in Subsection 5.3.7.

6.2 Abstract Factory

The Abstract Factory pattern is concerned with object creation, where a
factory creates sets of dependent objects that satisfy abstract interfaces.[4]

6.2.1 Abstract Factory case

In this case we model a retailer for cutlery and table setting.

Implement a system where a client can “order” sets of cutlery.
One set of cutlery includes a fork and a knife, which can then be
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Figure 6.1: UML class diagram for the Abstract Factory case.

used to eat with. Each piece of cutlery must be usable on any
food.
A mock client must be implemented, asking for “silver” cutlery
and “primitive” cutlery, and using each type of cutlery for a meal.
The result of running the program must be a string of text
describing eating the meals with the various cutlery, with each
piece of cutlery supplying a distinct description from the rest.

6.2.2 Implementations for Abstract Factory

The code for the Java implementation is contained in the repository’s
“Java/Implementations/Abstract Factory” folder, while the Haskell imple-
mentation is contained in the “Haskell/Implementations/Abstract Factory”
folder.

Java implementation To implement this case in Java, we created a
base class CutleryFactory containing the factory methods makeKnife
and makeFork, which produce the abstract Knife and Fork re-

spectively. PrimitiveCutleryFactory and SilverwareCutleryFactory
implement CutleryFactory using PrimitiveKnife, PrimitiveFork

, SilverwareKnife and SilverwareFork. Main is our mock client,
which we use to create an instance of SilverwareCutleryFactory and
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PrimitiveCutleryFactory, and subsequently consume one meal with each
set of cutlery.

Haskell implementation To implement this case in Haskell, the interface
CutleryFactory is instead a record of functions, but since they do not
take any parameters whatsoever the makeFork and makeKnife instead
just return a set of pre-made forks and knives. Due to immutability, we
do not need “object instances”, and thus need not create a new Fork
and Knife for each makeFork and makeKnife call. Fork and Knife are
also just records with “silver” and “primitive” specific properties set on
creation. silverwareCutleryFactory and primitiveCutleryFactory are
thus merely CutleryFactory records with specific Fork and Knife smart
constructors. This set up allows us to treat all CutleryFactorys, Forks
and Knifes identically, preserving their implementation details to the smart
constructors used to create them. Like in the Java implementation, the Main
module acts as our client, specifying the type of cutlery to create and the
meals to eat with the cutlery.

6.2.3 Metrics for Abstract Factory implementations

In this subsection we list the metrics results for the Abstract Factory
implementations, and briefly describe our observations for this particular
case.

Source lines of code for Abstract Factory implementations

In this section we list the LSLOC and PSLOC metrics for the Abstract
Factory implementations.

Logical source lines of code for Abstract Factory implementations
In Table 6.1 we list the LSLOC for each Abstract Factory implementations’
files.

The Java implementation is 88÷ 58 = 1.52 times larger than the Haskell
implementation in terms of LSLOC.

Physical source lines of code for Abstract Factory implementations
In Table 6.2 we list the PSLOC for each Abstract Factory implementations’
files.

The Java implementation is 132 ÷ 114 = 1.16 times larger than the
Haskell implementation in terms of PSLOC.

Cyclomatic complexity for Abstract Factory implementations

In Table 6.3 we list the CC for each Abstract Factory implementations’ files.
The Haskell implementation’s total CC is 14, while the Java implementa-

tion’s is 24. The Java implementation CC is 24÷ 14 = 1.71 times greater
than the Haskell implementation CC.
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LSLOC for Abstract Factory
File LSLOC

Haskell
Cutlery.hs 9
Fork.hs 11
Knife.hs 9
Main.hs 29
Total 58

Java
CutleryFactory.java 0
Fork.java 10
Knife.java 10
Main.java 34
PrimitiveCutleryFactory.java 7
PrimitiveFork.java 5
PrimitiveKnife.java 5
SilverwareCutleryFactory.java 7
SilverwareFork.java 5
SilverwareKnife.java 5
Total 88

Table 6.1: Logical source lines of code for Abstract Factory implementations

PSLOC for Abstract Factory
File PSLOC

Haskell
Cutlery.hs 22
Fork.hs 32
Knife.hs 30
Main.hs 30
Total 114

Java
CutleryFactory.java 4
Fork.java 15
Knife.java 15
Main.java 32
PrimitiveCutleryFactory.java 8
PrimitiveFork.java 14
PrimitiveKnife.java 12
SilverwareCutleryFactory.java 8
SilverwareFork.java 12
SilverwareKnife.java 12
Total 132

Table 6.2: Physical source lines of code for Abstract Factory implementations
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CC for Abstract Factory
File CC

Haskell
Cutlery.hs 3
Fork.hs 2
Knife.hs 2
Main.hs 7
Total 14

Java
CutleryFactory.java 0
Fork.java 3
Knife.java 3
Main.java 6
PrimitiveCutleryFactory.java 2
PrimitiveFork.java 2
PrimitiveKnife.java 2
SilverwareCutleryFactory.java 2
SilverwareFork.java 2
SilverwareKnife.java 2
Total 24

Table 6.3: Cyclomatic complexity for Abstract Factory implementations

Execution times for Abstract Factory
Command Mean [ms] Min [ms] Max [ms] Relative
Java 90.09± 1.23 87.43 91.57 12.21
Haskell 7.38± 0.17 7.05 8.19 1

Table 6.4: Execution times for Abstract Factory implementations

Execution time for Abstract Factory implementations

In Table 6.4 we list the execution time for each Abstract Factory
implementation.

The Java implementation is on average approximately 90.09÷ 7.38 =
12.21 times slower than the Haskell implementation.

Accounting for the execution time overhead calculated in Section 5.3.5,
we get the following results:

Java: 90.09− 74.0 = 16.09
Haskell: 7.38− 6.9 = 0.48

(6.1)

With these adjusted numbers, the Java implementation is 16.09÷ 0.48 =
33.52 times slower than the Haskell implementation.
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Cyclomatic complexity density for Abstract Factory implementa-
tions

Using the results from our LSLOC and CC measurements for this case, we
calculate the CC density as follows:

CCρ(Abstract Factory, Java) = CC(Abstract Factory, Java)
LSLOC(Abstract Factory, Java)

=
24
88

= 0.2727

(6.2)

CCρ(Abstract Factory,Haskell) = CC(Abstract Factory,Haskell)
LSLOC(Abstract Factory,Haskell)

=
14
58

= 0.2414
(6.3)

The Java implementation is approximately 0.2727÷ 0.2414 = 1.1297
times more logically dense than the Haskell implementation for the given
LSLOC and CC measurements.

6.2.4 Comparison of Abstract Factory implementations

In this section, we summarize our observations made while making the
implementations for Abstract Factory.

Both implementations feature roughly the same abstractions:

• Both abstract over some general CutleryFactory, where Java uses an
interface with classes as concretions, while Haskell uses a data type
with smart constructors as concretions.

• Both abstract over general Knife and Fork in the same way they
abstract over CutleryFactory.

But they feature some key differences:

• Java creates new objects for each makeKnife and makeFork call, while
Haskell returns the same Fork and Knife for each concrete call. Java
objects are immutable, and as such returning new instances of the
objects makes more sense especially in a context in which the provided
Fork or Knife, or whatever the abstraction might be, can change. In
Haskell, these changes always result in a new Fork or Knife due to
immutability, and as such “changing” one Fork will not change that
given Fork any other place it has been referenced.
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In FP, there are multiple ways to achieve the same level of decoupling
and flexibility that Abstract Factory offers. One of them, which we used
here, is to have a general data type with a hidden constructor act as an
“interface”, with smart constructors being the concrete implementations
of that “interface”. Abstract Factory can be summarized as “an interface
creating interfaces”, where you depend on an abstract interface for a factory
to produce objects which implement some abstract interfaces. In Haskell, we
achieve this by “nesting” the “smart constructors” pattern.

To summarize: the FP solution to Abstract Factory’s problem is (among
others) the “smart constructor” pattern.

6.3 Adapter
The adapter pattern is concerned with having incompatible interfaces and
classes communicate though a compatibility layer or class. This compatibility
layer or class is sometimes called a “shim”, or even a “transformer”.[4]

6.3.1 Adapter case

We adapt the Abstract Factory case to centre more around the usage of
cutlery rather than their creation.

Implement a system where a client can hold a fork and a knife,
and use the fork and knife to eat food. There must exist native
knives and forks that can be used by the client.
Much like in the real world (and especially when you are a lazy
student who does not wash their dishes often enough), it must
also be possible to use a knife as a make-shift, single-pronged
fork. As such, there must exist a compatibility layer that allows
knives to be used as forks by a client.
The result of running the program must be a string of text
describing eating the meals with the various cutlery, with each
piece of cutlery supplying a distinct description from the rest.

6.3.2 Implementations for Adapter

The code for the Java implementation is contained in the repository’s
“Java/Implementations/Adapter” folder, while the Haskell implementation is
contained in the “Haskell/Implementations/Adapter” folder.

Java To implement this case in Java we have a “client” class, Cutlery,
which requires a Fork and a Knife. We have defined three concrete Knife
and Fork classes, SilverKnife, SteelKnife, WoodenKnife, SilverFork,
SteelFork and WoodenFork. These are the “native” cutlery. In addition to
this, we have an adapter class, KnifeForkAdapter, for using Knife objects
as Fork objects, as per the stated requirements. We build up a set of Cutlery
objects (some containing two knives, where one of them is adapted into a
Fork) in Main, and eat with each of these Clients.
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Figure 6.2: UML class diagram for the Adapter case.
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Haskell To implement this case in Haskell we have an existential datatype
Client which takes a value that implements the Fork type class and a value
that implements the Knife type class, where Fork and Knife define the
necessary functions for using the cutlery. Because Client is existential, we
can build up a list of Clients that each have different types of knives and
forks. We then have “concretions” of Knife and Fork in the form of the data
types SilverKnife, SteelKnife, WoodenKnife, SilverFork, SteelFork
and WoodenFork. Our knife-to-fork adapter is the KnifeForkAdapter data
type. This data type takes one type argument. Its adapter-functionality
comes forth in its type class instance, which requires said type argument to
be an instance of Knife for itself to be a valid Fork instance. Like in the
Java implementation, we build up a list of Client-food pairs, and call eat
on each of them.

6.3.3 Metrics for Adapter implementations

In this subsection we list the metrics results for the Adapter implementations,
and briefly describe our observations for this particular case.

Source lines of code for Adapter implementations

In this section we list the LSLOC and PSLOC metrics for the Adapter
implementations.

Logical source lines of code for Adapter implementations In Table
6.5 we list the LSLOC for each Adapter implementations’ files.

The Java implementation is 165 ÷ 100 = 1.65 times larger than the
Haskell implementation in terms of LSLOC.

Physical source lines of code for Adapter implementations In Table
6.6 we list the PSLOC for each Adapter implementations’ files.

The Java implementation is 185 ÷ 137 = 1.35 times larger than the
Haskell implementation in terms of PSLOC.

Cyclomatic complexity for Adapter implementations

In Table 6.7 we list the CC for each Adapter implementations’ files.
The Haskell implementation’s total CC is 31, while the Java implementa-

tion’s is 32. The Java implementation CC is 32÷ 31 = 1.03 times greater
than the Haskell implementation CC.

Execution time for Adapter implementations

In Table 6.8 we list the execution time for each Adapter implementation.
The Java implementation is on average approximately 99.85÷ 7.30 =

13.68 times slower than the Haskell implementation.
Accounting for the execution time overhead calculated in Section 5.3.5,

we get the following results:
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LSLOC for Adapter
File LSLOC

Haskell
Client.hs 8
Fork.hs 31
Knife.hs 38
Main.hs 20
Util.hs 3
Total 100

Java
Client.java 12
Fork.java 0
Knife.java 0
KnifeForkAdapter.java 20
Main.java 51
SilverFork.java 15
SilverKnife.java 15
SteelFork.java 14
SteelKnife.java 11
Utils.java 6
WoodenFork.java 10
WoodenKnife.java 11
Total 165

Table 6.5: Logical source lines of code for Adapter implementations

66



PSLOC for Adapter
File PSLOC

Haskell
Client.hs 11
Fork.hs 43
Knife.hs 59
Main.hs 17
Util.hs 7
Total 137

Java
Client.java 14
Fork.java 5
Knife.java 6
KnifeForkAdapter.java 21
Main.java 34
SilverFork.java 17
SilverKnife.java 18
SteelFork.java 16
SteelKnife.java 17
Utils.java 6
WoodenFork.java 14
WoodenKnife.java 17
Total 185

Table 6.6: Physical source lines of code for Adapter implementations
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CC for Adapter
File CC

Haskell
Client.hs 1
Fork.hs 9
Knife.hs 15
Main.hs 4
Util.hs 2
Total 31

Java
Client.java 2
Fork.java 0
Knife.java 0
KnifeForkAdapter.java 4
Main.java 3
SilverFork.java 3
SilverKnife.java 4
SteelFork.java 3
SteelKnife.java 4
Utils.java 2
WoodenFork.java 3
WoodenKnife.java 4
Total 32

Table 6.7: Cyclomatic complexity for Adapter implementations

Execution times for Adapter
Command Mean [ms] Min [ms] Max [ms] Relative
Java 99.85± 6.85 90.24 106.43 13.68
Haskell 7.3± 0.16 6.98 8.26 1

Table 6.8: Execution times for Adapter implementations
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Java: 99.85− 74.0 = 25.85
Haskell: 7.30− 6.9 = 0.40

(6.4)

With these adjusted numbers, the Java implementation is 25.85÷ 0.40 =
64.63 times slower than the Haskell implementation.

Cyclomatic complexity density for Adapter implementations

Using the results from our LSLOC and CC measurements for this case, we
calculate the CC density as follows:

CCρ(Adapter, Java) =
CC(Adapter, Java)

LSLOC(Adapter, Java)

=
32
165

= 0.1939

(6.5)

CCρ(Adapter, Haskell) =
CC(Adapter, Haskell)

LSLOC(Adapter, Haskell)

=
31
100

= 0.3100

(6.6)

The Haskell implementation is approximately 0.3100÷ 0.1939 = 1.5988
times more logically dense than the Java implementation for the given LSLOC
and CC measurements.

6.3.4 Comparison of Adapter implementations

In this section, we summarize our observations made while making the
implementations for Adapter.

• Both abstract over Knife and Fork, where Java uses interfaces while
Haskell uses type classes. Interfaces and type classes are very similar
in shape a lot of the time.

• Both have a concrete Client which requires a fork and a knife that fit
the Fork and Knife interfaces/type classes.

In practice, there are very few differences between how the adapter
pattern is handled in each of these implementations. This is mainly because
the Haskell implementation uses type classes to abstract over Fork and Knife
functionality. Had a different abstraction been used, the result would have
probably been considerably different from the Java implementation.

Exactly how to solve the Adapter problem in FP depends on how the
two incompatible interfaces are structured and implemented. In the case
given in this thesis, both were type classes, and as such the adapter would
just be a newtype pattern around a Knife, which adapted the Knife type
class to function as a Fork type class.
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6.4 Command
The Command pattern is concerned with making actions and operations more
flexible, and to abstract over them as data instead of hard-coded method
calls.[4]

6.4.1 Command case

We model a very rudimentary Email client, used for writing, signing and
sending Emails.

Implement an Email application. This application must be
operable by a mock “operator”. This operator must write
the message subject, write the message body, have the email
cryptographically signed and send the email. These actions that
the operator perform must allow grouping. The operator interacts
with the system by issuing these actions to the system, which
will then run the action as a Command object.
Once a given Email has been sent, it cannot be edited further;
sent Emails are immutable.

6.4.2 Implementations for Command

The code for the Java implementation is contained in the repository’s
“Java/Implementations/Command” folder, while the Haskell implementation
is contained in the “Haskell/Implementations/Command” folder.

Java To implement this case in Java we have the “client” class Operator.
Operator just has two static methods that emulate a “human” operator.
These methods build up lists of Commands, using the various Command
implementations: SignEmailCommand, SendEmailCommand and TextCommand
. The first two commands have rather self-explanatory names. TextCommand
takes a text string and a Supplier object. When executed, it sends the
text string to the Supplier object. As a result, we can use TextCommand to
update the body and subject of the email as it is being edited. Operator
dispatches the Command objects through a User. Each of these commands
use EmailEditor and MailServer instances to do their work, which are
implemented by Email.Builder and ConsoleMailServer respectively.

Haskell To implement this case in Haskell we have the “client” module
Operator. Much like the Java implementation, Operator uses a User to
build up lists of Commands which are then dispatched through the User
module. These commands are dispatched

6.4.3 Metrics for Command implementations

In this subsection we list the metrics results for the Command implementa-
tions, and briefly describe our observations for this particular case.
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Figure 6.3: UML class diagram for the Command case.
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LSLOC for Command
File LSLOC

Haskell
Command.hs 21
Email.hs 24
Main.hs 3
Operator.hs 93
User.hs 15
Total 156

Java
Command.java 0
ConsoleMailServer.java 17
Email.java 24
EmailEditor.java 0
MacroCommand.java 10
MailServer.java 0
Main.java 10
Operator.java 71
SendEmailCommand.java 12
SignEmailCommand.java 8
TextCommand.java 9
User.java 15
Total 176

Table 6.9: Logical source lines of code for Command implementations

Source lines of code (SLOC) for Command implementations

In this section we list the LSLOC and PSLOC metrics for the Command
implementations.

Logical source lines of code for Command implementations In
Table 6.9 we list the LSLOC for each Command implementations’ files.

The Java implementation is 176 ÷ 156 = 1.13 times larger than the
Haskell implementation in terms of LSLOC.

Physical source lines of code for Command implementations In
Table 6.10 we list the PSLOC for each Command implementations’ files.

The Java implementation is 209 ÷ 147 = 1.42 times larger than the
Haskell implementation in terms of PSLOC.

Cyclomatic complexity for Command implementations

In Table 6.11 we list the CC for each Command implementations’ files.
The Java implementation’s total CC is 35, while the Haskell implementa-

tion’s is 40. The Haskell implementation CC is 40÷ 35 = 1.14 times greater
than the Java implementation CC.
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PSLOC for Command
File PSLOC

Haskell
Command.hs 26
Email.hs 30
Main.hs 6
Operator.hs 67
User.hs 18
Total 147

Java
Command.java 3
ConsoleMailServer.java 17
Email.java 31
EmailEditor.java 6
MacroCommand.java 13
MailServer.java 4
Main.java 9
Operator.java 69
SendEmailCommand.java 14
SignEmailCommand.java 11
TextCommand.java 14
User.java 18
Total 209

Table 6.10: Physical source lines of code for Command implementations
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CC for Command
File CC

Haskell
Command.hs 5
Email.hs 4
Main.hs 1
Operator.hs 27
User.hs 3
Total 40

Java
Command.java 0
ConsoleMailServer.java 4
Email.java 5
EmailEditor.java 0
MacroCommand.java 3
MailServer.java 0
Main.java 1
Operator.java 10
SendEmailCommand.java 2
SignEmailCommand.java 2
TextCommand.java 4
User.java 4
Total 35

Table 6.11: Cyclomatic complexity for Command implementations
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Execution times for Command
Command Mean [ms] Min [ms] Max [ms] Relative
Java 90.22± 1.24 87.53 92.32 13.4
Haskell 6.74± 0.18 6.46 7.57 1

Table 6.12: Execution times for Command implementations

Execution time for Command implementations

In Table 6.12 we list the execution time for each Command implementation.
The Java implementation is on average approximately 90.22÷ 6.74 =

13.40 times slower than the Haskell implementation.
Accounting for the execution time overhead calculated in Section 5.3.5,

we get the following results:

Java: 90.22− 74.0 = 16.22
Haskell: 6.74− 6.9 = −0.16

(6.7)

With these adjusted numbers, the Java implementation is 16.22÷−0.16 =
−101.38 times slower than the Haskell implementation.

Cyclomatic complexity density for Command implementations

Using the results from our LSLOC and CC measurements for this case, we
calculate the CC density as follows:

CCρ(Command, Java) = CC(Command, Java)
LSLOC(Command, Java)

=
35
176

= 0.1989

(6.8)

CCρ(Command,Haskell) = CC(Command,Haskell)
LSLOC(Command,Haskell)

=
40
156

= 0.2564

(6.9)

The Haskell implementation is approximately 0.2564÷ 0.1989 = 1.2891
times more logically dense than the Java implementation for the given LSLOC
and CC measurements.

6.4.4 Comparison of Command implementations

In this section, we summarize our observations made while making the
implementations for Command.

There are significant differences in the structure of the implementations
this time in comparison to previous cases. This stems mostly from Haskell’s
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way of explicitly handling side-effects in the IO monad, while Java allows
side-effects anywhere in code. The Command pattern suits functional
programming rather well, but it can be executed in a multitude of ways.
The solution we implemented uses an ADT to represent a command to be
executed, and uses dispatch (and dispatchList) to execute the commands.
We have to manually thread the email that is being edited through each call
to dispatch.

Using a custom monad for handling the state of the email while it is
edited could be used, but requires multiple methods and techniques this
thesis does not have the page count to explore.

Other than this, they feature similar abstractions in terms of how the
commands are created and issued:

• Both have a general sense of a Command, which can be executed or
dispatched.

• Both build up lists of commands to execute in on a User.

• Both execute these commands as the User.

Summarizing the key differences:

• Java allows the programmer to mutate state wherever they please. In
Haskell, updating state is more explicit through function chaining.

• As a result of the above point, it makes sense to use the EmailEditor
interface to edit the email before it is made “immutable” in the Java
implementation. In Haskell, the email is technically always immutable,
so we do not necessarily need EmailEditor, or any equivalent, and leave
the Email module the responsibility of editing, signing and sending the
email in question.

There are a myriad of ways to implement the Command pattern in FP,
because “passing behaviour as data” is the essence of FP: functions as data.
Has we more time to rethink this implementation, we would instead opt for
a simpler approach that is more comparable to the Java implementation in
complexity and scope.

6.5 Composite

The Composite design pattern is concerned with aggregating and streamlining
how a group of components are treated in comparison to a single component.
It is mainly suitable for creating part-whole hierarchies.[4]

6.5.1 Composite case

We model the hardware components of a computer, and how they are
assembled.
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Figure 6.4: UML class diagram for the Composite case.

Implement an system for assembling a modern desktop computer.
This application will be assembled and displayed by a client.
The components of the computer must fit the Composite design
pattern in the sense that they form a hierarchy of components,
where the chassis of the computer is expected to be the root
component of the system, with a CDROM and motherboard
attached. The motherboard has further more components in the
form of a CPU and RAM.

When displaying the computer, a hierarchical overview of the
computer and its parts should print to the console.

6.5.2 Implementations for Composite

The code for the Java implementation is contained in the repository’s
“Java/Implementations/Composite” folder, while the Haskell implementation
is contained in the “Haskell/Implementations/Composite” folder.
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Java We model the components as a loose hierarchy. All concrete
components are transitive extensions of the base Component abstract class.
Leaf components, those components that cannot have children, extend
LeafComponent. Composite components extend CompositeComponent.
Other than that, we have concrete leaf components in the form of CDROM, CPU
and RAM, as well as concrete composite components in the form of Chassis
and Motherboard. The computer is assembled in Main, and subsequently
displayed, utilizing the Composite pattern to display the entire tree of
assembled components.

Haskell The Haskell implementation is very similar to the Java imple-
mentation. Instead of an abstract class, we use a recursive ADT to define a
Component. We keep Component polymorphic in the type of the contained
used for child components to allow for different implementations of com-
ponent collections. We use BasicInfo to keep the information that would
in Java’s case be kept in super classes. Otherwise, the displayComponent
function uses pattern matching to figure out how to display each component,
and recursively calls displayComponent on child components to get their
displayed output as well.

Neither of these implementations are safe from circular dependencies
though, and would loop indefinitely if for example a component is the parent
of itself:

c = new Chassis();
c.addComponent(c);
c.display();

In the case above, the program would never terminate on line 3, or would
encounter a stack overflow.

6.5.3 Metrics for Composite implementations

In this subsection we list the metrics results for the Composite implementa-
tions, and briefly describe our observations for this particular case.

Source lines of code for Composite implementations

In this section we list the LSLOC and PSLOC metrics for the Composite
implementations.

Logical source lines of code for Composite implementations In
Table 6.13 we list the LSLOC for each Composite implementations’ files.

The Java implementation is 266 ÷ 255 = 1.04 times larger than the
Haskell implementation in terms of LSLOC.

Physical source lines of code for Composite implementations In
Table 6.14 we list the PSLOC for each Composite implementations’ files.

The Java implementation is 246 ÷ 178 = 1.38 times larger than the
Haskell implementation in terms of PSLOC.
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LSLOC for Composite
File LSLOC

Haskell
Component.hs 2334
Main.hs 22
Total 255

Java
CDROM.java 24
Chassis.java 48
Component.java 6
CompositeComponent.java 26
CPU.java 28
LeafComponent.java 5
Main.java 15
Motherboard.java 52
NullIterator.java 5
RAM.java 29
Utils.java 28
Total 266

Table 6.13: Logical source lines of code for Composite implementations

PSLOC for Composite
File PSLOC

Haskell
Component.hs 159
Main.hs 19
Total 178

Java
CDROM.java 21
Chassis.java 35
Component.java 16
CompositeComponent.java 28
CPU.java 24
LeafComponent.java 14
Main.java 11
Motherboard.java 37
NullIterator.java 9
RAM.java 24
Utils.java 27
Total 246

Table 6.14: Physical source lines of code for Composite implementations
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CC for Composite
File CC

Haskell
Component.hs 54
Main.hs 7
Total 61

Java
CDROM.java 4
Chassis.java 6
Component.java 2
CompositeComponent.java 6
CPU.java 4
LeafComponent.java 4
Main.java 1
Motherboard.java 6
NullIterator.java 2
RAM.java 4
Utils.java 7
Total 46

Table 6.15: Cyclomatic complexity for Composite implementations

Execution times for Composite
Command Mean [ms] Min [ms] Max [ms] Relative
Java 90.46± 4.2 87.6 91.8 12.13
Haskell 7.46± 0.15 7.18 8.24 1

Table 6.16: Execution times for Composite implementations

Cyclomatic complexity for Composite implementations

In Table 6.15 we list the CC for each Composite implementations’ files.
The Java implementation’s total CC is 46, while the Haskell implementa-

tion’s is 61. The Haskell implementation CC is 61÷ 46 = 1.33 times greater
than the Java implementation CC.

Execution time for Composite implementations

In Table 6.16 we list the execution time for each Composite implementation.
The Java implementation is on average approximately 90.46÷ 7.46 =

12.13 times slower than the Haskell implementation.
Accounting for the execution time overhead calculated in Section 5.3.5,

we get the following results:

Java: 90.46− 74.0 = 16.46
Haskell: 7.46− 6.9 = 0.56

(6.10)

With these adjusted numbers, the Java implementation is 16.46÷ 0.56 =
29.39 times slower than the Haskell implementation.
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Cyclomatic complexity density for Composite implementations

Using the results from our LSLOC and CC measurements for this case, we
calculate the CC density as follows:

CCρ(Composite, Java) = CC(Composite, Java)
LSLOC(Composite, Java)

=
46
266

= 0.1729

(6.11)

CCρ(Composite, Haskell) = CC(Composite, Haskell)
LSLOC(Composite, Haskell)

=
61
255

= 0.2392

(6.12)

The Haskell implementation is approximately 0.2392÷ 0.1729 = 1.3835
times more logically dense than the Java implementation for the given LSLOC
and CC measurements.

6.5.4 Comparison of Composite implementations

In this section, we summarize our observations made while making the
implementations for Composite.

Apart from the difference of interface vs ADT, the implementations
are remarkably similar without significantly deviating from their respective
paradigm.

• Both group components under a single abstraction.

• All components can be treated similarly.

• Components delegate to child components.

There is one key difference though: in the Java implementation, the
components can be treated as the concrete component that they are if need
arise, but they cannot easily be treated this way in the Haskell implementation.
In Haskell, all the components are the same type, and don’t just implement
the same type.

While the implementations are very similar in structure, the Haskell
implementation has a significantly higher CC density than the Java
implementation, and is considerably more complex accoring to the CC
metric.

This case could also be implemented with a Component type class instead
of an ADT, which would let us treat each component as separate types if
necessary.
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6.6 Decorator

The Decorator design pattern is focused on altering the behaviour of an
object in a transparent, stackable manner by wrapping the object in question.
To the consumer of a decorated object, the decorator will be practically
invisible.

6.6.1 Decorator case

We model a system for displaying shapes in various ways.

Implement a system for displaying shapes. It must be able to
decorate the displayed shapes with various concrete decorators.
These decorators must follow all the qualities of decorators
described by the Decorator pattern: they must be nestable, must
not change the visible interface of the underlying object, and
must preferably only have a single responsibility.
The shapes will be constructed and decorated by a client, which
then sends them to a “screen” to be displayed. This screen may
only require that the passed object is displayable, and should
make no further assumptions on the passed objects.

6.6.2 Implementations for Decorator

The code for the Java implementation is contained in the repository’s
“Java/Implementations/Decorator” folder, while the Haskell implementation
is contained in the “Haskell/Implementations/Decorator” folder.

Java The Screen class is responsible for actually displaying the shapes
on the screen. In this particular case, it just prints them to the console.
For a class to be displayable, it must implement the Display interface.
Each of the concrete shapes, Rectangle, Square and Circle, implement
the Display interface. In addition to these concrete shape classes,
we have various decorators for augmenting the display output for each
shape: BorderDecorator, which adds a border to the display output;
ColorDecorator, which colors the displayed output; LowerCaseDecorator,
which turns all displayed text lower case; and UpperCaseDecorator, which
turns all displayed text upper case. In Main, we build up a list of decorated
shapes, and display them using Screen. Screen makes sure colors are reset
between each shape.

Haskell The Screen module is responsible for actually displaying the
shapes on the screen. Mimicking the Java implementation, the shapes are
printed to the console. For Screen to be able to display a shape it needs
to be an instance of the Display type class. Each of the concrete shapes,
Rectangle, Square and Circle, are instances of the Display type class. In
addition to these concrete shapes, we have the same decorators as in the Java
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Figure 6.5: UML class diagram for the Decorator case.
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implementation. These decorators effectively use the Newtype pattern, even
though some of them are not newtypes, to alter the output of the contained
Display instance. We use ExistentialQuantification to build up a list of
Display values, and display them using Screen’s displayOnScreen function.
displayOnScreen makes sure colors are reset between each shape.

6.6.3 Metrics for Decorator implementations

In this subsection we list the metrics results for the Decorator implementa-
tions, and briefly describe our observations for this particular case.

Source lines of code for Decorator implementations

In this section we list the LSLOC and PSLOC metrics for the Decorator
implementations.

Logical source lines of code for Decorator implementations In
Table 6.17 we list the LSLOC for each Decorator implementations’ files.

The Java implementation is 246 ÷ 188 = 1.31 times larger than the
Haskell implementation in terms of LSLOC.

Physical source lines of code for Decorator implementations In
Table 6.18 we list the PSLOC for each Decorator implementations’ files.

The Java implementation is 248 ÷ 201 = 1.23 times larger than the
Haskell implementation in terms of PSLOC.

Cyclomatic complexity for Decorator implementations

In Table 6.19 we list the CC for each Decorator implementations’ files.
The Java implementation’s total CC is 56, while the Haskell implementa-

tion’s is 65. The Haskell implementation CC is 65÷ 56 = 1.16 times greater
than the Java implementation CC.

Execution time for Decorator implementations

In Table 6.20 we list the execution time for each Decorator implementation.
The Java implementation is on average approximately 106.79÷ 7.21 =

14.82 times slower than the Haskell implementation.
Accounting for the execution time overhead calculated in Section 5.3.5,

we get the following results:

Java: 106.79− 74.0 = 32.79
Haskell: 7.21− 6.9 = 0.31

(6.13)

With these adjusted numbers, the Java implementation is 32.79÷ 0.31 =
105.77 times slower than the Haskell implementation.
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LSLOC for Decorator
File LSLOC

Haskell
BackgroundColor.hs 15
BaseColor.hs 1
BorderDecorator.hs 43
CharMapDecorator.hs 4
Circle.hs 5
Color.hs 0
ColorDecorator.hs 5
Display.hs 0
FontColor.hs 15
Main.hs 34
Rectangle.hs 29
Screen.hs 12
Square.hs 25
Total 188

Java
BackgroundColor.java 23
BaseColor.java 1
BorderDecorator.java 78
Circle.java 9
Color.java 0
ColorDecorator.java 9
Display.java 0
DisplayDecorator.java 4
FontColor.java 23
LowerCaseDecorator.java 7
Main.java 24
Rectangle.java 26
Screen.java 11
Square.java 24
UpperCaseDecorator.java 7
Total 246

Table 6.17: Logical source lines of code for Decorator implementations
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PSLOC for Decorator
File PSLOC

Haskell
BackgroundColor.hs 21
BaseColor.hs 12
BorderDecorator.hs 25
CharMapDecorator.hs 7
Circle.hs 12
Color.hs 5
ColorDecorator.hs 8
Display.hs 5
FontColor.hs 21
Main.hs 36
Rectangle.hs 19
Screen.hs 16
Square.hs 14
Total 201

Java
BackgroundColor.java 23
BaseColor.java 10
BorderDecorator.java 64
Circle.java 9
Color.java 3
ColorDecorator.java 10
Display.java 3
DisplayDecorator.java 7
FontColor.java 23
LowerCaseDecorator.java 8
Main.java 31
Rectangle.java 20
Screen.java 11
Square.java 18
UpperCaseDecorator.java 8
Total 248

Table 6.18: Physical source lines of code for Decorator implementations
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CC for Decorator
File CC

Haskell
BackgroundColor.hs 17
BorderDecorator.hs 11
CharMapDecorator.hs 1
Circle.hs 1
ColorDecorator.hs 1
FontColor.hs 17
Main.hs 3
Rectangle.hs 7
Screen.hs 2
Square.hs 5
Total 65

Java
BackgroundColor.java 11
BaseColor.java 0
BorderDecorator.java 15
Circle.java 2
Color.java 0
ColorDecorator.java 2
Display.java 0
DisplayDecorator.java 1
FontColor.java 11
LowerCaseDecorator.java 2
Main.java 2
Rectangle.java 3
Screen.java 2
Square.java 3
UpperCaseDecorator.java 2
Total 56

Table 6.19: Cyclomatic complexity for Decorator implementations

Execution times for Decorator
Command Mean [ms] Min [ms] Max [ms] Relative
Java 106.79± 1.21 103.43 108.18 14.82
Haskell 7.21± 0.14 6.96 8.12 1

Table 6.20: Execution times for Decorator implementations
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Cyclomatic complexity density for Decorator implementations

Using the results from our LSLOC and CC measurements for this case, we
calculate the CC density as follows:

CCρ(Decorator, Java) = CC(Decorator, Java)
LSLOC(Decorator, Java)

=
56
246

= 0.2276

(6.14)

CCρ(Decorator, Haskell) = CC(Decorator, Haskell)
LSLOC(Decorator, Haskell)

=
65
188

= 0.3457

(6.15)

The Haskell implementation is approximately 0.3457÷ 0.2276 = 1.5189
times more logically dense than the Java implementation for the given LSLOC
and CC measurements.

6.6.4 Comparison of Decorator implementations

In this section, we summarize our observations made while making the
implementations for Decorator.

Much like with the Composite case, the two implementations for this
case are very similar. The main differences are language-specific, with the
Haskell implementation using type classes while the Java implementation
uses interfaces to abstract over Display. Each decorator wraps another
decorator or concrete shape in both implementations. However, the form of
wrapping used in the Haskell implementation is often called the Newtype
pattern.

Newtype pattern is very similar to how the Decorator pattern is usually
applied, so the similarities are high between the two implementations.

The Haskell implementation seems to be slower than usual, with the Java
implementation only being 11.15 times slower. Compared to previous cases,
the Haskell implementation is about half as fast as usual when compared to
the Java implementation.

6.7 Iterator

The Iterator design pattern is concerned with consuming the elements of
a collection as they are needed. Instead of converting the entire collection
to an array, or having to consume the elements of the collection in an
implementation-specific way, the Iterator pattern allows us to consume a
collection lazily regardless of the structure of the collection.
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Figure 6.6: UML class diagram for the Iterator case.

6.7.1 Iterator case

We implement iterators for a linked list and a binary tree.

Implement a linked list and a binary tree. These implementations
must also be able to provide an iterator to consume the collection
in question as we need the elements.

6.7.2 Implementations for Iterator

The code for the Java implementation is contained in the repository’s
“Java/Implementations/Iterator” folder, while the Haskell implementation is
contained in the “Haskell/Implementations/Iterator” folder.

Java We implemented a binary tree and a linked list, and provided iterators
for each of these. The iterator for the binary tree traverses the tree in order
from lowest to highest. The iterator for the linked list traverses the list from
the beginning to the end of the list.

Haskell We implemented a binary tree and a list, and made these collections
instances of the Foldable type class. The default list in Haskell is a linked
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LSLOC for Iterator
File LSLOC

Haskell
Add.hs 0
LinkedList.hs 13
Main.hs 38
Tree.hs 19
Total 70

Java
BinaryTree.java 68
Coll.java 7
LinkedList.java 34
Main.java 34
Total 143

Table 6.21: Logical source lines of code for Iterator implementations

list, but to keep the measurements similar we implemented a linked list of
our own.

6.7.3 Metrics for Iterator implementations

Source lines of code for Iterator implementations

In this section we list the LSLOC and PSLOC metrics for the Iterator
implementations.

Logical source lines of code for Iterator implementations In Table
6.21 we list the LSLOC for each Iterator implementations’ files.

The Java implementation is 143÷ 70 = 2.04 times larger than the Haskell
implementation in terms of LSLOC.

Physical source lines of code for Iterator implementations In Table
6.22 we list the PSLOC for each Iterator implementations’ files.

The Java implementation is 173÷ 81 = 2.14 times larger than the Haskell
implementation in terms of PSLOC.

Cyclomatic complexity for Iterator implementations

In Table 6.23 we list the CC for each Iterator implementations’ files.
The Haskell implementation’s total CC is 18, while the Java implementa-

tion’s is 37. The Java implementation CC is 37÷ 18 = 2.06 times greater
than the Haskell implementation CC.

Execution time for Iterator implementations

In Table 6.24 we list the execution time for each Iterator implementation.
The Java implementation is on average approximately 81.79÷ 7.01 =

11.67 times slower than the Haskell implementation.
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PSLOC for Iterator
File PSLOC

Haskell
Add.hs 6
LinkedList.hs 21
Main.hs 31
Tree.hs 23
Total 81

Java
BinaryTree.java 83
Coll.java 13
LinkedList.java 44
Main.java 33
Total 173

Table 6.22: Physical source lines of code for Iterator implementations

CC for Iterator
File CC

Haskell
LinkedList.hs 6
Main.hs 6
Tree.hs 6
Total 18

Java
BinaryTree.java 21
Coll.java 3
LinkedList.java 9
Main.java 4
Total 37

Table 6.23: Cyclomatic complexity for Iterator implementations

Execution times for Iterator
Command Mean [ms] Min [ms] Max [ms] Relative
Java 81.79± 7.33 74.7 91.33 11.67
Haskell 7.01± 0.19 6.74 8.05 1

Table 6.24: Execution times for Iterator implementations
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Accounting for the execution time overhead calculated in Section 5.3.5,
we get the following results:

Java: 81.79− 74.0 = 7.79
Haskell: 7.01− 6.9 = 0.11

(6.16)

With these adjusted numbers, the Java implementation is 7.79÷ 0.11 =
70.82 times slower than the Haskell implementation.

Cyclomatic complexity density for Iterator implementations

Using the results from our LSLOC and CC measurements for this case, we
calculate the CC density as follows:

CCρ(Iterator, Java) =
CC(Iterator, Java)

LSLOC(Iterator, Java)

=
37
143

= 0.2587

(6.17)

CCρ(Iterator, Haskell) =
CC(Iterator, Haskell)

LSLOC(Iterator, Haskell)

=
18
70

= 0.2571

(6.18)

The Java implementation is approximately 0.2587÷ 0.2571 = 1.0062
times more logically dense than the Haskell implementation for the given
LSLOC and CC measurements.

6.7.4 Comparison of Iterator implementations

In this section, we summarize our observations made while making the
implementations for Iterator.

Given that Haskell has language support for ADTs the LinkedList
and Tree implementations in the Haskell implementation are considerably
simpler than the Java implementation’s LinkedList and BinaryTree
implementations in LSLOC, PSLOC and CC.

While the Haskell implementation is considerably “simpler” than the Java
implementation in terms of CC, PSLOC and LSLOC, it sustains a higher CC
density than the Java implementation, if even by only 6.13%. The Haskell
implementation’s execution time is also considerably worse when comparing
it to previous cases, while the Java implementation seems to be rather fast.
This might be due to lazy data structures in the Haskell implementation.

The Iterator pattern can be implemented in two main ways in FP:
Foldable, like we did here, and conversion to Lists. In Haskell, the default
list is a lazy linked list. Each element of the list is evaluated as they are
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needed, and will otherwise remain unevaluated if consumption of the list halts
before reaching every element. As such, Haskell lists are themselves iterators
according to the Iterator pattern’s definition. Converting a collection to a
list would then provide a generalized, lazy way to consume the collection
regardless of its implementation.

6.8 Prototype
The Prototype pattern is focused on keeping complicated and inefficient
object initialization to a minimum by copying existing “prototype” objects
instead of initializing new ones from scratch.

6.8.1 Prototype case

We model a system for creating space ships in a game.

Implement a system for creating modular space ships. Each
part of a space ship must implement a method for deep cloning,
whereby any objects and attributes within the object are cloned
as well. The space ship will be the client using the Prototype
pattern to clone the parts as they are added to the ship. The
ship and the parts must also implement a method to display
themselves on the screen.

6.8.2 Implementations for Prototype

The code for the Java implementation is contained in the repository’s
“Java/Implementations/Prototype” folder, while the Haskell implementation
is contained in the “Haskell/Implementations/Prototype” folder.

Java The specification by Gamma et al. for the Prototype pattern is very
simple: have objects implement an interface with a method for cloning the
object. We have a Part abstract class which implements a clone method
for use by sub classes, along with a display method for displaying the part
on the screen. The SpaceShip class holds a list of Part objects, and uses
these parts when displaying itself on the screen. We have four concrete
parts: GunPart, StructurePart, ThrusterPart and WindowPart. Each of
these concrete parts extend the Part abstract class, implementing a display
method of their own. In Main we initialize a weak thruster, a strong thruster,
a weak gun, a strong gun, a normal structure, a strong structure, and a
window. We then assemble a small and a large ship with various combinations
of these parts, using SpaceShip’s addPart method, which makes sure to
clone the passed part before adding it to its list.

Haskell In Haskell, the need to copy objects is not present to the same
degree as in Java and other OOP programming languages. Because values
are immutable by default, we can reuse values as we like without fear of
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Figure 6.7: UML class diagram for the Prototype case.
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LSLOC for Prototype
File LSLOC

Haskell
Display.hs 0
Gun.hs 5
Main.hs 59
SpaceShip.hs 26
Structure.hs 5
Thruster.hs 5
Window.hs 5
Total 105

Java
GunPart.java 11
Main.java 44
Part.java 0
SpaceShip.java 25
StructurePart.java 11
ThrusterPart.java 11
WindowPart.java 11
Total 113

Table 6.25: Logical source lines of code for Prototype implementations

mutating state in other places of the program. The Haskell implementation
is thus similar to the Java implementation, with the exception of the clone
method, which we omit entirely in the Haskell implementation. We have
a Display type class with one operation, display, for displaying values
on the screen. SpaceShip uses the existential data type Part for its list
of parts. Part only requires its value to be an instance of Display, which
allows us to have a list of parts of different types. Each of the concrete parts
are implemented as separate data types which are instances of the Display
type class. In Main, we initialize the same part variations as in the Java
implementation, and build the same small and large ships.

6.8.3 Metrics for Prototype implementations

In this subsection we list the metrics results for the Prototype implementa-
tions, and briefly describe our observations for this particular case.

Source lines of code for Prototype implementations

In this section we list the LSLOC and PSLOC metrics for the Prototype
implementations.

Logical source lines of code for Prototype implementations In
Table 6.25 we list the LSLOC for each Prototype implementations’ files.

The Java implementation is 113 ÷ 105 = 1.08 times larger than the
Haskell implementation in terms of LSLOC.
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PSLOC for Prototype
File PSLOC

Haskell
Display.hs 5
Gun.hs 9
Main.hs 39
SpaceShip.hs 27
Structure.hs 9
Thruster.hs 9
Window.hs 9
Total 107

Java
GunPart.java 12
Main.java 38
Part.java 4
SpaceShip.java 26
StructurePart.java 12
ThrusterPart.java 12
WindowPart.java 12
Total 116

Table 6.26: Physical source lines of code for Prototype implementations

Physical source lines of code for Prototype implementations In
Table 6.26 we list the PSLOC for each Prototype implementations’ files.

The Java implementation is 116 ÷ 107 = 1.08 times larger than the
Haskell implementation in terms of PSLOC.

Cyclomatic complexity for Prototype implementations

In Table 6.27 we list the CC for each Prototype implementations’ files.
The Java implementation’s total CC is 19, while the Haskell implementa-

tion’s is 19. The Haskell implementation CC is 19÷ 19 = 1.00 times greater
than the Java implementation CC.

Execution time for Prototype implementations

In Table 6.28 we list the execution time for each Prototype implementation.
The Java implementation is on average approximately 90.70÷ 6.91 =

13.13 times slower than the Haskell implementation.
Accounting for the execution time overhead calculated in Section 5.3.5,

we get the following results:

Java: 90.70− 74.0 = 16.70
Haskell: 6.91− 6.9 = 0.01

(6.19)

With these adjusted numbers, the Java implementation is 16.70÷ 0.01 =
1670.00 times slower than the Haskell implementation.

96



CC for Prototype
File CC

Haskell
Gun.hs 1
Main.hs 11
SpaceShip.hs 4
Structure.hs 1
Thruster.hs 1
Window.hs 1
Total 19

Java
GunPart.java 3
Main.java 3
Part.java 0
SpaceShip.java 4
StructurePart.java 3
ThrusterPart.java 3
WindowPart.java 3
Total 19

Table 6.27: Cyclomatic complexity for Prototype implementations

Execution times for Prototype
Command Mean [ms] Min [ms] Max [ms] Relative
Java 90.7± 0.86 89.19 92.27 13.15
Haskell 6.91± 0.15 6.64 7.69 1

Table 6.28: Execution times for Prototype implementations
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Cyclomatic complexity density for Prototype implementations

Using the results from our LSLOC and CC measurements for this case, we
calculate the CC density as follows:

CCρ(Prototype, Java) =
CC(Prototype, Java)

LSLOC(Prototype, Java)

=
19
113

= 0.1681

(6.20)

CCρ(Prototype,Haskell) =
CC(Prototype,Haskell)

LSLOC(Prototype,Haskell)

=
19
105

= 0.1810

(6.21)

The Haskell implementation is approximately 0.1810÷ 0.1681 = 1.0767
times more logically dense than the Java implementation for the given LSLOC
and CC measurements.

6.8.4 Comparison of Prototype implementations

In this section, we summarize our observations made while making the
implementations for Prototype.

Haskell’s immutable values are a language feature, and we require no
pattern or technique to “implement” the Prototype pattern in Haskell. We
have not implemented any sort of pattern in the Haskell implementation
whatsoever.

The Java implementation cannot use Object’s clone method because
it merely makes a shallow copy of the object. As such, we define our
own clone method in Part, which also forgoes the checked exception
CloneNotSupportedException thrown by Object’s clone.

In terms of the actual pattern, there are practically no similarities between
the two implementations because the Haskell implementation does nothing
in particular to achieve the desired result. Modifying a value or record in
Haskell always automatically copies it, so we effectively get the intention of
the Prototype pattern for free.

We can thus safely state that the Prototype pattern barely exists in
Haskell, if at all. This statement can be extended to FP in general, but
there are other FP languages that more readily support mutable values and
objects.

6.9 Strategy
The Strategy pattern abstracts over a family of algorithms, providing
polymorphism in terms of the concrete algorithm used by the client.
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Figure 6.8: UML class diagram for the Strategy case.

6.9.1 Strategy case

We model a system for encrypting text.

Implement a system for encrypting strings of text in various ways.
Each way of encrypting text should be a self-contained class
or method. These encrypting algorithms must be used by an
“encrypter”, which will take an encryption algorithm, an input
string, and print the encrypted result to the console.

6.9.2 Implementations for Strategy

The code for the Java implementation is contained in the repository’s
“Java/Implementations/Strategy” folder, while the Haskell implementation
is contained in the “Haskell/Implementations/Strategy” folder.

Java We implemented a Crypt interface to generalize the act of encrypting
a piece of string. We have four concrete implementations for Crypt:
IntersperseCrypt, which intersperses a piece of text between each character
of the input string; MacroCrypt, which passes the input string through each
Crypt in its list of Crypts; ReverseCrypt, which reverses the input string;
and RotCrypt, which shifts each character in the input string by a number
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LSLOC for Strategy
File LSLOC

Haskell
Crypts.hs 37
Encrypter.hs 6
Main.hs 19
Total 62

Java
Crypt.java 0
Encrypter.java 12
IntersperseCrypt.java 14
MacroCrypt.java 12
Main.java 18
ReverseCrypt.java 6
RotCrypt.java 22
Total 84

Table 6.29: Logical source lines of code for Strategy implementations

of places. Encrypter takes a Crypt, and has a method printEncrypted to
print a string to the terminal after encrypting it with the passed Crypt.

Haskell We implemented the four concrete Crypts from the Java
implementation as normal functions, and the printEncrypted method from
Encrypter, having it take a string and a function of type String -> String.
Other than that, Main resembles the Java implementation’s Main when it
comes to initializing some of the encryption functions.

6.9.3 Metrics for Strategy implementations

In this subsection we list the metrics results for the Strategy implementations,
and briefly describe our observations for this particular case.

Source lines of code for Strategy implementations

In this section we list the LSLOC and PSLOC metrics for the Strategy
implementations.

Logical source lines of code for Strategy implementations In Table
6.29 we list the LSLOC for each Strategy implementations’ files.

The Java implementation is 84÷ 62 = 1.35 times larger than the Haskell
implementation in terms of LSLOC.

Physical source lines of code for Strategy implementations In Table
6.30 we list the PSLOC for each Strategy implementations’ files.

The Java implementation is 92÷ 49 = 1.88 times larger than the Haskell
implementation in terms of PSLOC.
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PSLOC for Strategy
File PSLOC

Haskell
Crypts.hs 24
Encrypter.hs 5
Main.hs 20
Total 49

Java
Crypt.java 3
Encrypter.java 12
IntersperseCrypt.java 15
MacroCrypt.java 15
Main.java 16
ReverseCrypt.java 6
RotCrypt.java 25
Total 92

Table 6.30: Physical source lines of code for Strategy implementations

Cyclomatic complexity for Strategy implementations

In Table 6.31 we list the CC for each Strategy implementations’ files.
The Haskell implementation’s total CC is 16, while the Java implementa-

tion’s is 20. The Java implementation CC is 20÷ 16 = 1.25 times greater
than the Haskell implementation CC.

Execution time for Strategy implementations

In Table 6.32 we list the execution time for each Strategy implementation.
The Java implementation is on average approximately 104.58÷ 6.97 =

15.00 times slower than the Haskell implementation.
Accounting for the execution time overhead calculated in Section 5.3.5,

we get the following results:

Java: 104.58− 74.0 = 30.58
Haskell: 6.97− 6.9 = 0.07

(6.22)

With these adjusted numbers, the Java implementation is 30.58÷ 0.07 =
436.86 times slower than the Haskell implementation.

Cyclomatic complexity density for Strategy implementations

Using the results from our LSLOC and CC measurements for this case, we
calculate the CC density as follows:

101



CC for Strategy
File CC

Haskell
Crypts.hs 10
Encrypter.hs 1
Main.hs 5
Total 16

Java
Crypt.java 0
Encrypter.java 3
IntersperseCrypt.java 3
MacroCrypt.java 4
Main.java 1
ReverseCrypt.java 1
RotCrypt.java 8
Total 20

Table 6.31: Cyclomatic complexity for Strategy implementations

Execution times for Strategy
Command Mean [ms] Min [ms] Max [ms] Relative
Java 104.58± 12.77 89.84 121.86 15
Haskell 6.97± 0.14 6.74 7.68 1

Table 6.32: Execution times for Strategy implementations
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CCρ(Strategy, Java) = CC(Strategy, Java)
LSLOC(Strategy, Java)

=
20
84

= 0.2381

(6.23)

CCρ(Strategy,Haskell) = CC(Strategy,Haskell)
LSLOC(Strategy,Haskell)

=
16
62

= 0.2581

(6.24)

The Haskell implementation is approximately 0.2581÷ 0.2381 = 1.0840
times more logically dense than the Java implementation for the given LSLOC
and CC measurements.

6.9.4 Comparison of Strategy implementations

In this section, we summarize our observations made while making the
implementations for Strategy.

In Java, we implemented the Strategy pattern using a very simple interface
with one method, while in Haskell we just specified that printEncrypted
required a function of type String -> String. This simplifies the

implementation because we merely pass functions to printEncrypted, and
require no special data types whatsoever. The encryption algorithms are just
functions, some partially applied before being passed to printEncrypted.

Apart from their algorithm implementations and the printEncrypted
functions, the two implementations barely resemble each other.

The Strategy pattern is one of the patterns that most resembles FP.
Because of this, the Strategy pattern is not exactly a “pattern” in FP, but
more a core philosophy of the paradigm: HOFs, functions that take other
functions as arguments. The Haskell implementation is overall considerably
smaller in both SLOC measurements, less complex in CC, and only marginally
more complex in terms of CC density.

6.10 Summary of cases
In this chapter we have presented the various cases designed for this study.
We have described their requirements, how they were implemented, and the
various measurements made for each case. We have also described various
qualitative observations made for each case’s implementations.
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Part V

Discussion and conclusion
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Chapter 7

Analysis

7.1 Introduction

In this chapter we analyse the data collected from the cases as a whole. The
focus is to analyse the results in relation to other cases. We present our
measurements for the various metrics defined in Section 5.3.

We have used the metrics defined in Section 5.3 when collecting data on
the various implementations created for this study.

7.2 Logical source lines of code summary

Table 7.1 collates the LSLOC for each implementation. The Java implement-
ations have on average higher LSLOC than the Haskell implementations.

Especially for the Iterator case, the Java implementation has more than
double the Haskell implementation’s LSLOC. The most similar case is the
Composite pattern, with the Java implementation only being 1.04 times
larger in LSLOC than the Haskell implementation.

On average, the Haskell implementations are 76% the size of the Java
implementations.

LSLOC
Pattern Haskell Java Haskell / Java
Abstract Factory 58 88 0.66
Adapter 100 165 0.61
Command 156 176 0.89
Composite 255 266 0.96
Decorator 188 246 0.76
Iterator 70 143 0.49
Prototype 105 113 0.93
Strategy 62 84 0.74
Average 124 160.13 0.76

Figure 7.1: LSLOC for each implementation
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PSLOC
Pattern Haskell Java Haskell / Java
Abstract Factory 114 132 0.86
Adapter 137 185 0.74
Command 147 209 0.70
Composite 178 246 0.72
Decorator 201 248 0.81
Iterator 81 173 0.47
Prototype 107 116 0.92
Strategy 49 92 0.53
Average 127 175.13 0.72

Figure 7.2: PSLOC for each implementation

CC
Pattern Haskell Java Haskell / Java
Abstract Factory 14 24 0.58
Adapter 31 32 0.97
Command 40 35 1.14
Composite 61 46 1.33
Decorator 65 56 1.16
Iterator 18 37 0.49
Prototype 19 19 1.00
Strategy 16 20 0.80
Average 33 33.63 0.93

Figure 7.3: CC for each implementation

7.3 Physical source lines of code summary

Table 7.2 collates the PSLOC for each implementation. The Java implement-
ations have on average higher PSLOC than the Haskell implementations.
The largest difference is in the Iterator case, while the smallest difference is
in the Prototype case. The Java implementations are on average 1.38 times
larger in terms of PSLOC than the Haskell implementations.

7.4 Cyclomatic complexity metric

Table 7.3 collates the CC for each implementation. The Haskell
implementations have on average higher CC than the Java implementations.
The cases where this is not the case. The implementation with the lowest
CC for Haskell is Abstract Factory, and for Java it is Prototype. Strategy is
the simplest case overall, with an average CC between the two languages at
18. Decorator was the most complex case for both, with an average CC of
53.5.

108



Execution time [ms]
Pattern Haskell Java Haskell / Java
Abstract Factory 7.38 90.09 0.0819
Adapter 7.30 99.85 0.0731
Command 6.74 90.22 0.0747
Composite 7.46 90.46 0.0825
Decorator 7.21 106.79 0.0675
Iterator 7.01 81.79 0.0857
Prototype 6.91 90.70 0.0762
Strategy 6.97 104.58 0.0666
Average 7.12 94.3100 0.0760

Figure 7.4: Execution time [ms] for each implementation

Normalized time [ms]
Pattern Haskell Java Haskell / Java
Abstract Factory 0.48 16.09 0.0298
Adapter 0.40 25.85 0.0155
Command -0.16 16.22 -0.0099
Composite 0.56 16.46 0.0340
Decorator 0.31 32.79 0.0095
Iterator 0.11 7.79 0.0141
Prototype 0.01 16.70 0.0006
Strategy 0.07 30.58 0.0023
Average 0.22 20.3100 0.0120

Figure 7.5: Normalized time [ms] for each implementation

7.5 Execution time summary

Table 7.4 collates the execution times for each implementation, while Table
7.5 collates the execution times in relation to the measured minimum time
from Section 5.3.5.

The Java implementations take on average an order of magnitude more
time to execute to completion in comparison to the Haskell implementations.
The Iterator case is the closest comparison, where the Java implementations
takes only 9.06 times more time than the Haskell implementation. The
biggest difference is in the Strategy case, where the Java implementation
takes 11.39 times more time than the Haskell implementation.

The normalized execution times in relation to the measured minimum
are considered invalid data. The Command implementation was measured
to take 0.16 ms less time to complete than the reference empty program. As
such, we cannot in good faith draw any sensible conclusions from this data.
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CC density
Pattern Haskell Java Haskell / Java
Abstract Factory 0.2414 0.2727 0.8852
Adapter 0.3100 0.1939 1.5988
Command 0.2564 0.1989 1.2891
Composite 0.2392 0.1729 1.3835
Decorator 0.3457 0.2276 1.5189
Iterator 0.2571 0.2587 0.9938
Prototype 0.1810 0.1681 1.0767
Strategy 0.2581 0.2381 1.0840
Average 0.2611 0.2164 1.2288

Figure 7.6: CC density for each implementation

7.6 Cyclomatic complexity density summary
Table 7.6 collates the CC density for each implementation. The Haskell
implementations have on average 1.21 times the CC density of the Java
implementations.

7.7 Summary of analysis
In this chapter we have presented a general overview of our findings from
Part IV, and noted the extreme points for each metric, as well as the average.
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Chapter 8

Discussion

8.1 Introduction to discussion

In this chapter we discuss our findings from Part IV and Chapter 7.

8.2 Case evaluation

8.2.1 Introduction

Some cases are simple in Java, while others are simple in Haskell. There is a
general structure to the patterns that were simple and complicated in each
language. None of the patterns were notably difficult to implement in either
language, but some patterns were exceedingly trivial. This level of ease in
implementing the patterns in each language could stem from a variety of
qualities about the case, the languages and our programming capabilities.

8.2.2 Case differences

We present the observed differences in the case implementations.

Abstract Factory Simple in both languages. Using polymorphism through
interfaces and type classes, both implementations were simple.

Adapter A bit of a contrived case objective. Neither language had any
issues in terms of implementing this pattern, and they both resemble each
other to a large degree. If we briefly consider interfaces and type classes to
be identical constructs, the resemblance is uncanny.

Command Very difficult case to implement in Haskell in a form that was
comparable to the Java implementation. Haskell’s handling of side-effects
complicated matters in the sense that we were unsure exactly how to proceed
with executing the commands once they had been initialized. The solution we
settled on we found to be satisfyingly simple and representative uses regular
functions instead of any type classes or Newtype-trickery. Implementing the
case in Java, on the other hand, proved no issue.
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Composite Neither the Java nor the Haskell implementations proved
difficult to implement for this case. They resemble each other quite a
lot again, but the Haskell implementation does not have as high level of
polymorphism as the Java case does, as the Haskell case requires that
children of the composite components are of the same type, while in the Java
implementation the children are only required to implement an interface.

Decorator Very simple for both implementations, but ended up requiring
a lot of code for both implementations. The implementations are somewhat
weighed down by the code used to display the elements in the terminal, and
thus have a somewhat high “signal to noise ratio” if we consider anything
not directly related to the design pattern to be noise.

Iterator Simple for Haskell, complex for Java. Binary trees with ADTs
are very simple to implement in Haskell, while in Java it is less so. Java
requires a lot of looping to find the right nodes, forcing us to consider the
state of the methods before, during and after looping, and accurately assign
the right values to the right places depending on where we are in the tree.
Foldable applies the provided function on each value of the collection as
they are iterated through, while the Iterator pattern requires the iterator to
relinquish control in between calls to its next method, meaning we have to
keep state between each of these calls.

Prototype Trivial to implement in Haskell, easy to implement in Java.
This pattern does not exist in Haskell, and barely exists in general in FP.
Since FP focuses on immutable values, most FP languages by default copy
values when they are modified, and Haskell is not exception. In Java, on the
other hand, we implement our own copying method to achieve deep copying.

Strategy Trivial to implement in Haskell, easy to implement in Java. This
is one of the simpler patterns, and it shows. The case we decided upon
brought some noise in the form of RotCrypt. We initially didn’t realize the
complexity of performing the Caesar cipher, at least in comparison to the
rest of the implementations.

8.2.3 Case bias

While we have observed some strong correlations in our results, we should
not trust correlations blindly in such a study as this. The cases presented
were selected and iterated through qualitative opinions and criteria, with
a human bias guiding the final implementations. The measurements and
observations made represent choices made based upon qualitative criteria as
well.

While we have aimed to minimize this bias and subjectiveness in the
design procedure of these cases, we cannot deny that there might still exist
an element of bias in the cases. We aimed to select case requirements that
resemble the examples given in [4], we aimed to select case implementations
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that represent the programming language they were implemented in, and we
aimed to measure and observe the qualities of these implementations in a
balanced manner.

As such, we think the observations made in this thesis is of value. The
correlations observed in our results would be a very improbable coincidence if
not for some underlying phenomena or quality of the languages and paradigms.
However, it should be noted that to dismiss the presence of a bias would be
unwise.

8.3 Applicability

In this section we discuss the applicability of the design patterns to each
language and their respective programming paradigms.

All the design patterns suit Java quite well, but only a few are worth
considering when programming in Haskell. We describe these details for each
pattern below.

8.3.1 Applicability of Abstract Factory

The Abstract Factory pattern suits Java exceedingly well due to Java’s
language support for interfaces and abstract classes. We are able to easily
implement the pattern, with little overhead, and the pattern brings tangible
value in solving the problems it sets out to solve.

On the other hand, the pattern is not particularly helpful in Haskell.
While data creation is definitely a concern in Haskell, data creation in the
way proposed by the Abstract Factory pattern is less flexible in Haskell and
FP. In Haskell, it is more common to focus on data manipulation, since
manipulating existing data automatically copies it. As such, instead of the
Abstract Factory pattern, Haskell uses its built-in “Prototype” pattern to
create data where it’s needed.

8.3.2 Applicability of Adapter

The Adapter pattern suits Java very well, with Java being able to support the
pattern in multiple ways. The pattern can be applied verbatim in problem
areas whenever necessary.

The pattern is also applicable to Haskell and FP, but not necessarily in
the form proposed in [4]. It can be applied as a simple function, transforming
data into another format, or as a Newtype-pattern, wrapping an existing
type and replacing or extending its type class instances.

8.3.3 Applicability of Command

The Command pattern, we feel, is somewhat difficult to reason about, but
is nonetheless simple to implement in Java. The pattern reinforces Java’s
reliance on side-effects, and might make it hard to track how, why and when
something happened in a system. Even so, it is possibly the best solution to
the problem described in the problem space described in [4].
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The Command pattern is used quite a lot in Haskell, but in a different
form. It is quite common to want to track the effectful operations performed
by a function. As such, it is common to build a set of domain-specific
languages (DSLs) for dealing with these effects. These DSLs can then
be used to issue commands that can later be interpreted into real effectful
operations. This method of abstracting out effects can be done in a multitude
of ways, but the most common techniques are called “mtl-style”[5], using the
brilliant Haskell package mtl, and “Freer monads”, which use a specific data
type that, provided a functor, can form a “free” monad. The theory and
specifics of these two methods are left up to the reader to discover further.

8.3.4 Applicability of Composite

The Composite pattern is simple to implement, and simple to use, in Java.
It is a simple way to encode recursive and/or hierarchical structures. Our
only qualm about the pattern is that methods defined in the interface for
the composite that are meant for the compositions are not implementable
for the non-compositions, and so they must either throw an exception or not
do anything. This feels like a leaky or incomplete abstraction to us, but it is
exactly this way it is described in [4].

In Haskell, seeing as it’s common to catch invalid cases in types and force
them to be compilation errors rather than runtime exceptions, the composite
pattern is not directly applicable. Through the use of ADTs, it is simple
to implement the pattern, but having operations that should only work on
compositions rather than leaf values complicates matters. It is more common
to attempt to write “complete” functions, that have a result for any value
of the input type, as opposed to “partial” functions, that might not have
a solutions for all input values. Partial functions complicates matters, as
catching exceptions from pure functions is error-prone, cumbersome and not
particularly performant. As such, it is more common to treat compositions
and leaf values distinctly, and instead build a hierarchy through ADTs if one
is desired.

8.3.5 Applicability of Decorator

The Decorator pattern is a useful pattern for Java. The pattern is a nice
way of extending a class selectively and through composition instead of
inheritance.

This pattern is used in Haskell almost verbatim to how it is defined in
[4] in the form of the Newtype pattern. Extending an existing type’s type
class instance by wrapping it in a newtype and defining a different instance
for it is common practice in Haskell.

8.3.6 Applicability of Iterator

The Iterator is so well-suited to Java that it is a part of its standard library
as java.util.Iterator. While the implementation does not correspond
exactly to the definition in [4], it serve the same purpose, and can be used in
mostly the same way.
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In Haskell, there are multiple ways to achieve the same effect as the
Iterator pattern. We opted to use the Foldable type class, but a simpler
definition would be to just convert the collection to a list, which is lazy by
default. So while iterator objects themselves do not fit Haskell, the pattern’s
problem space and solution are so similar in Haskell and FP to the definition
in [4] that we conclude the pattern fits Haskell very well.

8.3.7 Applicability of Prototype

The Prototype pattern is less useful in Java than most of the other patterns
due to Java’s simple object instantiation mechanisms. It is nice to use when
object instantiation is complicated, or if there is a predefined set of objects
that exhibit an archetype to create multiple objects of.

The Prototype pattern exists “by default” in Haskell and FP: when values
are copy-on-modify, which is the case for Haskell, the prototype pattern is
effectively the default behaviour when modifying a value in general.

8.3.8 Applicability of Strategy

The Strategy pattern is innately very simple, and implementing it in Java
is about as simple as implementing it in Haskell. It is at its core just HOF
with objects instead of first-class functions, and it achieves this effect very
succinctly given the usefulness of the pattern.

HOFs are widely used in FP, but is not considered a pattern in and of
itself in FP since functions are first-class values in FP, and passing functions
as arguments is one of the core tenets of FP.

8.4 Code size

Differences in LSLOC could be because of differences in Java and Haskell’s
standard libraries. Java’s standard library has a small number of utility
“functions”, but is more focused on utility classes. While these utility classes
are helpful in situations that fit them, they are applicable to fewer situations
than Haskell’s standard libraries’ utility functions, which aim to be completely
agnostic to the environment they are used in. As such, we have inevitably
ended up using more of the standard library in the Haskell implementations
than in the Java implementations. Unfortunately, we did not foresee this
exact issue when initially planning this study.

Differences in PSLOC is mostly caused by Java’s C-like syntax, with curly
braces to delimit blocks of code. The closing curly brace is on a dedicated
line in Java, and as such a block of code in Java will always count 1 more
PSLOC than an equivalent block of code in Haskell.

Haskell, and FP in general, is focused on composing together functions.
This often means that a function using two other functions could be written
in one line, à la foo x = bar (baz x), while in Java it is more common to
write these on separate lines, especially for longer chains of functions.

Even with these considerations, we can clearly see a consistent trend
of the Java implementations having a higher PSLOC than the Haskell
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implementations.

8.5 Complexity

Java has only marginally higher CC, but Haskell has significantly higher
CC density. The Haskell implementations have on average 22.9% higher CC
density than the Java implementations, even though they have the same
CC score. As such, it is safe to say that the Haskell implementations are
not any less complex than Java implementations, but they spread their
complexity over a smaller area. This is most likely as a result of the Haskell
implementations’ high number of functions, which each count at least 1 CC,
while in Java it’s more common with fewer, more complicated methods. The
Haskell implementations and their code might then seem more compact, and
more obtuse when compared to the Java implementations, with more things
happening per line of code. This is to be expected, given that Haskell focuses
on composing smaller functions into bigger functions.

The case with the largest difference in CC density is the Adapter case,
where the Haskell implementation is 60% more dense, even though the
Adapter pattern is a pattern we find to be fitting for Haskell through using
the Newtype pattern. Both languages have roughly the same CC in this case,
but the Haskell implementation is considerably smaller in terms of LSLOC,
giving it such a high CC density.

Both languages have very low CC density in the Prototype case, cementing
our concern that the case requirements might have been too simple.

8.6 Discussion of limitations

In this section we describe the limitations of this thesis work, and details
about this study that can be done better or differently.

8.6.1 Master’s thesis

This is merely a master’s thesis, and even though we are passionate about
the work we have done during this thesis work, our abilities are inadequate
to draw proper and definitive conclusions on this matter.

8.6.2 Functional programming bias

We have more experience working in Haskell and with FP from other
languages like Javascript and Elm than with OOP. As such, our views
here are heavily biased towards FP.

8.6.3 Code quality

The code written for this thesis work is most likely sub-optimal in both
languages. We have little experience with production-ready Java code, and
our Haskell code was probably heavily influenced by the Java code since
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we wrote the Java implementations first, and then tried to mimic them in
Haskell.

8.6.4 Subjectivity

The qualitative observations made are rather subjective, and reflect qualities
we personally find “good” and “bad” in a program. As such, they might not
reflect what commonly constitutes “good” and “bad” programs, although
that is a rather muddled and difficult topic in and of itself.

8.6.5 Inadequate metrics

The metrics used when comparing the implementations do not measure every
important quality about the programs.

Using Hyperfine to measure the execution time for the implementations
does not give a very accurate result of the written programs’ execution times,
especially when comparing them between environments, since the JVM does
a considerable amount of work on start-up compared to the Haskell runtime,
since JVM does just-in-time (JIT) compilation.

8.6.6 Small programming paradigm scope

This study compared only OOP and FP, and then only two languages, which
we deemed “representative of their paradigm”. Not all OOP languages are
like Java, and not all FP languages are like Haskell. Frankly speaking, there
are rather few languages that are like those two languages, and they might
not represent these other different languages adequately.

8.6.7 Standard library pollution

By only limiting available packages and modules to those in the standard
library for each language, we have muddled the results from our
implementations by not only comparing the languages but also their standard
libraries against each other. One standard library might contain functions,
classes and utilities the other does not, which might give one language an
unfair advantage in a given implementation.

8.7 Summary of discussion
In this chapter we have discussed our findings from this study. We have
discussed the various correlations and observations we have made in this
study, as well as drawn conclusions as to the cause of these correlations and
how they affect the applicability of these design patterns. We have also
described the limitations we see in our work, even though we are confident
in the conclusions we have arrived at.
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Chapter 9

Conclusion

9.1 Introduction to conclusion
For this thesis, we wrote multiple simple programs in two different
programming paradigms, implementing some of the commonly known design
patterns from both paradigms, and compared them in terms of various
metrics and qualitative observations.

9.2 Highlights
We summarize our key findings from our qualitative observations and metrics.

Problems Some problems in OOP simply do not exist in FP. As such,
many of the design patterns from OOP do not apply to FP, and vice
versa. OOP is concerned with abstracting the structure of objects and
interfaces, while FP is concerned with abstracting behaviour and functions
and composing them together. Both are concerned with reducing coupling
and producing maintainable code, but the structure of an OOP system is so
different from an FP system that they rarely encounter similar problems.

Solutions Some patterns are simple to implement in OOP, while the
equivalent solution in FP might be complex, or require more than one
pattern. In OOP, it is not uncommon for one part of a system with its own
high-level responsibilities, composed of multiple classes and interfaces, to use
between one and five patterns. In FP, since type classes are a form of design
pattern, it is more common to have more than 10 or 20 patterns applied in
one part of the system. OOP design patterns are more often than not ways
to structure code, and implicitly dictate some behaviour, while FP patterns
are mere functions to be applied wherever they might be needed, with only
a few patterns resembling the OOP structure of a design pattern.

Sizes and complexities FP patterns are smaller than OOP. FP patterns
are functions or otherwise very simple structures concerning one thing at a
time, while OOP patterns most often concern multiple related concretions
and interfaces at a time and how they interoperate. This amounts to a
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sizeable difference in both SLOC and LSLOC, as well as the number of parts
needed for operation.

Concerns and values Patterns in each paradigm are solutions to problems
for that paradigm and that paradigm’s problem space. A given problem in
an OOP context might be considered a considerably smaller problem in an
FP context, and vice versa. So while most OOP patterns are implementable
in FP, they bear a lower, if not non-existent, value there. While FP focuses
on composing expressions, functions and programs together, OOP focuses
more on imperative operations and object representation.

9.3 Summary of conclusion
In this chapter, we have discussed our conclusions and outlined our reasoning
for arriving at those conclusions.
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Chapter 10

Future work

10.1 Introduction to future work
In this chapter we discuss improvements and additions to the findings in this
thesis.

10.2 More languages
Using more languages, possibly from more than two paradigms, might provide
more value to the comparisons.

10.3 More design patterns
More of the design patterns can be explored, both in OOP, FP and other
paradigms we have not explored in this thesis.

10.4 Better metrics
The metrics used in this study proved to be of varying quality. A future
study of this particular topic would be wise to choose metrics more carefully.
Special emphasis is put on attempting to find metrics that are comparable
across languages and paradigms, something we had trouble with.

10.5 Summary of future work
The possible improvements and additions are endless, and leave much to
be explored in terms of comparing programming paradigms, their design
patterns, and programming languages.
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Acronyms
OOP object-oriented programming . . . . . . . . . . . . . . . . . 3
ADT algebraic data type
FP functional programming . . . . . . . . . . . . . . . . . . . . 4
lazy non-strict . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
HOF higher-order functions . . . . . . . . . . . . . . . . . . . . . 13
CS computer science . . . . . . . . . . . . . . . . . . . . . . . . 18
JVM Java virtual machine . . . . . . . . . . . . . . . . . . . . . . 16
SLOC source lines of code . . . . . . . . . . . . . . . . . . . . . . . 50
GoF Gang of Four . . . . . . . . . . . . . . . . . . . . . . . . . . 3
PSLOC physical source lines of code . . . . . . . . . . . . . . . . . vii
LSLOC logical source lines of code . . . . . . . . . . . . . . . . . . . vii
CC cyclomatic complexity . . . . . . . . . . . . . . . . . . . . . vii
HOF higher-order function . . . . . . . . . . . . . . . . . . . . . . 13
DSL domain-specific language . . . . . . . . . . . . . . . . . . . . 114
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