
Sequential Monte Carlo and
twisted state space models
Twisting models to reduce variance

Peder Nørving Viken
Master’s Thesis, Spring 2021

This master’s thesis is submitted under the master’s programme Stochastic Modelling,
Statistics and Risk Analysis, with programme option Statistics, at the Department of
Mathematics, University of Oslo. The scope of the thesis is 60 credits.

The front page depicts a section of the root system of the exceptional Lie group E8,
projected into the plane. Lie groups were invented by the Norwegian mathematician
Sophus Lie (1842–1899) to express symmetries in differential equations and today they
play a central role in various parts of mathematics.

Abstract

Modeling time series and systems that exhibit an evolution in time is of interest
in several fields, and one class of models that can be used for modeling such
systems is state space models. One of the most common tools for inference in
non-linear and non-Gaussian state space models is sequential Monte Carlo, also
known as particle filters, which uses importance sampling and the sequential
structure of the model.

When considering state space models, it is also possible to consider twisted
state space models, which are defined by a sequence of functions transforming
the transitions and emission of the state space model. Several quantities of
interest are identical for the original model and the twisted model, thus we can
use particle filters to estimate these quantities in the twisted model, and obtain
an estimate of the quantities in the original model. The reason the twisted
models are of interest is that we can obtain better estimates of these quantities
with the twisted models than with the original model, and when considering
likelihood estimation there is an optimal sequence that can be used to obtain
zero variance estimates of the marginal likelihood. However, this sequence is
not obtainable in practice, thus we result in using an approximation.

We propose a simple method for creating an approximation of this optimal
sequence and see how this method works when considering simulated data.
We also demonstrate how the twisted models can be used for both parameter
estimation and smoothing and is a viable alternative to using for instance the
traditional bootstrap filter on the original model.

i

Forord

Jeg ønsker først å takke min veileder Geir Storvik for all hjelp og støtte jeg har
fått gjennom arbeidet med denne oppgaven.

Jeg ønsker også å takke Mamma, Pappa, Theo og hele resten av familien
for all støtte de siste 23 årene.

En takk rettes også til alle som sitter på lesesal 801 for alle lunsjpauser
og gode diskusjoner. En spesiell takk gis til Lars og Ingrid for alle samtalene vi
har hatt om inferensteori og alt annet mellom himmel og jord.

Takk også til alle som ikke står nevnt over, men har støttet, motivert og
hjulpet meg, jeg er evig takknemlig.

ii

Contents

Contents iii

1 Concerning state space models 4
1.1 Use of state space models . 4
1.2 Structure of state space models 6
1.3 Inference in state space models 8

2 Sequential Monte Carlo 13
2.1 Numerical integration and Monte Carlo methods in general . . 13
2.2 Sampling from state space models and Sequential Monte Carlo 16
2.3 Particle filters for inference in state space models 22
2.4 Smoothing in state space models 27
2.5 Parameter estimation in state space models 32

3 Twisted Models and their use 40
3.1 Introducing twisted models and their use 40
3.2 Approximating the optimal sequence 46
3.3 Two simple examples . 52
3.4 Using a fixed grid for the approximation of the optimal functions 58

4 Experimental results 63
4.1 Topics for numerical experiments 63
4.2 Experiment setups . 64
4.3 Model and results . 67
4.4 Other factors related to twisted models 78
4.5 Particle marginal Metropolis-Hastings and twisted models . . 83
4.6 Smoothing with twisted models 85

5 Discussion and final remarks 92
5.1 More on the use of twisted models 92
5.2 Further work and other topics of interest 98

A Calculations 100
A.1 Calculations related to the twisted model 100

Bibliography 102

iii

Introduction

Modeling time series and systems that exhibit an evolution in time is of interest
in several fields, and one class of models that can be used for modeling such
systems is state space models. The simplest such model is the linear Gaussian
state space model where the Kalman filter introduced by Kalman (1960) and
related methods can provide analytical solutions to problems such as filtering
and smoothing. However, this is not possible for most models and we use
numerical methods instead. Most common here are Monte Carlo methods,
and in particular sequential Monte Carlo. Within the framework of sequential
Monte Carlo, one topic of interest is particle filters that can provide numerical
approximations to amongst other the filtering and smoothing problem as well
as estimates of the marginal likelihood of the model.

In Chapter 1 we describe the state space model which is the overarching
model we consider for the entirety of this thesis. Discussions on time series
modeling and state space models can be found in e.g. Tsay and Chen (2018)
and Harvey (1989). Here we discuss amongst others why these models are of
interest and the basic goals of inference. The primary goals of when considering
state space models are filtering, smoothing, and parameter estimation, where
the latter two will be our main focus in Chapter 3 and Chapter 4.

In Chapter 2 we first discuss Monte Carlo methods in general and how these
can be used to solve integrals numerically. Monte Carlo methods are a very
common tool in statistics and an introduction to the topic can be found in e.g.
Givens and Hoeting (2013) and Rizzo (2007). When considering state space
models we encounter integrals on a specific form which we can approximate using
sequential Monte Carlo, and we discuss how this can be done with examples.
This chapter serves as an introduction to sequential Monte Carlo and provides
some of the tools required for inference in state space models. We also introduce
the bootstrap particle filter (Gordon, Salmond and Smith, 1993) which can be
used for inference in state space models. There are several works such as Creal
(2012) and Doucet and Johansen (2009) which give an introduction to sequential
Monte Carlo. There are also different variations of the particle filters which
differ in how they do importance sampling. Variations here include lookahead
schemes (Lin, Chen and J. S. Liu, 2013), and the auxiliary particle filter, see
e.g. Pitt and Shephard (1999).

In Chapter 3 we discuss twisted state space models and in large part follow
the work of Guarniero, Johansen and Lee (2017). The twisted models are defined
based on a sequence of functions (ψ1(x1), . . . , ψT (xT)) ≡ ψ that transform a
state space model, and we show that the marginal likelihood of the original

1

Contents

model is identical to the marginal likelihood of any twisted model. Thus we are
able to estimate the marginal likelihood of the original model using a twisted
model. For the purpose of estimating the marginal likelihood, there is a specific
sequence ψ? which is optimal in the sense that it can be used to obtain a
zero variance estimate of the marginal likelihood. This sequence is also useful
for smoothing as it can be used to obtain samples from the exact smoothing
density. However, the exact optimal sequence is not attainable in practice,
and we discuss how we can obtain an approximation of the functions in this
sequence. When basing the twisted model on a good approximation of the
optimal sequence we show through simulation experiments that the estimate of
the marginal likelihood obtained has lower variance than estimates from the
original model. This makes the twisted models useful as they can be used to
obtain an estimate of the marginal likelihood with low variance, provided we can
obtain a sufficiently good approximation of the optimal sequence. Methods for
obtaining approximations of this optimal sequence can be found in Guarniero,
Johansen and Lee (2017) and Heng et al. (2020). These methods for obtaining
an approximation are quite similar and both take an iterative approach for
determining the approximation. Based on these approaches we propose a
new different setup for determining an approximation of the optimal sequence
which is primarily suited for one-dimensional problems. In particular, we start
with creating an approximation of the optimal functions at time T , ψ?T (xT),
and create a recursive approximation for the rest of the sequence. Each of
the approximations is restricted to a class Ψ such that we obtain a twisted
model we are able to work with. This is similar to the iterative procedure,
but our proposed setup removes the iterative steps and aims to obtain a good
approximation in a single step, i.e. passing through the recursion only once.
This makes our proposed setup easy to implement in practice, and the results
from using this method on a simple state space model show that it can be used
to obtain low variance estimates of the marginal likelihood.

In Chapter 4 we look at several examples with the simple method we proposed
for approximating the optimal sequence, and how it performs on a simple state
space model. We also look at factors that influence the approximation of the
optimal sequence and the estimates of the marginal likelihood obtained. When
restricting the approximations to a class Ψ we observe that it is key that this
class contains good approximations of a large number of functions in order to
get the best possible approximation of each of the optimal functions. We also
observe that even using a crude approximation of the optimal sequence can
lead to variance reduction in the estimate of the marginal likelihood, compared
to an untwisted model. We exploit this for parameter estimation with particle
marginal Metropolis-Hastings (Andrieu, Doucet and Holenstein, 2010) where we
have to compute the marginal likelihood for every proposed set of parameters.
We compute this marginal likelihood using twisted models, but rather than
creating an approximation of the optimal sequence for each proposed set of
parameters, we show that it can be sufficient to use the same approximation
for all sets of parameters and still get variance reduction in the estimates of
the marginal likelihood. In Section 4.6 we look at how the twisted model can
be used for smoothing. We demonstrate how using an approximation of the
sequence ψ?, which was optimal for estimating the marginal likelihood, can be
used to define a twisted model which samples trajectories from the smoothing
density. This use of the twisted models is inherently different from using the

2

Contents

twisted models to estimate the marginal likelihood. Whereas when using the
twisted models for estimating the marginal likelihood we aimed to obtain a low
variance estimate of a single quantity, when considering smoothing we aim to
sample from the smoothing density. This provides a estimate of the smoothing
density itself which can be used to obtain estimates of several quantities of
interest.

In Chapter 5 we discuss and summarize our results related to twisted
models. We also discuss other topics of interest related to twisted models
and approximating the sequence ψ? which we did not cover in the previous
sections, and could be of interest for future work. Finally, we discuss some of
the differences between using twisted models and different particle filters for
inference in state space models. We also discuss how the work we have done is
different from some of the other work that has been done in relation to twisted
models.

All the numerical results and figures present in the examples in this thesis
are created using python (Van Rossum and Drake, 2009) and open source
libraries.

3

CHAPTER 1

Concerning state space models

1.1 Use of state space models

Modeling systems that exhibit an evolution in time is common in several fields
such as finance, engineering, and physics to name a few. Here we consider a
setting in which we cannot observe the system of interest directly, and we have
to rely on indirect observations of the system.

A general framework for modeling such systems is state space models, where
we introduce a sequence of latent variables that represent the state of the
underlying system at discrete points in time. Each of the latent variables
in the sequence will depend on some or all the latent variables preceding it,
and estimating these variables can be used to provide information about the
underlying system. The state space model framework has proven to be successful
and has applications in several fields. One instance of this is stochastic volatility
models which are discussed by e.g. Kim, Shepherd and Chib (1998), and another
example in which state space models have been used is target tracking as seen
in J. S. Liu, Chen and Logvinenko (2001). A different application lies within
the field of epidemiology and considers how an epidemic process spreads in a
population. This is discussed by among others Dukic, Lopes and Polson (2012)
and Kucharski et al. (2020).

When we cannot observe the system directly, the state space model makes
use of indirect observations of the system to perform inference on the latent
variables. This is done by introducing a separate sequence of random variables
representing the observations at each point in time. These observations are
then assumed to be dependent on some or all the latent variables representing
the underlying system preceding it. This gives the interpretation as indirect
observations of the system and allows for estimation of the state through the
latent variables conditional on the observations.

4

1.1. Use of state space models

Figure 1.1: Structure of a simple state space model. We have transitions
between the states xt, and for each state we have a corresponding observation
yt.

State space models deal with the task of modeling the state of the underlying
system and the observations separately. This breaks the task of modeling
the system into two parts, modeling the state transitions, and modeling the
observations. A major benefit of this is when the state space represents a
process from e.g. physics, modeling the state transitions essentially become a
physics problem. This can often be easier to deal with than modeling the states
based on the previous observations directly. This also allows us to efficiently
deal with changes in the system. If we expect that there is a change in the
process that drives the underlying system at a specific point in time, this can
easily be accounted for by changing how we model the transitions beyond this
point without changing the model for the previous times.

Another benefit of state space models lies in the interpretability of the
models. Looking at Figure 1.1, given an initial estimate of a latent variable, it is
quite easy to predict the concurrent observation and the next state. Additionally,
in the state space formulation, every component has a clear purpose with a
direct interpretation and is much less of a black box than for instance neural
networks. Other methods for modeling time series such as autoregressive models,
which are discussed in introductory books on time series such as Shumway and
Stoffer (2017), deals with the time series in a different manner by modeling
each observation directly from the previous ones. Interpreting such models is
somewhat harder than interpreting the state space model since we cannot use
the state and observation structure in the same manner.

As a simple example to illustrate the benefit of the model structure in
state space models, consider a setting where the latent variables represent
some underlying signal and we have noisy observations of this signal. Whereas
modeling the next observations based on the previous ones provides little
insights onto the underlying signal itself, it may also be difficult to model
since the relation between the observations is not always clear. Instead by
using the state space model we can split this into two parts, one which handles
the underlying signal itself, and one which deals with the noisy observations.
If the process which drives the signal is known, the task of modeling this is
relatively straightforward, and simultaneously modeling noisy observations is
also a relatively simple task. Hence the state space model allows us to model
the system using two separate processes. Additionally, with the state space
model, we get estimates of properties related to the underlying signal naturally

5

1.2. Structure of state space models

from the latent variables, something which can be difficult in an autoregressive
model.

1.2 Structure of state space models

A state space model consists of a sequence of observations (y1, . . . , yT) ≡ y1:T
and a sequence of latent variables (x1, . . . , xT) ≡ x1:T , where each xi and yi
can be either scalar values or multidimensional vectors. For a state space model,
the relations between the latent variables themselves can be described through
a transition model, and the relations between an observation and the latent
variables can be described through the emission model. Together these form
the base of the state space model, which can be seen in Figure 1.1

1. The state/transition model xt ∼ px(·|x1:t−1).
This model describes the time evolution of the system we are modeling
and how the current state depends on the previous states of the system. In
state space models this time evolution can be described by the transition
density, for a continuous state variable, giving the probability of the next
latent variable conditional on the current and past latent variables. For
the first state x1 there are no previous states, and we simply have the
probability density for the state x1.

2. The emission model yt ∼ py(·|x1:t).
This is also known as the observation model and describes how the
observations depend on the state of the system i.e. the latent variables.
In state space models the relationship between the observations and latent
variables representing the state can be described by the probability density
(or mass in the discrete case) of the observation yt conditional on the
latent state variables. Importantly each new observation does not depend
on any of the previous observations. This is a result of the model structure
where the states will contain all the information of the observations, hence
there is no need to condition on the observations.

Throughout this thesis, we will refer to these as transition and emission densities
which correspond to continuous variables. Note that these can also be probability
mass functions for discrete variables, however, we will keep calling them densities
for simplicity. The model described here is a very general state space model,
where the state xt can depend on part of or the complete history of the system
up until that point. However, the model complexity and the computational
cost related to the model increase with the number of the preceding variables
a latent variable depend on due to the increasing number of dependencies.
For this reason, ideally, each latent variable will only depend on a few of the
latent variables preceding it. This gives rise to the simplest setting where we
assume that each latent variable only depends on the one directly preceding
it and not the entire history. Then the evolution of the underlying system
forms a first-order Markov process. This assumption, plus assuming that each
observation only depends on the concurrent state of the system, greatly reduce
the model complexity. This will not be applicable for all systems of interest
due to the intrinsic structure of the systems themselves, but when applicable it

6

1.2. Structure of state space models

gives the following state- and emission models

x1 ∼ px(·) = µ(·) (1.1)
xt ∼ px(·|x1:t−1) = f(xt−1, ·) for t ∈ 2, . . . , T (1.2)
yt ∼ py(·|x1:t) = g(xt, ·) (1.3)

This model structure, when applicable, has seen success with amongst other
hidden Markov models (HMM) as a special case of state space models. This
model structure is also by far the most common for state space models since it
is easy to work with and gives rise to relatively simple models. However, these
Markov models are not always able to capture all the details in the transitions,
so modeling these transitions as Markov processes is not always ideal. A setting
in which this is the case is when the trend for the last few states affects the
current state, and D’Amico et al. (2019) lists this as one of the main limitations
of Markov models. As an analogy to a physical system, where the state xt is
the position of a moving object, the momentum of an object will try to keep
the object moving in the same direction. However, the momentum of an object
cannot be computed from a single observation of its position, since it depends
on the velocity which is the change in position. Certain systems can exhibit
similar effects which can be interpreted as the momentum of a system, and the
effect of momentum will be difficult to capture in a first-order Markov model
that just depends on the previous state.

One relatively simple method of dealing with this is by expanding the state
vector by introducing the state zt = (xt−k, . . . , xt) for some appropriate k. The
new state zt can capture the trend of the states xt, and the transitions between
each state zt can still be Markovian.

A discussion on various aspects of trends for general time series models
can be found in Harvey (1989, Chapter 6), which includes a discussion on the
deceivingly simple question of what a trend is. The same chapter also discusses
seasonal factors and how there can be seasonal fluctuations for longer time
series which may influence the analysis.

An additional factor that is not accounted for with this Markov structure
is lag in the observations. In certain settings, there may be some lag between
when the state changes and when this manifests itself in the observations. One
instance of this is when modeling epidemics in which there can be a delay
between when an individual is infected and showing symptoms (Kucharski et al.,
2020). When this is the case it is not sufficient to relate the observation solely
to the current state. Instead, we may require some dependence between the
observations and the previous states.

Linear and nonlinear state space models

The simplest model structure occurs when the underlying system is modeled
as a Markov chain and the observations only depend on the concurrent state
of the system. We call this a Markovian state space model, and within these
models, we often differentiate between linear and nonlinear state space models
based on the structure of the state and emission model. First, we will look at
linear state space models which get their names from having state- and emission
models that are linear in the state variable xt. A major benefit of using these
linear models is that they become simple to work with since we only have to

7

1.3. Inference in state space models

deal with linear functions. One way to express these models for a potentially
multidimensional state xt and observation yt is as follows

xt = Htxt−1 + bt + Wtwt (1.4)
yt = Gtxt + ct + Vtvt (1.5)

Here Ht and Gt are assumed to be known matrices forming linearity in the
state transitions and emissions. Further bt and ct serve as known constants in
the model. Finally, vt and wt represent measurement noise, which allows us
to use this particular model to e.g. analyze an underlying signal xt which is
affect by some measurement noise such that we observe yt. Commonly used is a
multivariate normal distribution centered at the origin with identity covariance
matrix. Thus Vt and Wt are related to the covariance for the emission and
state models respectively. The combined equations (1.4) and (1.5) form a linear
state space model. Other choices are also possible as long as the models are
linear in the state variable. Such linear state space models are common since
they are fairly easy to work with, and when the noise term is Gaussian we can
derive analytical results such as the Kalman filter. Analytical results can also
be found when we have discrete latent variables by considering the state space
as a discrete Markov chain. Using for instance the EM algorithm, parameter
estimation can be performed in this setting, and a general discussion on the
EM algorithm can be found in Givens and Hoeting (2013). Furthermore, when
considering a discrete state space, the calculations will be much simpler than
in the continuous case which permits for summing over the states to obtain
estimates in this setting.

When the state- and emission models cannot be expressed or reasonably be
approximated as linear functions such as (1.4) and (1.5), we have to consider a
wider class of models. The nonlinear state space models allow a wider range of
state- and emission structures when compared to the linear models since the
restrictions on linearity in the state- and emission models are removed. This
increases the flexibility of the model at the cost of increased model complexity,
and it has the downside that analytical methods such as the Kalman filter are
no longer available.

A benefit, and one of the major reasons for extending to nonlinear state
space models, is that the nonlinear models enable modeling of a wide array of
systems. Some systems cannot accurately be modeled as a linear model, due to
some intrinsic non-linearity in the transition or emission structures. One class
of models that exhibit this is stochastic volatility models which are discussed
in among others Kim, Shepherd and Chib (1998), and in these models the
emissions are nonlinear in the state variable.

1.3 Inference in state space models

Latent variables and state estimation

When considering state space models, we often want to make statements about
the underlying system we are modeling. Since we have no direct observations
of the latent variables representing the system the goal is to make inference
on these latent variables, x1, . . . , xT , conditional on the observations y1, . . . , yT .
This is done through a posterior density of the latent variables conditional on

8

1.3. Inference in state space models

observations, such that we for instance can obtain the probability density of
the state xt conditional on a set of observations.

A common target for inference in state space models is estimating the current
state conditional on the observations up until the current time, and a natural
estimate here is the expected value E[xt|y1:t]. This is also called filtering and
can be done based on the posterior density p(xt|y1, . . . yt) which is also called
the filtering density (Creal, 2012). Computing the filtering density directly
by some brute force strategy would be infeasible in most cases, which leads
to alternate ways to compute the density. By exploiting the model structure,
assuming the state transitions are known, it is possible to compute the filtering
density recursively by first computing p(xt−1|y1, . . . , yt−1) and updating this
using Bayes theorem to get p(xt|y1, . . . yt). An instance of this is the Kalman
filter, which was introduced in Kalman (1960) and discussed in among other
Tsay and Chen (2018), and can be used to obtain analytical solutions. However,
the scope of models that it can be applied to is limited to linear Gaussian
models which limit the applicability of this method. The filtering problem is
quite common since it can be performed online, which is often desirable as it
easily allows for the inclusion of new observations. Furthermore, there is not
only estimating the state xt that is desired. Of interest is sometimes estimates
of other functions of xt, which includes the variance and percentiles of the
filtering density.

In practice, the filtering density is obtained recursively. In particular, as
we will see in Section 2.2, given the filtering density at time t − 1 this can
be updated to give the filtering density at time t which leads to a recursive
definition. One of the main reasons we are able to obtain analytical solutions
with the Kalman filter is that all the calculations are relatively simple since all
the densities involved are Gaussian and can be parameterized by an expected
value and a variance, which are sufficient for describing the whole density. Hence
in the Kalman filter, we only need to determine the updates for the parameters
of the expected value and variance from the inclusion of a new observation. For
more general filtering densities we require different methods for inference. For
these models, we may not have a suitable parameterization and we have to
update an estimate of the filtering density p(xt|y1:t) itself rather than a set of
parameters.

Another common target for inference is smoothing where we consider the
posterior density p(xt|y1, . . . yT), with T > t to distinguish from the filtering
problem. Compared to the filtering discussed above, the smoothing density
takes into account future observations giving the smoothing estimates E[xt|y1:T].
For this reason, smoothing estimates for the state xt can only be performed
offline, since it requires future observations. Computing the expected values
from the smoothing density E[xt|y1:T] or estimating the smoothing density itself,
is a more involved process than filtering. Much of the reason for this lies in how
smoothing depends on future observations, and the recursive approach that is
taken when estimating the filtering density must be extended to account for
the future observations. For linear Gaussian models, the same approach as the
Kalman filter can be taken to give analytical results and is described in among
other Tsay and Chen (2018). It is also possible to provide approximations of
the smoothing density, one example of this is fixed-lag smoothing where instead
of looking at all the future observations we only look at a few, and this will be
discussed further in Section 2.4.

9

1.3. Inference in state space models

It is worth noting that estimation of the latent variables representing the
state is not limited to filtering and smoothing. Both are frequently encountered
but depending on the problem we might be interested in making statements
related to some subset of the latent variables. For instance we could be
interested in estimating the full trajectory in a smoothing setting through the
posterior density p(x1, . . . , xT |y1, . . . yT) or a specific part of the trajectory
p(xt, . . . , xt′ |y1, . . . yT).

Until now we have only mentioned estimating the states up to the point where
we have observations, and we have not focused on states for which we do not have
observations. Estimating the states beyond where we have observations, with
the posterior p(xt, |y1, . . . yT) where t > T , falls in the category of prediction.
A major difference between prediction and the previously mentioned filtering
and smoothing is that for the latter two we always had observations. The lack
of observations for prediction gives a larger variance in the estimates compared
to filtering and smoothing since the observations served as a correction of
the state estimate. To illustrate this we consider a setting in which the filter
density p(xt−1|y1:t−1) is known. The process of computing the filtering density
p(xt|y1:t) consists of first predicting the xt based on the state transitions and
correcting this estimate using the emission density which in some sense confines
the estimate and lower its variance. For pure prediction the observations are
not available, so we do not gain the variance reduction from the observation,
and the pure prediction becomes similar to a random walk or Brownian motion
based on the transition density in the sense that we simply predict the new
state without any means of correcting the predictions.

Again, for smoothing and prediction, the same problem encountered for
filtering occurs. Computing the full posterior density analytically is infeasible
in most cases, which leads to alternative approaches for inference. Whereas
the Kalman filter and related approaches work only in certain settings, or at
best via Taylor approximations for non-linear models, Monte Carlo methods
have proven to be an effective tool for inference and are applicable for a wide
selection of models. In the setting of state space models, sequential Monte
Carlo (SMC) is widely used and has proven to be an effective tool for inference,
and will be discussed in greater detail later in Chapter 2.

Parameter and likelihood estimation

We have not made any statements about model parameters, and essentially
assumed that the parameters of the model are known. Including the parameters
in the state- and emission models yield

xt ∼ px(·|x1:t−1) = px(·|x1:t−1, θ)
yt ∼ py(·|x1:t) = py(·|x1:t, θ)

Here θ is a multidimensional vector of all the parameters of the model, which
was omitted and presumed known in the previous section. In a setting where
some or all of the parameters are unknown, which is often the case in practice,
estimating the unknown parameter is required in order to obtain filtering and
smoothing estimates of the states. In addition, the model parameters themselves
can also be of interest since they say something about the transition probabilities
in the model and the underlying system itself. This can for instance be how

10

1.3. Inference in state space models

the transitions in the model behave, and understanding this process is key for
creating good estimates of the states.

Key to several methods of parameter estimation is accurate estimates of the
marginal likelihood p(y1:t|θ) which gives the likelihood of the known observations.
The marginal likelihood is of interest since it allows us to compare sets of
parameters and can be expressed as

p(y1:t|θ) =
∫
p(x1:t, y1:t|θ)dx1:t (1.6)

Where p(x1:t, y1:t|θ) is the joint probability of x1:t and y1:t conditional on
the model parameters θ. In most practical situations the marginal likelihood,
equation (1.6), will be tedious and impractical to compute analytically. This is
in part due to the complexity of the integral and the model structure for large t
when more terms are added with each new observation. For the linear Gaussian
model analytical results are obtainable since equations are always on a form we
can deal with, which leads to analytical expressions for the marginal likelihood
(Tsay and Chen, 2018). In general, this will not be possible as the expressions
will become more complicated, hence similar analytical results are not available
except for special cases.

As mentioned, the likelihood estimates are often used in parameter estimation
methods. These methods include Metropolis-Hastings setups where the
likelihood is required to determine the acceptance ratio for new proposals. An
alternative is direct maximum likelihood parameter estimation which requires
evaluating the likelihood function. We will go into further details on this in
Section 2.5, and an overview for parameter estimation based on sequential
Monte Carlo can be found in Kantas et al. (2015).

Brief summary of inference in state space models

In this chapter, we introduced two main objects of interest in regard to inference
in state space models. These were state estimation and parameter estimation.
We started with looking at state estimates, and we introduced the filtering and
smoothing estimates which allow us to estimate the latent variables in the model.
This allows us to gain insight into the system which produced the observation,
in a different manner to what is possible with e.g. autoregressive models. We
also introduced parameter and likelihood estimation in the context of state
space models. These are key as they provide insight to the model itself, beyond
the general structure. However, we have yet to introduce methods for how we
can obtain estimates of these quantities, other than the Kalman filter which
as mentioned is limited to linear Gaussian models. Both for non-linear and
non-Gaussian models, obtaining estimates of the filtering and smoothing density
is difficult without numerical tools as the quantities are complex. We are able
to deal with the linear Gaussian setting in large part due to the simple model
structure, which allows us to recursively move through the model to produce
the estimates. When we aim to estimate the state-, parameter- and likelihood
more generally we will retain the recursive approach taken in the Kalman filter.
The major difference will be that the analytical results will be replaced with
numerical approximations and rather than updating the parameters giving the
expected value and variance, we instead update a non-parametric estimate of
the densities themselves.

11

1.3. Inference in state space models

For state space models the most common numerical approximations are
based on Monte Carlo methods, and in general Monte Carlo methods have
proven to be successful for estimating quantities related to different probability
densities and are a common tool in statistics. The methods of interest for state
space models are sequential Monte Carlo, which are also known as particle
methods. These particle methods will be discussed more Chapter 2, but first,
we will spend some time on Monte Carlo methods in general.

12

CHAPTER 2

Sequential Monte Carlo

2.1 Numerical integration and Monte Carlo methods in
general

Basics of Monte Carlo

Monte Carlo methods are a common tool in statistics and Sequential Monte
Carlo (SMC) is widely used for inference in state space models. In many cases
where we cannot compute the expected value or other quantities related to
a probability distribution analytically. In these cases, Monte Carlo methods
are a useful tool that can be used to create an estimate of these quantities
based on a sample from the distribution of interest. As long as we can provide
enough samples, either from some direct simulation technique or more involved
methods such as Markov Chain Monte Carlo, these samples can be used to
create a Monte Carlo estimate of the desired quantity. Instead of jumping in
at the deep end with SMC, we start by giving a more general introduction to
Monte Carlo methods, some of the concepts required for SMC, and how to use
stochastic simulation to our benefit.

Monte Carlo estimates are based on the fact that the sample mean is a
consistent estimator for the expected value of a distribution. This follows
from the weak law of large numbers, under reasonable conditions on the mean
variance of the distribution. It can be shown, see e.g. Casella and Berger (2002,
theorem 5.5.2), when we have an independent sample X1, . . . , Xn with EXi = µ,
Var Xi = σ2 <∞, and X̄n = 1/n

∑n
i=1Xi, then

Pr(|X̄n − µ| ≥ ε) = Pr((X̄n − µ)2 ≥ ε2) ≤ E(X̄n − µ)2

ε2
= σ2

nε2
. (2.1)

Clearly the right hand side of (2.1) goes to zero as n goes to infinity for every
ε > 0 as it is proportional to n−1. This shows that the sample mean X̄n

converges in probability to the expected value of the distribution. Thus, the
sample mean will be a consistent estimator for the expected value, and this is
the basis of Monte Carlo methods in statistics. In practice, this means that if
we can obtain a large sample from a distribution, we can use the sample mean
as an estimate for the expected value which will converge to the true expected
value as the number of samples goes to infinity. Estimates of other quantities
can also be obtained since many quantities of interest can be expressed through
expected values. This includes for instance the variance which can be expressed
using the second moment as Var (X) = E[X2]− E[X]2.

13

2.1. Numerical integration and Monte Carlo methods in general

Monte Carlo methods are often introduced as a method for numerical
integration since the expected value of a continuous random variable can be
expressed as an integral over its density. Recall that the expected value of a
continuous random variable with density f(x) can be written as

µ = E[X] =
∫ b

a

xf(x) dx

with appropriate limits of integration a and b. When computing the Monte
Carlo estimates in practice what is done is approximating the above integral as
the sample mean of a sample from the density f(x). Since the sample mean is a
consistent estimator this will converge to the true expected value as the number
of samples increase. Other numerical methods for approximating the same
integral such as quadratures can also be applied. However, in higher dimensions
using quadratures to handle multiple integrals is not always feasible, making
Monte Carlo methods preferable. This is because, in high dimensional settings,
the convergence rate is generally better for the Monte Carlo estimates than for
quadratures. This is briefly mentioned in Givens and Hoeting (2013, Chapter
5.4.3), making Monte Carlo integration preferable in higher dimensions.

Monte Carlo estimates can also be used to estimate the expected value of
functions of random variables. Given a sample X1, . . . , Xn from the density
f(x) we have, for some function h under reasonable conditions, the following
Monte Carlo estimate

µ̂MC = 1
n

n∑
i=1

h(xi)→ µh = E[h(X)] =
∫ b

a

h(x)f(x) dx (2.2)

again with appropriate limits of integration a and b. This motivates Monte
Carlo methods as a simple way to estimate the expected value of a function h(x)
and estimate the integral (2.2). This is also a natural method for constructing
approximations of integrals that are not inherently related to a probability
density since we can multiply and divide the integrand by an appropriate density
which we sample from.

When the probability density we sample from represents a physical process
the individual Monte Carlo samples can be seen as a realization of that process.
This allows for the use of Monte Carlo methods to analyze the behavior of
complex systems by tracing the path a sample takes. This idea is not only
applicable for state space models but can also be applied to other systems and
has been used for the Ising model in statistical physics see e.g. Walter and
Barkema (2015).

Importance Sampling

The Monte Carlo estimate is based on a sample from the probability distribution
of interest but in many cases, a sample cannot be obtained directly from the
distribution of interest. In such cases where we are unable to sample directly
from a probability distribution, a common tool is importance sampling to obtain
a sample, which additionally can be used to obtain variance reduction in the
estimates. The core idea of importance sampling is to weigh a sample from a
different distribution to mimic a sample of the distribution we are interested in.

14

2.1. Numerical integration and Monte Carlo methods in general

Consider a target density f(x) we want to sample from. For simplicity we
assume that x is one-dimensional, but the same idea works in higher dimensions.
Importance sampling works by creating an appropriate importance function
q(x) and relies on the following

µ =
∫ b

a

h(x)f(x) dx =
∫ b

a

h(x)f(x)
q(x) q(x) dx =

∫ b

a

h?(x)q(x) dx. (2.3)

Equation (2.3) shows how we can rewrite the integral such that we can use
a sample from q(x) to create the Monte Carlo estimate of the new function
h?(x) = h(x) f(x)

q(x) , that will equal the integral we are interested in. The ratio
f(x)
q(x) = w?(x) is called the importance weight and is used to weigh the sample
from q(x) to match that of the target f(x). In practice for a sample x1, . . . , xN
from the importance function q(x), the Monte Carlo estimate of µ becomes

µ̂IS =
N∑
i=1

h(xi)w(xi). (2.4)

Where w(xi) = w?(xi)/
∑N
i=1 w

?(xi) are the normalized importance weights.
This approach allows us to create a sample from a density we cannot sample
from directly. It is worth noting that we only need to be able to compute the
target density up to a proportionality constant. This is because it only appears
in the importance weights which we rescale. Only requiring the density up to
proportionality can be beneficial for amongst other Bayesian posterior densities
where the normalizing constant can be quite difficult to compute.

The normalized weights and the sample x1 . . . , xN can also be used to create
an unweighted sample from f(x) when that is of interest. This can be done
by resampling the particles x1, . . . , xN with weights equal to the normalized
importance weights w(xi), but this is known to increase the variance of the
sample.

When performing importance sampling we need to choose an appropriate
importance function q(x) that we are able to sample from. Introductory books
on stochastic simulation such as Givens and Hoeting (2013) and Rizzo (2007)
both discuss factors for choosing an importance function that come in addition
to being able to efficiently generate a sample. The most important of which is
that the target f(x) and importance function q(x) must have the same support,
i.e. be non-zero in the same regions. If this is not the case and the target is
non-zero for values of x where the importance function is zero, we will not
obtain any samples from this region even though the target density is non-zero.
This will lead to errors in the Monte Carlo estimates as we are not obtaining
samples from the entire density. In practice, we want the importance function
which we sample from to have heavier tails than the target. This is in part to
make sure that we obtain enough samples from the tail of the target density
to sufficiently explore the tail of the distribution. The other way around, with
f(x) being zero while q(x) is not, will not be as critical. In such setting samples
from q(x) will have zero weight in regions where f(x) = 0. As a result, these
samples do not contribute to the sum (2.4) and will go to waste.

Importance sampling can also be used as a variance reduction technique if an
appropriate importance function q(x) is used. The variance of the importance

15

2.2. Sampling from state space models and Sequential Monte Carlo

sampling estimator (2.3) is given by

Var (µ̂) = E[µ̂2]− (E[µ̂])2 =
∫
h?(x)2q(x)dx− µ2 =∫ (

h(x)f(x)
q(x)

)2
q(x)dx− µ2 =

∫
h(x)2f(x)
q(x) f(x)dx− µ2.

By choosing the importance function q(x) = h(x)f(x)/µ the variance of the
estimator would become zero, though this choice of q(x) implies that we know the
value µ that we are estimating, and as a result this choice of q(x) will in practice
not be possible. As an alternative Rizzo (2007) suggest using q(x) ≈ |h(x)|f(x)
for variance reduction, with the absolute value being introduced such that
q(x) ≥ 0.

2.2 Sampling from state space models and Sequential
Monte Carlo

We now want to perform inference in state space models and require methods
for estimating the filtering density and other quantities of interest. Where the
Kalman filter is only applicable for inference in linear Gaussian state space
models, Monte Carlo methods are applicable for inference when considering
more general models and have shown great success. Using a Monte Carlo
setup allows us to consider both non-linear and non-Gaussian models and still
obtain consistent estimates of quantities of interest. That is, the estimates will
converge to the true expected values as the number of samples increase. This
is because we can express several of the quantities of interest for inference in
state space models as expected values which we can estimate using a Monte
Carlo setup. This includes the expected values of the filtering and smoothing
densities, in addition to other quantities related to these densities. Since both
the filtering and smoothing densities are known up to proportionality, we can
use importance sampling to obtain a weighted sample from these densities
and create Monte Carlo estimates of various quantities. For the purpose of
illustrating Monte Carlo in the setting of state space models, we assume that
we have a very simple model structure where the underlying system can be
modeled as a Markov process and the observation at time t only depends on
the state of the system at time t. We will consider models on the form

x1 ∼ µ(·) (2.5)
xt ∼ f(xt−1, ·) for t ∈ 2, . . . , T (2.6)
yt ∼ g(xt, ·) (2.7)

For this model the filtering and smoothing densities can be written as follows

p(x1, . . . , xt|y1, . . . , yt) ∝ µ(x1)g(x1, y1)
t∏
i=2

f(xi−1, xi)g(xi, yi)

p(x1, . . . , xT |y1, . . . , yT) ∝ µ(x1)g(x1, y1)
T∏
i=2

f(xi−1, xi)g(xi, yi).

16

2.2. Sampling from state space models and Sequential Monte Carlo

It is these densities we primarily want to obtain a sample from. By using
importance sampling we can obtain a weighted sample from the desired densities,
without calculating the normalizing constants. Creating a proposal density to
directly sample from the full filtering or smoothing density, that is x1:t or x1:T
conditional on an appropriate set of observations, all at once will be difficult.
That is why rather than obtaining a sample x1, . . . , xT directly we can instead
exploit the sequential structure of the model in a similar manner to what is done
in the Kalman filter. We can first make a sample of the state x1 conditional
on y1 and update this estimate as we move through the model. This allows
for online estimation of the filtering estimates similar to the Kalman filter.
Obtaining a sample from the smoothing density requires some more effort and
will be discussed further in Section 2.4. A major difference between the Monte
Carlo approach and the Kalman filter approach is that using Monte Carlo gives
a sample from the density. In contrast for the Kalman filter, we only computed
the parameters which fully described the density. Obtaining a sample from
these densities can be done using the framework of sequential Monte Carlo,
also known as particle filters. Sequential Monte Carlo can also be used to solve
more general integrals on the form

I =
∫
h(x1:t)µ(x1)g(x1, y1)

t∏
i=2

f(xi−1, xi)g(xi, yi) dx1:t (2.8)

for appropriate functions µ, f, g, and h. This general form includes amongst
other expected values related to both the filtering and smoothing densities as
seen above. The marginal likelihood of the model can also be written on this
form by setting h = 1, a constant function. There are several works, such as
Creal (2012) and Doucet and Johansen (2009), that give an introduction to the
field of sequential Monte Carlo and how it can be applied to state space models.
For the next sections in this chapter we will look at how we can exploit the
model structure to sample from the state space model, and how such samples
can be used for inference.

Sequential importance sampling

Inference in state space models is based a sample from the density p(x1:t|y1:t; θ)
where x1:t is a sequence of latent state variables representing the state, y1:t
is a sequence of observations and θ are the (known) model parameters. That
is, we want a sample from the density of the latent variables x1:t conditional
on the observations y1:t. As mentioned previously, state space models are
often complex and rarely allow for direct sampling of the desired density. To
get around this, we can employ the ideas from importance sampling to get a
weighted sample from the desired density.

The general idea of sequential importance sampling is to divide the density
we want to sample from into smaller parts that are easier to handle and use
importance sampling for each part. We denote the density we want a sample
from at time t as p1:t(x1:t|y1:t) which is the joint density of all the latent
variables conditional on all the observations up until time t. As mentioned,
creating an efficient importance function to sample from for this density will
be quite difficult. One reason for this is, in order to efficiently sample when
t becomes large, we should include the relation between all the latent state

17

2.2. Sampling from state space models and Sequential Monte Carlo

variables since these are modeled like a Markov process, and capturing this
structure can be difficult. For sequential importance sampling, it is this Markov
structure we aim to exploit to create an efficient sampling setup and we factor
the density to get a recursive expression as follows

p1:t(x1:t|y1:t) ∝ p1:t−1(x1:t−1|y1:t−1)f(xt−1, xt)g(xt, yt) (2.9)

What is shown in recursion (2.9) is that we do not need to deal with all the x′s
at once. Expanding this recursion, starting with p1(x1|y1) we can update this
density sequentially to get our desired final density at time t. The same idea
carries over to the sampling. If we first have a sample from p1(x1|y1) we can
update this sample until we reach p1:t(x1:t|y1:t). To sample at each time t we
aim to use importance sampling, so we also want an importance function that
can be factored in a similar manner. Following some of the notation in Creal
(2012) the sampling density can be expressed as

q1:t(x1:t|y1:t) = q1:t−1(x1:t−1|y1:t−1)qt(xt|x1:t−1, y1:t). (2.10)

The first factor represents the history and path taken by a particle up to and
including time t − 1. In practice when sampling this is known based on the
previous samples and Creal (2012) describes this factor as a Dirac measure for
each particle. The second factor represent the possible paths forward at time t
and the next set of samples is drawn from qt(xt|x1:t−1, y1:t). With this general
expression for the sampling density, the importance weights can be written as
the ratio between the density we aim to sample from (2.9) and the importance
function (2.10)

wt ∝
p1:t(x1:t|y1:t)
q1:t(x1:t|y1:t)

∝ p1:t−1(x1:t−1|y1:t−1)f(xt−1, xt)g(xt, yt)
q1:t−1(x1:t−1|y1:t−1)qt(xt|x1:t−1, y1:t)

∝ wt−1
f(xt−1, xt)g(xt, yt)
qt(xt|x1:t−1, y1:t)

= wt−1w̃t

w̃t = f(xt−1, xt)g(xt, yt)
qt(xt|x1:t−1, y1:t)

At each time t, the weights will be scaled from the step at t− 1 so we only need
to compute the scaling factor w̃t. This allows us to first sample from x1 and
use this to create the sample of x2 and so on. By weighting the sample based
on the observation yt, we obtain the pairs {xit, wit}Ni=1 representing a weighted
sample of the current state which can be used to make inference on the state xt.
In particular, this sample at time t is a weighted sample of trajectories which
corresponds to the filtering density at time t, namely p(x1, . . . , xt|y1, . . . , yt).
In practice, we often focus on the part of the trajectory which gives the last
state xt. Alongside the weight, this will be a weighted sample from p(xt|y1:t)
which is what we desired to obtain, and it is this sample that can be updated
to give the filter estimate when a new observation is included. While this setup
gives the full trajectory conditional on all the observations up to time t, this
setup is rarely used to provide smoothing estimates of the state. This is due
to issues with degeneracy, and methods for smoothing and determining the
full trajectory will be discussed in Section 2.4. This can all be combined into
algorithm 1, which is a general algorithm for a particle filter.

18

2.2. Sampling from state space models and Sequential Monte Carlo

Algorithm 1: General Sequential Importance Sampling for state space
models

1 Set t = 1, and sample xi1 ∼ q1(·|y1) for i ∈ (1, . . . , N)
2 Compute weights wi1 ←

µ(xi1)g(xi1,yi)
q1(xi1|,y1) and increment t

3 Sample xit ∼ qt(·|xi1:t−1, y1:t) for i ∈ (1, . . . , N)
4 Compute weights wit ← wit−1

f(xit−1,x
i
t)g(x

i
t,yt)

qt(xit|xi1:t−1,y1:t)
and increment t and

return to step 3

This algorithm relies on the proposal density qt(xt|x1:t−1, y1:t) which in
practice often will be reduced to qt(xt|xt−1, yt) for simplicity (Creal, 2012).
This proposal draws a the state at time t both based on the previous state
xt−1 and the current observation yt. A proposal density on this form admits
the probability density of the state xt conditional on yt and xt−1, equation
(2.11), as a proposal. This choice of proposal will minimize the variance of the
importance weights, and a proof of this can be found in Doucet, S. Godsill and
Andrieu (2000)

qt(xt|xt−1, yt) = p(xt|xt−1, yt). (2.11)

This proposal is optimal in the sense that the variance of the weights is minimized,
and zero if exactly (2.11) is used as a proposal. This is desired since with zero
variance all the weights will be equal, and we sample from the exact density.

While (2.11) is optimal in the sense of variance reduction on the weights,
in practice it suffers from drawbacks as illustrated by Doucet, S. Godsill and
Andrieu (2000). One of these drawbacks is that sampling from the density
p(xt|xt−1, yt) directly will often be difficult, especially when comparing to
a proposal such as p(xt|xt−1). The second drawback is lies in the weight
updates. For the optimal proposal the weights updates in algorithm 1 become
wit ← wit−1p(yt|xit−1) where the updates p(yt|xit−1) has no general analytical
expression but can be computed for specific models.

Part of the difficulty with the optimal proposal lies in the conditioning on
yt, and dropping this term gives the proposal p(xt|xt−1). This is the basis
for the simplest algorithm for sequential importance sampling, namely the
bootstrap particle filter from Gordon, Salmond and Smith (1993). In the
bootstrap filter the proposal density is simply the state transition density, i.e.
qt(xt|x1:t−1, y1:t) = f(xt−1, xt) for the model we consider here. Equation (2.12)
shows that with this proposal the weight updates is the probability density of
observing yt given the current state xt. A practical interpretation of this is that
when given a set of particles and weights at time t, the new latent variables at
time t+ 1 will be estimated via the transition density and weighted based on
how likely they are to give the observed value yt+1.

wt ∝ wt−1
f(xt−1, xt)g(xt, yt)

f(xt−1, xt)
= wt−1g(xt, yt) (2.12)

In practice, the bootstrap proposal density is far easier to implement than
the optimal proposal (2.11). In large part, this is because sampling from the
transition density of the model f(xt−1, xt) is easier than sampling from the
optimal proposal and the weight update shown in (2.12) is very simple and will

19

2.2. Sampling from state space models and Sequential Monte Carlo

always be available. This makes the bootstrap particle filter quite versatile as
we only need to sample from the transition density f(xt−1, xt) which admits
a large number of models to be implemented efficiently. Furthermore, as the
bootstrap particle filter provides Monte Carlo estimates, general convergence
results for convergence of Monte Carlo estimates can be applied and estimates
based on the bootstrap particle filter are consistent estimates. Additionally,
for sequential Monte Carlo, there are central limit theorems available such as
Chopin et al. (2004, theorem 1), which allows us to get a better understanding
of the effect from using different proposal densities in the particle filter.

Other approaches also exist and have proven to be successful. Notable
amongst these are the auxiliary particle filter introduced by Pitt and Shephard
(1999) and a discussion of this method can also be found in among other
Johansen and Doucet (2008). Another approach is trying to use the future
observations in a lookahead setup (Lin, Chen and J. S. Liu, 2013).

Degeneracy and resampling

A problem with this setup is that when we start with a finite number of particles
and have data spanning a large period of time, eventually we will end up with
most of the weights being very small and a few weights dominating. This is
known as weight degeneracy and will lead to poor estimates unless it is dealt
with. To illustrate this problem, consider a setting where at time t we have
sampled particles {xit}Ni=1 with weights {wit}Ni=1. If one of these particles turns
out to be a bad estimate of the current state and is given a low weight compared
to the rest of the particles, the effect of this will propagate to the weight of the
next particle. This is because the weights at time t+ 1 are scaled based on the
weights at time t. Thus a relatively low weight at time t can lead to a low weight
at time t+1, and unless dealt with this process will continue until a few particles
are dominating. A theoretical result showing this can be found in Doucet, S.
Godsill and Andrieu (2000) which states that the unconditional variance of
the weights are always increasing such that Var (wt) ≤ Var (wt+1). Thus,
when updating the weights, they will be distributed such that their variance is
increasing which leads to some particles with higher weight dominating.

The prevailing method for dealing with degeneracy is resampling where
the core idea is to replace the poor particles with a low weight with particles
that has a higher weight, hence rejuvenating the sample. There are several
resampling methods, and a very simple method is to resample the particles
based on their weights when a specific criterion is met to get an equally weighted
sample. J. S. Liu and Chen (1995) suggests the effective number of samples
or effective sample size, given by equation (2.13), as a criterion for when to
resample. In practice, it is common to perform resampling only when Neff is
lower than some threshold αN where N is the number of particles and α is a
predefined constant between 0 and 1 set by the user. A discussion on methods
of resampling can be found in among other Doucet and Johansen (2009).

Neff =

(∑N
i=1 w

i
t

)2

∑N
i=1(wit)2

(2.13)

Although resampling handles the weight degeneracy by rejuvenating the
sample it will lead to other problems. Doucet and Johansen (2009) and Doucet, S.

20

2.2. Sampling from state space models and Sequential Monte Carlo

0 1 2 3 4 5 6 7 8 9
4

3

2

1

0

1

2 Particle trajectories

Figure 2.1: Tracing the paths 50 particles from a simple linear Gaussian state
space model. The trajectories are created base on algorithm 2 with resampling
when Neff ≤ 0.5N . Since the whole path is resampled, there are fewer unique
particles at the earlier times as only the particles with high weight is kept when
resampling.

Godsill and Andrieu (2000) bring this up and it is worth mentioning some of them
here. When starting the SMC algorithm all the particles will be independent,
but as we resample this will no longer be the case as the resampling process
introduces dependencies between the particles. Additionally, rejuvenating the
sample will also decrease the diversity of the sample. This comes as a result
of when we resample to get the next set of particles, these resampled particles
will mostly be based on the particles with higher weights. This reduces the
diversity of the sample by discarding the particles in the tail of the density and
focusing on those near the mode. Furthermore, resampling algorithms, such
as the one provided in algorithm 2 and the SIS/Resampling Monte Carlo filter
from Doucet, S. Godsill and Andrieu (2000), resample the entire trajectory up
to time t when resampling at this time. As a result, these resampling schemes
will provide a good Monte Carlo estimate of E[xt|y1:t] and the filtering density
at time t, while at earlier times we observe many identical particles which will
lead to poor Monte Carlo estimates. This is illustrated in Figure 2.1 which
shows the trajectories of 50 particles after resampling. This sample will give
a good approximation of the filtering density at time t = 9, simultaneously
we notice that there are fewer unique particles at the earlier times prior to
resampling and at those time it will be a poor Monte Carlo estimate.

Including a resampling step in the SMC algorithm is fairly easy. Algorithm
2 gives the bootstrap particle filter with a resampling according to the scheme
outlined above. With this setup, particle filtering can still be performed online,
and it is very common to include a resampling step to rejuvenate the sample in
practice.

21

2.3. Particle filters for inference in state space models

Algorithm 2: Bootstrap particle filter with resampling.
1 Set t = 1, and sample xi1 ∼ µ(·) for i ∈ (1, . . . , N)
2 Compute weights wi1 ← g(xi1, y1) and normalize wi1
3 If Neff < αN then resample {xi1}Ni=1 with probability wi1 and set

wi1 = 1/N
4 Increment t
5 Sample xit ∼ f(xt−1, ·) for i ∈ (1, . . . , N)
6 Compute weights wit ← wit−1g(xit, yt) and normalize wit
7 If Neff < αN then resample {xi1:t}Ni=1 with probability wit and set

wit = 1/N
8 Increment t and return to step 5

2.3 Particle filters for inference in state space models

Having provided the tools for creating a sample from a probability density on
the form (2.9), we now want to use this sample for inference in state space
models. For the purpose of illustrating the methods, we limit our focus to
models on the form used in the previous section, namely the state and emission
densities (2.5)-(2.7).

Estimating the state using a particle filter

The filtering problem is common when working with state space models and is
the easiest to solve. We can use the particle filters described in the previous
section directly to obtain an estimate of the filtering density. Of interest the
filtering density p(xt|y1, . . . , yt), and its expected value can be used as an
estimate of the state. We will refer to the expected value of the filtering density
as the filter estimate, and it is important to make the distinction between the
true state xtruet and the filter estimate x̂t. The filter estimate from the particle
filters is a Monte Carlo estimate of the expected value of the filtering density,
that is x̂t ≈ E[xt|y1, . . . , yt]. On the other hand, we have the true state xtruet

that is described by the transitions in the state space model, and this is not
known in practice. However, for simulated data which we will consider here,
it will be known and is used to obtain the simulated observations. This is an
important distinction as the filter estimate x̂t does not converge to the true state
as more particles are introduced. Instead, the filter estimate converges to the
expected value of the state conditional on the observations. This may be a good
approximation of the true state, and will in part depend on how informative
the observations are, the two are distinct quantities. We are also interested in
estimating the filtering density itself since this gives more information on the
underlying state than the expected value alone.

Using the particle filter described in algorithms 1 and 2 we get at each
time t pairs of samples {xit}Ni=1 and weights {wit}Ni=1 which together at time t
become a weighted sample that can be used to approximate the filtering density
p(xt|y1:t). This weighted sample can be used to solve the filtering problem by
creating a Monte Carlo estimate of the expected value of the filtering density.
Based on the weighted sample, the filter estimate of the state conditional on

22

2.3. Particle filters for inference in state space models

the observations is given by

E[xt|y1:t] ≈ x̂t =
N∑
i=1

witx
i
t. (2.14)

Where wit are the normalized weights of algorithm 2. Filtering has the benefit
that it can be computed in an online setting by including a step for computing
the filtering estimates in algorithm 2 at each time t. While the Kalman filter
gives the analytical expectation of the filtering density, the filtering expected
value given by (2.14) is a Monte Carlo estimate and will include some Monte
Carlo variance based on the number of particles used. The same weighted
sample can also be used to create Monte Carlo estimates of other properties of
the filtering density. In general we have that

E[h(xt)|y1:t] ≈ ĥ(xt) =
N∑
i=1

with(xit)

Where again wit are the normalized weights allowing us to estimate other
properties of the filtering density such as the variance and the quantiles. Using
the weighted sample we can also create a discrete approximation of the filtering
density p(xt|y1, . . . , yt). Using the normalized weights, we get the likelihood of
observing a particular value of xt which leads to the following approximation of
the density

p̂(xt|y1, . . . , yt) =
N∑
i=1

witδxit(xt)

In this discrete approximation the value of the filtering density zero for
xt /∈ {x1

t , . . . , x
N
t } and at xit the density attains the value of wit for i ∈ 1, . . . , N .

Examples of filtering by the use of particle filter

Now having introduced the methodology of filtering with particle filters in state
space models, now we want to show some practical examples. In the following
examples, we look at simulated data and aim to produce filtering estimates of
the states.

Example 1 - Gaussian state process and Poisson emissions

Here we consider a simple one-dimensional example where the state transitions
are linear in the state variable and are Gaussian, while the emission model
follows a Poisson distribution.

xt ∼ N (·|a+ bxt−1, σ
2)

yt ∼ Poisson(·, λ = ext)

Here a, b ∈ R, σ ∈ R+, and λ is the rate parameter of the Poisson distribution.
The initial value of the state x0 is set x0 ≡ 0, such that x1 ∼ N (·|a, σ2). In this
example, we are primarily interested in the filtering problem, that is estimating
the states given the observations up to that point. While the state transitions
are linear and Gaussian, the emissions are Poisson distributed, thus the Kalman

23

2.3. Particle filters for inference in state space models

Figure 2.2: Filter estimates of E[xt|y1:t] from the bootstrap particle filter with
N = 1000 particles and resampling when the Neff is less than 0.5N . The shaded
region is between the 0.025 and 0.975 quantiles of the samples which provides
the filter estimate.

Figure 2.3: Visualizing the trajectory for some of the particles.

filter cannot be applied and we will use the bootstrap particle filter. Here we
also have the benefit of knowing the exact transition- and emission densities, so
no parameter estimation is required.

For this example, we set a = 0.85, b = 0.7 and σ = 0.2, in addition t runs
from 1 to T = 50. The data is generated by a simulation of the dynamic
process and at each step t an observation yt was simulated yielding a sequence
of observations y1:50 and true states x1:50.

Figure 2.2 shows the filtered estimates for each of the states estimated by
use of the bootstrap filter. The bootstrap estimates are based on 250 simulated
particles and resampling is based on the weights of each sample. Resampling is
performed if the effective number of samples is smaller than half the original
number of particles.

We observe that the bootstrap filter estimate of E[xt|y1:t] is not identical to
the true value of the latent variable xt which is expected. The filter estimate
is able to capture several of the features in the sequence of latent variables,

24

2.3. Particle filters for inference in state space models

Figure 2.4: Ratio of likelihood between estimates computed with 1000 and
250 particles and the likelihood estimate based on a bootstrap filter with 5000
particles.

motivating the use of the filter estimate as an estimate for the state variables.
We also observe that the particles cover the true state at almost every time
t. The shaded region contains 95% of the particles, and the true state mostly
lies within this region with a few exceptions. The boundaries of the shaded
region are created at each time by, independently from the bootstrap filter itself,
sampling the filtered particles according to their weights and compute the 0.025
and the 0.975 quantiles of this sample.

Figure 2.3 shows the trajectory of 20 particles from the bootstrap filter
with 1000 particles. Here we show two settings, one where no resampling is
performed and one that resamples when Neff < 0.5N , to illustrate the effect of
resampling. From Figure 2.3 we see that the particles that are never resampled
vary more around the expected value than the ones that are resampled. This is
because we have resampled the entire trajectory of the particle, and the poor
trajectories get discarded in the resampling while the remaining trajectories lie
close to the mode. The downside is that as we resample we end up with fewer
unique particles at the previous times which we saw earlier in Figure 2.1.

While working with this simple model it will also be beneficial to look at
the effect from the number of particles. Having shown the filter estimates, we
now look at likelihood estimates and how they vary based on the number of
particles. For this, we first compute the likelihood Z5000 based on a bootstrap
filter with 5000 particles to serve as a comparison, and we compare the effect of
1000 and 250 particles in the bootstrap filter when it comes to the variance of
likelihood estimates. The comparison is performed by computing the likelihood
100 times with 1000 and 250 particles and we record Z1000, Z250 yielding 100
realizations for each. We then look at the ratio ZN/Z5000 for comparing the
likelihood estimates. Figure 2.4 shows boxplots for the two cases we consider.
Over 100 repetitions we see that increasing the number of particles reduces the
variability in the likelihood estimates. This is expected since increasing the
number of particles should reduce the variance in the estimates.

25

2.3. Particle filters for inference in state space models

Example 2 - Linear Gaussian model in 2 dimensions

Here we consider a somewhat similar setting to the previous example, but this
time for a higher dimensional state space. Additionally, we use a Gaussian
emission density so we end up with a linear Gaussian state space model. The
model for this example is on the form

xt = Hxt−1 + ε

yt = Gxt + η

Here ε and η both are multivariate normal distributions, centered at zero with
covariance matrix equal to the identity matrix. Additionally we set G equal to
the identity matrix, and define the matrix H as a diagonal matrix where the
non-zero entries both equals 0.42, that is h1,1 = h2,2 = 0.42. We can consider
this example in any number of dimensions, but for simplicity we consider n = 2.
Again, we are interested in the filtering problem, but now we also have the
Kalman filter to serve as an analytical comparison. The data is simulated from
the model described above with x0 = ~0, i.e. the zero vector in R2. We let the
time index t run from 1 to 50, which yields a sequence of latent variables x1:50
and a sequence of observations y1:50 where each xt, yt ∈ R2 for t ∈ 1, . . . , 50. We
then use algorithm 2 with the inclusion of a step computing the filter estimates.

Figure 2.5 shows a comparison between the bootstrap filter estimates and
the values computed from the Kalman filter, and we see that the bootstrap
filter estimate has almost converged to the analytical values from the Kalman
filter when using 1000 particles. Here we see that the estimates of E[xt|y1:t]
computed with the bootstrap filter are consistent with those computed from
the Kalman filter. This is expected since the filter estimates from the bootstrap
filter converge to the analytical values obtained with the Kalman filter. Again,
the shaded regions are the 0.025 and 0.975 quantiles for a resampled set of
particles. These are found by sampling the particles according to their weight at
each time and computing the desired quantiles of this sample, hence this region
gives a good indication of the location of the samples at each time t. From this,
we see that at each time t the particles vary around the expected value as we
expect to see, and we obtain a good estimate of the filtering expected value
when looking at all the particles together.

26

2.4. Smoothing in state space models

0 10 20 30 40 50
Time

3

2

1

0

1

2

3

x1

Bootstrap filter estimate E (xt|y1 : t)
Kalman Filter E (xt|1 : t)

0 10 20 30 40 50
Time

3

2

1

0

1

2

3
x2

Bootstrap filter estimate E (xt|y1 : t)
Kalman Filter E (xt|1 : t)

Figure 2.5: Bootstrap filter estimates of E[xt|y1:t] and Kalman filter computation
of E[xt|y1:t] for the two dimensional state x. The top figure shows the first
dimension x1 and the bottom shows the second dimension x2. Bootstrap
estimate is based on 1000 particles with resampling when the effective number
of samples is less than 500.

2.4 Smoothing in state space models

So far we have primarily discussed the filtering problem and how to use particle
filters to provide estimates of E[xt|y1, . . . , yt] and other quantities related to
the filtering density. An alternative to the filtering estimates of the states xt
are the smoothed estimates, namely E[xt|y1, . . . , yT]. Whilst creating filtering
is straightforward using particle filters, the process of creating smoothed state
estimates is as previously mentioned a bit more involved. In particular, the
process of obtaining the filtering estimates could be performed online, and this
is not the case for smoothing which requires conditioning on the complete data.
In practice, smoothing can be done by first running a particle filter over all the
data, and then performing a backward pass over the data to get the smoothed
estimates.

27

2.4. Smoothing in state space models

The same approach taken for the Kalman filter can be used to provide exact
analytical expressions for the expected value and variance of the smoothing
density, but its use is limited as it is only applicable to the linear Gaussian
models. This Kalman approach provides analytical expression rather than
Monte Carlo approximations which makes this approach desirable when it can
be applied. A derivation of the Kalman smoother can be found in Tsay and
Chen (2018). For problems that cannot be solved by the Kalman smoother,
such as problems related to non-linear and non-Gaussian models, we can again
use sequential Monte Carlo. We now aim to provide samples from the full
smoothing density p(xt|y1, . . . , yT), and as previously mentioned this process
is more involved as it requires the conditioning on the full data. Thus, the
simple sequential approach taken for the standard particle filters is not suited
for providing samples from the smoothing density.

Even though the standard sequential Monte Carlo algorithm, namely
algorithm 1, is not suited for sampling from the smoothing density, it can
be used to obtain samples of the full trajectory x1:T conditional on y1:T directly.
When considering the full path of the particles and the weights at time T these
will give a weighted sample from the smoothing density p(x1, . . . , xT |y1, . . . , yT).
When we applied this to the filtering problem, at each time t we focused solely
on the state xt and we ignored the trajectory. The reason for this is that in
this specific setting without resampling we end up having particles with very
low weight and a few particles dominating. To counter this, we introduced
resampling as a method of rejuvenating the sample. This solves the problem of
weight degeneracy at time t, but it introduces a new problem. We resample
the entire path and end up with few unique particles at the early times as
shown in Figure 2.1. As a result, this setup will not provide good estimates of
the smoothing density at the early time points due to there being few unique
particles. Now we will have a brief look at two other methods which can be
used for obtaining particle estimates of the smoothed density.

Fixed lag approximations

One common method for obtaining an approximate solution to the smoothing
problem is fixed lag smoothing which is discussed by amongst other Kantas
et al. (2015) and Briers, Doucet and Maskell (2010). The idea behind this
approach is assuming that the process we are considering has good forgetting
properties, that is for the state at time t the observations after time t+ ∆ will
have little effect on the smoothing density of the state xt. Thus, we get the
following approximation of the smoothing density

p(x1:t|y1:T) ≈ p(x1:t|y1:min(t+∆,T)). (2.15)

That is, for some appropriate ∆ ∈ N we can approximate the full smoothing
density by only looking at ∆ steps ahead. In practice implementing a fixed lag
setup can be done with particle filters and will follow much of the same setup as
we described when discussing the filtering problem with particle filters. From
the filtering problem we already have the machinery to provide estimates of
the filtering density, hence we only need to extend this to include conditioning
on observation forward in time. To provide the conditioning on the future
observations, a simple method will be to run the particle filter up to time t+ ∆.

28

2.4. Smoothing in state space models

When no resampling is done after time t, the weights at time t+ ∆ alongside
the particles at time t can be used to provide fixed lag smoothing estimates at
time t.

To use this method in practice we need to determine a suitable ∆ to
provide the fixed lag estimates. The value of ∆ must be sufficiently large
so observations at times after t+ ∆ do not bring any additional information
satisfying (2.15). Simultaneously ∆ must be small enough to not introduce
issues with degeneracy when looking ahead at time t providing the smoothing
estimates. As no resampling is done between times t and t+ ∆, the sample will
not be rejuvenated in this interval which may cause issues with degeneracy at
time t with some particles dominating.

Smoothing using a backward pass

Another simple method, which takes a different approach than the fixed lag setup,
is smoothing using a backward pass which is discussed in S. J. Godsill, Doucet
and West (2004) and Kantas et al. (2015) as Forward-Backward Smoothing.
This approach relies on having filter estimates available for all the states and
uses a backward pass over these to provide the samples from the joint smoothing
density p(x1:T |y1:T).

As the state space model describes how to move forward in time, to provide
the smoothing estimate using a backward pass we need to look at how we can
pass through the model backwards. This can be done exploiting the Markov
structure of the model, and using Bayes theorem we get the following

p(xt|xt+1:T , y1:T) = p(xt|xt+1, y1:t)

= f(xt, xt+1)p(xt|y1:t)
p(xt+1|y1:t)

∝ f(xt, xt+1)p(xt|y1:t)
(2.16)

As a result, we can estimate the density p(xt|xt+1:T , y1:T) up to proportionality,
with f(xt+1, xt) which simply is the transition density of the model and p(xt|y1:t)
which is the filtering density, which we have from the filtering problem. Similar
to how we move forward through the model when solving the filtering problem,
a similar approach can be taken moving backwards through the model with the
backward recursion (2.16). A simple way of doing this is given in S. J. Godsill,
Doucet and West (2004), which reuses the particles produced by the filtering
algorithm. This produces trajectories from the smoothing density p(x1:T |y1:T),
which can be used to create Monte Carlo estimate of amongst other E[xt|y1:T]
and E[x1:T |y1:T].

A different method is the two way filter where forward and backward filtering
is combined to create the smoothed estimate. This approach is discussed amongst
other by Kitagawa (1994) and Kitagawa (1996), and an alternative is proposed
by the more recent Briers, Doucet and Maskell (2010) which does this in a
slightly different manner. The two filter approach taken by Kitagawa (1996)
relies to the backward information filter which can be defined as follows

p(yt, . . . , yT |xt) = g(xt, yt)E
[

T∏
p=t+1

g(Xp, yp)|Xt = xt

]
(2.17)

This can then be used to formulate an expression for the full smoothing density.
When combining the backward information filter with a prediction based on

29

2.4. Smoothing in state space models

the regular forward filter we can obtain the full smoothing density up to
proportionality as

p(xt|y1, . . . , yT) ∝ p(xt|y1, . . . , yt−1)p(yt, . . . , yT |xt). (2.18)

This method is a bit more involved than the previous methods mentioned since
we now have the inclusion of the backward information filter. We now have to
account for the backward information filter which in itself is not trivial and
combine these with the filtering estimates. A setup in which this can be done
will be discussed further in Section 4.6.

Example 3 - A simple smoothing example

Now we want to have a look at how smoothing can be done in practice, and we
will compare a fixed lag setup with smoothing using a backward pass as described
in S. J. Godsill, Doucet and West (2004). We will here use a linear Gaussian
model so we can compare our estimates with the analytical values obtained
from a Kalman smoother. For the Kalman smoother we have implemented
algorithm 6.2 from Tsay and Chen (2018). Here we will consider the following
model

xt = 0.7xt−1 + 0.25 + ε

yt = xt + η

where both ε and η are standard normal random variables, i.e. mean zero and
variance 1, and from this model we simulate a sequence of 25 observations and
latent variables with x0 = 0.

Before looking at the particle approximation of the smoothing density, it is
worth comparing the state estimates from the Kalman filter and the Kalman
smoother, both of which yield analytical state estimates. Figure Figure 2.6
shows the state estimates from both methods, and these are quite similar for
this model. Both can reasonably be used as estimates of the state but the
smoothing values require more computational effort to obtain. The difference
in the two estimates lies in the additional conditioning on the future states in
the smoothing estimates.

Now turning our attention back to the particle approximation, we already
know that we can use particle estimates to obtain a good approximation of the
filtering expectation, and now we will look at this in the smoothing setting.
For the smoothing with a backward pass from we first run a regular bootstrap
particle filter with N = 500 particles where we resample when Neff < 0.5N . We
then use these particles for the backward pass to create 500 trajectories from
the smoothing density. For the fixed-lag setup we use N = 1000 particles and
look ∆ = 5 steps ahead. Additionally, we resample when Neff < 0.5N , and any
resampling is done before looking ahead. This is because if there is a need to
resample, this need will only increase as we look ahead, so removing this need
is desirable.

For comparing the results of the two particle methods we look at their
expected value. Figure 2.7 shows the estimates of the smoothing expected value
compared to the analytical value obtained from the Kalman smoother. We
see here that neither method provides a perfect estimate of the expected value
of the smoothing everywhere, but both seem to give reasonable estimates of

30

2.4. Smoothing in state space models

0 5 10 15 20 25
Time

2

1

0

1

2

3

4

St
at

e

Kalman Filter
Kalman Smoother
True State

Figure 2.6: Comparison of the state estimate from the Kalman filter and Kalman
smoother.

the analytical expected value of the smoothing density. Further, we can look
at the quantiles from the particles produced with the two methods and these
are shown in figure 2.8. Here we see that the expected value of the smoothing
density, obtained via the Kalman smoother, is located in a region covered by the
particles at each time t. This indicates that in a setting where we do not know
the true expected value, using these particle approximations, we can provide
good estimates of the expected value.

Differences between these particle approximations and the analytical value
from the Kalman smoother will in part come from these being Monte Carlo
approximation and increasing the number of particles will provide better
estimates. Additionally, for the fixed-lag approximation, we do not use the
full sequence of observations by construction. This may also cause part
of the difference between the approximation and the analytical value and
using a different value for ∆ will provide a different approximation. For the
approximation based on the backward pass, this will be heavily dependent on
the filtering estimates obtained, as the particles from here come directly from
the particles used to approximate the filtering density.

31

2.5. Parameter estimation in state space models

0 5 10 15 20 25
Time

1

0

1

2

3

4

St
at

e

Backward pass
Fixed-lag
Kalman Smoother

Figure 2.7: Comparison of particle estimates of the expected value of the
smoothing density

0 5 10 15 20 25

2

0

2

4

Fixed-Lag Confidence Bands

0 5 10 15 20 25

2

1

0

1

2

3

4

5

Backward Pass Confidence Bands

Figure 2.8: Confidence bands for the particle approximations. The boundaries for
the shaded region is the 0.025 and 0.975 quantiles for the particles at each time. The
orange line in the center is the expected value of the smoothing density as obtained
from the Kalman smoother.

2.5 Parameter estimation in state space models

Having so far discussed estimation of the latent variables representing the states,
we now move to parameter estimation which is another topic of interest when
working with state space models. We again consider the model described by
(2.5)-(2.7), where we now include a vector of parameters θ which represents the
unknown model parameters. The goal of parameter estimation is, as the name
implies, to estimate the unknown parameters θ. This is essential as the values
of the parameters provide insights to the model, while also being necessary
for obtaining amongst other good estimates of the filtering density. We can
separate parameter estimation methods into two main categories, maximum
likelihood approaches, and Bayesian approaches.

Closely related to parameter estimation is likelihood estimation and
estimating the marginal likelihood (1.6) is key since this allows us to compare
different sets of parameters based on the data. The marginal likelihood can be
computed using standard particle filters and can be obtained as a byproduct

32

2.5. Parameter estimation in state space models

when running the standard bootstrap particle filter without much effort. We
will go into further detail on how the marginal likelihood can be estimated
in Chapter 3 where we discuss how to provide low variance estimates of the
marginal likelihood, but for this section, we will focus on what the marginal
likelihood can be used for.

Starting with maximum likelihood approaches, Kantas et al. (2015) lists
several methods for parameter estimation in state space models using maximum
likelihood approaches. One possible approach is gradient ascent to determine
the parameters maximizing the likelihood function, or potentially log-likelihood.
This is natural as the general idea for maximum likelihood estimation is to find
the parameters the maximize that marginal likelihood function. The likelihood
can be computed analytically in linear Gaussian models, while for more general
models we can use particle filters for estimating the likelihood. As mentioned,
we will go into more details for computing the likelihood in chapter Chapter 3,
but a good estimate of the marginal likelihood which easily can be implemented
alongside the bootstrap particle filter is

p(y1:t|θ) ≈
T∏
t=1

[
1
N

N∑
i=1

g(xit, yt)
]
. (2.19)

Where xit are particles from the bootstrap filter at time t, and we will use this
method for calculating the marginal likelihood in the next example.

For Bayesian approaches to parameter estimation, our interest lies in the
posterior p(θ|y1:T) which can be used for inference for the unknown parameters θ.
In practice, the joint posterior of the latent variables and unknown parameters,
p(x1:t, θ|y1:t), is also of interest since it can also be used for inference on the
parameters and simultaneously the latent variables. Perhaps the simplest
method for parameter estimation, albeit a fairly naive one, is simply extending
the latent variables with the unknown parameters θ in the particle filter. This
is by Kantas et al. (2015) called augmenting the state with the parameter,
and is an online method of parameter estimation which looks at the combined
state Zt = (Xt, θt) where θt = θt−1. Viewing this as particles, each particle
representing a state is paired with a particle representing the parameters of the
model drawn from an appropriate prior distribution. The particles representing
the parameters will remain unchanged when moving from t to t + 1 while
the particles representing the state will evolve based on the specified model.
This approach has the benefit of being very easy to implement and can easily
be implemented alongside the bootstrap particle filter by including a step for
dealing with the parameters. This method will degenerate as resampling is done
in the particle filter since we start with a finite number of particles representing
the parameters, and the process of resampling will reduce the number of unique
particles. While the state is rejuvenated by resampling, the same will not
be the case for the parameters leading to degeneracy among the particles.
To further illustrate this, consider starting with a large sample {θi}Ni=1 from
the prior of the parameters p(θ). For the first few steps, this will be able to
explore the parameter space of the unknown parameters. Each time the particle
filters resamples the number of unique samples in {θi}Ni=1 will be reduced as
the pairs of particles representing the state and parameters with low weight
will be discarded until we potentially reach the extreme with a single unique
particle. For this reason, this method is flawed since the parameter space is not

33

2.5. Parameter estimation in state space models

adequately explored at later times with few particles, but it can still be used
in some simple cases. A proposed solution to this can be found in J. Liu and
West (2001) that propose to rejuvenate the sample by adding random noise to
the parameter such that θt+1 = θt + ζt where ζt is sampled from a known mean
zero normal distribution. The immediate downside of this is that the model
parameters are no longer fixed and additional variability is introduced in the
parameter estimates. This aids in the process of exploring the parameter space
at later times by diversifying the sample and again will be relatively easy to
implement in practice as well as having the benefit of being an online method.

More sophisticated methods for parameter estimation can be done in an
offline setting, and one such approach use Markov Chain Monte Carlo to
sample from the joint distribution of the parameters and latent state variables
conditional on the observations, that is the density p(θ, x1:T |y1:T). One
common algorithm for MCMC is the Metropolis-Hastings algorithm which
also can be used when dealing with state space models. One such setup is the
marginal Metropolis-Hastings sampler which is discussed in Andrieu, Doucet
and Holenstein (2010). A general introduction to the Metropolis-Hastings
algorithm can be found in Givens and Hoeting (2013, chapter 7), and one of
the main parts of this algorithm is computing the Metropolis-Hastings ratio
which determines the acceptance probability of the sampler and depends on the
proposal density for the MCMC algorithm. Andrieu, Doucet and Holenstein
(2010) propose the following proposal density for to determine the jumps in
the marginal Metropolis-Hastings sampler to sample from the joint density
p(θ, x1:T |y1:T)

q([θ′, x′1:T |θ, x1:T]) = q(θ′|θ)p(x′1:T |y1:T , θ
′)

With this choice of proposal we do not need to sample from the joint density of θ
and x1:T which may be difficult, and when we solely want to focus on parameter
estimation we do not need to make any additional effort for handling the states.
This can be seen through the expression for the acceptance probability, which
can be written on the following form by rewriting the joint density of θ and
x1:T

R = min
(

1, p(θ
′, x′1:T |y1:T)q([θ, x1:T |θ′, x′1:T])

p(θ, x1:T |y1:T)q([θ′, x′1:T |θ, x1:T])

)
= min

(
1, pθ

′(y1:T)p(θ′)q(θ|θ′)
pθ(y1:T)p(θ)q(θ′|θ)

) (2.20)

Where θ is the current parameter values and θ′ is the new proposed parameter
values. Further p(θ) a prior for the parameters, q(θ′|θ) is the proposal for the
new parameters and pθ(y1:T) is the likelihood for a given set of parameters as
given by (1.6). Here we have used that p(θ, x1:T |y1:T) = p(x1:T |y1:T , θ)p(θ|y1:T),
and the factor containing the states x1:T will cancel out in (2.20). The main
difficulty here lies in computing the likelihood which in general cannot be
done analytically. An alternative here is using an unbiased estimate based on a
particle filter as a substitution, and as a result we require low variance likelihood
estimates which will be discussed further in Chapter 3. This can the be used
for to create a sample of from the posterior distribution of the parameters
conditional on the observations using the Metropolis-Hastings algorithm, and a
setup for this can be found in Andrieu, Doucet and Holenstein (2010).

34

2.5. Parameter estimation in state space models

Comparing this Metropolis-Hastings setup with the online methods
for parameter estimation, the Metropolis-Hastings setup has a greater
computational cost. This is in large part because for each sample from
p(θ|y1:T) we have to compute the full likelihood pθ(y1:T) in order to determine
the Metropolis-Hastings ratio (2.20). Computing the marginal likelihood can
quickly become computationally expensive, hence providing a large sample from
p(θ|y1:T) can be cumbersome using a Metropolis-Hastings setup. Compared
to the online approaches previously discussed, an offline Metropolis-Hastings
setup for parameter estimation does not encounter the same problems with
degeneracy in the sample. Traditionally Metropolis-Hastings setups will be
useful in settings with a large number of unknown parameters. This will also
be the case here as the algorithm can be constructed to explore the parameter
space in an efficient manner.

Example 4 - Estimating parameters

Now we will illustrate parameter estimation in a simple example. Here we will
consider a simple linear model were augmenting the state with the parameters
is sufficient for providing adequate parameter estimates. Additionally, we will
consider a simple particle marginal Metropolis-Hastings setup. Although the
latter might be superfluous in this simple setting, it is still worth having a look
at. For this example, we will use simulated data based on the following model

f(xt−1, ·) ∼ N (·; a+ bxt−1, 1)
g(xt, ·) ∼ N (·;xt, 0.52)

We set x0 = 0 as well as a = 0 and b = 0.7, and simulate a sequence of 25 latent
variables and observations, x1:25 and y1:25 respectively. When augmenting the
state with the parameters our goal is to create an estimate of the scaling factor b
based on the observations, and we assume that a = 0. For the particle marginal
Metropolis-Hastings we want to estimate both parameters simultaneously.

For creating the parameter estimates by augmenting the state, we use
a bootstrap particle filter with N = 10000 particles and resample when
Neff < 0.5N . As a prior for the parameter, we use a uniform prior on the
interval (0, 1) which we know includes the true value, but this should also
provide some samples that are quite far away from the true value.

Figure 2.9 shows a histogram of the samples of the parameters at the final
time. As we can see, the majority of the samples we are left with are close to the
true value, and this provides a parameter estimate b̂ = 0.68. Furthermore we
can look at the spread of the sample in particular we have the 0.025 and 0.975
quantiles of the samples at q0.025 = 0.41 and q0.975 = 0.96. As we can see from
both the quantiles and the histogram, there is some spread in the samples, but
the majority lies close to the true value. It is also worth remembering that this
sample started as a uniformly distributed sample and by running the particle
filter, we have been able to obtain information about the location of the true
state. Additionally, this can be used as a first crude parameter estimate which
can be improved upon since it is fairly fast and easy to implement alongside
the bootstrap particle filter.

The primary issue with this approach is that the diversity in the sample
of the parameters is decreasing and we do not make any effort to rejuvenate

35

2.5. Parameter estimation in state space models

0.2 0.4 0.6 0.8 1.0
Parameter Value

0

500

1000

1500

2000

2500
Oc

cu
rre

nc
es

Parameter estimates by augmenting the state

Figure 2.9: Histogram showing the particles representing the parameters at the
final time T with the true value shown as a dashed line.

the sample. We started with 10000 particles from the prior of the parameters,
and at the final time, we are left with 67 unique particles. This effect would
be even more noticeable for longer sequences and if we had more parameters
to estimate. This forces us to use a large number of particles in the bootstrap
filter so that we are left with enough unique particles to obtain a Monte Carlo
estimate of the parameter.

For the particle marginal Metropolis-Hastings setup, we take this a bit
further since for estimating a single parameter this method is redundant. Here
we want estimates for both a and b for the transitions in the model and with a
Metropolis-Hastings setup, we can easily sample from the joint density. Here we
follow the particle marginal Metropolis-Hastings setup, and alternate between
proposing a sample for b and a, and for both we use a random walk centered
at the previous sample with steps that are normally distributed with variance
σ = 0.1252 for both. As a prior for the parameters we use a uniform prior on
the interval (−0.5, 0.5) for a and (0, 1.5) for b. For proposing a new sample, we
alternate between proposing samples and determining if they should be kept for
a and b, and we do this 1000 for each parameter and use the first 100 samples
as a burn-in. When computing the likelihood, we use the bootstrap particle
filter with N = 200 particles and resample when Neff < 0.5N . The settings of
the Metropolis-Hastings algorithm can be tweaked to provide better estimates,
but for the purposes here this is sufficient as the goal is to show that such a
Metropolis-Hastings setup can be used for parameter estimation, rather than
creating the best possible estimates.

Figure 2.10 shows a histogram of the samples obtained, and for both
parameters, the true value lies slightly below the average of the samples. We
get the estimates â = 0.06 and b̂ = 0.73, and both slightly overestimate the true
value. Figure 2.10 visualizes the samples obtained. For both the parameters,
we see that there are several parameter values that frequently occur, but all

36

2.5. Parameter estimation in state space models

Parameter estimates
Method â b̂

Agumenting state - 0.68
PMMH Particle filter 0.06 0.73

PMMH Kalman 0.06 0.74

Table 2.1: Parameter estimates for the transitions in the state space model
based on different approaches.

are located close to the true value. This may be due to the model itself and
potentially the observations not being informative enough such that several
parameter values get similar marginal likelihood values. Another factor is that
we are only using an approximation of the marginal likelihood and this may
influence the estimates. The effect here can easily be investigated by using a
Kalman approach for computing the marginal likelihood.

As a comparison to this we repeat the exact same setup but this time rather
than computing the likelihood with a particle filter we now use the Kalman
approach for computing the likelihoods required. The estimates obtain here
can be found in table 2.1 alongside the estimates from the other methods.

Figure 2.11 shows histograms of the samples obtained, and a scatter plot of
the samples can be found in the same figure. Visually the scatter plots resulting
from the two approaches are quite different and using a Kalman approach for
computing the marginal likelihood gives samples that are close to being radially
symmetric around the true parameter values, at least when comparing with the
particle filter approach. This is also shown in the histograms which are more
symmetric for the Kalman approach. This may be a result of using the exact
likelihood, and when using an approximation of the marginal likelihood there is
a risk of overestimating such that a poor sample appears to be better than it is.

When comparing with the first setup with a being known and we augmented
the state, we observe that the histogram of the samples obtained with this
approach is narrower around the true value. This may be in part due to a
being known which is not the case for the Metropolis-Hastings histograms in
which we consider pairs (a, b). There are several pairs of (a, b) which will have
similar likelihoods, and the Metropolis-Hasting algorithm can jump between
these rather than settling on one where a is fixed a b is varying.

37

2.5. Parameter estimation in state space models

0.4 0.2 0.0 0.2 0.4
Parameter Value for a

0

25

50

75

100

125

150

175

200
Oc

cu
rre

nc
es

Particle marginal Metropolis-Hasting for a

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Parameter Value for b

0

20

40

60

80

100

120

140

Oc
cu

rre
nc

es

Particle marginal Metropolis-Hasting for b

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of b

0.4

0.2

0.0

0.2

0.4

Va
lu

e
of

 a

Scatter plot of samples from PMMH with Kalman likelihood
MH samples
True values
Estimates

Figure 2.10: Visualizing the distribution of the samples obtained based on the
Monte Carlo estimates of the marginal likelihood.

38

2.5. Parameter estimation in state space models

0.4 0.2 0.0 0.2 0.4
Parameter Value for a

0

20

40

60

80

100

120

140
Oc

cu
rre

nc
es

Particle marginal Metropolis-Hasting samples for a

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Parameter Value for b

0

20

40

60

80

100

120

140

Oc
cu

rre
nc

es

Particle marginal Metropolis-Hasting samples for b

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Value of b

0.4

0.2

0.0

0.2

0.4

Va
lu

e
of

 a

Scatter plot of samples from PMMH with Kalman likelihood

MH samples
True values
Estimates

Figure 2.11: Visualizing the distribution of the samples obtained based on the
Kalman marginal likelihood.

39

CHAPTER 3

Twisted Models and their use

3.1 Introducing twisted models and their use

The bootstrap particle filter has several nice properties as discussed previously
in Chapter 2. This includes being easy to implement, being versatile in the
sense that we are able to obtain estimates of a large number of quantities,
and the fact that the estimates obtained are consistent. The latter of these is
due to the Monte Carlo setup which is the basis for the particle filter. This
allows particle filters to provide consistent estimates of quantities such as the
marginal likelihood related to a series of observations, and state estimates
through filtering and smoothing. While analytical methods such as the Kalman
filter and related approaches only are available in special cases, Monte Carlo
methods and particle filters are can be used more generally, and obtaining low
variance estimates from particle filters is desirable.

Here we will primarily focus on improving the estimates of the marginal
likelihood beyond those obtained from the bootstrap particle filter. In this
context improving the estimates means obtaining lower variance estimates when
using fewer particles than for estimates obtained from using the bootstrap filter
directly on the state space model. To do this we will take the same approach
as Guarniero, Johansen and Lee (2017) and Heng et al. (2020) and introduce
twisted state space models which will be used to provide these low variance
estimates. This is also a similar strategy to the one taken by Whiteley and Lee
(2014), which was the first instance of twisting the model and the particle filter
we found. Ala-Luhtala et al. (2016) builds further on this work and uses the
same strategy. Such low variance likelihood estimates are desired as they are
amongst other a key part of parameter estimation methods such as particle
marginal Metropolis-Hastings (Andrieu, Doucet and Holenstein, 2010) which
we discussed in Section 2.5. Additionally, this setup can be used to obtain
good smoothing estimates of the state, which we will have a closer look at in
Section 4.6.

Twisted state space models

We will start by introducing the twisted models. First, we consider a state
space model where the density for the first state x1 is given by µ(x1) and the
remaining transition densities are given by f(xt−1, xt) for t ∈ 2, . . . , T and we
have emission densities or potentials g(xt, yt) for t ∈ 1, . . . , T for potentially
multidimensional sequence latent variables and observations x1:T and y1:T

40

3.1. Introducing twisted models and their use

respectively. This is the same model structure we considered in Chapter 2,
and we will refer to this model as the original or untwisted model. To define a
twisted model we introduce a sequence of bounded, strictly positive, continuous,
and real-valued functions ψ := (ψ1, . . . , ψT) and using these we define the
following:

ψ̃0 =
∫
µ(x′)ψ1(x′) dx′

ψ̃t(xt) =
∫
f(xt, x′)ψt+1(x′) dx′ for t ∈ 1, . . . , T − 1

ψ̃T (xT) = 1.

Using the above definitions we define the twisted model as

µψ(x1) = µ(x1)ψ1(x1)
ψ̃0

(3.1)

fψt (xt−1, xt) = f(xt−1, xt)ψt(xt)
ψ̃t−1(xt−1)

(3.2)

gψ1 (x1, y1) = g(x1, y1) ψ̃1(x1)
ψ1(x1) ψ̃0 (3.3)

gψt (xt, yt) = g(xt, yt)
ψ̃t(xt)
ψt(xt)

(3.4)

The twisted state space model introduced here can be seen as a different model
than the original model described by µ, f , and g, and we can consider this as a
model which describes an entirely different system than the original model.

With this new twisted model, we can still use the bootstrap particle filter to
obtain amongst other estimates of the states and an estimate of the marginal
likelihood in the same manner as we would for any other model. These estimates
will be related to the twisted model, however, due to the construction of the
twisted model, some quantities of interest will be the same for the original and
twisted model. In particular, when twisting a model according to (3.1)-(3.4)
and the restrictions placed on ψ, the original model and the twisted model will
have the same marginal likelihood, which is the motivation for introducing the
twisted models. To show this consider the marginal likelihood associated with
the observations y1:T which is defined as

L ≡ E
[
T∏
t=1

g(Xt, yt)
]

=
∫
X

µ(x1)g(x1, y1)
T∏
t=2

f(xt−1, xt)g(xt, yt) dx1:T . (3.5)

Here the expected value is taken with respect to the random variables X1:T .
This expression for the marginal likelihood is equivalent to the more general
expression presented in (1.6). Representing the marginal likelihood as an
integral is convenient, as it is integrals on this form we can solve numerically
using sequential Monte Carlo. We define the integral corresponding to the
marginal likelihood of the original model explicitly as Z

Z ≡
∫
X

µ(x1)g(x1, y1)
T∏
t=2

f(xt−1, xt)g(xt, yt) dx1:T . (3.6)

41

3.1. Introducing twisted models and their use

Now turning our attention to the twisted model, we can also write
corresponding integral to (3.6) for the twisted model

Zψ =
∫
X

µψ(x1)gψ1 (x1, y1)
T∏
t=2

fψt (xt−1, xt)gψt (xt, yt) dx1:T

=
∫
X

µ(x1)ψ1(x1)
ψ̃0

g(x1, y1)ψ̃1(x1)
ψ1(x1) ψ̃0

T∏
t=2

f(xt−1, xt)ψt(xt)
ψ̃t−1(xt−1)

g(xt, yt)ψ̃t(xt)
ψt(x1) dx1:T

=
∫
X

µ(x1)g1(x1, y1)
T∏
t=2

f(xt−1, xt)g(xt, yt) dx1:T ≡ Z.

As shown above the quantity Z, which is equivalent to the marginal likelihood,
is invariant under the transformation from the original model to the twisted
model defined by (3.1)-(3.4). Notably, this quantity will be the same for any
twisted model as long as it is defined based on a valid sequence ψ. Hence the
marginal likelihood of the twisted model is equal to that of the original model
that we started with. The same is true for the joint density of x1:T and y1:T and
by appending a function ϕ to the integral we can obtain the expected values of
functions with respect to the smoothing density. We will have a closer look at
smoothing in Section 4.6.

E[ϕ(x1:T)|y1:T] =
∫
X

ϕ(x1:T)p(x1:T |y1:T) dx1:T

= 1
Z

∫
X

ϕ(x1:T)µ(x1)g1(x1, y1)
T∏
t=2

f(xt−1, xt)g(xt, yt) dx1:T

= 1
Z

∫
X

ϕ(x1:T)µψ(x1)gψ1 (x1, y1)
T∏
t=2

fψt (xt−1, xt)gψt (xt, yt) dx1:T .

Since the marginal likelihood of any twisted model is equal to that of the
original model that we started with, we can estimate the marginal likelihood of
the original model by estimating the marginal likelihood of any twisted model.
That is to estimate the integral Z we can instead estimate the integral Zψ since
these quantities are identical, and this will be the case for any valid sequence
ψ. Note that we will only have this equality at the final time T . The joint
density of x1:t and y1:t for t < T will not be identical for the original and twisted
model. Estimating the marginal likelihood of any model is straightforward
using the bootstrap filter. For the twisted model this corresponds to using the
functions µψ, fψ and gψ in the bootstrap particle filter, rather than µ, f and
g. For a twisted model with emission density gψt (xt, yt) at time t, running a
bootstrap particle filter which at time t produces particles {xit}Ni=1, a Monte
Carlo estimate of the marginal likelihood is given by

ZNψ =
T∏
t=1

[
1
N

N∑
i=1

gψt (xit, yt)
]

= ψ̃0

T∏
t=1

[
1
N

N∑
i=1

g(xit, yt)
ψ̃t(xit)
ψt(xit)

]
. (3.7)

The estimate obtained for the marginal likelihood, ZNψ , will still be consistent
and converge to the true marginal likelihood as N → ∞, as it would for the

42

3.1. Introducing twisted models and their use

Algorithm 3: Bootstrap particle filter applied to a twisted model with
adaptive resampling

1 Set t = 1, log(ZNψ) = 0
and sample xi1 ∼ µ

ψ
1 (·) for i ∈ (1, . . . , N)

2 Compute weights wi1 ← gψ1 (xi1) and increment t
3 If Neff(wt−1) < αN

Set log(ZNψ) += log
(

1
N

∑N
i=1 w

i
t−1

)
Sample xit ∼

∑N

j=1
wj
t−1f

ψ
t (xj

t−1,·)∑N

j=1
wj
t−1

and set wit = gψt (xit)

4 Otherwise sample xit ∼ f
ψ
t (xit−1, ·) and set wit = wit−1g

ψ
t (xit)

5 If t = T

Set log(ZNψ) += log
(

1
N

∑N
i=1 w

i
T

)
6 Otherwise, increment t and return to step 3

original model. This is because we are still using the bootstrap particle filter on
the twisted model. Algorithm 3 describes how to run a bootstrap filter on the
twisted model and simultaneously compute the marginal likelihood as described
by Guarniero, Johansen and Lee (2017).

Being able to estimate the marginal likelihood of the original model with a
twisted model rather than using the original model is the basis for the work of
Guarniero, Johansen and Lee (2017) and Heng et al. (2020). Of interest is the
effect of using the twisted model on the convergence of the marginal likelihood
estimates. Since no matter how we twist the model, within the boundaries of
(3.1)-(3.4) and the previously mentioned restrictions on ψ, all twisted models
will have the same marginal likelihood as the original model. Hence it is natural
to consider if there is any twisted model that is preferable for estimating the
marginal likelihood in terms of convergence and variance of the estimate. Of
interest is if there is possible to choose a twisted model such that we obtain
lower variance estimates of the marginal likelihood with fewer particles, which is
computationally faster than running the bootstrap particle filter on the original
model.

The optimal sequence

Having introduced the twisted state space models and shown that these will
have the same marginal likelihood as the original untwisted model, we now
want to see how these twisted models can be used to improve the estimates of
the marginal likelihood. We want to determine a sequence of functions ψ which
lowers the variance of the marginal likelihood estimates obtained by running
the bootstrap particle filter on the twisted model while using fewer particles
compared to estimates obtained from running the bootstrap filter on the original
model. Since there are few restrictions on the functions twisting the model we
are free to choose how to twist the model, however, not every sequence ψ will
lower the variance of the estimates. For the purpose of lowering the variance
Guarniero, Johansen and Lee (2017) propose the following sequence of twisting

43

3.1. Introducing twisted models and their use

functions ψ?

ψ?t (xt) = g(xt, yt)E
[

T∏
p=t+1

g(Xp, yp)|{Xt = xt}

]
with t ∈ (1, . . . , T − 1)

ψ?T (xT) = g(xT , yT)
(3.8)

Here the expected value is with respect to the distribution of the latent variables
X, in the same manner as (3.5). With this choice of twisting functions, it can
be shown that the marginal likelihood estimate from the bootstrap filter, based
on the twisted model defined by ψ?, equals the true marginal likelihood for
any number of particles. In contrast when considering the original model this
estimate only converges to the true marginal likelihood. This makes ψ? optimal
for the purpose of estimating the marginal likelihood since if this sequence can
be obtained we can determine the exact marginal likelihood with zero variance,
a proof of this can be found in Guarniero, Johansen and Lee (2017, proposition
2). It will still be beneficial to have a closer look at why this choice ψ = ψ?

will give an improvement, and simultaneously illustrate the main ideas of the
proof. The rationale for why this particular sequence gives such an improvement
lies in how the sequence ψ? that twist the model is constructed. We start by
considering the definition of the optimal sequence of functions ψ? given by
(3.8). Of particular interest is the expected value present for times t < T in
(3.8). At time t, this expected value can be seen as the likelihood for the future
observation, i.e. yt+1:T , conditional on the current state xt. Furthermore, at
time t, the inclusion of g(xt, yt) in the optimal functions ψ?t (xt) allows us to
interpret these optimal functions as the likelihood of yt:T conditional on the
state xt. At time t = 1 this will be the likelihood of all the observations, and
we get that quantity ψ̃?0 becomes

ψ̃?0 =
∫
µ(x1)ψ1(x1) dx1

=
∫
µ(x1)g(x1, y1)E

[
T∏
p=2

g(Xp, yp)|{X1 = x1}

]
dx1 = L.

(3.9)

That is, when twisting the model with the sequence ψ? the quantity ψ̃?0 is
equal to the marginal likelihood of all the observations. However, computing ψ̃?0
directly is not practical, in a similar manner to how computing (3.6) directly is
not a practical way to determine the marginal likelihood.

With this result in the back of our minds, we now move on to why this
provides low variance estimates in the bootstrap filter. Recall that a Monte
Carlo estimate of the marginal likelihood of a twisted model is given by (3.7).
When considering the optimal sequence ψ?, this expression can be simplified
by another property of the optimal sequence that we are yet to discuss. Namely
that we can define each function in the sequence ψ? recursively as shown in
proposition 3.1.1, and the same result and proof is given by proposition 4 in
Guarniero, Johansen and Lee (2017). With this recursive definition, each factor
of the product in (3.7) will be equal to 1 for the optimal sequence ψ?. This is
because we have we then have ψ?t (xt) = g(xt, yt)ψ̃?t (xt). As a result we have that
ZNψ? = ψ̃?0 = L. As mentioned, this is a major difference from using the bootstrap

44

3.1. Introducing twisted models and their use

particle filter on the original model to estimate the likelihood. We know that
ZNψ will converge to the likelihood when more samples are used such that the
Monte Carlo estimate improves. For the optimal sequence ψ? we have equality
between ZNψ? and L, and the particles do not affect the estimate obtained. Thus
we will always obtain the same estimate of the marginal likelihood. As a result,
running the bootstrap filter on the optimal twisted model and estimating the
likelihood will yield the analytical marginal likelihood of the twisted model.
Recalling that the marginal likelihood is invariant when twisting the model,
rather than estimating the marginal likelihood on the original model we can use
a twisted model based on the optimal sequence to obtain the exact marginal
likelihood.

We previously mentioned that the twisted models have applications when
it comes to smoothing. With the sequence ψ?, the trajectories of a particles
at time T from the bootstrap particle filter is a sample from the smoothing
density p(x1:T |y1:T). Unlike the previous smoothing setups we have considered,
in this sample, all the trajectories will have the same weight, hence we are
sampling from the exact smoothing density. We will have a closer look at this
in Section 4.6.

Proposition 3.1.1. Following Guarniero, Johansen and Lee, 2017, proposition
4, ψ? can be defined recursively as

ψ?t (xt) = g(xt, yt)
∫
f(xt, x′)ψ?t+1(x′) dx′ = g(xt, yt)ψ̃?t (xt), for t ∈ 1, . . . ,T-1

(3.10)
ψ?T (xT) = g(xT , yT)

Proof. The proof given here is identical that of Guarniero, Johansen and Lee,
2017, proposition 4, and follow from straight forward calculations. For t = T
the statements holds trivially by the definition of the optimal sequence, so we
are interested in t < T . We then have from the definition of ψ?t (xt)

g(xt, yt)ψ̃?t (xt) = g(xt, yt)
∫
f(xt, x′)ψ?t+1(x′) dx′

= g(xt, yt)
∫
f(xt, x′)g(xt+1, yt+1)E

[
T∏

p=t+2
g(Xp, yp)

∣∣Xt+1 = x′

]
dx′

= g(xt, yt)E
[

T∏
p=t+1

g(Xp, yp)
∣∣Xt = xt

]
= ψ?t (xt)

�

Converging to the optimal sequence

So far we have primarily discussed the optimal case, but the optimal ψ? is
generally not attainable, even with the recursive definition, so we have to settle
for an approximation. Hence it is beneficial to have a look at what happens
when we are close to the optimal sequence but not there yet, which will be
the case for a good approximation of the optimal sequence. Proposition 3
of Guarniero, Johansen and Lee (2017) provides a central limit theorem for
the likelihood estimates obtained from a twisted model and shows that the

45

3.2. Approximating the optimal sequence

marginal likelihood estimate of the twisted model converges to the true marginal
likelihood. Further, this central limit theorem shows that the variance of the
ratio ZNψ /Z tends to zero as ψ → ψ?, where Z is the true marginal likelihood
and ZNψ is the marginal likelihood estimate from a twisted model based on the
sequence ψ. Here we have ψ → ψ? in an appropriate manner such that the
expression for the variance, which depends on ψ and ψ?, goes to zero, and is
zero ψ = ψ?. Hence even if we are unable to use the exact optimal sequence
ψ?, we can obtain low variance estimates by instead basing the twisted model
on a suitable approximation ψ̂, since this approximation presumably will be
close to the optimal sequence. This motivates using an approximation of the
optimal sequence in practice as this will be easier to compute and implement
than the exact optimal sequence itself.

When using an approximation rather than the optimal sequence itself we
have to use the particle filter to obtain the marginal likelihood estimate. The
particles themselves will now have an effect on the estimates produced and
depending on the quality of the approximation we will require several particles
to obtain a satisfactory estimate of the marginal likelihood.

To quantify the effect of introducing the twisted model and the quality of
the approximation it is natural to look at the variance of the estimates of the
marginal likelihood directly since this is what we aim to improve by introducing
the twisted model. Additionally, we can use the effective number of samples in
the particle filter to evaluate the quality of the approximation. When the model
is twisted by the optimal sequence ψ? the algorithm will never resample the
particles as all the weights will be equal and the effective number of samples
will be equal to the number of particles used. With a good approximation ψ̂
we then expect that the effective number of samples in the twisted model will
be close to the number of particles used. For a good approximation, we expect
that the bootstrap particle filter rarely resamples and keeps a high effective
number of samples. This also illustrates an additional benefit with the twisted
model, namely that when we have a high effective number of samples we avoid
issues with degeneracy as we observed for the original model.

3.2 Approximating the optimal sequence

Creating an approximation

In practice, the optimal sequence cannot be obtained exactly, and we have to
create an approximation. Since any valid twisted model will have the same
marginal likelihood as the original model, any sequence which gives rise to
a valid twisted model can be used to estimate the marginal likelihood. Two
methods for approximating the optimal sequence of functions ψ? and estimating
the marginal likelihood can be found Guarniero, Johansen and Lee (2017) and
Heng et al. (2020). These methods are the iterated auxiliary particle filter and
controlled sequential Monte Carlo, and both take a similar iterative approach
for approximating the optimal sequence within a suitable class Ψ. For the
iterated auxiliary particle filter, the core idea is to approximate the optimal
sequence ψ? based on an iterative scheme. This method starts by creating a
single approximation of ψ? and uses this to define a twisted model. The next
step is to run the bootstrap particle filter on the twisted model and use the

46

3.2. Approximating the optimal sequence

particles obtained to define a new approximation of ψ?. The iterated auxiliary
particle filter repeats this procedure to provide successive approximations of
the optimal sequence and is repeated until some criterion is met, thus creating
an iterative approximation of the optimal sequence ψ?.

In order to obtain an approximation of the optimal sequence, we need to
obtain approximations of each of the functions ψ̂t(xt) ≈ ψ?t (xt). A simple way
to do this is to use the recursive definition given in proposition 3.1.1, rather
than (3.8) directly. This allows us to approximate each ψ?t (xt) recursively
using ψ̃?t (xt). When using the recursive definition, we start with ψ?T (xT) as
this is known to be equal to g(xT , yT) per definition, and from this create
approximations of the rest of the sequence. For the recursive definition we
require ψ̃?t (xt) which is defined based on ψ?t+1(xt+1) which we do not know.
However, since we are defining the sequence recursively starting at time T ,
we already have an approximation ψ̂t+1(xt+1) ≈ ψ?t+1(xt+1). This gives the
following approximation of ψ̃?t (xt)

ψ̃?t (xt) ≈ ψt(xt) =
∫
f(xt, x′)ψ̂t+1(x′) dx′. (3.11)

Whenever ψ̂t+1(xt+1) is a good approximation of ψ?t+1(xt+1) it is reasonable
to assume that ψt(xt) is a good approximation of ψ̃?t (xt). Note that for t = T

we can set ψT (xT) = ψ̃?T (xT) = 1. Then based on (3.12), we can create
approximations of the optimal functions recursively ψ̂t(xt) ≈ ψ?t (xt). However,
the approximation of (3.12) is not on a form we are able to work with, which
will be the next topic of discussion.

ψ?t (xt) = g(xt, yt)ψ̃?t (xt) ≈ g(xt, yt)ψt(xt) (3.12)

Approximating the functions

Given (3.11) and (3.12) we need to determine approximations of the optimal
functions that we are able to work with. That is, we want the right-hand side of
(3.12) on a form we are able to work with, and this will be the approximation
of the optimal function. A simple method for creating the approximations
of the optimal functions, which is used in the iterative steps of Guarniero,
Johansen and Lee (2017), consists of restricting the functions to a suitable class
Ψ and determining the best approximation within this class. Our criterion for
determining the best approximation will be a distance measure or cost function,
and the approximation will be the function in the class Ψ which is closest to
the target, i.e. closest to the right-hand side of (3.12). We will have a closer
look at how we can restrict the functions to a class Ψ later, and for now, we
want to demonstrate how we can create the approximations given a class Ψ.

To create the approximations of the functions, the core idea is to look at the
distance between a function ψt(xt) ∈ Ψ and the target. We want to compute
both on a grid of points such that we can determine the distance between
them, and the approximation is the function in the class Ψ which minimizes
this distance. Thus we end up making two approximations, and the first one is
(3.12). However, the right-hand side of (3.12) is not necessarily on a form we
are able to work with. Hence, we want to determine an approximation within
the class Ψ such that we get an approximation we are able to work with, which

47

3.2. Approximating the optimal sequence

is the second approximation. Given a class Ψ this leaves two major components,
the grid of points where we compute the functions, and the distance measure
used to determine the approximation.

For the grid of points where we compute the functions, there are several
options. Guarniero, Johansen and Lee (2017) run the bootstrap filter and use
the particles produced as the grid points. With this choice, the approximation
will become better in the region where the particles are located, but it requires
that we run the particle filter once to obtain the particles. A simpler method,
which we will use for the examples in Section 3.3, is to subjectively choose the
points where we compute the functions. This method is not ideal as it requires
a subjective choice, but for the purpose of illustration, it will be sufficient in
our examples later. In Section 3.4 we will have a closer look at how we can
create a simple grid where we can compute the functions, but first, we want to
show how we can obtain an approximation of the optimal sequence and that
there is a benefit in introducing the twisted models.

For the final component we want a distance measure to determine the best
approximation within the chosen class Ψ. One possible choice of distance
measure, that is computationally inexpensive, proposed by Guarniero, Johansen
and Lee (2017) is the following

A =
N∑
i=1

[
ψt(xi)− λg(xi, yt)ψ̃t(xi)

]2
(3.13)

Here ψt(xt) is a function in the chosen class Ψ and we minimize (3.13) to
determine the optimal parameters of ψt(xt) which provides the approximation
ψ̂t(xt) within this class. In practice with the recursive definition, ψ̃t(xi) will be
replaced with ψt(xi) as defined in (3.11). It is worth noting that including the
value of λ from (3.13) in the approximation ψ̂t(xt) will not be necessary. This is
because we are free to scale the twisting functions since the likelihood estimate
is invariant to the scaling of these functions as shown in proposition 3.2.1 below.
This also means that each of the optimal functions ψ?t (xt) is unique up to scaling
when we consider the full joint density up to and including time T . Even though
we do not include λ in the approximation, it is still desirable to include it in the
minimization step. This is so we can deal with a potential situation where the
class we want to select an approximation from is proportional to the target, that
is ψt(xt) ≈ ctg(xt, yt)ψt(xt) for some real constant ct and ψt(xt) ∈ Ψ. Note
that we could also extend the class Ψ to include this scaling factor, but for the
purpose here it will be unnecessary since it has no effect on the estimates of
the marginal likelihood produced. Nor will it have any effect on state estimates
which rely on the full posterior density since also here the particles produced
will be identical, and for the posterior density itself the scaling factors will
cancel out.

A slightly different approach is taken by Heng et al. (2020), where instead of
approximating ψ?t (xt) directly, they approximate V ?t (xt) = − log(ψ?t (xt)). As
working on a logarithmic scale often provides greater numerical stability, using
a distance measure based on the logarithm of the optimal sequence may be
preferable, and one possible measure incorporating this is the following

Alog =
N∑
i=1

[
Vt(xi) + log[λg(xi, yt)ψ̃t(xi)]

]2
. (3.14)

48

3.2. Approximating the optimal sequence

By minimizing (3.14) in terms of the parameters of Vt we can obtain the best
approximation V̂t. Based on this we use that ψ̂t(xt) = exp(−V̂t(xt)) to obtain
the approximation of ψ?t (xt). This can be a viable alternative to (3.13), and the
difference lies in which regions we prioritize minimizing the function. This can be
useful if there are some regions that are key for obtaining good approximations
of the functions. Changing the distance measure also allows us to decide how
to penalize errors in the approximation, and different distance measures will
penalize errors differently.

Note here that (3.13) and (3.14) could be accompanied by a penalizing term
on λ and the parameters of ψt(x). This is to avoid unreasonable solutions where
λ is close to zero and ψt(x) being diffuse and small in the region where we
evaluate the function. In our examples, we did not include such a term which
could make the approximations more robust. Instead, we manually verified the
obtained parameter values to make sure they were reasonable.

The approach for creating the approximation using the recursive definition
can be summarized by algorithm 4. This outlines the general idea that we will
follow to obtain a simple approximation to the optimal sequence, but variations
within this are possible.

Algorithm 4: Outline of the procedure for approximating the optimal
sequence

1 For time t = T we have ψ?T (xT) = g(xT , yT). To obtain the
approximation we compute the distance between a function ψT (xT)
from the class Ψ and the target g(xT , yT) according to some distance
measure on an appropriate grid. The approximation ψ̂T (xT) is the
function which minimizes this distance.

2 Using the recursive definition and (3.12) we have
ψ?t (xt) ≈ g(xt, yt)ψt(xt) which can be computed pointwise. To obtain
the approximation we compute the distance between a function
ψT−1(xT−1) from the class Ψ and the target
g(xT−1, yT−1)ψT−1(xT−1) according to some distance measure on an
appropriate grid. The approximation ψ̂T−1(xT−1) is the function
which minimizes this distance.

3 The procedure in step 2 can then be repeated for each t to create an
approximation of the optimal sequence in ψ̂1(x1), . . . , ψ̂T (xT)

Proposition 3.2.1. Given a sequence of functions ψ1(x1), . . . , ψT (xT) which
defines a twisted model. We can scale the functions ψt(xt) by real constants
c1, . . . , cT+1 with cT+1 = 1, such that ψt(xt)→ ct ·ψt(xt), ψ̃t(xt)→ ct+1ψ̃t(xt).
By scaling the functions in this manner, the particles produced will not be
changed and likelihood estimates ZNψ , as given by equation (3.7), are invariant
to this scaling.

Proof. When multiplying with the scaling factor the transition densities of the
twisted model (3.1) and (3.2) remain unchanged since the scaling factor will
simply cancel out. The same is true for the effective sample size, given by
(2.13), which determines the resampling, so this will also remain unchanged. As
a result, we only need to look at the likelihood estimate itself, since the scaling

49

3.2. Approximating the optimal sequence

has no effect on the particles produced. The likelihood estimate for a twisted
model, with the inclusion of a scaling factor, can be written as

ZNψ = c1ψ̃0

T∏
t=1

[
1
N

N∑
i=1

g(xit, yt)
ct+1ψ̃t(xit)
ctψt(xit)

]

Recalling that ψ̃T (xT) ≡ 1 and we defined cT+1 = 1 so that cT+1ψ̃T (xT) = 1.
We then get that all the remaining ct’s will cancel out as each ct will occur once
in the numerator and once in the denominator of the product. As a result given
a sequence of functions ψ that defines a twisted model, the likelihood estimate
based on this model is invariant when scaling ψt(xt) by factors c1, . . . , cT . �

Restricting the functions

As mentioned we wanted to restrict the approximations to a class Ψ. Imposing
such a restriction allows us to focus on a particular class from which we can
obtain the approximation. An additional reason for this restriction is that
we want to run the bootstrap filter on the twisted model, which is defined
by (3.1)-(3.4) based a sequence ψ̂. The main restriction here lies in being
able to efficiently sample from (3.1) and (3.2) to produce the particles in
algorithm 3. Simultaneously we also need to be able to compute (3.3) and (3.4)
pointwise for computing the weights in the algorithm and provide the likelihood
estimates. This restricts the approximation and our goal is now to obtain a
good approximation of the optimal sequence which adheres to these criteria.

When creating the approximations, we want that the resulting twisted model
is one that we are guaranteed to be able to work with when it comes to sampling.
One possible method of dealing with this, which we will take here, is to choose
each ψt from a class of functions Ψ that is conjugate to f(xt−1, xt) such that
f(xt−1, xt) and fψt (xt−1, xt) are on the same form, and the same being the
case for µ and µψ. This is beneficial as we end up with a known form that we
are able to deal with when sampling from the twisted model, assuming we are
able to sample from the original model. This is also convenient since having
everything on the same parametric form makes the calculations identical at
each time t up to the parameter values. In practice, this makes implementing
the particle filters for the twisted models much easier. Note that this is a
requirement mostly for convenience as it is possible to use a non-conjugate
setup but repeat all the calculations at each time t and make sure that sampling
from the twisted model is possible.

Here we only consider models where f(xt−1, xt) and µ(x1) are on the same
form as in the linear Gaussian state space model, but we will consider more
emission densities than the linear Gaussian model. Based on this choice of
transition densities we force each ψt(xt) to be conjugate to Gaussian densities,
and we use the same class Ψ as Guarniero, Johansen and Lee (2017) since this
is suited to the class of models we will consider. We consider the following class
Ψ

ψt(xt) = Ct +
M∑
k=1

ctkN (xt; atk, btk). (3.15)

This is one possible choice for the class Ψ which is suited for the problem at hand.
Here M ∈ N, C ∈ R+ ∪ {0} and sequences {atk}Mk=1, {btk}Mk=1, {ctk}Mk=1 of mean

50

3.2. Approximating the optimal sequence

vectors, covariance matrices and positive real constants respectively. With this
choice of ψt(xt), and the densities f and µ in the original model being Gaussian,
the densities which govern the latent variables in the twisted model will also be
Gaussian mixtures. This is because mixtures of the normal distribution have
the normal distribution as a conjugate distribution, which is why we chose the
functions on this form. Note that for this choice of ψt(xt) if Ct is non-zero it
has the benefit of making potentials gψt become more robust numerically. It
ensures that we never divide by zero, or some very small value when computing
the weights since in the bootstrap filter computing the weights include dividing
by ψt(xt). Since the Gaussian densities themselves are strictly positive, by
setting Ct > 0 we ensure that we never divide by a value smaller than Ct

when computing the weights in the twisted model. It is also possible having
Ct = 0 which makes the computations somewhat simpler. By construction of
the twisted model, particles are unlikely to occur in regions where ψt(xt) is
small since the density the particles are sampled from is proportional to the
functions twisting the model. For the models, we have considered this was not
an issue, so we used Ct = 0. Additionally, forcing Ct > 0 can lead to issues
with this approximation. Assuming ψ?t (xt)→ 0 as xt → ±∞, which is the case
for Gaussian functions, setting Ct > 0 makes it so the approximations will not
have the same values in this limit. A key difference here is if we consider the
constant Ct as a parameter of the class and obtain the best approximation with
the restriction that Ct is greater than some specific value, or if we include Ct
at after creating the approximation. Doing the latter makes the approximation
of the optimal sequence worse and can potentially influence the results.

The restrictions we use here are specific to the models we are considering.
When applying the twisted models to other non-Gaussian models it is possible
to change the restrictions of f , µ, and ψt to suit the problem at hand. However,
to restrict the approximations of each ψ?t (xt) to functions to some class Ψ such
as (3.15) is not ideal. While such restrictions have practical benefits when it
comes to sampling in the bootstrap filter, imposing such restriction on the
approximation when the exact ψ?t (xt) /∈ Ψ makes the optimal sequence become
unobtainable. An option in practice is then to restrict the functions ψt(xt) to
a class Ψ that allows efficient sampling in the bootstrap particle filter, and
simultaneously permits a good approximation of the functions ψ?t (xt). The
former of these is quite easy to ensure for instance by using conjugate functions,
but the latter can be a bit more involved. One relatively straightforward
method to deal with this is to use some very general class of functions Ψ such
as the Gaussian mixture of (3.15) as this can create a good approximation of a
large number of functions. But, for a complex class Ψ with a large number of
parameters, it can be difficult to determine the best parameters. A possibly
simpler method, that we will take later, is using knowledge of the model and
the functions ψ?t (xt) to choose a suitable class Ψ. If for instance, we know
from either experience or other sources such as experiments the general form of
ψ?t (xt) we can from this choose an appropriate class Ψ to which we restrict the
functions twisting the model.

51

3.3. Two simple examples

3.3 Two simple examples

Example 1- Likelihood estimates of a twisted model. Ideal setting

Our interest here is in investigating the effect of twisting the model when it
comes to the likelihood estimates, and to determine if there is a benefit to
introducing the twisted models. The model used here is a one-dimensional
linear Gaussian state space model so the state- and emission models are on the
form of (1.4) and (1.5). This model can be described in terms of the following
transition and emission densities

µ(x1) = N (x1; 0.85, 1)
f(xt−1, xt) = N (xt; 0.85 + 0.7xt−1, 1), for t ∈ 2, . . . , T
g(xt, yt) = N (yt; 2xt, 1))

For the data, we simulate a sequence of 50 latent variables x1:50 and
corresponding observations y1:50 based on this model. To approximate the
optimal sequence of functions ψ? we take the approach of minimizing a distance
measure, and in this case, we use least squares distance as given by (3.13), and
follow the procedure outlined in algorithm 4. Furthermore, in this example the
optimal sequence ψ? can easily be approximated by a single Gaussian density
as seen in Figure 3.1, hence the class Ψ is here Gaussian densities, which can be
parameterized by their mean and variance. To determine the best approximation,
we need to determine the optimal values for these parameters. For the grid in
this example, we manually choose a fairly wide grid for the optimization. We
want the grid used here to contain the mode of ψ?t (xt) since this corresponds to
the expected value in the parametrization of the approximation. The grid used
here consists of 250 points evenly spread between −5 and 5 for all the functions.
This grid a chosen based on the observations yt and after inspecting Figure 3.1.
The observations and the emission density g can be used to determine a region
where g(xt, yt) is relatively large as a function of xt. Based on this we chose the
grid and created an approximation. We plotted some of the targets in Figure 3.1
to verify that the functions we were approximating were located in the grid.

This subjective choice is not ideal as it would be preferable to use some
more general method of choosing the grid points. Here we ended up including
much of the tails of the Gaussian density which is unnecessary as we would like
to create the approximation near the mode. This can be avoided with a more
systematic setup.

We note that such optimization problems can be sensitive to the starting
location. To counter this, we exploit that the approximation can be
parameterized by an expected value and a variance, and providing estimates
of these can serve as good starting points for the optimization. Since we can
compute our target g(xt, yt)ψt(xt) pointwise we can compute this function for
each point on the grid and create a sample of the grid values with probability
equal to the value of the function at that point. This allows us to make Monte
Carlo estimates of the mean and variance based on this sample to serve as
starting points for the optimization. We will also exploit this to obtain starting
points when considering this Gaussian approximation in later sections.

For comparing the likelihood estimates we rely on running both the regular
bootstrap particle filter on the original and twisted model multiple times and

52

3.3. Two simple examples

4 2 0 2 4
0.00

0.01

0.02

0.03

0.04

0.05

t = 2

4 2 0 2 4
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

t = 10

4 2 0 2 4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

t = 26

4 2 0 2 4
0.00

0.02

0.04

0.06

0.08

0.10

0.12

t = 49

Figure 3.1: Graphs showing some of the functions we want to approximate as Gaussian
on the chosen grid. The graphs show the function g(xt, yt)ψt(xt) where ψt(xt) is
based on the approximation of the optimal sequence at time t + 1 (3.11). Clearly,
we can achieve good approximations using a single Gaussian function on the given
interval for the cases shown here. From this we could potentially shorten the interval
by placing the lower bound at xt = −2

looking at the variance in the likelihood estimates. For running the particle
filters we rely on algorithm 3. For the bootstrap filter likelihood estimates we
run the particle filter 100 times each time with N = 500 particles. We also run
the twisted particle filter 100 times this time with N = 125 particles. In both
cases, we resample when the effective number of samples, (2.13), is lower than
0.5N .

Since this is a linear Gaussian model, we can compute the true likelihood
Z using a Kalman approach. This can then be used as a comparison to our
estimates ZN obtained from the particle filters. Figure 3.2 shows box plots of
the ratio of likelihoods ZN

Z . Since both particle approximations are consistent,
we expect both to be close to one, and by scaling the likelihood in such a manner
it easy to see how far off the estimates are. Figure 3.2 clearly shows that the
spread of the likelihood estimates based on the twisted model is lower than
that of the untwisted model. Table 3.1 includes the standard deviation from
the samples of 100 particles where we also see that the standard deviation σ
for the 100 repetitions is much lower for the twisted model.

For this example, we see that twisting the model appropriately results in
improved likelihood estimates, in terms of lower variance, than the bootstrap
filter applied to the original model. Additionally, the twisted model obtains
better results with far fewer particles than the original model which makes it

53

3.3. Two simple examples

Figure 3.2: Boxplots of the ratio ZN/Z, that is the ratio between the estimated
likelihood and the true likelihood, for the 100 repetitions.

Results for likelihood ratio ZN/Z

Method (Number of particles) Standard deviation
of the estimates

Average
resampling count

Original model (500) 0.475 32.89± 1.12
Twisted model (125) 0.006 0± 0

Table 3.1: Simple summary of the results for the linear Gaussian model. The
leftmost column shows which model is used alongside the number of particles.
The middle column shows the standard deviation of the 100 estimates obtained
for each model. The rightmost column shows the average (± standard deviation)
number of times resampling occurred in the particle filter for each of the models.

faster to run as we need to simulate fewer particles. While this is somewhat
redundant for this model since we have the Kalman approach available, it is still
interesting to see the benefit of introducing the twisted model. These results
motivate the use of the twisted models for likelihood estimation. It is also worth
noting that the setting for this example is idealized as we are able to provide a
very good approximation, without too much effort, to the optimal sequence ψ?.

Example 2 - Poisson observations

Now we want to consider a different model than the linear Gaussian model from
the previous example. We will consider a setting where the approximations
obtained are not as good as those obtained in the linear Gaussian case and see
if introducing the twisted models still give an improvement. For this example,
we keep the linear Gaussian transitions from the previous example, but instead
of a linear Gaussian emission model we now consider observations from the
Poisson distribution. This can be described in terms of the following emission
and transition densities

µ(x1) = N (x1; 0.85, 1)
f(xt−1, xt) = N (xt; 0.85 + 0.7xt−1, 1), for t ∈ 2, . . . , T

g(xt, yt) = exp(xt)yt
yt!

exp(−exp(xt))

54

3.3. Two simple examples

4 2 0 2 4

t = 2

4 2 0 2 4

t = 26

4 2 0 2 4

t = 51

4 2 0 2 4

t = 99

Figure 3.3: The graphs show the function g(xt, yt)ψt(xt), which we want to
approximate, where ψt(xt) is based on the approximation of the optimal sequence at
time t+ 1, (3.11). From these figures it is reasonable to use a single Gaussian density
for the approximation.

This is a more complicated model since this emission model is non-linear in the
state variable, and we can no longer use the Kalman filter to obtain analytical
results. For the data in this model we simulate sequences of 100 latent variables
and observations according to the specified model.

To approximate the optimal sequence of functions ψ? we take the same
approach as in the previous example. Again we assume that each ψ?t (xt) can be
approximated as a single Gaussian density. The grid used for the optimization
step in this example consists of 1000 evenly spaced points on the interval
[−10, 10]. We created this grid in the same manner as in the previous example.
Since this is a simple example we also had the freedom to try out different
configurations to see what worked well when it comes to creating a good
approximation and convergence in the minimization. From this grid we created
an approximation and in Figure 3.3 we plotted again g(xt, yt)ψt(xt) for some
values of t. This allows us to verify that the mode of the functions lies within
the grid and that the Gaussian approximation is reasonable for the functions
we are approximating. We do not expect to obtain a perfect approximations as
the target functions, g(xt, yt)ψt(xt), are not Gaussian.

Again, we are interested in comparing the likelihood estimate and see if
there is an improvement in the likelihood estimate from introducing the twisted
model. Similar to the previous example, we run the bootstrap particle filter 100
times with the regular model and 100 times with the twisted model and compare
the results. For the bootstrap filter on the original model, we use N = 500

55

3.3. Two simple examples

Original Model Twisted Model
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Z
N
/Z

Likelihood estimates

Figure 3.4: Box plot comparing the likelihood ratio ZN/Z for twisted model
and original model with Poisson observations. For each approach, the likelihood
was computed 100 times, and we see that the twisted model provides lower
variance likelihood estimates with fewer particles. Here the likelihoods are
compared to that estimated from a bootstrap filter with 10000 particles.

particles and for the twisted model, we use N = 125 particles. In both cases,
we resample when the effective number of samples, given by equation (2.13), is
lower than 0.5N . Again we want to look at a likelihood ratio ZN/Z, and since
we cannot find the true likelihood Z using the Kalman approach we now run a
bootstrap particle filter with 10000 particles to serve as our comparison. Again,
we do this rescaling since comparing the log-likelihoods is not always the most
intuitive in terms of scale and relative difference and comparing the likelihoods
directly is not viable since these will be extremely small.

Figure 3.4 shows a box plot comparing the likelihood estimates from the
two different particle approximations. Again, we see an improvement from
introducing the twisted model, but this is not as significant as for the linear
Gaussian model. This is also shown in table 3.2, where we notice that in this
case we still resample when using the twisted model. This is an indication
that our approximation still differs from the optimal sequence ψ?. This is
what we also observe from figure 3.5 where we observe that the approximation
with the single Gaussian density does not provide a perfect approximation to
the optimal sequence of functions. We will have a closer look at using a more
flexible approximation in Chapter 4 which will be able to provide a better
approximation of the optimal sequence. Using the twisted model we still obtain
likelihood estimates with lower variance when comparing to the original model.
This is also done with the twisted model using far fewer particles reducing the
computational cost, provided we already have obtained the approximation ψ̂.
This further motivates the use of the twisted model as the likelihood estimate
obtained has lower variance than the original model.

56

3.3. Two simple examples

Results for estimating the likelihood ratio ZN/Z

Model (Number of particles) Standard deviation
of the estimates

Average
resampling count

Original model (500) 0.673 88.63± 0.59
Twisted model with

subjectively chosen grid (125) 0.265 4.33± 0.60

Table 3.2: Simple summary of the results for this example with Poisson
observations. The leftmost column shows which model is used alongside the
number of particles. The middle column shows the standard deviation of the
100 estimates obtained for each model. The rightmost column shows the average
(± standard deviation) number of times resampling occurred in the particle
filter for each of the models.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Target
Approximation

t = 1

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Target
Approximation

t = 26

4 3 2 1 0 1 2 3

Target
Approximation

t = 51

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Target
Approximation

t = 99

Figure 3.5: The graphs show the approximation and the function g(xt, yt)ψt(xt) for
different values of t. This is an extension of Figure 3.3

57

3.4. Using a fixed grid for the approximation of the optimal functions

3.4 Using a fixed grid for the approximation of the optimal
functions

A key point of introducing the twisted models is that there is some optimal
sequence, but since this sequence cannot be obtained and we want an
approximation. Methods such as the iterated auxiliary particle filter by
Guarniero, Johansen and Lee (2017) and controlled sequential Monte Carlo by
Heng et al. (2020) use iterative approaches, based on particles from a previous
iteration for determining improving the approximation of ψ?. In our examples
so far we took a different approach and discarded the iterative setup. In this
section, we will propose a setup that can be used to obtain an approximation
of the optimal sequence which does not rely on any iterative steps.

Recall that the purpose of this optimization step is to determine the best
approximation of the optimal sequence of functions given by (3.8) using functions
on the form (3.15) or some other appropriate class of functions Ψ. In Section 3.2
we describe how the recursive definition can be used to obtain an approximation
by solving a minimization problem to determine the optimal parameters within
our class. For the moment we will focus on creating the best approximation
within a given class of functions, and for the minimization step in our examples,
we used the recursive definition alongside a simple distance measure. In doing
this we compute an approximation of the target, g(xt, yt)ψ(xt), on a fixed grid of
points rather than relying on particles from a previous iteration. For the simple
models we have looked at so far, we observe that even a simple approximation
of the optimal sequence will give lower variance likelihood estimates with the
twisted model. This is without introducing the iterative setups, and it bears
consideration if the iterative setup is required for practical purposes where we
primarily seek to obtain low variance likelihood estimates. For the full iterative
setups to be beneficial in practice we would require that the iterative steps
further improves the approximation of the optimal sequence. This is to justify
the additional computational effort required from running the particle filter
several times in the iterative process rather than using a single approximation
as we did in the previous examples. Of interest is then if we can obtain a
sufficient approximation of the optimal sequence in a single step, rather than
using an iterative approach. We expect this to be useful in settings where it
may be sufficient to provide lower variance estimates by introducing the twisted
model, and we do not require the zero variance likelihood estimates obtained
by using the exact optimal sequence. When this is the case it may be sufficient
with a, possibly crude, approximation as seen in the previous examples, making
the full iterative setup redundant. Of interest is if an approximation created by
computing the target function on some appropriate grid without the iterative
approach as we did in the previous examples can be sufficient to provide an
adequate approximation of the optimal sequence, and how this best can be
done in practice.

When discarding the iterative process, i.e. only creating a single
approximation of the sequence as in the examples in Section 3.3, it is worth
considering how we create the approximation. This is because we only create a
single approximation of the sequence and we want to obtain the best possible
approximation. There are several factors here, but for now, we will focus
primarily on the grid where we compute the approximation since this is what

58

3.4. Using a fixed grid for the approximation of the optimal functions

changes compared to the iterative approaches. In the examples we considered,
we only dealt with one-dimensional functions so we were able to visualize the
functions and subjectively choose a suitable grid of points. In comparison,
Guarniero, Johansen and Lee (2017) uses the particles from a bootstrap particle
filter on the original model as the grid for the first iteration of the iterated
auxiliary particle filter. A third option, which is an idea we have not seen
anywhere else, is to construct a fixed grid rather than using the particles directly.
The point here being that we want a good approximation, and to do this we can
consider alternatives to using the particles directly. One such alternative is to
specify a grid where we compute and minimize the target based on the model
and observations directly which would allow us to approximate the optimal
sequence without running the particle filter once.

Model specific grid

Now we will discuss how we can construct a grid for the optimization step in
algorithm 4 which does not rely on the particles from some previous iteration
which is in contrast to the iterative approaches proposed in Guarniero, Johansen
and Lee (2017) and Heng et al. (2020). Ideally, we would like to construct a grid
that can be used for the approximation of the optimal sequence directly which
depends on the model and observations. Thus avoiding running a particle filter
to provide the approximation and allowing us to obtain an approximation in a
single step which will be faster than an iterative approach. The primary issue
of constructing such a model specific grid is where to locate the grid to provide
an adequate approximation of ψ?t (xt). In d dimensions a grid consisting of N
points in each dimension would consist of Nd points in total which quickly will
become computationally expensive for large values of d and we will focus on
low dimensional setting and specifically d = 1.

In the case when approximating the target with a single Gaussian density,
and we know that the target is unimodal such that we can obtain a good
approximation, we want the grid to be located near the mode of the target.
This is because it is in this region we are likely to evaluate the function and
this region contains the only defining feature of the Gaussian density, namely
the mode. Simultaneously placing the grid in regions far from the mode where
ψ?t (xt) ≈ 0 is not ideal as several choices for the parameters of the approximation
may be similar in this region but might become widely different in other regions
near the mode as all Gaussian densities go to zero far from the mode.

The target functions we want to approximate are g(xt, yt)ψ̃?t (xt), where
ψ̃?t (xt) is replaced with the approximation ψt(xt) as defined in (3.11) in practice,
and it is worth looking at where we need to evaluate these functions in the
particle filter. When using algorithm 3 we compute each ψt(xt) at the values
of the particles at time t when computing the weights, and in the definition
of twisted model, the particles are sampled from the densities defined by (3.1)
and (3.2). Hence a majority of the particles will be located in regions with
a high probability in these densities. This motivates using particles for the
later iterative steps in the iterated auxiliary particle filter for creating the
approximation as we then create the approximation where the particles are
located which also is where we evaluate the function. Further, this motivates
placing the grid near the mode of our target function ψt(xt) as we did in
the above examples as the particles will end up near this function. This is

59

3.4. Using a fixed grid for the approximation of the optimal functions

because we are likely to evaluate the function in the regions where (3.1) and
(3.2) are large, which will coincide with the regions where ψ?t (xt) is large in
most situations.

Simple setup

Here we will focus on locating a region of ψ?t (xt) that does not include the
tails, and how we can provide a suitable grid of points in this region based
on the model. We will use g(xt, yt) and the observations y1:T to determine a
region where we can approximate the functions. Assuming xt is one-dimensional
and g(xt, yt) can be reasonably approximated as a single Gaussian density, or
another unimodal function, for a fixed yt, then a simple method obtaining a
suitable grid in a region where ψ?t (xt) is large is as follows. For t = T we can
start near the mode of g(xT , yT), with yT fixed, and extending the grid outward
in both directions until a suitable stopping point is reached, and then the grid
will be evenly spaced points in this interval. One such stopping point is when
g(xT , yT) ≈ 0 or less than some predefined threshold and all the features of
the target function will be located inside the grid since we assumed the target
function was unimodal and we started near the mode. As it will be cumbersome
to determine stopping points in this manner in higher-dimensional settings, this
will primarily be suitable in lower-dimensional settings. This grid can then be
used to obtain the approximation ψ̂T (xT), by minimizing distance measures such
as (3.13) and (3.14) where the functions are computed on the grid as outlined
in algorithm 4. Using the recursive definition from proposition 3.1.1 and (3.12)
we can take a similar approach to determine a suitable grid for computing
and approximating ψ?T−1(xT−1). Using (3.11) and starting near the mode of
g(xT−1, yT−1) we can extend the grid until g(xT−1, yT−1)ψT−1(xT−1) ≈ 0 or
some threshold is reached. Computing the target function on this grid can
then be used to obtain the approximation ψ̂T−1(xT−1), and this process can be
repeated until t = 1 to obtain an approximation of the optimal sequence ψ?.
Note that there is no need starting at the mode. We do this simply because we
want to avoid the tail of ψ?t (xt) and it is unlikely that the mode of g(xt, yt) is
close to the tail of ψ?t (xt).

A summary for creating the grid for approximating a function ϕ(x) can be
found in algorithm 5. For approximating the sequence ψ? with this algorithm
we start at time T and set ϕ(xT) = g(xT , yT) to create the approximation of
ψ?T (xT), and ϕ(xt) = g(xt, yt)ψt(xt) for the remaining times. This can then
be used in conjunction with algorithm 4 to obtain the approximations of the
optimal sequence

Algorithm 5: Determine suitable grid in 1 dimension
1 Determine a suitable starting point x where ϕ(x) > ε. Here ε is some

predefined threshold
2 Set xmax = x+ κ · δ. Here δ is some predefined step size, and κ ∈ N is

chosen such that ϕ(xmax) < ε while ϕ(xmax − δ) ≥ ε.
3 Set xmin = x− κ · δ. Here δ is some predefined step size, and κ ∈ N is

chosen such that ϕ(xmin) < ε while ϕ(xmin + δ) ≥ ε.
4 The grid is then N evenly space points between xmin and xmax.

60

3.4. Using a fixed grid for the approximation of the optimal functions

8 6 4 2 0 2 4 6 8
x-values

Target
Particles

Figure 3.6: The location of the particles relative to the optimal function we
want to approximate. Here all the particles are located near one of the tails.
The target here is g(xt, yt)ψt(xt) and the particles are from a bootstrap filter
applied on the original model, which here is the Poisson model from Chapter 4.

The benefit here is that we avoid using the particle filter for approximating
the optimal sequence ψ?, and as we compute the target function and create
the approximation based on a model specific grid there will be no need for an
iterative setup. Furthermore, we create the approximation in the region we
are evaluating the function which is also where we will find all the features
of the target function, that is near its mode, for a unimodal function. If the
function is multimodal, this setup will still work as long as ϕ(x) > ε in the
region between the tails. Additionally each time we run algorithm 4 we obtain
the same approximation since the grid will be the same each time, this is in
contrast to using the particles as these will vary each time we run the bootstrap
particle filter. It is worth noting that this approach is limited to low dimensional
settings and relatively simple models as determining the grid of points used will
be cumbersome for complex models and in high dimensional settings. Further
determining a starting point can be tedious when we have a long sequence of
observations, and one possible solution to this is using a simple particle filter
as we will discuss next. Also using this approach makes it so that the grid is
not located in the tail of ψ?t (xt) which can happen when the particles from the
bootstrap particle filter are used directly. This is illustrated in Figure 3.6, and
when this is the case it can become difficult to obtain good approximations.
None of these particles provide much information about the mode of the optimal
function which makes the task of creating a good parametric approximation
that is centered around the mode difficult.

Extending the method

At times it can be difficult to determine a suitable starting point for algorithm
5 solely based on the emission density and the observations. We previously
suggested starting near the mode of g(xt, yt), however, it is not always clear
where this is located, so now we will consider a setup where we run the particle
filter once on the original model and use its output to provide the grid. The
method proposed above for determining the grid can be altered slightly, where

61

3.4. Using a fixed grid for the approximation of the optimal functions

instead of extending the grid from or near the mode of g(xt, yt) which presumably
is unknown, we can extend the grid from e.g. the filter estimates based on a
simple bootstrap filter. Alternatively, for each time t the grid can be extended
from the particle with the highest weight in the bootstrap filter, as it is likely
that this will be located close to the mode of g(xt, yt) and in a region near the
mode of ψ?t (xt) a time t. The point here is to use the filter estimates of the
states to provide a general region where ψ?t (xt) is non zero, hence the quality
of the estimates from the bootstrap filter is not of interest here, so it can be
used with few particles. This slight adjustment removes the need to manually
select a starting point for each t which in practice can become tedious.

While so far we have solely focused on approximating the optimal sequence
ψ? in a single step, other works such as the previously mentioned Heng et al.
(2020) and Guarniero, Johansen and Lee (2017) take an iterative approach.
The latter of these use the particles from the bootstrap filter directly when
creating the first approximation of the optimal sequence. We have proposed a
slightly different method than using the particles, where rather than minimizing
a distance measure with the particles as support, we create a suitable grid
based on the model and the data to perform the minimization and create
the approximation as in algorithm 5. Our motivation for taking a different
approach is that we saw in the examples in Section 3.3 that we could obtain good
approximation with simpler methods and these approximations were sufficient
for providing estimates of the marginal likelihood with low variance.

The iterative approach can still be used in conjunction with our setup, and
our proposed setup for creating the approximation can be extended into for
instance the iterated auxiliary particle filter from Guarniero, Johansen and
Lee (2017). Starting with our proposed setup for approximating the optimal
sequence ψ?, we can extend this with the iterative approach from Guarniero,
Johansen and Lee (2017) and use the particles from the twisted model to
improve the approximation of the optimal sequence. This allows us to obtain
any benefit from the iterative approach while simultaneously making the first
step more robust.

62

CHAPTER 4

Experimental results

4.1 Topics for numerical experiments

The previous examples, in Section 3.3, showed that introducing the twisted
model can potentially reduce the variance of the marginal likelihood estimate
obtain from the bootstrap filter. Now we are interested in a more detailed ana-
lysis. There are several possible approaches for creating these approximations,
and we proposed a new and very simple setup which in practice is easier to use
to create the approximation than the iterative methods. In this chapter, we
are interested in exploring how well this simple setup performs and if it can
be used to create a good approximation of the sequence ψ? with low variance
estimates of the marginal likelihood on simulated data. Of interest is if our
simple method can be used instead of a more complex iterative setup to create
approximations of the sequence ψ? for simple models. In this setting, we refer
to a good approximation as an approximation that reduces the variance in the
estimates of the marginal likelihood.

In addition to variance reduction, we are interested in investigating other
properties with these twisted models, including the importance of flexibility
in the approximation, and other benefits of the twisted models in practice.
In this context, we consider flexibility in the sense that we can obtain good
approximations of a larger number of functions, and this is done by considering
a larger class of functions for the approximation. Note that this class still needs
to be somewhat limited to avoid issues with overfitting. We expect that when
selecting an approximation from a class Ψ that there is a limit to how good
this approximation can become within the class. Improving the flexibility will
be key in order to obtain better approximations of the optimal sequence for
several models. In the process, we also aim to investigate other key factors and
gain experience working with these twisted models to determine what works
and which pitfalls to avoid.

In Section 4.5 we will have a look at how the marginal likelihood estimates
from a twisted model can be used in an MCMC setup akin to what was done
in Section 2.5. In Section 4.6 we will focus on how an approximation of the
sequence ψ? can be used to obtain estimates of the states. In particular, we will
see how we can obtain high-quality smoothing estimates by sampling directly
from the smoothing posterior in a different manner to the approaches discussed
in Section 2.4.

For all the particle filters in this chapter we use algorithm 3 and resample

63

4.2. Experiment setups

when Neff < 0.5N unless something else is stated. For comparing the different
models our main criterion will be the variance of the marginal likelihood
estimates. In addition to the variance of the estimates, we will also look at how
often the twisted model resamples and the effective number of samples. This
can give an indication of whether we have a good approximation of the optimal
sequence.

4.2 Experiment setups

We will compare several different methods for creating approximations of
the sequence ψ?, and here we will go through how we obtain each of the
approximations we will use in Section 4.3. From Section 3.3 we already have
one simple method for creating the approximations, and we will also consider
the bootstrap particle filter with the original model. Here we will consider a
few more approximations of the optimal sequence. In common for each of the
approximations is that we use algorithm 4, but within this there is room for
variations. The main variations we consider are

• The grid used in the minimization step to obtain the approximation.
The approximations ψ̂org, ψ̂log, and ψ̂mixture use a fixed grid following
algorithm 5 from Section 3.4. The remaining approximations ψ̂particles,
ψ̂it1, and ψ̂it2 uses the particles from a bootstrap filter.

• The distance measure used to determine the best approximation of each
function, and we consider two alternatives. The approximations ψ̂org,
ψ̂particles, ψ̂it1, ψ̂it2, and ψ̂mixture use the square distance from (3.13).
The approximation ψ̂log uses the square of the difference on log scale
given by (3.14).

• The class to which we restrict the functions. We consider two different
classes for the approximations, in particular we use either a single Gaussian
density or a Gaussian mixture with two components. The approximations
ψ̂org, ψ̂particles, ψ̂it1, ψ̂it2, and ψ̂log uses the single Gaussian density. The
approximation ψ̂mixture use the Gaussian mixture.

• The iterative steps. We consider if there is a benefit in introducing the
iterative steps. The approximations ψ̂it1 and ψ̂it2 uses the particles from
a twisted model in an iterative fashion in the same manner as Guarniero,
Johansen and Lee (2017). Thus, obtaining the approximations requires
that we create an approximation of the optimal sequence more than once.
The approximations ψ̂org, ψ̂particles, ψ̂log, and ψ̂mixture does not contain
this iterative step.

These are the main variations between how we create the approximations we
will consider in Section 4.3. For the approximations of the optimal sequence in
Section 4.4, Section 4.5, and Section 4.6 we will not consider all these variations
and primarily focus on the approach taken for ψ̂org and ψ̂mixture. One reason
for this is that in our preliminary experiments we found that using the particles
directly from the bootstrap filter on the original model was not always ideal for
creating the approximations. We will go into more detail on some of the issues

64

4.2. Experiment setups

we encountered when describing how we obtained the approximation ψ̂particles,
but now we will have a closer look at how we create the specific approximations.

First we will look at the approximation ψ̂org, which comes from simple setup
we proposed in Section 3.4. For this approximations we use a single Gaussian
density as the approximation which is on the form

ψt(xt) = N (xt;µ, σ2). (4.1)

To obtain the approximation of the optimal sequence we will follow algorithm
4. For the distance measure we use (3.13), and for the grid where we create the
approximations we will use algorithm 5 where we set ε = 10−3 and δ = 0.25 to
create a grid consisting of 250 points. Additionally we set ϕ(xt) = g(xt, yt)ψt(xt)
which is the right-hand side from (3.12). Here ψt(xt) is the approximation of
ψ̃t(xt) from (3.11). For a starting point we run the bootstrap filter once with
100 particles, and use the particle with the highest weight at time t as the
starting point for ψ̂t(xt). For obtaining starting points for the minimization,
we exploit that we can compute g(xt, yt)ψt(xt) which the right-hand side of
(3.12) pointwise on the grid. Using this we can create simple Monte Carlo
estimates of the expected value and variance of ψ?t (xt) ≈ g(xt, yt)ψt(xt) which
we can use as starting points for the minimization. This setup provides the
approximation ψ̂org, and we will take the same approach for providing most
of the other approximations with the same settings in the algorithms unless
otherwise is stated.

We want to compare this with using the particles directly as the grid points,
and this is ψ̂particles. Here we still want approximations of the optimal functions
on the form (4.1). To obtain the approximation of the optimal sequence we will
follow algorithm 4. For the distance measure, we use (3.13), and for the grid,
we run the bootstrap particle filter with 500 particles and use the particles as
the gridpoints. However, for some times t with this model, we encountered the
issue present in Figure 3.6, where all the particles are located in the tails of
the function we aim to approximate. This makes it difficult to obtain sensible
starting points for the approximation which is parametrized by an expected
value and a variance. Thus we use the same starting points as for ψ̂org. These
are simple to obtain, and since we are still creating an approximation of the
same function, it is reasonable to assume that these will be suitable.

Even with this inclusion, we are unable to obtain good approximations
for every time t with the particles directly using the minimization setup we
employ. Although steps can be taken to make the minimization more robust
which could allow for the particles to be used directly, we instead use the same
approach as for ψ̂org at these times. That is, we use a fixed grid to provide the
approximation, and we do not use the particles at these times. This occurred at
3 separate times and brings a major issue with solely using the particles to light.
Specifically, the particles are not always suited for creating the approximations.
While it can be possible to make minimization more robust, e.g. by adding
a penalization term for the parameters, it gives merit to using a simpler grid
where the same issues are not encountered. With this setup, we get the sequence
ψ̂particles which also is an approximation to the optimal sequence.

We also want to discuss how changing the distance measure influences the
approximations. In particular, we want to use (3.14) as the distance measure,
which works on a log scale. To do this we create the approximation ψ̂log by

65

4.2. Experiment setups

repeating the process taken to obtain ψ̂org, but changing the distance measure
to (3.14).

Guarniero, Johansen and Lee (2017) propose an iterative method creating
the approximation of the optimal sequence. This is done by using the particles
from the bootstrap filter run on a twisted model as the grid points when creating
the approximations. Of interest is seeing if this can improve the approximation
within a class Ψ, which in this case is functions on the form (4.1). To do this we
start with running the bootstrap particle filter on the twisted model based on
ψ̂org with 500 particles which give the gridpoints. To obtain the approximation
we process for obtaining ψ̂org but changing the grid points to the particles from
the twisted model. This gives the approximation ψ̂it1. Of interest is also using
multiple iterative steps, hence we run the bootstrap particle filter on the twisted
model based on ψ̂it1 with 500 particles to provide a new set of gridpoints. Using
the same process taken for obtaining ψ̂org, we obtain the approximation ψ̂it2
by replacing the grid for the minimization.

All the approximations we have considered so far have been on the form
(4.1). We now want to expand this class and obtain the approximation ψ̂mixture.
In particular, we want approximations on the following form

ψt(xt) = c1N (xt, µ1, σ
2
1) + (1− c1)N (xt, µ2, σ

2
2). (4.2)

Expanding the class to functions on the form (4.2) will allow us to obtain
good approximations of a larger number of functions. However, the process of
obtaining the approximations is also more involved, especially if we want to
use the simple setup we proposed for creating the approximation. Under the
assumption that each g(xt, yt)ψt(xt) > ε between the tails or is unimodal we can
still use our simple setup to provide the approximation. This is because we want
to determine a region where g(xt, yt)ψt(xt) > ε. To verify that this assumption
holds, we take a straightforward approach where we create the approximations
and look at the resulting function g(xt, yt)ψt(xt). For this example, we were
able to verify that the assumption holds and we used the same setup as for ψ̂org
to provide the approximation up to the starting points for the minimization.
Since Gaussian mixtures on this form are not unique up to a set of parameters,
i.e. multiple different combinations of parameters give the same function, there
are multiple minima in this minimization problem. What we found to work
well as starting points here was giving one mode the parameters obtained when
using a single Gaussian density as the approximation and treating the other as
a correction term. This gave the approximation ψ̂mixture.

With each of the methods for obtaining an approximation of ψ?, we expect
to see little variation in the approximation if the process is repeated since
the approximations are of the same function. We also experienced this when
working with these models, and when creating several approximations of the
optimal sequence with the same method, the resulting approximations were
quite similar. This was also the case when using the particles for the grid. For
this reason, we only create one approximation ψ̂ with each method, and to
compare the approximations run the twisted model several times based on each
of the approximations.

For comparing the different methods, we will primarily consider two points.
First, we consider the standard deviation of the marginal likelihood estimates.
We do this by creating several estimates of the marginal likelihood with the

66

4.3. Model and results

Approximations of ψ?

Approximation Class Grid and Distance measure

ψ̂org
Gaussian
Density

Algorithm 5 with ε = 10−3 δ = 0.25
ϕ(xt) = g(xt, yt)ψt(xt)∑N

i=1

[
ψt(xi)− λg(xi, yt)ψ̃t(xi)

]2
ψ̂particles

Gaussian
Density

Particles from bootstrap
filter (see additional notes above)∑N
i=1

[
ψt(xi)− λg(xi, yt)ψ̃t(xi)

]2
ψ̂log

Gaussian
Density

Algorithm 5 with ε = 10−3 δ = 0.25
ϕ(xt) = g(xt, yt)ψt(xt)∑N

i=1

[
Vt(xi) + log[λg(xi, yt)ψ̃t(xi)]

]2
ψ̂it1

Gaussian
Density

Particles from bootstrap filter
with twisted model based on ψ̂org∑N

i=1

[
ψt(xi)− λg(xi, yt)ψ̃t(xi)

]2
ψ̂it2

Gaussian
Density

Particles from bootstrap filter
with twisted model based on ψ̂it1∑N

i=1

[
ψt(xi)− λg(xi, yt)ψ̃t(xi)

]2
ψ̂mixture

Gaussian
Mixture

Algorithm 5 with ε = 10−3 δ = 0.25
ϕ(xt) = g(xt, yt)ψt(xt)∑N

i=1

[
ψt(xi)− λg(xi, yt)ψ̃t(xi)

]2
Table 4.1: List of the different approximation of ψ?, see previous paragraphs
for further details.

twisted models obtained from the different methods and computing the standard
deviation of the estimates obtained. This allows us to determine if we have
been successful when it comes to variance reduction, which was the motivation
for introducing the twisted models. Additionally, we have the resampling count
of the different methods. For the exact optimal sequence, the bootstrap filter
should never resample with the twisted model, and with a good approximation,
we expect to see little resampling in the twisted model. In relation to the
resampling, we can also look at the effective number of samples, and for a good
approximation, we expect this to be close to the number of particles used in
the filter and remain constant.

4.3 Model and results

Here we will consider a state space model where the state transitions are linear
and Gaussian while the emissions are Poisson distributed. This is the same
model structure as in one of the previous examples in Section 3.3 where we
saw an improvement by introducing the twisted model. This model can be
described as follows

µ(x1) = N (x1; 0.85, 1)

67

4.3. Model and results

f(xt−1, xt) = N (xt; 0.85 + 0.7xt−1, 1), for t ∈ 2, . . . , T

g(xt, yt) = exp(xt)yt
yt!

exp(−exp(xt)).

We will also use the same sequence of simulated observations as in Section 3.3.
This allows us to directly compare the results here to those obtained earlier.
Again we will look at the ratio ZN/Z, where Z is the likelihood estimate
based on the same particle filter with 10000 particles as used in the previous
example in Section 3.3. The twisted models we consider will be based on the
approximations described in Section 4.2.

Experiment 1 - Systematically laying out the grid

We now want to see how our approach with systematically laying out the grid
with the method from Section 3.4 performs, and compare the results here with
those from the example in Section 3.3. Here we are interested in the twisted
models given by the sequences ψ̂org and ψ̂particles. For the comparison, we
have used N = 500 particles and resample when Neff < 0.5N in the bootstrap
filter for the original model. For all the twisted models we have used N = 125
particles and again resampling when Neff < 0.5N . To provide a comparison we
run all the particle filters 100 times for each model and again look at the ratio
ZN/Z.

Results

Figure 4.1 shows boxplots comparing the 100 likelihood estimates for the
different approaches, and Table 4.2 provides a summary of the results. Again we
see that the twisted model improves the likelihood estimates when we provide
an adequate approximation of the optimal sequence even with far fewer particles.
For this example, all three approaches for creating the approximation provide
similar results. Additionally, looking at parameters in the approximations
directly (not shown here) we see that these are very similar. The difference
between the parameters giving the expected value of the functions in ψ̂org
and ψ̂particles are on an order of magnitude 10−2 to 10−5 and the parameters
themselves are on an order of magnitude around 100 to 101. This is a clear
indication that all the approximations are quite similar. The same is true when
comparing ψ̂org and the sequence from the subjectively chosen grid where the
differences in the parameters are on an order of magnitude 10−2 to 10−8. Since
all the twisted models obtained are similar, we also expect that the results
produced are similar which is what we observe.

With a similar standard deviation of all 100 estimates of the three twisted
models, it is difficult to assert that one method is better than the others. All
the twisted models provide lower variance estimates of the marginal likelihood
than the original model and can in practice be good alternatives to using the
original model directly.

68

4.3. Model and results

(a) (b) (c) (d)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Z

N
/Z

Likelihood estimates

Figure 4.1: Boxplots of the 100 estimates of the likelihood ratio ZN/Z based
the different models, with approximations of the optimal sequence based on
(3.13). Here (a) is bootstrap particle filter applied while the others are based
on twisted models where the optimal sequence has been approximated using
different grids. The different grids are (b) a subjectively chosen grid (same as
in Section 3.3), (c) ψ̂particles, (d) is based on ψ̂org

Results for estimating the likelihood ratio ZN/Z

Model (Number of particles) Standard deviation
of the estimates

Average
resampling count

Original model (500) 0.673 88.63± 0.59
Twisted model with

subjectively chosen grid (125) 0.265 4.33± 0.60

Twisted model with
ψ̂particles (125)

0.242 3.19± 0.75

Twisted model with
ψ̂org (125) 0.269 4.54± 0.57

Table 4.2: Summary of the likelihood estimates when using the distance measure
(3.13) with different grids for providing the approximations of the optimal
sequence. The leftmost column shows which model is used alongside the number
of particles. The middle column shows the standard deviation of the 100
estimates of the ratio ZN/Z obtained for each model. The rightmost column
shows the average (± standard deviation) number of times resampling occurred
in the particle filter for each of the models.

69

4.3. Model and results

Experiment 2 - Changing distance measure

We can also consider using a different distance measure for determining the
best approximation within the class Ψ. Of interest here is the sequences ψ̂org
and ψ̂log

We can compare the results based on ψ̂org with those based on ψ̂log. Again,
we will run the particle filter on the twisted model 100 times to provide estimates
we can use for comparison and use the same rules for resampling in the model.
That is for each particle filter with the twisted model we use N = 125 particles
and resample when Neff < 0.5N .

Results

Figure 4.2 shows boxplots comparing the likelihood estimates based on ψ̂org and
ψ̂log, and a summary of the results can be found in Table 4.3. For this model
it appears that using ψ̂org provides slightly lower variance likelihood estimates
than using ψ̂log. In addition, using ψ̂log gives a slightly higher resample rate,
but these differences are minor and again the twisted models outperform the
original model even with far fewer particles. Again the difference in the results
can also come from only creating 100 estimates of the marginal likelihood, and
from the boxplot, we observe that there are a couple of outliers with ψ̂log which
increases the variance.

(a) (b) (c)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Z
N
/Z

Likelihood estimates

Figure 4.2: Boxplots of the 100 estimates of the likelihood ratio ZN/Z based
the different models, with approximations of the optimal sequence based on the
distance measures (3.13) and (3.14). Here (a) is the bootstrap filter applied on
the original model, (b) twisted model based on ψ̂org, and (c) twisted model
based on ψ̂log

.

70

4.3. Model and results

Results for estimating the likelihood ratio ZN/Z

Model (Number of particles) Standard deviation
of the estimates

Average
resampling count

Original model (500) 0.673 88.63± 0.59
Twisted model with

ψ̂org (125) 0.269 4.54± 0.57

Twisted model with
ψ̂log (125) 0.272 5.80± 0.66

Table 4.3: Summary of the likelihood estimates when using the approximations
ψ̂org and ψ̂log. The leftmost column shows which model is used alongside the
number of particles. The middle column shows the standard deviation of the 100
estimates of the ratio ZN/Z obtained for each model. The rightmost column
shows the average (± standard deviation) number of times resampling occurred
in the particle filter for each of the models.

Experiment 3 - Iterative setup

Now we will have a look at the effect of the iterative procedure, and if using
the particles from a twisted model can provide an even better approximation of
the optimal sequence. When estimating the ratio ZN/Z all the twisted models
were quite similar, so we expect that expanding to an iterative setup starting
from any twisted models we have considered so far will provide similar results.
Here we are interested in the sequences ψ̂it1, ψ̂it2, and ψ̂org

For comparing the twisted models based on ψ̂it1 and ψ̂it2 we take the same
approach as we did for the previous models by creating 100 estimates of the
marginal likelihood using algorithm 3. Again we use N = 125 particles in the
bootstrap filter with the twisted models and resample when Neff < 0.5N .

Results

We already know that the twisted model performs better than the original
model, and here we are primarily interested in the effect of including an iterative
step. Figure 4.3 shows boxplots of the 100 marginal likelihood ratio estimates
from the different models, and from this figure, we get an indication that using
the iterative approach may provide a slight improvement. This is shown further
in Table 4.4 where both the standard deviation of the marginal likelihood the
average resampling count is lower when we use the iterative approach. The
improvement seen by introducing the iterative steps is smaller than what we
observed when going from the original model to the first twisted models. Since
creating the iterative approximation is more expensive than just the single
approximation such as ψ̂org, it is worth considering the benefit of introducing
the iterative procedure.

71

4.3. Model and results

(a) (b) (c)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Z
N
/Z

Likelihood estimates

Figure 4.3: Boxplots of the 100 estimates of the marginal likelihood ratio ZN/Z
based on different twisted models. Here (a) is ψ̂org, (b) is ψ̂it1 and (c) is ψ̂it2

Results for estimating the likelihood ratio ZN/Z

Model (Number of particles) Standard deviation
of the estimates

Average
resampling count

Twisted model with
ψ̂org (125) 0.269 4.54± 0.57

Twisted model with
ψ̂it1 (125) 0.194 2.81± 0.56

Twisted model with
ψ̂it2 (125) 0.222 2.97± 0.60

Table 4.4: Summary of the likelihood estimates when using the approximations
ψ̂org and the iterative approximations. The leftmost column shows which
model is used alongside the number of particles. The middle column shows
the standard deviation of the 100 estimates of the ratio ZN/Z obtained for
each model. The rightmost column shows the average (± standard deviation)
number of times resampling occurred in the particle filter for each of the models.

Experiment 4 - Flexibility of the approximation

Having so far focused solely on an approximation based on a single Gaussian
density, we now want to employ a more flexible approximation that should
admit better approximations of the functions in the optimal sequence. Here we
are interested in the sequences ψ̂org, ψ̂it1, and ψ̂mixture, where the last one is
based on an extended class using two components in the Gaussian mixture.

For comparing the methods we still use N = 125 particles in the bootstrap
filter for the twisted models, and resample when Neff < 0.5N .

Results

Figure 4.4 shows boxplots of the estimates from the different approaches. Here
we see that using a more flexible approximation gives the lowest variance

72

4.3. Model and results

Figure 4.4: Boxplots of the 100 estimates of the likelihood ratio ZN/Z based
on different approximation of the optimal sequence. Here (a) is based on ψ̂org,
(b) is based on ψ̂it1 and (c) is based on ψ̂mixture

estimates of the marginal likelihood of all the methods we considered. This
is also made clear by table 4.5 which shows some of the numerical results.
We observe a significant improvement in the variance estimates obtained by
expanding the class Ψ, giving a better approximation in a single step than
approximation obtained with the iterative setup. It is not surprising that
expanding the class permits a better approximation. The expanded class (4.2)
contains good approximations of a larger class of functions than the single
Gaussian density. However, since the particle filter still resamples for this
twisted model there is a potential for further improvement, either within the
current class or by expanding the class even further. This example makes it clear
that there is a benefit in expanding the class to improve the approximations.

73

4.3. Model and results

Results for estimating the likelihood ratio ZN/Z

Model (Number of particles) Standard deviation
of the estimates

Average
resampling count

Twisted model with
ψ̂org (125) 0.269 4.54± 0.57

Twisted model with
ψ̂it1 (125) 0.194 2.81± 0.56

Twisted model with
ψ̂mixture (125) 0.134 1.04± 0.24

Table 4.5: Summary of the likelihood estimates when using the approximations
ψ̂org, the iterative approximation and the more flexible approximation. The
leftmost column shows which model is used alongside the number of particles.
The middle column shows the standard deviation of the 100 estimates of the
ratio ZN/Z obtained for each model. The rightmost column shows the average
(± standard deviation) number of times resampling occurred in the particle
filter for each of the models.

Summary and discussion of these results

Now we have made a significant effort to show that these twisted models
can provide lower variance estimates of the marginal likelihood than using the
original model directly, and there are several points that merit further discussion
both regarding the approach taken and the results obtained.

For the Poisson model, that we have considered here, it is clear that there
is a benefit in introducing the twisted models. We considered several methods
for approximating the optimal sequence, and each of these methods gave an
approximation ψ̂ which we used to define a twisted model. For each of the
models that we considered we created 100 estimates of the marginal likelihood.
That is for each sequence ψ̂, we estimated the marginal likelihood of the
corresponding twisted model 100 times to investigate the variance with this
particular sequence which was of interest. All the methods we considered gave
twisted models with lower variance estimates of the marginal likelihood than
the original model, with far fewer particles used in the twisted models. This
makes it clear that there is a benefit of introducing the twisted models since we
can lower the variance of the likelihood estimates which is what we set out to
do when introducing the twisted models. The twisted models are also faster in
terms of computational time for obtaining low variance estimates since we can
use fewer particles, provided we can obtain a sufficiently good approximation of
ψ? in a reasonable time.

For comparing the different setups we based our conclusions on a single
approximation of ψ? for each method. This is because when working with these
examples we noticed that creating several approximations would be somewhat
superfluous since the parameters in each approximation would be almost
identical. Thus if we were to base the estimates on different approximations
from the same method, there would be little change in the results since the
twisted models would remain virtually unchanged. We also observed this when
using the particles as the gridpoints for the approximations. To compare the
different models and approximations ψ̂ we primarily used the variance of the

74

4.3. Model and results

marginal likelihood estimates. This is because we introduced the twisted model
to obtain estimates of the marginal likelihood with lower variance than those
from the original model, hence it is a natural measure to see if we have been
successful.

One method for comparing the different approaches that we are yet to discuss
in detail is the effective number of samples, Neff, as defined in (2.13). While
this is directly related to the resampling rate which we observed was smaller for
all the twisted models we considered, we can also get some information directly
from the effective number of samples. When we have a twisted model based on
a good approximation of the optimal sequence, then the effective number of
samples in the bootstrap filter should stay approximately constant and be close
to the actual number of particles. This is because for a good approximation all
the importance weights will be similar by the construction of the twisted model.
In particular, we create the approximations such that ψ̂t(xt) ≈ g(xt, yt)ψt(xt)
which makes the weights of the twisted model given by (3.3) and (3.4) similar
for a good approximation. Figure 4.5 shows the effective number of samples
in the original model and three of the twisted models we considered. For the
twisted models, Neff being constant or slowly decreasing is an indication that
we have a good approximation of the optimal sequence at this time. Observing
sudden drops is an indication that we have a poor approximation which can
be improved and jumps upwards, are a result of resampling. Using the Neff
in such a manner allows us to determine where we should focus if we want to
improve the approximation further. Looking at t = 63, it appears that the
approximations are poor, and there is potential for improvement. The reason
for this may be that at t = 63 we have y63 = 0 which makes ψ?63(x63) difficult
to approximate within our chosen class due the shape of g(x63, y63) which the
optimal function at this time is proportional to. Hence, in the case of the
Poisson model considered here, it appears that using an approximation on the
form (4.2) is not sufficient, and there is potential for further improvements.
Using the effective number of samples in such a manner allows us to diagnose
which function approximations are good and which requires further attention
in order to obtain a good approximation of the entire optimal sequence ψ?.

As an additional note when looking at the effective number of samples for
the good approximation, especially ψ̂mixture, we note that the effective number
of samples mostly remains constant. The times where we observe drops it is
likely due to a poor approximation, and we see an increase when we resample.
If the goal is to keep the effective number of samples high at all times it can
be beneficial to be relatively liberal in how often resampling is done. This is
because with a moderate resampling rate it is possible that we never resample
but remain with a relatively low effective number of samples for a longer period
of time since it will be slowly decreasing, which is seen for ψ̂mixture. Hence a
possible situation is where the effective number of samples is around 0.6N for a
long period of time which is not low enough to resample but could be increased
by resampling.

One limiting factor mentioned in Section 3.2 is the restriction of the class of
functions for the approximation. When choosing an approximation from a class
Ψ we are limited to functions within this class, and if the optimal ψ?t (xt) is not
in this class we cannot obtain optimal sequence exactly and there is a limit to
how good of an approximation we can obtain. Hence we want a flexible class to
make sure that functions from the class Ψ will provide a good approximation

75

4.3. Model and results

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Original model

0 20 40 60 80 100

40

60

80

100

120

ψ̂org

0 20 40 60 80 100

60

70

80

90

100

110

120

ψ̂iterative

0 20 40 60 80 100
40

60

80

100

120

ψ̂mixture

Figure 4.5: Comparison of the effective number of samples in the different models
when the bootstrap filter is applied. For the original, untwisted model we have used
500 particles in the bootstrap filter, and we resample when Neff < 250. For the twisted
models we have used 125 particles and resample when Neff < 62.5

to each of the functions in the sequence ψ?.
For the first approximations, we used a relatively simple parametric

approximation of the optimal sequence, namely a single Gaussian density, and
yet we were still able to improve the marginal likelihood estimates by introducing
the twisted model. This simple parametric approximation did not provide the
exact optimal sequence in part due to lack of flexibility and using a more
complex parametric approximation provided an even better approximation of
the optimal sequence. Introducing the iterative step on the simple approximation
ψ̂org gave a better approximation at the points where Neff dropped, as seen in
Figure 4.5. This was still done within the same simple class Ψ and indicates
that there is some merit in using the iterative setup to further improve the
approximation within the class. It is worth noting that the variance reduction
from the iterative step is relatively small especially when comparing to the
reduction from introducing the twisted models in the first place. Since we also
are able to obtain variance reduction from increasing the number of particles,
introducing the iterative step should give lower variance than reducing the
number of particles to be viable. The variance of Monte Carlo estimates is
proportional to 1

N−1 , where N is the number of samples(Givens and Hoeting,
2013). Thus, if including a new iteration takes as long as doubling the number
of particles, the variance of the estimates should be reduced by more than
half for the additional iteration to be viable. This also brings up the question
of why the iterative setup gives a better approximation since we are creating

76

4.3. Model and results

approximations of the same function based on similar criteria. The key here
is that the criteria are similar but not identical as the functions are evaluated
at different points when creating the approximations. Of interest would then
be to mimic the effect of using the particles from a twisted model for creating
the approximation within the simple setup we proposed. This can be done by
changing how the grid is laid out or by changing the distance measure used,
and then we would be able to obtain the same approximations but this time in
a single step.

While this simple parametric structure that was chosen provided an adequate
approximation of the optimal sequence which reduced the variance of the
marginal likelihood estimates in this Poisson model, the target functions we
are approximating are themselves not Gaussian densities, hence there is still
potential for improvement. This is seen in Figure 3.5 where some of the functions
we are approximating are slightly skewed and not Gaussian, hence a Gaussian
approximation will not be perfect. As a result of this, we also considered a more
flexible class that is able to provide good approximations of more functions.

When using the more flexible approximation on the form (4.2), we observe
that the variance of the marginal likelihood estimates based on this twisted
model is smaller than those obtained from all the twisted models using a single
Gaussian density since the approximation of the optimal sequence is better.
This is shown by the boxplots in Figure 4.4, and in our example using a flexible
approximation can give a larger improvement than using an iterative procedure.
This is expected since there is a limit to the quality of the approximation that
can be obtained within a class Ψ and expanding that class can provide a better
approximation. It is possible that we were close to the limit of how good of an
approximation we can obtain with the single Gaussian density with a single
iterative step and making the approximation more flexible immediately allowed
us to obtain a better approximation. It still bears consideration if using a more
complex parametric approximation is necessary for practical use since using a
more flexible approximation makes determining the best approximation within
the class Ψ more complicated and has a greater computational cost.

In terms of the computational cost, using a twisted model is often preferable
to the original model. The particle filter itself is faster since one can use
fewer particles, but we also have to account for the time required to create the
approximations of the optimal sequence which increases the computational cost.
Our focus here has not been on the computational cost, but from our experience
working with the twisted models, we observe that at a similar computational
time the twisted models provide lower variance estimates than the original
model with the bootstrap filter when accounting for the time taken to obtain
the approximation.

To determine the best approximation we also considered, albeit briefly, using
a different distance measure for the optimization. There are several possibilities
for the distance measure including the square error of (3.13) and a logarithmic
version in (3.14) both of which we considered above, and another natural
candidate is the Kullback-Leibler divergence. While we saw little effect here,
the motivation is that different distance measures will focus on creating the best
approximation in different regions. This is similar to how using the particles
directly for the approximation allows us to focus on a particular region where
the parameters are located, changing the distance measure could be done to
obtain a similar effect. If we want a good approximation in a particular region,

77

4.4. Other factors related to twisted models

we can use a distance measure that heavily penalizes errors in this region.
For practical use, all the twisted models we have considered provided lower

variance estimates of the marginal likelihood with the bootstrap filter than the
original model, and using a crude approximation in the twisted model can be
better than not using a twisted model at all.

All the setups we considered gave approximations of the optimal sequence.
For practical use, all the twisted models would be preferable over the original
since they all provide low variance estimates of the marginal likelihood using
far fewer particles. For the end result, it matters little how the approximation
is obtained, other than that the approximation must be one we are able to work
with and is obtained in a reasonable amount of time. The iterative approaches
can be used to obtain good approximations of the optimal sequence within
a specific class Ψ and performed better than our simple setup for this model
when it comes to creating the best approximation. However, if we can obtain a
better approximation in a different manner it becomes superfluous. In practice,
it appears that flexibility in the approximation is desirable, as it is the most
flexible approximation that gives the best results in our experiments with this
model. When expanding the class is viable and gives a better approximation
than the iterative approach, the iterative approach becomes redundant. There
is an argument to be made that the iterative approach can be used on the
expanded class to improve the approximation further, however, there is again
the question of how much that can be gained by the iterative approach. For
simple models as in this example, if given the choice between using an iterative
approach in a simple class or expanding this class, it will often be better to
expand the class since this is likely to produce the best approximation.

4.4 Other factors related to twisted models

Reducing the number of particles for the twisted model

In the previous section, our focus was on creating the best approximation within
a class Ψ, but it is also natural to consider if using a good approximation
allows for greater freedom in the particle filter itself. When using the bootstrap
particle filter on the original model, increasing the number of particles will
reduce the variance of the estimate produced. The same is true for the twisted
model and we will have a look at the effect from the number of particles in
the twisted model. As we have seen when using the twisted model, we can get
lower variance estimates of the marginal likelihood with far fewer particles in
the bootstrap filter compared original model. Hence, it is natural to consider if
there is some lower limit to the number of particles we can use. If we are able
to obtain the exact optimal sequence the answer is that we only need a single
particle, but when we only have an approximation of the optimal sequence
it is not so clear. To have a closer look at this we will consider again the
Poisson model from the previous section, but this time with a shorter sequence
of observations. For this model, we know that we can obtain low variance
estimates provided we have enough particles, so it will be of interest to see how
few particles we can use here.

78

4.4. Other factors related to twisted models

Original N=50 N=10 N=2

0.5

1.0

1.5

2.0

2.5

Likelihood estimates for Poisson model

Figure 4.6: Boxplot of the 100 estimates in the Poisson model of the likelihood
ratio ZN/Z with the different numbers of particles in the bootstrap filter. We
also include the original model as a comparison where the estimates are based
on 500 particles in the bootstrap filter.

Poisson model

We consider the same model as in Section 4.3 and the approximation of the
optimal sequence is made with the same approach as ψ̂mixture, still using a
Gaussian mixture density as the approximation. This time we will simulate a
sequence with 25 observations.

To see the effect of the number of particles used we again run repeated
simulations and estimate the marginal likelihood with a different number of
particles in the bootstrap filter for the twisted model. Here we consider N = 50,
N = 10 and N = 2 particles in the bootstrap filter and resample when
Neff < 0.5N . With each of the particle configurations, we run the bootstrap
filter 100 times, to get a large number of estimates of the marginal likelihood.
Again, we consider the likelihood ratio ZN/Z, where Z is the average of the 100
likelihood estimates obtained from the bootstrap particle filter on the twisted
model with N = 50 particles. We use this as we know this value converges to
the true likelihood, and this will be much faster than running a new particle
filter with a lot of particles.

Figure 4.6 shows boxplots with comparisons of using different particles.
Clearly using fewer particles increases the variance of the estimate obtained
with the twisted model as expected. Comparing this with estimates based on
the original model we see that using few particles is still better than the original
model in this setting where we can obtain a good approximation.

For practical use, this is very beneficial as using few particles greatly reduces
the computational cost. For this example, we were able to obtain a good
approximation of the optimal sequence in terms of variance reduction in the
estimates of the marginal likelihood. Considering for instance the original
model, which is a twisted model based on a sequence of constant functions, we
would not be able to use few particles since a sequence of constant functions is
not a good approximation of the optimal sequence. Hence in settings where we

79

4.4. Other factors related to twisted models

do not have a good approximation, we also need a larger number of particles
to get low variance estimates of the marginal likelihood. This is illustrated
in the examples in Section 3.3. For both models, we used the same number
of particles in the bootstrap filters for the twisted models. For the examples
in Section 3.3, we were able to obtain a better approximation of the optimal
sequence for the linear Gaussian model compared to the Poisson model. This
resulted in a lower variance in the estimate of the marginal likelihood of the
linear Gaussian model than for the Poisson model. This clearly illustrates that
the quality of the approximation is key also for considering how many particles
are required in the particle filter.

We note here that we had relatively few observations, and this is part of
the reason we could get away with using few particles. For longer sequences
of observations the bootstrap particle filter applied on the original model,
the quality of the Monte Carlo estimates will deteriorate over time when few
particles are used (Petris, Petrone and Campagnoli, 2009). Unless we are able
to obtain the exact ψ? we will require more particles for the twisted model,
especially for longer sequences where we resample, but this increase would still
be less than if we were to use the original model.

Misspecified models and sequences

If we want to use the twisted models for parameter estimation within the PMMH
setting, which we discussed in Section 2.5, the task which took the longest
time and is arguably the limiting factor is estimating the marginal likelihood
for a set of parameters. We have discussed how even crude approximations
to the optimal sequence will provide lower variance estimates to the marginal
likelihood than the bootstrap particle filter applied on the original model, and
now we will have a closer look at how we can reduce the computational effort
in a PMMH setup.

The motivation here is that when using the twisted models in any Metropolis-
Hastings setup we would need to approximate the optimal sequence for each new
sample of the parameters. This will be tedious, and with the sampled parameters
presumably being quite similar it is a reasonable hypothesis that the optimal
sequences obtained for each sample also will be quite similar. Hence it would
save a significant amount of time if rather than creating a new approximation
ψ̂ for each sample, we could instead create a single approximation and use
this for all the samples. We will have a closer look at PMMH and twisted
models in Section 4.5, but first, we will consider this potential simplification
and determine if it is viable.

The basis for this simplification is that within a region of the parameter
space the optimal sequence is almost identical for all the parameters. This may
not always be true, but it merits consideration as it may potentially save a large
amount time and of computational effort. In relation to this, a factor to consider
here are the observations, and whether they are informative in the sense that
they provide information about the underlying state. With an informative
observation, the optimal sequences should be similar since the observations will
provide more information to the optimal sequence than the other parameters in
the state transition of the model.

To test this we will again look at a linear Gaussian model as it is easy to
work with, and we will consider two different configurations that vary in how

80

4.4. Other factors related to twisted models

informative the observations are. We do this by changing the variance of the
emission density, and here we will use the following model

µ(x1) = N (x1; a, 1)
f(xt−1, xt) = N (xt; a+ bxt−1, 1), for t ∈ 2, . . . , T
g(xt, yt) = N (yt;xt, σ2)).

We set a = 0.25 and b = 0.7. We will also consider both σ2 = 0.1 and
σ2 = 1 which determines how informative the observations are, and we will
then simulate a sequence of 25 observations and create approximations of the
optimal sequences based on these models. In each of the settings, we will
vary the parameters in the linear transitions of f and µ and compute the
marginal likelihood using a twisted model with an approximation of the optimal
sequence created based on the true parameters. That is we will estimate the
marginal likelihood for different combinations of the parameters a and b using
a twisted model based on an approximation of the optimal sequence for the
parameters a = 0.25 and b = 0.7. Since these all are linear Gaussian models,
we can compare our estimates with the Kalman approach, and to create the
approximation of the optimal sequence we will take the same approach as in
the previous examples.

Starting with σ2 = 1 we have an approximation of the optimal sequence
in ψ̂1, which we obtain in the same manner as ψ̂org. We already know from
our previous work that this will provide low variance estimates of the marginal
likelihood. Now we will change the model slightly and set µ(x1) = N (x1; a, 1)
and f(xt−1, xt) = N (xt; a+bxt−1, 1), and now we want to estimate the likelihood
of the model with different values for the parameters a and b but still use the
observations that we already have obtained. We estimate the marginal likelihood
using the twisted model defined with the sequence ψ̂1. Although this is not the
optimal sequence for this particular model our hypothesis is that this sequence
will be similar to the optimal sequence for different sets of parameters and
will provide low variance estimates of the marginal likelihood. We do this for
several combinations of parameters the results can be seen in table 4.6. Since
this is from a linear Gaussian model we can use the Kalman approach to assess
the estimates obtained, so again we look at the ratio ZN/Z where ZN are the
estimates from the twisted models each here using N = 50 particles. For a set
of parameters, we create 100 estimates and report the results.

We repeat the process for σ2 = 0.12, and create a sequence ψ̂0.1 to see if
there is an effect in how informative the observations are. The entire setup is
the same for both methods, but we change the variance of the emission density.

Although the variance likelihood estimates are larger when we are not using
an approximation of the optimal sequence for a set of parameters directly, we
still obtain low variance estimates for parameter values close to those used
in the sequence. This indicates that the optimal sequence does not change
much when altering the parameters in the transitions, and we can obtain good
estimates of the marginal likelihood, especially when considering the number of
particles used. This also demonstrates that a crude approximation can be used
to obtain low variance estimates of the marginal likelihood.

The results here also indicate how informative the observations are is having
an effect when altering the parameters as we have done here. For σ2 = 0.12,
most informative of the two settings considered, we observe less change in

81

4.4. Other factors related to twisted models

Estimates of ZN/Z with σ2 = 1

Parameter values Average value Standard
deviation

Average
log likelihood

a = 0.25 and b = 0.7 0.999 5.50 · 10−8 −54.919
a = 0.2 and b = 0.6 1.003 0.067 −55.790
a = 0.1 and b = 0.8 0.997 0.072 −54.967
a = 0 and b = 0.4 0.994 0.204 −59.727

Estimates of ZN/Z with σ2 = 0.12

Parameter values Average value Standard
deviation

Average
log likelihood

a = 0.25 and b = 0.7 0.999 1.58 · 10−9 −40.900
a = 0.2 and b = 0.6 1.001 0.011 −41.283
a = 0.1 and b = 0.8 0.999 0.012 −41.485
a = 0 and b = 0.4 0.997 0.028 −45.364

Table 4.6: Transitions are on the form µ(x1) = N (x1; a, 1) and f(xt−1, xt) =
N (xt; a+ bxt−1, 1). The observations are simulated from a model with a = 0.25
and b = 0.7. For each set of parameters we estimate the marginal likelihood
100 times.

the variance as we move away from the parameter which gave the optimal
sequence compared to the less informative σ2 = 12. This is as expected since
ψ?t (xt) ∝ g(xt, yt) and by making the observations informative we also make
g(xt, yt) narrower.

When considering a PMMH setup we need to compute the likelihood
for each new sample. Since the optimal sequence presumably is similar for
several parameters, we can use the same sequence several times rather than
approximating a new sequence for every sample which will save time Metropolis-
Hastings setup. We also note that we do get some variance in the estimates
when moving away from the parameters which gave the sequence, and one way
of dealing with this would be to divide the parameter space into several regions
and for each use a sequence ψ̂ which approximates the optimal sequence in
that region of the parameter space. Importantly the results here show that we
do not need to create an approximation of the optimal sequence for each new
set of parameters in a Metropolis-Hasting setup which will greatly reduce the
computations required.

In this example, we only considered how variations of the parameters in the
transition model affected the approximation of the optimal sequence. However,
there may also be changes in the emission model g(xt, yt), in particular for
parameter estimation settings. While we have not looked at this setting here,
it is sometimes possible to reparametrize the model such that the parameters
of interest are located in the transition model. Reparametrizing the model in
such a manner can allow us to consider how variations of the parameters in the
emission model affects the approximation of the optimal sequence through the
transition model.

82

4.5. Particle marginal Metropolis-Hastings and twisted models

4.5 Particle marginal Metropolis-Hastings and twisted
models

Using twisted models

Having shown that the twisted models can be used to obtain low variance
estimates of the marginal likelihood, we want to illustrate the benefit of the
twisted model for an application. In Section 2.5 we looked at how the marginal
likelihood was key for parameter estimations methods such as particle marginal
Metropolis-Hastings (Andrieu, Doucet and Holenstein, 2010). When considering
this method, low variance estimates of the marginal likelihood which we can
obtain using the twisted models, are important for the Metropolis-Hastings
ratio (2.20) and the accuracy of the algorithm. Using the twisted model to
provide the estimates of the marginal likelihood is here an alternative particle
approximation to the bootstrap particle filter applied on the original model,
and for a good approximation of ψ?, using the twisted model can be preferable
as we can get lower variance with fewer particles.

Particle marginal Metropolis-Hastings has a relatively high computational
cost since to provide a single sample from p(θ|y1:T) we need to compute the
likelihood based on the parameters θ. When using the twisted models, we still
have to create an approximation for each new set of parameters we sample
which increases the computational cost. We can get around this in part by
exploiting similarities in the optimal sequences ψ? that belong to different
sets of parameters. All the proposed samples in a Metropolis-Hasting setup
will be relatively similar and in Section 4.4 we saw that small changes in the
parameters had a relatively small effect on the corresponding sequence ψ?

and the variance of the likelihood estimates. This experiment was motivated
by its potential use for a Metropolis-Hasting setup where the idea is that we
can use the same sequence ψ for several parameters. Instead of creating an
approximation for each proposed sample, we can create some approximations
of the optimal sequence in different regions of the parameter space before
running the Metropolis-Hasting setup and for each proposed sample choose
an appropriate approximation depending on where in the parameter space the
proposed sample is located.

Example of parameter estimation

This can best be illustrated with an example and continue with the example
discussed in Section 2.5. We will use the same simulated set of observations
such that the methods are directly comparable. Recall that the model used is

µ(x1) = N (x1; a, 1)
f(xt−1, xt) = N (xt; a+ bxt−1, 1), for t ∈ 2, . . . , T
g(xt, yt) = N (yt;xt, 0.52))

where we set a = 0 and b = 0.7. Since this is a linear Gaussian model we
can obtain close to the exact sequence ψ? with a simple approximation, but
the result would be quite similar to using a Kalman approach directly. The
primary difference is that using the twisted model will be quite a bit slower
than a Kalman approach which arguably makes it superfluous to look at what

83

4.5. Particle marginal Metropolis-Hastings and twisted models

happens when we compute an approximation for each new set of parameters in
this setting. Instead, we will take the approach outlined above and create an
approximation of the optimal sequence in the true parameter values a = 0 and
b = 0.7, and use a twisted model based on this approximation when computing
every likelihood. I.e. for each proposed set of parameters, we will compute the
likelihood with a twisted model based on the same sequence ψ. This sequence,
ψ, used in this twisted model will be an approximation of the optimal sequence
for the true parameter values and will be used for every set of parameters we
propose. To obtain this approximation we follow the same procedure as for
ψ̂org, and use a single Gaussian density as the approximation for each of the
functions. Note that we also could divide the parameter space into several
regions and for each region create an approximation of the optimal sequence.

For the remainder of the Metropolis-Hastings algorithm, we will use the
same setup as in Section 2.5. That is, we use a Gaussian random walk proposal
centered at the previous sample with variance σ2 = 0.1252. Additionally, we use
uniform priors for both parameters that are located in the intervals (−0.5, 0.5)
and (0, 1.5) for a and b respectively. Finally, we create 1000 pairs of (a, b)
by alternating between sampling from a and b with the first 100 samples as
a burn-in, similar to what we did previously. For estimating the marginal
likelihood, we use the twisted model defined above but this time with N = 50
particles.

A visualization of the distribution can be seen in Figure 4.7, and from the
histogram, we see that the samples of both parameters are centered around
the true value. Using the mean of the samples as the parameter estimates
we get â = 0.03 and b̂ = 0.71 which is reasonable given the true parameters.
Additionally, the samples obtained here are quite similar to what we obtained
when using the Kalman approach to compute the marginal likelihood, as seen
when comparing with Figure 2.11. This is expected since we have a good
approximation of ψ? and the likelihood estimates obtained will be close to the
analytical values obtained from the Kalman approach.

This example shows that using the twisted models is a viable option for
this Metropolis-Hastings setup for state space models. Importantly using the
twisted model was faster than using the original model since we were able to
use fewer particles in the bootstrap filter, and the variance of the likelihood
estimates will also have been lower since we used the twisted model. This makes
the twisted models preferable especially when looking at the distribution of
the samples we obtain which is similar to the one obtained using the Kalman
approach in Section 2.5. We also see that for the example considered here there
was no need to create an approximation for every set of parameters we sampled.
This is worth considering for other models as well since this greatly reduces
the computational cost of the algorithm. The effect of this will vary based on
the model, especially when it comes to how informative each observation is.
The effect may also depend on the number of parameters and the size of the
parameter space we are working with. When each of the optimal functions
ψ?t (xt) depends on a larger number of parameters, the effect on the optimal
function of altering all the parameters is likely to be greater than altering two.
This is also a model specific, aspect and the number of parameters we aim to
sample will not affect all models equally. Thus in this setting, we obtained good
results with a single approximation located at the center of the distribution, and
other settings may require several approximations located in different regions

84

4.6. Smoothing with twisted models

0.4 0.2 0.0 0.2 0.4
Parameter Value for a

0

20

40

60

80

100

120

140

Oc
cu

rre
nc

es
Particle marginal Metropolis-Hasting for a

0.4 0.6 0.8 1.0 1.2
Parameter Value for b

0

20

40

60

80

100

120

140

Oc
cu

rre
nc

es

Particle marginal Metropolis-Hasting for b

0.4 0.6 0.8 1.0 1.2
Value of b

0.4

0.2

0.0

0.2

0.4

Va
lu

e
of

 a

Scatter plot of samples from PMMH based on twisted model
MH samples
True values
Estimates

Figure 4.7: Visualizing the distribution of the samples obtained from PMMH
with a twisted model for estimating the marginal likelihood.

of the parameter space.

4.6 Smoothing with twisted models

Every topic we have discussed so far regarding the twisted models has been
related to estimating the marginal likelihood, but the work we have done can
also be used to obtain estimates of the states. Filtering estimates of the states
are not easily obtainable with the twisted models, but we can use the twisted
models to obtain smoothing estimates of the states which will be the topic of
discussion for this section.

When we considered parameter estimation we used the same Metropolis-
Hastings setup in both Section 2.5 and Section 4.5. The difference between
the two lied in how we estimated the marginal likelihood while the Metropolis-
Hastings setup remained unchanged. In contrast, the smoothing approaches
here are inherently different from the methods discussed in Section 2.4 while
the end goal remains the same. First, we will briefly look at smoothing by
transforming the emission model and see how the approach we have taken
for estimating the marginal likelihood can be used for obtaining smoothing
estimates. Second, we will look at how the sequence ψ? can be used to provide
a sample from the smoothing density directly from the particle filter without

85

4.6. Smoothing with twisted models

requiring any backward pass or fixed lag approximation.

Smoothing by modification of potentials

Smoothing can be seen as an integration problem where we are interested in
obtaining Monte Carlo estimates of different expected values as these can be
expressed as integrals where the integrand is proportional to the smoothing
density itself. Recall from Chapter 3 that the smoothing density is the same
for the original and any twisted model, and given an appropriate function ϕ,
we have

E[ϕ(x1:T)|y1:T] =
∫
X

ϕ(x1:T)p(x1:T |y1:T) dx1:T

= 1
Z

∫
X

ϕ(x1:T)µ(x1)g1(x1, y1)
T∏
t=2

f(xt−1, xt)g(xt, yt) dx1:T

= 1
Z

∫
X

ϕ(x1:T)µψ(x1)gψ1 (x1, y1)
T∏
t=2

fψt (xt−1, xt)gψt (xt, yt) dx1:T .

That is, the expected values related to the smoothing densities will be the same
for both models, and ϕ(x1:T) = 1 is the special case of the marginal likelihood.
One possible method for obtaining the smoothing estimate is to simply solve
the above integral with a particle filter. This is briefly mentioned in Guarniero,
Johansen and Lee (2017), and while the sequence ψ? is not optimal for this
particular integral, a similar approach with the twisted models can be taken to
provide an estimate of the integral. We will also propose a different setup. Note
that with the simple factorization ϕ(x1:T) =

∏T
i=1 ϕi(xi) we can introduce the

potentials γt(xt) = g(xt, yt)ϕt(xt) and the integral can be written as follows

Γ =
∫
X

µ(x1)γ1(x1)
T∏
t=2

f(xt−1, xt)γt(xt) dx1:T . (4.3)

Integrals on the form (4.3) are what we exclusively dealt with in Chapter 3,
and we can easily obtain approximations of integrals on this form using particle
filters. By creating a twisted model based on the modified potentials γt for
t ∈ 1, . . . , T we can use the same idea as we used for approximating the marginal
likelihood Z when approximating the integral Γ. We can again determine an
optimal sequence ψ′ in the same manner as (3.8), but rather than this sequence
being optimal when estimating Z it will be optimal when estimating Γ.

This results in a different method for approximating smoothing expectations,
but the choice of ϕt(xt) is somewhat limited since γt(xt) must be a valid
potential. For the potential to be valid we require that each γt is bounded,
non-negative and continuous. This somewhat limits the usefulness of this
approach since e.g. ϕ(xi) = xi is not available due to the resulting potential
being negative in certain regions.

For functions ϕ which gives rise to valid potentials, this method can be
useful as we now can obtain low or in theory zero variance estimates of the
different expected values. This follows from the same reasoning which led to the
low variance estimates of the marginal likelihood in Chapter 3. This is in stark
contrast again to the methods of smoothing considered previously in two ways.

86

4.6. Smoothing with twisted models

First, the previously discussed smoothing estimates were only Monte Carlo
estimates while using the twisted models here we have equality with the optimal
sequence ψ′. Secondly, this approach only allows us to provide estimates of
expected values, though with low variance. In contrast the other methods we
considered previously provided samples from the smoothing density. This can
become quite noticeable if we want to estimate several quantities related to the
smoothing density, as a sample can easily be used to estimate several different
quantities. This somewhat limits the applicability of this method, and together
with the fact that not all functions ϕ are usable, the scope for this smoothing
method is limited to special cases.

Smoothing with ψ?

What we often want when considering the smoothing problem is a sample from
the smoothing density itself. While this can be done directly with the bootstrap
filter on the original model, this is rarely done in practice due to issues with
degeneracy and few unique particles from resampling which we discussed in
Section 2.2 and Section 2.4. To get around this issue we can make use of
the twisted model which we have shown earlier in this chapter resamples less
frequently when constructed appropriately. This can be used to sample particle
trajectories x1, . . . , xT from the smoothing density which does not suffer from
limitations related to degeneracy.

To see how this works, it will be beneficial to first look at what happens
when we use the optimal sequence ψ? from which we obtain the zero variance
estimates of the marginal likelihood and all the weights are equal. Recall
that the sequence ψ? as defined in (3.8) is equal to the backward information
filter which motivates why this approach works. At time t = 1, the twisted
model samples from a density proportional to p(x1|y1:T), and since all the
importance weights are identical we are able to obtain a sample from the exact
smoothing density at this time. For the remaining times t = 2, . . . , T it can be
shown by simple manipulations that the twisted model samples from a density
proportional to p(xt|xt−1)p(yt:T |xt) and p(xt|xt−1, yt:T). As a result, we can
obtain the full trajectory by combining the samples at each time t, and this will
be a sample from the exact smoothing density since all the importance weights
will be equal.

In practice we only obtain an approximation ψ̂ ≈ ψ?. When considering an
arbitrary approximation that results in a valid twisted model, the main result
will remain unchanged and we can still obtain a sample from the smoothing
density. This is due to the construction of the twisted model, and it is the same
reason as to why the marginal likelihood and joint density is the same in any
twisted model and the original model which we discussed in Chapter 3. As the
weights are no longer equal, when using an approximation, the sample obtained
is a weighted sample representing trajectories from the smoothing density. This
weighted sample can then be used to obtain Monte Carlo estimates of quantities
related to the smoothing density. The quality of these estimates will depend
on the number of particles used in the bootstrap filter with the twisted model
and the effective number of samples Neff as given by (2.13). When we have a
good approximation of the optimal sequence the effective number of samples
will be close to the number of particles used. Thus to quantify the quality of

87

4.6. Smoothing with twisted models

the approximation for the purposes of smoothing it is natural to consider the
effective number of samples.

The use of the twisted models for likelihood estimation and smoothing based
on ψ? are inherently different. When considering likelihood estimation, we aim
to obtain low variance estimates of the marginal likelihood which is possible
with the optimal sequence. When using ψ? for smoothing we do not obtain the
same low variance estimates, and instead, we use the optimal sequence to obtain
samples from the smoothing density which does not suffer from degeneracy.
These samples can be used to provide consistent estimates of quantities of
interest, and the twisted models give a different method for sampling from the
smoothing density.

Example - Smoothing with twisted models

Here we will illustrate how an approximation of the optimal sequence ψ? can
be used to sample directly from the smoothing density. For this example, we
will consider a linear Gaussian model such that we both have the analytical
smoothing density which can be obtained with the Kalman approach as we did
in Section 2.4 and we are able to obtain a good approximation of the optimal
sequence with the setup we considered in Chapter 3. We will consider the
following model

µ(x1) = N (x1; 0.25, 1)
f(xt−1, xt) = N (xt; 0.25 + 0.7xt−1, 1), for t ∈ 2, . . . , T
g(xt, yt) = N (yt;xt, 1).

Here we simulate a sequence of 25 latent variables and observations, and we
will look at three different approaches for smoothing. First, we have the
Kalman approach which we know will provide analytical results which here
serves as a comparison. Additionally, we will use a twisted model with a good
approximation of ψ? such that we can run the bootstrap particle filter without
resampling to sample from the smoothing density. To obtain the sequence
which defines this twisted model we will take the same approach as we did
in the first examples in this chapter and use a single Gaussian density as the
approximation. I.e. we follow the same procedure as for ψ̂org. This will provide
sample trajectories that we can use to obtain Monte Carlo estimates that will
not have issues with degeneracy. Finally, we want to use a twisted model with
a poor approximation of the optimal sequence. To obtain a poor approximation
we start with the sequence of functions which are the good approximations,
where each is parameterized by an expected value and a variance, and we simply
multiply the variance of all the functions in the sequence by 0.5 thus obtaining
a poor approximation. For both the particle approximations we will use an
implementation of the bootstrap particle filter with multinomial resampling
which allows us to easily resample the entire trajectory, and we resample when
Neff < 0.5N where N is the number of particles used.

For comparing the methods, we run the Kalman smoother once to obtain
the analytical values for the expected value and variance of the smoothing
density which can be used as a comparison. For the particle approximations,
we use 500 particles for the good approximation and 1000 particles for the poor
approximation. For comparing the methods we primarily look at the expected

88

4.6. Smoothing with twisted models

0 5 10 15 20 25
Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

St
at

e
es

tim
at

es

Comparison of smoothing estimates
Kalman
Good approximation of
Poor approximation of

Figure 4.8: The expected value of the smoothing density computed analytically
with the Kalman smoother and compared with particle estimates.

value of the smoothing density since this is a common estimate of the state, and
was our focus earlier in Section 2.4. Figure 4.8 shows Monte Carlo estimates of
the expected value of the smoothing density from the particle approximations
alongside the analytical value from the Kalman approach. We see here that
using a good approximation of the optimal sequence requires fewer particles to
obtain a good estimate of the expected value of the smoothing density. This
is expected since when the twisted model is based on the poor approximation
it resamples and we are left with fewer unique particles especially at the early
times where we see the largest discrepancy in the estimates from the twisted
models. At the later times, both particle approximations are consistent with the
analytical values. This is also expected since these will not have been resampled
as frequently as those in the early times. We repeated the process of running
the particle filter on the twisted model based on the poor approximation with
N = 1000 particles 100 times. For each, we record the number of unique values
for the state x1 which occurs in the 1000 trajectories at time T after resampling.
Over the 100 repetitions, the average is 31.5 unique values of the state with
a standard deviation of 5.3. This gives an indication of the diversity in the
sample at the early times, and clearly shows that degeneracy is a problem with
this twisted model, but is still less so than for the original model. This also
illustrates the issue with using a poor approximation when sampling from the
smoothing density, and why a good approximation is required for smoothing
in this setting. One possible method for dealing with this is to increase the
number of particles used such that there is a sufficient number of particles at
the early times even when accounting for degeneracy to obtain a good Monte
Carlo estimate. This comes with a greater computational cost and it may be
simpler to focus on obtaining a better approximation.

Having few unique particles will also affect other estimates, and for quantities
such as the second moment, we expect to see a larger difference. This is caused
by resampling discarding values from the tails of the density which can lead to
inaccurate estimates of the variance. In this setting, we can compute the variance
of the smoothing density of xt conditional on all the observations analytically,

89

4.6. Smoothing with twisted models

0 5 10 15 20 25
Time

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
ria

nc
e

Variance of smoothing density
Kalman
Good approximation of
Poor approximation of

Figure 4.9: Variance of the samples E[X2
t]−E[Xt]2, compared to the analytical

variance of the smoothing density computed with the Kalman smoother.

and these analytical results can be compared to the particle estimates of the
variance.

Figure 4.9 shows a comparison of estimates of the variance of the smoothing
density based on the two particle approximations and the Kalman smoother,
and the particles here are the same particles used in Figure 4.8. Here we see
that there is a much larger difference between the particle approximation and
the analytical values when compared to the expected value. When using a good
approximation of ψ? to define the twisted model we are able to obtain variance
estimates which are close to the analytical values obtained from the Kalman
smoother. In comparison, the variance estimates from the twisted model based
on a poor approximation of the optimal sequence are much less stable. Again,
this may in part be caused by the fact that we resample in this model which
explains why the approximation is better at the end of the sequence. When
we resample, while removing the trajectories with low weight, we also are left
with fewer unique trajectories at the early times which will influence the Monte
Carlo estimates.

Having spent an undue amount of time when it comes to the results based
on the poor approximation, we now move our focus to the good approximation.
We already knew from Section 3.3 that we could obtain a good approximation
here, and as we mentioned previously with a good approximation we are close to
sampling from the exact smoothing density. When comparing the Monte Carlo
estimates of the expected value and variance based on the good approximation
of the optimal sequence with the analytical results from the Kalman smoother,
these estimates are consistent with the analytical results. This is expected since
we know we have a good approximation of the optimal sequence and we are
close to sampling from the exact smoothing density at each time. In this case,
the approximation of the optimal sequence is accurate enough such that all the
trajectories have the same weight at time T in the bootstrap filter, and thus
we are essentially sampling from the exact smoothing density. This comes as
a result of the optimal functions being simple to approximate in this setting,
and for other more complex models getting the same quality in the smoothing

90

4.6. Smoothing with twisted models

estimates would be difficult.
This example illustrates that, with a good approximation, using the twisted

models in this manner is a viable approach for obtaining a sample from the
smoothing density. Looking at the estimates of the expected value, the estimates
here are much closer to the analytical value than those we considered in
Section 2.4. However, this example is idealized in the sense that we are
able to obtain a good approximation of the optimal sequence as well as we
have analytical results available to verify our results. Unless we have a good
approximation there will still be issues with degeneracy in the samples from the
smoothing density, especially when estimating the variance, as seen with the
poor approximation. This is a flaw with using the twisted models for smoothing
since depending on the model there is a limit to how good of an approximation
we can obtain within a class Ψ. If we were to consider the Poisson model from
Section 4.3 we would need to improve the approximation further in order to
not resample. That being said, when comparing to the smoothing setups we
considered previously, this approach is preferable in this setting where we can
obtain a good approximation of the optimal sequence.

91

CHAPTER 5

Discussion and final remarks

5.1 More on the use of twisted models

Further notes on results

The motivation for introducing the twisted models is first and foremost for
obtaining estimates of the marginal likelihood with low variance without having
to increase the number of particles in the bootstrap particle filter. In Chapter 3
we showed how defining a twisted model based on the optimal sequence ψ?

would provide zero variance estimates of the marginal likelihood. While this
exact sequence will be unobtainable in practice, we have demonstrated that
with a sufficiently good approximation of the optimal sequence we can still
obtain an estimate with low variance by running the bootstrap particle filter
on the twisted model.

When considering the twisted models the variance of the marginal likelihood
estimate is related to the sequence used to define the twisted model and the
number of particles in the particles filter. To reduce the variance of the marginal
likelihood estimate when using the twisted models, we can either increase the
number of particles in the bootstrap filter or obtain a better approximation
of the optimal sequence. While in theory both the number of particles and
the quality of the approximation can be increased or improved indefinitely to
reduce the variance of the marginal likelihood estimate, there will eventually
be a point where this is no longer feasible due to practical limitations related
to the computational cost or potential issues with overfitting.

We can divide the strategy for obtaining a good approximation into two
parts. Either we can take the same approach as Guarniero, Johansen and
Lee (2017) and find the best approximation within a relatively simple class Ψ.
Alternatively, we can expand the class Ψ which allows for greater flexibility
in the approximation and admits good approximations of a larger number of
functions. We expanded the class by going from a single Gaussian density
to a Gaussian mixture as the class used for the approximation, which led to
increased complexity when it comes to creating the approximations as we have
to determine the additional parameters for the mixture. In general, using a
flexible approximation makes the task of obtaining a good approximation more
complex since there are more options to consider, which is why making an
overly flexible approximation is impractical. Furthermore, with the approach
we have taken for obtaining an approximation, there is also a risk of overfitting
such that approximation only is good for the gridpoints used to create the

92

5.1. More on the use of twisted models

approximation.
For obtaining the best approximation of the sequence ψ? with functions

within a class Ψ, Guarniero, Johansen and Lee (2017) introduced an iterative
approach called the iterated auxiliary particle filter. For the majority of our
examples here we discarded the iterative approach in favor of creating the
approximation in a single step. This worked well in the cases we considered
and is simple to implement, showing that the iterative setup is not always
necessary. In Section 4.3 we started by using a simple class Ψ. However, since
the functions ψ?t (xt) were not contained in this simple class for the model we
considered there was potential to reduce the variance further. In general, for
most practical classes, the optimal functions will never be included in the class
Ψ, thus we want a class that admits a good approximation of the optimal
sequence. To further improve the approximation, we considered a larger and
more flexible class, which as expected provided an even lower variance estimate
of the marginal likelihood. This indicates that selecting a suitable class Ψ is of
importance since the quality of the marginal likelihood estimate is connected
to the quality of the approximation we can obtain within the class Ψ.

A related question to consider is how good of an approximation is necessary
for practical use since we observe that even with a crude approximation of
the twisted model, we can provide lower variance estimates of the marginal
likelihood than with the original model directly. The answer to this question
is problem specific and depends on how much variance is acceptable in the
estimates. For applications such as Metropolis-Hastings parameter estimation,
which we discussed in Section 4.5, we desire low variance estimates of the
marginal likelihood that can be computed quickly.

We have primarily discussed how to estimate the marginal likelihood, but
we also spent some time on state estimation. We looked at obtaining smoothing
estimates in Section 4.6 since smoothing can be done with the twisted models
as well. We considered two setups for smoothing, and the one we spent the
least time on was considering smoothing as an integration problem. For this
approach, we considered how it is possible to express quantities of interest
related to the smoothing density as integrals on the same form as the marginal
likelihood. Hence, we can obtain low variance estimates of these quantities
by using the same setup with the twisted models as we did for the marginal
likelihood. The second method we considered allowed us to use the optimal
sequence ψ? to obtain a sample from the smoothing density. This is inherently
different from the previous approach as we are not aiming for the low variance
estimates we obtain with the twisted models, and instead, we sample from
the smoothing density directly. This is beneficial as it gives a non-parametric
estimate of the smoothing density similar to the smoothing setups considered in
Section 2.4 which can be used to obtain Monte Carlo estimates of quantities of
interest related to the smoothing density. While we are not able to obtain the
same effect when it comes to variance reduction as we did when introducing the
twisted model for estimating the marginal likelihood, the estimates obtained will
still be consistent and the variance can be reduced by increasing the number of
samples. For smoothing, we also demonstrated in Section 4.6 that using a good
approximation of the optimal sequence is of importance. When using the exact
sequence ψ? the twisted model allows us to sample from the exact smoothing
density of the original model. That is, the sample obtained is not weighted,
which is the case when using an approximation of the optimal sequence. Using

93

5.1. More on the use of twisted models

a good approximation of the optimal sequence limits the negative effects of
weight degeneracy on this sample.

Working with twisted models

To be able to obtain any estimates from the twisted model we need to be able to
efficiently sample from (3.1) and (3.2), that is and µψ(x1) and fψt (xt−1, xt), to
obtain the particles when using the bootstrap particle filter. This a restriction
that is present for all twisted models, and the requirement that we must be
able to efficiently sample from the process which drives the latent variables
limits the applicability of the twisted model itself. In particular, we cannot
use any sequence of functions to define the twisted model. We deal with
this by restricting the functions ψt(xt) used to define the twisted model to a
specific class Ψ such that we can guarantee that sampling is possible. This
also simplifies calculations in that we can obtain general expressions for the
weight updates, and the integrals ψ̃t(xt) will all be on the same form making
them much easier to compute. In practice, we chose the class Ψ such that the
resulting approximations were conjugate to the transitions in the model, thus
as long as we can sample from the original model we are also able to sample
from the twisted model.

Restricting the class in this manner puts some limitations on the twisted
models since every twisted model cannot be used in practice. The effect of this
limitation can be largely diminished by making the class Ψ flexible such that it
includes a large number of functions directly, but also making sure that within
this class there will be good approximations to a large number of functions that
are not included in the class. Using a flexible class Ψ will also be more practical
than not restricting the functions and create a, potentially different, sampling
routine for each of the transitions.

Another limitation lies in running the bootstrap particle filter on the twisted
model. When running the bootstrap particle filter on the twisted model
following algorithm 3 we compute the weights with (3.3) and (3.4). In theory for
appropriate functions such that ψt(xt) > 0 this will not be a problem. However,
in practice for very small values of ψt(xt), there may be numerical issues when
we divide by number close to zero. When twisting the model in our simple
examples we did not encounter this problem ourselves, however, they are still
present and may cause issues for other models. One way this can be dealt with
is by introducing a constant term in the functions twisting the models such as
Ct from (3.15). This essentially guarantees that we never divide by a number
smaller than Ct, but this comes at the cost of making the transitions in the
twisted model further from the optimal as these now include the product of
this constant and the transition of the original model.

Other limitations come with approximating the optimal sequence ψ? in
practice. A topic that merits discussion is how the setup we have used is
influenced by the number of observations. First and foremost with a large
number of observations we will have to perform a large number of function
approximations since for every observation yt there is a function ψt(xt) in the
sequence which defines the twisted model we have to include. For likelihood
estimation we have to create approximations for each ψ?t (xt) which can be
computationally expensive for large T . While the additional computational
effort resulting from the additional approximations, it can be made up by the

94

5.1. More on the use of twisted models

twisted models requiring fewer particles, however, we still have to create an
approximation to each of the functions.

An additional note with the twisted model when considering the optimal
sequence ψ?, is that it becomes an offline method. If we want to define the
optimal sequence with the inclusion of a new observation, we need to define the
whole sequence all over again since it is defined recursively starting at time T
and all the functions in the sequence will depend on this new observation. We
did not see an effect of this when considering parameter estimation in Section 4.5
since the Metropolis-Hastings setup we used also is an offline method. Neither
did we observe an effect of this for smoothing in Section 4.6 as smoothing is
also done offline. However, this makes the twisted models unsuited for online
estimation in settings where new observations are obtained frequently or at
regular intervals, at least when using approximations of the optimal sequence
ψ?. Of interest in relation to this is if the twisted models can be used in a
manner more suited for online estimation. Transforming this setup with the
twisted models into a fully online approach is difficult. This is because the
weights at time t depends on ψ̃t(xt) which is defined based on the the function
which defines the twisted model at time t+ 1 in (3.3) and (3.4). One possibility
here is to take the same approach as the fixed lag smoothing approximation
and assume that each ψ?t (xt) only depends on a few observations and not all
such that when obtaining a new observation we do not need to redefine the
entire sequence. Hence when a new observation is obtained, only a few of the
functions in the sequence which define the twisted model must be redefined and
is somewhat similar to lookahead strategies such as Lin, Chen and J. S. Liu
(2013).

What we have done

We started this thesis by considering state space models. In Chapter 1 we gave
three main targets for inference in state space models, and these are filtering,
smoothing and parameter estimation. One of the main tools for inference in this
class of models is sequential Monte Carlo in the form of particle filters which
we discussed in Chapter 2. The benefit of using a Monte Carlo approach is that
the estimates are consistent, and the variance of the estimates will diminish as
more Monte Carlo samples are obtained. This allows us to obtain estimates of
a variety of quantities of interest in relation to state space models which are
used to model different systems.

In Chapter 3 we introduced twisted models to obtain estimates of the
marginal likelihood with low variance, which is useful for tasks such as parameter
estimation. Taking a step back, in general, there are two avenues that can
be followed to provide low variance estimates of the marginal likelihood or
other quantities, when considering sequential Monte Carlo and not including
twisted models. These can either be followed separately or in conjunction, and
the simplest is to increase the number of samples until the desired accuracy
is obtained. Taking this approach for improving estimates is guaranteed to
lower the variance of the estimates since these are Monte Carlo estimates
and increasing the number of samples will lower the variance. The reason we
sometimes avoid going to the end of this avenue is that creating more samples
is computationally expensive and creating enough samples to sufficiently lower
the variance may take too long. This is a prominent issue in higher dimensions

95

5.1. More on the use of twisted models

where it often is necessary with a large number of samples to sufficiently explore
the space we sample from. The alternative avenue is to change how we sample
from the traditional bootstrap filter, and this naturally leads to the twisted
models. By constructing a setup that makes better use of each sample allows
us to obtain variance reduction in the Monte Carlo estimates this time without
changing the number of samples.

When first introducing the particle filters in Chapter 2, we showed how the
particle filters and sequential Monte Carlo could make use of the traditional
importance sampling in order to sample from densities of interest when working
with state space models. Methods such as the auxiliary particle filter (Pitt
and Shephard, 1999) (Johansen and Doucet, 2008) and others change how we
sample in the particle filter itself. Where the different variations of the particle
filter change the importance density we sample from, the same effect can be
achieved by choosing an appropriate sequence ψ for the twisted model. By
changing the functions ψt(xt) we can sample from the same densities as from
changing the proposal density in the particle filter, but the difference lies in
how the samples are weighted. Using the general particle filter, described in
algorithm 1, the samples are weight such that the filtering density is obtained.
This is not the case for the twisted model where the weighting of the samples
depends on the sequence ψ. It is only at the final time T all twisted models
estimate the same density as we saw in Chapter 3.

For using the twisted models to estimate the marginal likelihood, Guarniero,
Johansen and Lee (2017) gave an optimal sequence ψ? which yields zero variance
estimates of the marginal likelihood. As this exact sequence is unobtainable,
in practice we create an approximation that is restricted to a suitable class Ψ.
Within this class, there is an approximation which by some criteria is the best,
and it is our task is to determine this approximation which we spent time on
in Chapter 3 and Chapter 4. This is a function approximation problem that
there are several ways to solve. We took a different approach than Guarniero,
Johansen and Lee (2017) and Heng et al. (2020) which was simpler to implement
than these iterative approaches. Our examples in Chapter 4 demonstrated that
our approach can be used to obtain an approximation of the optimal sequence
which gives low variance estimates of the marginal likelihood. For practical
use, while zero variance estimates are desirable and can in theory be obtained
with the twisted models, it will often be sufficient with low variance estimates.
For the models we considered here when using our approach, we were able to
obtain variance estimates that were significantly lower than those obtained
from the untwisted model. This makes our approach a viable option in practice
when the purpose of introducing the twisted models is to obtain an estimate of
the marginal likelihood with lower variance than an estimate from the original
model. While the iterative approaches can be used to provide lower variance
estimates than the non-iterative approach we took, in the settings we considered
in our examples the iterative setups can be redundant since the variance can be
reduced further by increasing the number of particles.

The iterative setups provide approximations of ψ? from a class Ψ but there
is no reason that we will not be able to obtain the same approximation in
a single step. This was the motivation of our simple setup. We wanted to
obtain the same approximation without having to introduce the iterative setups.
We were able to obtain estimates of the marginal likelihood with low variance
compared to the original model, proving that the iterative approaches can be

96

5.1. More on the use of twisted models

discarded when the purpose is to simply give a lower variance estimate than
the original model. However, the variance of the estimates resulting from the
iterative approach was slightly lower compared to our method. Thus, within the
class Ψ, our method does not necessarily find the best approximation in terms
of variance reduction. However, there is still no reason the same approximation
cannot be obtained in a single step. By changing either how the grid is laid
out or the distance measure used to create the approximations, it could be
possible to mimic the effect of the iterative approaches and obtain an even
better approximation in a single step within the same class Ψ. Our proposed
method for creating the approximations is relatively simple, and one possibility
for improvement is to make better use of the observations we have available.

The improvement we observed by introducing the iterative setups was,
however, mitigated by expanding the class Ψ because we obtained a better
approximation in a single step. For the Poisson model that we considered,
expanding the class provided a better approximation in a single step compared
to introducing a single iterative step. Thus, while the iterative approaches
can be used to further improve the approximation within a class Ψ, it can
be better to expand the class and making it more flexible to accommodate a
larger number of approximations. In practice, this can be a good alternative to
increasing the number of particles, the iterative setups, or any other method
for creating an approximation from a simple class. It can also be the case that
there is some relation between the chosen class and the iterative procedure,
which we did not look for here, such that an expanded class has more benefit
from the iterative setups.

The end goal when introducing the twisted models is to obtain an estimate of
the marginal likelihood with low variance or sample from the smoothing density.
While our focus has mainly been on the former of these, both require a suitable
sequence ψ to be beneficial compared to using the original model. We considered
sequences that were sufficiently good approximations of the optimal sequence
ψ?, but what constitutes a sufficiently good approximation is problem specific.
Given a model, that is a sufficiently good approximation for one problem,
may not be sufficiently good for another. We have looked at how to create
approximations of this sequence and factors which influence the approximations.
There are several possible methods for creating an approximation of the optimal
sequence and obtaining estimates of the marginal likelihood, such as the iterative
approaches of Guarniero, Johansen and Lee (2017) and Heng et al. (2020), which
are applicable in very general settings. We also proposed a simpler method
that worked well in the settings we considered, however, its use is limited
to simpler settings like the ones we considered here. Since this is a function
approximation problem there are potentially several ways we can obtain the
approximations which are model specific. As long as we obtain an approximation
of the optimal sequence that we are able to work with there are no restrictions
on how the approximations are obtained. Thus it matters little how we obtain
the approximation, as long as it is sufficiently good and obtained in a reasonable
time. This is a benefit of the method we proposed, as it is able to obtain good
approximations for the models we considered. Since the method itself also is
relatively simple we were also able to obtain these estimates relatively quickly.

97

5.2. Further work and other topics of interest

5.2 Further work and other topics of interest

In relation to the twisted models, there are several topics of interests that we
did not have time to discuss in the detail it deserves in Chapter 3 and Chapter 4,
but we still want to mention these as they could be of interest for future
work. A major topic is how twisted models work in higher-dimensional settings.
Guarniero, Johansen and Lee (2017) considers this setting with the iterated
auxiliary particle filter, and they are able to obtain low variance estimates
for the marginal likelihood when considering linear Gaussian models. This
demonstrates that the twisted models also can be used in high-dimensional
settings. However, obtaining a good approximation of the optimal sequence
is more difficult than in the one-dimensional settings we considered. This has
to do with the functions in the optimal sequence also being high-dimensional
making the task of obtaining a good approximation a more complex problem.

When considering high-dimensional models, the functions ψt(xt) can also
be high-dimensional and it is natural to consider the class to which we restrict
these functions. Using a high-dimensional Gaussian mixture density as the
approximation will still work as long as it results in a model we are able to work
with. For the one-dimensional model in Section 4.3, we observed that increasing
the flexibility of the approximation was key for reducing the variance in the
estimates of the marginal likelihood, and of interest for future work would be
to see if the same variance reduction occurs in higher-dimensional settings.

Another setting we have not discussed is when g(xt, yt) and ψ?t (xt) is
multimodal as a function of xt. This can occur when the state xt contains
information from several different sources, and of interest is if twisted models are
applicable in this setting. While the Poisson model we discussed is non-linear in
the emissions, we have not discussed models where the transitions are non-linear
in the state variable. For both these models, state estimation and smoothing
would be a topic of interest, and being able to sample from close to the exact
smoothing density would be very useful for these models. The major difference
between these models and the one we have considered here is complexity. In
these settings the functions ψ?t (xt) will become much more complex than those
we have considered so far, and obtaining good approximations can be difficult.
Of interest is if also here we are able to use crude approximations of the optimal
functions and still see a benefit from introducing the twisted models.

In addition to the models mentioned above, there are factors related to the
approximations of the functions ψ?t (xt) which also merit discussion. Notable here
is how we obtain the approximations of the optimal sequence. One possibility
(Guarniero, Johansen and Lee, 2017) is using a non-parametric approximation,
rather than the simple parametric approximation we used here. There are no
restrictions on how to create approximations of the optimal sequence other than
that we need to end up with a twisted model which we are able to work with.
For our examples, we used a simple method that was easy to implement and
worked well on the examples we considered, but of interest is if there are other
efficient ways to obtain good approximations which are suitable for different
problems.

To make the most out of the twisted models, we naturally want a good
approximation of each ψ?t (xt) in the regions where we evaluate the functions. In
Section 3.4 we discussed this and when ψ?t (xt) is unimodal we should evaluate
the function near the mode. For the models we have considered here we were

98

5.2. Further work and other topics of interest

able to obtain a good approximation of the optimal functions for a large part
of the domain where we evaluated the functions. For more complex models
there can be regions of the domain where we are not able to obtain good
approximations which we observed a tendency of with the Poisson model in
Section 4.3. Hence it would be desirable to gain insight into how a poor
approximation affects the twisted model and what makes an approximation
poor. We have already seen some effect of having a poor approximation. In
Section 4.6 we demonstrated how a poor approximation makes it so we are
not able to sample from the exact smoothing density and in the same chapter
we observed how it affects the variance of the marginal likelihood estimates
obtained and the effective number of samples. These can all to some extent
be quantified and we use these to gauge the quality of the approximation
obtained, but they do not say why a particular approximation is poor. Being
able to say which factors make a particular approximation poor and being
able to incorporate these factors when creating the approximation could allow
for simpler approximations in complex settings. This can in part be done
with the central limit theorem for the marginal likelihood given in Guarniero,
Johansen and Lee (2017) which gives an expression for the variance of the
marginal likelihood estimate. Incorporating knowledge of this variance into the
approximation can make the approximation better, and an instance of this is
using the particles directly. However, as we observed, this also leads to other
difficulties with creating the approximations. Rather than using the particles,
the same effect could potentially also be achieved by changing how the particles
are laid out or changing the distance measure. For instance, we could attempt
to include more information from the observations themselves in order to obtain
a better approximation.

In Section 4.3 we commented on how the effective number of samples could
be used to diagnose at which times we have a poor approximation. However,
this quantity does not say anything about why a particular approximation
is poor, but it still has potential uses for improving the approximations
further. One potential use would be to include this information when creating
the approximations. When considering the iterative approach of Guarniero,
Johansen and Lee (2017), it could be used in conjunction with insight on why a
particular approximation is poor to further improve the approximation of the
optimal sequence each iteration. If we know that a particular approximation is
poor we can focus on improving that particular approximation and not the rest
of the sequence, and in order to do this, it would be beneficial to have insight
into what makes an approximation poor.

99

APPENDIX A

Calculations

A.1 Calculations related to the twisted model

Here we have considered a setting in which the transitions of the model are
linear and Gaussian and the sequence ψ are either a single Gaussian density or a
Gaussian mixture. When using the bootstrap particle filter in conjunction with
the twisted model we need to sample from the densities (3.1) and (3.2), and
when the transitions in the original model is Gaussian and the approximations
ψ are Gaussian mixtures the densities we end up sampling from will also be
a Gaussian mixture. The calculations giving the densities of the the twisted
model are straight forward in this setting since we only have to deal with the
product of Gaussian densities. For a product of Gaussian densities N (x;µ1, σ

2
1)

N (x;µ2, σ
2
2) we have the following for a one dimensional x

N (x;µ1, σ
2
1) · N (x;µ2, σ

2
2) = 1√

2πσ2
1
e−(x−µ1)2/(2σ2

1) 1√
2πσ2

2
e−(x−µ2)2/(2σ2

2)

∝ exp
{
−1

2

[
x2

σ2
1

+ x2

σ2
2
− 2xµ1

σ2
1
− 2xµ2

σ2
2

+ µ2
1
σ2

1
+ µ2

2
σ2

2

]}
∝ exp

{
−1

2

(
1
σ2

1
+ 1
σ2

2

)[
x2 −

(
2xµ1

σ2
1

+ 2xµ2

σ2
2

)(
1
σ2

1
+ 1
σ2

2

)−1
]}

∝ exp

−1
2

(
1
σ2

1
+ 1
σ2

2

)[
x−

(
1
σ2

1
µ1 + 1

σ2
2
µ2

)(
1
σ2

1
+ 1
σ2

2

)−1
]2

∝ N (x;µ, τ2) where µ =
(

1
σ2

1
µ1 + 1

σ2
2
µ2

)(
1
σ2

1
+ 1
σ2

2

)−1
,

1
τ2 =

(
1
σ2

1
+ 1
σ2

2

)
Since we only need to sample from this product we can do this calculations
up to proportionality and at the final step we recognize the result as a normal
density.

For computing the integrals ψ̃t for the models we considered we need to
compute integrals related to the product of two gaussian densities. We then get

I =
∫ ∞
−∞

1√
2πσ2

1
e−(x−µ1)2/(2σ2

1) 1√
2πσ2

2
e−(x−µ2)2/(2σ2

2) dx

= 1
2πσ1σ2

∫ ∞
−∞

exp
{
−1

2

[
x2

σ2
1

+ x2

σ2
2
− 2xµ1

σ2
1
− 2xµ2

σ2
2

+ µ2
1
σ2

1
+ µ2

2
σ2

2

]}
dx

100

A.1. Calculations related to the twisted model

There are several ways to solve this integral, perhaps simplest is to consider the
term in the exponent as ax2 + bx+ c. In particular we then have

J =
∫ ∞
−∞

e−(ax2+bx+c) dx =
√
π

a
e−b

2/4a−c

which follows directly from completing the square in the exponent. For the
integral we are looking at here, expressed on a logarithmic scale for simplicity
after combining all the terms we obtain

log(I) = 1
2 log

(
2π(σ2

1 + σ2
2)
)
− 1

2

(
µ2

1
σ2

1
+ µ2

2
σ2

2

)
+ 1

2

(
1
σ2

1
+ 1
σ2

2

)−1(
µ1

σ2
1

+ µ2

σ2
2

)2

These calculations where for one dimension products of Gaussians, for the
higher dimensional case see e.g. Petersen and Pedersen (2012). When dealing
with Gaussian mixtures, the products which occur will still be on the same
form so all the calculations are still valid but will have to be repeated for each
product that occurs.

101

Bibliography

Ala-Luhtala, J. et al. (2016). ‘An introduction to twisted particle filters
and parameter estimation in non-linear state-space models’. In: IEEE
Transactions on Signal Processing vol. 64, no. 18, pp. 4875–4890.

Andrieu, C., Doucet, A. and Holenstein, R. (2010). ‘Particle markov chain
monte carlo methods’. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) vol. 72, no. 3, pp. 269–342.

Briers, M., Doucet, A. and Maskell, S. (2010). ‘Smoothing algorithms for state–
space models’. In: Annals of the Institute of Statistical Mathematics vol. 62,
no. 1, pp. 61–89.

Casella, G. and Berger, R. L. (2002). Statistical inference. eng. 2nd ed. Duxbury
advanced series. Pacific Grove, Calif: Duxbury.

Chopin, N. et al. (2004). ‘Central limit theorem for sequential Monte Carlo
methods and its application to Bayesian inference’. In: Annals of statistics
vol. 32, no. 6, pp. 2385–2411.

Creal, D. (2012). ‘A Survey of Sequential Monte Carlo Methods for Economics
and Finance’. eng. In: Econometric Reviews vol. 31, no. 3, pp. 245–296.

D’Amico, G. et al. (2019). ‘A Review of Non-Markovian Models for the Dynamics
of Credit Ratings’. In: Reports on Economics and Finance vol. 5, no. 1,
pp. 15–33.

Doucet, A., Godsill, S. and Andrieu, C. (July 2000). ‘On sequential Monte
Carlo sampling methods for Bayesian filtering’. In: Statistics and Computing
vol. 10, no. 3, pp. 197–208.

Doucet, A. and Johansen, A. M. (2009). ‘A tutorial on particle filtering and
smoothing: Fifteen years later’. In: Handbook of nonlinear filtering.

Dukic, V., Lopes, H. F. and Polson, N. G. (2012). ‘Tracking Epidemics With
Google Flu Trends Data and a State-Space SEIR Model’. In: Journal of the
American Statistical Association vol. 107, no. 500, pp. 1410–1426.

Givens, G. H. and Hoeting, J. A. (2013). Computational statistics. eng. 2nd ed.
Wiley series in computational statistics. Hoboken, N.J: Wiley.

Godsill, S. J., Doucet, A. and West, M. (2004). ‘Monte Carlo Smoothing for
Nonlinear Time Series’. In: Journal of the American Statistical Association
vol. 99, no. 465, pp. 156–168.

Gordon, N. J., Salmond, D. J. and Smith, A. F. (1993). ‘Novel approach to
nonlinear/non-Gaussian Bayesian state estimation’. In: IEE proceedings F
(radar and signal processing). Vol. 140. 2. IET, pp. 107–113.

102

Bibliography

Guarniero, P., Johansen, A. M. and Lee, A. (2017). ‘The Iterated Auxiliary
Particle Filter’. In: Journal of the American Statistical Association vol. 112,
no. 520, pp. 1636–1647.

Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman
filter. eng. Cambridge: Cambridge University Press.

Heng, J. et al. (2020). ‘Controlled sequential Monte Carlo’. In: The Annals of
Statistics vol. 48, no. 5, pp. 2904–2929.

Johansen, A. M. and Doucet, A. (2008). ‘A note on auxiliary particle filters’.
In: Statistics & Probability Letters vol. 78, no. 12, pp. 1498–1504.

Kalman, R. E. (Mar. 1960). ‘A New Approach to Linear Filtering and Prediction
Problems’. In: Journal of Basic Engineering vol. 82, no. 1, pp. 35–45.

Kantas, N. et al. (Aug. 2015). ‘On Particle Methods for Parameter Estimation
in State-Space Models’. In: Statist. Sci. vol. 30, no. 3, pp. 328–351.

Kim, S., Shepherd, N. and Chib, S. (1998). ‘Stochastic Volatility: Likelihood
Inference and Comparison with ARCH Models’. In: The review of economic
studies. vol. 65, no. 3, pp. 361–393.

Kitagawa, G. (1994). ‘The two-filter formula for smoothing and an implementa-
tion of the Gaussian-sum smoother’. In: Annals of the Institute of Statistical
Mathematics vol. 46, no. 4, pp. 605–623.

Kitagawa, G. (1996). ‘Monte Carlo Filter and Smoother for Non-Gaussian
Nonlinear State Space Models’. In: Journal of Computational and Graphical
Statistics vol. 5, no. 1, pp. 1–25.

Kucharski, A. J. et al. (2020). ‘Early dynamics of transmission and control
of COVID-19: a mathematical modelling study’. In: The Lancet Infectious
Diseases vol. 20, no. 5, pp. 553–558.

Lin, M., Chen, R. and Liu, J. S. (2013). ‘Lookahead Strategies for Sequential
Monte Carlo’. In: Statistical Science vol. 28, no. 1, pp. 69–94.

Liu, J. and West, M. (2001). ‘Combined Parameter and State Estimation in
Simulation-Based Filtering’. In: Sequential Monte Carlo Methods in Practice.
Ed. by Doucet, A., Freitas, N. de and Gordon, N. New York, NY: Springer
New York, pp. 197–223.

Liu, J. S. and Chen, R. (1995). ‘Blind deconvolution via sequential imputations’.
In: Journal of the american statistical association vol. 90, no. 430, pp. 567–
576.

Liu, J. S., Chen, R. and Logvinenko, T. (2001). ‘A Theoretical Framework for
Sequential Importance Sampling with Resampling’. In: Sequential Monte
Carlo Methods in Practice. Ed. by Doucet, A., Freitas, N. de and Gordon, N.
New York, NY: Springer New York, pp. 225–246.

Petersen, K. B. and Pedersen, M. S. (Nov. 2012). The Matrix Cookbook. Version
20121115.

Petris, G., Petrone, S. and Campagnoli, P. (2009). Dynamic Linear Models with
R. eng. 1st ed. 2009. New York, NY: Springer New York : Imprint: Springer.

Pitt, M. K. and Shephard, N. (1999). ‘Filtering via simulation: Auxiliary particle
filters’. In: Journal of the American statistical association vol. 94, no. 446,
pp. 590–599.

Rizzo, M. L. (2007). Statistical Computing with R. eng. 1st ed. London: CRC
Press LLC.

Shumway, R. H. and Stoffer, D. S. (2017). Time Series Analysis and Its
Applications: With R Examples. eng. Springer Texts in Statistics. Springer
International Publishing AG.

103

Bibliography

Tsay, R. S. and Chen, R. (2018). ‘State Space Models’. In: Nonlinear Time
Series Analysis. John Wiley & Sons, Ltd. Chap. 6, pp. 265–335.

Van Rossum, G. and Drake, F. L. (2009). Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace.

Walter, J.-C. and Barkema, G. (2015). ‘An introduction to Monte Carlo
methods’. eng. In: Physica A vol. 418, pp. 78–87.

Whiteley, N. and Lee, A. (2014). ‘Twisted particle filters’. In: The Annals of
Statistics vol. 42, no. 1, pp. 115–141.

104

	Contents
	Concerning state space models
	Use of state space models
	Structure of state space models
	Inference in state space models

	Sequential Monte Carlo
	Numerical integration and Monte Carlo methods in general
	Sampling from state space models and Sequential Monte Carlo
	Particle filters for inference in state space models
	Smoothing in state space models
	Parameter estimation in state space models

	Twisted Models and their use
	Introducing twisted models and their use
	Approximating the optimal sequence
	Two simple examples
	Using a fixed grid for the approximation of the optimal functions

	Experimental results
	Topics for numerical experiments
	Experiment setups
	Model and results
	Other factors related to twisted models
	Particle marginal Metropolis-Hastings and twisted models
	Smoothing with twisted models

	Discussion and final remarks
	More on the use of twisted models
	Further work and other topics of interest

	Calculations
	Calculations related to the twisted model

	Bibliography

