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Abstract

For electric propulsion motors installed on marine vessels, the prevention of
overheating is usually based on resistor temperature detector sensors. The
monitoring system raises an alarm if the detected temperatures reach a pre-
defined safety limit. Field experience reveals, however, that damage to the
motors may have already occurred before the alarm is triggered due to the
delay in the heat transfer process. This thesis aims at developing a data-
driven approach to detect the real-time anomalies of motor temperatures,
based on extensive field data provided by ABB, a Swedish–Swiss multinational
technology corporation. This study consists of two parts. First, a novel
algorithm is presented to enable the use of the enormous dataset with the
available computing resources and time. Second, a data-driven approach is
developed to predict the motor temperatures under a normal navigating state,
based on convolutional neural network and long short-term memory models.
The anomalies of motor temperature can then be identified by comparing the
predicted normal temperatures and the ones detected by sensors. Compared
to a baseline linear model, the developed approach provides an improvement
of approximately 73.94% with respect to the mean squared error. The current
study also investigates the performance of the developed approach in multiple
simulated scenarios that can be of practical interest. The thorough evaluations
have suggested a substantial potential of the approach with respect to its
practicality, generalization, and precision.
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CHAPTER 1

Introduction

1.1 Motivation and goal

For ships driven by electric propulsion motors, the prevention of overheating is
one of the most crucial safety concerns. Any damage to the motors may not
only cause a severe safety hazard, but also lead to substantial economic loss.

The standard practice of overheating prevention is usually based on a group of
resistor temperature detection (RTD) sensors. The security system is designed
such that it raises an alarm once the temperature reaches a warning limit, and
ultimately shuts down the corresponding motors or systems if a higher trip
limit is reached (typically at 155◦C for the motors studied in this thesis).

These systems, however, have several limitations. The locations and number of
installed sensors are limited, and the areas of overheating can differ from the
monitoring spots. It takes a certain period for the heat to transfer from the
actual overheating areas to the measurement locations such that RTD sensors
can trigger the preset alarms. This duration can be short, but the consequent
destruction to the motor may be catastrophic. In a fault situation, damage to
the motors has been observed already by the time the trip limit was reached.
(Hellton et al. 2021).

In the past, most efforts have been made in the development of physical
models and predictive tools based on thermophysical knowledge and dedicated
experiments. However, such approaches commonly demand a large amount of
time, detailed knowledge, computing resources, and manpower. Furthermore,
the derived approaches and models are usually customized to monitor a specific
motor system. They can rarely form a generic tool that can be applied to
other systems. The lack of a generic approach has therefore made this study
meaningful, which revisits the problem by means of machine learning methods.

Through predicting the normal temperatures of a motor, the monitoring
approach can then identify abnormal motor temperatures by comparing the
detected temperatures measured by the sensors with the predicted normal-
state temperatures. However, this thesis only aims at developing an adaptive
data-driven approach based on machine learning methods, which can predict
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1. Introduction

the normal temperature of motors. Further study about the prevention of
overheating is not discussed in this thesis, since it would involve some type of
sequential analysis of residuals, which is beyond the scope of this work.

1.2 System overview

The exact setup of the electric propulsion system of ships differs between different
ships, both with respect to the design of the motors and the configuration of the
cooling system. In this thesis, we focus on the derivation of a generic data-driven
approach with minimal emphasis on the physical models. Figure 1.1 shows the
schematic of a generic electric motor system provided by ABB (Hellton et al.
2021). Despite their differences in mechanical design, the topologies of ship
motors are however similar and consist of a propulsion control unit (PCU) and
a multi-stage cooling system (air and water cooled).

Figure 1.1: A schematic overview of the studied motor system.
Tin and Tout correspond to features CI and CO in the given
dataset. They are the temperatures of the inlet cooling air
and the outlet cooling air, respectively. Torque, Power, and
Speed correspond to features TO, PO, and SP , respectively.
Six winding temperatures are recorded at two separate triplets,
namely U1, U2, V 1, V 2, W1, and W2.

The motor itself is cooled by cold air circulated by multiple fans, illustrated
as the air cooling loop in Figure 1.1. The heat in the hot air is removed by an
on-board water-cooling system through a heat exchanger.

During the normal operation, the heat generated by the motor can be
continuously removed by circulating cold water. However, under the
circumstances of high torque demands or full load, the burst of high-power
usage can result in abundant heat and rapid temperature increase, which leads
to overheating.
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1.3. Dataset

1.3 Dataset

The dataset used in this thesis is generated by the motor systems of several
vessels. Eleven features of the dataset were collected, which are Tin, Tout,
Torque, Power, Speed, and 6 Winding temperatures, as shown in Figure 1.1.
Tin and Tout represent the inlet and outlet temperatures of cooling air, which
were provided by RTD temperature sensors.

The mechanical torque and electrical power were calculated and recorded by
the Propulsion Control Unit (PCU), while the rotation speed of motors was
directly collected from the motors. The six winding temperatures were recorded
in two separate triplets and are highly similar.

In the development of the current data-driven model, an enormous amount of
field data provided by ABB are utilized. In order to anonymise the dataset, the
data were modified in a manner where the underlying dynamics of the system
was preserved. The data were sampled at a temporal resolution of 1 Hz in the
period from September 2010 to November 2011.

In total, 16 ships were included as the sampling sources, each of which has
measurements from three different motors. This yields around 2.2 billion
observations made available for the analysis in this thesis. Besides the
timestamps of recordings, each observation also consists of 11 more entities,
which are:

• Inlet and outlet temperatures of cooling air.

• Mechanical torque and electrical power, which were calculated and
recorded by the PCU.

• Rotation speed of motors, which is taken directly from the motor output.

• Winding temperatures at two separate triplets, which are measured by 6
RTD sensors. When assessing the time series, the differences among them
are shown insignificant.

Following the convention of a typical statistical or machine learning method,
the data are assorted into 3 categories, i.e., timestamps, features, and targets.
The following entities are utilized as features:

• CI (inlet cooling air temperature [◦C]).

• CO (outlet cooling air temperature [◦C]).

• PO (normalized motor power [%]).

• SP (normalized motor speed [%]).

• TO (normalized mechanical torque [%]).

which are used to predict the following targets (i.e., temperatures):
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1. Introduction

• U1, V 1, and W1 (winding temperatures in triplet 1 [◦C]).

• U2, V 2, and W2 (winding temperatures in triplet 2 [◦C]).

1.4 Previous related research

Following the recent prosperity of data mining and machine learning, some
similar research was carried out at the Norwegian Computing Center and ABB.
They developed a data-driven approach to resolve the same issues as described
in this thesis (Hellton et al. 2021). Although the given datasets are different,
the studied system in their research is the same as that of this thesis, as shown
in Figure 1.1.

However, instead of employing machine learning as this thesis does, their research
focused on a retrofitted linear model. Therefore, their developed approach relies
to a larger extent on field experience and prior physical knowledge. As an
extension of the previous study, the current work developed a more generic
approach which may hopefully be employed with less prior knowledge.

1.5 Hardware specifications and software frameworks

The training, validation, and test of models are essential parts of the work in this
thesis. Handling the vast amount of data demands a great deal of computing
resources and efficient data analysis algorithms.

To reflect the computational expenses, we have discussed the computing time
and resource as the work proceeds in this thesis. They are used as important
measurements for manifesting the efficiency of an approach and also give an
overview of the computational resources needed to perform the model training.

In this study, a high-performance computer cluster hosted at the Department
of Mathematics, University of Oslo, was used. The corresponding hardware
specifications are given in Table 1.1. It is worthwhile noticing that the hardware
resources are not always fully employed during this study. Rather, they provide
an upper limitation on the computing power which we can use in carrying out
the present research.

Component Model Specifications

CPU
Intel(R)
Xeon(R) CPU
E5-2680 v3 ×48

Number of Cores: 12
Number of Threads: 24
Base Frequency: 2.5 GHz
Max Frequency: 3.3 GHz

GPU NVIDIA RTX
2080 Ti × 4

Core Clock: 1635MHz
Memory Capacity: 11 GB

Memory / 203 GB

Table 1.1: Hardware specifications of accessible computing
resources, provided by University of Oslo (UiO).
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1.5. Hardware specifications and software frameworks

For reference, the versions of several essential packages and drivers used in
this study are tabulated in Table 1.2. It is expected that different versions can
possibly lead to different computing time and memory demands.

Name Type Version
CUDA toolkit 10.2.0

CUDA driver driver r440
cuDNN library 8.0.1
Python / 3.6.8
Keras package 2.4.3

TensorFlow package 2.3.1

Table 1.2: Software frameworks used in this thesis.
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CHAPTER 2

Background theory

This chapter introduces the background theory employed in this thesis and
describes in detail the preprocessing methods, basic statistical and machine
learning models, and general training techniques.

2.1 Data preprocessing

Data preprocessing is a necessary preparation step for most statistical and
machine learning methods. This is also the case for the principal machine
learning models applied in this thesis, i.e., convolutional neural net (CNN) and
long short-term memory method (LSTM).

Practically, data preprocessing needs to be customized for different dataset,
model architectures, and the objectives of the task at hand. However, this
section puts more focus on some universal preprocessing methods, which are
applied in this thesis. The specific implementations in this thesis are given in
Section 3.4.

2.1.1 Standardization

Standardization is one of the common prerequisites for most machine learning
methods. Basically, standardization centers the mean and scales the input data
into unit variance. Given inputs (x1, x2, ..., xn), the transformation of an input
xi after standardization is then given as

x′i = xi − x
s

. (2.1)

Here, x and s are respectively the mean and the standard deviation of these
inputs, and x′i is the standardized input of xi.

As found by Pedregosa et al. 2011, standardization may lead to an undesired
performance if each individual feature of the given dataset does not follow a
normal distribution. However, even if the given data in this thesis are not
normally distributed, standardization still turns out to be the best-performing
method, as discussed in Section 3.4.4.
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2. Background theory

2.1.2 Scaling

The scaling scales the given inputs into a certain predefined range. Among
different scaling methods, min-max scaling is one of the most commonly used,
and the min-max scaled values can be calculated by

xscaled = x− xmin
xmax − xmin

(rmax − rmin) + rmin, (2.2)

where xmin and xmax are the minimum and maximum values of the given
inputs, respectively, while rmin and rmax delimit the scaling range. A practical
range can be the unit interval [0, 1], i.e., rmin = 0 and rmax = 1.

Another similar scaling method as the min-max scaling is the maximum absolute
value scaling. As described by its name, this method scales each input x by the
maximum absolute value of all inputs as

xscaled = x

|x|max
. (2.3)

After the transformation, the maximum absolute value of the inputs will be 1.

2.1.3 Normalization

Unlike scaling or standardization, the normalization normalizes each sample
independently. It is commonly used in applications which are sensitive to
distance metrics, e.g., clustering, since it normalizes each observation into a
unit norm as

xnormalized = x

||x||
, (2.4)

where the definition of norm ||x|| may vary from case to case, depending on
the actual applications. x is an observation vector which consists of p variables
(features) as

x = (x1, x2, ..., xp). (2.5)

2.2 The baseline models

This thesis focuses on a supervised task and develops a supervised approach,
i.e., utilizing multiple features to predict one target. Such an approach demands
a set of criteria for evaluation, and one of the most common criteria is to
introduce a baseline approach. By comparing the performance of our developed
approach with that of the baseline, it is then possible to evaluate our approach.
For example, a random approach is typically used as the baseline. If a given
approach surpasses the random one, it can then be granted as effective.

However, we are here able to introduce a more appropriate baseline method.
The previous related research, which was published by ABB and Norwegian
Computing Center, indicated that linear regression models can be a superior
baseline to the random approach (Hellton et al. 2021). Furthermore, we also
propose the feedforward neural network model as an alternative baseline method,
since it is worthwhile to illustrate that our model, which is based on recurrent
neural network, will surpass a vanilla feedforward neural network.
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2.2.1 Linear model

Given p independent variables {xi1, xi2, ..., xip} and a corresponding dependent
variable yi, a linear model assumes a linear relationship between them, given as

yi = β0 + β1xi1 + β2xi2 + ...+ βpxip + εi. (2.6)

Here, {β0, β1, ..., βp} are regression coefficients and ε is an error term under the
assumptions of  E[εi] = 0

V ar(εi) = σ2

Cor(εi, εj) = 0,∀i 6= j
,

such that the error variance is considered constant for different values of y.

The matrix form of this model is given as

yi = Xiβ + εi, (2.7)

where X is a (p+ 1)-dimensional row vector, i.e., (1, xi1, xi2, ..., xip), and β is a
(p+ 1)-dimensional column vector, i.e., (β0, β1, ..., βp)T .

In order to fit the model into n given observations (X1, y1), (X2, y2), ..., (Xn, yn)
and search for an optimal β, we aim at minimizing a loss function, which is
usually the mean squared error (MSE)

Loss =
n∑
i=1

(yi − ŷi)2. (2.8)

We see therefore that

β̂ = arg min
β

{
n∑
i=1

(yi −Xiβ)2

}
, (2.9)

which can be given in matrix form as

β̂ = arg min
β

{
(y −Xβ)T (y −Xβ)

}
, (2.10)

where X =


x1
x2
...
xn

 =


1 x11 · · · x1p
1 x21 · · · x2p
...

... . . . ...
1 xn1 · · · xnp

 and y =


y1
y2
...
yn

.

We define that

D(β) =
n∑
i=1

(yi −XT
i β)2 = (y −Xβ)T (y −Xβ), (2.11)

then, through solving the equation

∂D(β̂)
∂β̂

= 0, (2.12)
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2. Background theory

we then have that

β̂ = (XTX)−1XTy, (2.13)

which is theoretically the optimally estimated parameter β that minimizes the
loss function. The estimated prediction is then modeled by

ŷ = Xβ̂. (2.14)

2.2.2 Neural network

Scientists have since the 1940s attempted to simulate the human brain and
build a machine which is able to think like a human. Gradually, along with the
discoveries in biology, it was identified that the functionality of human brains is
based on neurons and axons. Electrical signals were sent by neurons through
axons and eventually gather within certain parts of a brain. Our brain then
analyses these signals and makes decisions (Cantile and Youssef 2015).

Inspired by such a mechanism, a (feedforward) neural network without hidden
layers, which is called perceptron, was invented and implemented by Rosenblatt
1958, as illustrated in Figure 2.1.

Figure 2.1: An overview of perceptron. z is an intermediate
variable. The activation function is usually used to produce
non-linearity for a perceptron model and varies for different
situations.

It is proven that a single-layer perceptron is only capable of learning linearly
separable patterns. However, it can be further improved by adding extra layers.
The multi-layer perceptron was therefore introduced and is now also known
as the (feedforward) neural networks (Minsky and Papert 2017). A typical
structure of (feedforward) neural networks can be seen in Figure 2.2.

A neural network as in Figure 2.2 aims at relating p input variables x1, x2, ..., xp
to q output variables y1, y2, ..., yq through m latent variables z1, z2, ..., zm. The
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2.2. The baseline models

Figure 2.2: The overview of a 3-layer feedforward neural network.
Each circle represents a node in the neural network. W1 is
a weight matrix used for calculating the value of nodes in
the hidden layer, and W2 is another weight matrix used for
calculating the value of nodes in the output layer

relation between these variables is estimated through weights W and bias B,
and is modelled by {

Z = σ(W1X +B1)
Y = f(W2Z +B2) ,

where X is a p-dimensional column vector (x1, x2, ...xp)T , Z is an m-
dimensional column vector (z1, z2, ...zm)T , and Y is a q-dimensional column
vector (y1, y2, ...yq)T . The function σ and f are so-called activation functions,
which are designed to introduce non-linearity in the model.

In order to obtain parameter estimates, i.e., weights W and bias B, we select
those which minimize a chosen loss function. Similar to a linear model, the
squared loss can still be a natural choice as the loss function. However, rather
than derive a formula which can directly calculate the optimal parameters,
neural networks require a more practical approach, since they are far more
complicated than linear models. It is often costly to derive formulas and even
impossible for most neural network models.

Typically, we hence initialize the parameters into random values and update
them progressively. The updates are advanced along the direction of the
derivative of the loss function with respect to the updating parameter (Cauchy
et al. 1847). If we denote parameters as θi, for i = 1, 2, ..., and denote the loss
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function as L(θ), then the updates can be given as

θnew = θold − γ
∂L(θ)
∂θi

∣∣∣∣
θ=θold

, (2.15)

where γ is a so-called learning rate. It controls the step length for one update
iteration and is determined by experience and experiments. The learning rate
may also not be constant, but dynamic during the updating procedure. A
typical practice is that we initialize the learning rate as a relatively large value
and reduce it as we update the model, since larger learning rates can accelerate
the speed of updating, while a smaller learning rate can ensure that the optimal
parameters will not be passed by.

Furthermore, it may be beneficial to have more than 1 hidden layers for a neural
network as in Figure 2.3. The corresponding calculation and optimization still
follows the same procedure as in a 3-layer neural net.

Figure 2.3: A multi-layer feedforward neural network. The
input and output layers are typically counted for the number of
layers. The (feedforword) neural network with n hidden layers
are then named as an (n + 2)-layer neural network. Wi is a
weight matrix used for calculating the value of nodes in the i+ 1
layer.

2.3 Recurrent neural nets

There are many applications where the historical states influence the current
state. A standard feedforward neural network or a linear model is not able
to capture such characteristics, since these models focus only on the current
state itself. The recurrent neural network (RNN) was therefore proposed as an
extension by Rumelhart, G. E. Hinton and Williams 1986, which in addition
takes the information of historical status into account.
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2.3.1 Model

The recurrent neural nets assume that historical states have a hidden influence
on the current state. This influence can be captured through a hidden state
and will be transmitted into the future calculations. There will always be only
1 hidden state at 1 time point, although it keeps updating along the direction
of the given sequence.

Figure 2.4: An overview of the recurrent neural network. Here,
fW and gW ′ are functions which are determined by matrices W
and W ′, respectively, and h is the hidden state. fW is used to
calculate the hidden states while gW ′ is employed to produce
the outputs.

The structure of recurrent neural nets can be illustrated in Figure 2.4, where{
ht = fW (ht−1, xt)
yt = gW ′(ht)

,

where fW and gW ′ are functions which are determined by matrices W and W ′,
respectively, and h is the hidden state.

Furthermore, the RNN model can also be given by{
ht = σ(Whhht−1 +Wxhxt + bh)
yt = Whyht + by

,

as in Figure 2.5, where σ represents an activation function. Whh, Wxh, and
Why are weight matrices, while bh and by are bias matrices.

2.3.2 Optimization: backpropagation through time

In order to optimize the parameters of a given model, one has to define a metric
beforehand, which can be a loss function, a utility function, etc. Here, the loss
function is selected as an example to demonstrate the optimization. We have
already illustrated the procedure of optimizing (updating) the parameters
of a feedforward neural network in Equation (2.15) based on minimizing
a loss function. In this section, we will further introduce an optimization
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2. Background theory

Figure 2.5: A detailed recurrent neural network. Whh and Wxh

are weight matrices used for calculating the current hidden
states, based on the last hidden state and the current input,
respectively. The outputs are then calculated by the current
hidden state and the weight matrix Why.

approach for RNN, namely the backpropagation through time (BPTT), which
was independently derived by numerous researchers. This approach will also
achieve the optimization through minimizing the loss, as shown in Figure 2.6.

Figure 2.6: The overview of the loss of a recurrent neural
network.

Based on the same idea of Equation (2.15), we aim at updating the parameters
of an RNN along the direction of the derivatives of a loss function L with respect
to each parameter, which is also known as gradient descent. According to the
structure of RNN, the updating parameters of a recurrent neural net are the
weight matrices W and bias matrices b, which indicates that the corresponding
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2.3. Recurrent neural nets

updates should be respectively along the direction of ∂L
∂W and ∂L

∂b .

Recall that a (vanilla) recurrent neural network can be described as
st = Whhht−1 +Wxhxt + bh
ht = σ1(st)
zt = Whyht + by
yt = σ2(zt)

,

which indicates that

∂L
∂Why

=
T∑
t=1

∂Lt

∂Why
=

T∑
t=1

∂Lt

∂zt

∂zt

∂Why

∂L
∂Wxh

=
T∑
t=1

∂Lt

∂Wxh
=

T∑
t=1

∂Lt

∂zt

∂zt

∂Wxh

∂L
∂Whh

=
T∑
t=1

∂Lt

∂Whh
=

T∑
t=1

∂Lt

∂zt

∂zt

∂Whh

(2.16)

and 
∂L
∂by

=
T∑
t=1

∂Lt

∂by
=

T∑
t=1

∂Lt

∂zt

∂zt

∂by

∂L
∂bh

=
T∑
t=1

∂Lt

∂bh
=

T∑
t=1

∂Lt

∂zt

∂zt

∂bh

. (2.17)

According to Equations (2.16) and (2.17), once given the loss function L and
activation functions σ1 and σ2, ∂Lt

∂zt
, ∂zt

∂Why
, ∂zt

∂Wxh
, ∂zt

∂Whh
, ∂zt

∂Wby
, ∂zt

∂Wbh
will be also

known. One may notice that apart from ht, ∂zt

∂Wxh
and ∂zt

∂Whh
is also related to

ht−1, ht−2,..., h0. However, since h0 is a pre-defined initial value, the derivatives
∂zt

∂Wxh
and ∂zt

∂Whh
are still calculable. Therefore, the optimization of an RNN

model can be progressed through the same updating procedure as in Equation
(2.15).

2.3.3 Gradients explode and gradients vanish

The hidden state of an RNN follows the recursion

ht = σ1(Whhht−1 +Whxxt + bh).

Therefore, both the derivatives ∂zt

∂Wxh
and ∂zt

∂Whh
include the terms ∂ht

∂hi
, which

can also be given as
∂ht
∂hi

= (σ′1Whh)t−i for t = 0, 1, ..., t− 1. (2.18)

Since Whh is a square matrix, we are able to factorize it using the eigenvalue
decomposition

Whh = V

λ1
. . .

λr

V −1, (2.19)

where λ are eigenvalues of Whh. We hence have that

(σ′1Whh)t−i = V

σ
′
1λ
k−i
1

. . .
σ′1λ

k−i
r

V −1. (2.20)
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2. Background theory

Along with an increasing time step t, the corresponding part inside this term may
exponentially explode if |σ′1λi| > 1, or may exponentially vanish if |σ′1λi| < 1,
and the derivatives ∂L

∂Wxh
and ∂L

∂Whh
will therefore be influenced. Furthermore,

since the weight matrices Wxh and Whh will gain updates respectively along
the direction of ∂L

∂Wxh
and ∂L

∂Whh
, the exploding or vanishing gradients will lead

to difficulties during training.

Exploding gradients may break the limitation of given memory (RAM). However,
it is a relatively acceptable challenge, as the existing methods are able to handle
this problem. A typical practice is the gradient clipping, which sets a threshold
to avoid exploding gradients.

If a gradient g tends to exceed the predefined threshold r, i.e., ||ĝ|| ≥ r, it will
then be replaced by a new gradient as

ĝ ← r

||ĝ||
ĝ. (2.21)

Meanwhile, vanishing gradients are usually a more severe problem. The
vanishing gradients will literally stop the update of the corresponding parameters,
since the optimization is usually along the direction of gradients. In such
cases, the updates may stop at a local saddle point where the corresponding
parameters produce a sub-optimal performance. Unlike the gradient clipping
approach, it can be complicated to design a proper remedy for vanishing
gradients. It is difficult to implement a universal approach for such problems,
since a considerable amount of tuning and experiments is often required for one
specific task.

However, according to Equations (2.16), (2.17), and (2.18), an RNN will continue
to update its parameters, even if certain gradients are vanishing. In contrast to,
for instance, the feedforward neural networks, an RNN will always involve new
inputs along the direction of the (time) sequence. Since the weight matrices
and bias matrices are shared between the hidden states inside an RNN model,
the new inputs will always bring fresh updates to its weights and bias.

Nevertheless, an RNN can still be influenced by vanishing gradients to some
degree. Considering the architecture of an RNN, theoretically, it is supposed
to capture the long-range dependencies, while practically, an RNN may have
difficulties in achieving it because of the vanishing gradients. It was thoroughly
discussed by Bengio, Simard and Frasconi 1994, and can also be proven through
interpreting the Equations (2.16) and (2.17).

2.3.4 Weight and bias initialization

The initialization of weights and biases is an essential part of the training
procedure. An inefficient initialization may slow down the speed of training and
worsen the performance of models. In certain extreme cases, the updating of
weights and bias will not converge, and we hence cannot progress the training.
Meanwhile, a proper initialization can prevent exploding and vanishing gradients,
accelerate the speed of training, and improve the performance of the estimated
optimal parameters.
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2.4. Advanced recurrent neural nets: long short-term memory (LSTM)

The choice of the initialization method depends on the choice of the activation
function, the architecture of the model, the size of the dataset, and many
other factors, and thus, there exists a considerable number of different method
configurations. The different initializations all have their own advantages and
limits, but their common objective is to ensure that the training procedure will
successfully advance to a satisfactory solution.

In this thesis, we have a specific task with a given dataset, which indicates that
it is not worth demonstrating all possible methods. This section hence only
introduces the chosen initialization method, i.e., the orthogonal initialization
(Saxe, McClelland and Ganguli 2014).

Orthogonal initialization is one of the best-performing initialization methods
for RNN (Dauphin et al. 2014). For a given square matrix with shape m×m,
orthogonal initialization first creates a matrix A, which is filled with random
observations drawn from a standard normal distribution. Here, A ∈ Rm×n.

We can then decompose matrix A using Singular Value Decomposition (SVD),
such that

A = UΣV T , (2.22)

where U ∈ Rm×m, Σ ∈ Rm×n, and V ∈ Rn×n. Here, U and V are orthogonal
matrices, and Σ is a diagonal matrix with its diagonal values are the singular
values of A. The orthogonal matrix U can then be taken as the initial weight
matrix or bias matrix.

2.4 Advanced recurrent neural nets: long short-term
memory (LSTM)

As stated before, although RNN can to some extent overcome the vanishing
gradient problem, the ability of capturing long-range dependencies is still rather
limited. Therefore, several advanced recurrent neural nets have been designed
for long-range dependencies.

Among these advanced methods, gated recurrent unit (GRU) (Cho et al. 2014)
and long short-term memory (LSTM) (Hochreiter and Schmidhuber 1997) are
the most popular and prominent ones, since both their practical performance
and theoretical designs have been shown to be outstanding. In this section, we
will introduce the LSTM, which is the core structure of our model in this thesis.

In order to improve the performance regarding long-range dependencies, LSTM
introduces the so-called gate mechanism. Instead of having 1 hidden state,
LSTM applies a cell, also named as a unit, which receives 2 states from the
former time point t− 1 and transfers 2 updated states to the next time point
t+ 1. These states are named as cell state c and hidden state h as shown in
Figure 2.7.

Rather than using a straightforward matrix multiplication in RNN, the
corresponding mechanism inside an LSTM cell is more complicated, as illustrated
in Figure 2.8. The most essential part of a cell are the gates. There are typically
3 types of gates, which are named as forget gate, input gate, and output gate.
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2. Background theory

Figure 2.7: A recurrent neural network with long short-term
memory (LSTM). Each circle represents a node in the neural
network. Details of the LSTM cell are illustrated in Figure 2.8.

In this thesis, we represent the corresponding results of these gates at time
point t respectively as ft, it, c̃t, and ot.

Figure 2.8: Schematic construction of an LSTM cell. Here,
all three σ are the same activation function, while σ′ can be
different. c is the cell state, and h is the hidden state. x and y
are the input and output, respectively. Wf , Wi, Wc, andWo are
weight matrices used for calculating the cell state and hidden
state. Elementwise multiplication and the matrix addition are
denoted by different notations as shown in the figure.

As described, the forget gate will control the information coming from the cell
state ct−1 through

ft = σ(Wf · [ht−1, xt] + bf ). (2.23)
Here, [ht−1, xt] is a concatenated vector of ht−1 and xt. Since an activation
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2.4. Advanced recurrent neural nets: long short-term memory (LSTM)

function σ is usually of a domain [0, 1], ft also has a domain [0, 1]. Then,
by calculating the elementwise multiplication between ct−1 and ft, the forget
gate extracts certain features of ct−1 for further usage while abandoning other
unimportant ones.

In the input gate, we filter the new inputs xt through an elementwise
multiplication as well, in order to remember the important input information{

it = σ(Wi · [ht−1, xt] + bi)
c̃t = tanh(Wc · [ht−1, xt] + bc)

.

Cooperating with the forget gate, LSTM is then able to update its cell state c
from ct−1 into ct,

ct = ft � ct−1 + it � c̃t. (2.24)

The LSTM at time point t now has updated the cell state c. It hereafter aims
at producing an updated hidden state ht, so that we can provide an eventual
result, i.e., the prediction yt at time point t. We gain the information captured
by the former hidden state ht−1 and the new input xt through

ot = σ(Wo · [ht−1, xt] + bo). (2.25)

Combining the updated cell state ct, the former hidden state ht−1, and the new
input xt, the LSTM cell is now able to update its hidden state by

ht = ot � tanh(ct). (2.26)

The eventual prediction is typically a transformation of ht through an activation
function as

yt = σ′(ht). (2.27)

As for the optimization of an LSTM, since it is essentially a type of recurrent
neural network (RNN), the optimization also follows the backpropagation
through time procedure (BPTT), as introduced in Section 2.3.2.
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CHAPTER 3

Methodology development and
validation

The principal objective of this thesis is to construct an optimal model for
predicting the target (i.e., the motor temperature). However, the enormous
amount of data in the given dataset gives an additional challenge to the
construction of the model, since both the allowed time and computing resources
are limited. The tuning of hyperparameters and the validation of possible
models and algorithms exacerbate the problem even more.

In this chapter, we will incrementally seek solutions to the encountered
challenges, demonstrate the methodology of developing the optimal model,
validate possible candidates, and eventually determine the final approach for
the task of this thesis.

3.1 The validation-holdout split

The dataset provided by ABB was stored in multiple files, where each file
contains the sensor data of one motor throughout one calendar month. The
motors belong to different ships, and each ship typically has three motors. For
each motor, the recording period lasted for 16 months, and the total number of
recordings (observations) of all motors is around 2.2 billion.

This chapter aims at developing an approach which fulfills the task of this
thesis. Therefore, it is necessary to use part of the dataset to validate possible
candidates, for instance, different model architectures, different hyperparameters,
and possible training algorithms.

Notice that we are given a large amount of data, namely around 2.2 billion. It
is hence reasonable to use half of the dataset as the validation set. Meanwhile,
the remaining half of the dataset will be used as the holdout (test) set, which is
used to evaluate our final model in Chapter 4.

Since the key method explored in this thesis is an LSTM, it is necessary to
maintain the connections of consequent recordings (observations) with respect
to time. We cannot randomly assign each observation into the validation set or
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3. Methodology development and validation

the holdout set, as it will destroy the time ordering. Therefore, we assign each
file randomly, instead of each observation, into one of these two sets.

However, it is worth noticing that several files belong to the same motor, or
the motors from the same ship. Therefore, if we randomly assign each file into
the validation set or the holdout set, the distribution of these two sets can be
different. We hence attempt to seek other solutions for the validation-holdout
split.

Recall that the recording of each motor lasted for 16 months and was therefore
stored in 16 files. A simple solution is to randomly assign eight files of each
motor into the validation set, and the remaining eight files into the holdout set.
The distribution and characteristics of both sets will then become similar to
each other, and the optimal approach determined by the validation set should
hence reserve a satisfying generalization.

3.2 The initial settings

In this section, we will introduce several initial settings of our approach for
convenience. If not specified otherwise, all related parameters and methods in
this thesis will by default follow the descriptions in this section.

3.2.1 The shapes of inputs and outputs of LSTM

In Section 2.4, we explained the structure of an LSTM model. According to the
definition, the input to an LSTM model is a 3-rank tensor X, which is given by

X = (X1, X2, ..., Xn),

where

Xi =


xi
xi+1
...

xi+t−1

 =


1 xi,1 · · · xi,p
1 xi+1,1 · · · xi+1,p
...

... . . . ...
1 xi+t−1,1 · · · xi+t−1,p

 for i = 1, 2, ..., n.

Here, xj,k is the k-th feature of the j-th observation. In this thesis, we refer
to each Xi within the tensor X as a time sequence of p features, and t, i.e.,
the length of each time sequence Xi, as the sequence length. Then, n is the
number of given time sequences in the dataset. If denote the number of given
observations as N , then n is given by n = N − t+ 1. This way, each column of
Xi is a time sequence of a given feature.

For an input tensor X, the corresponding output is given by

Y = (yt,yt+1, ...,yt+n),

where

yt+i =


yt+i,1
yt+i,2

...
yt+i,q

 .
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Here, q denotes the number of units of an LSTM, which corresponds to the
dimensionality of its output space. Note that although our target in this thesis
is a single value, i.e., the overall motor temperature, q does not have to be 1.
Instead, there are other specific output structures, such as a dense layer, which
convert the output of an LSTM into the actual target, namely the temperature
in such cases.

3.2.2 The model

Our model is initially elementary. It will incrementally become more complicated
and eventually turn into the final model. However, note that such a process is
bidirectional. Although certain procedures may have already been completed,
e.g., the feature selection, we can still withdraw our decisions afterwards, since
the optimal decision of a single procedure may not match the global optimization.

Specifically, the initial model is a 10-unit LSTM followed by a 1-node dense
layer. The number of units is the dimensionality of the output space of the
LSTM layer, while the number of nodes is the output dimensionality of the
dense layer. A dense layer can be regarded as one single layer of a feedforward
neural network. An important hyperparameter of our model is the sequence
length t of LSTM, which was introduced in Section 3.2.1. The initial setting of
t is 1800, according to prior physical knowledge and experiments. Details for
the default settings will also be further explained in Section 3.5.3.

3.2.3 The training and validation scenario

The model is designed to predict the overall temperatures of motors. The
corresponding performance is measured by the prediction error, namely the MSE.
However, it is worth noticing that, in practice, there are multiple meaningful
scenarios to apply the model, which correspond to different validation methods,
as stated in Chapter 4. Therefore, we here need to specify the scenario employed
in this chapter.

Since this thesis is most interested in training a general model which can predict
the temperature of any motor. We therefore optimize our model based on a
general scenario, where:

• For all 16 ships, all their motors have been working for a long time such
that there are enough historical data stored.

• We aim at developing a generic model which is trained by all available
data and can predict the temperatures of any of these motors.

As demonstrated in Chapter 4, the optimal model decided in this scenario shows
great promise of generalization to handle other practical scenarios. We are
hence confident about optimizing our model based on this assumed scenario.
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3.2.4 The training and validation procedure

As for the specific training and validation procedure, 5-fold cross-validation
(5-fold CV) is a reasonable choice. For the 5-fold CV, all available data will be
randomly divided into 5 folds of equal size. However, since LSTM also takes
into account historical observations rather than one current observation, we
have to pay more attention during the fold-splitting procedure. Let us first
introduce the definition of neighbor time sequences as a preparation.

Definition 3.2.1 (Neighbor time sequences). Two time sequences of equal length
t, i.e., Xi = (xi,xi+1, · · · ,xi+t−1)T and Xj = (xj ,xj+1, · · · ,xj+t−1)T , are
neighbor time sequences if and only if |i − j| < t. The neighbor time
sequences will comprise certain common observations. Specifically, they are
xi,xi+1, · · · ,xj+t−1 if i < j, or xj ,xi+1, · · · ,xi+t−1 if j < i.

During the 5-fold CV, each fold is once used as the test set, while the remaining
folds are used as the training set. Therefore, if neighbor time sequences are
located in different folds, one of them will once be in the training set whereas
the other will be in the test set. Furthermore, since neighbor time sequences
comprise certain common observation(s), they can be highly alike for our dataset.
Therefore, if distributing neighbor time sequences into different folds, we may
have similar observations in both the training set and test set. The results of
validation can then become overoptimistic.

For the 5-fold CV, the loss function is always the mean squared error (MSE),
i.e.,

Loss =
n∑
i=1

(yi − ŷi)2, (3.1)

where n is the number of observations, yi is the actual output, and ŷi is the
predicted output. The optimization algorithm for this loss function is a mini-
batch gradient descent algorithm with rmsprop. Rmsprop is an unpublished
adaptive learning rate method proposed by Tieleman and G. Hinton 2012, which
is widely in use as it provides a good performance.

While using the gradient descent algorithm, the gradients are calculated to
update the parameters of our model. Theoretically, the gradients are the
derivatives of the total loss of all given observations with respect to each
parameter. In practice, however, it is more beneficial to use the summed loss of
a partition of all observations. The size of this partition is a hyperparameter,
defined as the mini-batch size, which requires tuning. This algorithm is referred
to as mini-batch gradient descent (Bertsekas 1996).

However, when using the mini-batch gradient descent, we cannot exploit the
information of all given observations through one update. In order to make
the best use of all available information, we need to train the data through
iterations, until all observations have been used. A straightforward approach
is that the whole training set is divided into several partitions of equal size.
We will use these partitions as mini-batches and sequentially update our model
with them. Eventually, all these partitions will be used for training once. This
procedure is referred to as one epoch. In practice, one epoch is typically not
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enough for the training procedure to converge, and usually it is mandatory to
run multiple epochs. The number of epochs is also an essential hyperparameter,
which requires fine-tuning.

3.3 Simulated dataset for pretests

There are many ways to develop our model. Given the enormous amount of
data, the corresponding training time for each attempt at a model can be very
large, making the validation costly.

Also, it is difficult to forecast if the attempts will be meaningful and successful.
Therefore, it is useful to run the pretests and feasibility analysis before
conducting a full model validation. This section introduces an in-house simulator
with system dynamics similar to the problem at hand. It is hence possible
to produce simulated data that resemble some important characteristics and
properties of the real data provided by ABB.

The simulated data follows a simplified physical model of the motors studied in
this thesis, i.e., the thermal model of a wire. Therefore, it is simpler for our
model to achieve the best possible performance on the simulated dataset. It
indicates that, compared to the ABB dataset, fewer training data are required
when using the simulated dataset. It then becomes practically achievable to
pretest our models with much less training time. Furthermore, since the ground
truth of the simulated dataset is known, it is more convenient to analyse and
improve the model performance according to the test results on the simulated
dataset. As one more advantage of using the simulated data, it is also possible
to generate as much data as we want, which may help test the generalization of
models.

3.3.1 Physical model

The simulator is based on a simplified physical model of the motor, i.e., the
thermal model of a wire, such that there is only one feature in contrast to the
five features reported in the original ABB dataset. For convenience, we refer to
this single feature as the input and the target (temperature) as the output.

According to the physical model of electric marine motors provided by ABB,
the main heat in the motor is generated by the current in circuits. We hence
take the current as the input of this simulator. Assuming that the current is
constant from timepoint 0 to timepoint T , according to the Joule’s (first) law
(Young, Freedman and Ford 2013), the heat generated by the input (current)
during this period is

Qi =
∫ T

0
I2Rdt, (3.2)

and its derivative form is

dQi
dt

= I2R, t ∈ (0, T ), (3.3)
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where Q is the generated heat, I, R and t denote the current, resistance, and
time, respectively. I may not be a constant, but instead, can be a function of t
or other hidden variables.

Not all the generated heat is absorbed by the wire to increase its temperature.
Some of the heat will be released to the surroundings following the heat transfer
mechanism. Ignoring the radiation and natural convection effects, the heat
transferred to the surroundings can be calculated by Newton’s law of cooling
(Young, Freedman and Ford 2013)

Qo = −k
∫ T

0
(Tc − To)S dt. (3.4)

The derivative form is then given by

dQo
dt

= −k(Tc − To)S, t ∈ (0, T ). (3.5)

Here, k denotes the thermal conductivity, which is the measure of the wire’s
ability to conduct heat to the surrounding material, and Qo is the heat
transferred from the wire to the surrounding material.

We are now able to derive the heat absorbed by the wire as

Q = Qi −Qo

=
∫ T

0
I2Rdt+ k

∫ T

0
(Tc − To)S dt, (3.6)

with its derivative form given by

dQ

dt
= I2R+ k(Tc − To)S, t ∈ (0, T ). (3.7)

The derivative of its temperature To with respect to time t can then be given by

dTo
dt

= I2R+ k(Tc − To)S
mc

, t ∈ (0, T ), (3.8)

where m is the mass of the wire, and c is the specific heat capacity of the wire.

The relationship between the input, i.e., the current I, and the output, i.e.,
the temperature To, is demonstrated by Equation (3.8), which enables the
implementation of the simulator.

The initial condition assumes that there is no current flowing through the wire
at t = 0 and the temperature of the wire To is equal to an initial state ti. Given
the initial condition, the differential Equation (3.8) can be solved numerically
to obtain the changes of wire temperature with time for 0 < t < T , namely

To = Tc + I2R

kS
+ (Ti − Tc −

I2R

kS
)e−KSt

mc , t ∈ (0, T ). (3.9)
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3.3.2 Implementation

The current model assumes that I is constant from time 0 to T , whose transient
state is governed by Equations (3.8) and (3.9). For a navigating ship, the current
running through the wire varies with time. Recall that the data were recorded
per second. Therefore, it is reasonable to assume that I is constant during each
second. Defining the time interval between recordings as the sampling time h,
Equation (3.8) can be approximated by Newton’s Method (Solomon 2015), that
is

To,k − To,k−1

h
= I2R+ k(Tc − To,k)S

mc
, for k = 0, 1, 2, ... (3.10)

For convenience, we rewrite mc
kS as τ , R

kS as α, and To,k as yk. Equation (3.10)
can then be rewritten as

yk − yk−1

h
= I2α+ Tc − yk

τ
. (3.11)

It can be arranged to

yk = τ

τ + h
yk−1 + h

τ + h
(I2α+ Tc). (3.12)

The notation can be further simplified by assuming α = 1 and Tc = 0, which
leads to

yk = τ

τ + h
yk−1 + h

τ + h
I2. (3.13)

For convenience and simplicity, the input can be assumed as a range of random
step functions that follows the Poisson process, and we consider only two
alternative values for the input I, i.e., I = 1 or I = 0. The corresponding
outputs can then be calculated by Equation (3.13).

Notice that τ and h are still unknown and need to be determined. In order to
resemble the original ABB dataset, which were recorded at 1 Hz, the sampling
time h = 1 second is used. To find the value for τ , it is useful to study it from
another aspect, which is described below as a preparation.

The current output (temperature) at time step k is influenced by input at time
step k and the output at time step k − 1, and the output at k − 1 is further
influenced by the input at time step k − 1 and the output at time step k − 2,
and so on. One can then infer that all historical inputs will eventually influence
the current output.

Consider an extreme situation in which the input and output at t ≤ 0 are 0 and
the input becomes 1 when t > 0. According to Equation (3.13), the changes of
output with time are shown in Figure 3.1. The output evolution indicates that
95.02% of the temperature increase has been achieved after a period of 3τ . Here,
95.02% is an approximated value of 1− e−3, calculated by Equation (3.9) with
Ti = Tc = 0, I2α = I2R

kS = 1, and t = 3τ = 3 · mckS . Based on this observation, it
can be assumed that the influence of historical input on the output is negligible
after 3τ .
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Figure 3.1: Outputs of the simulator. The inputs and outputs
are both 0 when t ≤ 0, and the inputs are 1 when t > 0. The
x-axis represents the simulation time, and the y-axis represents
the value of inputs and outputs. Note that the x-axis is denoted
by t times τ , where τ is a predefined parameter and is equal to
600 for this plot.

According to the information provided by ABB, the historical observations
during the past 1800 seconds are considered as correlated with the current
prediction. The details will be further discussed in Section 3.5.3. Until then, we
can start with an ad hoc assumption 3τ = 1800, i.e., τ = 600, for the simulator.
After obtaining the parameters of sampling time h = 1 and τ = 600, we can
now implement the simulator and obtain the simulated data which are used
along with the ABB data in the following developments and considerations.

3.4 Data preprocessing

Multiple universal preprocessing methods have been introduced in Section 2.1,
while in this section, we aim at proposing a concrete approach, which can
be practically implemented on the ABB dataset and can deliver a satisfying
performance.

3.4.1 Preprocessing

The dataset provided by ABB was divided into separate files, where each file
contains the corresponding recordings of one motor from one ship throughout
one calendar month.

The ships that are available in the data set were not always in the state of
navigation. There hence exist blank recordings in the recorded data. The
data provider, ABB, has already transformed these blank recordings into N/A
values. There are 3 types of files with respect to the blank recordings. Some
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files exclusively contain continuous recordings as shown in Figure 3.2, some
comprise both valid recordings and invalid N/A values as shown in Figure 3.3,
and the remaining ones only consist of N/A values.

Figure 3.2: A continuous temperature recording of one motor
during one month. The y-axis denotes the temperatures (degree
Celsius), and the x-axis denotes the time (second). Here, U1,
U2, V 1, V 2, W1, and W2 are the temperatures detected by
six different sensors. These sensors are located in six different
places of the same motor. There is no evident difference between
them.

The files with continuous recordings are already well-structured, while the files
without any valid data cannot be utilized in this thesis and are hence excluded
from any further analysis. Efforts are only made to study the files that contain
both valid and invalid N/A values. The invalid recordings cannot be simply
deleted from the dataset. This is because, as described in Section 2.4, the LSTM
emphasizes the connection between the data at adjacent time points. After
removing these invalid N/A recordings, one needs to ensure that the recordings
before each N/A value will not be connected to the recordings after these N/A
values with respect to time.

According to Section 1.2 and Section 1.3, 5 features were collected from the
motors, i.e., CI (the inlet cooling air temperature/◦C), CO (the outlet cooling
air temperature/◦C), PO (the power of the motor/% of maximum nominal
power), SP (speed of the motor/% of maximum nominal speed), and TO
(mechanical torque /% of maximum nominal torque).

The given dataset was also found to comprise negative recordings, which occupy
10.52% of the data. The negative recordings indicate that the corresponding
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Figure 3.3: A temperature recording with blanks of one motor.
The recording was recorded during one month. The blanks exist
because the motor was not always working, i.e., the ship was not
always navigating. The notations here have the same meanings
as in Figure 3.2.

motor reversed its rotation. Because the current model aims to predict the
temperatures of motors at a normal navigation state, these negative recordings
might worsen the model behaviour.

Intuitively, it may be assumed that the value of negative recordings in our
analysis can be negligible so that they can be excluded from the training data.
However, as the mean squared errors shown in Table 3.1, simple removals of
negative values tend to worsen the performance of the model.

As the LSTM can benefit from these negative recordings, we consequently
suggest not to ignore these negative recordings, but include them in all analyses
conducted in this thesis.

MSE (LSTM) MSE (Baseline)
With negative recordings 60.94 76.33

Without negative recordings 87.22 92.54

Table 3.1: MSEs with and without removing negative recordings.
Here, the baseline model is the linear model.

Furthermore, the given dataset also contains 6 different targets, i.e., temperat-
ures. They were collected through sensors located in two separate triplets of
a motor, and are referred to as U1, U2, V 1, V 2, W1, and W2. However, as
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shown in Figures 3.2 and 3.3, these temperatures have no clear difference with
respect to their patterns and values.

Figure 3.4: Correlation of the given targets (temperatures)

Figure 3.4 shows the scatter plots of each pair of the six temperatures, which
indicates that there exists a strong linear correlation between these temperatures.
It is therefore of little significance to attempt to predict all 6 targets. We instead
transform the targets into their average values T , i.e.,

T = U1 + U2 + V1 + V2 +W1 +W2

6 . (3.14)

3.4.2 Exploratory analysis

Exploratory analysis usually contributes to statistical models, as one can select
appropriate methods and features based on the analysis. However, exploratory
analysis may be less relevant for neural networks, because it is typically difficult
to interpret a neural network and select among different methods based on
their functionalities. Nevertheless, the analysis can always help understand the
characteristics of the data and is hence still valuable.

Since the given ABB dataset is not specifically made for this thesis, it is possible
that some features can be redundant. We hence illustrate the correlations
between each two features using a scatter plot, as shown in Figure 3.5.
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Figure 3.5: Correlation between the given features.

Considering its physical meaning, we temporarily neglect the outlet cooling
air temperature (i.e., CO) in this section. The corresponding details will be
discussed in Section 3.4.3. Regarding the remaining 4 features, the correlation
indicates that CI does not provide redundant information, as its correlations
with other features are weak. However, there seems to be a strong linear
correlation between TO and PO, a non-linear correlation between TO and SP,
and a non-linear correlation between PO and SP. From a statistical perspective,
it is reasonable to consider removing TO or PO, since they are likely to provide
equivalent information.

Removing one of these two features could benefit the performance of a linear
model. However, according to the corresponding results shown in Table 3.2,
the LSTM model seems to be robust enough even if including the redundant
features. Also, it can be seen that the redundant features can still improve the
performance of an LSTM.

3.4.3 Feature selection

There are 5 features in the ABB dataset, i.e., CI, CO, SP, PO, and TO.
However, it is worth noticing that CO, i.e., the temperature of output cooling
air, differs substantially from the others. According to the causality, CO is
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Features LSTM Baseline
PO SP CI 61.27 76.23
TO SP CI 63.54 82.56

PO TO SP CI 56.77 87.12

Table 3.2: MSE for different feature combinations. The baseline
model here is a linear model.

mostly influenced by the targets (the temperatures of motors) through the air
circulation system, while the targets are not influenced by CO. Furthermore,
as illustrated in Figure 3.6, there is an evident linear correlation between CO
and other targets.

Figure 3.6: Correlation between the given targets (temperatures)
and CO.

Note that the prediction model in this thesis should be used to detect overheating
events before the temperature sensors detect them. Therefore, involving CO
into our model will not contribute to better overheating detection, since the
predicted overheating revealed by CO will be detected in advance by the sensors.
In other words, the overheating alarms triggered by CO would have already
been reported by the temperature sensors. It is therefore meaningless to take
into account CO in the present model. The number of features can then be
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reduced to four, i.e., CI (cooling air input), PO (power), SP (speed) and TO
(torque).

As for these four features, it is difficult to eliminate any of them according to
the prior knowledge given by ABB. Furthermore, it is also shown in Table 3.2
that the LSTM is robust against redundant features and can even benefit from
them. Therefore, the feature selection based on the exploratory analysis does
not improve the performance of our LSTM model. This thesis hence validates
all possible feature combinations, since there exist merely 4 + 6 + 4 + 1 = 15
combinations for the four selected features.

Features MSE
PO 84.59
CI 127.20
SP 92.73
TO 89.21

PO CI 65.29
SP CI 66.36
TO CI 67.65
PO SP 72.55
PO TO 69.32
TO SP 65.08

PO TO CI 60.72
PO SP CI 58.89
TO SP CI 61.34
PO TO SP 68.57

PO TO SP CI 57.30

Table 3.3: MSEs of all possible feature combinations using the
LSTM model. The MSE of the baseline model is 78.44.

According to Table 3.3, the performance of the combination CI, PO, TO, and
SP are found to be superior to others, which is henceforth regarded as the
optimal choice in this thesis.

3.4.4 Standardization

We have introduced 3 types of preprocessing methods in Section 2.1. Among
these methods, normalization is typically applied to tasks which are based on
distance metrics, e.g., clustering, and it would therefore not be beneficial in our
situation. While examining the remaining preprocessing methods, the pretested
performance on the simulated dataset is shown in Table 3.4.

The mean squared errors in Table 3.4 indicate that the min-max scaling provided
the best performance, and the performance of all preprocessing methods is
able to surpass that of the baseline model. However, it can be seen that the
differences between the MSEs of these methods are not significant. We hence
validate all preprocessing methods in Table 3.4 on the original ABB dataset,
and their corresponding mean squared errors are shown in Table 3.5. The MSE
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Preprocessing method MSE(LSTM)
Robust scaling 0.0133

Min-max scaling 0.0123
Max absolute value scaling 0.0132

Standardization 0.0127

Table 3.4: MSE of different preprocessing methods on the
simulated dataset. The MSE of the baseline model, namely the
linear model, is 0.0215.

comparison shows that standardization is the optimal choice for the current
model on the ABB dataset.

Preprocessing method MSE(LSTM)
Robust scaling 96.77
Min-max scaling 68.35

Max absolute value scaling 75.66
Standardization 59.20

Table 3.5: MSE of different preprocessing methods on the ABB
dataset. The employed features are PO, TO, SP, and CI. Here,
the MSE of the baseline model, i.e., the linear model, is 77.64.

3.4.5 Shuffling

As described in Section 1.3, the order of the ABB data is arranged according
to their temporal sequence. It is perceivable to train the model based on the
original data sequence. However, always training the model with this given
order may lead to a poor performance.

Recall that our model is a multi-layer neural network, and its loss function is
the mean squared error (MSE). Therefore, this loss function is neither convex
nor concave with respect to the parameters (H. Zhang, Shao and Salakhutdinov
2019). It is hence impossible to guarantee that our loss function will converge
to a global minimum through training, but instead, it will most likely converge
to a local minimum.

The performance can differ largely among local minimums, and some local
minimums may provide much poorer performance than the others (Choromanska
et al. 2015). It is crucial for the model to have a reduced likelihood of being
trapped into these local minimums. Recall from Section 3.2.4 that there are
typically multiple epochs needed. For the gradient descent algorithm employed
in this thesis, a static order of training data will lead to a static loss surface for
different epochs. The search for optimal parameters can then be trapped into
a local minimum with unacceptable performance, although there may exist a
better one in close proximity.

Shuffling is a simple but effective approach to solve this issue. The concept is
to shuffle the original order into random ones for different epochs so that the
loss surfaces of different epochs can vary. Theoretically, the search for optimal
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parameters can be made more successfully, and one can avoid being stuck in a
local minimum with poor performance. As a result, shuffling can often provide
a better performance than keeping the original order (Meng et al. 2019).

To evaluate the effectiveness of shuffling, attempts were made to pretest the
shuffling on the simulated dataset. The corresponding results are tabulated in
Table 3.6, which shows that shuffling indeed enhances to the model performance.

MSE(LSTM)
Shuffling 0.0126

Without shuffling 0.1277

Table 3.6: MSEs for simulated dataset with and without
shuffling while training.

Furthermore, as described in Section 3.3.2, the inputs of the simulated dataset
are randomly generated in accordance with the Poisson process. Therefore, on
the original ABB dataset, the improvement brought by shuffling is expected to
be even larger. As shown in Table 3.7, shuffling is indeed found to be an even
more effective approach when applying to the ABB dataset.

MSE(LSTM)
Shuffling 66.73

Without shuffling 217.42

Table 3.7: MSEs for ABB dataset with and without shuffling
while training. The employed features are PO, TO, SP, and
CI. The preprocessing method is standardization. The MSE of
the baseline model is 76.71.

3.5 Approach for handling large amount of data

We are given over 1 billion observations in the validation dataset, but rather
limited time and computing resources. Therefore, one main challenge in this
thesis is to develop an efficient approach which is capable of handling the
tremendous amount of data.

In general, the successful development of a neural network model requires a
considerable number of experiments, which are crucial for the model to search for
the optimal configurations and hyperparameters. In this thesis, each experiment
typically consists of one training procedure and one corresponding validation.
The execution of one experiment usually requires a long computing time, which
makes it impossible to conduct all the desired experiments in the permitted
time of this thesis. It is hence essential to ensure that the time cost for each
experiment is affordable.

Furthermore, in view of the available computing resources, simultaneously
loading 1 billion observations into the memory (RAM) is infeasible. Therefore,
we have to divide 1 experiment into several parts, while trying to gain a similar
conclusion or performance.
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3.5.1 Data loading and training

Following the initial settings obtained in Section 3.2, a general algorithm for
data loading and training is described as in Algorithm 1.

Algorithm 1: A general algorithm
1. Load all the data into memory ;
2. Preprocess the data without shuffling ;
3. Set i = 0, and denote the number of epochs as nepoch;
while i < nepoch do

4.1. Shuffle the data.;
4.2. Train our model for 1 epoch ;
4.3. Set i = i+ 1 ;

end

However, considering the total size of over 1 billion observations and the limited
amount of memory available (203 GB RAM), it is hence only viable to load a
partition of the training set each time. Therefore, the corresponding training
procedures need to be incremental. Below summarizes an incremental algorithm,
referred to as Algorithm 2.

Algorithm 2: An incremental algorithm
1. Divide all training data into n partitions of equal size;
2. Set i = 0;
while i < n do

3.1. Load the i-th partition into memory ;
3.2. Preprocess the data without shuffling ;
3.3. Set j = 0, and denote the number of epochs as nepoch;
while j < nepoch do

3.4.1. Shuffle the data.;
3.4.2. Partially train our model on the data for 1 epoch;
3.4.3. Set j = j + 1 ;

end
3.5. Release only the memory loading this partition ;
3.6. Set i = i+ 1 ;

end

One may notice that the shuffling procedure for Algorithm 1 and Algorithm
2 are implemented differently. In Algorithm 1, the data are shuffled within the
whole training set, while in Algorithm 2, only the data within one partition
of the training set are shuffled each time. For clarity, we define the shuffling
in Algorithm 1 as a global shuffling and the shuffling in Algorithm 2 as a
local shuffling.

As stated previously, the loss function in this thesis must be non-convex. It is
then proven that the convergence rate for Algorithm 2 can be significantly
smaller than that for Algorithm 1, and the difference between convergence
rate is determined by the number of partitions (Meng et al. 2019), i.e., n in
Algorithm 2.
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It is impractical to use Algorithm 2 due to the lower convergence rate and
increased time cost. We hence develop a more efficient algorithm, referred to
as Algorithm 3, where simulated global shufflings are used instead of local
shufflings in each partition.

Algorithm 3: An incremental algorithm with insufficient global shuffling
1. Divide all the training data into n partitions of equal size;
2. Create n empty files;
3. Set i = 0;
while i < n do

4.1. Load the i-th partition into memory ;
4.2. Preprocess this partition without shuffling ;
4.3. Store each observation into a random file that we created before;
4.4. Set i = i + 1 ;

end
5. Set i = 0;
while i < n do

6.1. Randomly load an unused file into memory ;
6.2. Set j = 0, and denote the number of epochs as nepoch;
while j < nepoch do

6.3.1. Shuffling the data.;
6.3.2. Partially train our model on the data for 1 epoch;
6.3.3. Set j = j + 1 ;

end
6.4. Set i = i + 1 ;

end

The shuffling which produces a permutation following a uniform distribution is
defined as an ideal (sufficient) shuffling, while the other shufflings are defined
as insufficient shufflings (Meng et al. 2019). Considering it is impractical to
generate an ideal global shuffling,Algorithm 3 therefore employs an insufficient
global shuffling. Although it will typically provide a worse performance than the
ideal shuffling, the early studies found that the difference between insufficient
shuffling and ideal shuffling can be insignificant with respect to the converging
rates and performance (Meng et al. 2019).

Theoretically, each time a model is trained, one needs to carry out the whole
procedure of Algorithm 3. The future training also have to start over from
the beginning of Algorithm 3. Here, it is worth noticing that a considerable
amount of time is spent in preprocessing and storing the loaded data, i.e., from
step 1 to step 4 in Algorithm 3. Recall that the importance of shuffling
is to ensure significantly different loss surfaces for different training epochs.
Therefore, it is wise to reuse those stored preprocessed data several times for
future training, as it will not lead to similar loss surfaces.

Using the simulated dataset, the pretests are carried out for these three different
algorithms. Their corresponding mean squared errors and the mean epochs
needed for convergence are tabulated in Table 3.8. Here, the number of epochs
needed for convergence is used to approximate the cost of training time.

38



3.5. Approach for handling large amount of data

Algorithm average number of epochs before convergence MSE
1 6 0.0126
2 11 0.0183
3 8 0.0152

Table 3.8: MSEs of different training algorithms on the simulated
dataset using LSTM. The MSE of the baseline model is 0.0215.

As expected, Algorithm 1 provides the best performance regarding both the
number of epochs and the MSE. The performance of all algorithms surpass
that of the baseline model. The improved performance infers to extend the
algorithms to the original ABB dataset. However, as stated before, it is im-
possible to train the model with Algorithm 1 on the ABB dataset, because our
available memory (RAM) cannot support such an algorithm. The corresponding
results are marked as N/A, and all other MSEs are tabulated in Table 3.9.

Algorithm average number of epochs before convergence MSE
1 N/A N/A
2 26 89.63
3 6 61.55

Table 3.9: MSEs of different training algorithms on the original
ABB dataset using LSTM. The MSE of the baseline model is
78.44.

These pretests and validation have suggested the success of Algorithm 3, and
it is hereafter applied in the model developed in this thesis.

3.5.2 Test procedure

Following the same philosophy as in Section 3.5.1, our test procedure also needs
to be incrementally conducted. The exception is that no dynamic loss surfaces
need to be accounted for, as they do not exist in the test procedure. Inspired
by Section 3.5.1, a simple but efficient algorithm is developed as Algorithm 4.

Algorithm 4: An incremental test algorithm
1. Divide all the test data into n partitions of equal size;
2. Set i = 0;
while i < n do

3.1. Load the i-th partition into memory ;
3.2. Test our model with this partition;
3.3. Record the corresponding mean squared error ;
3.4. Release only the memory loading this partition ;
3.5. Set i = i+ 1 ;

end
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3.5.3 Mini-Batch size, epochs and sequence length t

As described before, developing a model requires a considerable number of
experiments, and each experiment consists of one training procedure and one
corresponding validation procedure. The required time and memory for the
training are dramatically larger than those for the validation. Therefore, one
can ignore the expenses incurred by the validation when attempting to reduce
the overall computing time and memory.

Regarding the training procedure, there exist 3 hyperparameters which have
strong effects on the required time and memory. They are the size of mini-batch,
the number of epochs, and the sequence length t.

Mini-batch size is a hyperparameter which is introduced by the mini-batch
gradient descent. As described in Section 3.2.4, the mini-batch gradient descent
is a gradient descent algorithm, which updates the parameters of the model
according to the gradients calculated by the summed loss of a partition of
all observations (Bertsekas 1996). It compromises the batch gradient descent,
which employs the total loss of all observations instead of the summed loss,
and the stochastic gradient descent (SGD), which employs the loss of a single
observation.

A larger mini-batch size leads to more memory demand and less computing time
for each epoch. We can hence achieve a well-balanced method to accommodate
the time and memory constraints by tuning the mini-batch size.

There still exist two other hyperparameters, i.e., the number of epochs and
time sequence length t, which also have an impact on the required time and
memory. Regarding the sequence length t, the input of an LSTM model is a
3-rank tensor X as described in Section 3.2.1,

X = (X1, X2, ..., Xn),

where

Xi =


xi
xi+1
...

xi+t−1

 =


1 xi,1 · · · xi,p
1 xi+1,1 · · · xi+1,p
...

... . . . ...
1 xi+t−1,1 · · · xi+t−1,p

 for i = 1, 2, ..., n.

Here, xj,k corresponds to the k-th feature of the j-th observation. We refer to
Xi within the tensor X as a time sequence of p features and t as the sequence
length. Then, n is the number of given time sequences in the dataset. For
an LSTM model, the sequence length t determines the number of historical
observations which are considered as correlated with the current prediction.
Notice that a larger sequence length will significantly increase the size of the
input tensor X, and will hence also increase the corresponding required memory
(RAM) and the cost of computing time.

After introducing the functionalities of these 3 hyperparameters, i.e., mini-batch
size, the number of epochs, and sequence length t, we will determine their
optimal values.
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According to the information given by ABB, the historical observations within
the past half an hour can be considered as informative for the current prediction,
and it is reasonable to assume that the influence of earlier observations is
negligible. Considering our observations were recorded every second, the starting
assumption for the optimal sequence length t will be 1800, i.e., the number of
recordings (observations) in half an hour.

However, it cannot be ensured that the optimal sequence length t indeed
corresponds to this 1800-second period. We hence carry out a pretest on the
simulated dataset. The corresponding performance is shown in Figure 3.7.

Figure 3.7: MSE for different sequence lengths t on the simulated
dataset. Setting 3τ = 1800 and h = 1 ensures that the simulated
data has the same characteristics as the original ABB data.
Details were discussed in Section 3.3.

Figure 3.7 shows that the increase of sequence length t improves the model
performance, and the MSE reaches its minimum when t ∈ [1600, 2100]. Our
previous assumption of sequence length, t = 1800, can therefore be a reasonable
choice, even if it is also implied that there may still be room for further fine-
tuning.

Assuming t = 1800 produces a satisfying performance, the hyperparameters
of mini-batch size and the number of epochs are first discussed and tuned.
Afterwards, we revisit and fine-tune the sequence length t. In short, the
following two-step tuning procedure is conducted:

1. First, tune the mini-batch size and the number of epochs for a constant
sequence length, i.e., t = 1800.

2. After retrieving the optimal mini-batch size and epoch number, further
tune the sequence length t with these optimized hyperparameters.

41



3. Methodology development and validation

Note that setting t = 1800 requires a large amount of memory and time for
training. It is hence impossible to train the model with all given observations
in the validation set, i.e., over 1 billion. For practicality, we have exploited
approximately 1

10 of all observations in the remaining parts of this section. Note
that it is essential to maintain the order of observations in a time sequence with
respect to time. Therefore, we randomly select the time sequences instead of
selecting each single observation. Less training data may lead to a worse model
performance. However, the number of observations is still over 100 million,
and it is reasonable to assume that they can represent the whole dataset. The
decisions made by these observations can therefore still be considered as accurate
and conclusive.

The optimal number of epochs is obtained by a dynamic algorithm, i.e., the
early stopping algorithm. The given training set is split into two sets, namely a
new training set and a validation set. Initially, an excessively large value is set
as the number of epochs. As the training and validation proceed, if a pre-defined
criterion is reached, the training process will stop before completing all epochs.
The criterion selected in this study is the improvement of the validation error.
A detailed description is given below as in Algorithm 5.

Algorithm 5: An early stopping algorithm for training
1. Denote the maximal possible number of epochs as n and set a threshold
σ ;

3. Set i = 0 ;
while i < n do

4.1. Randomly split the given training set into a new training set and a
validation set. ;

4.2. Train our model on the new training set for 1 epoch ;
4.3. Test our model on the validation set and record the corresponding
mean squared error as ei;
if i > 0 and ei−1 − ei < σ then

5.1. Stop training.;
else

5.2. Set i = i+ 1;
end

end

For the task and the dataset considered in this thesis, it was found that all
training procedures can converge before 200 epochs. Therefore, an appropriate
value of n in Algorithm 5 is set as 200, which accompanies with the threshold
σ = 0.0005. Note that 0.0005 is the change of MSE in one iteration,
which is calculated by the standardized values. An 0.0005 improvement of
MSE approximately represents an improvement of 0.1 degree Celsius for the
temperature predicted by the model. Recall that the objective of this thesis
is to forecast the possible occurrence of overheating through predicting the
temperature of motors. Therefore, it is not worthwhile investing more time or
computing resources in pursuing higher accuracy than measurement uncertainty.

By means of the dynamic algorithm (Algorithm 5) and a constant sequence
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length t = 1800, it becomes viable to tune the remaining hyperparameter,
i.e., mini-batch size. For each mini-batch size, the model is trained on a given
number of observations using the given computing resources. The corresponding
training time for different mini-batch sizes is shown as in Figure 3.8. It is shown
that the training time of our model decreases as the mini-batch size increases.
For the given time of this thesis, it is reasonable to consider 50 minutes as the
maximal acceptable time, which means that the mini-batch size should not be
smaller than 128.

Figure 3.8: Used time before converging for different mini-batch
sizes. Approximately 15 million observations are employed. All
results are produced through a 5-fold cross-validation. The
computing resource and hardware specifications can be found
in Section 1.5.

However, different mini-batch sizes may also provide different model performance.
A large mini-batch size may lead to a poor performance for certain tasks and
models, since the corresponding training procedure will more likely converge
to a sharp minimum rather than a flat one, which will reduce the ability of
generalization of a model (Keskar et al. 2017). In order to verify that different
mini-batch sizes can lead to different performance, we have carried out a pretest
by using the simulated data. The corresponding mean squared errors (MSE)
for different mini-batch sizes are shown in Figure 3.9. The MSE reaches its
minimum, namely 0.0022, when the mini-batch size is set 16.

The figure indicates that different mini-batch sizes indeed result in different
model performance. Therefore, it is important to also assess our model using
different mini-batch sizes. For consistency, the same mini-batch sizes used in
Figure 3.8 are investigated, and the corresponding model performance is shown
in Figure 3.10.
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Figure 3.9: MSE for different mini-batch sizes on the simulated
dataset. The MSE reaches its minimum, namely 0.0022, when
the mini-batch size is set 16.

Figure 3.10: MSE for different mini-batch sizes on the ABB
dataset. The MSE reaches its minimum, namely 60.89, when
the mini-batch size is set 1024.
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Among the mini-batch sizes used in Figure 3.8, the required training time is
found to be acceptable if the mini-batch size is larger than 128. Furthermore,
according to the results shown in Figure 3.10, we can conclude that 1024 is the
optimal choice for the mini-batch size, which corresponds to a MSE of 60.89.
Notice that the mini-batch sizes adopted in this thesis are typically multiples
of 8. Such values are used to prepare for potential further optimization related
to the use of parallelization and GPU.

According to the prior knowledge provided by ABB, this section assumed that
the optimal sequence length t was 1800. However, as stated before, there can
still be room for further fine-tuning. This section will then aim to evaluate the
assumption’s validity and search for a possible better value for the sequence
length t. An approach that can be readily taken is to validate multiple different
sequence lengths, until a local minimum with respect to MSE appears. The
corresponding MSEs for different sequence lengths are shown in Figure 3.11.
Here, the early stopping algorithm, i.e., Algorithm 5, is applied, and the
mini-batch size is set to 1024.

Figure 3.11: MSE for different sequence lengths on the ABB
dataset. The MSE reaches its minimum, namely 57.84, when
the sequence length is set 2000.

As expected, the MSE does reach its minimum around the sequence length
t = 1800. However, it is also revealed that t = 2000 can deliver an even better
performance, namely a MSE of 57.84. The optimal sequence length is thus
determined as 2000 in replacement of 1800.

In summary, throughout the studies described in this section, it is concluded
that the optimal mini-batch size is 1024, and the optimal sequence length is
2000. Furthermore, the optimal number of epochs is determined by an early
stopping algorithm, i.e., Algorithm 5.
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According to the findings from this section, the settings of our simulator are
updated. The parameter τ is set to 666, in order to make sure that 3τ ≈ 2000.
The other parameters are kept unchanged.

3.6 Architecture

According to Section 3.2.2, the current study has been built upon a 10-unit
single-layer LSTM followed by a 1-node dense layer. Despite its successes, it is
conceivable that some adjustment of the default settings can further improve
the performance of this model.

The optimal sequence length t = 2000 requires more training time and memory
than what are available, which has hence exhibited a large bottleneck for the
current model to exploit all given data. In this section, we aim to improve the
current model performance by re-assessing its architecture.

For simplicity and clarity, the complete architecture of our model is divided
into three parts: the front structure, the LSTM structure (core structure), and
the output structure. Note that we will apply the optimal hyperparameters,
training and validation algorithms, and preprocessing methods which were
determined previously.

3.6.1 Front structure

As described in Section 3.5.3, the sequence length represents the number of
historical observations that can influence the current prediction. In this thesis,
the optimal sequence length, t = 2000, infers that the historical status of a
motor in the past 2000 seconds are considered as influential on the current
motor temperature.

The goal hence becomes to search for an alternative structure which can provide
the same information as the sequence length t = 2000, and simultaneously lead
to a reduced training time.

This section focuses on downsampling methods, as their functionality matches
our objectives, namely reducing the training time while retaining as much
information as possible. Prior to a detailed discussion, let us introduce the
definitions for the primitive sequence length and downsampling rate.

Definition 3.6.1 (Primitive sequence length and downsampling rate). Assume
that a downsampling method a is applied. The method a takes n observations
from the original ABB dataset, and produce n′ observations as the downsampled
data, i.e.,

a := f(x1, x2, ..., xn) = (x′1, x′2, ..., x′n′), (3.15)
where x are original observations from the ABB dataset, and x′ are downsampled
observations. Here n′ < n holds, and the downsampling rate b is given by

b = n

n′
. (3.16)

Assume that an LSTM structure with sequence length t uses the downsampled
observations provided by method a with downsampling rate b as input. The
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primitive sequence length tp is then given by

tp = t · b = t · n
n′
, (3.17)

which represents the number of used observations before downsampling.

One downsampling method is sampling. For the dataset considered in this
thesis, the given observations were recorded at a frequency of 1 Hz as illustrated
in Figure 3.12. Considering the physical circumstances of a motor, the close
recordings (observations), for instance, x1 and x2 in Figure 3.12, may be highly
similar. Therefore, the information provided by recordings which are close in
time may also be similar. One may then ignore b− 1 recordings among each b
recordings, expecting not to lose much information that exists in the recordings.
A schematic is shown in Figure 3.13.

Figure 3.12: An illustration of the original recording procedure.
The frequency of recordings here is 1 Hz.

Recall that the input 3-rank tensor X of an LSTM is given as

X = (X1, X2, ..., Xn),

where

Xi =


xi
xi+1
...

xi+t−1

 for i = 1, 2, ..., n. (3.18)

However, after sampling, the input tensor will become

X ′ = (X ′1, X ′2, ..., X ′n′),

where

X ′i =


x′i
x′i+1
...

x′i+t−1

 =


xbi−1
xbi−1+b

...
xbi−1+b(t−1)

 for i = 1, 2, ..., n′. (3.19)
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Figure 3.13: An illustration for the sampling method, based on
the original recordings. For every b recordings, only 1 recording
is now selected. The sampling is therefore also equivalent with
increasing the frequency of recording into b Hz

Here, n′ is the number of time sequences after downsampling in the given
dataset.

As discussed earlier, the front structure should transmit the information during
the past 2000 seconds to the LSTM structure. For convenience, we denote the
floor function as b·c. Then, after sampling, one only needs to take into account
b 2000

b c observations instead of involving 2000 observations.

After sampling, a natural assumption for the optimal sequence length is then
t = b 2000

b c. However, the sampled dataset may have different characteristics in
comparison with the original ABB dataset. After sampling, it is not of certain
that t = b 2000

b c, i.e., the primitive sequence length tp = b× t = 2000, provides
the optimal performance, or at least an acceptable performance. Therefore, it
is necessary to carry out a pretest on the simulated dataset to verify whether
tp = 2000 is a suitable choice.

During the pretest, a grid search is run with respect to b and t. The test model
is a 10-unit LSTM followed by a 1-node dense layer. The 5-fold cross-validation
is applied here, and the corresponding results are shown in Figure 3.14.

According to the figure, the minimum for a given b is always located around
the curve tp = 2000. It indicates that, for the simulated dataset, t = b 2000

b c
can be regarded as the optimal choice. The same grid search on the original
ABB dataset is impossible due to the demanded long training time. However,
because the simulated dataset follows a physical model similar to the ABB
dataset and has the same characteristics, it is then reasonable to also regard
t = b 2000

b c as a suitable setting for the original ABB dataset.

Note again that, for the sequence length t = 2000, it is only possible to train
the model with a limited amount of data within the feasible time. Reducing
the sequence length from t = 2000 to t = b 2000

b c will shorten the training
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Figure 3.14: MSE for different downsampling rates (b) and
different sequence lengths (t) on simulated data. Notice that b
= 1 represents no sampling. The orange line is a reference line
on the b-t surface. This line helps illustrate our assumption of
the optimal tp, i.e., tp = 2000. MSE for the baseline model is
0.0201.

time, and one can then use a larger amount of data for training. The sampling
would therefore hopefully improve the performance of our model. As expected,
although the sampled b 2000

b c observations can to some extent represent the
original 2000 observations, some information in small-scale patterns would be
lost after sampling. The model performance will only be improved if the lost
information after sampling is less valuable than the gained extra information
due to the reduced training time.

The sampling also introduces a new hyperparameter b, which refers to the
duration of sampling as shown in Figure 3.13. As b increases, the duration
of sampling also increases, while the sequence length t = b 2000

b c and the
training time decreases. Meanwhile, the number of omitted observations during
sampling increases, and the number of new observations gained due to the
reduced training time also increases. Correspondingly, the information lost after
sampling will increase, while the information gained due to sampling will also
increase. These trends indicate that there may exist an optimal b, which gives
the best possible performance by balancing the amount of lost information and
gained information.

One may notice that, in Figure 3.14, there is no significant difference among
different minimums for different b. However, as stated in Section 3.3.2, the
simulated dataset used to produce Figure 3.14 follows a simplified ideal physical
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model. Therefore, non-optimal b-s can still provide a best possible performance,
and a better b cannot further improve it. Nevertheless, the ABB dataset recorded
by ships contains instrumental and measurement noises, hidden confounding
variables, and other influential factors. The real data is therefore far from the
ideal, and one can then expect an improvement given by an optimized b.

To fine-tune b, one approach is to gradually increase from its initial value, e.g.
b = 2, until the corresponding mean squared error reaches a global minimum.
As b increases, more data can be utilized in a fixed training time. Therefore,
while searching for the optimal b, the amount of training data for each b are
different. Here, for the given computing resources, the search for different b
uses a fixed training time, i.e., 45 minutes. However, if the sequence length
t ≤ 25, i.e., b ≥ 80, the entire training set can be utilized for training within 45
minutes. The detailed configurations of the computing resources can be found
in Section 1.5.

Because the MSE may not be a convex function of b, it is therefore unlikely to
always find its global minimum. However, for the case addressed in this thesis,
the MSE does have a clear minimum as a function of b, as shown in Figure 3.15.

Figure 3.15: MSE for different downsampling rates (b) with
using sampling. The model was trained for 45 minutes. However,
if b ≥ 80, the entire training set can be utilized for training
within 45 minutes. Notice that b = 1 represents no sampling.

Referring to the MSE obtained from the sequence length t = 2000 (see
Figure 3.11), a similar MSE value is expected from b = 1 in Figure 3.15.
However, it is shown that the MSE from b = 1 is significantly larger than that
in Figure 3.11. A close study found that the discrepancy was caused by the
different training time used in the two scenarios. In Figure 3.11, the training
time is about 2.5 hours, whereas the respective time in Figure 3.15 is only 45
minutes.
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According to Figure 3.15, the MSE reaches its minimum at b = 60, and there
indeed exists a significant improvement comparing with the MSE at b = 1,
i.e., no sampling. However, the value of MSE suggests that it can be worth
searching for an alternative approach, which provides even better performance.
It is known that sampling omits a certain fraction of observations in the past
2000 seconds, and all the information contained by these observations is lost.
It is hence conceivable that if one can preserve some of the lost information, a
better model may be derived.

One simple but effective approach is averaging within each feature. Rather than
completely omit certain observations, we take the average of b observations
for each feature, as shown in Figure 3.16. The new 3-rank input tensor after
averaging is now

X ′ = (X ′1, X ′2, ..., X ′n′),

where

X ′i =


x′i,1
x′i,2
...
x′i,t

 =


1 x′i,11 · · · x′i,1p
1 x′i,21 · · · x′i,2p
...

... . . . ...
1 x′i,t1 · · · x′i,tp


and

x′i,jk = 1
b

jb∑
m=(j−1)b+1

xi,mk,

for i = 1, 2, ..., n, j = 1, 2, ..., t, and k = 1, 2, ..., p. Here, x′i,jk denotes the k-th
feature of the j-th observation in the i-th sequence after averaging, and n′ is
the number of time sequences after averaging in the given dataset.

Figure 3.16: An illustration of the averaging of b observations.
Note that each feature is averaged individually, and the
averaging processes the observations in a non-overlapping
manner. In other words, the averaging is based on a tumbling
window, but not a sliding window.

51



3. Methodology development and validation

Following the same idea as the sampling method, one reasonable assumption
for the optimal sequence length is t = b 2000

b c, which is equivalent to tp = 2000.
This assumption is further assessed with the simulated dataset in the similar
manner as used in the sampling method. A grid search in the space of sequence
length t and downsampling rate b is then carried out. The corresponding
results are shown in Figure 3.17. The figure indicates that tp = 2000 is the
optimal choice on the simulated dataset, and averaging can indeed improve our
model performance. This optimal tp is the same as that found for the sampling
approach. However, in addition to reducing the sequence length, the averaging
also retains partially the information of all given observations. The averaging is
hence expected to perform better than the sampling approach.

Figure 3.17: MSE for different downsampling rates (b) and
different sequence length (t) with using averaging on the
simulated dataset. Notice that b = 1 represents that averaging
is not employed. The orange line is a reference line. MSE for
the baseline model is 0.0201.

Such studies are therefore also carried out for the original ABB dataset. For
different downsampling rates b, the corresponding MSEs are shown in Figure 3.18.
All other settings here are the same as those for Figure 3.15, and the training
time for each b is also fixed as 45 minutes. However, if the sequence length
t ≤ 25, i.e., b ≥ 80, the entire training set can be utilized for training within
45 minutes. Comparing with the mean squared errors in Figure 3.15, the
averaging indeed enhances our model more than sampling. The minimal MSE
with sampling is 65.46 (at b = 60), whereas the minimal MSE with averaging
becomes 54.01 (at b = 40), which indicates an improvement of 17.62%.

As described in Definition 3.6.1, the downsampling methods essentially create a
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Figure 3.18: MSE for different downsampling rates (b) with
using averaging. The model was trained for 45 minutes.
However, if b ≥ 80, the entire training set can be utilized
for training within 45 minutes. Notice that b = 1 represents
that averaging is not employed.

link function f such that

(x′1, x′2, ..., x′n′) = f(x1, x2, ..., xn), (3.20)

where x′ are the observations after downsampling, and x are the original
observations provided by ABB. Here n must be an integer multiple of n′, such
that the downsampling rate is given by

b = n

n′
. (3.21)

There exist many different possibilities for such a link function f , and it is
impractical to test all of them. One common solution is the convolutional neural
network (CNN), since every possible link function f essentially corresponds to a
specific convolutional neural network. The introduced sampling and averaging
methods are also included. A concatenated CNN structure is hence introduced
as shown in Figure 3.19. Note that the CNNs used here are 1-dimensional.

The outputs of different CNN layers within this structure are concatenated and
afterwards taken as an input to the LSTM structure. Note that each CNN
layer handles a single feature, and there is no communication between different
features within each individual CNN.

The new structure introduces three new hyperparameters, i.e., the number of
filters, kernel size, and strides. Typically, tuning is done by a grid search, which
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Figure 3.19: Concatenated CNN structure, where each CNN
handles only one feature. The CNNs used here are 1-dimensional,
and there is no communication between different features within
CNNs. Kernel size is the length of one CNN window and strides
is the stride length of CNN window.

investigates all possible combinations of the 3 hyperparameters and chooses the
optimum in terms of MSE. However, such an algorithm requires an unacceptable
amount of computing time.

According to Figure 3.19, the kernel size k and strides s determine the sequence
length t by the expression

t =
⌊

2000− k
s

⌋
+ 1, (3.22)

where b·c denotes the floor function. Since the sequence length t is the
core hyperparameter of our structure, it is reasonable to assume that the
two hyperparameters, i.e., kernel size and strides, are the most important
parameters, and that the number of filters has a negligible influence on the
model performance. Field experience indicates that five filters can deliver a
reasonably good performance. It is hence used in this study as a starting value.
The number of filters will be further fine-tuned after the kernel size and strides
are optimized.

As described before, the training and validation on the ABB dataset requires a
considerable amount of time. We have therefore pretested this method on the
simulated dataset in advance. The subsequent tuning of the hyperparameters
will be carried out for the ABB dataset, only if the concatenated CNN structure
shows a satisfying performance on the simulated dataset.

We then process a grid search with respect to the kernel size and strides on
the simulated dataset. The corresponding mean squared errors are shown as in
Figure 3.20.

Because it is only a pretest prior to the actual studies, it is therefore unnecessary
to proceed with further tuning for the number of filters. The objective of
the pretest is to ensure that the concatenated CNN structure can deliver
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Figure 3.20: MSE of Concatenated CNN structure for different
kernel sizes and strides on the simulated dataset. The MSE
reaches its minimum, i.e., 0.0002 when kernel size = 40 and
strides = 50. The MSE of the baseline model is 0.0203.

the expected performance, which is the case as illustrated by Figure 3.20.
Furthermore, comparing Figure 3.20 with Figures 3.14 and 3.17, it can be found
that the concatenated CNN does not lead to a better MSE than averaging. As
stated before, the simulated dataset was created based on an ideal physical model.
Therefore, the performance of our model has already reached its optimum when
using sampling or averaging, and the possible better solution, i.e., concatenated
CNN, may not further improve the MSE.

Up to now, it is evident that the concatenated CNN can deliver at least as good
performance as the averaging, and so the aforementioned tuning procedure can
be pursued further. First, the kernel size and strides are tuned through a grid
search, and the corresponding results are shown in Figure 3.21. Note that the
training time for each hyperparameter combination is still fixed as 45 minutes.
However, if the sequence length t ≤ 25, the entire training set can be utilized
for training within 45 minutes.

The MSE surface is considerably noisy. However, it is possible to see that the
mean squared errors around kernel size = 50 and strides = 50 are relatively
smaller compared to other values. In Figure 3.21, the MSE reaches its minimum,
namely 48.52, when kernel size = 40 and strides = 40. It is then reasonable
to simply regard kernel size = 40 and strides = 40 as the optimal choice.

Then, given the kernel size and strides, we revisit the remaining hyperparameter,
i.e., the number of filters, and optimize its value. Figure 3.22 shows the
corresponding MSE for different numbers of filters with kernel size = 40 and
strides = 40. Note that the training time for each number of filters is fixed
as 45 minutes. It is shown that, when the number of filters is set 4, the MSE
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Figure 3.21: MSE of Concatenated CNN structure for different
kernel sizes and strides on the ABB dataset. The training time
for each hyperparameter combination is fixed as 45 minutes.
However, if the sequence length t ≤ 25, the entire training set
can be utilized for training within 45 minutes. The minimal
MSE is 48.52, when kernel size = 40 and strides = 40. The
MSE of the baseline model is 78.81.

reaches its minimum, i.e., 46.18. Such a minimum has an improvement by
10.16% compared to that from averaging, as shown in Figure 3.18. However,
considering that the concatenated CNN is a much more adaptive method than
averaging, the improvement is expected to be even larger than 10.16%.

This result may be understandable from a physical point of view. Considering
a given feature, the averaging of multiple observations of a constant size is
proportional to the sum of these observations. Furthermore, because the
given observations were recorded along the axis of time, so the sum of these
observations in a certain period will have a similar effect as the time integral of
this feature on the target (temperature).

The situation could be that, for certain features, instead of its original value,
exploiting the time integral can improve the model performance. For example,
the time integral of PO, namely the power of a motor, is the corresponding
energy used to drive the motor during a period. Recall the Equations (3.4)
and (3.6) in Section 3.3.1, one can then notice that the relation between the
energy and the temperature should be linear, which indicates that the energy
is a better predictor than the power.

We then attempt to search for a better front structure than the concatenated
CNN layers. Recall that the exploited features in this thesis are PO (Power),
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Figure 3.22: MSE of different number of filters for Concatenated
CNN structure on the ABB dataset. The training time for each
number of filters is fixed as 45 minutes. The MSE reaches its
minimum, i.e., 46.18, when the number of filters is set 4. The
MSE of the baseline model is 72.29

CI (temperature of input cooling air), TO (Torque), and SP (Speed).
Given that these features come from one motor, there may exist possible
interactions between them such that they collectively affect the output target
(i.e., temperature). So far, the sampling, averaging, and concatenated CNN
structure have not taken into account such interaction relationships between
different features.

We hence introduce the 1-dimensional (1D) CNN structure, which also takes into
account such interactions. A schematic of the 1D CNN is shown in Figure 3.23.
The strong coupling of different features could improve the model performance.

Different from the concatenated CNN, it does not make sense to pretest the 1D
CNN on the simulated dataset, since there is only one feature in the simulated
dataset. We hence directly validate the 1D CNN on the ABB dataset. Following
the same procedure as the concatenated CNN structure, the tuning first focuses
on the kernel size and strides. According to field experience, the number of
filters is initially set as 4. We then carry out a grid search to get the optimal
values for the kernel size and strides. The training time for each hyperparameter
combination is fixed as 45 minutes. However, if the sequence length t ≤ 25,
the entire training set can be utilized for training within 45 minutes. The
corresponding MSE surface is illustrated in Figure 3.24.

As shown, most of the minimums are located around kernel size = 60
and strides = 50. A close comparison of these minimums reveals that the
combination of kernel size = 50 and strides = 50 gives the smallest MSE, i.e.,
32.53, and thus delivers the best performance. Given the optimal kernel size
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Figure 3.23: 1-dimensional CNN structure. Kernel size is the
length of one CNN window and strides is the stride length of
CNN window. Here, all features are handled by the same CNN
layer.

Figure 3.24: MSE of 1-dimensional CNN structure for different
kernel sizes and strides on the ABB dataset. The training time
for each hyperparameter combination is fixed as 45 minutes.
However, if the sequence length t ≤ 25, the entire training
set can be utilized for training within 45 minutes. The MSE
reaches its minimum, i.e., 32.53, when kernel size = 50 and
strides = 50. The MSE of the baseline model is 76.55.

and strides, work is carried out to update the number of filters. The MSEs
obtained from different number of filters are shown in Figure 3.25. The training
time for each number of filters is fixed as 45 minutes.
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Figure 3.25: MSE of 1-dimensional CNN structure for different
number of filters on the ABB dataset. The training time for
each number of filters is fixed as 45 minutes. The minimal MSE
is 27.11 when 3 filters are employed. The MSE of the baseline
model is 75.67.

The trend illustrates that different numbers of filters provide similar performance
in the range of 2-11. However, according to the structure of a CNN layer, a
smaller number of filters leads to a shorter training time. Since the training
time is one of the most important criteria in this thesis, it is thereby favorable
to choose the smallest number of filters. However, it is difficult to assure that
the optimal performance region in Figure 3.25 lies precisely in between 2 and
11. In order to avoid a possible non-optimal performance, 5 is selected as the
optimal number of filters.

The discussions in this section indicate that the 1-dimensional CNN is the
optimal front structure among the candidates. The optimal number of filters is
suggested to be 5, the kernel size is determined as 50, and the optimal stride is
50. In the remaining parts of this thesis, the front structure with these selected
settings has been used.

3.6.2 LSTM structure

This section demonstrates the LSTM structure, which is the core structure of
the present model. As described in Section 3.5.3, one of the most important
hyperparameters of an LSTM is the sequence length t. According to the previous
studies in this chapter, if the front structure is determined, the optimal sequence
length can also be known.

For the 1-dimensional CNN layer used in this thesis, the optimal front structure
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defines the corresponding sequence length t as

t =
⌊

2000− k
s

⌋
+ 1, (3.23)

where b·c denotes the floor function. Here k and s are the kernel size and strides,
respectively. Given the optimal setting for this CNN layer, i.e., k = 50 and
s = 50, the optimal sequence length t becomes

t =
⌊

2000− 50
50

⌋
+ 1 = 40. (3.24)

As described in Section 3.2.2, the default LSTM structure used in this thesis
is a 10-unit LSTM layer. For a given sequence length t, in order to achieve
a better model performance, one can further fine-tune the two remaining
hyperparameters, i.e., the number of LSTM layer(s) and the number of units
of each layer. Here, the number of units of a layer corresponds to the output
dimensionality of this layer. If defining the number of layers as nl, the number
of units nu can then be given by a vector

nu = (nu,1, nu,2, ..., nu,nl
), (3.25)

where nu,i is the number of units of the i-th layer.

As shown, the number of layers nl, needs to be optimized a priori before
optimizing the number of units nu, because the latter is affected by the former.
However, theoretically, there are unlimited possibilities regarding the number
of layers. It is therefore necessary and preferable to first restrict its range based
on both theoretical analysis and field experience.

In Section 2.4, as shown in Figure 2.8, each LSTM cell contains five nonlinear
transformations. One is in the forget gate, two are in the input gate, one is
in the output gate, and one is between the output gate and the new hidden
state. Furthermore, since the optimal sequence length is 40 in the present model
according to Equation (3.24), there will be maximum 40 cells and thus 200
nonlinear transformations within one LSTM layer. In this thesis, if we define
the number of nonlinear transformations between an input i and an output o
as Nnl, its value will then be given by

Nnl = 40(to − ti). (3.26)

Here, to and ti are the time of this specific output and input, respectively.

For a feedforward neural network, there will only be one nonlinear transformation
between any input and any output within a layer. Therefore, the measures of
complexity of an LSTM and a feedforward neural network are different due to
the different number of nonlinear transformations (S. Zhang et al. 2016). A
feedforward neural net is regarded as a deep neural net (DNN) if it contains
hundreds of layers. However, as stated before, even a single-layer LSTM can
have a similar complexity as a DNN.

One can notice that the default single-layer 10-unit LSTM has been performing
well. Adding more LSTM layers usually enhances the model performance.
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However, in practice, more LSTM layers bring an enormous amount of extra
training time. Therefore, it is not always worth adding extra layers and
spending extra training time, since the gained improvement can be very limited
and sometimes negligible. Therefore, the tuning procedure can begin with
a single-layer LSTM, incrementally add more layers until the ratio of the
increased training time and the decreased MSE reaches a threshold. For a
better understanding, let us define what we term the MSE improvement rate:

Definition 3.6.2 (MSE improvement rate). Denote the change of training time
brought by the change of a model as ∆tex and the corresponding variation with
respect to MSE as ∆e, the MSE improvement rate v is then defined as

v = ∆e
∆tex

. (3.27)

The predictions of our model are the temperature (◦C) of motors, and the MSEs
of our predictions are always less than 100. Therefore, it would be reasonable
to consider the improvement less than 10% as insignificant, as it corresponds to
an improvement of the predicted temperature by approximately 1◦C. If such
an insignificant improvement brings an extra training time which is larger than
40 minutes, we will stop adding more layers. This indicates that the threshold
to be used can be given by

vσ = 10%
40min = 0.25%/min.

If the MSE improvement rate of adding an extra layer is less than vσ, no more
layers will be added. Here, the time threshold, i.e., 40 minutes, is predominantly
governed by the available computing resources, as introduced in Section 1.5.

Note that one extra LSTM layer brings one extra hyperparameter, i.e., the
number of units of this new layer. This new hyperparameter is highly
correlated with the number of units of other layers, i.e., the vector nu =
(nu,1, nu,2, ..., nu,nl

). It indicates that all these hyperparameters should be
tuned again if a new layer is added. Therefore, if nl layers are employed, we are
supposed to process a grid search with respect to the number of units vector
nu. As nl increases, the possibilities of nu also increases exponentially, and it
will become impractical to fulfill the grid search if nl is too large. Specifically,
with our given resource stated in Section 1.5, it takes months to run the grid
search when nl = 4, which is infeasible.

One may consider the pretests on the simulated dataset to be helpful in such
cases. However, since the simulated dataset was created based on a simplified
ideal physical model, its required model complexity is essentially lower than
that for the ABB dataset. Therefore, if the model with extra LSTM layers does
not perform well on the simulated dataset, it is still uncertain whether this
model is suitable for the ABB dataset.

Nevertheless, as shown in Table 3.10, the MSE improvement rate with nl = 3
has been found to be smaller than our threshold. Furthermore, the use of
nl > 3 should not bring better improvement than nl = 3, since we see from
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Table 3.10 that 2 layers can already produce enough complexity for the task in
this thesis. Based on the trend illustrated by Table 3.10, the use of more than
2 layers can even lead to some overfitting and yield an adverse effect.

Number of LSTM layers Minimal MSE MSE improvement rate
1 26.93 N/A
2 22.49 0.84
3 24.57 −1.03

Table 3.10: MSE improvement rate for different number of
LSTM layers on the ABB dataset. Note that the MSE
improvement rate for nl = n is calculated by the MSEs of
nl = n and nl = n− 1.

Note that the results shown in Table 3.10 are produced by the optimal nu.
These optimal nu are determined through grid searches. The results of grid
searches for nl = 1 and nl = 2 are illustrated in Figure 3.26 and Figure 3.27,
respectively. As for the grid search of nl = 3, it is difficult to clearly illustrate
the 4-dimensional plot. We therefore directly give the final optimal nu as
(15, 20, 20).

Figure 3.26: MSE with respect to nu when nl = 1. The MSE
reaches its minimum, namely 26.93, when nu = (10). The MSE
of the baseline model here is 78.29.

The optimal hyperparameters of the LSTM structure are now determined.
However, as mentioned before, there can be potential overfitting risks, namely,
the lack of model generalization. Typically, field experience suggests two useful
methods to improve the generalization. One is the batch normalization proposed
by Ioffe and Szegedy 2015, and the other is the dropout technique introduced
by Srivastava et al. 2014. However, batch normalization does not match the
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3.6. Architecture

Figure 3.27: MSE with respect to nu when nl = 2. The MSE
reaches its minimum, namely 22.49, when nu = (10, 15). The
MSE of the baseline model here is 78.29.

structure of an LSTM, and the retrofitted technique, i.e., layer normalization, is
therefore employed instead. In what follows, we validated the model performance
of both the dropout and layer normalization, in order to determine the optimum.

First, let us focus on the dropout technique. As discussed in Section 2.4,
LSTM is different from feedforward neural networks, since there are recurrent
connections within one LSTM layer, which does not exist in a feedforward
neural network layer. Therefore, the dropout technique applied to an LSTM
is slightly different from the original procedure. Previous studies found that
the dropout can give even better performance if it is not only employed for the
inputs to an LSTM layer, but also the recurrent connections within an LSTM
(Gal and Ghahramani 2016).

Still, it is difficult to tell if there indeed exists overfitting. Following the same
idea stated earlier, a pretest is carried out on the simulated dataset before
working on the ABB dataset. As stated before, the required model complexity
on the simulated dataset is lower than that on the ABB dataset, since the
actual physical model of the simulated data is much simpler. Therefore, if a
model does not raise overfitting concerns when being validated on the simulated
dataset, there should not be overfitting when used on the ABB dataset. In
other words, if the dropout technique deteriorates the model performance on
the simulated dataset, it does not make sense to validate it on the ABB dataset.

Dropout brings a new hyperparameter into our model, i.e., the dropout rate rd.
It represents the fraction of the units to drop for the linear transformation of
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the inputs and the recurrent state (Chollet et al. 2015), whose value is in the
range of 0 to 1. The effect of different dropout rates on the model performance
(MSE) for the simulated dataset is shown in Figure 3.28.

Figure 3.28: Effect of different dropout rates on MSE for the
simulated dataset. If dropout rate is set 0, then no dropout
will be carried out. The MSE reaches it minimum, i.e., 0.0001,
when the dropout rate is 0.05. The MSE of the baseline model
here is 0.0197.

The figure indicates that, for the simulated dataset, the improvement brought
by the dropout is insignificant. However, recall that our model has almost
reached the best possible performance on the simulated dataset, it is hence
impractical to expect much improvement brought by the dropout. Then, we
still validate the dropout on the ABB dataset. The effects of different dropout
rates on MSE are illustrated in Figure 3.29. Here, the training time for each
dropout rate is still fixed as 45 minutes. However, for a dropout rate larger
than 0.15, all training data are utilized within 45 minutes. Compared to the
best performance obtained before, i.e., 22.49, a small improvement, i.e., 10.49%,
is made by the dropout at rd = 0.05. The corresponding minimal MSE when
employing dropout is given as 20.13.

After studying the dropout technique, we also need to assess the performance
of layer normalization. There is no hyperparameter introduced in layer
normalization. So unlike the dropout, it is unnecessary to carry out the pretests.
One can then directly validate the performance of layer normalization using
the ABB data. As shown in Table 3.11, the corresponding MSE given by a
5-fold cross-validation is 19.94, which indicates that the layer normalization
also provides a slight improvement for the original model.

Previous work suggests that the layer normalization and dropout should not
be employed on the same model (Li et al. 2019). It can therefore be useful to
select the one that gives larger improvement in accuracy and computing speed.
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Figure 3.29: Effect of different dropout rates on MSE for the
the ABB dataset. If dropout rate is set 0, then no dropout will
be carried out. Here, the training time for each dropout rate is
fixed as 45 minutes. However, for a dropout rate larger than
0.15, all training data are utilized within 45 minutes. The MSE
reaches it minimum, i.e., 20.13, when the dropout rate is set
0.05. The MSE of the baseline model here is 78.47

Since the MSEs derived from both techniques are highly similar, the selection
criterion therefore becomes their corresponding training time.

Theoretically, both techniques can accelerate the speed of convergence during
training and therefore reduce the computing time. Given the same amount of
data, the corresponding training time of the original model, the model with
the dropout technique, and the model with layer normalization are listed in
Table 3.11.

Training technique MSE Training time (hours)
No technique 22.49 2.44

Dropout rate = 0.05 20.13 2.60
Layer normalization 19.94 1.96

Table 3.11: The corresponding training time and MSEs using
different training techniques. The training dataset consists of
approximately 500 million recordings (observations).

According to the results shown in Table 3.11, the model benefits most from the
layer normalization, as it gives the shortest training time. It is hence adopted
as the method for our model.

Up to now, one can conclude that the optimal LSTM structure is a two-layer
LSTM, with the layer normalization being applied between them. The optimal
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number of units is given by nu = (10, 15).

3.6.3 Output structure

It is essential to notice that the output dimensionality of an LSTM layer
corresponds to the number of its units. The number of units is typically more
than one. However, for our task in this thesis, the dimensionality of the target
output is always one, i.e., the current temperature of a motor. It is hence
necessary to build an output structure which converts the output of our LSTM
structure into a single value, i.e., the target temperature.

Field experience has shown successful applications of a simple but satisfactory
structure, namely the 1-node dense layer. The 1-node dense layer is essentially
a fully connected feedforward neural network layer, which is also the default
output structure that used in this thesis. Despite its popularity and simplicity,
there may exist more complex and better output structures.

A possible alteration is to add extra layers into the output structure. It is worth
noticing that more layers will bring more hyperparameters. There are two types
of hyperparameters, i.e., the number of layers and the number of nodes in each
layer. We refer to the number of layers as nl and the number of nodes as a
vector nu = (nu,1, nu,2, ..., nu,nl

), where nu,i denotes the number of nodes of
the i-th layer.

It is always possible to add more layers into the output structure. As we
explained before, while tuning the LSTM structure, adding new layer(s) can
possibly improve the model performance. However, it also results in a longer
training time. The improvement of model performance may be too small to
justify the extra training time achieved by the additional layer. Here, we refer
to the metric defined by Definition 3.6.2, i.e., the MSE improvement rate, to
assess the improved model performance and the increased training time.

The tuning procedure for nl and its corresponding nu are the same as those in
Section 3.6.2. For each evaluation, the new layers is added incrementally. After
a new layer is added, the corresponding MSE improvement rate is calculated
by using the optimal nu, which is determined by a grid search. No layer(s) will
be added if the MSE improvement rate is lower than a predefined threshold.
To be consistent, it is reasonable to employ the same threshold as that used in
Section 3.6.2, namely 0.25%/minute.

As explained in Section 3.6.2, it is not worth pretesting possible structures using
the simulated dataset. We therefore directly assess our output structures on the
ABB dataset. In this study, the target is a single value, namely the predicted
motor temperature. Consequently, the last layer of the output structure has to
be one-node. The corresponding MSE improvement rates on the ABB dataset
are shown in Table 3.12.

The MSE improvement rates were calculated by the optimal MSE for each
nl. As described before, for each nl, a grid search was carried out to tune the
corresponding hyperparameter(s). We therefore illustrate the results of these
grid searches for nl = 2 and nl = 3. The results for nl = 2 and nl = 3 are
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Number of dense layers Minimal MSE MSE improvement rate
1 19.94 N/A
2 34.13 −0.68
3 43.57 −1.35

Table 3.12: MSE improvement rate for different number of dense
layers on the ABB dataset. Note that the MSE improvement
rate for nl = n is calculated by the MSEs of nl = n and
nl = n− 1.

shown in Figure 3.30 and Figure 3.31, respectively.

As opposed to the tuning of the LSTM structure in Section 3.6.2, the number
of nodes of the last layer of the output structure is already determined as one.
Therefore, for nl dense layers, only nl − 1 numbers of units need to be tuned.
It is therefore feasible to illustrate the grid search results for nl = 3.

Figure 3.30: MSE as a function of nu for nl = 2. Note that the
number of nodes of the last layer is fixed as 1. The MSE reaches
its minimum, namely 34.13, when nu = (5, 1). The MSE of the
baseline model here is 81.52.

As illustrated in Table 3.12, for nl ≥ 2, the corresponding MSE improvement
rates are less than our predefined threshold, and even a negative MSE
improvement rate is given. It is then natural to regard nl = 1 as the optimal
number of dense layers in the output structure. The corresponding nu is then
a single-value vector, i.e., (1).
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Figure 3.31: MSE as a function of nu for nl = 3. Note that
the number of nodes of the last layer is fixed as 1. The MSE
reaches its minimum, namely 43.57, when nu = (5, 10, 1). The
MSE of the baseline model here is 81.52.

3.7 Summary

In this chapter, the work has been largely concentrated on the optimization
and validation of the approach, in order to solve the encountered challenges
and accomplish the given task for this thesis. The optimization and validation
procedures adopted in this chapter are considerably complicated. Therefore,
this section aims to summarize the conclusions and results obtained from this
chapter. From the six given features, four are eventually selected for further
study:

• CI (inlet cooling air temperature [◦C]).

• PO (normalized motor power [%]).

• SP (normalized motor speed [%]).

• TO (normalized mechanical torque [%]).

The target (temperature) of the model is determined as the average temperature
T of the original six given targets (temperatures), i.e.,

T = U1 + U2 + V1 + V2 +W1 +W2

6 . (3.28)

Also, the following conclusions are drawn from this chapter:

68



3.7. Summary

• Mini-batch gradient descent is employed to train the model, and the
optimal mini-batch size is set 1024.

• The learning rate during training is determined by a dynamic algorithm,
namely rmsprop.

• The number of epochs is dynamically determined by an early stopping
algorithm, namely Algorithm 5.

• The training procedure follows Algorithm 3, and shuffling is employed
for the training data.

• Both layer normalization and dropout are useful techniques for our model.
Due to a better performance, the layer normalization is used.

The optimal model is schematically illustrated in Figure 3.32. The analysis
showed that :

• The MSE of the developed model is 19.94.

• The MSE of the baseline model (linear model) is 76.53.

• The MSE of the alternative baseline model (feedforward neural network)
is 74.32.

The MSEs are given by 5-fold cross-validation, and the entire validation dataset
is employed, which means that the training time is not fixed as 45 minutes.
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Figure 3.32: The architecture of the final model.
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CHAPTER 4

Tests and analyses using the
holdout dataset

The principal objective of this thesis was achieved in Chapter 3, where an
approach is developed and validated on half of the ABB dataset. This chapter
will use the remaining half dataset, i.e., the holdout dataset, to further test our
developed approach.

For convenience, in this chapter, we describe the MSEs shown in the summary
of Chapter 3, i.e., Section 3.7, as the validation MSEs or the MSEs of
Chapter 3. The MSEs are calculated by employing a 5-fold cross-validation
within the entire validation dataset.

The validation and holdout datasets are constructed with similar distributions
and characteristics. The test performance produced by the holdout dataset
is therefore expected to be similar to the one produced by the validation set,
namely the validation MSEs. The comparison is shown in Table 4.1.

Model MSE of the validation set MSE of the holdout set
The developed mode 19.94 21.27

Baseline model 76.53 78.77

Table 4.1: MSEs of the developed model and the baseline model
on the validation dataset and the holdout dataset.

Testing the optimal approach on the holdout dataset gives a MSE of 21.27.
Compared to the validation MSEs, the holdout set delivers a similar performance.
However, in practice, there still exist other meaningful tests as stated in
Section 3.2.3. This chapter will focus on these tests and describe the associated
analysis and results.

4.1 Tests using recordings of one motor

The test error reported previously in Table 4.1, i.e., MSE 21.27, is calculated by
all the recordings in the holdout set. In this section, we focus on the recordings
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of one motor instead of all motors, and test our optimal approach only with
the recordings from each single motor.

4.1.1 Tests using one-month recordings of a motor

The given ABB dataset was originally divided into multiple files, where each
file contains the recordings of one motor during one calendar month. For each
motor, 16 files were provided by ABB, and eight were randomly assigned into
the holdout dataset. To start with, we focus on a single file, i.e., the recordings
of a motor during one calendar month.

For each single file, a 5-fold cross-validation is individually carried out, and the
corresponding MSE is produced. The model performance can then be evaluated
by the overall MSE, namely the average of the MSEs of all files, as listed in
Table 4.2.

Model Overall (averaged) MSE
The developed mode 11.47

Baseline model 14.36

Table 4.2: The overall MSEs of the developed model and the
baseline model. For each file, a MSE is given by 5-fold cross-
validation. The average of all MSEs is then used as the overall
MSE, which measures the overall model performance.

The overall MSE of our model is given as 11.47, while the corresponding MSE
of the baseline model is 14.36. Note that the dataset used for producing the
validation MSEs is the entire validation set, the one used for Table 4.1 is the
entire holdout set, whereas the dataset used for Table 4.2 is only one-month
recordings of each motor. Comparing these MSEs, two intriguing findings can
be discovered:

• The overall MSE of the developed model in Table 4.2 is smaller than
the validation MSEs or the MSE in Table 4.1. The baseline model also
performs better in Table 4.2 than in Table 4.1.

• Although the performance of our approach still surpasses that of the
baseline model (linear model), their difference becomes much smaller than
that shown by the validation MSEs. In comparison with the baseline,
the improvement of our model becomes now 20.13%, while it is around
69.54% in Chapter 3.

According to our earlier studies, such findings can be attributed to:

• Hypothesis 1: The recordings within one calendar month of the same
motor can be similar. During the 5-fold cross-validation, similar data
were assigned to both the training sets and the test set. Therefore, the
corresponding MSEs can be much smaller than those in Chapter 3 and
Table 4.1.
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• Hypothesis 2: The shortcomings of the baseline model, compared to our
optimal model, are partially concealed by restricting the training and test
data into the same month and the same motor. In such cases, the lack of
generalization of the baseline model can be less exposed.

In order to further discuss and try to verify our hypotheses, we retrofit the
previous tests and increase the size of test data. One can notice that in the
holdout dataset, in addition to the selected one-month recordings, there still
exist recordings for seven months of the same motor. We can then test the
models, which are trained by the one-month recordings, on the remaining
seven-month recordings. For a motor, one month’s recordings corresponds to
one MSE. Then, the average of the MSEs of all recordings of all motors in the
holdout dataset can be referred to as the overall MSE, which measures the
overall performance of a model, as shown in Table 4.3.

Model Overall (averaged) MSE
The developed mode 43.21

Baseline model 78.28

Table 4.3: MSE of the developed model and the baseline model.
The MSEs are provided by the same models as Table 4.2. It
means that the models are trained by one-month recordings,
but are tested with the remaining seven-month recordings of
the same motor in the holdout dataset.

As shown, the overall MSE of our model is 43.21, while the MSE of the baseline is
78.28. It is indicated that the MSEs of both models are worse than those shown
in Table 4.2. It clearly indicates that the previous MSEs are overoptimistic and
also implies the lack of generalization for the corresponding models in Table 4.2,
which to some extent confirms our Hypothesis 1.

It is also revealed that comparing with the baseline model in Table 4.3, the
improvement of our model is 41.83%, which is much larger than 20.13%
calculated from Table 4.2. It implies that the baseline model is more damaged
by the increased size of test data, which means that its generalization with
respect to time is worse than that of our optimal model. This can be regarded
as an reinforcement for Hypothesis 2.

Only producing MSEs does not provide us much opportunity for further analysis.
We hence also plot the predicted and the actual recorded temperatures. Such
plots can lead to a more thorough understanding of the patterns, performance,
and shortcomings of our approach, which could enlighten the discussion of the
model and possible future work.

For each motor, eight-month temperatures are predicted. However, it is
impractical to plot all predictions due to the following reasons:

• For a motor, its 8-month recordings in the holdout dataset are not
continuous, as they were randomly assigned into it.
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• The number of 8-month recordings reaches 15 million. It is not feasible to
plot all of them. Imagine that Figure 4.1 is now zoomed out and becomes
eight times narrower, then the existing patterns in this plot, for instance,
the decreasing curve around 1.75 million seconds, will become invisible.

Therefore, it is favorable to illustrate one-month predictions in one plot.
However, as there are around 50 motors, it is impractical to illustrate all
plots. Hence, only one representative plot is selected, which corresponds to
Table 4.2, and is shown in Figure 4.1. The other plot from the same motor
during the same month, which corresponds to Table 4.3, is shown in Figure 4.2.
Note again that the MSEs of these plots are different from the corresponding
overall MSEs in Tables 4.2 and 4.3. However, as their difference is negligible,
one could assume that these plots are also representative of the overall MSEs.

Figure 4.1: The predicted and recorded temperatures during
one calendar month. The predicted temperatures were provided
by the models trained with the recordings of a motor during
the same month. The blue line illustrates the results predicted
by our developed model, while the orange line represents the
predicted temperatures given by the baseline model, i.e., the
linear model. The green line is the actual recorded temperatures.
The MSE of our model in this plot is 10.35, while the MSE
of the baseline mode is 13.24. All MSEs are given by 5-fold
cross-validation.
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Figure 4.2: The predicted and recorded temperatures during
one calendar month. The predicted temperatures were provided
by the models trained with another one-month recordings of
the same motor. The blue line illustrates the results predicted
by our developed model, while the orange line represents the
predicted temperatures given by the baseline model, i.e., the
linear model. The green line is the actual recorded temperatures.
The MSE of our model in this plot is 41.19, while the MSE
of the baseline mode is 74.53. All MSEs are given by 5-fold
cross-validation.

4.1.2 Tests using all 8-month recordings of each motor

Section 4.1.1 explored the performance of our optimal model and the baseline
model by only using one-month recordings of each motor, and several interesting
findings have been observed. In what follows, we will extend the evaluation by
testing our optimal model under a few selected practical scenarios.

Regarding eight-month recordings of a motor, the scenario described as below
is of practical importance:

• At present, only one motor is working and has been working for a long
period such that there are enough data from this motor to train a model.

• The goal is to train a model which predicts the temperature of this motor.
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In this situation, the 5-fold cross-validation can be directly applied to test the
model performance. For each motor, an MSE can be calculated, and the overall
model performance can afterwards be quantified by the average of the MSEs of
all motors, as tabulated in Table 4.4.

Model Overall MSE
The developed mode 33.27

Baseline model 74.11

Table 4.4: MSE of the developed model and the baseline model.
For each motor, eight-month recordings are employed for a 5-
fold cross-validation, and an MSE is provided. The overall MSE
is calculated by taking the average of these MSEs.

As shown, the overall MSE of our optimal model is 33.27, while the corresponding
MSE of the baseline model is 74.11. One can notice that the MSE of our model
is still larger than the validation MSEs. It implies that six months of recordings
are still not enough to train the models.

Following the same discussion in Section 4.1.1, the predicted and recorded
temperatures are also plotted alongside the MSE values, which are shown in
Figure 4.3. To make consistent comparisons between these figures, Figure 4.3
plots the temperatures of the same motor during the same month as Figures
4.1 and 4.2.

Comparing Figure 4.3 with Figures 4.1 and 4.2, one can notice that our model
performs better in Figure 4.3 than in 4.1 and 4.2, whereas the baseline model
performs worse in 4.3. However, it is also found that small oscillations of
the predicted temperatures appear more frequently in Figure 4.3, for instance,
during the period from around 1 to 1.4 (million seconds).

As described, the model used for Figure 4.3 is fed more data from the same
motor than that for Figure 4.1 or 4.2. Our finding hence implies that, because
all these increased data belong to the same motor, the trained models can suffer
from the lack of generalization. It also raises the concern about overfitting.

4.2 Tests using recordings of one marine vessel

In this section, we consider one marine vessel, rather than one motor as before.
Here, two types of tests are carried out, which correspond to two practical
scenarios.

4.2.1 5-fold cross-validation

It is known that each ship has three motors. Here, we focus on one specific ship,
where our optimal model is planned to be implemented onboard. Consider a
practical scenario that:
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Figure 4.3: The predicted and actual recorded temperatures
during one calendar month. Note that this figure illustrates
the temperatures during the same month as Figures 4.1 and
4.2. The predicted temperatures were provided by the models
trained with the recordings of a motor during around 6.4
months. The blue line illustrates the results predicted by our
optimal approach, while the orange line represents the predicted
temperatures given by the baseline model, i.e., a linear model.
The green line illustrates the actual recorded temperatures. The
MSE of our optimal approach in this plot is 31.45, while the
MSE of the baseline mode is 74.11. All MSEs are given by
5-fold cross-validation.

• Only one ship is currently navigating. All three motors of this vessel have
already been working and recorded for a substantial period, such that
they have produced enough historical recordings.

• The goal is to train a generic model which can be applied to any motor
on this vessel.

The tests are carried out by using 5-fold cross-validation. We obtain one MSE
value for each vessel by using the 5-fold cross-validation, and the average of
all MSEs of a model is used to evaluate its performance. For convenience and
consistency, the average is also referred to as the overall MSE, which is the
same as Section 4.1.1 and Section 4.1.2. These MSEs are shown in Table 4.5.

It is shown that the overall MSE of our model is given as 21.58, while the MSE
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Model Overall MSE
The developed mode 21.58

Baseline model 74.35

Table 4.5: MSE of the developed model and the baseline model.
The overall MSEs are delivered by taking the average of MSEs
given by 5-fold cross-validation with the recordings of each
vessel.

of the baseline model is 74.35. Different from Section 4.1.2, the training data
from the other motors are also employed in this section, and our optimal model
performs significantly better than in Section 4.1.2.

However, after extending the size of data from one-motor recordings to one-
vessel recordings, the generalization of our model could be challenged by a wider
data diversity. Therefore, the model performance in this section is most likely
worse than that in Section 4.1.2, which is however not the case according to
the results shown in Table 4.5.

It is of interest to seek the explanation for this inconsistency. Notice that
the motors within one marine vessel can often be homogeneous. Furthermore,
since they all experience the same sea state and movement of the ship, the
one-vessel recordings can be regarded as an expanded collection of its one-motor
recordings. After involving more training data, it is not unreasonable that the
model performance is improved.

Analogously, to further verify the explanations and conclusions discussed above.
The predicted and actual recorded temperatures for the same month as Figures
4.1-4.3 are shown in Figure 4.4. As shown, for our optimal model, there are
much less oscillations of the predicted temperatures. It indeed implies that
the generalization of our model is improved. It is therefore reasonable to
conclude that the model performance, the theories, and our explanations are
self-consistent.

4.2.2 Leave-one-motor-out cross-validation

This section considers another practical situation other than that in Section 4.2.1.
For a marine vessel, we assume that:

• One of its motors is newly replaced, and there is no historical recording
of it. Meanwhile, the other two motors have been working for a long time
and have produced enough historical recordings for training.

• The goal is to train a model which can be applied to the newly replaced
motor.

In order to test the model performance under this scenario, a new type of
test different from the 5-fold cross-validation is designed. During the test, the
recordings of two motors in a vessel are used for training, while the recordings
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Figure 4.4: The predicted and actual temperatures of a motor
during one calendar month. Note that this figure illustrates the
temperatures during the same month as Figures 4.1-4.3. The
predicted temperatures were provided by the models trained
with the recordings of a marine vessel during around 6.5
months. The blue line illustrates the results predicted by our
optimal approach, while the orange line represents the predicted
temperatures given by the baseline model, i.e., a linear model.
The green line illustrates the actual recorded temperatures. The
MSE of our LSTM model in this plot is 21.33, while the MSE
of the baseline mode is 73.69.

of the third motor are employed for testing. For convenience, we define the
motors which provide training data as the training motors, while the motors
which deliver the test data as the test motors.

For each marine vessel, three different tests can be carried out, which correspond
to three different test motors. The averaged values of their MSEs are referred
to as the overall MSE. Inspired by the leave-one-out cross-validation (LOOCV),
we define such tests as leave-one-motor-out cross-validation (LOMOCV). The
overall MSE is then regarded as the MSE of LOMOCV.

For each vessel, an LOMOCV is carried out to calculate the MSE value. The
average of all LOMOCV MSEs is then defined as the overall MSE and becomes
the measurement of the model performance. The overall MSEs of our model
and the baseline model are shown in Table 4.6.
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Model Overall MSE
The developed mode 22.37

Baseline model 75.91

Table 4.6: The overall MSEs of the developed model and the
baseline model. The LOMOCV is carried out for each ship and
produces a MSE. The average of the MSEs of all ships is then
taken as an overall MSE, which meansures the overall model
performance. All the recordings of each vessel are employed.

As shown, the overall MSE of our optimal model is 22.37, while the baseline
model delivers an MSE of 75.91. Compared with the corresponding MSEs in
Section 4.2.2, one can notice that, for both our model and the baseline model,
the difference of MSEs between using LOMOCV and 5-fold CV is insignificant.

Theoretically, the predicting for LOMOCV is supposed to be more challenging
than that for 5-fold cross-validation, as there exists a motor which our model
has no knowledge of. However, the results shown in Table 4.6 differ from this
anticipation. It indicates that, for the motors of one vessel, their similarities
are larger than expected. Therefore, unlike the previous sections, no redundant
figures like Figures 4.1-4.4 are plotted, as it will almost be the same as Figure 4.4.

4.3 Tests using the whole holdout dataset

In this section, we carry out tests by employing the whole holdout set. Following
the similar idea described in Section 4.2, two more experimental scenarios are
simulated to test our model. Correspondingly, two testing methods are employed,
namely the 5-fold cross-validation and a leave-one-vessel-out cross-validation.

4.3.1 5-fold cross-validation

Consider the most general scenario which assumes that:

• All motors in the 16 vessels have already been working for a long time,
such that there are enough historical recordings for training.

• The goal is to train a generic model which can predict the temperature of
any motor.

As stated in Section 3.2.3, the present model is optimized based on the same
scenario above. Therefore, following the same approach as in Chapter 3, a
5-fold cross-validation can be employed to evaluate the model performance for
such cases.

Furthermore, as described in Section 3.1, the validation set used in Chapter 3
and the holdout set used in this chapter have analogous characteristics, dis-
tributions, and sizes. Therefore, the MSE obtained in this section is expected
to be similar as the validation MSEs found in Chapter 3, which is the case in
Table 4.7. As shown, the test MSEs in this section show little difference from
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the validation MSEs in Chapter 3.

Model MSE in this section MSE in Chapter 3
The developed mode 22.62 23.31

Baseline model (linear model) 75.91 76.53
Baseline model (neural net) 71.53 74.32

Table 4.7: MSEs of the developed model and the baseline model
in this section and in Chapter 3. All MSEs are provided by 5-
fold cross-validation. The MSEs in this section and in Chapter 3
are delivered by using the holdout set and the validation set,
respectively.

Furthermore, after extending the size of dataset from the recordings of one
vessel to all 16 vessels, it can be of great interest in examining the behavior of
our model. Figure 4.5 plots the predicted temperatures in comparison with the
actual recorded temperatures for the same month and the same motor studied
in Figures 4.1-4.4.

One can notice that in Figure 4.5, the behaviour of our model, from around 1 to
1.4 million seconds and from around 2 to 2.3 (million seconds), is different from
those in Figures 4.1-4.4. Here, the predicted values do not vary much with time,
showing a smooth horizontal line. Although Figures 4.1-4.5 give similar trend
plots without showing large structural changes in this period, some noticeable
oscillations can be observed in Figures 4.1-4.4. It implies the validity of our
generalized and robust model. For a much larger dataset, instead of fitting
the vibrations and systematic errors, our model can capture the important
characteristics and deliver an overall better performance.

4.3.2 Leave-one-vessel-out cross-validation

Consider another experimental scenario different from that in Section 4.3.1:

• All three motors in a marine vessel are newly replaced, and there is no
historical recording of these motors. Meanwhile, the motors of other
vessels have been working for a long period and have produced enough
historical recordings for training.

• The goal is to train a model which can be applied to the three new motors
in this vessel.

In order to simulate such a scenario, similar to Section 4.2.2, a new type of test
is designed. For each test, the recordings of one marine vessel are taken as the
test set, while all remaining recordings are the training sets. For convenience,
we name the vessel, whose recordings are used as the test set, as the test vessel.
The other vessels are defined as training vessels.

Each vessel is used once as the test vessel, and hence delivers one corresponding
MSE. After all vessels have been tested, the average of their MSEs is regarded
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Figure 4.5: The predicted and actual temperatures of a motor
during one calendar month. The predicted temperatures were
provided by the models trained with six-month recordings of all
motors. Note that this figure illustrates the temperatures during
the same month as Figures 4.1-4.4. The blue line illustrates
the results predicted by our optimal approach, while the orange
line represents the predicted temperatures given by the baseline
model, i.e., a linear model. The green line illustrates the actual
recorded temperatures. The MSE of our LSTM model in this
plot is 20.22, while the MSE of the baseline mode is 73.69

as the overall measurement of the model performance, namely an overall MSE.
Inspired by the leave-one-out cross-validation, the procedure demonstrated
above is named as a leave-one-vessel-out cross-validation (LOVOCV). The
overall MSE can then be also referred to as the MSE of LOVOCV.

Following the similar arguments in Section 4.2.2, the LOVOCV can therefore
be more challenging than the 5-fold cross-validation, as the trained model has
no knowledge of the testing vessels. Therefore, it is expected that the MSE
of LOVOCV can be larger than that of the 5-fold cross-validation. Observed
interestingly, the difference between their MSEs is however insignificant, as
shown in Table 4.8. The result implies that the homogeneity between the given
ships is stronger than expected.
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Model MSE LOVOCV MSE 5-fold CV
The developed mode 21.57 22.62

Baseline model 73.97 75.41

Table 4.8: MSE of the developed model and the baseline model
for different testing methods. Here, the whole holdout set is
employed.

However, it is worth addressing that these 16 ships do not have to be all
homogeneous. When predicting one target ship, according to the LOVOCV,
15-ship recordings are employed to train the model. Therefore, among these
15 ships, even if a few are similar to the target ship, we would expect a good
performance from the current model.

4.4 Summary

In this chapter, five relevant scenarios are simulated and tested, to further
illustrate the generality and accuracy of the current model, starting from
Section 4.1.2. However, notice that two tests are carried out in Section 4.1.1
and their corresponding scenarios were not described before. Since these tests
indeed have practical meanings, their corresponding test scenarios are also
summarized here to keep the consistency of all tests in this chapter. The tests
which produce Table 4.2 and Table 4.3 in Section 4.1.1 correspond to Scenario
1 and Scenario 2, respectively. The seven scenarios (tests) considered in this
chapter are then listed below:

• Scenario 1 Short term prediction: One motor is newly replaced, and
the goal is to predict its temperature in the near future. There are only a
limited number of historical recordings of the new motor, and there are
no historical recordings of any similar motors which can be taken as a
reference.

• Scenario 2 Long term prediction: One motor is newly replaced, and
the goal is to predict its temperature in long-term future. There are only
a limited number of historical recordings of it. Furthermore, there are
no historical recordings of any similar motors which can be taken as a
reference.

• Scenario 3 Single motor prediction: Only one motor is currently
working, and the goal is to predict its temperature. This motor has been
working for a long time, and there are enough historical recordings of it.

• Scenario 4 Single ship prediction: Only one ship is currently
navigating, and the goal is to predict the temperature of all its three
motors. These motors all have been working for a long time, and there
are enough historical recordings of them.

• Scenario 5 Leave-one-motor-out prediction: Only one ship is
currently working, and one motor is newly replaced. The goal is to
predict the temperature of the new motor. There is no historical recording
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of this motor, however, the other two motors of this ship have been
working for a long time, and there are enough historical recordings of
them.

• Scenario 6 All motors and ships prediction: All 48 motors in the 16
ships have been working for a long time, and there are enough historical
recordings of them. The goal is to predict the temperature of all these
motors.

• Scenario 7 Leave-one-ship-out prediction: All three motors of a
ship are replaced. The goal is to predict the temperature of these three
new motors. There are no historical recordings of these motors. However,
there are enough recordings of 45 similar motors from 15 similar ships.

In order to address these practical situations, the corresponding tests are
designed and carried out. The MSEs of these tests are employed to evaluate the
model performance, which are summarized in Table 4.9. The anomalies of the
MSEs of Scenarios 1 and 2, compared to other scenarios, have been thoroughly
discussed in Section 4.1.1.

Scenario MSE (the optimal model) MSE (baseline model)
1 11.47 14.36
2 43.21 78.28
3 33.27 75.66
4 21.58 74.35
5 22.37 75.91
6 22.62 75.41
7 21.57 73.97

Table 4.9: MSEs of tests for different practical scenarios. The
descriptions of these methods are summarized above.

These tests also bring a considerable number of intriguing findings, and the
corresponding explanations are thoroughly discussed. The MSEs, figures,
theories, and our explanations are all proven to be self-consistent. In short, the
behavior of the present optimal approach was able to give accurate predictions of
motor temperature under a variety of practically meaningful situations. It shows
a promising aspect of generalization with respect to handling scenarios beyond
the scope of this work. The outcomes of this chapter have further suggested
the validity of the model derived in Chapter 3 and its broad extrapolation
properties.
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CHAPTER 5

Conclusion, discussion and future
work

5.1 Conclusion

The studies in this thesis have investigated how machine learning techniques
can be used to predict the temperatures of motors on a ship. The final objective
of the current study is to develop an adaptive data-driven monitoring approach,
which helps detect the possible overheating of motors.

Here, machine learning methods such as convolution neural network (CNN) and
long short-time memory (LSTM) were reviewed and discussed. Along with this,
the current work also developed several efficient algorithms for handling the
massive amount of data made available by ABB.

In the validation of the model, two types of data have been used. One is the
simulated data from a simulator which is based on the simplified thermal model
of a wire. The other is the validation ABB dataset, which contains more than 1
billion recordings.

As stated in Section 4.4, multiple practical scenarios were investigated to test
our developed model. The model has performed consistently well for these
scenarios and has shown a satisfactory overall performance with respect to the
prediction accuracy and speed. According to the validation and test results,
the performance of our approach is much better than that of the baseline linear
model regarding both the accuracy of predictions, namely the MSE, and the
generalization. It indicates that the historical status of a motor can indeed
help predict the current motor temperature. Furthermore, it also suggests the
success of the architecture of our developed model, compared to the baseline
model.

5.2 Discussion and future work

Despite the success of our approach, there still exist other possible approaches
and methods, which can be helpful for the task given to this thesis. It is hence
worth introducing them to prepare for future work or applications.
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5.2.1 Re-balance the temperature distribution

One currently unexplored aspect is that the distribution of the target
(temperatures) in the given dataset is unbalanced. In other words, if dividing
the range of temperatures into intervals of equal size, the number of recordings
in certain intervals can be significantly different from the rest.

It may be possible that our approach is influenced by this type of unbalance.
Dividing the temperatures into small intervals (i.e., 10◦C), we can then illustrate
the number of recordings in each interval by a histogram as shown in Figure 5.1.
Meanwhile, the corresponding MSEs are also shown in this figure. It is indicated
by the figure that the MSE varies with temperatures, and it seems that the
unbalance can to some extent affect the model performance.

Figure 5.1: An illustration of the temperature distribution and
the corresponding MSEs. The x-axis represents the actual
temperatures given by ABB. These temperatures are divided
into multiple intervals, and each interval consists of 10 degrees
Celsius. The histogram illustrates the percentage of number of
recordings in each interval, with respect to the number of all
recordings. Note that there also exist temperatures between 110
and 120, but it is too small to be visible in this figure. The blue
line illustrates the MSE of each temperature interval, which is
calculated through 5-fold cross-validation. The entire holdout
dataset and the developed model are used to produce these
MSEs. The overall MSE, i.e., a weighted average of these MSEs,
is given as 20.46.

However, the difference in MSEs may also be a result of other factors. For
example, since different temperatures essentially represent different working
modes of the motor. The lowest temperature interval was given when the motor
was turned off or at idle, whereas the highest temperature interval represents
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that the motor was engaged at its full load. Despite the unbalance, the model
performance can also be influenced by these different working modes. For
instance, if our model does not perform well for an idle or standby motor, then
no matter how many recordings are used to train the model, the model still
cannot predict well in this temperature interval.

In other words, the influence due to other factors (which are also correlated to
the temperature) can be as large as that by the unbalance. Therefore, even
if some improvements are made to solve the unbalance, it may be difficult to
verify them.

5.2.2 Limitations of this study

In Chapter 4, multiple practical scenarios are simulated and tested. The
developed approach of this thesis has shown a satisfactory performance through
these tests. However, it is worth noticing that the test data provided by ABB
has its own limitations. As demonstrated in Chapter 4, the motors and ships
which provided the ABB data seem to be homogeneous. Therefore, although
an enormous amount of data were provided, many of them can be similar, such
that the generalization of the model is not challenged by the tests.

It is of great interest to investigate the model performance for heterogeneous
motors and ships, which can be a useful future work. Nevertheless, the
model is not likely to perform equally well for predicting the temperatures of
heterogeneous motors as in this thesis. In order to provide a satisfactory and
practical approach, the transfer learning introduced in Section 5.2.3 could be a
possible avenue.

Besides the limitation of the dataset, this study also has limitations. Recall that
predicting motor temperatures is determined as the objective of this thesis only
because it helps prevent possible motor overheating. Although such prediction
is an essential part of overheating prevention, more work still needs to be done
to implement a prevention algorithm.

In order to complete an approach to prevent possible overheating, there are
several possible approaches considered as future work. For example, as stated
before, an alarm will be triggered once the deviation between the detected
temperature and the predicted one reaches a warning limit. For convenience,
we define such a deviation as the prediction deviation. The determination
of the specific warning limit of the prediction deviation is an important and
complicated task, since the prediction deviation does not correspond to a
physical metric which directly reveals the overheating. Therefore, the relation
between overheating and such prediction deviation requires further study and
additional fault data, which are not necessarily easily available.

Furthermore, the possible overheating may not only correspond to one
temperature anomaly, but instead, a combination of multiple anomalies, namely
an anomaly pattern. It indicates that, although the prediction deviation does
not reach the warning limit, some specific patterns may still imply a possible
overheating. In such cases, a single data-driven machine learning approach does
not match the requirements. In order to provide a real-time overheating pattern
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detection, the well-known Complex Event Processing (CEP) (Leavitt 2009) can
be applied in addition to the machine learning approach. CEP was developed in
the early 1990s and was designed to detect complex events from data streams,
which is promising for the real-time pattern detection in such cases.

5.2.3 Transfer learning

According to the findings in Chapter 4, the motors and vessels can be considered
to have a high similarity. Therefore, the model trained by the recordings of
selected motors could be highly informative for other motors. Such a case may
not hold if different types of motors would be installed on different vessels.
However, it is still possible to make use of the prior knowledge gained from the
old motors following the analogy of the underlying physical models. One could
therefore possibly retrofit the old model instead of completely abandoning it,
and make it work on new motors. This process is the so-called transfer learning.
According to the field experience, it has already been proven to be a practical
and effective approach (Pan and Yang 2009). However, since the dataset of this
thesis was collected from the same type of motors, no effort has been done in
this thesis to investigate the effectiveness of the transfer learning.
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APPENDIX A

Additional figures

As stated in Chapter 4, we wish to illustrate the predicted temperatures and
the actual recorded temperatures. However, since the number of such figures in
this thesis exceeds 5000, it is impractical to plot all of them. Nevertheless, here
in the appendix, we are able to show more of these figures. As a representative
scenario, Scenario 6 in Chapter 4 and its corresponding test are chosen to be
illustrated here. Approximately 10% of the plots of the tests in Scenario 6,
namely 22 plots, are randomly selected. Note that they are produced by the
same test as Figure 4.5.

Figure A.1
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Figure A.2

Figure A.3
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Figure A.4

Figure A.5
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Figure A.6

Figure A.7

96



Figure A.8

Figure A.9
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Figure A.10

Figure A.11
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Figure A.12

Figure A.13
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Figure A.14
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Figure A.18
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Figure A.20

Figure A.21
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Figure A.22
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APPENDIX B

Codes

B.1 Core code used for model optimization, validation,
and test

The code used for model optimization, validation, and test will be shown in
this appendix. The entire code consists of over 3000 lines. However, most of
them are redundant and are essentially derived versions of a core source code.
We therefore only provide the core code as below. One can easily derive other
codes used in this thesis.

1 #########################################
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import numpy as np
5 import random
6 #########################################
7 from sklearn import preprocessing
8 from sklearn.metrics import mean_squared_error
9 from sklearn.linear_model import SGDRegressor

10 import tensorflow as tf
11 import keras
12 from keras.models import Sequential
13 from keras.layers import LayerNormalization, Dense
14 from keras.layers import LSTM, Conv1D
15

16 features = [’SP’, ’CI’, ’PO’, ’TO’]
17 target = [’T’]
18

19 num_partitions = 700
20 n_folds = 5
21 ######## 1
22 plot_train = False
23 plot_pred = False
24 plot_hist = False
25
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26 ######## 2
27 add_conv = True
28 conv_output_len = 5
29 conv_window_len = 50
30 conv_strides = 50
31 lstm_layers = [10, 15]
32 dense_layers = [1]
33

34 ######## 3
35 sequence_length = 2000
36 num_epochs = 200
37 batch_size = 1024
38 valid_split = 0.25
39

40 ######## 4
41 baseline = SGDRegressor()
42

43 ################# standardize data #################
44 MinMax_x = preprocessing.MinMaxScaler()
45 MinMax_y = preprocessing.MinMaxScaler()
46

47 ###########################################################
48 overall_observation_counter = []
49 overall_error_lstm = []
50 overall_error_baseline = []
51

52 sorted_list = random.sample([i for i in range(num_partitions)],
num_partitions)

53 n_test = int(num_partitions/n_folds)
54 #-----------------n fold CV------------------#
55 for fold_counter in range(n_folds):
56 print("Fold No.", fold_counter)
57 error_lstm = []
58 error_baseline = []
59 observation_counter = []
60 ####################### build folds

##########################
61 if fold_counter == (n_folds - 1):
62 test_list = sorted_list[fold_counter*n_test:]
63 else:
64 test_list = sorted_list[fold_counter*n_test:(fold_counter+1)*

n_test]
65

66 print("Build test list : finished ", test_list)
67 ####################### build model

##########################
68 #-----------------baseline model-------------#
69 model_baseline = baseline
70 #-----------------LSTM model-----------------#
71 model_lstm = Sequential()
72 if add_conv:
73 model_lstm.add(Conv1D(conv_output_len, conv_window_len,

strides = conv_strides, activation=’relu’))
74 for i in range(len(lstm_layers)):
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75 if i == len(lstm_layers) - 1:
76 model_lstm.add(LSTM(lstm_layers[i], return_sequences =

False))
77 else:
78 model_lstm.add(LSTM(lstm_layers[i], return_sequences =

True))
79 for i in range(len(dense_layers)):
80 model_lstm.add(Dense(dense_layers[i]))
81 opt = tf.keras.optimizers.RMSprop(learning_rate = 0.001)
82 model_lstm.compile(loss = "mse", optimizer = opt)
83

84 print("build model : finished")
85 ####################### train model

##########################
86 for i in range(num_partitions):
87 if i not in test_list:
88 file_name = "/all_data/" + str(i) + ".parquet"
89 print(file_name)
90 data = pd.read_parquet(file_name, engine = ’pyarrow’)
91 X = data[features].values
92 y = data[target].values
93 MinMax_x.partial_fit(X)
94 MinMax_y.partial_fit(y)
95 for i in range(num_partitions):
96 counter = 0
97 if i not in test_list:
98 counter = counter + 1
99 file_name = "/all_data/" + str(i) + ".parquet"

100 print(file_name)
101 data = pd.read_parquet(file_name, engine = ’pyarrow’)
102 X = data[features].values
103 y = data[target].values
104 X = MinMax_x.transform(X)
105 y = MinMax_y.transform(y)
106 length = len(X)
107 #---------------fit LR---------------#
108 # partial fit
109 model_baseline.partial_fit(X, np.ravel(y))
110 #--------------fit LSTM--------------#
111 # build sequence
112 X_time, y_time = [], []
113 for index in range(0, len(X) - sequence_length):
114 X_time.append(X[index: index + sequence_length])
115 X_time = np.array(X_time)
116 y_time = np.array(y[(sequence_length-1):(length-1)])
117 print("build train sequence: finished")
118 #fit
119 early_stopping=tf.keras.callbacks.EarlyStopping(monitor=’

val_loss’, min_delta = 0.0001, mode=’auto’, restore_best_weights =
True)

120 hist = model_lstm.fit(X_time, y_time, epochs = num_epochs,
batch_size = batch_size, callbacks=[early_stopping],
validation_split = valid_split)

121
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122 if plot_train:
123 y_pred_train = model_lstm.predict(X_time)
124 y_pred_inverse = y_pred_train.reshape(-1, 1)
125 y_train_inverse = y_time
126 t = np.linspace(0, len(y_pred_inverse), len(

y_pred_inverse))
127 plt.figure()
128 plt.plot(t[0:1000], y_pred_inverse[0:1000])
129 plt.plot(t[0:1000], y_train_inverse[0:1000])
130 plt.legend([’y_pred_lstm’, ’y_test’])
131 plt.savefig("plot_train_" + test_props + str(j))
132

133 #plot fit history, i.e. val_loss and train loss - number
of epochs

134 if plot_hist:
135 plt.figure()
136 t = range(len(hist.history[’loss’]))
137 plt.plot(t,hist.history[’loss’],’b’,label=’Training

loss’)
138 plt.plot(t,hist.history[’val_loss’],’r’,label=’

Validation val_loss’)
139 plt.title(’Traing and Validation loss’)
140 plt.legend()
141 plt.savefig("plot_model_loss" + str(plot_loss_counter)

)
142 plot_loss_counter = plot_loss_counter + 1
143

144 print("fit(train) model part %d/%d: finished"%(counter,
num_partitions-len(test_list)))

145

146 ####################### test model
##########################

147 for test_index in test_list:
148 # read test data
149 file_name = "/all_data/"+str(test_index)+".parquet"
150 data_test = pd.read_parquet(file_name, engine = ’pyarrow’)
151 X_test = data_test[features].values
152 y_test = data_test[target].values
153 X_test = MinMax_x.transform(X_test)
154 y_test = MinMax_y.transform(y_test)
155 length = len(X_test)
156 observation_counter.append(length)
157

158 # prepare test data
159 X_time_test = []
160 for index in range(0, len(X_test) - sequence_length):
161 X_time_test.append(X_test[index: index + sequence_length])
162 X_time_test = np.array(X_time_test)
163 X_test = X_test[(sequence_length-1):(length - 1)]
164 print("test data: ready")
165

166 # test
167 y_pred_LSTM = (model_lstm.predict(X_time_test)).reshape(-1, 1)
168 y_pred_baseline = (model_baseline.predict(np.array(X_test))).
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reshape(-1,1)
169 y_test = np.array(y_test[(sequence_length-1):(length- 1)])
170 print("predict: finished")
171 y_pred_LSTM_inverse = MinMax_y.inverse_transform(y_pred_LSTM)
172 y_pred_baseline_inverse = MinMax_y.inverse_transform(

y_pred_baseline)
173 y_test_inverse = MinMax_y.inverse_transform(y_test)
174 mse_lstm = mean_squared_error(y_pred_LSTM_inverse,

y_test_inverse)
175 mse_baseline = mean_squared_error(y_pred_baseline_inverse,

y_test_inverse)
176 error_lstm.append(mse_lstm)
177 error_baseline.append(mse_baseline)
178 print ("Test ERROR(LSTM) = ", mse_lstm)
179 print("Test ERROR(SGDLR) = ", mse_baseline)
180

181 # plot results
182 if plot_pred:
183 t = np.linspace(0, len(y_pred_inverse_minmax), len(

y_pred_inverse_minmax))
184 plt.figure()
185 plt.plot(t, y_pred_LSTM_inverse)
186 plt.plot(t, y_pred_baseline_inverse)
187 plt.plot(t, y_test_inverse)
188 plt.title("mse_lstm:"+str(mse_lstm)+" mse_OLRwithSGD: "+

str(mse_baseline))
189 plt.legend([’y_pred_lstm’, ’y_pred_baseline’, ’y_test’])
190 plt.savefig("plot_" + str(test_index))
191

192 observation_counter_temp = np.array(observation_counter)
193 print("MSE of LSTM for now:")
194 print("MSE:", sum(error_lstm*observation_counter_temp)/sum(

observation_counter_temp))
195 print("MSE of baseline for now:")
196 print("MSE:", sum(error_baseline*observation_counter_temp)/sum

(observation_counter_temp))
197

198 overall_observation_counter.append(sum(observation_counter))
199 counter_temp = np.array(observation_counter)
200 print("Fold %d/%d: finished"%(fold_counter + 1, n_folds))
201 print("MSE of LSTM")
202 print("MSE:", sum(error_lstm*counter_temp)/sum(counter_temp))
203 overall_error_lstm.append(sum(error_lstm*counter_temp)/sum(

counter_temp))
204 print("MSE of baseline")
205 print("MSE:", sum(error_baseline*counter_temp)/sum(counter_temp))
206 overall_error_baseline.append(sum(error_baseline*counter_temp)/sum

(counter_temp))
207

208 overall_temp = np.array(overall_observation_counter)
209 print("Final MSE of LSTM")
210 print("MSE:", sum(overall_error_lstm*overall_temp)/sum(overall_temp))
211 print("Final MSE of baseline")
212 print("MSE:", sum(overall_error_baseline*overall_temp)/sum(

109



B. Codes

overall_temp))

B.2 Code of the simulator

Here, we demonstrate the source code of the simulator introduced in Section
3.3. The basic idea of this code is provided by ABB, and the detailed theories
are discussed in Section 3.3.

1 #import
2 import numpy as np
3 import pandas as pd
4 import matplotlib.pyplot as plt
5 from scipy import signal
6

7 # parameters
8 tau = 10.0 * 60
9 h = 1.0

10 N = 10000 # Number of simulated epochs of time
11 n = 3 # Multiplication factor, explained in Section 3.3.
12

13 beta = n*tau
14 Imax = 1
15

16 ################### A test ###################
17 # create inputs
18 t = pd.Series(np.arange(-100.0, 5000.0, h))
19 dt = pd.DataFrame(t, columns = [’t’])
20 dt[’I’] = 0.0
21 dt[’I’].loc[dt[’t’]> = 0] = 1
22

23 # Analytic solution for the corresponding outputs
24 dt[’a’] = 0.0
25 dt[’a’].loc[dt[’t’]>0] = dt[’I’]*dt[’I’]*(1 - np.exp(-dt[’t’]/tau))
26

27 # Numerical solution for the corresponding outputs,using the lfilter
function for convenience

28 alpha = h/(tau + h)
29 a = [1,-(1 - alpha)]
30 b = [alpha]
31 dt[’f’] = signal.lfilter(b, a, np.square(dt[’I’].values))
32 dt.set_index(’t’, inplace = True)
33

34 ################### Creat simulated data ###################
35 # Draw intervals
36 d = np.random.exponential(beta, N)
37 stepTimes0 = np.cumsum(d) - d[0]
38 maxTime = stepTimes0[-1] + 3*tau
39 stepTimes = np.append(stepTimes0, maxTime)
40 t = np.arange(0, maxTime, h)
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41

42 # Draw amplitudes
43 Is0 = np.random.uniform(0, 1, N)
44 Is = np.append(0.0, Is0) # Start with 0
45 inds = np.digitize(t, stepTimes)-1
46 I = np.take(Is, inds)
47

48 # Create dataframe
49 dt = pd.DataFrame({’t’:t, ’I’:I})
50 alpha = h/(tau + h)
51 a = [1,-(1 - alpha)]
52 b = [alpha]
53 dt[’O’] = signal.lfilter(b, a, np.square(dt[’I’].values))
54

55 ################### Illustrate simulated data ###################
56 # illustrate inputs and outputs
57 # dt[[’I’,’O’]].loc[0:100000].plot()
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