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Abstract

The thesis explores the use of transfer learning for automated segmen-
tation of 2D echocardiograms in the situation where few labeled data
are available for end-to-end training. The main focus is on transfer
learning involving data sets of the left heart chambers and the right
heart chambers, with a goal of improving segmentation performance
on the latter kind of data. A custom version of the U-Net neural net-
work was implemented for automated segmentation and trained on two
left heart data sets and one right heart data set. The worst performing
models in direct training on right heart data significantly improved
through pre-training on left heart data. Their multi-class Dice Score
rose by 6% on average, while the score for RV epicardium improved
by 16%. Predictions made by the models were also explored, revealing
that the left heart chambers and the right heart chambers share cer-
tain features in the images that are useful for learning segmentation.
It is concluded that transfer learning appears to be a feasible approach
for echocardiogram segmentation when there is a lot of data available
in the source task data set and far less data in the target task data
set. Using transfer learning with the right setup can therefore reduce
the amount of right heart ultrasound data that needs to be collected
for training AI segmentation models. However, further investigation is
required to quantify some observations made throughout the work.
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Chapter 1

Introduction

Medicine is an extremely large and perpetually developing field of sci-
ence. As more knowledge is discovered, more opportunities arise within
the field. At the same time, the already difficult road to becoming a
medical professional gets increasingly more arduous. The existing pro-
fessionals are not spared either, as they are expected to keep up with
the pace of progress and become familiar with new technology and pro-
cedures. For example, more than 33% of cardiologists reported feel-
ing burned out in 2015, according to American College of Cardiology
[1]. Still, developments within Artificial Intelligence (AI) may produce
medical technologies that both improve the quality of services and re-
duce the mental burden of medical professionals.

The discipline of medical imaging seems to lend itself particularly
well to integration of AI, given the advancements of Deep Learning in
image analysis. AI can be used with any imaging modality, for any
body part or organ, to discover patterns in the images and help with
their interpretation. In echocardiography, the intersection of medical
ultrasound imaging and cardiology, image acquisition and assessment
are particularly plagued by inter-observer variability, and AI may offer
some relief to the problem [2, 3]. As it currently stands, there is a
variation in how different cardiologists acquire and interpret images.

1



Since a variety of factors can affect human performance, intra-observer
variability is also a possible issue. AI can be a lot faster than humans
in measuring and interpreting images, while incorporating data from
multiple experts to, hopefully, "cancel out" some of the bias.

1.1 Research Motivation

Although AI may provide assistance within echocardiography, a lot of
obstacles remain. Firstly, the majority of research on automated inter-
pretation of echocardiograms (ultrasound images of the heart) focuses
on the left side of the heart, neglecting the right side in the process. It
is a common belief that human heart is largely symmetrical, but an ar-
ticle by Ostenfeld and Flachskampf dispels this notion, at least in the
case of the left ventricle (LV) and the right ventricle (RV) chambers [4].
The authors posit that the shape of RV is more complex than that of
LV, making it difficult to visualize and measure. Even so, a possibility
remains that RV is similar enough to LV to warrant the use of the same
methods for automated interpretation.

Secondly, there is an issue of data availability. While medical insti-
tutions store a lot of cardiac ultrasound data, it is rarely annotated or
labeled. Therefore, it cannot be used to train AI models in a supervised
manner. The issue is particularly severe when it comes to data on the
right side of the heart, due to a relative lack of research and interest.
Fortunately, there are more ways to combat this issue beyond merely
continuing the efforts to label and prepare more data. One approach
is to generate and make use of synthetic data [5]. Another possible
approach is transfer learning.

Transfer learning is a family of techniques within AI that allow for
more efficient use of small data sets whenever a larger but similar data
set is available. There is a lot of available "left heart" data, but very
little "right heart" data. Thus, AI algorithms could use big data sets of
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the left heart for pre-training and small data sets of the right heart for
fine-tuning, thereby performing a transfer of knowledge. This arrange-
ment should, in theory, provide increased performance in automated
interpretation of echocardiograms depicting the right side of the heart.

One important subroutine within echocardiogram assessment is
segmentation of the heart regions and chambers. It is a necessary task
that serves as a stepping stone for calculating the chamber size, vol-
ume, mass, and other important metrics. Currently, skilled cardiolo-
gists perform this task by hand, but there is a lot of progress on au-
tomating the procedure for the left side of the heart. Similar research
for the right side of heart is lacking, however.

This thesis therefore focuses on exploring the feasibility of trans-
fer learning in automated segmentation of the right heart chambers
and regions. The expectation is that the approach of transfer learning
can provide better segmentation performance than simple training of
segmentation algorithms on the right heart data. If transfer learning
is indeed feasible for automated segmentation for this problem, it will
mean that the currently used segmentation models can generalize bet-
ter and have more value than previously believed. Furthermore, it will
potentially spare the medical industry the need to collect and prepare
excessive amounts of heart ultrasound data.

1.2 Goal and Research Question

There is a multitude of intelligent algorithms that are applicable
for different subtasks that comprise echocardiogram interpretation.
Thankfully, when it comes to the subtask of segmentation, it is rea-
sonable to limit oneself to just one type of algorithms: convolutional
encoder-decoders and their derivatives. These algorithms are well-
suited for image segmentation in general, while one specific architec-
ture, U-Net, has proven its worth in biomedical applications in partic-
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ular.

This work attempts to answer the following question: "Is trans-
fer learning feasible for automated segmentation of the right
heart chambers in 2D echocardiograms?" To clarify the term "fea-
sible" in this context, pre-training algorithms on left heart data before
fine-tuning them with limited right heart data should produce better
segmentation results than simply training the algorithms on a small
data set from scratch. If such pre-training leads to worse results in-
stead, then it would mean that negative transfer occurred, and transfer
learning would be judged as not "feasible" for the problem. If trans-
fer learning is only effective in a specific set of circumstances, then the
goal is to identify which circumstances those would be. See Figure 1.1
for an overview of the direct (end-to-end) training approach and the
transfer learning approach.

Figure 1.1: The approaches for training the segmentation models. The goal of
the thesis is to investigate which approach produces the models that are better
at segmenting the right heart echocardiograms.

On the way to answering the main research question, the thesis con-
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tributes in a number of related topics. Further attention is brought to
the importance of the right side of the heart within cardiology, echocar-
diography, and image analysis with AI. The work surveys and briefly
reviews the current research in AI-assisted echocardiography. Some of
the existing echocardiographic data sets and their properties are also
discussed.

1.3 Limitations of the Work

Although the thesis attempts to validate the results as extensively as
possible, there are inevitable limitations. Transfer learning is only ap-
plied to the U-Net algorithm, as it is one of the best artificial neural
networks currently available for biomedical segmentation tasks. U-Net
is modifiable to a great degree, and testing it under different parame-
ters already takes up a great amount of resources.

Transfer learning is not one specific technique, but a family of tech-
niques, or a concept - there are several ways to go about implementing
it. The work relies on the simplest implementation, where an algo-
rithm is trained on one data set and then continues training on an-
other. More complex transfer learning techniques are not investigated.

Only one formal metric is used to assess segmentation performance
- the Dice Coefficient metric. The obtained data sets simply do not have
the information needed to calculate other metrics that would be useful.
The metrics that can be calculated either strongly correlate with the
Dice Coefficient or are not quite appropriate for segmentation tasks.

Further, knowledge transfer involving only three data sets is ex-
plored - two of them are the left heart data sets, and the remaining one
is the right heart data set. There is no guarantee that the results can
be replicated with other data sets.

Finally, the work makes certain assumption about how the effi-
ciency of transfer learning should be evaluated, as there is no estab-
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lished method of doing so. The reasoning behind the chosen procedures
is explained in the relevant section.

1.4 Note on Implementation

The programs created for the thesis are written in Python program-
ming language (v3.7). The custom implementation of the U-Net al-
gorithm was made with the support of the PyTorch package (v1.7.1).
All of the U-Net models were trained on a GeForce RTX3090 Graphics
Card.

1.5 Thesis Structure

The thesis consists of six chapters, counting the current one. The
next chapter, Chapter 2 ("Theoretical Background"), introduces the
reader to a variety of background topics relevant to the main research
question. The topics include medical ultrasound, basic heart anatomy,
image analysis with AI, and current achievements within AI-assisted
echocardiography.

Chapter 3 ("Overview of Acquired Data") covers the three data
sets used for training the segmentation algorithm. The important
properties of each data set are discussed, along with their strengths
and weaknesses. One of the data sets offers more than segmentation
masks, and the features of this data set are analyzed more thoroughly.

Chapter 4 ("Methodology") builds up on the information provided
in Chapters 2 and 3 to introduce a range of algorithms and proce-
dures used to answer the main research question. It covers the custom
implementation of U-Net created for this work, details on the use of
Dice Coefficient metric to assess segmentation performance, explains
how trained U-Net models can be applied to produce human-readable
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echocardiogram segmentations, and sets up further experiments.

Chapter 5 ("Experiments and Results") is dedicated to experiments
required to answer the main research question. First, transfer learning
experiments between two left heart data sets are conducted as a trial
run of the experimental setup. Next, the setup is optimized, trans-
fer learning experiments between left heart and right heart data sets
are performed, and the results are briefly discussed. Finally, a look at
the individual predictions made by the trained U-Net models is offered
with the purpose to discern additional patterns in the models’ behavior.

Chapter 6 ("Discussion and Conclusion") provides an overall as-
sessment of the results. The limitations of the work are then revised
with these results in mind. Lastly, possible improvements and exten-
sions to the work are discussed.

7



Chapter 2

Theoretical Background

This chapter acquaints the reader with relevant background topics for
automated segmentation of echocardiograms. It is both a medical and a
technical task, requiring at least some understanding of medical imag-
ing, cardiology, and artificial intelligence.

Section 2.1 briefly covers some of the existing medical imaging
modalities, focusing on medical ultrasound and diagnostic echocardio-
graphy in particular. Section 2.2 is a refresher on the roles of the heart
chambers and their current understanding within cardiology. Section
2.3 revises the important concepts within the field of image analy-
sis with AI. Finally, Section 2.4 explores current developments in AI-
assisted echocardiography.

2.1 Medical Imaging

Medical Imaging is a sub-discipline with a long history that spans more
than 100 years of research. Starting with the discovery of X-rays by
Wilhelm Rontgen in 1895, the field of medical imaging has been ac-
quiring a growing set of techniques: X-ray imaging, X-ray based Com-
puted Tomography (CT), Magnetic Resonance Imaging (MRI), and Ul-
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trasound (US) imaging.

While all of these technologies have been introduced several
decades ago, Medical Imaging is still rapidly developing. New imag-
ing modalities are proposed every few years, and the ever-increasing
capabilities of sensors lead to further improvements. Additionally, the
emerging disciplines of Computer Vision and Machine Learning can
enhance all imaging modalities by providing tools to extract more in-
formation from the sensor readings.

As of now, there is no perfect medical imaging technique or modal-
ity: each of them has its own advantages and disadvantages when
it comes to cost, safety, areas of application, and a myriad other fac-
tors. For instance, ultrasound imaging, the focus of this work, distin-
guishes itself as one of the safest, cost-effective and portable technolo-
gies within the field [6]. On the downside, it tends to suffer from lower
spatial resolution than CT and MRI.

2.1.1 Ultrasound and Ultrasonic Transducers

The physical definition of sound is a vibration that generates an acous-
tic wave, yet the colloquial definition only refers to acoustic waves in
the frequency range between 16 and 20,000 Hz that humans can per-
ceive. Similarly, physicists define ultrasound as any sound with fre-
quency above 20,000 Hz, while medics mostly focus on frequencies be-
tween 2 and 15 MHz – the typical operational frequency range of a
medical ultrasonic transducer.

Ultrasonic transducers are devices that enable ultrasound imaging.
They come in a large variety of forms to suit different use cases, but
they are all built on the same principle that utilizes the piezoelec-
tric properties of ceramic crystals (see Figure 2.1 for an overview of
transducer structure). Piezoelectricity is reflexive: materials with this
property produce electric current under mechanical pressure and vice
versa. Thus, sending electricity through the ceramic crystals forces
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Figure 2.1: The structure of an ultrasonic transducer

them to vibrate and emit ultrasound waves. When the waves are re-
flected back into the crystals, electric signals are formed instead. The
resulting signals are processed and plotted as a sonogram - an ultra-
sound image. Moreover, measuring the frequency shift can reveal in-
formation about the velocity of a moving object via the Doppler Effect.
Refer to Figure 2.2 for a more visual explanation of US transducers’
operational principles.

Medical applications of this technology are immediately clear: so
long as the ultrasound waves can penetrate the skin of a patient, it is
possible to form a sonogram of the internal organs and even observe the
blood flow. Depending on the physical arrangement of the piezoelectric
crystals, a transducer may be capable of real-time 1D (with a single
crystal), 2D (with an array of crystals) or even 3D imaging (with a
two-dimensional array of crystals or a moving one-dimensional array).
Image depth can be controlled by tuning the frequency of the emitted
waves, though the crystal arrangement has an effect on it as well.
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Figure 2.2: An ultrasonic transducer in operation.
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2.1.2 Diagnostic Echocardiography

A variety of organs and soft tissues can be imaged with ultrasound,
including the human heart. By itself, cardiac US imaging also has a
large number of applications: it is used for general heart examinations,
as well as before, during, and after surgical operations. Naturally, the
diagnostic applications (focused on in this work) are the most common,
though the perioperative uses are also increasing in popularity with
the development of three-dimensional echocardiography.

Diagnostic cardiac ultrasound often employs two-dimensional imag-
ing modalities, yet even then there is a choice between two methods:
the non-invasive transthoracic echocardiography (TTE) and the inva-
sive transesophageal echocardiography (TEE). TTE is regarded as the
"normal" way of imaging through the chest wall, while TEE is per-
formed by passing the transducer down the patient’s esophagus. TEE
is resorted to when a TTE examination is insufficient, either because
certain regions are unreachable, or the images are too unclear to make
a proper diagnosis. Other types of echocardiography involving small
transducers passed through a catheter (intracardiac and intravascu-
lar) are now rising to prominence, but these are mostly perioperative
procedures.

When performing TTE, one can look at the heart from different car-
diac views (geometric perspectives). One view can provide information
about the heart that is simply unattainable from other views. Over
time, the most informative views have been identified and given their
own names. Thus, some of the most widely used types of views are:
parasternal, apical, subcostal and suprasternal. Nearly each of these
view types is then sub-divided into additional categories. For exam-
ple, there are two-, three-, four-, and five-chamber apical views (the
five-chamber view images the four actual heart chambers and the left
ventricular outflow tract). See Figure 2.3 for examples of the two- and
the four-chamber views.
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(a) Apical two-chamber view (b) Apical four-chamber view

Figure 2.3: Examples of the apical two-chamber view (A2C) and the apical
four-chamber view (A4C). Depicted heart chambers are labeled.

2.2 The Left and the Right Heart in Cardi-
ology

The human heart has four chambers, two of which are on the left side
(left ventricle and left atrium), with the remaining two on the right
side (right ventricle and right atrium). The left chambers receive oxy-
genated blood from the lungs and send it to the rest of the body, while
the the right chambers receive deoxygenated blood and send it to the
lungs for oxygenation (Figure 2.4).

One beat of the heart is divided into two phases: diastole and sys-
tole. During the diastole phase, the heart relaxes, and blood enters the
ventricles. During the systole phase, the heart contracts, and blood
leaves the ventricles. The heart is a double pump, meaning that relax-
ation and contraction occur simultaneously on both sides.
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Figure 2.4: A simplified diagram of a normal heart [7]. Heart chambers and
blood flow are depicted. In actuality, the left and the right sides are not com-
pletely symmetric.

2.2.1 Function and Role of the Left Heart

The left side of the heart is responsible for pumping oxygenated blood
to body tissues and organs. Blood first enters the left atrium (LA) from
the lungs via the pulmonary veins, then proceeds into the left ventri-
cle (LV) through the mitral valve (diastole phase), and finally escapes
through the aortic valve to supply the rest of the body (systole phase).
Function of the left heart is often assessed via metrics associated with
the left ventricle, meaning that this chamber is particularly interest-
ing to cardiologists. Given the relationship of the left heart to all organ
systems, it is no surprise that reduced function of the left ventricle can
lead to a wide array of potentially fatal problems. For example, cardiac
failure correlates with changes in the left ventricle [8].

Failure of the left ventricle can occur due to any number of causes,
and establishing the exact reason requires careful analysis on the doc-
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tor’s part. However, measuring left ventricular function is less diffi-
cult. Some of the metrics that comprise such a measurement are the
end-diastolic left ventricular volume (LVEDV ), the end-systolic volume
(LVESV ), and the ejection fraction (LVEF ).

Left ventricular ejection fraction refers to the percentage of blood
that leaves the ventricle after each contraction. Kosaraju et al. explain
that there are several classification systems of the left ventricular func-
tion by LVEF values [9]. The simplest classification by the American
College of Cardiology defines LVEF between 50% and 70% as normal,
with the values above 70% considered hyperdynamic, and the values
below 50% indicating various states of dysfunction (the lower LVEF ,
the more severe). One way to calculate LVEF is as follows:

LVEF =
LVEDV − LVESV

LVEDV

(2.1)

When the heart’s output is not sufficient to meet the body’s needs,
heart failure occurs. Cardiologists distinguish between two types of
heart failure by LVEF values: with reduced ejection fraction (HFrEF),
and with preserved ejection fraction (HFpEF). The former type of fail-
ure points to abnormalities in heart contraction (systolic failure), while
the latter indicates possible issues with heart relaxation (diastolic fail-
ure, but not always). Both types of heart failure seem to appear with
nearly equal frequency [10]. Thus, measuring LVEF alone can help di-
agnose HFrEF cases that constitute about half of all cardiac failures.
As for the other half made up by HFpEF cases, LVEF is ineffective at
detecting them, and other metrics need to be used instead. Even then,
measuring LVESV and LVEDV on their own may allow cardiologists to
judge whether LV hypertrophy has occurred - a possible sign of HFpEF
[11].

Although the importance of the left ventricle can not be overstated,
there are cases where paying attention to the left atrium may also be
needed. Along with LV hypertrophy, LA enlargement can be a sign
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of HFpEF specifically, whereas LA dysfunction of any kind may be a
marker of various heart conditions in general. Furthermore, a very
recent work by Bisbal et al. argues that atrial dysfunction is often ne-
glected by researchers, and that "atrial failure" should be classed as a
clinically relevant entity to foster better understanding of atrial dys-
function [12]. The authors state that LA plays a large role in LV filling
and the total performance of the heart, meaning that "atrial failure"
could be considered the primary cause of certain disorders.

2.2.2 Function and Role of The Right Heart

The right side of the heart receives deoxygenated blood from the body
and sends it to the lungs. The entry occurs via the superior vena cava
(blood from the upper body) and the inferior vena cava (blood from the
lower body) into the right atrium (RA). In the diastole phase, blood
flows from the RA into the right ventricle (RV) through the tricuspid
valve. In the systole phase, blood escapes the RV into the pulmonary
trunk through the pulmonary valve.

Compared to its counterpart in the left heart, the RV seemed to at-
tract little attention from cardiologists and researchers, according to
Voelkel et al. [13]. Dysfunction of this heart chamber was often con-
sidered a byproduct of disease, with the actual cause lying elsewhere
(in the LV, for example). However, the RV plays an important role in
pulmonary hypertension, wherein the blood pressure of lung arteries
becomes too high. Examination of the RV can help diagnose this disor-
der. Unfortunately, familiarity with ultrasound techniques for imaging
the RV also used to lag behind, and therefore echocardiographic exami-
nations would sometimes omit the RV and the right heart entirely [14].
Since much of the research focusing on the RV acknowledges these is-
sues, awareness has likely been increasing over the last decade. As for
the RA abnormalities such as enlargement, they are usually associated
with similar pulmonary diseases that also affect the RV as well as rare
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congenital defects [15].

A case could be made that a much bigger focus on the left heart in
cardiology and medical ultrasound is justifiable. If right-sided heart
failure is indeed often caused by left-sided heart failure, then research
on the left heart understandably takes precedence. The difficulty of
imaging the right heart caused by its complex geometry and anterior
position only reinforces the utilitarian logic in this regard. Lastly, pul-
monary hypertension is somewhat rare, with the incidence rate of all
its forms estimated to around 326 per 100,000 people by one study in
Armadale, Australia [16]. Out of this number, 77% is the cases asso-
ciated with left heart dysfunction. The incidence rate for all cardio-
vascular diseases is hard to estimate, but averaging the data from 34
European states collected by Eurostat in 2015-2018 puts it at around
2,000 per 100,000 inhabitants [17].

There are cases beyond pulmonary hypertension where the RV be-
comes dysfunctional, however, and it may be there that the importance
of examining the right heart becomes evident. Gorter et al. argue that
RV dysfunction is yet another important marker for HFpEF, bringing
up several studies where a link between the two was observed [18].
They also maintain that RV dysfunction, when present along with HF-
pEF, contributes to poor prognosis and mortality risk. Therefore, treat-
ments targeting the right heart could potentially prolong the life of
some patients with HFpEF. The authors provide a variety of metrics to
diagnose RV dysfunction by, among which is RVEF < 45%.

There may be a surge in interest towards the RV in light of the
COVID-19 crisis. Park et al. review the role of RV in COVID-19, noting
that RV dysfunction is a major predictor of mortality for patients with
acute respiratory distress syndrome (ARDS) - a syndrome that SARS-
CoV-2 infection may cause [19]. Pulmonary hypertension may also ac-
company ARDS caused by the virus. Bleakly et al. likewise indicate
that critically ill COVID-19 patients often show signs of RV dysfunc-
tion when judged by the Fractional Area Change (FAC) metric [20].
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FAC is similar to ejection fraction, but uses area instead of volume for
calculations.

2.2.3 Heart as a Complex Singular System

Dividing the heart into two sides or four chambers is convenient for
exploring the functions of each individual part, but it distracts from
the fact that the heart is one organ. As previously suggested, the
LV and the RV can affect each other and form a complex relationship.
Normally, the RV assumes a semilunar shape and occupies a smaller
volume than the elliptic LV. However, RV enlargement as a result of
pulmonary hypertension is not isolated - it affects the LV as well (see
Figure 2.5).

Figure 2.5: The approximate shapes of LV and RV in a healthy heart (A) and
when affected by idiopathic pulmonary arterial hypertension (B) [13].

The interdependence of the LV and the RV is great enough for re-
searchers to ponder whether LV failure and RV failure are truly sep-
arate phenomena. Friedberg and Redington mention that LV contrac-
tion is responsible for possibly more than half of the mechanical work
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done by the RV, while the RV geometry influences LV function in turn
[21]. The ventricles also share the septum on the inside and the my-
ocardial fibers on the outside. These findings serve as an additional
argument for the need to research the right heart and monitor its func-
tion during examinations.

2.3 Image Analysis with Artificial Intelli-
gence

Artificial intelligence is an older field of research than most would
think, with the first proof of concept being presented at the 1956 Dart-
mouth College Artificial Intelligence Conference [22]. Since then, the
field has seen rises and falls of enthusiasm. Initially, the comput-
ing power limitations made complex intelligent algorithms unfeasible,
leading to a decline in the amount of research. In recent decades,
advancements in hardware sparked newfound interest in AI. Today,
intelligent algorithms are used in many industries, from banking to
medicine, and in people’s daily lives as well.

Currently, the sheer variety of AI algorithms makes it difficult to
even keep up with the new developments. There are methods for ana-
lyzing any kind of data: tables, text, sound, human speech, and images.
One unifying quality for all of them is that they mimic biological sys-
tems and processes, at least in part. For example, intelligent methods
aimed at image analysis are inspired by the workings of the visual cor-
tex - part of the brain responsible for visual information processing.

2.3.1 Machine Learning and Artificial Neural Net-
works

Machine learning is an application of artificial intelligence that allows
a computer to solve a certain task without having an explicitly pro-
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grammed solution. Instead, the algorithm learns from its errors and
refines its approach to the task over time. Machine learning can be
further subdivided into supervised and unsupervised learning.

Supervised learning techniques require labeled data for the algo-
rithm to learn from. In image analysis these techniques can be em-
ployed for object recognition, classification, segmentation, or regres-
sion (predicting measurements or values from an image). Unsuper-
vised learning techniques, on the other hand, do not require labeling of
the data. These techniques are normally used for clustering data ac-
cording to similarities discovered by the algorithm. If a task can some-
how be solved with either type of learning, supervised learning tends to
produce better results given the appropriate setup. At the same time,
collecting and labeling data is tedious work that often has to be dele-
gated to humans. Ensuing subjective labeling and data set imbalance
may introduce a bias to the model. Since this work focuses primarily
on supervised learning techniques, some preliminary data analysis will
be required to uncover possible limitations of the trained models.

Figure 2.6: The basic structure of a three-layer Artificial Neural Network.

Artificial Neural Networks (ANNs) are an example of supervised

20



learning techniques. As seen from the name, ANNs take inspiration
from neuroscience and use a connected network of so-called artificial
neurons or nodes for calculations. Like their natural counterpart,
ANNs are rather flexible and can solve a variety of tasks (depending
on implementation specifics). The basic structure of an ANN (Figure
2.6) sees artificial neurons arranged into two or three layers:

• Input layer: data are fed into the network at this layer, with
each feature or dimension of the data being treated as one node.

• Optional hidden layer: after multiplication with a weight ma-
trix w, data arrive at this layer (if present), and an activation
function a is applied. This layer serves to enhance the computa-
tional ability of the network, and the number of nodes is arbitrary.

• Output layer: the procedures occurring at the hidden layer are
repeated at this layer. The number of nodes corresponds to the
desired dimensionality of the output.

The process of propagating data from the input to the output layer
is called forward propagation. Its mathematical description for each
node is as follows:

x
[l]
j = a(z

[l]
j ) = a

N [l−1]∑
j=1

w
[l]
ijx

[l−1]
i + b

[l]
i

 (2.2)

where x[l]i is the value of the i-th node in the layer l − 1, wij values are
weights, bi are biases (trainable offsets, not conventional biases), N [l]

is the number of nodes in the layer, and z
[l]
j is the output of the node.

Then, the final output is obtained by applying the chosen activation
function a to z[l]j .

A forward propagation step allows the network to produce a hypoth-
esis, but the network has to be trained for its predictions to become
more reliable. During training, forward propagation concludes by cal-
culating the error through the chosen cost function (or loss function)
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C(ŷ,y). The loss needs to be calculated in order to perform a backprop-
agation step, where the network learns from the errors by updating
weights and biases:

w
[l]
ij ← w

[l]
ij − ηδ

[l]
j x

[l]
j (2.3)

b
[l]
j ← b

[l]
j − ηδ

[l]
j (2.4)

where η is the learning rate, δj are loss function gradients, and x
[l]
j are

inputs at layer l, i.e. activations of the previous layer l − 1. The calcu-
lation procedure for δj in the last layer L is

δ
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whereas for all preceding layers l it is slightly more complex:
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[l]
j ) (2.6)

Note that the weight and bias update procedure are not set in stone,
but are "pluggable", just as the activation and cost functions. Eq. (2.3-
2.4) merely describe one of the simpler optimizers, stochastic gradient
descent (SGD) optimizer.

The training process is essentially a cycle of forward and backprop-
agation steps on different samples of data. Ideally, the loss should de-
crease as the training continues, but the wrong choice of activation
function, loss function, or optimizer can interfere with learning, as can
any number of other factors. The relative complexity of the above equa-
tions may lead one to believe that mathematical mistakes are also a
frequent occurrence, but contemporary software libraries tend to ab-
stract away most of the difficulty on that front.

The flexibility of ANNs means that they can be applied to image
data, but it is rarely a wise choice. Conventional ANNs reserve a "neu-
ron" connection for every single feature of a data sample, and images
have an extremely high dimensionality. Consider a relatively small
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100×100 pixel image in RGB (three color channels) format: a computer
sees it as a numeric array with 30,000 values, each of which would re-
quire a "neuron". Larger images can have millions of features, making
the dense connectivity of ANNs computationally expensive.

2.3.2 Convolutional Neural Networks

Unlike ANNs, Convolutional Neural Networks (CNNs) assume that the
input is an "image" - a numeric array with two or more dimensions.
CNNs are more optimized for this type of information than ANN, re-
quiring far fewer learning parameters to achieve better performance
on image-related tasks. Instead of densely connected layers, these net-
works feature convolutional layers that apply "sliding" filters (or ker-
nels) with learnable values to regions of an image. For a grayscale
image with one color channel, a convolutional layer works like a 2D
cross-correlation operation:

z[m,n] =
D−1∑
i=0

D−1∑
j=0

w[i, j] ∗ x[m+ i, n+ j] (2.7)

where the [i, j]-like notation denotes a value in the i-th row, j-th column
of an array; x is the input image, w is the filter ("weight") that the
image is convolved with, and z is the layer output. Eq. (2.7) assumes
that the filter has an equal height and width D = 2n + 1, n ∈ N. See
Figure 2.7 for an illustrated example.

For images that have more than one color channel (RGB images, for
example), the filter depth has to match the number of channels - the
result is still a 2D feature map. A convolutional layer can also apply
several trainable filters to an image, and the output depth will be equal
to the number of filters applied.

Convolutional layers are frequently followed by pooling layers in
CNN that also apply sliding kernels, but these kernels either aver-
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Figure 2.7: An illustrated example of convolving a 5 × 5 image with a 3 × 3
kernel.

age the values in the inspected region (average pooling) or select the
maximum value (max pooling) instead of cross-correlating (Figure 2.8).
Pooling layers serve to downsample their input to boost translational
invariance and help recognize features no matter where they appear in
the image.

Figure 2.8: An illustrated example of max pooling a 4× 4 image using a 2× 2
kernel
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It is important to note that both convolutional and pooling layers
do not preserve the original height and width of the input. The di-
mensions of the result depend on the filter/kernel size, but can also be
manipulated through padding and striding. Padding is often applied
with convolutional layers to prevent the input size from changing, and
increased striding (> 1) makes kernels skip parts of the input to reduce
overlaps in the output.

Interestingly, the combination of convolutional and pooling layers
appears to resemble the processes occurring in the visual cortex of an-
imals, where similar functions are performed by biological cells of dif-
ferent types [23]. Convolutional and pooling layers can also be stacked
several times over to produce various Deep Convolutional Neural Net-
work (DCNN) architectures - a subject of research in deep learning.
This practice came into popularity in 2012 with the introduction of
AlexNet, a DCNN that stacks five "blocks" consisting of a convolutional
layer, a max pooling layer, and a ReLU activation function [24]. In
this kind of network, consecutive layers learn to recognize increasingly
more complex features, starting with simple lines in the first layer and
progressing to complicated shapes, such as human face outlines, by the
final layer. Later research on human brains revealed that this mech-
anism of cascading calculations with increasing feature complexity at
each stage also bears similarities to how we recognize objects [25].

For tasks like classification, DCNNs are usually constructed with
one or more densely connected layers (featured in ANN) at the end.
The previously mentioned AlexNet architecture uses this approach as
well. In classification-oriented DCNNs, dense layers are applied in or-
der to transform feature maps into scores or probabilities for each class.
Other tasks, including segmentation, are better solved by DCNNs that
do not include dense layers - such networks are also called Fully Con-
volutional Neural Networks (FCNNs).
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Figure 2.9: Segmentation of an image with two spoons and a fork on a cutting
board. Instance segmentation targeting spoons identifies two spoon instances
(colored differently). Semantic segmentation targets object types instead (both
spoons are therefore colored the same).

2.3.3 Semantic Segmentation and Decoder-Encoder
Networks

In image analysis, segmentation is a task of classifying each pixel in
an image as belonging to an object or a type of object. This distinction
gives rise to two kinds of segmentation tasks: instance segmentation
and semantic segmentation. The former kind aims to find all instances
of the same object type in the image and classify them distinctly, while
the latter only distinguishes between object types and disregards indi-
vidual instances (see Figure 2.9 for a visual demonstration).

This work focuses on semantic segmentation, as it seems to be the
preferred approach in biomedical segmentation tasks. When consider-
ing echocardiograms specifically, semantic segmentation is also more
appropriate than instance segmentation, because there are no objects
of the same type that appear more than once.

Semantic segmentation can be performed with FCNNs, as men-
tioned previously, but there are certain caveats. Normally, it is desired
that the segmentation result has the same size as the original image,
meaning that layer parameters (convolution kernel size, padding, and
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striding) should be carefully selected. Another problem is computa-
tional resources: CNNs are more efficient at image analysis than ANN,
but the number of learning parameters can rise rapidly in deep net-
works.

One way to keep the number of learning parameters down while
keeping up good segmentation performance is to arrange the layers
into an encoder-decoder architecture. Encoder-decoder networks con-
sist of an encoder part that downsamples the input (fewer learning pa-
rameters), and a decoder part that upsamples the result, restoring the
original dimensionality.

This work relies on a particular encoder-decoder architecture called
U-Net, as proposed by its inventors Ronneberger et al. [26]. U-Net
is intended for segmentation of biomedical images, and it works well
with echocardiograms. The original architecture of U-Net features four
encoder layers that form a contraction path, a bottom layer serving as
the bottleneck, and four decoder layers as the expansion path (for a
total of five "levels"). Each encoder layer also has a skip connection to
a corresponding decoder layer, resulting in a structure with a "U"-like
shape (Figure 2.10).

The standard U-Net architecture is modifiable to a great degree. For
example, contraction and expansion layers can be added or removed,
the initial number of feature maps can be increased or decreased, up-
sampling can be performed via a standard interpolation algorithm or
configured as additional trainable layers performing a transposed con-
volution operations.
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Figure 2.10: The standard U-Net architecture by Ronneberger et al. [26]

2.3.4 Transfer Learning

Transfer learning is a family of techniques that allow the knowledge
accumulated by AI algorithms in a source task to be applied to a differ-
ent (but still related) target task. The main purpose of transfer learning
is to improve generalization and overall performance of the algorithm
in solving the target task. Additionally, the algorithm may improve
faster with transferred knowledge and/or require less data relevant to
the target task.

A good example of transfer learning for image classification or object
recognition is fine-tuning a model that has been already pre-trained on
a large, extensive data set such as ImageNet [27]. ImageNet is an ex-
tremely large data set commonly used for benchmarking, as it contains
over 14 million images spread over 1,000 classes. Pre-training on Ima-
geNet (or a sufficiently large subset of it) tends to produce models that
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Figure 2.11: An example of a simple transfer learning scheme with U-Net

recognize a lot of general features, which makes them useful for a wide
range of tasks. These models can then be reused to identify only a few
of the original classes, or to recognize entirely new classes.

In general, transfer learning with (F)CNN is mostly understood as
a kind of weight initialization procedure, with certain additions. The
bare-bones process is as follows: a neural network is first trained for
the source task, then its state is saved, the data set is switched to
that of the target task, and the network continues training (Figure
2.11). This scheme will be used during the transfer learning experi-
ments later in this work.

Although more complex procedures are outside the scope of this the-
sis, it is possible to modify the process. For example, certain weights
could remain fixed after pre-training, so that only a part of the network
continues training in the fine-tuning phase. In the example with Ima-
geNet pre-training, all layers but the last one (the classifier) could be
"frozen" to enable complete reuse of all learned features. However, it
is not immediately obvious which layers should be frozen, if any. For
this reason, even more complex algorithms like adaptive fine-tuning
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are devised, allowing parts of a neural network to be frozen depending
on the input [28].

2.4 Artificial Intelligence in 2D Echocar-
diography

AI offers solutions to a great number of applications within diagnostic
2D echocardiography and possesses the potential to automate many
of the involved sub-routines, if not entire heart examinations. The
existing AI models can (to an extent) predict which cardiac view an
echocardiogram belongs to, segment heart chambers in certain views,
estimate chamber volumes and other clinical metrics, and detect dis-
eases. Performing these computations is possible in real time as well,
meaning that intelligent support can be provided during examinations.
AI may also be capable of adhering to industry and measurement stan-
dards more precisely than humans, thus reducing the amount of inter-
observer variability [2, 3].

Quite a few of AI models or systems have been proposed for the
purposes of echocardiography at the time of writing. There are two
striking examples: the multi-task data pipeline designed by Zhang et
al., and the more focused system of Smistad et al. that derives certain
LV measurements in real time [29, 30].

The automated echocardiogram interpretation system of Zhang et
al. appears to be a truly monumental undertaking. It consists of mul-
tiple deep learning models trained for specific subtasks that pass their
predictions to each other (Figure 2.12). The videos of echocardiographic
examinations are first sent to a model that attempts to classify the
view used in the video (among 23 defined views), then the video frames
are segmented if the video belongs to one out of the five supported
views. The system uses a separately trained segmentation model for
each view type. Segmentation results are used to derive LV size, mass,
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Figure 2.12: The description of the data pipeline by Zhang et al. The number
in brackets is the number of echocardiograms used for model training [29].

and volume - and calculate LVEF along with other metrics in turn. Al-
ternatively, videos can be fed to models that identify certain diseases
such as hypertrophic cardiomyopathy (HCM), pulmonary arterial hy-
pertension (PAH), and cardiac amyloidosis.

While the system devised by Smistad et al. does not have the same
number of capabilities, it does its work in real time, processing up to
43 frames per second. It can distinguish between seven different view
types, and allows automated segmentation of two: A2C and A4C views.
Similarly to the other system, segmentation results provide the basis
for deriving LVEF .

Both systems rely on AI for image segmentation, but LV volumes
and LVEF are derived from the images without using AI. Instead, the
calculations are performed using recommended methods for such tasks,
with Zhang et al. choosing the area-length method and Smistad et al.
opting for the biplane disc summation method (Figure 2.13) [31]. Once
the LV volumes at end-diastole (LVEDV ) and end-systole (LVESV ) are
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derived, either system can estimate LVEF through Eq. (2.1).

(a) Area-length method

(b) Biplane disc summation method

Figure 2.13: The LV volume calculation methods approved by the American
Society of Echocardiography [31]. The biplane disc summation method needs
A2C and A4C views. It is preferable to the area-length method, because it
traces the LV shape instead of assuming the circumference area is constant.

In contrast to the works Zhang et al. and Smistad et al., there are
systems that use AI to directly predict LV volumes and even LVEF . For
instance, Ghorbani et al. propose a data pipeline that identifies certain
"regions of interest" in an echocardiogram [32]. These regions are high-
lighted by AI and may indicate LV hypertrophy or LA dilation. They
may also reveal the presence of a catheter, a pacemaker, or a defib-
rillator leads. The system can estimate LVESV and LVEDV in order to
calculate LVEF , but it works even better when predicting LVEF straight
from the image.

Another example is the work by Ouyang et al. that uses a complex
but elegant system for LVEF estimation and HFrEF prediction [33].
The system analyzes entire videos, performing LV segmentation and
estimating LVEF with a three-dimensional (spatio-temporal) CNN. The
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variation in segmented area over time is then used to identify cardiac
cycles, allowing more accurate LVEF values to be obtained over several
heart beats. Data samples with estimated LVEF < 50% are marked as
expressing cardiomyopathy.

When it comes to research on the right side of the heart, there seem
to be only a few available works. One relevant and recent study by
Karuzas et al. details an experiment on automated RV segmentation
with good results, yet only the abstract of the article is published at the
time of writing [34]. When it comes to automated quantification of RV
function, the study of Beecy et al. appears successful in using similar
deep learning methods to examples above, but the authors note that
there is very little research in this area [35].
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Chapter 3

Overview of Acquired Data

This chapter introduces the 2D echocardiogram data sets for use in fur-
ther experiments. Three data sets in total are explored: two of them
focus on the left heart structures, while the last one contains segmenta-
tion masks for the right side of the heart. Section 3.1 covers the proper-
ties of CAMUS data set - an extensive, publicly available data set of 2D
echocardiograms with labels for LV endocardium, LV epicardium, and
LA, as well as additional information about the patients (the informa-
tion is anonymized). Section 3.2 introduces a similar but smaller data
set provided by GE Healthcare, code named as GE data set. Then,
Section 3.3 discusses a data set (code named RV data set) with seg-
mentation masks for RV endocardium, RV epicardium, and RA, also
compiled by GE Healthcare for this work.

3.1 CAMUS Data Set

At the time of writing, the most extensive publicly available data set of
2D echocardiograms appears to be the Cardiac Acquisitions for Multi-
structure Ultrasound Segmentation (CAMUS) data set [36]. Interest-
ingly, the authors themselves raise the concern that there is barely
any competition on this front. Of the works on AI-assisted echocar-
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(a) Original image (b) Ground truth mask (c) Overlay

Figure 3.1: A sample from the CAMUS data set. From left to right: end-
diastole image in A4C view (a); ground truth mask showing LV epicardium
(red), LV endocardium (green), and LA (blue) (b); mask overlay (c).

diography surveyed in the previous section, only that of Ouyang et al.
discloses the training data (EchoNet-Dynamic database). However, the
video resolution of that data set is quite low (112 × 112 px), and only
the LV epicardium is annotated.

The CAMUS data distinguishes itself with a varying but high image
resolution. It includes cardiac cycle sequences from 500 patients of the
University Hospital of Saint-Etienne, France. The sequences are both
the two-chamber and the four-chamber apical views. Unfortunately,
the complete information is provided only for the training subset (450
patients). The images that correspond to the end-diastole and the end-
systole parts of the cycle (1,800 images) were annotated by an expert
who manually segmented the regions occupied by the left atrium (LA)
as well as the epicardium (LVepi) and the endocardium (LVendo) of the
left ventricle (see Figure 3.1). The remaining 15,464 mid-sequence im-
ages were not annotated. The data set includes the clinical metrics for
every patient (LVESV , LVEDV , and LVEF ).
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3.1.1 Additional Properties of the CAMUS Data

In addition to clinical metrics, the CAMUS data set contains informa-
tion about patients’ age and sex. Assessing this information may reveal
underlying bias in the algorithms trained on the CAMUS images. The
insights on patients’ age (see Figure 3.2) indicate that the data are
not suited for any use in pediatrics (data was taken from adults only).
Young adults are also under-represented, with only 9 out 450 patients
(2%) being below the age of 30. Inspecting the biological sex of the pa-
tients shows that 292 patients (65%) are male, while only 158 (35%) are
female. Unfortunately, information about patients’ height and weight
is not provided in the data set.

According to a study by Pfaffenberger et al., factors like sex, age,
height, and weight have some correlation with heart size [37]. Among
the four factors, biological sex has an especially strong influence, as
it accounts for almost a 9.5ml difference in LV end-diastolic volume.
Additionally, men’s hearts have a somewhat lower normal LVEF values
(52-72%) than women’s (54-74%) [9]. As a result, the hearts imaged
in the CAMUS data may be somewhat larger on average than they
would be if male/female representation were more balanced. Lower
LVEF values would be expected too, but the creators of the data set
took care to balance the representation of normal and abnormal value
ranges.

3.1.2 CAMUS Data Preparation

The images in the CAMUS data set are not uniform in quality: the au-
thors divide the sequences into those of "Poor", "Medium", and "Good"
quality. This metric has no relation to image resolution (see Fig-
ure 3.3), but instead represents the clinical accuracy of the images
- whether they were taken from a "good" view or not. Annotations
and LVESV /LVEDV /LVEF calculations are subsequently affected as well.
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Figure 3.2: The patient age distribution in the CAMUS data set

Leclerc et al. claim that images of "Poor" quality (from 59 out of 450 pa-
tients) are not useful for clinical purposes and remain in the data set
only to study their effect on the training process of AI models. When
analyzing the experiment results, the authors conclude that these im-
ages neither contribute nor derive from the model performance to any
significant degree. Removing this part of the data set reduces it from
1,800 to 1,564 annotated images in total.

As already demonstrated, CAMUS images have a lot of variability
in terms of resolution. Such data cannot be used "as is": its dimen-
sionality must be standardized. To that end, there are at least three
approaches to choose from:

• pad all images to match the highest resolution (within a batch or
across the whole data set);

• split data into patches of equal resolution;
• simply resize all data to a standard resolution.

The approach of padding would preserve the dimensionality of rele-
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Figure 3.3: The image dimensions in the CAMUS data for each patient. From
left to right: "Poor", "Medium", and "Good" quality images. Images of any
quality are found across the whole graph, meaning that image quality and
image resolution are indeed unrelated. Some points are superimposed due
to identical resolution. The "Good" quality graph (on the right) excludes one
extreme outlier at (1181, 1945).
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vant data, but introduce a lot of junk information (zero-pixels) and slow
down the computation. Splitting the data into patches would reduce
the dimensionality per data sample, yet much of the spatial informa-
tion would be lost. Finally, resizing the data would be near-effortless,
but it is sure to introduce minor artifacts and distortions (especially in
the ground truth masks) due to imperfect interpolation. However, such
distortions should only become an issue in case of overfitting, wherein
an AI model starts to perfectly match the training data instead of look-
ing for the underlying patterns. Given the sheer complexity of echocar-
diogram data, the risk of overfitting seems rather small, especially if
preventive policies are introduces during training. Therefore, resizing
the whole data set is likely the best choice. The final argument in favor
of this approach is that the other data sets used in this work (intro-
duced later) were all provided at a standard image resolution of 256 ×
256 pixels.

3.2 GE Left Heart Data Set

Using only the CAMUS data set for the left heart data would make
it unclear whether the findings in this work are generally applicable.
Therefore, the thesis will rely on one more left heart data set provided
by GE Healthcare (unavailable to the public). This data set appears to
be sourced from Padua University Hospital, Italy (336 images) as well
as Rigshospitalet, Denmark (229 images). The subsets were annotated
by cardiologists from the respective institutions - one expert per data
subset. The annotation format is nearly identical to that of the CAMUS
data, featuring LVepi, LVendo, and LA contours. Still, there are a few
crucial differences between the properties of CAMUS data set and this
one:

• The GE data is a mixed set of A2C and A4C cardiac views, while
CAMUS data contains both views for each patient.

• The GE data includes annotated images at both end-diastole
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and end-systole, but not for every patient - some images are not
"paired".

• The GE data has a standard resolution of 256 × 256 pixels, while
CAMUS data is not uniform in this regard.

• The GE data does not contain clinical metrics such as LVED, LVES,
and LVEF . Information about patients is not included either.

With the above considerations in mind, it becomes clear that this data
set cannot be analyzed the same way as CAMUS, because it contains
far less information. It is difficult to make judgements about the un-
derlying bias in the data without knowing anything about the patients
whose hearts were imaged.

The labels (segmentation masks) of this data set are different from
CAMUS. Whereas CAMUS masks maintain color intensities of 0 (back-
ground), 1 (LV endocardium), 2 (LV epicardium), and 3 (LA), GE masks
use intensities of 0, 85, 170, and 255 for the same classes (Figure 3.4).
Dividing the color values by 85 brings the masks to same format as CA-
MUS, though the procedure may not be strictly necessary, depending
on how the input to the neural network is standardized.

Because there is no guarantee that every end-diastole image has
an end-systole pair and vice versa, it may be prudent to remove the
unpaired patient data, and then to merge the subsets from both insti-
tutions. As a result of these operations, 540 images from 270 patients
remain in total.
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Figure 3.4: Color intensities in the original labels of the GE data set.

3.3 RV Data Set

The final data set is a mix of RV-focused images and four-chamber view
images labeled by GE Healthcare specifically for use in this work. The
data set will be referred to as the RV data set for brevity and con-
venience, though labels for RA are also present. After checking for
presence of an end-diastole image where an end-systole image is avail-
able for the same patient and vice versa, 446 paired images with labels
remain. As with the GE data set, all images are provided at 256×256
pixel resolution.

The labels for each class (RVendo, RVepi, and RA) are stored as sep-
arate images, however, meaning that they had to be unified to pro-
duce masks that are similar to CAMUS and GE data. These labels
also lacked a sharp cutoff, making the boundary ambiguous. A deci-
sion has been made to include all pixels with intensity above 0 (on the
scale of 0-255) as belonging to the label, but it may have unforeseen
consequences. Figure 3.5 provides an overview of the label unification
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procedure, while Figure 3.6 offers an example of an RV-focused image
and a four-chamber view image with integrated labels.

Figure 3.5: Label preparation in the RV data set. All pixels with above zero
color intensity are included in the label. The labels for different heart regions
are unified into complete masks (the same format as the CAMUS and the GE
data).
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(a) An RV-focused image (b) A four-chamber view image

Figure 3.6: An example of an RV-focused image and a four-chamber image
from the RV data set. Ground truth masks are blended with the original im-
ages (80% original, 20% mask).

Some of the images in the RV data set are sourced from Rigshospi-
talet, Denmark - the same clinical site that contributed to the GE data
set. The remaining images are taken from a data set of athletes, but
further details are unknown.
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Chapter 4

Methodology

This chapter introduces the reader to the specific methods, algorithms,
and parameters that will be used for echocardiogram segmentation,
performance measurement, and knowledge transfer in the next chap-
ter. The reasoning behind the choices is also explained, where appro-
priate. Section 4.1 introduces the custom implementation of U-Net
used in later experiments and discusses its properties. Section 4.2
covers the use of Dice Coefficient both as a segmentation performance
metric and a loss function for U-Net training. Section 4.3 demonstrates
how a trained U-Net model can be applied to 2D echocardiograms to
produce a human-readable segmentation. Finally, Section 4.4 discusses
parameters and variables that can affect transfer learning and offers
an experimental setup for measuring its effectiveness.

4.1 U-Net for Echocardiogram Segmenta-
tion

Segmentation experiments in the next chapter rely on a reproduced
U-Net architecture (see Section 2.3.3) with some departures from the
original architecture (Figure 4.1). For example, padding is introduced
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to convolutional layers to preserve height and width of the input after
the operation. Thus, the two dimensions are only affected during down-
sampling (with max pooling) and upsampling (with transposed convo-
lution operations). As a result, the data dimensionality is more pre-
dictable between the layers, and the output mask has the same height
and width as the input image. Furthermore, batch normalization is
added after each convolution as a regulator to improve the network’s
accuracy and ability to generalize [38]. Batch normalization performs
z-score normalization of the data:

z(X) =
X− µ(X)

σ(X)
(4.1)

where X is the input data sample, µ(X) is the mean of the data, and
σ(X) is the standard deviation. The result, z(X) essentially replaces
all values in the sample with the number of standard deviations they
are away from the mean. Given the presence of batch normalization
layers in the network, it is reasonable to regularize the input images
in a similar manner.

The custom U-Net architecture supports a variable number of ini-
tial feature maps. Changing this hyperparameter drastically affects
the total number of trainable parameters in the network (see Table
4.1).

U-Net Instance
Initial

Feature Maps
Trainable

Parameters
GPU Memory
(per image)

U-Net 8 8 490,000 100 MB
U-Net 16 16 1,940,000 210 MB
U-Net 32 32 7,760,000 430 MB

Table 4.1: Overview of U-Net instances for experiments. Assumes 256×256
pixel inputs. The total number of trainable parameters and GPU memory
consumption per image processed increase with the number of initial feature
maps.
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Figure 4.1: The reproduced U-Net architecture for experiments. Convolution
and max pooling kernel sizes are the same as the origin. Padding is used to
preserve width and height after convolutions. Includes batch normalization
layers to improve generalization.

A higher number of trainable parameters should, in theory, lead to
more precise segmentation models. On the other hand, GPU (or CPU)
memory consumption would also increase, limiting the batch size - the
number of images the network can learn from simultaneously. Lim-
ited batch size may result in erratic improvements during training and
result in reduced performance. The original U-Net architecture of Ron-
neberger et al. features a rather large input size and the number of fea-
ture maps. Sticking to the same choices would likely raise the memory
consumption to over 1GB per image and make it computationally pro-
hibitive for all but the high-end GPUs currently on the market. When
a model itself is saved as a file, the amount of memory it occupies is
also affected. "Lighter" models lend themselves better to reuse, as they
can be distributed more easily.

46



One additional detail to note is that batch normalization layers of
the proposed custom U-Net heavily contribute to the total memory con-
sumption. The original U-Net architecture probably did not make use
of batch normalization, since the concept had only been introduced two
months before the U-Net publication. Removing these layers would in-
deed make the network less computationally demanding, but the over-
all performance would suffer as well.

4.2 Measuring Segmentation Performance
with Dice Coefficient

Adequately rating the performance of a segmentation model requires
different metrics than the ones used for typical classification tasks. It is
especially evident in echocardiogram segmentation, where most pixels
may belong to the "nothing" (background) class - a severe class imbal-
ance. Simply calculating the accuracy at pixel level would then provide
misleading results: if every pixel is predicted as background, accuracy
may remain still high (Figure 4.2).

To avoid such scenarios, the Jaccard Similarity Index or the Dice
Similarity Coefficient may be used instead, along with a slew of other
performance metrics [39]. The Jaccard Index and the Dice Coefficient
are mathematically similar and positively correlated, meaning that us-
ing both is somewhat redundant. This work will mostly rely on the Dice
Coefficient:

D =
2|S ∩ Ŝ|
|S|+ |Ŝ|

=
2 ∗ TP

2 ∗ TP + FP + FN
(4.2)

where S is the ground truth mask and Ŝ is the predicted mask. TP

refers to True Positives - pixels that belong to a certain class and are
predicted as such. FP denotes False Positives - pixels that are not in
that class, yet still marked as belonging to it. Finally, FN are False
Negatives - pixels that belong in the class, but are not predicted as
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Figure 4.2: The disadvantage of using pixel accuracy as a segmentation per-
formance metric. Example uses a 256×256 pixel echo image from GE data set.
The Dice Coefficient is calculated as detailed in eq. (4.3).

such.

In a multi-class setting, both the true and the predicted masks can
be treated as colored images - 3D arrays. At each color channel, matri-
ces Sc and Ŝc would offer the ground truth and the prediction for the
respective class c. Then, eq. (4.2) may be reinterpreted as follows:

D =
∑
c

2
(
Sc

⊙
Ŝc

)
Sc + Ŝc

 (4.3)

where "
⊙

" is the element-wise multiplication operation. Note that the
elements in Ŝ are logits produced by softmax activation at the U-Net
output layer. Since each element ŝcij ∈ [0, 1], the overall score is more
precise and continuous than with binary predictions. It is also possible
to obtain a score for a particular data class alone by not performing the
final summation in eq. (4.3):

Dc =
2
(
Sc

⊙
Ŝc

)
Sc + Ŝc

(4.4)
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Lastly, the Dice Coefficient can be trivially refashioned into a loss
function:

Dloss = 1−D = 1−
∑
c

2
(
Sc

⊙
Ŝc

)
Sc + Ŝc

 (4.5)

Just like the Dice Coefficient, the Dice Loss can be viewed or reported
for every individual data class.

4.3 Applying Trained U-Net Models to In-
dividual Images

After the U-Net models are trained, they have to be useful for seg-
menting individual echocardiograms. The training process itself is al-
ready convoluted, but making the trained models play along and con-
struct human-readable predictions requires some work as well. At the
very least, all input has to follow the same format as during training,
meaning that the images must be resized to 256×256 pixels and "z-
normalized" by converting the pixel values to z-scores as detailed in eq.
(4.1).

The output produced by the U-Net models is a four-dimensional ar-
ray of logits (output of the softmax function in the final layer) with the
following dimensionality: (N × C × H × W ). The fact that there are
four classes (background, endocardium, epicardium, and atrium), and
the output values are logits, means that

3∑
c=0

Y[n,c,h,w] = 1.0 (4.6)

where n refers to a specific image, and N - to a total number of images
in the batch; c is the specific data class, and C is the total number of
classes (four); h is the height value in pixels, and H is the total image
height (256 pixels); w is the width value (in pixels), and W is the total
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image width (also 256 pixels). Essentially, every value in the model
output describes the "probability" or certainty that the model has about
a particular pixel belonging to a given data class. This format does not
lend itself very well for visualization. However, if the input consists
of only one image, the number of dimensions is effectively reduced to
three.

The output can be further processed with the argmax function. The
function selects the highest value along a given dimension in the ar-
ray and produces the index of that value. If the model receives only
one image as input, and its output is fed through the argmax function,
the result is a two-dimensional mask (H×W ) dictating the most likely
class that each pixel belongs to. Expanding the mask back into three
dimensions and painting pixels with colors corresponding to each data
class (green for endocardium, red for epicardium, and blue for atrium)
would then produce a mask similar to Figure 3.1b. Finally, blending
the mask with the original image gives a prediction that is easily un-
derstandable by humans. See Figure 4.3 for a summary of all the pro-
cedures. Applying trained U-Net models in this way and reviewing
individual predictions helps to understand how the models make their
decisions a bit better than only reviewing general statistics from the
training process.
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Figure 4.3: The summary of procedures for using trained U-Net models to
segment echocardiograms.
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4.4 Performance-affecting Variables, As-
sumptions and Benchmarking

Segmentation performance of the U-Net and the subsequent results of
transfer learning are bound to be affected by a countless number of
hyperparameters. How well any given U-Net instance does would at
least depend on the number of encoder-decoder steps, number of initial
feature maps, batch size, whether a simple interpolation or transposed
convolutions are used for upsampling, how long the network trained,
etc. For transfer learning performance, the list is even greater: the
size of the target task data set plays a role, and so does the actual
scheme of the knowledge transfer. Exploring the impact of all these
variables is unrealistic with the amount of resources on hand, and the
unavoidably complex visualization of the results would only confuse
the reader. Certain "ground rules" are needed for the experiments:
ones that take into account the resource limitations and the conditions
where transfer learning is likely to be useful.

Transfer learning is a reasonable approach when a better AI perfor-
mance on a task is desired, but only a small data set for that task is
available, along with a larger data set for a "similar" task (see Section
2.3.4). Therefore, how little of the target task data is present makes for
a parameter worth exploring. To maximize the potential positive im-
pact of transfer learning, it makes sense to attempt pre-training (train-
ing on the source task) with a well-performing model. Furthermore,
the complexity of the AI model is often a significant contributor to its
overall performance. In the U-Net implementation for this work, the
number of initial feature maps serves as a proxy for model complexity
- it could serve as a good independent variable as well. Finally, when
it comes to the duration of pre-training and fine-tuning, they should
continue until the point where any further improvement is unlikely, so
that every AI model achieves its full potential.
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However, once fine-tuning is finished, how does one decide whether
transfer learning is beneficial? Clearly, performance of fine-tuned mod-
els must be compared to that of models trained purely on target task
data. Still, the "transferred" models get two opportunities to converge:
in pre-training and in fine-tuning. In order to make the comparison
fair, the "benchmark" models should be given an opportunity to train
longer. One way to quantify the length of the training process is to con-
sider the number of epochs - passes over the whole data set. Then, if
a model is given N epochs to converge in pre-training and N epochs in
fine-tuning, comparing it to a model that had 2N epochs to converge in
training on the target task data seems reasonable. Resorting to this
kind of epoch calculus is by no means ideal, but an ideal stopping cri-
terion for training does not exist to begin with. A learning model can
show improvement after very long periods of stagnating, but there is
no way of predicting when or whether it will happen.

Given all the above considerations, a tentative set of parameters is
proposed for the experiments (Table 4.2).
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Experiment Parameter Value(s)

U-Net Initial Feature Maps 8, 16, 32

Amount of data in fine-tuning and
benchmark model training

(images)

50, 100, 200, 400

Pre-training and fine-tuning duration
(epochs)

100

Benchmark training duration
(epochs)

200

Batch size (images) 10

Learning rate 1e-4

Optimizer Adam

Upsampling scheme Conv. transpose

Loss function Multi-class Dice

Table 4.2: The proposed parameters for the transfer learning experiments
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Chapter 5

Experiments and Results

This chapter is dedicated to conducting echocardiogram segmentation
and transfer learning experiments. The procedures are first attempted
with the two left heart data sets (CAMUS and GE) in Section 5.1 as
a trial run of the algorithms and the experimental setup. Section 5.2
covers the main experiments - U-Net transfers between the left heart
and the right heart data (CAMUS to RV as well as GE to RV). Finally,
Section 5.3 looks at the predictions of individual images by the trained
models to discern additional patters in their behavior.

5.1 Transfer Learning between Left Heart
Data Sets

Before attempting transfer learning from left heart data to right heart
data, it is prudent to confirm the validity of selected methods and pa-
rameters. Theoretically, transfer learning is easier to perform when
the source task and the target task are very similar or even exactly the
same. For this reason, knowledge transfer between CAMUS and GE
data makes for a good trial run - both data sets are suited for LV and
LA segmentation.
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Section 4.4 discusses how the effectiveness of transfer learning can
be analyzed. In this case, various U-Net models should be pre-trained
on CAMUS data, then "benchmark" models are to be trained on GE
data. Finally, the pre-trained models should be fine-tuned on GE data
as well, after which their performance can be compared to the bench-
mark models.

5.1.1 Pre-training Models on CAMUS Data Set

U-Net models with different numbers of initial feature maps (F =
8, 16, 32) were pre-trained for segmentation of CAMUS data. Of all
data, 75% (1,173 images) were used for training, whereas the remain-
ing 25% (391 images) were set aside for testing. For each configuration
of initial feature maps (three configurations) ten trials were attempted,
leading to 30 U-Net models trained in total. The models were given 100
epochs to train, but only the best performance in the testing phase was
recorded and saved (testing phase occurs at the end of each epoch).
Figure 5.1 displays the Dice Coefficient values for models with each
configuration, averaged across ten trials.

As seen in the figure, the number of initial feature maps barely
played any role in determining the model performance. It is likely
that the duration of 100 epochs was more than enough for every U-Net
model to converge to the best result possible for CAMUS data under
the constraints of the experiment. The minuscule standard deviation
values only appear to further reinforce this notion. While segmentation
quality for LV epicardium and LV endocardium appears to lag behind
the values for LA, all numbers are still rather high. To place the results
in a context, one may review them alongside the work of Leclerc et al.,
the creators of CAMUS data set [36]. Relevant values are displayed in
Table 5.1.

However, Leclerc et al. only focus on the segmentation metrics for
LV epicardium and LV endocardium, while also evaluating ED (end-
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Figure 5.1: Mean Dice Coefficient values for U-Net models pre-trained on CA-
MUS data. Total multi-class Dice Coefficient values (including background)
are shown along with specific values for each relevant data class: LVepi, LVendo,
and LA. Standard deviation in the results is also shown in each case.

diastole) and ES (end-systole) images separately. Due to the differences
in performance evaluation procedures, it is impossible to make a direct
comparison. Thus, one cannot say for certain whether the U-Net mod-
els from this work performed better or not. Still, outperforming the
previous works on segmentation of CAMUS data is not the goal of this
thesis, and the achieved results are more than sufficient to proceed.
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U-Net Configuration Dice Total Dice LV_epi Dice LV_endo Dice LA

U-Net 8
0.959
± 0.001

0.944
± 0.002

0.944
± 0.001

0.956
± 0.001

U-Net 16
0.959
± <0.001

0.944
± 0.001

0.944
± 0.001

0.955
± 0.001

U-Net 32
0.958
± 0.001

0.943
± 0.001

0.944
± 0.001

0.955
± 0.001

Configurations by
Leclerc et al. [36]:

U-Net 1 (ED*) -
0.951
± 0.024

0.934
± 0.042

-

U-Net 1 (ES*) -
0.943
± 0.035

0.905
± 0.063

-

U-Net 2 (ED*) -
0.954
± 0.023

0.939
± 0.043

-

U-Net 2 (ES*) -
0.945
± 0.039

0.916
± 0.061

-

Table 5.1: The Dice Coefficient values of U-Net models trained on CAMUS
data. The results achieved by the creators of CAMUS data set are included for
reference. Note that Leclerc et al. used a different, more detailed evaluation
scheme, meaning that the values are not directly comparable. The numbers
after "±" sign are the standard deviation values for U-Net 8, 16, 32; their
meaning for U-Net 1 and 2 may or may not be the same. *ES and ED refer
to end-diastole and end-systole images being evaluated separately.
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5.1.2 Training Benchmark Models on GE Data Set

For benchmarking purposes, U-Net models were trained from scratch
on the left heart data set provided by GE. Once more, three different
configurations were used (U-Net 8, U-Net 16, U-Net 32). This time,
however, one additional parameter was relevant: the amount of data
in the training subset. The models were separately trained on 50, 100,
200, and 400 images respectively, with 100 images being reserved for
testing in each case. Again, each combination of the parameters was
evaluated across ten trials, leading to the total of 120 models trained.
Furthermore, since both pre-training and fine-tuning are to provide
100 epochs for models to converge, these benchmark models were given
200 epochs of training instead for a fair comparison. The results are
displayed in Figure 5.2.

Unlike with training on CAMUS, the amount of data used for this
experiment is far more limited. It was therefore not surprising to see a
greater variability in the results, which was especially prominent when
training with merely 50 images. Interestingly, less complex models
(U-Net 8) showed both worse performance and larger variability on
average as well - it was not the case with CAMUS data set. On the
other hand, the Dice Coefficient values were still unexpectedly high
for all models. The last peculiarity was the lagging performance on
LV epicardium segmentation combined with superb LV endocardium
values. This behavior is potentially due to two reasons:

• In the images, the epicardium seems to occupy fewer pixels than
the endocardium or the atrium on average. Therefore, the Dice
Coefficient metric might punish the epicardium prediction errors
more "harshly" than for other classes.

• In some images, the epicardium boundary stretches beyond the
boundary of the regions detected by the ultrasound probe (Fig-
ure 5.3). These parts of the labels could be annotated arbitrarily,
making them difficult to predict exactly.

59



Figure 5.2: The Dice Coefficient values for benchmark U-Net models trained
on GE left heart data. The results are grouped by the number of initial feature
maps and amount of training data.
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Figure 5.3: An example of the epicardium boundary stretching beyond the
boundary of the "view" in the GE data set.

5.1.3 Fine-tuning Models on GE Data Set

The U-Net models pre-trained on the CAMUS data were fine-tuned
by further training on the GE data. As with the benchmark models,
both the number of initial feature maps and the amount of training
data varied for this experiment. Essentially, each of the 30 pre-trained
models continued training with 50, 100, 200, and 400 images of the GE
left heart data set, thereby producing 120 new models. Once more, the
size of the test data subset was kept to the same 100 images as with
the benchmark model training. The results are shown in Figure 5.4.

Similarly to the benchmark models, the fine-tuned models had also
struggled with segmentation of LV epicardium, but the overall score
was markedly higher. The Dice Coefficient values actually increased
for all data classes, reaching or even exceeding 0.990 in specific cases
(mostly for LV endocardium). The variability in the results also de-
creased dramatically. The most striking detail is that all models
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reached similar levels of performance, even the ones that could only
train on 50 images. However, these models actually achieved slightly
higher Dice score than the models that had access to more data, cast-
ing some doubt on the results. This kind of behavior would suggest that
the training subset of 50 images might have favored the testing subset
more than the larger training subsets. Similar hints can, in fact, be
observed when comparing U-Net 16 and U-Net 32 benchmarks across
different data set sizes in Figure 5.2.

Figure 5.5 provides a simplified overview of the performance differ-
ences between the fine-tuned models and the benchmark models with
the same parameters. As expected, the increase in performance was
negatively proportional to the amount of training data available for
the target task. LV epicardium, being the most problematic area, also
received the largest boost across all parameter combinations.
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Figure 5.4: The Dice Coefficient values for U-Net models pre-trained on CA-
MUS data and then fine-tuned by further training on GE left heart data. The
results are grouped by the number of initial feature maps and amount of train-
ing data.
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Figure 5.5: Comparison between Figures 5.2 and 5.4: the difference in the Dice
Coefficient values (in percentage points) between the fine-tuned models and the
benchmark models.
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5.2 Transfer Learning from Left Heart to
Right Heart Data

Investigating the feasibility of transfer learning from segmentation
data for the left side of the heart to similar data for the right side of
the heart is the main purpose of this work. This section details the ex-
periments towards that goal. In practice, it means that U-Net models
are first pre-trained on CAMUS or GE data sets and then fine-tuned
on RV data set. However, some changes in the experimental setup are
necessary, given the results from the previous section.

The transfer learning experiments between CAMUS and GE data
served their purpose as a trial run. As seen in the Figure 5.5, the
results produced by U-Net 8 are quite different from those of U-Net
16 and U-Net 32. Still, there is barely any difference between U-Net
16 and U-Net 32, which makes it clear that further experiments with
U-Net 32 are superfluous. Excluding U-Net 32 models saves a lot of
time and effort, as they are the most computationally demanding by
far. Furthermore, the experiments with 400 training images cannot be
replicated with RV data set, as there are only 446 images available,
with 100 images reserved for testing (the data set was processed only
after the conclusion of experiments in the previous section). Reducing
the size of the largest training subset to 300 images seems to be rea-
sonable under the given circumstances. All other parameters remain
the same.

The pre-trained models may struggle with four-chamber images in
RV data set, since their source task was to segment the left side of the
heart in such images. For the fine-tuning to be successful, the models
would have to "forget" this task and learn to focus on the right side
instead. The outcome is not so obvious in advance, however, as some of
the features learned by the models in the source task could potentially
be reused.
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5.2.1 Training Benchmark Models on RV Data Set

With pre-training on the CAMUS data having already been completed
in previous experiments, there was no need to repeat the procedure. On
the other hand, creating new benchmark models was still necessary,
and 80 new U-Net models were trained on RV data set: U-Net 8 and
U-Net 16 models, with 50, 100, 200, and 300 images in the training
subset, 10 trials for each parameter combination. Once more, the total
duration of training was 200 epochs, and the best performance was
selected.

However, the choice of learning rate (η = 1e-4) may not have been
most appropriate for this data set, as three of the models (out of 80)
experienced gradient explosion. Gradient explosion led to overflows
and NaN (not a number) losses that converted to Dice Coefficients of
0. Since the models are to be used for benchmarking, it would be fair
to record the best performance that can be realistically obtained. As
such, these three models were retrained. The results are available in
Figure 5.6.

As seen in the figure, there are clear parallels with the results from
training the GE data set benchmark models. Again, having less train-
ing data led to worse overall performance and greater variability. The
same applied to model complexity, though the impact is mitigated with
more training data. The models struggled with RV epicardium just as
they did with the LV epicardium, likely for the same reasons. Surpris-
ingly, the overall performance was not markedly worse than with GE
data, even though RV is known for greater geometric complexity than
LV. However, if the models that produced NaN losses due to gradient
explosion were not retrained, there would be a significant impact on
the results of U-Net 8 with 50 images for training (two models failed
initially) and U-Net 16 with 100 images (one model failed initially).
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Figure 5.6: The Dice Coefficient values for benchmark U-Net models trained
on right heart data (RV data set). The results are grouped by the number of
initial feature maps and amount of training data. Two U-Net 8 models (on 50
images) and one U-Net 16 model (on 100 images) initially experienced gradient
explosion and were retrained.
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5.2.2 Transfer from CAMUS Data Set to RV Data Set

The models pre-trained on the CAMUS data were fine-tuned on the RV
data (100 epochs of training, best performance recorded). The exact
models used were, once more, U-Net 8 and U-Net 16, and the training
subset was limited to 50, 100, 200, and 300 images. Again, 10 trials
were performed with each parameter combination, and Figure 5.7 dis-
plays the results.

The initial concern about the models adjusting to the new task did
not fully come to pass, and the results were comparable to the trans-
fer between CAMUS and GE data. All models achieved nearly equal
performance, even with low model complexity and little training data
available. The largest increase occurred in the RV epicardium class -
an already familiar pattern.

A direct comparison between the benchmark models and the fine-
tuned models is provided in Figure 5.8. The figure confirms that the
best relative increase in performance happened under the same pa-
rameters where the benchmark U-Net models struggled the most: 8
initial feature maps and 50 images available for training. The rela-
tive improvement for this parameter combination is even higher than
for the CAMUS-GE transfer. Once more, as the amount of available
training data increased, the differences evaporated.
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Figure 5.7: The Dice Coefficient values for U-Net models pre-trained on CA-
MUS data and then fine-tuned by further training on RV data set. The results
are grouped by the number of initial feature maps and amount of training
data.
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Figure 5.8: Comparison between Figures 5.6 and 5.7: the difference in the Dice
Coefficient values (in percentage points) between the fine-tuned models and the
benchmark models.
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5.2.3 Transfer from GE Data Set to RV Data Set

One more transfer can be executed to double check the findings - the
transfer from GE data set to RV data set. There is no need to train new
models on the GE data set, as some of the old benchmark models can
be reused (U-Net 8 and U-Net 16 models trained on 400 images). This
recycling attempt may be seen as somewhat unfair, since the models
had 200 epochs to train and not 100, but the experiment can still pro-
vide valuable insights. Likewise, the benchmark models for RV data
set are already available from previous experiments. Similarly to the
CAMUS-RV transfer, the models pre-trained on GE were fine-tuned on
the RV data. Figure 5.9 offers the results, while Figure 5.10 provides
the comparison to the benchmark models.

The figures demonstrate the same patterns as the CAMUS-RV
transfer, but the models’ performance is just slightly worse across the
board. The most likely reason is that GE data set simply has a lot less
data than CAMUS. The comparison of models that trained on 300 im-
ages serves as one case where transfer learning learning led to a slight
decrease in performance. There is also barely any improvement with
200 images, especially for U-Net 16.

71



Figure 5.9: The Dice Coefficient values for U-Net models pre-trained on GE
data and then fine-tuned by further training on RV data set. The results are
grouped by the number of initial feature maps and amount of training data.
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Figure 5.10: Comparison between Figures 5.6 and 5.9: the difference in the
Dice Coefficient values (in percentage points) between the fine-tuned models
and the benchmark models.
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5.3 Applying Trained U-Net Models to Im-
ages from RV Data Set

As mentioned in Section 4.3, applying the U-Net models to individual
echocardiograms may reveal additional information. Thus, predictions
for the entire RV data set were created with two U-Net 8 models: one
RV benchmark model trained on 50 images (one of the weakest), and
the corresponding CAMUS-RV transfer model that used 50 images in
fine-tuning (one of the strongest). Figure 5.11 offers the predictions of
the first four images in RV data set along with the ground truth.

The first two images (001-ED and 001-ES) have the CAMUS-RV
transfer model segment the chambers just slightly more accurately
than the benchmark RV model, though even this much difference leads
to a sharp increase in the Dice Coefficient values, especially for the
epicardium (red). For the third image (002-ED), the RV benchmark
model over-segmented the epicardium, but the transferred model did
not. Similarly, the benchmark model under-segmented the atrium in
002-ES, but not the transferred model.

However, the CAMUS-RV model is not infallible, and does not al-
ways perform better. Figure 5.12 shows four more images from RV
data set with corresponding predictions that are somewhat unusual.

For the first image (027-ES), the transferred model misplaced a part
of the atrium, while the benchmark model performed well. For the
other three images, the benchmark model "leaked" over to the left side
of the heart, even though it was never trained to do so. It suggests that
some of the features learned when segmenting one side of the heart are
useful for the other side too. After all, the parts that "leaked" are not
completely wrong, but rather incomplete. As for the transferred model,
it was clearly eager to provide segmentation labels for both sides of the
heart. Indeed, the model did not completely forget its previous task,
which interfered with its performance to some degree.
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Figure 5.11: Ground truth and U-Net 8 predictions for the first four images in
RV data set. The color codes are: green - endocardium, red - epicardium, blue -
atrium. Dice Coefficients are provided for the predictions, but may be difficult
to see.
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Figure 5.12: Ground truth and U-Net 8 predictions for another four images in
RV data set. The color codes are: green - endocardium, red - epicardium, blue -
atrium. Dice Coefficients are provided for the predictions, but may be difficult
to see.
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One may notice that Figure 5.11 is comprised of images that are
more RV-focused, while Figure 5.12 mostly includes four-chamber
views (with the possible exception of 027-ES). Reviewing other pre-
dictions also made it seem like the U-Net models struggled with four-
chamber views, as previously theorized. These findings are in line with
the research by Genovese et al., where it is reported that quantifica-
tion metrics extracted from RV-focused images are consistently larger,
more reproducible, and less variable compared to measurements from
four-chamber images [40]. The authors even recommend to only use
RV-focused views for quantitative assessment of RV.

Unfortunately, it would be difficult to provide proper statistics of
the models’ performance on RV-focused vs four-chamber images. The
RV data set is mixed, and it is not immediately clear which images are
RV-focused and which are not. Some images include a large portion of
LV and LA, but not a full view, possibly belonging to neither category.
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Chapter 6

Discussion and Conclusion

This chapter summarizes the results of the experiments and forms the
answer to the main research question (Section 6.1). In light of the new
insights, the limitations of the work are revised, and possible directions
for further research are proposed (Section 6.2).

6.1 Assessment of the Results

In the course of the work, a variety of transfer learning experiments
with U-Net were conducted. As a trial run of the procedures, transfer
learning involving CAMUS and GE data sets for segmentation of the
left heart was attempted first. These experiments have shown that
both the amount of training data and the complexity of U-Net con-
tribute to segmentation performance, though there is a limit. It also be-
came evident that U-Net may struggle with segmenting the epicardium
in both ventricles, because the annotations were often imprecise for
this region. Transfer of knowledge was effective in this scenario, with
models that were initially weak benefiting the most - there was a 4%
improvement in multi-class Dice Coefficient for these models. The Dice
Coefficient for LV epicardium, the worst performing class, improved by
over 10% for these models as well. The transfer brought all models to

78



approximately the same level of performance, just slightly above the
best benchmark models. However, there was very little difference in
performance between U-Net 16 and U-Net 32.

The overall setup had to be revised for further experiments. Since
U-Net 32 appeared to be above the "complexity limit", it was removed
from further procedures. Also, there was not enough data in the right
heart data set (RV data set) to conduct the same range of the experi-
ments. For this reason, the largest training subset was reduced from
400 to 300 images. The labels in RV data set were not binary like in
CAMUS and GE data, and a decision had to be made about which parts
still counted as parts of the label. All pixels with intensity above zero
were included in the label, and it is theorized that over-segmentation
could have taken place as a result.

Next, transfer learning that involves all data sets was attempted.
CAMUS data set was larger than GE data set, while RV data set was
the only one dedicated to the right heart chambers. Thus, the CAMUS-
RV transfer was the main focus. Most of the patterns discovered during
the CAMUS-GE transfer appeared once more. Despite having to "for-
get" their source task of segmenting the left heart in the four-chamber
view images of RV data set, the U-Net models performed well in the
transfer. Again, all models reached the level of performance slightly
above the best benchmark models. The weakest models improved
their multi-class Dice Coefficient by more than 6% on average,
while RV epicardium Dice Coefficient improved by 16%. The
CAMUS-RV transfer was thus even more successful than the CAMUS-
GE transfer. It is worth noting that some of the RV benchmark models
(3 out 80) had to be retrained due to the occurrence of gradient explo-
sion. If these benchmark models were not retrained, the effectiveness
of the transfer would look even higher than presented, but the compar-
ison would hardly be fair.

In order to provide more data points, a transfer involving GE and
RV data sets was performed. Here, some of the best GE benchmark
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models were reused as pre-trained models. Most of the established
patterns emerged during these experiments too. The weakest models
improved by about 5% on the multi-class Dice Coefficient, and by 12%
on the RV epicardium Dice Coefficient. However, the performance of
the transferred models was slightly worse than that of the best bench-
mark models - a difference of about 0.5% in multi-class Dice Coefficient.
For this arrangement, the data sets for the source and the target tasks
consisted of 400 and 300 images, respectively. Overall, the results sug-
gested that the ratio of source to target task data should be at least 2/1
or even 3/1 for transfer learning not to be a liability with these partic-
ular data sets.

The last of the experiments involved applying two U-Net 8 models
to individual images in the RV data set. The models involved were an
RV benchmark model trained on 50 images, and a CAMUS-RV transfer
model that was fine-tuned on the same 50 images as well. These two
models showcased the best scenario for transfer learning. A few exam-
ples were provided to demonstrate the higher precision of the CAMUS-
RV transfer model. A few other examples involving a strange behavior
from both models were shown as well. Here, the RV benchmark model
demonstrated some awareness of LV endocardium and LV epicardium,
despite never having been trained for it. This behavior suggested that
segmentation of both the LV and the RV involves recognition of similar
features. Predictions made by the CAMUS-RV transfer model revealed
that it did not quite forget its source task, as it attempted to segment
both the left heart and the right heart chambers in some cases. The
models appeared to perform better on RV-focused images than four-
chamber view images, but collecting proper statistics proved to be pro-
hibitively difficult with the established setup.

The main research question can now be answered. Transfer learn-
ing can be feasible for automated segmentation of the right
heart chambers in 2D echocardiograms. Of course, there are cer-
tain conditions: it may not be as useful with other algorithms as with
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U-Net. One should also consider the amount of available data in both
the source task and the target task data sets. With enough right heart
data, there is likely no need to resort to transfer learning in the first
place. However, if transfer learning is attempted, a lot of left heart
data should be prepared: even two or three times the amount of right
heart data may not be enough. In the example of the GE-RV trans-
fer, the ratio of 8/1 (400 images for pre-training and 50 for fine-tuning)
led to a significant improvement. The CAMUS-RV transfer has shown
that even further improvement was possible with a ratio of over 20/1
(1,173 image for pre-training and 50 for fine-tuning). Note that this
relationship does not necessarily hold if the amount of right heart data
rises into the hundreds of images.

One may also wish to use only RV-focused images in the right heart
data set. However, if four-chamber view images are not included there,
removing them from the left heart data set may also be a reasonable
option. Having only two chambers to consider at a time (LV/LA and
RV/RA) may simplify the work for AI models, thus improving their per-
formance in both pre-training and fine-tuning.

6.2 Possible Improvements and Further
Research

The thesis answered the main research question ("Is transfer learn-
ing feasible for automated segmentation of the right heart
chambers in 2D echocardiograms?"), but much more work can be
done on the topic. Only a handful of parameter combinations were ex-
plored, with one algorithm, and only with the simplest transfer learn-
ing scheme. It is entirely possible that there is a combination of pa-
rameters and techniques that provides better results.

Given that the models’ performance appeared to be different for RV-
focused images compared to four-chamber view images, further work
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with the data could be a reasonable idea. For example, the data sets
could be split in two to separate the views. The process would be triv-
ial for CAMUS data set with its wealth of additional information, but
challenging for GE and RV data sets.

The setup for the experiments was not ideal, though that much had
already been explained. There are no perfect stopping criteria for train-
ing, given that an AI model can suddenly improve after long periods of
stagnation. It is therefore not obvious whether the way of comparing
the benchmark models and the fine-tuned models was completely fair.
Perhaps, information about when the models achieved their best per-
formance should have been included with other figures, but some could
see that information as excessive.

This work focused only on the task of segmentation, but it is just one
subroutine within echocardiogram interpretation. Given more data,
LVEF and RVEF could have been calculated for the images as an ad-
ditional performance metric. Alternatively (or in addition), an algo-
rithm for predicting ejection fraction could have been implemented,
and transfer learning could be tested with that algorithm. A variety
of other metrics could be included as well, but GE and RV data sets did
not allow for that, as they only contained segmentation masks.

Still further outside is the process of echocardiogram acquisition -
AI could be helpful for this task as well. However, it is a partly physical
task, meaning that it would involve robotics. Considering the state of
the art reviewed reviewed back in Section 2.4, the goal of AI-assisted
image acquisition is not completely unrealistic. Robotic systems for
medical ultrasound have already been designed by researchers, sup-
porting remote acquisition [41]. Higher quality commercial robots for
this task also seem to be available at this point. Furthermore, visual
guidance algorithms based on Deep Learning for robots have also been
proposed [42, 43]. A combination of these systems could be quite po-
tent, bringing some degree of automation to echocardiographic exami-
nations.
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