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Abstract

The objective of this thesis has been the study of risk analysis and optimization
under uncertainty. Theoretical aspects of several risk measures have been
contemplated, and we have discussed their strengths and weaknesses. Of special
interest were coherent risk measures, and in particular conditional Value-at-Risk.
We have shown that this is an important risk measure which is suitable for a
wide range of applications. We have studied how Value-at-Risk and conditional
Value-at-Risk can be used to estimate the future risk in a financial market, and
how Value-at-Risk may give unsatisfactory results in this application. When
applied to the optimization of structural design, CVaR leads to beneficial
compared to similar optimization under Value-at-Risk. Moreover, we have
considered the optimization of reinsurance contracts, where we have shown that
multivariate reinsruance contracts can be optimized using CVaR.
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Introduction

Outline of the thesis

The thesis is organized as follows:

Chapter 1 Chapter 1 contains preliminary mathematics needed for the discussion
of risk analysis. We introduce the concept of coherent risk measures and
coherency in optimization under uncertainty.

Chapter 2 Chapter 2introduces the problem of reinsurance. We study optimization
of reassurance contracts for univariate and multivaraite risks for Value-at-
Risk and conditional Value-at-Risk. We present results and examples for
optimal reinsurance for worst-case dependency between risks.

Chapter 3 Chapter 3 explores how these risk measures can be used to estimate the
future risk in a financial market. We see through examples how conditional
Value-at-Risk produces more conservative estimates than Value-at-Risk,
and studied how we may use this in combination with a stochastic model
to produce risk estimates.

Chapter 4 Chapter 4 presents the optimization of structural design using risk analysis.
We study how failure probability and buffered failure probability may be
applied, and study the gain in computability with the use of conditional
Value-at-Risk.

My contributions

Throughout this thesis I have highlighted independent contributions with
the symbol ]. Such contributions include elaborating on missing details
in proofs or examples from other sources, illustrations of concepts through
constructed examples, or the extension of known results to new settings.
Moreover, all the numerical examples and programming have been created by
me. Most notably are the implementations and applications in Chapter 3. The
python implementation, estimation method and analysis were all independent
contributions. I cannot say with certainty that similar analysis has not been
done previously - it probably has - but as I am not aware of any concrete
examples.
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CHAPTER 1

Risk Measures and Optimization

1.1 Notation and preliminaries

The purpose of this chapter is to introduce an appropriate framework to analyse
the problems we will face the following sections. We therefore begin by recalling
some basic mathematical theory that will be used throughout. We will also
make particular choices regarding the spaces we work with. If it is not otherwise
noted, we will assume that the choices made in this chapter apply everywhere
in the text.

Measure theory, Lp-spaces and random variables

The notions of measure spaces and measure theory are of key importance for
modern probability theory, and hence for the analysis of random variables.

Definition 1.1.1 (σ-algebra). Let N be a countable index-set, and let a set Ω
be given. A family F of subsets of Ω is called a σ-algebra on Ω if the following
holds.

• Ω ∈ F

• A ∈ F =⇒ AC ∈ F

• ∀n ∈ N,n ≥ 1An ∈ F =⇒ ∪An ∈ F ,

where AC denotes the complement of A, relative to Ω.

As a direct consequence of closeness under countable unions and comple-
ments, it follows that a σ-algebra F also contains the empty set ∅, and that
it is closed under countable intersections. σ-algebras will be used to represent
the outcomes of "experiments", where random variables map outcomes of such
experiments onto real numbers.

Definition 1.1.2 (Probability measure). Let F be a sigma algebra on Ω. A
function P : F −→ [0, 1] is called a probability measure if the following holds.

• P (∅) = 0, P (Ω) = 1

• If ∀n ≥ 1 An ∈ F with Al ∩Ak when k 6= l, then P (∪nAn) =
∑
n P (An).

Definition 1.1.3 (Probability space). If Ω is a set, F a σ-algebra on Ω and
P : F → [0, 1] is a probability measure, the triple (Ω,F , P ) is called a probability

3



1. Risk Measures and Optimization

space. If we replaced the probability measure P with a general measure µ, the
triple (Ω,F , µ) would simply be called a measurable space.

In this context, a random variable X is then a measurable function
(Ω,F , P ) 7→ (R,B(R), λ), where B(R) is the Borel-σ-algebra on R. Moreover,
to say that this function is measurable is to require that for each Borel-set
B ∈ B(R) it holds that {ω ∈ Ω | X(ω) ∈ B} ∈ F , which will be denoted
∀B ∈ B(R), X−1(B) ∈ F .

Definition 1.1.4 (Lp-space). Let (Ω,F , µ) be a measure space, and let 1 ≤ p <
∞. The space Lp(Ω,F , µ) consists of all measurable functions f : Ω −→ R such
that ∫

Ω
|f |p dµ <∞. (1.1)

If f, g ∈ Lp(Ω,F , µ) where µ({ω ∈ Ω | f(ω) 6= g(ω)}) = 0, we say that f = g
almost everywhere (a.e.). By identifying a.e-equal functions in equivalence
classes, we define Lp(Ω,F , µ) to be the space of such equivalence classes of
functions in Lp.

Definition 1.1.5 (p-norm). Let 1 ≤ p <∞ be given. For a measurable function
f , the p-norm of f is defined as

‖f‖p :=
(∫

Ω
‖f‖p dµ

) 1
p

(1.2)

Finding a space that accommodates all the needs for a particular problem
can often prove difficult, and making such a choice will often involve some
compromise. We have made the choice to work with the space L2(Ω,F , P ),
and it will be implicitly assumed that random variables belong there unless
mentioned otherwise. We believe that this is a reasonable choice, as it fits well
with the modelling of the problems at hand, while maintaining the benefits
provided by L2, as we will denote this space when there is no danger of confusion.
We next state two important inequalities from analysis.

Proposition 1.1.6 (Minkowski’s inequality [MW12]). Let 1 ≤ p ≤ ∞. Then,

‖f + g‖p ≤ ‖f‖p + ‖g‖p, (1.3)
for all f, g ∈ Lp.

Proposition 1.1.7 (Hölder’s inequality [MW12]). Let (Ω,F , µ) be a measure
space, and p, q ∈ [1,∞) where 1

p + 1
q = 1. Then, for all measurable functions

f, g on Ω,

‖fg‖1 ≤ ‖f‖p‖g‖q. (1.4)
As a consequence of Hölder’s inequality, we have that

L1(Ω,F , µ) ⊂ L2(Ω,F , µ). (1.5)
This follows by applying the inequality with p = q = 2, and g = 1Ω. Here, 1 is
the indicator function, which for a set A ⊆ Ω is defined as

1A(ω) =

1, ω ∈ A,
0, ω 6∈ A.

(1.6)
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1.1. Notation and preliminaries

Proposition 1.1.8. A random variable X ∈ L2(Ω,F , P ) has finite expectation
and variance, denoted E[X] :=

∫
ΩX dP , V [X] =

∫
Ω(X − E[X])2 dP ,

respectively, whenever these are finite numbers.

Proof. The finiteness of E[X] follows directly, since X ∈ L2 =⇒ X ∈ L1.
Hence,

E[X] =
∫

Ω
X dP ≤

∫
Ω
|X| dP ≤ ∞. (1.7)

Moreover,

V [X] = E
[
(X − E[X])2

]
(1.8)

=
∫

Ω
(X − E [X])2

dP (1.9)

=
∫

Ω
X2 dP − 2E[X]

∫
Ω
X dP + E[X]2

∫
Ω

1Ω dP (1.10)

(i)= E[X2]− E[X]2 (1.11)
(ii)
≤ ∞, (1.12)

using in (i) that P (Ω) = 1 and in (ii) that X ∈ L2 �

Convexity

The following results hold for a general vector space X.

Definition 1.1.9 (Convex set). Let S ⊆ X be a set. S is convex if for all
x, y ∈ S,

{λx+ (1− λ)y | 0 ≤ λ ≤ 1} ⊆ S. (1.13)

If the above holds with strict inequalities for all 0 < λ < 1, S is said to be
strictly convex.

Visually, convex sets are those that contain the line segments connecting
any two points in the set. Examples of convex sets

Definition 1.1.10 (Convex function). Let S ⊂ X be a convex set. A function
f : S −→ R+ is convex if for all x, y ∈ S,

f(λx+ (1− λ)y ≤ λf(x) + (1− λ)f(y). (1.14)

Strictly convex functions are defined analogously to strictly convex sets.
If a convex function f : S −→ (∞,+∞] is not constantly equal to +∞, it is

a proper convex function.

Convex functions on R appear as functions where the graph between two
points is bounded above by the line connecting the function value at those
points.

Definition 1.1.11 (Epigraph). Let f : S ⊆ X → R be a function. The epigraph
of f, denoted epif is the set of all points that lie above the graph of f , and is
defined as

epif := {(x, a) | x ∈ S, a ≥ f(x)} (1.15)
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1. Risk Measures and Optimization

(a) A convex set
in R3

(b) A convex set
in R2

(c) A non-convex
set in R2 (d) A convex

function.

Figure 1.1: Example of convexity and non-convexity

Definition 1.1.12 (Lower semi-continuity). Let f : X −→ R+ be a function and
x ∈ X a point. Then f is said to be lower semi-continuous at the point x if
for each y ∈ X there exists an open neighbourhood U containing y such that
f(x) > y for all x ∈ U . If f is lower semi-continuous at all points in its domain,
it is said to be lower semicontinuous.

Figure 1.1 provides some examples of convexity and non-convexity. The
shaded area in figure 1.1d indicates the epigraph of the function.

Definition 1.1.13. (Hyperplane, halfspace) A set P ⊆ X is called a hyperplane
in X if

P = {x ∈ X | 〈x, a〉 = c}, (1.16)

where a ∈ X is a non-zero vector and c ∈ R is some scalar. Furhtermore, P
divides X into two sets.

P+ := {x ∈ X | 〈x, a〉 ≥ c}, (1.17)
P− := {x ∈ X | 〈x, a〉 ≤ c}. (1.18)

These sets are called the upper and lower halfspace, respectively.

Definition 1.1.14 (Supporting hyperplane). If S ⊆ X is a non-empty set, a
hyperplane P is called a supporting hyperplane to S if the following holds.

a) S is entirely contained in either P+ or P−

6



1.1. Notation and preliminaries

b) At least one point in S a boundary point of P .

Theorem 1.1.15 (Supporting hyperplane theorem). Let S ⊆ X be a non-empty,
convex set and x ∈ X a point on its boundary. Then, there exists a supporting
hyperplane P to S containing x.

Proof. We refer to [BBV04, p 51] for the details. �

Definition 1.1.16 (Level sets). Let f : V→ R be a functional defined on some
set V and let α ∈ R. The α-level set of f is defined as

{v ∈ V | g(x,v) ≤ α} (1.19)

Lemma 1.1.17. A convex function has convex level sets

]. Let f be a convex function, and let x,y ∈ V be in the α-level set for f for
a fixed α ∈ R. Let λ ∈ (0, 1). Then,

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) (1.20)
λα+ (1− λ)α (1.21)
= α, (1.22)

which shows that λx + (1 − λ)y is in the α-level set of f , which finishes the
proof. �

In comparing two random variables, we may be interested in comparing
their expectations under convex transformations:

Definition 1.1.18 (Convex order). Let X,Y be real valued random variables.
X is said to be smaller than Y in convex order, provided

E[f(X)] ≤ E[f(Y )], (1.23)

fora all convex functions f : R −→ R such that the expectations exist. We
denote this X ≤CX Y .

While it is true that functions from Rn to R a positive semi-definite Hessian
matrix are convex, convex functions are not limited to the class of such function.
For example, the function x 7→ |x| is convex on R, but not differentiable at the
point x = 0.

Definition 1.1.19 (Subgradient, subdifferential). Assume f : X ⊆ R −→ R+ is
a convex, lower semi-continuous function which is not constantly equal to +∞.
A vector g ∈ S is said to be a subgradient of f at the point x0 if for all x ∈ S

f(x) ≥ f(x0) + 〈g, x− x0〉 (1.24)

Collecting all subgradients of f at a point x0 gives the subdifferential of f at
x0, which we denote ∂f(x0). Formally,

∂f(x0) = {g ∈ S | ∀x ∈ S f(x) ≥ f(x0) + 〈g, x− x0〉}. (1.25)
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1. Risk Measures and Optimization

Example 1.1.20 (]). Let f : R→ R be a function with ∂f(0) = [−1, 1]. Then,
f(x) is bounded below by |x|. To see this, note that since 1 ∈ ∂f(0), the
definition of a subgradient requires that

∀x ∈ R f(x) ≥ x. (1.26)

Similarly,

∀x ∈ R f(x) ≥ −x. (1.27)

Clearly, the smallest function which satisfies this is

f(x) =

x, x ≥ 0,
−x, x < 0

(1.28)

= |x|. (1.29)

The reverse is also true. If f(x) = |x|, ∂f(0) = [−1, 1]. For all other x ∈ R,
∂f(x) is either +1 or −1, depending on the sign of x.

The subgradient g of f at a point x0 where f is finite has a geometric
interpretation. Namely that h(z) = f(x0)+〈g, x−z〉 is a non-vertical supporting
hyperplane to the epigraph of f at the point (x0, f(x0)) [Roc70]. Figure 1.2
illustrates selected supporting hyperplanes for f(x) = |x| to epif at the point
0, f(0) corresponding to elements in its subdifferential ∂f(0).

Subdifferential may allow us to identify a global minimum of a non-
differentiable function.

Proposition 1.1.21. If f is a convex function with ∂f(x∗) 6= ∅ with 0 ∈ ∂f(x∗),
then f attains a global minimum at x∗.

]. Assume f is a convex function with ∂f(x∗) 6= ∅ with 0 ∈ ∂f(x∗). Then,

0 ∈ {g ∈ S | ∀x ∈ S f(x) ≥ f(x∗) + 〈g, x− x0〉}. (1.30)

This means that

∀x ∈ S, f(x) ≥ f(x∗) + 〈0, x− x0〉}, (1.31)

which gives ∀x ∈ S, f(x) ≥ f(x∗), which is what we wanted to show. �

If we consider the case where f : R −→ R is a convex, differentiable function,
f has exactly one supporting hyperplane at each point x ∈ R, namely the
tangent at the point x, f(x). In this case

0 ∈ ∂f(x)⇔ f ′(x) = 0, (1.32)

which we know to be sufficient for x to be a global minimum in this case.

Definition 1.1.22. Let f be a function with subdifferential ∂f . The graph of
∂f , denoted gph∂f is defined as follows.

gph∂f = {(x, p) | p ∈ ∂f(x)} (1.33)
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1.1. Notation and preliminaries

Figure 1.2: f(x) = |x| and its epigraph with some supporting hyperplanes at
(0, f(0)) corresponding to elements in ∂f(0) indicated.

From [RR14, p. 12] we have that the subdifferential for a real valued, proper
convex function f can be expressed in terms of it’s right- and left derivatives.
Indeed,

∂f(x) =

{p ∈ R | f ′−(x) ≤ p ≤ f ′+(x)}, for x ∈ dom f,

∅ otherwise
(1.34)

We conclude this section by reviewing some results related to monotone
relations and random variables. These results will later be used to derive results
about particular risk measures, and they will help uncover a deeper connection
between convex analysis and risk analysis. They are based largely on the results
developed in [RR13].

Definition 1.1.23 (Monotone relations). A set Γ of pairs (x, p) ∈ R × R is a
monotone relation if

for all (x1, p1) and (x2, p2) ∈ Γ, (x1 − x2)(p1 − p2) ≥ 0 (1.35)

whenever

(x1, p1) ≤ (x2, p2) or (x1, p1) ≥ (x2, p2). (1.36)

The inverse of a monotone relation Γ, denoted Γ−1 is defined as

Γ−1 := {(p, x) | (x, p) ∈ Γ}. (1.37)

9



1. Risk Measures and Optimization

Visually, a monotone relation Γ can be viewed as a graph that tends
monotonically from south-west to north-east without discontinuities, while
the inverse relation Γ−1 appears as the reflection of Γ about the line y = x.

Definition 1.1.24 (Convex conjugate). Let f : X → R be a function, and X∗
the dual space of X, with a (real-valued) bilinear mapping 〈·, ·〉 : X×X∗ −→ R.
The convex conjugate of f , denoted f∗ : X∗ −→ R is defined as

f∗(p) = sup
x∈X
{〈x, p〉} (1.38)

Particularly if X = Rn, the convex conjugate of f : X −→ R at a point
p ∈ R is

f∗(p) = sup
x∈Rn

{〈x, p〉 − f(x) | p ∈ Rn}, (1.39)

where 〈·, ·〉 is the usual inner product for vectors
The convex conjugate also relates to subdifferentials. The following result is

from [RR14].

Proposition 1.1.25. Let f be a convex function on R+ which is not constantly
equal to +∞, and let f∗ be its convex conjugate. Then, the following holds.

∂f∗ = (∂f)−1, (1.40)

in the sense that

x ∈ ∂f∗(p)⇐⇒ p ∈ ∂f(x). (1.41)

While the facts regarding convex conjugates and monotone relations seem
somewhat distant from the main topic of this thesis which is risk analysis, they
will prove very efficient in helping us prove some important facts about risk
measures.

1.2 Optimization

Problems within risk analysis often feature systems that involve uncertain
quantities and potentially undesired consequences. The goal is typically
to handle the uncertain system in a way that minimizes the risk of such
consequences, or to maximize the systems utility while keeping the risk of
consequences below at an acceptable level. In general terms, this will commonly
result in a problem of optimizing some aspects of the system with respect to
some measurement of the undesired resulting consequences. This section will
briefly consider optimization in the deterministic case, and establish relevant
results from convex analysis. Section 1.2 will couple these principles with
random variables, where the notion of risk and risk measures get introduced.
As will be revealed, convexity plays an integral part both to optimization and
risk analysis.

Traditionally, constrained optimization aims to solve problems on the form

minimize
x∈X

f (x)

subject to ci(x) ≤ 0 i = 1, . . . ,m,
(1.42)

10



1.2. Optimization

where x ∈ S ⊆ Rn, and f : S → R is a function that assigns to each choice of x
a real-valued cost, and ci : S −→ R are functions that represent constraints.
We will follow the common practice of referring to the functions f and ci as
the objective function or sometimes simply the objective, and the constraints
respectively. The goal is to identify x such that f is minimized while the
constraints in equation (1.42) are not violated. An example of such a problem
could be the design of a mechanical structure, where x represents choices of
materials for the construction to which f assigns a cost. Then, ci could represent
specifications, e.g. of strength, that that the resulting construction needs to
fulfill.If a point x∗ ∈ S satisfies the constraints in (1.42) and f(x) ≥ f(x∗) for
all x ∈ S, we will say the problem has an optimal value of f(x∗), and that x∗ is
an optimal solution point.

There are circumstances where we may want to transform a particular
optimization problem into another form, and solve the transformed problem
instead. This may be motivated by obtaining an alternative formulation of the
problem that in some regard is easier to solve. Particularly, such reformulations
can be of importance for algorithmic applications, where certain problem forms
are better suited for algorithmic solving. We will informally say that two
optimization problems equivalent if the solution of one provides a complete
description of the solution of the other. The following proposition illustrates
one such equivalent formulation.

Proposition 1.2.1. Assume x∗ ∈ S ⊆ Rn is an optimal solution to the
optimization problem in (1.42). Consider then the following optimization
problem.

minimize
x∈X

t over all (x, t) ∈ S × R

subject to

 f(x)− xn−1 ≤ 0,
ci(x) ≤ 0 for i = 1, . . . ,m.

(1.43)

Then, an optimal solution (t∗, x∗) to (1.43) provides a complete description of
the optimal solution to (1.42). Particularly, t∗ = f(x∗)

]Proof. Assume that x∗ is an optimal solution to (1.42), which gives an optimal
value of f(x∗). Consider the constraints

f(x)− t ≤ 0
ci(x) ≤ 0.

(1.44)

For each x, t is bounded below by f(x). Hence, t is minimal whenever f(x)
is minimal. Moreover, x∗ satisfies (1.44). Hence, (1.43) has an optimal value
of t = f(x∗), attained at (t, x∗). For the opposite implication, assume instead
that (t∗, x∗) is optimal for (1.44), and let

A = {x ∈ X | ci(x) ≤ 0 i = 1, 2, . . . , n}, (1.45)

such that the constraints ci(x) ≤ 0 are satisfied on A. It is clear that for a given
x ∈ A, f(x) is a lower bound on t, which then attains its minimum at t = f(x).

11



1. Risk Measures and Optimization

Since this is true for any x ∈ A, minimizing t coincides with minimizing f(x)
for x ∈ A. By assumption, x∗ minimizes f(x) for x ∈ A, so choosing

t∗ = f(x∗), x ∈ A (1.46)

is indeed optimal. This shows that when x∗ is an optimal solution point to
(1.42) with optimal value f(x∗), then (x∗, f(x∗)) is an optimal solution point
to (1.44), with optimal value f(x∗).

�

This specific reformulation is sometimes called the epigraphical form of the
optimization problem. The name stems from the fact that we have introduced
an extra variable in the epigraph of f . Epigraphs play an important role in
convex analysis, and we introduce them formally in the next section. As we will
see in later chapters, this particular form of the problem plays an important
role in the optimization with respect to certain risk measures.

If one has identified a candidate x∗ as the optimal value for f , the question
of whether better solutions exist and the uniqueness of x∗ arises. As it turns
out, both these properties can be obtained if f is convex.

Proposition 1.2.2. Any local minimum x∗ of a convex function f is a global
minimum of f . If f is strictly convex, x∗ is a unique.

Proof. Let f : A → R be a convex function, and assume for a contradiction
that x∗ minimizes f locally, but not globally. This means that there exists some
y∗ ∈ A such that f(y∗) > f(x∗). By convexity we have that for all 0 < λ < 1,

f(λx∗ + (1− λ)y) ≤ λf(x∗) + (1− λ)f(y) (1.47)
< f(x∗) + (1− λ)f(x∗) (1.48)
= f(x∗), (1.49)

which contradicts the assumption that x∗ is a local minimum, because we can
find points λx∗ + (1− λ)y arbitrarily close to x∗ where f takes smaller values.
This cannot be the case, since x∗ is a local minimum iff there exists some open
ball with radius r > 0 where f does not take smaller values. For uniqueness of
x∗, assume additionally that f is strictly convex, and that there exists some
point y∗ 6= x∗ such that f(x∗) = f(y∗). Fix λ ∈ (0, 1). By strict convexity we
have that

f(λx∗) + (1− λ)y∗) < λf(x∗) + (1− λ)f(y∗) (1.50)
= λf(x∗) + (1− λ)f(x∗) (1.51)
= f(x∗), (1.52)

which is contradictory, and hence x∗ is unique. �

The previous result is of significant importance, both theoretically and
for practical applications, and is among the motivating factors for the use of
convex risk measures, which get introduced in Section 1.3. From a practical
perspective, it can in certain cases reduce the computational efforts of solving
an optimization problem by limiting it only to determine if given candidate
solutions are locally optimal. In other instances where the optimization problem
is such that gradient methods are applicable, it may suffice for the optimization
scheme to identify a stationary point, which is then globally optimal.
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Remark 1.2.3. We have so far only considered the optimization problem of
minimizing a function. This is however not a restriction, as any optimization
problem can be posed as a minimization problem of the negative function.
Indeed,

maximize g (x) (1.53)
subject to ci(x) ≤ 0 i = 1, . . . ,m (1.54)~w� (1.55)

minimize
x∈X x∈X

− g (x) (1.56)

subject to ci(x) ≤ 0 i = 1, . . . ,m. (1.57)

What’s more, the problem constraints may safely be given in the above form,
since any constraint ∼ci(x) ≥ 0 can be stated as −∼ci(x) ≤ 0, resulting in the
original problem statement.

Optimization under uncertainty

So far we have discussed constrained optimization of deterministic functions,
but this does not let us capture problems of decision making and optimization
when the objective function or the constraints are not certain, but depend
on some state of the world. To get an intuitive understanding of what me
mean by this, consider the following problem when deciding on the design of
a mechanical structure, where x ∈ X represents choices of materials for the
construction to which f assigns a cost. Then, ci could represent specifications,
e.g. of material strength, which the resulting construction needs to fulfill. In a
deterministic world, this is sensible, but it needs to be extended to capture the
added difficulty of uncertainty. Instead, consider the functions ci(x, ω), where
ω represents possible future states of the construction’s environment. With this
formulation, ci(x, ω) could represent the strength of a part of the construction
given a choice of materials and a given state of its environment. As this view is
adapted, ci(x) := ci(x, ω) : X × Ω→ R can be regarded as a random variable.

To signify that we do not need to distinguish strictly between the objective
function and the constraints in an optimization problem, we will often refer to
the objective function as c0(x) := f(x, ω). This is justified, as we sometimes
may want to view the optimization from another angle, where a constraint can
take the role of the objective and vice versa. For instance, in one formulation
one might aim to minimize the cost under given a constraint on the weight, wile
an alternative problem is to minimize the weight given a constraint on the cost.

In the following a brief account of some approaches to optimization
under uncertainty discussed by Rockafellar in [Roc12] will be given. In all
approaches, the aim is to characterize the random variables in the objective
and the constraints to real numbers. By composing the random variables with
functionals, we are left with deterministic optimiztion problems. The question
then becomes: what are reasonable ways to attach real numbers to these random
variables?
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1. Risk Measures and Optimization

Approach 1: Guessing the Future

A simplistic approach is to chose ω′ ∈ Ω as a best estimate of the unknown
information, and then to

minimize
x∈X

c0 (x, ω′)

subject to ci(x, ω′) ≤ 0 for i = 1, . . . ,m.
(1.58)

There are clear drawbacks to this approach. Importantly, the solution can be
very unstable even with respect to tiny changes in ω′. Additionally, ω′ might
not at all be a good estimate of the unknown information, and the probability
of ci(x, ω) being reasonably close to ci(x, ω′) can be very small.

Approach 2: Worst Case Analysis

Instead of fixing a best estimate in Ω, the worst case approach considers the
constraints in Equation (1.42) under the worst possible circumstances in the
following manner:

minimize sup
ω∈Ω

c0 (x, ω) over all x ∈ X (1.59)

subject to sup
ω∈Ω

ci(x, ω) ≤ 0 for i = 1, . . . ,m. (1.60)

It is true that this approach avoids many of the pitfalls of the previous approach,
but there are immediate drawbacks to this approach too. Since we have chosen
to consider L2-random variables this approach will not be feasible if they are
unbounded ones. This is, at least in theory, the case for many random variables
in applications. While the risk of vastly underestimating the costs, or having the
constraints violated are eliminated, this comes at a cost. The set of suitable ω
might be very small, or even empty. Moreover, such a risk averse approach will
be too conservative for many applications. Indeed, we are now only concerned
with the absolutely worst possible states, without paying any attention to
the performance under ordinary circumstances. In the case of the mechanical
structure, it might not be possible to hedge against every possible storm or
earthquake, or the cost for such a structure could become impossibly high.

Approach 3: Relying on Expectations

Passing to the expected value is another way of attaching real values to the
random variables ci(x, ω). The problem then becomes then to

minimize E[c0(x)] over all x ∈ X (1.61)
subject to E[ci(x)] ≤ 0 for i = 1, . . . ,m. (1.62)

While this solves the problem of unbounded variables, a clear drawback to
this approach is that it only requires the constraints to be satisfied on average.
This can be hard to justify for many applications. In the case of our mechanical
structure, it is not enough that it is acceptable only on the average. Additionally,
by relying on the expected value, one does not place emphasis on the potentially
large costs at the right tail of the distribution, and large costs can be mitigated
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by anti-costs as long as the expected value is satisfactory. In short, if it is very
important to maintain control over costs and constraints, we need a more risk
averse approach.

Approach 4: Standard Deviation Units as Safety Margins

A way to improve on the expectation-approach is to introduce safety margins
based on the standard deviation. We choose a set of positive numbers λi > 0,
and define the constraints in the optimization problem as

minimize E[c0(x)] + λ0σ(c0(x)), over all x ∈ X (1.63)
subject to E [ci(x)] + λiσ (ci(x)) , for i = 1, 2, . . . , n, (1.64)

where σ(ci(x)) := E
[
(ci(x)− E [ci(x)])2

] 1
2 is the standard deviation of ci(x).

This approach partially solves the problems of relying solely on the expectation.
We are no longer content with E[ci(x)] ≤ 0, but have also gained control over
how likely it is that the constraints will be breached. The approach provides a
more risk averse approach compared to the former. However, the point that
anti-costs can offset costs still remains. Another drawback related to convexity
will be revisited in the next section.

1.3 Risk measures

Much of the theory and literature regarding risk analysis has its origin in
finance and financial mathematics. In finance, risk and its analysis have been
of concern possibly as long as financial markets have existed, raising questions
such as: "How much of a premium do you require to hold a commodity with a
value that can possibly decrease over time", or "how much capital should be
allocated to cover the position of a futures trade". While such questions are
old, much of the literature in risk analysis is relatively recent. Many of the
traditional approaches revolve around measurements of the deviations of the
underlying asset. A unified framework for the analysis of financial risk was
introduced in 1999 by Artzner et. al. [Art+99]. There, the authors gave a
axiomatic definition of the coherent risk measure. This was done by imposing
axioms that were thought to be natural conditions a sensible measure of risk
should satisfy, according to financial understanding. In [FS02] it is suggested
to relax the conditions of coherent risk measure slightly, which introduces the
convex risk measure. In the following we will review some facts about coherent
and convex risk measures. We will review the traditional approaches from the
previous section in light of these risk measures.

To avoid confusion, we follow [RU+00] in pointing out a distinction between
two concepts that are often associated with risk, namely uncertainty and cost.
We will measure the uncertainty of a random variable as in terms of its deviation
when assessing inconsistency, and its risk when assigning to it a single value as a
representative of its cost. The term "cost" is general. Monetary losses, injuries,
or contamination may all be examples of losses. Costs will take positive values,
so greater positive costs are worse than smaller. When costs are below 0 they
will be said to be acceptable. In this context, placing a large bet on a game with
an almost certain, large negative outcome has very little uncertainty, since the
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loss is almost certain, but it carries a great risk since the cost of the is likely
large. Note that some texts about risk measures use an opposite orientation,
where larger values of X are associated with positive gains and a lower levels of
risk. We maintain the view that positive outcomes of X represent losses. There
are no fundamental differences between these views, except from a change of
signs.
The following definition of a coherent risk measure is from [RU+00].

Definition 1.3.1. R : L2(Ω,F , P )→ (−∞,∞] is a coherent measure of risk in
the extended sense if

(R1) (Constantness): R(C) = C for all constants C,

(R2) (Convexity): R((1− λ)X + λX ′) ≤ λR(X) + (1− λ)R(X ′),

(R3) (Monotonicity): R(X) ≤ R(X ′) when X ≤ X ′,

(R4) (Closedness): R(X) ≤ 0 when ‖Xk −X‖2 → 0 witxch R(Xk) ≤ 0.

R is called a coherent measure of risk in the basic sense if additionally

(R5) (Homogeneity): R(λX) = λR(X) for 0 < λ ∈ R.

The coherent risk measure in the extended sense is equivalent to that of
[Art+99], while the axioms are not the same. The latter chose axioms motivated
by economic arguments, and required the risk measure to be translation invariant,
i.e, that adding a risk-free gain to a risky asset resulted in an equal decrease in
the risk. Moreover, Artzner et. al imposed subadditivity, formally

R(X + Y ) ≤ R(X) +R(Y ). (1.65)

Remark 1.3.2. Subadditivity together with (R5)(Homogeniety) gives
(R2)(Convexity). Indeed, Let X, Y be random variables which satify subaddit-
ivity and (R5). Then, for any λ ∈ [0, 1],

R(λX + (1− λ)Y ) ≤ R(λX) +R((1− λ)Y ) (1.66)
= λR(X) + (1− λ)R(Y ). (1.67)

From these axioms, several reasonable results can be gathered:

1. By combining (R1) and (R5), we get subadditivity:

R(X +X ′) ≤ R(X) +R(X ′) (1.68)

2. When X is bounded above,

R(X) ≤ sup
ω∈Ω

X. (1.69)

3. The monotonicity property in (R3) is equivalent to the following.

X ≤ 0 =⇒ R(X) ≤ 0. (1.70)
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Proof.

1. Let X and X ′ ∈ L2, and define Y = 2X and Y ′ = 2X ′. Then,

R(X +X ′) = R
(

1
2Y + 1

2Y
)

(1.71)

(R2)
≤ 1

2R(Y ) + 1
2R(Y ′) (1.72)

(R5)= R
(

1
2Y
)

+R
(

1
2Y
′
)

(1.73)

= R(X) +R(X ′), (1.74)

which is what we wanted to show.

2. Let X ′ = supω∈ΩX. Appealing to (R3) gives

R(X)
(R3)
≤ R(X ′) (1.75)
= R(sup

ω∈Ω
X) (1.76)

(R1)= sup
ω∈Ω

X, (1.77)

so the statement holds.

3. Assume that (R3) holds, i.e,

X ≤ Y =⇒ R(X) ≤ R(Y ). (1.78)

This means that if Y ≡ 0, we get that

R(X) ≤ R(0) = 0. (1.79)

For the opposite implication, assume instead that

X ≤ 0 =⇒ R(X) ≤ 0, (1.80)

and let X ′ ≤ Y ′. Define Z = 0.5(X ′ − Y ′) ≤ 0. By the convexity in (R1)
it follows that

0 ≤ R(Z) ≤ 0.5R(X ′)− 0.5R(Y ′), (1.81)

or equivalently R(X ′) ≤ R(Y ′), which finishes the proof.

In [FS02] the authors argue that scaling property that follows (R5) is not
necessarily reasonable in practice, pointing out that the risk associated with a
financial position may increase non-linearly as the position becomes very large.
They suggest instead to relax the conditions somewhat, introducing the convex
risk measure.

Definition 1.3.3 (Convex Risk Measure). A functional R : L2(Ω,F , P ) is a
convex risk measure if
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(R1’) (Convexity): R((1− λ)X + λX ′) ≤ λR(X) + (1− λ)R(X ′),

(R2’) (Monotonicity): R(X) ≤ R(X ′) when X ≤ X ′,

(R3’) (Translation invariance): If m ∈ R, then R(X+m) = R(X)+m.

�

Proposition 1.3.4. Under these axioms, any coherent risk measure in the
extended sense is automatically a convex risk measure.

]. Let R be a coherent risk measure in the extended sense, and let X be a
random variable andm ∈ R a constant. We must show that axioms (R1′)−(R3′)
hold.The axioms (R2′) and (R3′) follow by assumption, so we are left with
deriving (R3′). We have that

R(X) = R(1
2(2X + 2m)− 1

22m) (1.82)
(R2)
≤ R(X +m)−R(m)

(R1)= R(X +m)−m
≤ R(X) +R(m)−m
= R(X). (1.83)

By rearranging the terms, we deduce from the inequalities

R(X) ≤ R(X +m)−m ≤ R(X) (1.84)

that

R(X) = R(X +m)−m =⇒ R(X +m) = R(X) +m. (1.85)

The result holds in the extended sense, since (1.82) also requires (R5) to bring
the scaling factor of 1

2 outside the risk measure. This concluded the proof, and
shows that the axioms for convex risk measures are in fact a relaxation of the
axioms for coherent risk measure (in the extended sense). �

Coherency in Optimization

With the axioms for risk measures established, a scheme for optimization under
uncertainty analogous to the approaches from Section 1.3 is proposed. This
was the topic of [Roc12]. In the following, we review some key points from
this work, and elaborate on some of the details. In the previous discussion,
several methods to associating a single value to the random variables ci(x) were
proposed. With the concept of risk measures in place, the idea is the following
approach.

minimize for x ∈ XR0 (c0(x)) ,
subject to Ri (ci (x)) ≤ 0 i = 1, . . . ,m.

(1.86)

Here, R0,R1, . . . ,Rm are risk measures as proposed in Definition 1.3.1. To
establish a theorem regarding important properties of coherent risk measures,
the following lemma will be useful.
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Lemma 1.3.5. The composition of a convex function with a nondecreasing
convex function is itself a convex function. In mathematical notation, suppose
f(x) ≥ f(y) for all x ≥ y, and suppose f, g are convex functions. Then, f ◦ g
is a convex function.

Proof. By convexity of g, g (λx+ (1− λ)y) ≤ λg(x) + (1−λ)g(y). Hence, since
f is nondecreasing, and by applying the property of convexity of f in the last
inequality, it follows that

f (g (λx+ (1− λ)y)) ≤ f(λg(x) + (1− λ)g(y)) (1.87)
≤ λf(g(x)) + (1− λ)f(g(y)) (1.88)

�

With this in place, we can introduce the following theorem. This is Theorem
1.3.4 in [RU+00].

Theorem 1.3.6. Suppose in problem (1.86) that for each i = 0, 1, . . . ,m, that
each functional Ri is a coherent measure of risk in the extended sense. Then,
the following properties hold:

(a) Preservation of convexity: If ci(x, ω) is convex with respect to x ∈ S
for each ω ∈ Ω, then the function Ri(ci(x)) is convex.

(b) Preservation of certainty: If ci is a constant random variable
for each x, i.e., ci(x, ω) = ci(x) (i.e, no influence from ω ∈ Ω) , then
Ri(ci(x)) = ci(x).

(c) Insensitivity to scaling: If the risk measures Ri also satisfy (R5),
then problem (1.86) remains the same when the units in which the values ci(x, ω)
are denominated are re-scaled.

]Proof of Theorem 1.3.6.

(a) Assume that ci(x) is a convex function for each ω ∈ Ω. By (R1) and (R2)
Ri is a non-decreasing, convex function. By Lemma 1.3.5, Ri (ci(x)) is a
convex function.

(b) For each x, ci(x) ∈ R. By (R1) the conclusion follows.

(c) A rescaling of ci is the transformation ci(x) 7→ λci(x) for some scalar
λ > 0. Then, (R5) gives Ri(λci(x)) = λRi(ci(x)), and thus problem (1.86)
remains the same.

�

Property (c) of 1.3.6 illustrates some of the difficulties in developing axioms
for risk measures that are both sensible from an economical point of view and
natural from a practical perspective. It is intuitive that the measured risk
should not be perceived differently after a scaling by a change of units. At the
same time, Föllmer et al. argue that the risk needs not increase linearly with
the increase in a portfolio.
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Traditional approaches to optimization under uncertainty revisited

We will now review the previous approaches from section 1.2 in light of coherent
risk measures in the basic sense. As shown, coherence in this regard also implies
convexity in the sense of definition 1.3.3.
Approach 1: Guessing the Future We assess the risk in ci(x) as R(ci(x))
by choosing some ω′ ∈ Ω with P (ω′) > 0:

R(ci(x)) = ci(x, ω′) (1.89)

Defining R in this manner gives a coherent risk measure in the basic sense, but
there are obvious drawbacks in terms of uncertainty. The risk is regarded as
acceptable if it is acceptable in the state ω′, while no other states are considered.

Proposition 1.3.7. Fix ω′ ∈ Ω. The risk measure R(ci(x)) = ci(x, ω′) is a
coherent risk measure in the basic sense, according to Definition 1.3.1.

]Proof. We check that R as defined in Proposition 1.3.7 satisfies the axioms
(R1) - (R5).

(R1) If ci(x, ω′) is a constant C, then R(ci(x, ω′)) = C.

(R2) Let λ ∈ (0, 1). Then,

R(λci(x) + (1− λ)cj(x)) = λci(x, ω′) + (1− λ)cj(x, ω′) (1.90)
= λR(ci(x)) + (1− λ)cj(x). (1.91)

(R3) Assume ci(x) ≤ cj(x). Then,

R(ci(x)) = ci(x, ω′) (1.92)
≤ cj(x, ω′) (1.93)
= R(cj(x)). (1.94)

(R4) Let (ci(x))i be a sequence of random variables converging in L2-norm
to c(x), with R(ci(x)) ≤ 0. Then ci(x, ω′) ≤ 0 for every i. Let’s for
convenience denote ci(x, ω′) = ci and c(x, ω′) = c for their scalar values,
and assume for a contradiction that c > 0, which implies

R(c(x)) > 0. (1.95)

Then, since

‖ci − c‖2 → 0, (1.96)

it follows that

‖ci − c‖1 = |ci − c| → 0, (1.97)
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since ci and c are constants. Therefore, there exists for every ε > 0 some
N ∈ N such that |cn − c| < ε for all n ≥ N . Fix ε = c

2 , and observe that

|cn − c| ≤ |c| > ε. (1.98)

(R5) Let λ ∈ R. Then,

R(λci(x)) = λci(x)(ω′) = λR(ci(x)). (1.99)

This shows that R is a coherent risk measure. �

Approach 2: worst-case analysis The approach is to assess the risk in ci(x)
as R(ci(x)) as sup ci(x), provided ci(x) is bounded. Defining R in this way
gives a coherent risk measure in the basic sense, but the same flaws as in the
similar traditional approach remains.

Proposition 1.3.8. Let ci(x) be a bounded random variable, and let R(ci(x)) =
sup ci(x). This gives a coherent risk measure in the basic sense, according to
definition 1.3.1.

]. Let ci(x) and R be defined as above. The result follows by the same steps
as in the proof of proposition 1.3.7 by replacing the constant ci(x, ω) there with
sup ci(x). �

Approach 3: Relying on Expectation The approach is to rely on
expectation by letting R(ci(x)) = E[ci(x)].

Proposition 1.3.9. The risk measure R(ci(x)) := E[ci(x)] is a coherent risk
measure in the basic sense.

]Proof. We check that the risk measure as defined in Proposition 1.3.9 satisfies
(R1)− (R5).

(R1) If ci(x) = C for some constant C, R(ci(x)) = E[C] = C.

(R2) By linearity of expectations it follows that

R(λci(x) + (1− λ)cj(x)) = E[λci(x) + (1− λ)cj(x)] (1.100)
λE[ci(x)] + (1− λ)E[cj(x)] (1.101)
λR(ci(x)) + (1− λ)R(cj(x)). (1.102)

(R3) Let ci(x) ≤ cj(x). Then R(ci(x)) = E[ci(x)] ≤ E[cj(x)] = R(cj(x)).

(R4) Assume ‖Xk −X‖2 → 0 when k →∞ and R(xk) ≤ 0 for each k. Then,
the following holds.

0 ≤ ‖Xk −X‖1 (1.103)
= ‖(Xk −X) · 1‖1 (1.104)
= E[|Xk −X|] (1.105)
(i)
≤ ‖Xk −X‖2‖1‖2 (1.106)
= ‖Xk −X‖2, (1.107)
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by using Hölder’s inequality with p = q = 2 in (i). Since ‖Xk −X‖2 → 0
as k →∞, it follows that E[|Xk −X|]→ 0 as k →∞. Finally, observe
that

0 ≤ |E[Xk]− E[X]| (1.108)
(ii)
≤ |E[Xk −X]| (1.109)
(iii)
≤ E[|Xk −X|]→ 0, (1.110)

using linearity of the expectation in (i), Jensen’s inequality in (ii) and the
limit from above in the final step. This shows that |E[Xk]−E[X]| → 0
as k →∞, and so, by assumption,

R(X) = lim
k→∞

E[Xk] ≤ 0. (1.111)

(R5) By linearity of expectations, it follows that

R(λci(x)) = E[λci(x)] (1.112)
= λE[ci(x)] (1.113)
= λR(ci(x)). (1.114)

This is what we wanted to show. �

Approach 4: Standard Deviation as Safety Margins The approach is to
use R(ci(x)) = E [ci(x)] + λiσ (ci(x)) to assess the risk in ci(x). While this
approach seems intuitive and properly risk averse, it unfortunately does not
constitute a coherent measure of risk, either in the basic nor extended sense,
since monotonicity, (R3) in Definition 1.3.1, does not hold in general. It suffices
to find a counter-example.

Example 1.3.10 (] Illustrates lack of monotonicity). Let Y ≡ 0, and let X be
a non-constant random variable taking values in (−1, 0) . This means that

−1 < E[X] = µX < 0 and σ(X) = σX > 0. (1.115)

On the other hand, E[Y ] = σ(Y ) = 0. Then, it is not hard to see that one can
choose a suitable λ′ such that

E [X] + λ′σ (X) = µX + λ′σX > 0. (1.116)

Defining R(·) = E[·] + λ′σ(·) gives R(X) > 0. On the other hand, R(Y ) = 0,
which violates (R3) In fact, the risk measure indicates that within this safety
margin, the random variable X carries a positive risk. This is a surprising result
in the assessment of a random variable that is guaranteed never to produce a
costly outcome. This behaviour underlines the importance of distinguishing
between the variability and the risk associated with a random variable. A
random variable with great variability does in general not need to have great
risk.

Remark 1.3.11 (]). Let R, defined as in the worst-case approach and ρ, defined
as in the expected value-approach, be two risk measures. Then, R(X) ≥ ρ(X)
for any bounded random variable X.
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Proof. Indeed, observe that for any ω ∈ Ω we have X(ω) ≤ supω∈ΩX(ω), and
hence

ρ(X) =
∫

Ω
X dP (1.117)

≤
∫

Ω
sup
ω∈Ω

X(ω) dP (1.118)

= sup
ω∈Ω

X(ω) (1.119)

= R(X). (1.120)

This is what we wanted to show. �

As all but approach 4 produced a coherent risk measure in the basic
sense, they also satisfy the axioms for a convex risk measure. However, their
drawbacks were many and sometimes severe. This suggests that it is not in
itself enough for a risk measure to be coherent or convex to be a sensible
risk measure. What is sensible will vary from situation to situation, usually
depending strongly of the tolerance for costs, which can require us to impose
more restrictions than the axioms. One natural restriction is to require, in
addition to the axioms of coherency or convexity, that E[X] ≤ R(X) which
gives an averse risk measure. If the inequality is strict, we sayR is strictly averse.

Risk measure as probability of compliance An alternative to the
approaches reviewed above is to measure risk in terms of the probability of
exceeding a certain cost level. This approach will correspond with a risk measure
that is widely used within the financial industry, known as Value-at-Risk. Recall
that the cumulative distribution function for X, denoted FX is given by

FX(c) = P (X−1 ((−∞, c]) . (1.121)

This is well defined, since (−∞, c] is a Borel-set and X is measurable. Related
to the cumulative distribution function is the survival function. It is denoted
SX , and defined by

SX(c) = 1− FX(c). (1.122)

We describe the quantile of X in terms of FX .

Definition 1.3.12 (Quantile of a random variable). Let α ∈ (0, 1). The α-
quantile of X, denoted qα(X) is defined as

qα(X) = inf {c ∈ R | α ≤ FX(c)} . (1.123)

The quantile of the random variable identifies the smallest value the random
variable can take with probability less than or equal to α. If X represents costs,
the α quantile identifies the level of cost such that any cost larger than or equal
to this level occurs with a probability of α or less. For technical reasons, the
α-quantile is expressed as an infimum. If Ω contains some ω with P (ω) > 0, as
is the case with e.g. discrete probability distributions and importantly empirical
distributions, the quantile remains well defined. For such distributions the
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Figure 1.3: The 0.8-quantile of a random variable with piecewise cumulative
distribution function. In this case it takes the value 1.

cumulative distribution function will have flat parts and points of discontinuity.
In these cases, the α-quantile corresponds to selecting the left endpoint of an
interval, on which the cumulative distribution function has equal values. Figure
Figure 1.3 illustrates the 0.8-quantile of a random variable with a piecewise
cumulative distribution function.

The idea is to use the α-quantile of X as a measure of risk. Therefore, let

Ri(ci(x)) = qαi(ci(x)). (1.124)

By defining Ri this way, one is essentially assessing the risk in ci(x) as the
smallest cost that occurs with a probability of 1− α or less.

Example 1.3.13 (]Illustrates qα as a measure of risk ). Let X be a random
variable that represents the total net loss in a financial portfolio after some
time. If q0.95(X) = 1M$, there is a probability of 5% or less that the loss will
exceed 1M$

Using qα as a measure of risk might seems compelling. In fact, qα coincides
the widely used Value-at-Risk (VaR). Nevertheless, there are some clear
drawbacks to this approach. Indeed, by using R(ci(x)) = qαi(ci(x)), one
neglects the very worst outcomes of ci(x). For L2-random variables this upper
part of the tail could be very long, and the costs could become infinite even
when qα(X) is small for a reasonable α. Additionally, R is not a coherent
risk measure, either in the basic nor the extended sense. Specifically, R is not
convex (R2).

Proposition 1.3.14. The risk measure R(X) = qα(X) is not a coherent risk
measure. Is is also not a convex risk measure.

]Proof. It suffices to find a counterexample. Example 1.3.15 is one such
counterexample. �

Example 1.3.15 (]). Illustrates non-convexity of qα(X)] Assume there are two
independent, financial portfolios. Both portfolios have a 95% probability of
giving a 1M$ profit, and a 5% probability of a loss of 18M$. Let X and Y be
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random variables that represent the loss in each portfolio respectively. I.e. X
and Y can take the values −1M$ or 18M$. Suppose R = q0.93 is chosen to
be the measure the risk. A combination portfolio Z = 0.5X + 0.5Y is created.
Then,

qα0.93(X) = qα0.93(Y ) = −1M$,

while the combined portfolio Z = 0.5X + 0.5Y has q0.93(Z) = 8.5M$ To
summarize,

0.5R(X) + 0.5R(Y ) ≤ R(0.5X + 0.5Y ).

That is, the risk in the combined portfolio exceeds the sum of risk in each of
the portfolios. This shows that a diversification of the portfolio does no reduce,
but on the contrary, increases the total risk. This is not desirable behaviour of
a risk measure, and is in violation with (R2). Therefore, the α-quantile does in
general not give a coherent measure of risk.

Under certain restrictions, qα(X) remains a coherent risk measure, as the next
proposition shows.

Proposition 1.3.16. Let X,Y ∈ L2 be independent, normally distributed
random variables, X ∼ N

(
µX , σ

2
X

)
, Y ∼ N

(
µY , σ

2
Y

)
. Let as before R be

given by the α-quantile at level α ∈ (0, 1). Then R is a coherent measure of
risk.

]Proof. (R1) : Assume X = c for a constant c ∈ R. For each α ∈ (0, 1),
qα(X) = c. Hence R(X) = c.

(R2) : Let Φ denote the cumulative distribution function of a normally
distributed random variable with expectation 0 and variance 1. By a change
of variables, one can easily show that FX(x) = Φ

(
x−µx
σX

)
. Additionally, Φ

is a monotonically increasing function, and is therefore invertible. Let Φ−1

denote its inverse. Finding qα(X) is therefore reduced to finding c such that
α = Φ

(
x−µX
σX

)
, or alternatively

qα(X) = Φ−1 (α)σX − µX . (1.125)

Note that when α is fixed, Φ−1(α) is a constant. Let

Z = λX + (1− λ)Y, λ ∈ (0, 1). (1.126)

It is well-known that a linear combination of independent normally random
variables again is a normally distributed random variable. Indeed,

Z ∼ N
(
λµX + (1− λ)µY , λ2σ2

X + (1− λ)2
σ2
Y

)
. (1.127)

Using (1.125), an expression for R(Z) is derived:

R(Z) = qα(Z)

= Φ−1 (α)
√
λ2σ2

X + (1− λ)2
σ2
Y

− (λµX + (1− λ)µY ) .
(1.128)
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On the other hand,

λR(X) + (1− λ)R(Y ) = λqα(X) + (1− λ)qα(Y )
= Φ−1 (α) (λσX + (1− λ)σY )
− (λµX + (1− λ)µY ) .

(1.129)

Comparing the expressions in (1.128) and (1.129) after subtracting equal terms
and dividing by Φ−1(α) gives the inequality√

λ2σ2
X + (1− λ)2

σ2
Y ≤ (λσX + (1− λ)σY ) , (1.130)

which holds. Hence,

R(λX + (1− λ)Y ) ≤ λR(X) + (1− λ)R(Y ). (1.131)

(R3) : Assume X ≤ Y . Observe first that for every c ∈ R,

{ω ∈ Ω | Y (ω) ∈ (−∞, c]} ⊆ {ω ∈ Ω | X(ω) ∈ (−∞, c]}, (1.132)

which implies that

P
(
Y −1 (−∞, c]}

)
≤ P

(
X−1 (−∞, c]}

)
, (1.133)

by monotonicity of P . Therefore, if

qα(X) = arg inf
c∈R

{α ≤ P
(
X−1 (−∞, c]

)
}, (1.134)

it follows that

P
(
X−1 (−∞, qα(X)]

)
≥ P

(
Y −1 (−∞, qα(X)]

)
≥ α. (1.135)

This means that

qα(X) ≥ arg inf
c∈R

{α ≤ P
(
Y −1 (−∞, c]

)
}, (1.136)

which shows that R(X) ≤ R(Y ).

(R4) : Assume that Xk is a sequence of normally distributed random with
R(Xk) = qα(Xk) ≤ 0 for each k and ‖Xk −X‖2 → 0 as k →∞.
We will show that R(X) ≤ 0 holds in three steps:

1. We show that E[Xk] −→ E[X],

2. We show that V [Xk] −→ V [Xk],

3. We finally use the above results in combination with equation (1.125) to
show that R(X) ≤ 0.
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The result in the first step is established by using Hölder’s inequality and
Jensen’s inequality as in the proof of (R4) in Prop. 1.3.9.
We show that step two holds as follows. By assumption, E[(Xk −X)2]1/2 → 0,
which means that E[(Xk − X)2] → 0. Moreover, by Minkowski’s inequality
inequality it follows that

|‖Xk‖2 − ‖X‖2| ≤ ‖Xk −X‖2 → 0, (1.137)

which implies that

‖Xk‖2 − ‖X‖2 → 0, (1.138)

so E[X2
k ] → E[X2]. We use the fact that V [X] = E[X2] − E[X]2 and apply

the above results. This gives

lim
k→∞

V [Xk] = lim
k→∞

(
E[X2

k ]− E[Xk]2
)

(1.139)

= E[X2]− E[X]2 (1.140)
= V [X]. (1.141)

For the third step, recall from (1.125) that

qα(X) = Φ−1 (α)σX − µX . (1.142)

Then,

lim
k→∞

|R(X)−R(Xk)| = lim
k→∞

|Φ−1 (α) (σX − σXk)− (µX − µXk)| = 0,
(1.143)

which shows that R(X) ≤ 0.

(R5) : Let Y = λX and R(X) = qα(X).

R(Y ) = arg inf
c∈R

{
α ≤ P

(
Y −1 (−∞, c]

)}
(1.144)

= arg inf
c∈R

{
α ≤ P

(
X−1

(
−∞, c

λ

])}
(1.145)

= arg inf
λs

{
α ≤ P

(
X−1 (−∞, s]

)}
, (1.146)

where the change of variable s = c
r was used in the final equality. The conclusion

R(Y ) = R(λX) = λR(X) follows. �

Notably, the assumption of normally, independently distributed random
variables is only needed in (R2). This is indeed the only axiom that qα(X) does
not satisfy in the general case. As the result shows, the risk measure qα(X)
is indeed coherent and thus convex under certain restrictions. The restriction
of the random variables to the class of independent and normally distributed
ones, is not necessarily justifiable. When ci(x) is parametrized by x, ci(x) must
belong to this class for each choice of x. In fact, the restrictions on ci(x) can be
relaxed further. If ci(x) has a elliptical probability distribution, qα(X) remains
coherent and hence convex, see [EMS02], Theorem 1.
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Approach 6: Safeguarding with Value-at-Risk

Let Ri(ci(x)) = qαi (ci(x)) = qαi (ci(x)) for αi ∈ (0, 1), i = 0, 1, . . . ,m. The
approach is to

minimize VaRα0(c0(x)) over all x ∈ X,
subject to VaRαi(ci(x)) ≤ 0 for i = 1, . . . ,m.

(1.147)

In this approach, one insists that for each of the constraints, ci(x) is
acceptable with at least probability αi. Then, within the set of feasible x,
the smallest cost c0 is identified such that c0(x) ≤ c0 with at least probability
α0. We will later show that many of the shortcomings of VaR as a risk measure
can be resolved by extending the quantile-approach to considering the expected
loss in the tail of the distribution.

Conditional Value-at-Risk

Conditional Value-at-Risk (CVaR), also known as average value-at-risk or
expected shortfall is a measure of risk which can be expressed as the expectation
of the random variable in the conditional distribution of its upper α-tail. If the
probability distribution of a random variable X ∈ L2 is continuous, then the
above description of CVaR at level α coincides with with the expectation of
X on the interval [qα,∞). If on the other hand X does not have a continuous
distribution, we must consider the "the upper α-tail" of X more carefully, since
this may not be the interval [qα,∞). Recall that if for an ω′ ∈ Ω, X(ω′) = qα
with P (ω′) > 0, FX will have a jump at ω′. In that case, P

(
X−1 ([qα,∞)

)
might not be 1− α.

Example 1.3.17 (] Illustrates discontinuities in qα). Consider the finite sample
space Ω = {ω1, ω2, . . . , ω5} with P (ωi) = 0.2 for i = 1, . . . , 5, and the random
variable X defined by the mapping

ωi 7→ i, for i = 1, . . . , 5. (1.148)

Then, q0.85(X) = inf {c ∈ R | 0.85 ≤ FX(c)} = 5, but

P
(
X−1 [5,∞)

)
= 0.2 6= (1− 0.85) = 0.15. (1.149)

As the example shows, when calculating CVaRα, we cannot simply use
(1 − α) as a rescaling factor. The following definition from [Ace02] remains
consistent.

The following defintion is from [RU+00, p. 12]

Definition 1.3.18 (CVaR). The CVaR at level α, denoted q̄α(X)

q̄α(x) := (X) = 1
1− α

∫ 1

α

qβ(X) dβ. (1.150)

The following proposition lists some key properties of CVaR. The property
in (a) is found in [RU02b], while The result from (b) is given in [RU00], [RU02a].

Proposition 1.3.19.
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(a) q̄(X) ≥ qα(X).

(b) CVaR can be expressed as the following minimization problem.

CVaRα(X) = inf
C∈R

{
C + 1

1− αE [max {X − C, 0}]
}
. (1.151)

(c) The expression in (1.151) also calculates VaR.

VaRα(X) = arg inf
C∈R

{
C + 1

1− αE [max {X − C, 0}]
}
. (1.152)

The formulation of CVaR in b is especially potent. It reduces the problem
of calculating CVaRα which simultaneously calculates the V aRα.

]Proof.

(a) Since qα(X) is non-decreasing in α, it follows that

q̄α(X) = 1
1− α

∫ 1

α

qβ(X)dβ (1.153)

≥ 1
1− α

∫ 1

α

qα(X)dβ (1.154)

= 1
1− α (1− α)qα (1.155)

= VaRα(X). (1.156)

for (c) we refer to [RU00] [RU02a] for the details. In what follows, we will use
convex duality theory to show (b). �

We will establish some helpful results, in particular Theorem 1 and 2, from
[RR14] to deduce the minimization formula in (b) from 1.3.19. To this end, we
introduce the following function.

Definition 1.3.20 (Superexpectation). Let X be a random variable and c ∈ R
a number. The superexpectation of X, denoted EX(c), is defined as

EX(c) =
∫

Ω
[X − c]+ dP, (1.157)

where [X − c]+ := max(X − c, 0).

We also need the following observation.
Remark 1.3.21. Let X be a random variable. In the case where X has a
continuous distribution, the expectation of X can be calculated by means of its
quantile function. Observe that for a probability α,

α = P ({(−∞, x]} = FX(x), (1.158)

so a change of variable gives dα = f(x)dx. In this case, qα(X) = F−1
X (α), giving

qα(F (x)) = qα(X) (1.159)
x = qα. (1.160)
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Using the last expression, we get that

E[X] =
∫ ∞
−∞

xf(x)dx. (1.161)

(1.162)

Using then the change of variable f(x)dx = dα and x = qα shows that

E[X] =
∫ 1

0
qα(X) dα. (1.163)

In the case where X does not have a continuous distribution, a similar result
can be achieved by the means of approximating the integral by a limiting sum.

We also need the notion of the right-sided quantile and the lef-continuous
distribution function.

Definition 1.3.22. Let the right-sided quantile be defined as

q+
α (X) := lim

α′↘α
qα′(X), (1.164)

and

F−X (x) := lim
x′↗x

FX(x′). (1.165)

Recalling the definition of monotone relations, we define the following
relations, introduced in [RR13].

Definition 1.3.23. Let FX be the cumulative distribution function of X and
EX its superexpectation. Then,

Γ = {(x, p) ∈ R× R | F−X (x) ≤ p ≤ FX(x)}, (1.166)
∆X = {(p, x) ∈ R× R | qp(X) ≤ x ≤ qp(X+)} (1.167)

In fact, these are maximal monotone relations, and it holds that ΓX = ∆−1
X

and conversely, see the article for the full details. They are maximal in the sense
that they cannot be enlarged without breaking the condition for a monotone
relation.

We now introduce two main theorems from [RR14]. They will allow us to
deduce the convexity and closeness of CVaR. The result is a part of Theorem 1
in [RR14]

Theorem 1.3.24. The superexpectation function EX for a random variable X
with E[|X|] <∞ if a nondecreasing finite convex function on R which has the
following properties:

1.3.24.1. ΓX = gph ∂EX .

The following is Theorem 2 in [RR14].

Theorem 1.3.25 (Dualization of superexpectations). The closed, proper convex
function E∗X on (−∞,∞) that is conugate to the superexpectation function EX
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on (−∞,∞) is given by

E∗X(p) =


−(1− p)q̄p(X) for p ∈ (0, 1),
−E[X] for p = 0,
0, p = 1,
∞, for p 6∈ [0, 1].

(1.168)

It is continuous relative to [0, 1], entailing

lim
p↗1

(1− p)q̄p(X), lim
p↘0

q̄p(X) = E[X], (1.169)

and it corresponds subdifferentially to the monotone relation ∆X = Γ−1
X and

the quantile function qp(X) through

Γx = gph, Qp(X) = E∗
′−
X (p). (1.170)

On the other hand, any function g on (−∞,∞) that is finite convex and
continuous on [0, 1] with g(1) = 0 but g(0) =∞ for p 6∈ [0, 1] is E∗X for some
random variable X.

We review the key ideas of the proof, and refer to [RR14, p.19] for the full
details.

Proof. Let g be a function that equals the right hand side of (1.168). The
goal is to show that g is proper convex and closed with the property g∗ = E∗X .
Then, g = (g∗)∗ = EX will follow, as the double conjugate of a closed, convex
function is the function itself. The continuity on [0, 1] is then seen since
g(p) = −(1−p)

1−p
∫ 1
p
qβ(X) dβ, getting limp↗1 g(p) = 0 and limp↘0 0 = −E[X]

and using the fact that closed convex, proper functions are continuous on
intervals where they are finite, [Roc70, p. 82]. Moreover, g(p) is convex as
qp(X) is non-decreasing on (0, 1), and the extension to +∞ when p 6∈ [0, 1]
means that it remains a closed convex, proper function.

Since g is a left-continuous function, g′−(p) = qp(X), while g′+(p) = q+
p (X).

These right- and left-derivatives will in turn be used to relate gph∂g to ∆X
in light of 1.34. In the meantime, the one-sided derivatives g′+(p) and g′−(p)
are the functions q+

p (X) and qp(X). This means that gph ∂g is the relation
∆X . Then, g∗ has the relation δ−1

X = ΓX by proposition 1.1.22. From Theorem
1.3.24 we know that ΓX is in fact the graph of ∂EX , which shows that ∂EX has
the same monotone relation as g∗ as its graph. This establishes that g is equal
to E∗X up to a constant. By evaluating E∗X(1) which coincides with g(1) = 0,
we get that E∗X indeed equals the right hand side function. �

In conclusion, the theorem has shown that for p ∈ (0, 1),

q̄α(X) = −E∗X(α) 1
1− α, (1.171)
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where E∗X(p) is a closed, proper convex function. Moreover, for α ∈ (0, 1) we
get that by inserting the expression for convex conjugates from 1.1.24 that

q̄α(X) = − 1
1− pE

∗
X(α) (1.172)

= − 1
1− α sup

x
{xp− EX(x)} (1.173)

= inf
x
{x+ 1

1− αE[X − x]+}. (1.174)

From this we conclude that the minimization formula from (b) holds.
The following is Theorem 2 in [Roc12].

Theorem 1.3.26. For any probability level α ∈ (0, 1), the functional R(X) =
q̄α(X) is a coherent measure of risk in the basic sense.

Proof. For axioms (R2), (R4) we refer to [RU+00], Theorem 2. For the
remaining axioms, we proceed directly. (R1): Let X ≡ C ∈ R. Then,

R(X) = 1
1− α

∫ 1

α

qβ(X) dβ (1.175)

= 1
1− α

∫ 1

α

C dβ (1.176)

= C. (1.177)

(R3): Let X,Y be random variables such that X < Y . Then,

R(X) = 1
1− α

∫ 1

α

qβ(X) dβ (1.178)

≤ 1
1− α

∫ 1

α

qβ(Y ) dβ (1.179)

= R(Y ). (1.180)

(R5): Let X,Y be random variables, and let λ ∈ R be a constant. Then,

R(λX) = 1
1− α

∫ 1

α

qβ(λX) dβ (1.181)

= λ

1− α

∫ 1

α

qβ(X) dβ (1.182)

= λR(X). (1.183)

This shows that CVaR is a coherent risk measure in the basic sense. In turn,
this shows that it is also a convex risk measure. �

Penalizing with the Lp-norm

Recall the risk measure X 7→ E[X] which had the drawback of lacking in aversity
for many applications. We will now present a method to extend this measure
in a natural way, overcoming in part the problem with a lack of risk aversity.
Recall that, for p ∈ [1,∞) the Lp-norm of X ∈ Lp is ‖X‖p = E [|X|p]1/p, and
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1.3. Risk measures

if p = ∞ we define ‖X‖∞ = supω∈Ω{|X(ω)|}. Keeping in mind that we are
restricted to random variables in L2, the Lp-norm is not a norm on L2 in
general, since fineness is not guaranteed. It proves however to be a useful tool
as a penalty term, helping to increase the risk aversity of certain risk measures.
Let λ ∈ [0, 1], and define

R(X) := E[X] + λ‖max
ω∈Ω
{X − E[X], 0}‖p. (1.184)

It is immediately obvious that R is more risk averse than the expected value,
since ‖ · ‖p ≥ 0. Moreover, by adjusting λ and p, one can regulate the emphasis
on the costs of X. On the other hand, the expectation-term can relax the
view of the risk associated with positive costs of X if the expected outcome is
desirable, while if p =∞,R is a type of worst case-analysis.

Example 1.3.27 (]). Let λ = 1 and p =∞. Let X ∈ L2 be a bounded random
variable with negative expectation which also takes positive values almost
surely. In other words, X has a good outcome on average, but with a positive
probability of costs. Noting the supω∈ΩX(ω) ≥ E[X] gives that

R(X) = E[X] + ‖max
ω∈Ω
{X − E[X], 0}‖p (1.185)

= E[X] + sup
ω∈Ω
{X(ω)− E[X]} (1.186)

= sup
ω∈Ω
{X(ω)}. (1.187)

Example 1.3.28 (]). Let λ = 1 and p = 1. Assume X ∈ L2 is a continuous
random variable with cumulative distribution function F and probability density
function f , and denote by M the set {ω ∈ Ω | X(ω) ≥ E[X]}. Using
R(X) = E[X] + ‖maxω∈Ω{X − E[X], 0}‖1 yields

R(X) = E[X] + E

[
max
ω∈Ω
{X − E[X], 0}

]
(1.188)

= E[X] +
∫
M
X(ω)− E[X] dP (1.189)

= E[X]− E[X]P (M) +
∫ ∞
E[X]

xf(x) dx (1.190)

= E[X]− E[X](1− F (E[X]) +
∫ ∞
E[X]

xf(x) dx (1.191)

= E[X]F (E[X]) +
∫ ∞
E[X]

xf(x) dx. (1.192)

(1.193)

If additionally X has a symmetrical distribution, the expression simplifies further
to

R(X) = 1
2E[X] +

∫ ∞
E[X]

xf(x) dx, (1.194)

since F (E[X]) = 1
2 , which means that the risk is evaluated as half of the

expected value plus the expectation of X restricted to the tail part of the
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1. Risk Measures and Optimization

distribution, where X takes larger values than its expectation. Furthermore,
if X is normally distributed with mean µ and variance σ2, (1.194) simplifies
further, to

R(X) = µ+ σ√
2π
.

Since σ > 0, this approach is more risk averse than relying only on µ.

Corollary 1.3.29 (]Aversity of R). Let R be defined as in (1.184). Then,
R(X) ≥ E[X], regardless of the distribution of X.

Proof. For any choice of λ ∈ [0, 1] and p ∈ [1,∞],

λ‖max
ω∈Ω
{X(ω)− E[X]}, 0‖p ≥ 0,

which shows that R(X) ≥ E[X] �

In this section we have studied the property of various risk measures, and
discussed a coherent approach to optimization under risk. We have reviewed
drawbacks and advantages with different risk measures, and we have seen that
conditional Value-at-Risk offers multiple attractive qualities. Particularly, it is
convex, which tells us that diversification leads to a reduction in risk, and it is
sensitive to extreme outcomes in the tail end of the risk distribution. In the
next chapter, we will review how Value-at-Risk and conditional Value-at-Risk
can be applied to optimization of reinsurance contracts, in the interest of risk
reduction.
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CHAPTER 2

Optimal reassurance contracts
under conditional Value-at-Risk

2.1 Introduction

In this chapter we consider the optimization of reinsurance contracts, with
respect to the various risk measures composed with the the reinsurance contract.
In general, insurance is purchased in order to reduce the risk of large losses,
where the insurer will cover certain losses. The party that hedges against such
losses will normally pay a risk premium for this protection, typically a fraction
of the expected value of the insurer’s cost. The same practice is common among
insurance companies. When an insurance company buys insurance for a part of
an insurance contract from another company, this is known as reinsurance.

In the following chapter, we refer to the party which hedges against losses
by purchasing reinsurance as the cedent. The cedent purchases reinsurance
from the reinsurer. Let X1, X2, . . . , Xm be m positive, random variables which
represent the losses (risks in [HC20]) which the cedent wishes to insure. These
risks are assumed to have continuous and monotonically increasing cumulative
distributions functions. In the interest of risk reduction, the cedent is willing
to pay a premium to have a second insurance company cover parts of these
risks. Such reassurance contracts can be structured in several ways. When the
reinsurer covers all losses within an interval, it is known as an insurance layer
contract, and the covering of all losses exceeding a given threshold is known
as a stop-loss contract. In the context of an insurance layer, let ai, bi be real
numbers, such that any loss in the interval [ai, bi] for risk number i is covered by
the reinsurer. Then, let Ii denote the loss borne by the cedent for risk number
i and Ri be the risk covered by the reinsurer for the same contract. This means
that

Ii(Xi) :=


Xi, for Xi < ai

ai, for ai ≤ Xi < bi

Xi − (bi − ai), for Xi > bi,

(2.1)

Ri(Xi) :=


0, for Xi < ai

Xi − ai, for ai ≤ Xi < bi

bi − ai, for Xi > bi.

(2.2)
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2. Optimal reassurance contracts under conditional Value-at-Risk

The premium payed by the cedent to the reinsurer is (1 + θ)E[Ri(Xi)],
where θ > 0 is a risk premium. We will denote this quantity πi

2.2 Optimal reinsurance in the univariate case

In [Che+14], Cheung et al. considered the optimizaion of reinsurance contracts
under general law-invariant convex risk measures, and in particular for
conditional Value-at-Risk, which is a special case of a law-invariant convex
risk measure [Sha13, p. 143], where a general class of reinsurance contract
structures was considered. There, the optimization was solved for a single
risk X. The authors found that, under mild assumptions, a stop-loss contract
was found to be optimal under law-invariant convex risk measures ([Che+14]
Proposition 3.1), while an insurance layer contract was optimal under Value-at-
Risk ([Che+14] Theorem 4.3). Moreover, explicit expressions for the optimal
contract parameters were found. We repeat these results in the following
theorems, adapted to our notation. In particular, notice that the value-at-
risk in [Che+14, p.73] is defined in terms of 1 − α, where it is used that the
Value-at-Risk at level 1− α is given by

V@Rα(Y ) = inf
m
{m | SY (m) ≤ α}. (2.3)

In contrast, this text uses that

V aRα(X) = qα(X) (2.4)
= inf{c ∈ R |α ≤ FX(c)} (2.5)
= inf{c ∈ R |1− α ≥ SX(c)}. (2.6)

Thus, V@Rα(X) = V aR1−α(X).

Theorem 2.2.1. Let I be a stop-loss reinsurance contract with parameter a and
risk premium θ for the risk X (corresponding to b = +∞ in Equations (2.1)
and (2.2).) Assume that α ∈ (0, 1) and 1 − α < (1 + θ)−1, where SX is the
survival function of X. Then,

a∗ = S−1
X ((1 + θ)) (2.7)

is an optimal contract parameter for the optimization problem

min
a
CV aRα [I(X) + (1 + θ)E[R(X)]] . (2.8)

We elaborate on the details of the proof from [Che+14].

]Proof. Let α ∈ (0, 1) be fixed. We consider two cases. Case 1: a ≤ qα(X),
case 2: a > qα(X). In case 1, note that

CV aRα(I(X)) (2.9)

= 1
1− α

∫ 1

α

qβI((X)) dβ (2.10)

= 1
1− α

∫ 1

α

a dβ (2.11)
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2.2. Optimal reinsurance in the univariate case

= a (2.12)

while

(1 + θ)E[R(X)] = (1 + θ)
∫ ∞
−∞

R(x)f(x) dx (2.13)

= (1 + θ)
∫ supX

a

(x− a)f(x) dx. (2.14)

Combining the expressions from Equations (2.12) and (2.14) we find that

d

da

[
CV aRα(I(X)) + (1 + θ)

∫ supX

a

(x− a)f(x)dx
]

(2.15)

= 1(1 + θ)(−af(a) + af(a)−
∫ supX

a

f(x)dx) (2.16)

= 1− (1 + θ)P (X ≥ a). (2.17)

In order to minimize the problem in Equation (2.8), we set the final expression
in Equation (2.17) to 0:

1− (1 + θ)P (X ≥ a) = 0
P (X > a) = (1 + θ)−1

a = S−1
X ((1 + θ)−1).

We now consider case 2: Note first that a change of variable yields

∫ 1

α

qβ (I) dβ =
∫ supX

qα

I(x)dFX(x) (2.18)

=
∫ supX

qα

I(x)f(x) dx, (2.19)

where FX and f are the cumulative distribution function and the probability
density function of X. In light of this,

CV aRα(I(X)) = 1
1− α

∫ supX

qα

I(x)dFx(x) (2.20)

= 1
1− α

∫ supX

qα

I(x)f(x) dx (2.21)

= 1
1− α

(∫ a

qα

I(x)f(x)dx+
∫ supX

a

af(x)dx
)

(2.22)

since a > qα by assumption. Differentiation with respect to a gives:
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2. Optimal reassurance contracts under conditional Value-at-Risk

d

da

[
1

1− α

(∫ a

qα

I(x)f(x)dx+
∫ supX

a

af(x)dx
)]

(2.23)

= 1
1− α

(
I(a)f(a)− af(a) +

∫ supX

a

f(x)dx
)

(2.24)

= P (X > a)
1− α , (2.25)

using the fundamental theorem of calculus. Meanwhile, d
da (1 + θ)E[R(X)] =

(1 + θ)P (X > a) remains unchanged from Equation (2.17). From this we
conclude that in case 2,

d

da
[CV aRα(I(X)) + (1 + θ)E[R(X)]] (2.26)

= P (X > a)
1− α − (1 + θ)P (X > a) (2.27)

= SX(a)
(
−(1 + θ) + 1

1− α

)
, (2.28)

which is positive when (1−α) > (1+θ)−1. This shows that if (1−α) > (1+θ)−1,

a = S−1
X ((1 + θ)−1), (2.29)

which finishes the proof. �

The next theorem corresponds to Theorem 4.3 in [Che+14], adapted to our
notation.

Theorem 2.2.2. Assume that α ∈ (0, 1). The following statements concering
the optimal solution for the VaR-minimization of

min
a,b

V aRα (I + (1 + θ)π) . (2.30)

are true:

• If 1 − α < (1 + θ)−1, then an insurance layer contract with a =
S−1
X ((1 + θ)−1), b = S−1

X (1− α) are optimal contract parameters.

• If 1− α ≥ (1 + θ)−1, then having no reinsurance is optimal.

Proof. See [Che+14, p. 85]. �

We remark that the assumption that X is bounded is reasonable from a
insurance perspective. Indeed, it is not easy to imagine situations in which in
infinite financial loss occurs. Moreover, in the context of reinsurance, where the
cedent’s risk X represents the liability for a policy, such a contract will in most
cases have a maximum coverage, in which case X is bounded by the structure of
the policy. In the following example, we illustrate the previous result of optimal
parameter a, using Monte Carlo sampling from a theoretical distribution. We
could modify the sampling to accommodate the wish of boundedness e.g by
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2.2. Optimal reinsurance in the univariate case

asserting that the no value is allowed to exceed a certain number of standard
deviations, or that no value exceeds the largest value expected in a sample
of size N . However, the conclusion for optimal parameter a could well be
generalized to the unbounded case, by replacing supX with ∞ in the previous
calculations. The following example illustrates an optimal stop-loss reinsurance
contract with respect to CVaR.

Example 2.2.3 (]). Let X be a log-normally distributed random variable with

E[X] = 50, SD[X] = 5. (2.31)

Let α = 0.95 be fixed, and the risk premium be θ = 1
9 . Using Monte Carlo

sampling, a sample of 105 observations of X was generated. Figure 2.1 illustrates
how the risk loading on the cedent, CV aR0.95(I(X) + (1 + θ)E[R(X)]), varies
with a. From the generated sample

S−1
X ((1 + θ)−1) ≈ 43.80 (2.32)

was estimated, using the empirical survival function of X. The corresponding
risk value was 50.90.If a =∞ were used, in which case I(X) ≡ X, R(X) ≡ 0,
no part of the risk was reinsured. In this case, the conditional Value-at-Risk at
.95-level is

CV aR0.95(I(X) + (1 + θ)E[R(X)]) = CV aR0.95(X) (2.33)
= 61.09 (2.34)

For this risk, using a stop-loss reinsurance as descirbed above reduces the risk
by 16.68% compared to having no reinsurance.

Lemma 2.2.4. If the reinsurance contract is an insurance layer contract, i.e,
I,R defined as in equations (2.1) and (2.2), the optimal value of the parameter
a remains unchanged.

]Proof. We repeat the arguments from the proof of Theorem 2.2.1, where we
consider two cases in turn. Case 1 : a ≤ qα(X), case 2 : a > qα(X).
Case 1: Assume a ≤ qα(X). Then,

d

da
CV aRα(I(X)) (2.35)

= d

da

[
1

1− α

∫ 1

α

qβ(I(X)) dβ
]

(2.36)

= 1
1− α

d

da

∫ b

qα

(i)︷︸︸︷
I(x)f(x) dx +

∫ supX

b

(ii)︷︸︸︷
I(x)f(x) dx

 (2.37)

= 1
1− α

[∫ b

qα

f(x) dx+
∫ supX

b

f(x) dx
]

(2.38)

= 1, (2.39)

where we used in (i) that I(x) = a when x ∈ [a, b) and in (ii) that
I(x) = x− (b− a) when x > b.
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2. Optimal reassurance contracts under conditional Value-at-Risk

Case 2: Assume instead that a ≤ qα(X).

d

da
CV aRα(I(X)) (2.40)

= 1
1− α

d

da

[∫ a

qα

I(x)f(x) dx +
∫ b

a

af(x) dx+
∫ supX

b

I(x)f(x) dx
]

(2.41)

= 1
1− α

[
I(a)f(a) +

∫ b

a

f(x) dx− af(a) +
∫ supX

b

f(x) dx
]

(2.42)

= 1
1− α

∫ supX

a

f(x) dx (2.43)

= P (X > a)
1− α . (2.44)

Meanwhile, the derivative of the risk premium, d
daE[R(X)] remains unchanged:

d

da
[E[R(X)]] = d

da

[∫ b

a

(x− a)f(x) dx+
∫ supX

b

(b− a)f(x) dx
]

(2.45)

= −af(a)−
∫ b

a

f(x) dx−
∫ supX

b

f(x) dx (2.46)

= −P (X > a). (2.47)

Thus

d

da
CV aRα(I(X) + π) = P (X > a)

1− α − (1 + θ)P (X > a) (2.48)

= P (X > a)
(

1
1− α − (1 + θ)

)
, (2.49)

which is greater than 0 when 1− α < 1
1+θ . This is consistent with the results

from Equation (2.17) and Equation (2.28). From this we conclude that the
optimal contract parameter a for a stop-loss contract also is optimal for the
insurance layer contract. �

So far we have only contemplated reinsurance of a single risk, for which
optimal contract parameters are easily determined. In the recent work [HC20]
by Huseby et al., the problem of optimal reinsurance in the multivariate case was
studied. Here, m independent continuously distributed risks were considered,
where the optimization problem was:

min
{ai}mi=1,{bi}

m
i=1

qα

(
m∑
i=1

Ii(Xi) + (1 + θ)
m∑
i=1

E[Ri(Xi)]
)
, (2.50)

which was shown to have optimality criteria in line with those of the univariate
problem from (2.30). While the latter problem had unique optimal parameters
a∗, b∗ when 1 − α < (1 + θ)−1, which could explicitly be identified from the
survival functions of Xi. While this is not the case for multivariate risks, the
authors derived necessary criteria for an optimal solution to problem (2.50),
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together with a numerical scheme for identifying optimal solutions. Particularly,
it was shown that

ai = SXi((1 + θ)−1), i = 1, . . . ,m (2.51)

and

P (
m∑
i=1

Ii(Xi) >
m∑
i=1

ai) = α (2.52)

were necessary conditions for optmiality of a1, b1, a2 . . . , am, bm provided
(θ + 1)−m ≥ α. It is clear that the constraint

P (
m∑
i=1

Ii(Xi) >
m∑
i=1

ai) = α (2.53)

may have multiple or infinitely many solutions. To ease the search of optimal
parameters {bi}i, one may impose the restriction that

P (Xi > bi) (2.54)

must have the same value for all i. Denoting this common value B := SXi(bi),
one finds parameters {bi}i such that Equation (2.53) holds by choosing bi =
SXi(B). Such solutions are called balanced solutions in [HC20]. However, while
balanced solutions are convenient for identifying bi, they are not guaranteed to
be globally optimal. Alternatively, optimal contract parameters are determined
by iterating over paramters bi such that Equation (2.53) is satisfied, while
minimizing the total cost from problem (2.50). Moreover, the authors found
that there was a financial upside to optimizing the contract parameters over
multiple risks with respect to the Value-at-Risk of the sum of residual risks,
compared to optimizing each contract individually. Moreover, it was shown that
by bundling risks together by forming the combined risk X = X1+X2+· · ·+Xm

further financial upside could be gained. This begs the question: Are there
similar optimality criteria for reinsurance in the multivariate case, with respect
to conditional Value-at-Risk? The next section is devoted to the study of this
question.

2.3 Optimal reinsurance in the multivariate case, under
conditional Value-at-Risk

Inspired by [HC20] we formulate the following minimization problem:

min
{ai}mi=1,{bi}

m
i=1

CV aRα

[
m∑
i=1

Ii(Xi) +
m∑
i=1

πi

]
,

where maintain the assumption thatXi are positive and bounded, continuous
stochastic variables with monotonically increasing cumulative distribution
functions. The change from the univariate to a multivaraite setting causes the
optimization problems to be considerable more complex. Particularly, we work
with expressions on the form
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2. Optimal reassurance contracts under conditional Value-at-Risk

∫ 1

α

qβ(
m∑
i=1

Ii(Xi) dβ. (2.55)

The difficulty lies in finding an expression for the quantile of the sum of
Iis. Even in the case where the underlying variables Xi are assumed to be
independent, an analytical expression for qβ (

∑m
i=1 Ii) may not be available.

Moreover, we are perhaps not justified in assuming that the magnitudes of
the losses are independent of each other. In a real life-scenario where Xi are
losses claimed by different insurance holders for similar insurance products,
the claims may vary together depending on external conditions such as the
weather. Moreover, the dependency between risks may be non-linear, with a
stronger dependence in the tail part of the distribution. For instance, water
damages caused by bursting water pipes would probably be independent of each
other, while large claims after a severe flood will probably not be independent.
However, the exact dependency structure between the risks may be unknown,
be dependent on the context of the insurance contracts, or too difficult to use
in practice.

In light of this, we will first consider a pessimistic view, in which the risks
are assumed to be comonotonic. Before defining comonotonicity of random
variables, we need the notion of equality in distribution of random variables.

Definition 2.3.1 (Equality in distribution). Two real valued random variables
X1, X2 with cumulative distribution functions F1, F2 are equal in distribution
(equal in law) if and only if the following holds:

∀x ∈ R F1(x) = F2(x), (2.56)

in which case we write

X1
d= X2. (2.57)

According to Theorem 4 in [Dha+02], the following is an equivalent definition
of comonotonicity.

Definition 2.3.2 (Comonotonicity). Let

X = (X1, X2, . . . , Xm) (2.58)

be a random vector. Then, X is said to be comonotonic iff there exists a random
variable Z and non-decreasging functions f1, f2, . . . , fm such that

X d= (f1(Z), f2(Z), . . . , fm(Z)). (2.59)

It is clear from the definition that comonotonicy represents a particularly
strong type of positive dependence between random variables; any increase to
the underlying random variable Z is associated with an increase in each Xi.
The next theorem, which is Theorem 7 in [Kaa+02], shows that, from a risk
analysis perspective, comonotonicity of random variables constitutes a "worst
case" dependency in the case of VaR.
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Theorem 2.3.3 (Quantile-additivity of comonotonic random variables). If the
random vector X1, X2, . . . , Xm is comonotonic, then the α-quantiles of the sum
of its components are equal to the sum of the α-quantiles of its components:

q(α) (X1 + · · ·+Xm) = qα(X1) + · · ·+ qα(Xm). (2.60)

From this it follows immediately that CVaR is comonotonically additive.

Corollary 2.3.4 (CVaR is additive for comonotonic risks ). Let (X1, X2, . . . , Xm)
be comonotionic. Then, for any α ∈ (0, 1),

CV aRα(X1 + · · ·+Xm) = CV aRα(X1) + · · ·+ CV aRα(Xm) (2.61)

This result is given in Theorem 4.1.1 in [Dha+06]. We expand on the details
in the following proof.

]Proof. The result follows directly from Theorem (2.3.3) and linearity of the
integral: Assume (X1, . . . , Xm) are comonotonic. From the definition of CVaR
we have that

CV aRα(X1 + · · ·+Xm) = 1
1− α

∫ 1

α

qβ (X1 + · · ·+Xm) dβ (2.62)

=
∫ 1

α

qβ(X1) + · · ·+ qβ(Xm) dβ (2.63)

= 1
1− α

(∫ 1

α

qβ(X1) dβ + · · ·+
∫ 1

α

qβ(Xm) dβ
)

(2.64)
= CV aRα(X1) + · · ·+ CV aRα(Xm), (2.65)

which is what we wanted to show. �

Recall from Equation (1.68) that a coherent risk measure in the basic
sense satisfies subadditivity, i.e, R(X1 +X2) ≤ R(X1) +R(X2). The previous
proposition tells us that equality is attained in the case where X1 and X2 are
comonotonic. This has the interpretation that the risk can not be decreased
by means of diversification. We aim to show next that comonotonic risks have
a worst case dependency with respect to conditional value at risk. We begin
by stating a result from Proposition 1 in [Puc13], which shows that convex
ordering can be characterized by CVaR.

Proposition 2.3.5.

Part a)

Let X,Y be real valued random variables. Then, the following are equivalent:

(i) X ≤CX Y
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2. Optimal reassurance contracts under conditional Value-at-Risk

(ii) CV aRα(X) ≤ CV aRα(Y ) for all α ∈ (0, 1).
Part b)
Let (X1, X2, . . . , Xm) be real valued random variables which have marginal dis-
tributions (F1, F2, . . . , Fm), and let (X∗1 , X∗2 , . . . , X∗m) be comonotonic random
variables with the same distribution functions (F1, F2, . . . , Fm). Then,

m∑
i=1

Xi ≤CX

m∑
i=1

X∗i (2.66)

We now ready to show that the comonotonc dependency is a worst case
dependency with respect to CVaR. The following proposition is adapted to our
setting from [Puc13].

Proposition 2.3.6. Let X denote the collection of all random variables
(X1, X2, . . . , Xm) which have marginal distributions (F1, F2, . . . , Fm) and final
first moments. Denote the worst case CVaR of the sum X1 + · · ·+Xm as

CV aRα(F1, F2, . . . , Fm) := sup
(X1,...,Xm)∈X

CV aRα(X1 + · · ·+Xm).

Then,

CV aRα(F1, F2, . . . , Fm) = CV aRα(X∗1 ) + · · ·+ CV aRα(X∗m) (2.67)

is attained when (X∗1 , X∗2 , . . . , X∗m) ∈ X is comonotonic

We expand on the details of the proof:

]Proof. Let X denote the collection of all random variables (X1, X2, . . . , Xm)
which have marginal distributions (F1, F2, . . . , Fm) and final first moments, and
assume (X1, X2, . . . , Xm) ∈ X . From Proposition 2.3.5 part b) it follows that

m∑
i=1

Xi ≤CX

m∑
i=1

X∗i (2.68)

for some (X∗1 , X∗2 , . . . , X∗m) ∈ X which is comonotonic. Moreover, from
Proposition 2.3.5 part a) we have that for any α ∈ (0, 1),

(2.68) =⇒ CV aRα(X1 + · · ·+Xm) ≤ CV aRα(X∗1 + · · ·+X∗m), (2.69)

so the right hand side in the inequality in Equation (2.68) is an upper bound
on CV aRα(X1 + · · ·+Xm). Furthermore, from Corllary 2.3.4 we get that

CV aRα(X∗1 + · · ·+X∗m) = CV aRα(X∗1 ) + · · ·+ CV aRα(X∗m). (2.70)

This concludes the proof. �

The term
∑m
i=1 πi is not stochastic, and can hence be taken out of the risk

measure, using the translation invariance property of CVaR (and of coherent
risk measures in general). Moreover, it is expected that the total risk

min
{ai}mi=1,{bi}

m
i=1

CV aRα

[
m∑
i=1

Ii(Xi)
]

+ πi (2.71)
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is less than or equal to the sum of individual risks

m∑
i=1

min
ai,bi

CV aRα [Ii(Xi)] + πi (2.72)

as a consequence of convexity of CVaR. We will aim to evaluate how pronounced
this difference is through concrete examples. Moreover, we look to determine if
the optimal contract parameters in the univariate case will also be optimal in
the multivariate case.

With this in mind, we turn out attention to the problem of finding optimal
reinsurance parameters for multivariate risks under stop-loss insurance. In the
following theorem, we show that the optimal contract parameters for stop loss
reinsurance contracts in this setting remain unchanged.

Theorem 2.3.7 (]). Assume that (X1, X2, . . . , Xm) are m continuous, bounded
random variables with comonotonic dependency. For the optimization problem

min
{ai}mi=1

CV aRα

[
m∑
i=1

Ii(Xi) +
m∑
i=1

πi

]
,

where Ii are stop loss reinsurance contracts with parameters ai and risk premium
θ. If 1− α < (1 + θ)−1, the following parameters are optimal:

ai = S−1
Xi

((1 + θ)−1). (2.73)

]Proof. Let (X1, X2, . . . , Xm) be as stated above, and let a1, a2, . . . , am be
arbitrary. Then it holds that for any α ∈ (0, 1),

CV aRα

[
m∑
i=1

Ii(Xi) +
m∑
i=1

πi

]
= CV aRα

[
m∑
i=1

Ii

]
+

m∑
i=1

πi, (2.74)

using the translation invariance property of CVaR. Moreover, using the fact
that CVaR is comonotonically additive fom Corollary 2.3.4 yields

CV aRα

[
m∑
i=1

Ii

]
+

m∑
i=1

πi =
m∑
i=1

(CV aRα(Ii) + πi) . (2.75)

For each i we then have that

min
ai

CV aRα [Ii(Xi) + πi]

has an optimal deductible a∗i = S−1
Xi

((1 + θ)−1) according to Theorem 2.2.1.
From this we gather that

min
{ai}mi=1

CV aRα

[
m∑
i=1

Ii(Xi) +
m∑
i=1

πi

]

is attained when ai = S−1
Xi

((1 + θ)−1). This concludes the proof. �
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2. Optimal reassurance contracts under conditional Value-at-Risk

The assumed comonotonicity of risks in Theorem 2.3.7 may be subject to
criticism. In Chapter 1 it was discussed that hedging against worst case scenarios
may not be justifiable or feasible. We remarked there that optimizing under the
constraint that the worst case risk should be acceptable - for instance, to design
a structure that fails under no possible circumstance, may be impossible or too
expensive. Does this criticism carry over to the optimization of reinsurance
contracts in the multivariate case? Probably not. To better understand the
implications of using the assumption of comonotonicity, we need to review
how the assumption of comonotonicity has on the optimal value; could we
achieve significantly better reinsurance contracts under milder assumptions on
the dependency structures on the risks, provided that their true dependency
was not comonotonic? Although we have not been successful in deriving optimal
contract parameters for a wider class of dependency structures of the risks, the
following proposition indicates that there could be similarities regarding the
optimal contract parameters.

Proposition 2.3.8 (]). Assume that (X1, X2, . . . , Xm) are m positive and
continuous bounded random variables with marginal distributions F1, F2, . . . , Fm,
but with unknown dependency structure. Let I1, I2, . . . , Im be stop-loss
reinsurance contracts with parameters a1, a2, . . . , am. Let α ∈ (0, 1) be fixed,
and assume further that a1, a2, . . . , am are chosen such that

qα (I1(X1) + · · ·+ Im(Xm)) = a1 + a2 + . . . ,+am. (2.76)

Then, for the optimization problem

min
ai

CV aRα

[
m∑
i=1

Ii(Xi) +
m∑
i=1

πi

]
, (2.77)

ai = SXi((1 + θ)−1) are optimal contract parameters.

]Proof. Notice first that it is possible to find ai such that qI1+···+Im(α) =
a1 + · · · + am. For instance, if ai = 0, then I1 + · · · + Im ≡ 0, in which case
qα(I1 + · · ·+ Im) = 0 = a1 + · · ·+ am. Moreover, under this assumption,

CV aRα

[
m∑
i=1

Ii(Xi) +
m∑
i=1

πi

]
= CV aRα

[
m∑
i=1

Ii(Xi)
]

+
m∑
i=1

πi (2.78)

= 1
1− α

[∫ 1

α

qI1+···+Im(β) dβ
]

+
m∑
i=1

πi (2.79)

= 1
1− α

[∫ 1

α

a1 + · · ·+ am dβ

]
+

m∑
i=1

πi

(2.80)

= a1 + · · ·+ am +
m∑
i=1

πi. (2.81)

To optimize this, we find the partial derivative with respect to each contract
parameter ai. For the premium term πj , we have that

πj = (1 + θ)E[Rj(Xj)], (2.82)
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so

∂πi
∂aj

= (1 + θ) ∂

∂aj

∫ supXi

ai

(x− ai)fXi(x) dx (2.83)

=

−(1 + θ)P (Xi > ai) if i = j,

0 otherwise.
(2.84)

Altogether, this gives

∂

∂aj

m∑
i=1

(ai + πi) = 1− (1 + θ)P (Xj > aj). (2.85)

Setting this equal to 0 yields the optimal solutions

ai = S−1
Xi

(1 + θ)−1, (2.86)

which is what we wanted to show. �

While we have derived some theoretical results regarding the optimal
parameter choices for stop-loss reinsurance contracts under rather strong
assumptions, namely either comonotonicity of the risks, or that qI1+···+Im(α) =
a1 + · · ·+ am, there are still unanswered questions. Is the stop-loss contract
prefreable over an insruance layer contract in the general multivaraite case?
And if the risks are not comonotonic, are there other choices of ai that yield
better solutions than those derived above? The remainder of this chapter is
dedicated to numerical examples, where the aim is to explore these questions.

2.4 Numerical examples

In this section, we will empirically study optimal reinsurance parameters for risks
with different distributions and dependency structures. The theoretical results
from the previous section have relied on continuously distributed bounded
random variables. When using pseudo-randomly generated numbers on a
computer, with final sample size, we will in practice not attain continuous
distributions. The cumulative distribution functions and survival functions
will therefore be approximated from the empirical distributions of the random
variables when it is necessary. In the interest of computability and visualization,
we will limit the number of risks to two. For the remainder of the section, let
α = 0.95 and θ = 1

9 be fixed, and denote the value of

CV aRα

[
m∑
i=1

Ii(Xi) +
m∑
i=1

πi

]
(2.87)

as Vα. We will use numerical methods to estimate optimal solutions to study
this optimization problem. The next example reveals that this problem leads
to non-convex optimization, for which we are not guaranteed to find a global
optimum. In order to increase the likelihood of finding satisfying solutions, we
will use two different optimzation schemes. We generate a large sample from
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2. Optimal reassurance contracts under conditional Value-at-Risk

the joint distribution of the risks. Then, we use a grid-based method, where we
iteratively search over a mesh of points over in the parameter values. For each
iteration, the grid is refined in a neighbourhood of the currently best solution,
see implementation in Example 2, Example 3 and Example 4 in the appendix.
Finally, we apply the L-BFGS-algorithm to attempt to identify optimal contract
parameters, which uses an approximation of the Hessian matrix to guide the
search. Since the problem is non-convex, its convergence to a global minimum
is not guaranteed. However, the L-BFGS-algorithm is a popular choice also for
non-convex problems, see for instance [LF01], [SYX16]. The implementation is
found in the code listings mentioned above..

The examples in this section follow the same structure, where we complete
the following steps:

• Step 1: Calculate the optimal worst case stop-loss reinsurance, according
to Theorem 2.3.7.

• Step 2: Numerically estimate of the optimal stop-loss reinsurance contract
parameters.

• Step 3: Numerically estimate an optimal insurance layer contract, given
that deductibles as found in Step 1 are used.

• Step 4: Numerically estimate the optimal insurance layer contract, when
all parameters are free.

• Step 5: Compare the above results.

Example 2.4.1 (]Independent risks, with respect to CVaR.). Let X1 be as in
Example 2.2.3, having a log-normal distribution with

E[X1] = 50, SD[X1] = 5, (2.88)

and let X2 be independent of X1, having log-normal distribution with

E[X2] = 100, SD[X2] = 10. (2.89)

Step 1: In Example 2.2.3, it was estimated that

a = 43.81, b = +∞ (2.90)

were optimal, yielding an objective value of 50.90. If X2 is treated separately
from X1, we would get optimal contract parameters

a2 = SX2((1 + θ)−1) = 87.52, b2 = +∞, (2.91)

by Theorem 2.2.1, which yields the optimal value of 101.80. Using these
parameters, an optimal value of Vα = 152.72 was estimated. All in all, we have:

a1 = 43.81, a2 = 87.52, b1 = b2 = +∞, (2.92)
Vα = 152.72 (2.93)

Step 2: We now estimate the optimal parameters of a stop-loss contract, by
letting

b1 = b2 = +∞, (2.94)
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while searching for the best choices of (a1, a2) over a fine mesh of points. The
optimal stop-loss contract parameters found were:

a∗1 = 43.80, a∗2 = 87.52, (2.95)

with an optimal value of Vα = 152.72. These results coincide with those found
in step 1, where the result from Theorem 2.3.7 was applied. Figure 2.3a shows
the objective value of Vα for each pair of (a1, a2) as a surface plot. As can
be seen from the graph, the optimization problem appears non-convex in the
parameter a1.
Step 3: Next, we investigate if an insurance layer contract with the same
deductibles as found in step 2 can give a smaller objective value. Fixing

a1 = a∗1, a2 = a∗2 (2.96)

and optimizing b1, b2 using a similar numerical scheme as for a1, a2, we find that
optimal values for b1, b2 are approximately the largest values in the samples of
X1 and X2 respectively.

b1 ≈ supX1, b2 ≈ supX2. (2.97)

This pattern persists for any choice of (a1, a2) tested.
Step 4: Finally, we apply with the L-BFGS-algorithm to estimate the optimal
reinsurance layer parameters. Using multiple different initial values parameter
values, the algorithm converged to similar solutions, with

a1 = 43.80, a2 = 87.52, b1 ≈ sup(X1), b2 ≈ sup(X2), (2.98)

and objective value of 152.72. Such parameters b1, b2 seem to indicate that a
stop-loss contract is optimal or close to optimal in this case.
Step 5: We conclude this example by noting we were not able to improve upon
the optimal value value Vα = 152.72, which was found applying the result from
Theorem 2.3.7, where comonotonic dependence was assumed, by also taking
into account insurance layer contracts with a free choice of parameters. In
this instance, falsely assuming comonotonicity of the risks did not lead to a
detectably worse optimal value.

In the next two examples, we study the optimal reinsurance contract
of correlated risks. We will first create a sample with the same marginal
distributions as in Example 2.4.1. We begin by reviewing how we obtain such
a sample in the bivariate case. Assume the target marginal distributions are
F1, F2 with inverse cumulative distributions F−1

1 , F−1
2 .

1. Let Z1, Z2 have a bivariate normal distribution with covariance matrix

Σ =
(

1 ρ

ρ 1

)
, where ρ is the desired correlation.

2. Let U1 = Φ(Z1), U2 = Φ(Z2), where Φ is the cumulative distribution
function of a standard normal random variable. Since Z1, Z2 were both
standard normally distributed, U1, U2 are uniformly distributed on [0, 1].
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2. Optimal reassurance contracts under conditional Value-at-Risk

3. Let X1 = F−1
1 (Z1), X2 = F−1

2 (Z2). Then, X1, X2 are correlated random
variables with the desired marginal distributions.

This strategy utilizes the fact that generating a sample from the multivariate
normal distribution is readily available in most statistics packages. Although
analytical expressions for F−1

1 , F−1
2 may not be available, we will approximate

these numerically by using a statistics package to generate a large number from
their marginal distributions, and approximate F−1

1 , F−1
2 numerically.

Example 2.4.2 (]Correlated risks, with respect to CVaR.). We generate a large
sample form X1, X2 where X1, X2 have the same marginal distributions as in
Example 2.4.1, but where the variables have a positive correlation of 0.7, See
the code listed in Example 2 in the appendix for the implementation details.
Figure 2.2 shows a scatter-plot of this sample, and the marginal distributions
of X1, X2. The empirical correlation was found to be 0.698.
Step 1: Using the result from Theorem 2.2.1, we get that optimal worst-case
stop-loss parameters are

a∗1 = 43.78, a∗2 = 87.56, b1 = b2 = +∞, (2.99)

which gives an objective value of 152.734.
Step 2: We now estimate the optimal parameters of a stop-loss contract, by
letting

b1 = b2 = +∞, (2.100)

optimizing over (a1, a2). It was estimated that

a1 = 43.78, a2 = 87.57 (2.101)

were optimal, with an optimal value of 152.734. Figure 2.3a shows the objective
value of Vα for each pair of (a1, a2) as a surface plot.
Step 3: Fixing

a1 = a∗1, a2 = a∗2 (2.102)

and optimizing b1, b2 using a similar numerical scheme as for a1, a2, the optimal
values of b1, b2 were found to be

b1 = 82.61 =
∼

sup(X1), b2 = 168.11 =
∼

sup(X2), (2.103)

where
∼

sup(X1),
∼

sup(X2) denote the maximum elements of the generated samples
of X1, X2. The associated objective value was 152.734.
Step 4: Applying the L-BFGS-algorithm to with different initial guesses
to estimate the optimal reinsurance layer parameters yielded the following
parameters:

a1 = 43.78, a2 = 87.56, b1 = 116.32, b2 = 172.83, (2.104)

with an associate objective value of 152.734.
Step 5: There were essentially no difference in the attained optimal value
between the previous steps. In all cases,

a∗1 = 43.78, a∗2 = 87.56 (2.105)
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were found to be optimal. The associated objective value was 152.734. We were
not able to identify an insurance layer contract which gave a better objective
value than a stop-loss contracts.

We have thus far studied numerical examples with uncorrelated risks and
with positively correlated risks. We now consider sampling from a negatively
correlated .

Example 2.4.3 (]Negatively dependent risks, with respect to CVaR.). We now
sample X1, X2 negatively correlated joint distribution, where the X1 has a
gamma distribution with shape parameter 2 and scale parameter 20. This
means that

E[X1] = 40, SD[X1] = 20
√

2. (2.106)

while X2 has a normal distribution with

E[X2] = 50, SD[X2] = 10. (2.107)

To obtain a negatively dependent sample with the specified distributions,
complete the same steps described in the prelude to example 2.4.2, using
a correlation matrix with ρ = −0.7 and the inverse cumulative distributions
of X1 and X2. From this procedure, a sample with negative dependency was
generated, which is illustrated in Figure 2.4.
Step 1: Using the result from Theorem 2.2.1, we get that optimal worst-case
stop-loss parameters are

a∗1 = 10.638, a∗2 = 37.188, b1 = b2 = +∞, (2.108)

which gives an objective value of 95.644.
Step 2: We now estimate the optimal parameters of a stop-loss contract, by
letting

b1 = b2 = +∞, (2.109)

optimizing over (a1, a2). Both the optimal parameters and the objective value
coincide with those in step 1. 2.3c shows the objective value of Vα for each pair
of (a1, a2) as a surface plot.
Step 3: Fixing

a1 = a∗1, a2 = a∗2 (2.110)

and optimizing b1, b2 using a similar numerical scheme as for a1, a2, the optimal
values of b1, b2 were found to be

b1 = 114.59, b2 = 66.83, (2.111)

The associated objective value was 95.479, which is in fact slightly smaller than
the similar stop-loss contract from step 2. Indeed, the optimal value exhibits a
slight increase whenever either b1 or b2 are increased past these values, given
that a1 = a∗1, a2 = a∗2. This is illustrated in Figure 2.5, where the behaviour in
b1 is shown. When b1 is increased from 78 to 80 with b2 = 66.83 and (a1, a2)
as before, the objective value rapidly increases from 95.58 to 95.64, before the
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2. Optimal reassurance contracts under conditional Value-at-Risk

graph subsequently flattens out.
Step 4: Applying the L-BFGS-algorithm to with different initial guesses
to estimate the optimal reinsurance layer parameters yielded the following
parameters:

a1 = 11.13, a2 = 37.22, b1 = 184.70, b2 = 64.88, (2.112)

with an associate objective value of 95.512.
Step 5: In this example, the best parameters found yielded an insurance layer
contract with

a1 = 11.13, a2 = 37.22, b1 = 184.70, b2 = 64.88, (2.113)

with an associate objective value of 95.512. In comparison, the objective value
achieved by using the result from Theorem 2.2.1, whereby a stop-loss contract
is used, was 95.644, which constitutes a 0.138% reduction in objective value.

In the final example of this section, we study the case of negatively correlated
normal random variables.

Example 2.4.4 (]Negatively dependent risks, with respect to CVaR.). We now
sample X1, X2 from the bivariate normal distribution, where the correlation is
−0.3,

E[X1] = 100, SD[X1] = 25, E[X2] = 80, SD[X2] = 30. (2.114)

Step 1: Using Theorem 2.2.1, we get

a∗1 = 67.90, a∗2 = 41.60, b1 = b2 = +∞, (2.115)

which gives an objective value of 190.90.
Step 2: We now estimate the optimal parameters of a stop-loss contract, by
letting

b1 = b2 = +∞, (2.116)

optimizing over (a1, a2). Both the optimal parameters and the objective value
coincide with those in step 1.
Step 3: Fixing

a1 = a∗1, a2 = a∗2 (2.117)

and optimizing b1, b2 using a similar numerical scheme as for a1, a2, the optimal
values of b1, b2 were found to be

b1 = 143.70, b2 = 141.56, (2.118)

with an objective value of 190.83. In comparison, the maximal values in the
samples of X1, X2 were 217.91, 218.10. Again it appears that an insurance layer
contract gives a slightly better result compared to a stop-loss contract.
Step 4: An application of the L-BFGS-algorithm to with different initial
guesses yields the following estimates of optimal parameters:

a1 = 67.45, a2 = 40.95, b1 = 141.80, b2 = 147.04, (2.119)
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with an associate objective value of 190.83.
Step 5: In this example, the best parameters found were

a1 = 67.45, a2 = 40.95, b1 = 141.80, b2 = 147.04, (2.120)

with an associate objective value of 190.83. Compared to the results achieved
by optimizing according to Theorem 2.2.1, we found a slight reduction in the
objective value, of approximately 0.037%. The optimal deductibles were close
in value to those found in step 1.

In this chapter, we have introduced the problem of optimal reinsurance under
different risk measures. We have reviewed known results relating to optimal
reinsurance in the univariate case under law-invariant risk measures and Value-
at-Risk, together with recent developments in the multivaraite case under
Value-at-Risk. We have then extended these result to the case of multivariate
risks under CVaR, where we have optimized the contract parameters of a stop-
loss reinsurance contract given a worst-case risk dependency structure. We
have then applied this method of determining reinsurance contract parameters
to risks which were not comonotonic, and compared the objective value to
those found using numerical optimization methods. From the examples tested,
we have seen that the objective value found using numeric optimization in all
cases was very close to that found using the worst-case method. Similarly, the
optimal deductibles were comparable between the methods. In the cases where
the risks were negatively dependent, we were able to marginally improve on the
solutions found using the worst-case approach, but not in the uncorrelated case.
From this we may conclude that, in the case of bivariate risks, there are several
situations where using a worst-case approach is viable. Moreover, in a real world
application, the true dependency between the risks is probably not known. The
historic claims data to infer such dependencies from may have a limited number
of examples, which could give a false sense of dependency between the risks.
In using a worst-case approach to the reinsurance optimization, one avoids the
problem of choosing reinsurance parameters based on a wrongful assumption
on the dependency of risks, which could lead to misunderstanding the true risk
exposure.
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2. Optimal reassurance contracts under conditional Value-at-Risk
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(b) Indicated optimal value for a.

Figure 2.1: Risk that cedent carries as a function of a.
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2.4. Numerical examples

(a) Scatter-plot of X1 vs X2 when X1, X2 are log-normally
distributed. A positive correlation of ρ = 0.698 was
measured.

(b) Marginal distributions of X1 and X2.

Figure 2.2: The distribution of X1, X2.
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2. Optimal reassurance contracts under conditional Value-at-Risk

(a) Log-normally distributed, uncorrelated risks

(b) Log-normally, positively correlated risks. ρ = −0.66

(c) Risks with beta and normal distributions, and negative
dependency. ρ = 0.698

Figure 2.3: CV aR0.95(
∑m
i=1 [Ii(X) + (1 + θ)E[Ri(Xi)]]) as a function of a1, a2

for various risk dependency structures
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2.4. Numerical examples

(a) Scatter-plot of X1 vs X2 when X1, X2 are negatively correlated, where X1 has a
beta distribution and X2 has a normal distribution. A ρ = −0.66 was measured.

(b) Marginal distributions of X1 and X2.

Figure 2.4: The distribution of X1, X2 from Example 2.4.3
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2. Optimal reassurance contracts under conditional Value-at-Risk
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(b) A closer look at the b1-values of interest.

Figure 2.5: Vα as a function of b1, which illustrates behaviour described in
Example 2.4.3, step 3.
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CHAPTER 3

Estimating market risk

In this chapter we study the use of conditional Value-at-Risk to estimate risk in
financial markets. In the previous chapters, we have pointed out shortcomings
of Value-at-Risk, which will serve as a benchmark in this section. Important
criticism has been Value-at-Risk’s insensitivity to severe losses at the tail-end
of the distribution. Nevertheless, Value-at-Risk continues to be a commonly
used risk measure in finance. For instance, it is used to calculate regulatory
capital requirements in the Third Basel Accord, which is a framework for banking
regulation. The validity of Value-at-Risk for estimation of financial risk has been
subject to extensive study. In [YY+02] the authors did a comparative analysis
of Value-at-Risk and conditional Value-at-Risk for financial risk management.
We quote the following summarizing remark from their work:

1. Information given by VaR may mislead rational investors who
maximize their expected utility. In particular, rational investors
employing only VaR as a risk measure are likely to construct a
perverse position that would result in a larger loss in the states
beyond the VaR level.

2. Investors can alleviate this problem by adopting expected
shortfall as their conceptual viewpoint, since, by definition,
it also takes into account the loss beyond the VaR level.

3. The effectiveness of expected shortfall, however, depends on
the stability of estimation and the choice of efficient backtesting
methods.

In this chapter, we will empirically compare the two risk measures through
concrete numerical examples where we real financial market data. We will only
consider financial assets from the stock market, where the portfolio of interest
either consist of a single stock, or a combination of stocks in a stock index.
There are in practice complicating factors in working with real market data,
which is often referred to as market friction. For instance, selling a financial
asset to reduce risk relies on the liquidity of the market. There is no guarantee
that a motivated seller is able to sell their asset at a desired time, to the current
market price. Although such factors will have an effect on the true risk of a
financial position, they remain outside the scope of this chapter.
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3. Estimating market risk

3.1 A model of financial assets

To model the price of financial asset mathematically, we will need the notion of
a stochastic process

Definition 3.1.1 ([Øks03] Stochastic process). A stochastic process is a
parametrized collection of random variables

{Xt}t∈T (3.1)

defined on a probability space (Ω,F , P ) and assuming values in R.

As we desire to model the value of a portfolio of stocks at different times,
we are interested in a suitable stochastic process

St, (3.2)

such that St is a random variable representing the value of the portfolio at
time t. Before presenting a candidate for such a process, we need a special
stochastic process, namely the Brownian motion (GBM). The Brownian motion
is continuous, and resembles a random walk at a large scale.

Definition 3.1.2 ([Øks03] 1-dimensional Brownian motions). Let Bt be a
stochastic process. Then, Bt is a Brownian motions if the following holds:

1. B0 = 0.

2. For fixed ω′ ∈ Ω, t 7→ Bt(ω′) is a continuous function.

3. Bt −Bs is independent of Bv −Bu for any 0 ≤ s ≤ t < v.

4. (Bt −Bs) ∼ (0, (t− s)) for any 0 ≤ s ≤ t.

The Brownian motion has many interesting properties. As a consequence of
points 1. and 3. in Definition 3.1.2, it follows that for t ≥ 0,

Bt ∼ N(0, t), (3.3)

since

Bt = (Bt −B0) ∼ N(0, t− 0), (3.4)

where B0 = 0. Moreover, it can be shown that ω 7→ Bt(ω) it is a nowhere
differentiable function in t. For our purposes, the random walk-like behaviour
is of interest, and this feature will be used to create a stochastic process which
mimics a similar random walk-like behaviour of the stock market. One can
imagine that buyers and sellers constantly and randomly sell and buy stocks
in a company, which nudges the price of the stock up and down in an erratic,
random manner. Although this is a simple abstraction, the Brownian motion is
an important building block for mathematical models of the prices of financial
assets. However, the Brownian motion itself cannot be a good model, since
it will eventually take negative values given enough time. Another stochastic
process which exhibits a similar randomness, but which is always positive is
the geometric Brownian motion.
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3.2. Problem formulation

Definition 3.1.3 ([Øks03]). Let µ and σ be positive real numbers, and let Bt
be a Brownian motion. Then, the stochastic process, defined for t ≥ 0,

St = S0 exp
(

(µ− 1
2σ

2)t+ σBt

)
(3.5)

is a geometric Brownian motion, where S0 is the initial value at time 0.

The geometric Brownian motion is the exponential of a Brownian motion,
with drift. It is one of the most common models to describe the development of
the price of a financial asset over time [BBK08, p. 19]. For example, the famous
Black-Scholes model for option pricing assumes that the price of the underlying
asset can be modeled by a geometric Brownian motion [BS73]. The geometric
Brownian motion will serve as our model for the price development of stock
portfolios. Note that since Bt has a normal distribution, so does ln(St), since

ln(St) = ln
(
S0 exp

(
(µ− 1

2σ
2)t+ σBt

))
(3.6)

= ln(S0) + (µ− 1
2σ

2)t+ σBt, (3.7)

where σBt has a normal distribution. This tells us that St has a log-normal
distribution. It can be shown ([Øks03]) that St has a log-normal distribution
with

E[St] = S0e
µt, (3.8)

V [St] = S2
0e

2µt
(
eσ

2t − 1
)
. (3.9)

3.2 Problem formulation

[]] We will consider the financial risk of holding a stock portfolio for 1 trading
day. Since the absolute value of the loss depends on the initial value of the
portfolio, we will evaluate the loss as the relative difference between the value
of the portfolio at time t− 1 and time t. We let Vt denote the value of a the
portfolio starting at time t = 0. Let for all t = 1, 2, . . . , T

Xt = −Vt − Vt−1

Vt−1
, (3.10)

such that negative returns correspond to positive values. We can think of Xt as
the stochastic process which represents the negative relative returns of the stock.
We are interested in measuring the Value-at-Risk an conditional Value-at-Risk
for Xt. However, if this analysis is only done retrospectively. If we were only to
discuss discuss the Value-at-Risk of the portfolios past performance, it would
be more of an exercise in statistics than in risk analysis. After all, we are most
concerned with the future risk of holding the stock portfolio. In the following
examples, we to use two approaches to estimating the financial risk. We will
use the historic price data for a number of prior trading days to evaluate the
empirical Value-at-Risk and conditional Value-at-Risk. Then, we will use the
same historic data to estimate the parameters of a geometric Brownian motion,
and use its probability distribution to estimate the Value-at-Risk and conditional
Value-at-Risk. We will compare these estimates with the true observations of
the returns.
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3. Estimating market risk

3.3 Examples

[]]

Case 1: Standard & Poor’s 500 index

Daily closing prices for the Standard & Poor’s index were collected between the
time periods January 1st 2015 and January 1st 2021. Let Vt denote the value
of one share of the Standard & Poor’s index at time t, where t = 0 is January
1st 2015. The negative relative returns

Xt = −Vt − Vt−1

Vt−1
(3.11)

were calculated for t = 1, 2, . . . up to the last day in the data set. The reason
for the negative orientation is to fit with the positive orientation of our risk
measures. Recall that have associated positive outcomes with positive risks
in previous chapters. The distribution of these returns are plotted in Figure
3.1a. Starting at t = 1, we used the empirical Value-at-Risk and conditional
Value-at-Risk of the sample

{X1, X2, . . . , X100} (3.12)

to estimate V aR0.95(X101) and V aR0.95(X101). Similarly, we proceeded to
repeat this process for

{X2, X3, . . . , X102} (3.13)

to estimate the risk of X103, . . . , repeating the process to exhaust all the
remaining observations in the dataset. In doing so, we have created empirical
risk estimates for each of the returns X101, X102, . . . , each time basing the
estimate on the previous 100 trading days. Figure 3.1b displays the estimated
risks for each of these returns, together with the true observed values of Xt

for the same days. We then considered the following events: The 10% worst
losses and the 10 worst losses. The estimates for CV aR0.95 and V aR0.95 for
these days were compared to the observed losses. Figure 3.2 gives a visual
representation of this. On the x-axis, the worst relative returns are plotted,
against their corresponding risk estimates on the y-axis. Points that fall below
the line through the origin represent states where the losses exceed the estimates,
and vice versa for points above the line. From these figures, it is clear that the
estimates using V aR0.95 have a tendency of under-estimating the worst losses,
and as the losses increase in magnitude, the tendency to fall further below the
line increases. This is in contrast to the corresponding CV aR0.95-estimates,
where the points remain relatively centered about the line, even when the losses
increase in magnitude.

Alternatively to empirically calculating the Value-at-Risk and conditional
Value-at-Risk from the past returns, we use the assumption that the dynamics
of the stock price is dictated by a geometric Brownian motion. The idea is
again to use the historic data, namely to base our estimate of X100 on

{V0, V1, . . . , V99}, (3.14)
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3.3. Examples

X101on{V1, . . . , V101} and so on. We do so by using {V0, . . . , V99} to estimate
the parameters of a geometric Brownian motion, which we hope provides a good
model for Vt for times t = 0, 1, . . . , 99, 100. Having found suitable estimates
for σ, µ, and knowing the current value V99, we may then create a geometric
Brownian motion starting at time t = 99, and infer the probability distribution
of V100. We know that this has a log-normal distribution, with expectation
and listed in Equations (3.8), (3.9), calculated by setting t = 1, and inserting
for S0 the known value of V99 in these equations. Using this hypothesis of
the distribution of V100, we can find the CV aRα and V aRα of X100 from the
theoretical distribution of V100. From this distribution we can calculate the
conditional Value-at-Risk. The implementation is found in the Appendix, A.7.

To estimate the parameters of the geometric Brownian motion, we use the
estimation method 2.3 from section 2 of [CJM17]:

V̄ = 1
n

n∑
t=1

ln
(

Vt
Vt−1

)
, (3.15)

µ̂ = V̄ + σ̂2

2 , (3.16)

σ̂ =

√√√√ 1
n− 1

n∑
t=1

[
log
(

Vt
Vt−1

)
− V̄

]2
. (3.17)

The blue line in Figure 3.1b is the CV aR0.95-estimate based on this approach.
As the figure shows, the risk estimate produces in this manner seems to almost
always lie between the lower bound of the empirical V aR0.95-estimate and the
upper bound of the empirical CV aR0.95-estimate. Figure 3.2c shows a scatter
plot of the 10% worst losses, with negative relative returns on the x-axis and
the CV aR0.95 estimated through the GBM-method on the y-axis. We observe
that this method resulted in fewer vast underestimates of the risk, compared
to the empirical V aR0.95-estimate, while it over-estimates the risks slightly
less than the CV aR0.95-estimates. Table 3.1 displays the risk estimates and
observed losses for the 10 worst observed losses in the dataset. We see that
the empirical estimation of CV aR0.95 has produced the most conservative risk
estimates, followed by the GBM-based CV aR0.95 estimates before the empirical
V aR0.95-estimates.

Case 2: Microsoft

We repeat the same analysis as in Case 1 with daily stock prices for Microsoft
(ticker code MSFT). Closing prices between the dates January 1st 2015 and
January 1st 2021 were collected, and we proceeded to use a 100-day rolling
window to create empirical estimates for the CV aR0.95 and V aR0.95 for the
next day. We also estimated the next days CV aR0.95 by the means of fitting
a geometric Brownian motion to the previous 100 days of data, as was done
in Case 1. In this instance, the estimates produces via the GBM-method
were consistently more conservative than those of empirical Value-at-Risk and
empirical conditional Value-at-Risk. From the scatter plots in Figure 3.2, we
can see that even in the 10% worst cases, the GBM-based estimate still over-
estimates the risk in most cases. In Figure 3.4a we can see a similar, but
less pronounced tendency of over-estimating the risks in the case of empirical
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3. Estimating market risk
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(a) Negative relative returns, when holding S&P 1 day.
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(b) Estimated CV aR0.95 and V aR0.95

Figure 3.1: Estimated risk and measured negative relative returns from S&P
using three methods, based on 100 days of prior market data: 1) Empirical
estimate of VaR. 2) Empirical estimate of CVaR. 3) Estimating CVaR from a
GBM fittet do the data. Measurement period was 2015.01.01-2021.01.01.
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(a) Negative relative returns vs CV aR0.95-estimates
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(b) Negative relative returns vs V aR0.95-estimates
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(c) Negative relative returns vs CV aR0.95, estimated from an inferred geometric
Brownian motion.

Figure 3.2: The worst 10% negative relative returns of S&P, measured against
the corresponding risk estimates for that day. Negative returns are plotted
along the x-axis, with risk estimates on the y-axis.
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3. Estimating market risk

Loss Empirical CV aR0.95 Empirical V aR0.95 GMB-estimated CV aR0.95

0.119 0.059 0.033 0.039
0.095 0.043 0.028 0.030
0.075 0.033 0.018 0.023
0.058 0.078 0.044 0.063
0.051 0.076 0.034 0.051
0.048 0.043 0.028 0.029
0.044 0.023 0.015 0.015
0.044 0.078 0.044 0.059
0.043 0.078 0.044 0.053
0.040 0.006 0.004 0.007

Table 3.1: Risk estimates and observed losses for the worst 10 trading days of
Standard & Poor’s returns.

CV aR. In Figure 3.4b, the opposite is true. The risk is typically under-
estimated, especially for larger losses. The same is reflected in Table 3.2, which
displays the losses and risk estimates for the worst 10 days of returns. At times,
the V aR-estimate reports a risk estimate less than half of the GBM-based
estimate, and less than one third of the observed loss. From this we can gather
that V aR in certain markets provide poor risk estimates for exreme market
movements.

Loss Empirical CV aR0.95 Empirical V aR0.95 GMB-estimated CV aR0.95

0.147 0.065 0.043 0.052
0.094 0.052 0.028 0.045
0.071 0.033 0.027 0.053
0.070 0.026 0.016 0.030
0.067 0.043 0.022 0.039
0.061 0.039 0.024 0.041
0.056 0.024 0.014 0.056
0.054 0.021 0.015 0.030
0.054 0.046 0.026 0.043
0.053 0.085 0.045 0.078

Table 3.2: Risk estimates and observed losses for the worst 10 days of Microsoft
stock returns.
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(a) Negative relative returns, when holding Microsoft stock 1 day.
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(b) Estimated CV aR0.95 and V aR0.95

Figure 3.3: Estimated risk and measured negative relative returns from Microsoft
using three methods, based on 100 days of prior market data: 1) Empirical
estimate of VaR. 2) Empirical estimate of CVaR. 3) Estimating CVaR from a
GBM fittet do the data. Measurement period was 2015.01.01-2021.01.01.
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(a) Negative relative returns vs CV aR0.95-estimates
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(b) Negative relative returns vs V aR0.95-estimates
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(c) Negative relative returns vs CV aR0.95, estimated from a inferred geometric
Brownian motion.

Figure 3.4: The worst 10% negative relative returns of the stock Microsoft,
measured against the corresponding risk estimates for that day. Negative returns
are plotted along the x-axis, with risk estimates on the y-axis.
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CHAPTER 4

Application of risk analysis in
structural design

In the previous chapter, the main are of applications of risk analysis has been in
the financial domain, and problems within finance lend themselves readily to risk
analysis. After all, we have an immediate notion of how to understand undesired
outcomes - they are typically simply a financial loss. In the following chapter,
we aim to show that the framework developed in Chapter 1 easily carries over
to applications within structural design and reliability. While the application
of risk analysis in structural design and reliability is not a novel concept, we
will see that conventional methods can be improved upon by applying results
from Chapter 1, mainly by comparing traditional approaches to a modification
that utilizes conditional Value-at-Risk. The chapter is to a large extent based
on [RR10]. The use of an analogy to conditional Value-at-Risk will provide
multiple benefits which will be discussed in this chapter. Most importantly, it
will increase the control over and emphasis on risks associated with tail events,
and it will in given circumstances be computationally favorable.

4.1 Introduction

Structural design and optimization is commonly concerned with analysing the
reliability of a structure exposed to an environment. The word structure is not
intended to be understood narrowly, and may include static structures such as
buildings and bridges, machines, or windmills to mention a few examples. The
way the structure functions, which can be thought of as the performance of the
structure, will typically depend on one or several aspects of its environment.
For the discussions ahead we will focus our attention to the case of mechanical
structures in physical environments, but note that the scope of the techniques
presented need not be limited to this setting. More specifically, given a
mechanical structure which is exposed to an environment V we are interested
in understanding when the structure will function, to what degree it functions,
what states of V might lead to undesirable levels of function, and with what
probability such states will occur. The vector V is here a collection of facts
about the environment, perhaps including temperature, wind speed, humidity
etc. Likewise, x is a vector holding data about the design of the structure. The
following example illustrates this.
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4. Application of risk analysis in structural design

Example 4.1.1 (]Motivating example for the usefulness of failure probability).
Assume the structure of interest is a floating wind turbine. The wind turbine
is exposed to a multitude of forces from the environment which are acting
on it, and of special concern are the wind-speed, the wave height and the
temperature. Under ideal conditions the windmill produces electricity at full
capacity. However, when the wind speed increases past a certain level, the wind
turbine is forced to alter its angle to the wind and lean at an angle to avoid
failing. Furthermore, if the temperature falls below a certain threshold, there
will be an accumulation of ice on the blades of the turbine, which in turn halts
the production rate. At a certain level, the forces apply stress which causes
the turbine to be in a state we do not regard as acceptable. If both the wind
and the wave height reach extreme levels, the combinations of forces acting
on the turbine may become harmful to the construction, and may under dire
circumstances cause a critical failure.

We could conceivably be in a situation to choose between several alternative
designs of the wind turbine, and also be in possession of statistical data about the
environment. Given knowledge about how the environment influences the state
of the structure, we wish to make an informed decision about which structure
to prefer. An attempt to solve this problem could utilize the concept of failure
probabilities to analyse the performance associated with each of the proposed
designs. The failure probability, which is yet to be precisely defined, would tell
us which of the design options had the higher probability of failing, given that
we had knowledge about the distribution of the environmental variables.

Definition 4.1.2 (Environmental Variables). The vector

(V1(ω), V2(ω), . . . , Vk(ω))T := V (4.1)

is a k-dimensional random variable V , which represents features of the
environment or other factors that influence the structure, but that are not
part of the design.

Definition 4.1.3 (Design Variables). We will by x = (x1, x2, . . . , xm)T ∈ Rm
denote the design variables of a structure, where T signifies that the vector is
transposed. The various components might encode a certain choice of material,
strength of component or other aspects of the design of the structure, and
are not regarded as random. As the name suggests, the design variables are
variables that are within a designer’s control to choose.

Definition 4.1.4 (Limit State Function). The function g : Rm×Rk 7→ R denotes
the limit state function of the structure, assigning a real value to each choice of
design and state of the environment which represents the level of performance
of the structure.

We will make a distinction in notation between (V1, V2, . . . Vk)T which are the
environmental variables that are taken to be random, and (v1, v2, . . . , vk)T ∈ Rm,
which is a realization of V. In this regard, g(x,V) is a random variable, whereas
g(x,v) is a scalar value. If g(X,v) < 0, we say that the structure performs
at an acceptable level, while g(X,v) > 0 indicated an unacceptable level of
performance and g(X,v) = 0 is a limit sate.
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4.2. Failure probability

4.2 Failure probability

Failure probability is a crucial concept in reliability theory, where the analyses
aims to quantify the probability that a structure will fail. This is commonly
used when the designer considers the return period of events such as earth
quakes and floods. Specifying that the structure should withstand forces that
occur less frequent than for instance once per century, is essentially equivalent
to imposing a failure probability less than the probability that such forces
occur withing a century. In this section we will formally introduce the failure
probability, and its close relative, the buffered failure probability. We show that
the latter is a more conservative choice and in some cases an improvement to
the failure probability. We finally discuss aspects of computational costs.

Definition 4.2.1 (Failure probability). The failure probability, of a structure,
which is the probability that the structure is in failed state according to its
limit state function, is defined as

p(x,V) := P [g(x,V) > 0.] . (4.2)
Note that although this definition does not mention time, time will be of

importance in many practical applications. The probability that the structure,
given a design choice, is exposed to an environment in which it fails, will in most
circumstances depend on the duration of exposure. Other times, the degree of
failure may depend on the amount of time the structure is exposed a sufficient
level of stress. This means that one will often deal with problems related to the
maximum value of g(x,V) over a period of time. In this discussion, we limit
the scope to considering the canonical problem of P [g(x,V) > 0]. This is not a
restriction, since the distribution of V can be modified to accommodate such
time dependencies.

An immediate disadvantage of the failure probability is the lack of sensit-
ivity to severe outcomes, which is analogous to the discussion on the use of
the quantile as a risk measure in Section 1.3. This can be illustrated by an
example.

Example 4.2.2 (]). Consider two alternative structures that are intended for
the same environment. The environmental variables of concern are V1, V2 which
are independent and standard normally distributed, and x represents material
choices, and the choice x = (1, 1)T is valid for both structures. (In the interest
of concreteness, we can imagine that the first structure is a suspension bridge,
while the second is a beam bridge). Their respective limit state functions are

g1(x,V) = −|x1 + x2|+ (v1 + v2)

g2(x,V) =

−|x1 + x2|+ (v1 + v2), if − |x1 + x2|+ (v1 + v2), < 0,
1000 otherwise.

This clearly means that both structures share the same failure probability of
p(x) ≈ 0.079. On the other hand, if both structures are in a failed state, the
second structure will almost always be in a more severe state than the first.
This information is not revealed by the failure probability, and if the goal was
to choose a structure with a failure probability of less than 0.1, both structures
would appear equally well suited.
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4. Application of risk analysis in structural design

Estimation of failure probability

Assume that V = (V1, . . . , Vk)T has a joint probability distribution fv and I(·)
is the indicator function for the event g(x,v) > 0. The failure probability p(x)
is given in integral form as∫

Ω
I
(
g(x,V) > 0

)
dP (ω), (4.3)

which we evaluate as ∫
Rk
I
(
g(x,v) > 0

)
fv(v) dv.

For complex structures, the number of random variables, k, of interest might
be very large. As k grows, evaluating the failure probability analytically will in
many cases be impractical or infeasible. Indeed, for many standard numerical
integration rules, such as the Gauss quadrature extended to multiple dimensions,
the error in the estimation decreases in the order of n−C/k, where n is the number
of partitions used in the integration and C is a constant depending on the
method, c.f [Fau18][p.151]. This effect is often referred to as the dimensionality
effect, or the curse of dimensionality. A numerical method for estimating high-
dimensional integrals which exhibits significantly better scaling properties is
the Monte Carlo method. In [RU+00] it is suggested that the evaluation of
failure probability in high-dimensional cases should be done either by Monte
Carlo integration, or via geometric considerations, although it is argued that
neither of these approches are ideal. We will discuss these methods and their
drawbacks in turn.

Monte Carlo estimation of the failure probability

To evaluate the failure probability p(x) with Monte-Carlo simulation, one draws
N samples {vi}Ni=1 from the joint distribution fV. Then,

p̂(x) = 1
N

N∑
i=1

I
(
g(x,vi) > 0)

is an unbiased estimator of p(x). The main objection to this strategy is the
computational cost involved when N becomes large. By the law of large
numbers, the estimation error decreases proportional to N −1

2 , regardless of the
dimensionality. In the meantime, the computational cost of sampling increases
linearly as N grows. AA benefit of the Monte Carlo method is that it is well
suited for parallel computing.

An alternative to numerical integration to evaluate the failure probability
is a geometric consideration. In this approach, one considers a set consisting
of states of V which are associated with a failed state, and uses the minimal
distance from this set to the origin to infer the failure probability.

Definition 4.2.3 (Failure set). Let a limit state function g and design variables
x be given. Then, the set

{v | g(x,v) > 0}

is the failure set of g given x
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4.2. Failure probability

The shortest distance from the origin to the boundary of this set is known
as the reliability index of the design x, and is denoted β(x). Under certain
conditions there is a one-to-one correspondence between the reliability index
and the failure probability. In other cases, the reliability index can be used to
give an estimate of failure probability. However, there is in general no guarantee
that this estimate is a good approximation, and it might in fact underestimate
the true failure probability. We illustrate the failure set and the reliability index
with an example.

Figure 4.1: Monte-Carlo sampling from f. Green points indicate a safe state,
red points a failed state. The blue line indicates the limit states where
g1(x,v) = 0. The red line indicates the shortest distance to the boundary
of the set {v | g1(x,v) ≤ 0} . The failure probability is approximately 7.86%.

Example 4.2.4. Example 4.2.2 featured a limit state function

g1(x,V) = −|x1 + x2|+ (V1 + V2),

with x = (1, 1)T . Figure 4.1 illustrates 2.5M samples of (v1, v2)T from a bivariate
normal distribution. Red color indicates if the structure is failed, while green
indicate safe. As indicated in the figure, the line V2 = 1 − V1 represents the
boundary of the failure set, namely

{v | g1(x,v) = 0,x = (1, 1)T } (4.4)

Points that fall above the line correspond to failed states, points below the line
correspond to safe states.
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4. Application of risk analysis in structural design

To determine for which cases the failure probability corresponds to the failure
probability we will need the following definition.

Definition 4.2.5 (Affine function). Assume v ∈ Rk is a realization of V. A
function g is affine in v if

g(x,v) = 〈a(x),v〉+ b(x),

where a is an k-valued function, b a real-valued function and 〈·, ·〉 denotes the
inner product on Rk.

The following result is found in [RU+00, p. 7] (although not listed as a
preposition).

Proposition 4.2.6. Assume that {Vi}ki=1 are independent, standard normally
distributed, and that the limit state function is affine in v. Then, the failure
probability p(x) is given by

p(x) = Φ(−β(x)),

whenever p(x) ≤ 0.5 where β(−x) is the reliability index of the design x.

Proof. Assume g(x,v) is affine in v. Then, the boundary of the failure region,
defined as

{v | g(x,v) = 0},

is given by

{v | 〈a(x),v〉+ b(x) = 0}.

It defines a hyperplane in Rk, which we denote P . The failure probability
therefore corresponds to the probability that v lies in the upper half-space
defined by P , and is given by

p(x) = P
(
〈a(x),v〉 ≥ b(x)

)
.

By assumption {Vi}ki=1 are independent, standard normally distributed, and the
sum of independent, normally distributed random variables is again a normally
distributed random variable. Hence

〈a(x),v〉 ∼ N (0, ‖a(x) ‖22).

Therefore

P (g(x,v) ≥ 0) = P (‖a(x)‖2Z ≥ 0)

= P

(
Z ≥ b(x)

‖a(x)‖2

)
= Φ

(
−b(x)
‖a(x)‖2

)
, (4.5)

whenever p(x) ≤ 0.5 and Z has is standard normally distributed. Let the origin
in Rk be denoted 0. The closest point p on P to 0 is the projection of 0 onto P .
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4.2. Failure probability

We are interested in the distance from 0 to p, which we call d. It is well-known
from analytic geometry that d is given by

|b(x)|
‖a(x)‖2

.

Then, since d is equal to β(x), it follows that

Φ(−d) = φ (−β(b(x)) = P (g(x,v) ≥ 0) ,

whenever P (x) ≤ 0.5, which is what we wanted to show. �

Corollary 4.2.7 (]). If the limit state function g is convex in v, the approxim-
ation

p̂(x) = Φ(−β)x)) (4.6)

is an upper bound on p(x) whenever p(x) ≤ 0.5

Proof. Let

S = ∂{v | g(v,x) = 0} (4.7)

denote the boundary of the failure set. Since g is convex in v, its level sets are
by Lemma 1.1.17 again convex sets. Let v∗ a be point in S which minimizes
the distance from S to the origin in Rk, and let the distance be denoted β(x).
By the supporting hyperplane theorem, there exists a supporting hyperplane
P containing v∗. Let P+ denote the upper halfspace, which contains all v
corresponding to a failed state. That is,

v ∈ {v | g(v,x) > 0} =⇒ v ∈ P+.

This implies that

P (v ∈ {v | g(v,x) > 0}) = P (g(v,x) > 0)
≤ P (v ∈ P+)
=
(i)

Φ(−β(x)),

using the result from Proposition 4.2.6 in (i). This concludes the proof. �

It is worth noting that when g is not convex in v it can lead to computational
and analytical problems. As is pointed out in [RR10] a lack of convexity might
complicate the task of determining the closes point on the surface of the failure
region to the origin in Rk. Indeed, numerical methods might identify points
that are locally closest to the origin, but fail to identify the globally closest ones.
This can lead to errors in the estimation of β(x) which influences the estimate
of the failure probability. Another concern with non-convexity is the risk that
Φ
(
− β(x)

)
incorrectly estimates the failure probability. We illustrate this issue

in Example 4.2.8. Another concern is the assumption on the distribution of V.
While the assumption of normality may hold for many practical applications, it
may not always be appropriate. Without any assumption on the distribution
of V, we cannot derive any bounds on the failure probability by means of the
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4. Application of risk analysis in structural design

reliability index. However, to overcome this issue, one can attempt apply a
bijective transformation Ψ to V such that Ψ(V) has the desired distribution
[Ros52]. For this approach to be successful, it will however require that the
transformed limit state function (Ψ ◦ g)(x,v) is again affine or convex. This
may not always be the case.

Figure 4.2: Monte-Carlo sampling from f. Green points indicate a safe state,
red points a failed state. The limit state function is V1 · x1 + V 2

2 · x2 − 2, where
x = (1, 1). The blue line is equal to that in Figure 4.2. The red dotted line
indicates the shortest distance to the boundary of the set {v | V1 +V 2

2 −2 ≤ 0}.
The failure probability is approximately 21%. The probability of failure is larger
than the probability of selecting a point above the blue line.

Example 4.2.8 (]). Let x = (1, 1) be given, and the limit state function g3 be
defined as

g3(x,v) = −2 + x1v1 + x2v
2
2 . (4.8)

Using Monte Carlo sampling with 2.5M samples, we find an estimated failure
probability of

p(v,x) ≈ 21%.

Meanwhile, β(x) =
√

2, which is the same as the case with the limit state
function in Figure 4.1 with x = (1, 1). The failure probability in 4.1 was
calculated to approximately 7.86%, and was given as the probability that a
sample lies above the indicated line. In comparison, we see that there is a large
number of failed states which lie below the indicated blue line in Figure 4.2,
and it is clear that Φ(−β(1, 1)) vastly underestimates the failure probability.
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4.3. Buffered failure probability

4.3 Buffered failure probability

It can perhaps be argued that examples illustrating some of the shortcoming
of the failure probability in the previous example were artificial. Nevertheless,
they illustrate that the failure probability can sometimes exhibit undesirable
properties. In light of this, [RR10] proposes the buffered failure probability as an
alternative to the failure probability, which rectifies many of the shortcomings
of the failure probability. We will follow the assumption in the article that the
cumulative distribution function of the limit state function is continuous and
strictly increasing for any choice of x. This ensures that any the quaintly for
any suitable α is given by the inverse of the cumulative distribution function of
the limit state function at level α.
Recall Definiton 1.3.12 of the quantile of a random variable. By the assumption
that the cumulative distribution F (g(x,V)) is monotonically increasing and
continuous, it follows that for α ∈ (0, 1),

qα (g(x,V)) = F−1
g(x,V)(α). (4.9)

If we choose α0 to be the (unique) value such that qα0 = 0, it is obvious that

0 = qα0 = F−1
g(x,V)(α0), (4.10)

which means

p(x,V) = 1− P (g ≤ 0) (4.11)
= 1− Fg(x,V)(F−1g(x,V)(α0)) (4.12)
= 1− α0. (4.13)

This is to say that the failure probability is given as 1 minus the alpha-level
which makes the quantile attain the value zero. To avoid any confusion, we
introduce the notion of the superquantile. However, this is nothing new, but
simply the definition of CVaR from Defition 1.3.18 applied to the limit state
function g(x,V). To lighten the notation, we use the following definition.

Definition 4.3.1 (Superquantile). The superquantile at level α of the random
variable g(x,V), denoted q̄α(x), is defined as

q̄α(x) := E [g(x,V) | g(x,V) > qα(x)] .

Example 4.3.2 (]Illustrates superquantiles). Let the limit state function be
defined as

g(x,V) = V1x1 + V2x2 − 2,

where x = (1, 1). In Figure 4.3a we have indicated the quantile and the
superquantile at level α0 on the cumulative distribution of g(x,V). The
cumulative distribution, the quantile and the superquantile were all estimated by
Monte-Carlo sampling with 2.5M samples, although it is possible to calculate
analytically. We observe that the superquantile is indeed larger than the
quantile, with. q̄0.92(x) = 0.64. We can interpret the superquantile at level α0
as the average performance of the structure, given that the structure is in a
failed state. Figure 4.3b illustrates the estimated probability density function
of g(x,V), conditional on the event that g(x,V) > 0, again by by Monte-Carlo
estimation, calculated on the same samples as Figure 4.3a.
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(a) The level α0 is chose such that qα0(x) = 0. This
corresponds to α0 = 0.92, and hence p(x) = 1 − 0.92 = 0.08.
The superquantile at level α0 = 0.92 is q̄0.92(x) = 0.64.
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(b) A Monte-Carlo estimate of the probability density
function of g(x,V), conditional on g(x,V) ≥ 0

From Proposition 1.3.19, we know that CVaR is a more conservative risk
measure than VaR, which is to say that qα(x) ≤ q̄α(x) in general. Where the
failure probability is associated with the quantile qα(x) = 0, the buffered failure
probability is associated with the superquantile where q̄α(x) = 0.

Definition 4.3.3 (Buffered Failure Probability). Let α′0 be selected such that
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4.3. Buffered failure probability

q̄α(x) = 0. Then, the buffered failure probability, denoted p̄(x) is given by

p̄(x) := 1− α′0,

or alternatively,

P
(
g(x,V) ≥ qα′0(x)

)
.

The next result shows that the buffered failure probability is more
conservative than the failure probability.

Proposition 4.3.4. For any x and α ∈ (0, 1) we have that p(x) ≤ p̄(x)

Proof. Let α0 denote the alpha-level such that q̄α0(x) = 0.
Proposition 1.3.19 shows that q̄α(x) ≤ qα(X) for any α, so in particular

q̄α0(x) ≤ q̄α0 , which gives

p̄(x) = P (g(x,V) ≥ q̄α0)
≥ P (g(x,V) ≥ qα0(x))
= p(x).

This shows what p̄(x) is in fact more conservative than p(x). �

As the name buffered failure probability indicates, p̄(x) introduces in a sense
a safety buffer. While the failure probability identifies the probability that
the structure fails, i.e, g(x,V) > 0, the buffered failure probability is chosen
such that while g(x,V) exceeds the value corresponding to the buffered failure
probability, the structure remain safe on average. To estimate the buffered
failure probability numerically, we need to solve

q̄α(g(x,V)) != 0

with respect to α. Since g(x,V) has a continuously and monotonly increasing
cumulative distribution function by assumption, the expression can be evaluated
as

q̄α(g(x,V)) = 1
1− α

∫ 1

α

qβ(g(x,V))dβ != 0. (4.14)

All in all, finding the buffered failure probability of g(x,V) simplifies to solving
the equation

∫ 1

α

qβ(g(x,V))dβ != 0 (4.15)
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4. Application of risk analysis in structural design

with respect to α. This can be easily achieved, for instance by the
means of Monte Carlo sampling. This is illustrated in Algorithm 0.

Algorithm 0: ]Buffered failure probability
Generate N samples {xi}Ni=1 from the distribution of X;
Sort samples in increasing order;
S ← 0;
i← 0;
while S ≥ 0 and i ≤ N do

i← i+ 1;
S ← S + xN−i;

end
if S > 0 then

p̄(X)← 1 ;
else

p̄(X)← i
N ;

end

As an immediate consequence of q̄α(X) > qα(X) we have that the buffered
failure probability is more conservative than the failure probability:

p̄(x) ≥ p(x). (4.16)

In this regard, the buffered failure probability indeed provides a safety buffer in
the sense that some states with g(x,V) < 0 will be above the value qα0(g(x,V)),
when q̄α0(g(x,V)) = 0. We illuminate this in the next example.

Example 4.3.5 (]). Let the environmental variables V = V1, V2 be normally
distributed with µ = −2, σ2 = 1 and Weibull-distributed with shape parameter
k = 1.5 respectively. The design variables are x(1, 2)T . The limit state function
is

g(x,V) = −3.5 + x1V1 + x2V2 (4.17)

We use Monte Carlo sampling to estimate the failure probability and the buffered
failure probability. The buffered failure probability is computed according to
Algorithm 0. Using 2.5M samples, the estimated failure probability was 2.03%
and the buffered failure probability was 5.26%. The latter corresponds to the
structure having an average performance of 0 when g(x,V) ≥ −0.9348. Figure
4.5 illustrates the distribution of g(x,V) for different realizations of V, and
shows how the buffered failure probability introduces a "buffer".

As we have seen, the buffered failure probability provides a more conservative
assessment of which states are safe. Since it takes into account the performance
of the structure also in failed states, it is sensitive to severe outcomes in the
positive tail of the distribution of g(x,V). This may allow a designer to
distinguish between designs where severity of the outcomes are important. In
the next section, we analyse how buffered failure probability may be used in
design optimization.
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Figure 4.4: Monte-Carlo sampling from the distribution of g(x,V) with design-
and environmental variables as described in Example 4.3.5. The yellow line
indicates the buffered failure probability and its associated quantile, while the
red line indicates the failure probability and its associated quantile.

Figure 4.5: a) Red dots represent failed states. Green dots are "buffer" states.
Here, 0 < g(x,V) ≤ −0.9348, corresponding to the quantile for the buffered
failure probability. The figure in b) similarly show the failed and safe states,
according to g(x,V)

4.4 Design optimization with failure probability and
buffered failure probability

The following is also based on [RR10] to a large extent. Failure probability and
buffered failure probability can be useful tools in optimization of structural
design. In this context, a designer wants to identify a design x or a class of
designs by optimizing some function of the design, for instance the cost, which
complies with a suitable upper bound on the failure probability or buffered
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failure probability.
In the following, we assume that X ⊆ Rk is a set of feasible design choices,

and the function f : X→ R which we with to minimize, has continuous partial
derivatives. We will think of f as the cost of the design x, but the function
could be adapted to suit the needs of a practical application. For instance,
penalties on physical attributes of the design, such as weight, could be included
in the cost function, or alternatively as additional constraints.

If α is the desired upper bound on the failure probability, the problem to
optimize the cost f of a feasible design x, which we denote P, can be formulated
as:

minimize
x

f (x)

subject to p(x) ≤ α0,

x ∈ X.

While this problem is easy to state and understand, it may have several
problematic aspects which makes it difficult to work with in practical application.
In particular, it can be the case that while g(x,V) is convex in x for any
realization v of v, p(x) remains non-convex. This is illustrated in the following
example.

Example 4.4.1 (]). Let the limit state function g(x,V) be defined as

g(x, v) = −x+ v. (4.18)

Then, g is a affine function, and in particular, it is convex in x for any v. In the
meantime, assume that the environmental variable V has a standard normal
distribution. Thus, the failure probability can be calculated as

p(x) = P (−x+ V ≥ 0) (4.19)
= 1− P (V ≤ x). (4.20)

Inserting for the probability density of a standard normal random variable in
the last line yields

p(x) = 1−
∫ x

−∞

1√
2π
e−y

2/2dy. (4.21)

Clearly, p is twice differentiable with respect to x, and it is hence a sufficient
condition for convexity that ∂2

∂x2 p ≥ 0 for all x. However, this is not the case:

∂2

∂x2 p = ∂2

∂x2 1−
∫ x

−∞

1√
2π
e−y

2/2dy (4.22)

= ∂

∂x

1√
2π
e−x

2/2 (4.23)

= −x 1√
2π
e−x

2/2, (4.24)

which takes negative values for negative values of x. This shows that p is indeed
not convex in x, even though g is.
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The previous example underlines an important point. If the optimization
constraint is not convex, it will result in a much harder optimization problem.
We now compare the previous optimization problem to a similar one, where we
use buffered failure probability constraints.

Optimization with buffered failure probability constraints

In the following we review a proposed method from [RR10] for using buffered
failure probability in design optmization, and investigate how we may use
the minimization formula for conditional Value-at-Risk to formulate a convex
minimization problem. We denote the optimization problem with buffered
failure probability constraints BP:

min
x

f(x) (4.25)

s.t p̄(x) ≤ 1− α0, (4.26)
x ∈ X. (4.27)

Observing that

p̄(x) ≤ 1− α0 ⇔ q̄α0(x) ≤ 0, (4.28)

we can reformulate BP using Proposition 1.3.19 (b). This gives the following
reformulation. BP’:

min
x,c

f(x) (4.29)

s.t c+ 1
1− αE[max [0, g(x,v)− c]] ≤ 0, (4.30)

x ∈ X, c ∈ R. (4.31)

Although this problem cannot always be solved analytically, we can take a
numeric approach. If we can sample from the joint distribution of v, we can
approximate the superexpectation E[max [0, g(x,v)− c]] numerically, which
gives the following problem:
BP’N:
Draw a large sample {vi}Ni=1,

min
x,c

f(x) (4.32)

s.t c+ 1
N(1− α)

N∑
j=1

max[0, g(x,vj)− c] ≤ 0, (4.33)

x ∈ X, c ∈ R. (4.34)

Furthermore, by introducing variables

c1, c2, . . . , cN ,

setting

cj = max[0, g(x,vj)− c],
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and denoting

c := (c, c1, c2, . . . , cN ),

BP’N may be reformulated as

min
x,c

f(x) (4.35)

s.t c+ 1
N(1− α)

N∑
j=1

cj ≤ 0, (4.36)

max[0, g(x,vj)− c] = cj , (4.37)
x ∈ X, c ∈ RN+1. (4.38)

We may further relax the condition

cj = max[0, g(x,vj)− c]

to

cj ≥ max[0, g(x,vj)− c],

since having cj > max[0, g(x,vj)− c] for any j = 1, . . . , N will not improve the
objective value. In doing so, the constraint

cj ≥ max[0, g(x,vj)− c],

may be decomposed into the two constraints

g(x,vj)− c ≤ cj , cj ≥ 0.

This finally yields the final equivalent optimization problem:
BPN:

min
x,c

f(x) (4.39)

s.t c+ 1
N(1− α)

N∑
j=1

cj ≤ 0, (4.40)

g(x,vj)− c ≤ cj , (4.41)
cj ≥ 0, (4.42)
x ∈ X, c ∈ RN+1. (4.43)

One immediate benefit of solving the optimization problem BPN in
comparison to P is that BPN is more computationally tractable. As we
have seen, P does not guarantee a convex optimization problem even when
g was a convex function. Meanwhile, BPN is a convex optimization problem
provided g(x,vj) are convex functions and X is a convex set, in which case
BPN is solvable by standard optimization algorithms [RR13].
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CHAPTER 5

Concluding remarks

We have in this thesis studied risk measures and optimization under uncertainty.
In the first chapter, we considered theoretical aspects of various risk measures,
discussed their advantages and disadvantages, and reviewed coherency in the
sense of risk analysis. Of particular focus was the study of conditional Value-
at-Risk, which has many attractive qualities. After laying the theoretical
groundwork, we studied how concepts from risk analysis applies to different
problem domains.

In Chapter 2 we studied how an insurer may reduce their risk-loading by
the means of reinsurance contracts. We reviewed optimality conditions for
the case of reinsuring a single risk, together with newly developed optimality
conditions for multiple risks when the risk measure Value-at-Risk is used. We
then aimed to develop similar results in the case of conditional Value-at-risk.
The centerpiece of the discussion in this chapter was Theorem 2.3.7, which
identifies optimal stop-loss contract parameters when risks have a worst-case
dependency. We then examined how such solutions compared to those found
using simulation and numerical optimization. In the examples studied, we were
not able to improve significantly on solutions yielded by Theorem 2.3.7, even
when the risks had weaker dependency.

Unfortunately, we were not successful in deriving similar results for
multivariate risks with respect to conditional Value-at-Risk, tailored to other
dependency structures among the risk. This question remains open for future
work. Moreover, the problem of optimal reinsurance in the multivariate case
under other coherent risk measures also needs further study. It is known that
conditional Value-at-risk is a fundamental building block for the general classes
of law-invariant risk measures and convex risk measures. Could results similar
to those derived in this chapter be extended to such classes of risk measures?

In Chapter 3 the focus was on the application of Value-at-Risk and
conditional Value-at-Risk to estimate stock market risk in the near future.
We discovered that Value-at-Risk was far less risk averse than conditional
Value-at-Risk through concrete examples. We then used a different technique to
estimate the average Value-at-Risk, by estimating the parameters of a geometric
Brownian motion from historic data, and using this process to estimate the risk,
with adequate results.

To showcase the versatility of risk analysis, we investigated in Chapter 4 the
use of risk analysis in the optimization of structural designs. We discussed first
some aspect of the commonly used tool failure probability, which corresponded
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to the risk measure Value-at-Risk. We then studied how the approach from
[RR13] remedied some of these drawbacks. Here, the central element was the
use of superquantiles, and their counterpart buffered failure probability. These
share strong ties to conditional Value-at-Risk, and we discussed how using
these lead to preferable optimization problems. However, the analysis in this
chapter create an abstraction over the real world; we describe the state of a
structure by a mapping g, from the design choice together with the state of its
environment, to a number describing its performance. In a practical application,
such a function is likely not known perfectly. We may only be able to observe
measurements of g for given pairs of x and v. In practice, we may need to create
approximations to this function, inferred from laboratory tests. One interesting
problem for future work could be to combine machine learning approaches
for the approximation of g with concepts from risk analysis to be used in the
optimization of structural design.
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APPENDIX A

Appendix

Listing A.1: Chapter 2, necessary functions.

import numpy as np
from tqdm import tqdm
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from statsmodels.distributions.empirical_distribution import ECDF
import seaborn as sns
#Common problem parameters
N = 100000
alpha = 0.95
theta = 1/9

def empirical_quantile(X, alpha):
""" X : np.array

alpha: probability level in (0, 1)

Returns: the empirical quantile at level alpha.
"""
Y = np.sort(X)
index = np.ceil(Y.shape[0] * alpha).astype(int)
return Y[index]

def empirical_cvar(X, alpha):
""" X : np.array

alpha: probability level in (0, 1)

Returns: the empirical conditional value at risk, at level alpha.
"""
quantile = empirical_quantile(X, alpha)
return np.mean(X[np.where(X>=quantile)])

def S(X, x):
"""
X : np.array
x : value of X

Returns: Probability that X > x.
"""
Y = np.sort(X)
return (X.shape[0] - np.where(Y>x)[0][0])/X.shape[0]

def _I(a, b, X):
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"""
Helper function which returns the retained risk I for an \

insurance layer contract with parameters a, b, for the risk X.
If b = np.inf, it is a stop-loss reinsurance contract.
X: np.array.
a: Contract praramter a
b: Contract paramter b

Returns: I(X) given a, b.
"""
I = X.copy()
I[(a <= I) & (I <= b)] = a
I[I>b] = I[I>b]-(b-a)
return I

def reinsurance_risk_value(risk_measure, risks, a_s, b_s, alpha, theta):
"""
If b_i = np.inf, then reinsurance contract no. i is a stop-loss contract.
Otherwise it is an insurance layer contract.

Parameters:
a_s: list of contract parameters a_1, ..., a_m
b_s: list of contract parametrs b_1, ..., b_m.
theta: Risk premium
alpha: Probability level for the risk optimization.

riks: list of realizations of X_i, where each X_i is of type np.array.

Returns:
The risk value rho_alpha(sum(I_i(X_i) + (1+theta)E[R_i(X_i)])) given contract parameters.
"""
I = []
R = []
for a_i,b_i, X_i in zip(a_s, b_s, risks):

I.append(_I(a_i, b_i, X_i))
R.append(X_i - I[-1])

return risk_measure(np.sum(I, axis = 0), alpha) + np.mean(np.sum(R, axis = 0))*(1+theta)

def optimize_gridsearch_a_param(X_1, X_2, a_min = (0, 0), \
a_max = (100, 100), max_iter = 10, tol = 10e-10, verbose = True):

def f_bivariate(params):
"""A wrapper function to be with optimization packages.
Requires X_1, X_2 to exist as global variables.
"""
a_1 = params[0]
a_2 = params[1]
b_1 = params[2]
b_2 = params[3]
return reinsurance_risk_value(empirical_cvar, [X_1, X_2], \
[a_1, a_2], [b_1, b_2], alpha = alpha, theta = theta)

iterations = 1
diff = np.inf
max_iter = 30
#Initialize
_X = np.linspace(0, max(X_1), 10)
_Y = np.linspace(0, max(X_2), 10)
dx = _X[1]-_X[0]
dy = _Y[1]-_Y[0]
X, Y = np.meshgrid(_X, _Y)
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Z = np.array([f_bivariate( (a_1 , a_2, np.inf, np.inf)) for a_1, a_2 in
zip(X.ravel(), Y.ravel())]).reshape(X.shape)

current_best = np.min(Z)
while diff > tol and iterations < max_iter:

index = np.where(Z == np.min(Z))
_a1 = X[index[0][0], index[1][0]]
_a2 = Y[index[0][0], index[1][0]]

_X = np.linspace(_a1-dx, _a1+dx, 10)
_Y = np.linspace(_a2-dy, _a2+dy, 10)
dx = _X[1]-_X[0]
dy = _Y[1]-_Y[0]
X, Y = np.meshgrid(_X, _Y)
Z = np.array([f_bivariate( (a_1 , a_2, np.inf, np.inf)) for a_1, a_2 in

zip(X.ravel(), Y.ravel())]).reshape(X.shape)
diff = abs(np.min(Z) - current_best)
current_best = np.min(Z)
if verbose:

print(f"Iteration: {iterations}, current value: \
{current_best}, (a_1, a_2) : ({_a1}, {_a2}), difference from last iteration: {diff}")

iterations += 1
if verbose:

print(f"Best parameters found: a_1 = {_a1}, a_2 = {_a2} \
with optimal value {f_bivariate((_a1, _a2, np.inf, \
np.inf))} after {iterations} iterations.")

return _a1, _a2, current_best

def optimize_gridsearch_b_param(X_1, X_2, a = (0, 0), b_min = \
(0, 0), b_max = (100, 100), max_iter = 10, tol = 10e-10, \
verbose = True):

def f_bivariate(params):
"""A wrapper function to be with optimization packages.
Requires X_1, X_2 to exist as global variables.
"""
a_1 = params[0]
a_2 = params[1]
b_1 = params[2]
b_2 = params[3]
return reinsurance_risk_value(empirical_cvar, [X_1, X_2], \
[a_1, a_2], [b_1, b_2], alpha = alpha, theta = theta)

iterations = 1
diff = np.inf
max_iter = 30
#Initialize
_X = np.linspace(b_min[0], b_max[0], 10)
_Y = np.linspace(b_min[1], b_max[1], 10)
dx = _X[1]-_X[0]
dy = _Y[1]-_Y[0]
X, Y = np.meshgrid(_X, _Y)
Z = np.array([f_bivariate( (a[0] , a[1], b_1, b_2)) for b_1, b_2 in

zip(X.ravel(), Y.ravel())]).reshape(X.shape)
current_best = np.min(Z)
while diff > tol and iterations < max_iter:

index = np.where(Z == np.min(Z))
_b1 = X[index[0][0], index[1][0]]
_b2 = Y[index[0][0], index[1][0]]

_X = np.linspace(_b1-dx, _b1+dx, 10)
_Y = np.linspace(_b2-dy, _b2+dy, 10)
dx = _X[1]-_X[0]
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dy = _Y[1]-_Y[0]
X, Y = np.meshgrid(_X, _Y)
Z = np.array([f_bivariate( (a[0] , a[1], b_1, b_2)) for b_1, b_2 in

zip(X.ravel(), Y.ravel())]).reshape(X.shape)
diff = abs(np.min(Z) - current_best)
current_best = np.min(Z)
if verbose:

print(f"Iteration: {iterations}, current value: \
{current_best}, (b_0, b_1) : ({_b1}, {_b2}), \
difference from last iteration: {diff}")

iterations += 1
if verbose:

print(f"Best parameters found: b_1 = {_b1}, b_2 = {_b2} \
with optimal value {f_bivariate((a[0], a[1], _b1, _b2))} \
after {iterations} iterations.")

return _b1, _b2, current_best

def loss_surface_b_param(X_1, X_2, a_1, a_2, n_points = (30, 30)):
def f_bivariate(params):

"""A wrapper function to be with optimization packages.
Requires X_1, X_2 to exist as global variables.
"""
a_1 = params[0]
a_2 = params[1]
b_1 = params[2]
b_2 = params[3]
return reinsurance_risk_value(empirical_cvar, [X_1, X_2],\
[a_1, a_2], [b_1, b_2], alpha = alpha, theta = theta)

_X = np.linspace(a_1, max(X_1), n_points[0])
_Y = np.linspace(a_2, max(X_2), n_points[1])
dx = _X[1]-_X[0]
dy = _Y[1]-_Y[0]
X, Y = np.meshgrid(_X, _Y)
Z = np.array([f_bivariate( (a_1 , a_2, b_1, b_2)) \
for b_1, b_2 in zip(X.ravel(), Y.ravel())])
Z = Z.reshape(X.shape)
fig = plt.figure()
ax = fig.add_subplot(111, projection=’3d’)
Z = Z.reshape(X.shape)
ax.plot_surface(X, Y, Z)

#Optimize over a_1, a_2, b_1, b_2, numerical example 1.
import numpy as np
from scipy.optimize import minimize
def optimize_with_LBFGSB(X_1, X_2, initial_guesses, \
max_evaluations = 10000, verbose = True):

def f_bivariate(params):
"""A wrapper function to be with optimization packages.
Requires X_1, X_2 to exist as global variables.
"""
a_1 = params[0]
a_2 = params[1]
b_1 = params[2]
b_2 = params[3]
return reinsurance_risk_value(empirical_cvar, [X_1, X_2],\
[a_1, a_2], [b_1, b_2], alpha = alpha, theta = theta)

optimal_values = []
params = []
for initial_guess in initial_guesses:
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result = minimize(f_bivariate, initial_guess, method=’L-BFGS-B’,
options={’maxfun’:max_evaluations,

’disp’: True})
#Only positive values are admissable.
if result.fun >= 0:

optimal_values.append(result.fun)
params.append(result.x)
if verbose:

print(f"""Initial guess: {initial_guess}, \n
parameters found: {result.x}, \\
Objective value: {result.fun}""")

if len(params)>0:
best_value = min(optimal_values)
index = optimal_values.index(best_value)
return params[index], optimal_values[index]

else:
print("No feasible solutions found. Try again with other initial values.")
return none

Listing A.2: Python example
# Example 2

def generate_correlated_lognormal_variables(corr):
N = int(10E6)
means = (0, 0)
stds = (1, 1)
# Setting up the covariance matrix
covariance_matrix = [[stds[0]**2 , stds[0]*stds[1]*corr],

[stds[0]*stds[1]*corr, stds[1]**2]]
X_1, X_2 = np.random.multivariate_normal(means, covariance_matrix, 100000).T
# Finding the empirical cumulative distribution functions.
ecdf_X = ECDF(X_1)
ecdf_Y = ECDF(X_2)
# Generating uniform random variables on [0, 1] with correlation = 0.5
X_inv = ecdf_X(X_1)
Y_inv = ecdf_Y(X_2)

alpha = 0.95
theta = 1/9
m_1 = np.log(500)-np.log(101)/2
s_1 = np.sqrt(np.log(101/100))
m_2 = np.log(1000) - np.log(101)/2
s_2 = np.sqrt(np.log(101/100))
lognormal_1 = np.random.lognormal(m_1, s_1, N)
lognormal_2 = np.random.lognormal(m_2, s_2, N)
inv_lognormal = lambda X, x : np.quantile(X, x)
X_1 = inv_lognormal(lognormal_1, X_inv)
X_2 = inv_lognormal(lognormal_2, Y_inv)
return X_1, X_2

Listing A.3: Example 2, Chapter 2
#Example 2
L_1, L_2 = generate_correlated_lognormal_variables(0.7)
plt.scatter(L_1, L_2, s = .3)
plt.xlabel("$X_1$")
plt.ylabel("$X_2$")
plt.savefig("scatterplot_lognormal_positive_correlation.png")
plt.figure()
sns.distplot(L_1, label = "$f_{X_1}$")
sns.distplot(L_2, label = "$f_{X_2}$")
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plt.legend()
plt.savefig("distribution_lognormal_positive_correlation.png")
print("Correlation: ", np.corrcoef(L_1, L_2)[0, 1])

#step 1
value = reinsurance_risk_value(empirical_cvar, [L_1, L_2], \
[ a_1, a_2], [np.inf, np.inf], alpha = alpha, theta = theta)
print(value)

#Step 2
optimize_gridsearch_a_param(L_1, L_2, a_min = (0, 0), a_max = \
(max(L), max(M)))

#Step 3
optimize_gridsearch_b_param(L_1, L_2, a = (a_1, a_2), b_min = \
(a_1, a_2), b_max = (max(L_1), max(L_2)))

#Step 4
initial_guess_1 = (0, 0, 100, 100)
initial_guess_2 = (0, 0, 50, 100)
initial_guess_3 = (43, 87, 200, 100)
initial_guesses = [initial_guess_1,

initial_guess_2,
initial_guess_3]

a_1l = empirical_quantile(L_1, 1-(1/(1+theta)))
a_2l = empirical_quantile(L_2, 1-(1/(1+theta)))
loss_surface_b_param(L_1, L_2, a_1l, a_2l, (20, 20))
params, value = optimize_with_LBFGSB(L_1, L_2, initial_guesses)

Listing A.4: Chapter 2, Example 3

#Example 3
W_1, W_2 = generate_correlated_weibull_variables(-.7)
plt.scatter(W_1, W_2, s = .3)
plt.xlabel("$X_1$")
plt.ylabel("$X_2$")
plt.savefig("figures/scatterplot_beta_negative_correlation.png")
plt.figure()
sns.distplot(W_1, label = "$f_{X_1}$")
sns.distplot(W_2, label = "$f_{X_2}$")
plt.legend()
plt.savefig("figures/distribution_beta_negative_correlation.png")
print("Correlation: ", np.corrcoef(W_1, W_2)[0, 1])
#step 1
a_1 = empirical_quantile(W_1, 1-(1/(1+theta)))
a_2 = empirical_quantile(W_2, 1-(1/(1+theta)))
value = reinsurance_risk_value(empirical_cvar, [W_1, W_2], \
[ a_1, a_2], [np.inf, np.inf], alpha = alpha, theta = theta)
print("a_1, a_2, value:", a_1, a_2, value)
#Step 2
optimize_gridsearch_a_param(W_1, W_2, a_min = (0, 0), a_max = \
(max(W_1), max(W_2)), b = ( np.inf, np.inf))

b_values_1 = np.linspace(a_2, 150, 400)
v_values_1 = [reinsurance_risk_value(empirical_cvar, [W_1, W_2],\
(a_1, a_2),(np.inf, b_2), alpha = alpha, theta = theta) for b_2 in b_values_1]
b_values_2 = np.linspace(69, 150, 400)
v_values_2 = [reinsurance_risk_value(empirical_cvar, [W_1, W_2], \
(a_1, a_2),(np.inf, b_2), alpha = alpha, theta = theta) for b_2 in b_values_2]
plt.figure()
plt.plot(b_values, v_values, label = "$V_{\\alpha}$")

94



plt.legend()
plt.xlabel("$b_1$")
plt.savefig("b_1_loss_example_3.pdf")
plt.figure()
plt.plot(b_values_2, v_values_2, label = "$V_{\\alpha}$")
plt.xlabel("$b_1$")
plt.legend()
plt.savefig("b_2_loss_example_3.pdf")
#Step 3
optimize_gridsearch_b_param(W_1, W_2, a = (a_1, a_2), b_min = (a_1, a_2), b_max = (max(W_1), max(W_2)))
#Step 4
initial_guess_1 = (0, 0, 100, 100)
initial_guess_2 = (0, 0, 50, 100)
initial_guess_3 = (a_1, a_2, max(W_1)/2, max(W_2)/2)
initial_guess_4 = (np.mean(W_1), np.mean(W_2), max(W_1), max(W_2))

initial_guesses = [initial_guess_1,
initial_guess_2,
initial_guess_3]

a_1l = empirical_quantile(W_1, 1-(1/(1+theta)))
a_2l = empirical_quantile(W_2, 1-(1/(1+theta)))
loss_surface_b_param(W_1, W_2, a_1, a_2, (20, 20))
params, value = optimize_with_LBFGSB(W_1, W_2, initial_guesses)

Listing A.5: Chapter 2, Example 4
# Example 4
corr = -.3
N = int(2E5)
means = (100, 80)
stds = (25, 30)
# Setting up the covariance matrix
covariance_matrix = [[stds[0]**2 , stds[0]*stds[1]*corr],
[stds[0]*stds[1]*corr, stds[1]**2]]
N_1, N_2 = np.random.multivariate_normal(means, covariance_matrix, N).T

print("Correlation: ", np.corrcoef(N_1, N_2)[0, 1])

#step 1
a_1 = empirical_quantile(N_1, 1-(1/(1+theta)))
a_2 = empirical_quantile(N_2, 1-(1/(1+theta)))
value = reinsurance_risk_value(empirical_cvar, [N_1, N_2], \
[ a_1, a_2], [np.inf, np.inf], alpha = alpha, theta = theta)
print("a_1, a_2, value:", a_1, a_2, value)

#Step 2
optimize_gridsearch_a_param(N_1, N_2, a_min = (0, 0), \
a_max = (max(N_1), max(N_2)), b = ( np.inf, np.inf))
#Step 3
optimize_gridsearch_b_param(N_1, N_2, a = (a_1, a_2), b_min = \
(a_1, a_2), b_max = (max(N_1), max(N_2)))
#Step 4
initial_guess_1 = (0, 0, 100, 100)
initial_guess_2 = (50, 50, 150, 150)
initial_guess_3 = (a_1, a_2, max(N_1)/2, max(N_2)/2)
initial_guess_4 = (np.mean(N_1), np.mean(N_2), max(N_1), \
max(N_2))

initial_guesses = [initial_guess_1,
initial_guess_2,
initial_guess_3]
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params, value = optimize_with_LBFGSB(N_1, N_2, initial_guesses)

Listing A.6: Chapter 2, loss surface
import numpy as np
from tqdm import tqdm
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from statsmodels.distributions.empirical_distribution import ECDF

def empirical_quantile(X, alpha):
""" X : np.array

alpha: probability level in (0, 1)

Returns: the empirical quantile at level alpha.
"""
Y = np.sort(X)
index = np.ceil(Y.shape[0] * alpha).astype(int)
return Y[index]

def empirical_cvar(X, alpha):
""" X : np.array

alpha: probability level in (0, 1)

Returns: the empirical conditional value at risk, at level alpha.
"""
quantile = empirical_quantile(X, alpha)
return np.mean(X[np.where(X>=quantile)])

def S(X, x):
"""
X : np.array
x : value of X

Returns: Probability that X > x.
"""
Y = np.sort(X)
return (X.shape[0] - np.where(Y>x)[0][0])/X.shape[0]

def _I(a, b, X):
"""
Helper function which returns the retained risk I for an \
insurance layer contract with parameters a, b, for the risk X.

If b = np.inf, it is a stop-loss reinsurance contract.
X: np.array.
a: Contract praramter a
b: Contract paramter b

Returns: I(X) given a, b.
"""
I = X.copy()
I[(a <= I) & (I <= b)] = a
I[I>b] = I[I>b]-(b-a)
return I

def reinsurance_risk_value(risk_measure, risks, a_s, b_s, alpha, theta):
"""
If b_i = np.inf, then reinsurance contract no. i is a stop-loss contract. Otherwise it is an insurance layer contract.

Parameters:
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a_s: list of contract parameters a_1, ..., a_m
b_s: list of contract parametrs b_1, ..., b_m.
theta: Risk premium
alpha: Probability level for the risk optimization.

riks: list of realizations of X_i, where each X_i is of type np.array.

Returns:
The risk value rho_alpha(sum(I_i(X_i) + (1+theta)E[R_i(X_i)])) given contract parameters.
"""
I = []
R = []
for a_i,b_i, X_i in zip(a_s, b_s, risks):

I.append(_I(a_i, b_i, X_i))
R.append(X_i - I[-1])

return risk_measure(np.sum(I, axis = 0), alpha) +\
np.mean(np.sum(R, axis = 0))*(1+theta)

def f_bivariate(params):
"""A wrapper function to be with optimization packages. """
a_1 = params[0]
a_2 = params[1]
b_1 = params[2]
b_2 = params[3]
return reinsurance_risk_value(empirical_cvar, \
[X_1, X_2], [a_1, a_2], [b_1, b_2], alpha = alpha, theta = theta)

N = 100000
alpha = 0.95
theta = 1/9

def generate_correlated_lognormal_variables(corr):
N = int(10E6)
means = (0, 0)
stds = (1, 1)
# Setting up the covariance matrix
covariance_matrix = [[stds[0]**2 , stds[0]*stds[1]*corr],

[stds[0]*stds[1]*corr, stds[1]**2]]
X_1, X_2 = np.random.multivariate_normal(means, covariance_matrix, 100000).T
# Finding the empirical cumulative distribution functions.
ecdf_X = ECDF(X_1)
ecdf_Y = ECDF(X_2)
# Generating uniform random variables on [0, 1] with\
correlation = 0.5
X_inv = ecdf_X(X_1)
Y_inv = ecdf_Y(X_2)

alpha = 0.95
theta = 1/9
m_1 = np.log(500)-np.log(101)/2
s_1 = np.sqrt(np.log(101/100))
m_2 = np.log(1000) - np.log(101)/2
s_2 = np.sqrt(np.log(101/100))
lognormal_1 = np.random.lognormal(m_1, s_1, N)
lognormal_2 = np.random.lognormal(m_2, s_2, N)
inv_lognormal = lambda X, x : np.quantile(X, x)
X_1 = inv_lognormal(lognormal_1, X_inv)
X_2 = inv_lognormal(lognormal_2, Y_inv)
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return X_1, X_2

def generate_correlated_beta_variables(corr):
N = int(10E6)
means = (0, 0)
stds = (1, 1)
# Setting up the covariance matrix
covariance_matrix = [[stds[0]**2 , stds[0]*stds[1]*corr],

[stds[0]*stds[1]*corr, stds[1]**2]]
X_1, X_2 = np.random.multivariate_normal(means, covariance_matrix, 100000).T
# Finding the empirical cumulative distribution functions.
ecdf_X = ECDF(X_1)
ecdf_Y = ECDF(X_2)
# Generating uniform random variables on [0, 1] with correlation = 0.5
X_inv = ecdf_X(X_1)
Y_inv = ecdf_Y(X_2)

s_1 = 75
s_2 = 5.402
W_1 = np.random.gamma(2, 20, N)
W_2 = np.random.normal(50, 10, N)
inv_weibull = lambda X, x : np.quantile(X, x)
X_1 = inv_weibull(W_1, X_inv)
X_2 = inv_weibull(W_2, Y_inv)
return X_1, X_2

X_1, X_2 = generate_correlated_beta_variables(-0.7)
X, Y = np.meshgrid(np.linspace(0, max(X_1), 40), np.linspace(0, max(X_2), 40))
Z = np.array([f_bivariate( (a_1 , a_2, np.inf, np.inf)) \
for a_1, a_2 in tqdm( zip(X.ravel(), Y.ravel()))])
Z = Z.reshape(X.shape)

fig = plt.figure()
ax = fig.add_subplot(111, projection=’3d’)
Z = Z.reshape(X.shape)
ax.plot_surface(X, Y, Z)
plt.xlabel("$a_1$")
plt.ylabel("$a_2$")
plt.show()

fig, ax = plt.subplots()
plt.imshow(Z, extent=[ 0,max(X_2), max(X_1),0], interpolation="none")
ax.xaxis.tick_top()
plt.xlabel(’$a_1$’)
plt.ylabel(’$a_2$’)
plt.show()
from mpl_toolkits import mplot3d
fig = plt.figure()
ax = plt.axes(projection=’3d’)
ax.contour3D(X, Y, Z, 50)
plt.show()

Listing A.7: Chapter 4
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import yfinance
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import seaborn as sns
from scipy.stats import norm
np.random.seed(2021)

def empirical_cvar(X, alpha):
""" X : np.array

alpha: probability level in (0, 1)

Returns: the empirical conditional value at risk, at level alpha.
"""
quantile = empirical_quantile(X, alpha)
return np.mean(X[np.where(X>=quantile)])

def var_cvar_analysis(asset_ticker, name, lookback = 100, holding_period = 1, alpha = 0.95):
"""
This function retrieves financial market data from yahoo finance.
It calculates the relative losses over given holding periods,
and uses them to estimate the CVaR and VaR for the next period.

It also estimates the parameters of a gemetric brownian motion, which
is used to estimate the CVaR of the next period.

This is repeated for the entire dataset.
"""

horizon = ’7Y’
starting_date = "2015-1-1"
end_date = "2021-1-1"
#Retrieving market data
asset = yfinance.Ticker(asset_ticker)
asset_history = asset.history(period = horizon)["Close"].loc[starting_date:end_date]
asset_history = pd.DataFrame(asset_history)
#Calculating the relative difference
asset_history.columns = ["Price"]
asset_history["Difference"] = asset_history["Price"].diff(holding_period)
asset_history["Shifted"] = asset_history["Price"].shift(holding_period)
asset_history["Returns"] = -1* asset_history["Difference"]/asset_history["Price"].shift(holding_period)
asset_history = asset_history.dropna() #Shifting the data has caused a NAN-instance. This is dropped.
asset_history["CVaR estimate"] = 0
asset_history["VaR estimate"] = 0
asset_history["CVaR estimate GBM"] = 0
for day in range(asset_history.shape[0]-lookback-1):

#Estimating the paramters of a GBM
logdiff = np.log(asset_history[day:day + lookback].\ Price.shift(-1)/asset_history[day:day + lookback].Price).dropna()
XH = np.mean(logdiff)
quad = (logdiff - XH)**2
sigma = np.sqrt(sum(quad)/(quad.shape[0]))
mu = XH + sigma**2/2
#Using GBM parameters to find expectation and
#Variance for a log-normal RV
E = asset_history.iloc[day].Price*np.exp(mu)
var = asset_history.iloc[day].Price**2*np.exp(2*mu)*(np.exp(sigma**2)-1)
#Estimating the decribing features of the log-normal RV
sigma = np.sqrt(np.log(1 + (var/E**2)) )
mu = np.log( E**2 / np.sqrt(E**2 + var))
#Calculating the theoretical CVaR. Notice 1-alpha. This is because we are looking for the
# 1-alpha worst prices, causing the smallest returns.
cvar_est = -(1 - np.exp(mu+sigma**2/2) * ( norm.cdf( norm.ppf(1-alpha)-sigma)/(1-alpha) ))
asset_history["CVaR estimate"].iloc[day+lookback+1] = \
empirical_cvar(asset_history.Returns.iloc[day:day+lookback].values,alpha) \
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asset_history["VaR estimate"].iloc[day+lookback+1] = \
np.quantile(asset_history.Returns.iloc[day:day+lookback].values,alpha)
asset_history["CVaR estimate GBM"].iloc[day+lookback+1] = \
-(cvar_est-asset_history.Price[day])/asset_history.Price[day]

asset_history = asset_history.iloc[lookback+1:]
plt.figure(figsize = (8, 6))
plt.figure(figsize = (10, 6))
plt.plot(asset_history["CVaR estimate"], linewidth = 0.8, color \

= "Red", label = f"CVaR_{{{alpha}}}$ estimate")
plt.plot(asset_history["VaR estimate"], linewidth = 0.8, color = \

"Green", label = f"$CaR_{{{alpha}}}$ estimate")
plt.plot(asset_history["CVaR estimate GBM"], linewidth = 0.8, color\

= "Blue", label = f"$CaR_{{{alpha}}}$ estimate (GBM)")
plt.plot(asset_history["Returns"], linewidth = 0.8, \

label = "Negative relative returns")
plt.legend()
plt.savefig(f"figures/{name}_risk_return.pdf")
plt.figure()
sns.distplot(asset_history["Returns"].values, kde = False)
plt.legend(["Negative relative returns"])
plt.savefig(f"figures/{name}_return_distribution.pdf")
n_worst_days = int(asset_history.shape[0]*0.1)
worst_indices = asset_history.Returns.argsort()[-n_worst_days:][::-1].values
worst_returns = asset_history.iloc[worst_indices].Returns.values
predicted_cvar = asset_history.iloc[worst_indices]["CVaR estimate"].values
predicted_var = asset_history.iloc[worst_indices]["VaR estimate"].values
predicted_cvar_GBM = asset_history.iloc[worst_indices]["CVaR estimate GBM"].values
plt.figure(figsize = (5, 5))
plt.scatter(worst_returns, predicted_cvar)
plt.axis("equal")
plt.plot( ( 0, max(worst_returns)), (0, max(worst_returns)))
plt.xlabel("Relative negative return")
plt.ylabel("Estimated CVaR")
plt.savefig(f"figures/{name}_returns_vs_cvar.pdf")
plt.figure(figsize = (5, 5))
plt.scatter(worst_returns, predicted_var)
plt.axis("equal")
plt.plot( ( 0, max(worst_returns)), (0, max(worst_returns)))
plt.xlabel("Relative negative return")
plt.ylabel("Estimated VaR")
plt.savefig(f"figures/{name}_returns_vs_var.pdf")
plt.figure(figsize = (5, 5))
plt.scatter(worst_returns, predicted_cvar_GBM)
plt.axis("equal")
plt.plot( ( 0, max(worst_returns)), (0, max(worst_returns)))
plt.xlabel("Relative negative return")
plt.ylabel("Estimated CVaR (GBM)")
plt.savefig(f"figures/{name}_returns_vs_CVaR_GBM.pdf")
return asset_history, asset_history.iloc[worst_indices[:10]]

asset_history_sp, worst_days_sp = var_cvar_analysis("^GSPC", "SP", lookback = 100)
print(worst_days_sp[worst_days.columns[-4:]] + "SP")

asset_history_sp, worst_days_sp = var_cvar_analysis("MSFT", "MS", lookback = 100)
print(worst_days_sp[worst_days.columns[-4:]] + "SP")
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