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1 Introduction

A state of a system in quantum mechanics can be mathematically represented
as a density matrix ρ, that is a positive definite matrix with Tr(ρ) = 1. A state
is called pure if it can be represented as a vector v. The corresponding density
matrix is then a rank one projection onto the span of v. A state that is not
pure is called mixed. A mixed state ρ can be written as a convex combination

ρ =
∑

i

piψiψ
∗
i ,

where ∗ denotes the conjugate transpose, and the ψi are pure states. The
entropy S of a quantum state ρ, as defined by von Neumann, is

S(ρ) := −Tr ρ log(ρ).

Assuming that the ψi are orthogonal to each other in the formula ρ =
∑

i piψiψ
∗
i

given above, noting that the pi are then the eigenvalues of ρ, and using that
the trace is the sum of eigenvalues we see that

S(ρ) = −
∑

i

pi log(pi).

In this case the entropy of a pure state is 0, but strictly positive for a mixed
state. The entropy gives a measure of the uncertainty in an inherently statistical
quantum state. In a probability distribution where some outcomes have a higher
probability than others has a lower uncertainty of the outcome than a probability
distribution that is closer to being uniform. The average of two distributions
is closer to uniform than either is separately, so the entropy of the average of
two distributions should be higher than the average of the entropies of the two
distributions. In other words, it is natural to expect the entropy of probability
distributions and S to be concave. This is indeed the case.

If ρ1 and ρ2 are two states and we let ρ1,2 denote the state of their composite
quantum system then we have the subadditivity inequality

S(ρ1,2) ≤ S(ρ1) + S(ρ2).

In the case that ρ1,2,3 is the state of the composite of three subsystems whose
states are ρ1, ρ2 and ρ3 we get the following inequality known as strong
subadditivity

S(ρ1,2,3) + S(ρ2) ≤ S(ρ1,2) + S(ρ2,3).

See for example [Rus02] for details.
The relative entropy S(ρ||σ) of two states ρ and σ is

S(ρ||σ) := Tr ρ(log(ρ)− log(σ)).

The relative entropy gives a measure of how much two states differ. Two states
that differ should have a higher relative entropy than two equal states, so it
is natural to expect the relative entropy to be convex. The relative entropy is
indeed jointly convex. The rest of this section lists results on convexity/concavity
that doesn’t necessarily have a direct interpretation in physics.



Lieb showed in [Lie73] the concavity of the map

A 7→ TrArK∗ApK

for a positive matrix A, thus proving the Wigner-Yanase-Dyson conjecture. He
also showed that the two variable version

(A,B) 7→ TrArK∗BpK

is jointly concave in positive A and B. In [Lie73] it was also shown that the
map

A 7→ Tr exp(L+ lnA)

is concave. Carlen, Frank and Lieb showed in [CFL16] that the map

(A,B) 7→ Tr(A
q
2BpA

q
2 )s

is jointly convex or jointly concave for varying values of p, q and s.
A real function f(x) is called log-convex if log

(
f(x)

)
is convex. Ando and

Hiai showed in [AH11] that the map

A 7→ logω
(
f(A)

)
,

where f is an operator monotone decreasing function, and ω is a positive linear
functional, is convex. They also showed that a function f is operator monotone
decreasing if and only if f is operator log-convex, and similarly that a function
f is operator monotone increasing if and only if f is operator log-concave.

The next two recent results, that grew out of these earlier developments, mo-
tivates our main theorem. Hiai showed in [Hia16] the joint convexity/concavity
of the maps

(A,B) 7→ Tr g
(
Φ(Ap) 1

2 Ψ(Bq)Φ(Ap) 1
2
)

(A,B) 7→ Tr g
((

Φ(A−p) 1
2 Ψ(B−q)Φ(A−p) 1

2
)−1
)
.

Kirihata and Yamashita showed in [KY20] the convexity of the map

A 7→ g
(

Φ
(
f(A)

))
,

where Φ is a strictly positive linear operator. They also showed that the map

(A,B) 7→ τ
(

Φ
(
f1(A)

) 1
2 Ψ
(
f2(B)

)
Φ
(
f1(A)

) 1
2
)
,

where τ is a tracial positive functional, is jointly convex.
The goal of this thesis is to show the joint convexity of the map

(A,B) 7→ g
(

Φ
(
f1(A)

) 1
2 Ψ
(
f2(B)

)
Φ
(
f1(A)

) 1
2
)
.

This would generalize the result in [Hia16] to more functions than power
functions and in [KY20] from a functional τ to a functional of the form
A 7→ Tr g(A).

2



2. Preliminaries

2 Preliminaries

This section is a review of some basic material in matrix analysis. See for
example [Bha97] and [Bha07].

Functional calculus.

Definition 2.1. Let p(x) = cnx
n + cn−1x

n−1 + . . . c1x+ c0 be a real polynomial.
For a hermitian matrix A we define the fuctional calculus p(A) of p at A to be

p(A) := cnA
n + cn−1A

n−1 + . . . c1A+ c0I.

Where I denotes the identity matrix with the same dimensions as A.

With diagonalization A = UDU∗, for a diagonal matrix D = diag({λi}), we
get

p(A) = cnA
n + cn−1A

n−1 + . . .+ c1A+ c0I

= cn(UDU∗)n + cn−1(UDU∗)n−1 + . . .+ c1UDU
∗ + c0UIU

∗

= cnUD
nU∗ + cn−1UD

n−1U∗ + . . .+ c1UDU
∗ + c0UIU

∗

= U diag({cnλ
n
i })U∗ + U diag({cn−1λ

n−1
i })U∗ + . . .

+ U diag({c1λi})U∗ + U diag({c0})U∗

= U diag({p(λi)})U∗.

Which we write as Up(D)U∗.
Many functions can be approximated by polynomials, so the functional calculus
of a more general function is defined similarly. For a diagonal matrix:

Definition 2.2. Let D = diag(λi) be a diagonal matrix, and let f be a function
defined on a set that contains {λi}. Then we define the functional calculus
f(D) of f at D to be

f(D) := diag({f(λi)}).

For a general hermitian matrix:

Definition 2.3. Let A be a hermitian matrix with diagonalization A = UDU∗,
and let f be a function defined on a set that contains the spectrum of A. Then
we define the functional calculus f(A) of f at A to be

f(A) := Uf(D)U∗.

Example 2.4. For f(x) = ex and

A =
[
2 0
0 3

]
we get

f(A) =
[
e2 0
0 e3

]
.

Example 2.5. For f(x) = x
1
2 and

A = 1
3

[
19 8

√
2i

−8
√

2i 11

]
= 1√

3

[
i

√
2

−
√

2 −i

] [
1 0
0 9

]
1√
3

[
−i −

√
2√

2 i

]
3



we get

f(A) = A
1
2 = 1√

3

[
i

√
2

−
√

2 −i

] [
1 1

2 0
0 9 1

2

]
1√
3

[
−i −

√
2√

2 i

]
= 1

3

[
7 2

√
2i

−2
√

2i 5

]
.

Positivity.

Definition 2.6. A matrix A is called positive if it is hermitian and all eigenvalues
of A are nonnegative, and strictly positive if the eigenvalues are positive. We
write 0 ≤ A in the former case and 0 < A in the latter case.

We denote the set of n×n matrices by Mn, the set of positive n×n matrices
by M+

n and the set of strictly positive n× n matrices by M++
n .

Positivity has many equivalent definitions. One of them states that A is positive
if and only if its quadratic form is positive semidefinite. That is, if

0 ≤ x∗Ax, for all x.

Similarly A is strictly positive if and only if its quadratic form is positive
definite:

0 < x∗Ax, for all x 6= 0.
A third definition states that A is positive if and only if A = B∗B for some
matrix B. A is then strictly positive if and only if B is invertible.
The notion of positivity also makes sense for linear operators on some Hilbert
space. In this case a self-adjoint linear operator Φ is called positive if its
spectrum σ(Φ) is a subset of [0,∞) and strictly positive if σ(Φ) ⊂ (0,∞). We
will, however, not need this in this text.
Positivity gives us a partial ordering on the set of hermitian matrices:

A ≤ B, if 0 ≤ B −A.

Example 2.7. We have

0 ≤
[

7 2
√

2i
−2
√

2i 5

]
and [

7 2
√

2i
−2
√

2i 5

]
≤
[

19 8
√

2i
−8
√

2i 11

]
.

Example 2.8. For

A =
[
2 0
0 1

]
and B =

[
1 0
0 2

]
we neither have A ≤ B nor B ≤ A.

Example 2.9. The matrix [
1 3
3 1

]
has only positive elements, so it may look positive at first glance. Its
diagonalization, however, shows that this is a deception:[

1 3
3 1

]
= 1√

2

[
1 −1
1 1

] [
2 0
0 −1

]
1√
2

[
1 1
−1 1

]
.
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2. Preliminaries

Definition 2.10. A linear operator Φ: Mn → Mm is called positive if Φ(A) is
positive whenever A is positive. Φ is called strictly positive if it is positive and
Φ(A) is invertible whenever A is invertible.

Example 2.11. The linear operator Φ(A) = XAX∗ + Y AY ∗ for some unitary
matrices X and Y is strictly positive:
Writing A = UDU∗ we have XAX∗ = XUDU∗X∗ = XUD(XU)∗ and, since
XU(XU)∗ = XUU∗X∗ = XIX∗ = I , we see that this is a hermitian matrix
with positive eigenvalues whenever A is. Similarly with Y AY ∗.

Example 2.12. The linear operator

Φ(A) =
[
1 0
0 0

]
A

[
1 0
0 0

]
that acts on 2× 2 matrices is positive, but not strictly positive:[

1 0
0 0

]
A

[
1 0
0 0

]
=
[
1 0
0 0

] [
u1 u2
u3 u4

] [
λ1 0
0 λ2

] [
u1 u3
u2 u4

] [
1 0
0 0

]
=
[
λ1u1u1 + λ2u2u2 0

0 0

]
=
[
λ1‖u1‖2 + λ2‖u2‖2 0

0 0

]
.

Example 2.13. The linear functional φ(A) = TrA is strictly positive as the
trace of A is the sum of the eigenvalues of A.

Convexity and monotonicity.

Definition 2.14. We say that a function f , defined on an interval (a, b), is
operator convex if

f
(
(1− t)A+ tB

)
≤ (1− t)f(A) + tf(B), t ∈ [0, 1]

holds for all hermitian matrices A and B whose eigenvalues is in (a, b). Similarly,
we say that f is operator concave if the reverse inequality holds:

f
(
(1− t)A+ tB

)
≥ (1− t)f(A) + tf(B), t ∈ [0, 1].

If f is continuous then f is operator convex if

f

(
A+B

2

)
≤ f(A) + f(B)

2 , t ∈ [0, 1].

If f is operator convex then −f is operator concave, and if f is operator concave
then −f is operator convex.
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Example 2.15. f(x) = x2 is operator convex.
We have

f(A) + f(B)
2 − f

(
A+B

2

)
= A2 +B2

2 −
(
A+B

2

)2

= 2A2 + 2B2

4 − (A2 +B2 +AB +BA)
4

= A2 +B2 −AB −BA
4

= (A−B)2

4
Which is positive since the eigenvalues of A−B gets squared.

Example 2.16. The function f(x) = x3 is convex on [0,∞), but not operator
convex. With

A =
[
1 1
1 1

]
and B =

[
3 1
1 1

]
we get

f(A) + f(B)
2 − f

(
A+B

2

)
=
[
6 1
1 0

]
=
[
3−
√

10 3 +
√

10
1 1

] [
3−
√

10 0
0 3 +

√
10

][− 1
2
√

10
1
2 + 3

2
√

10
1

2
√

10
1
2 −

3
2
√

10

]
.

Definition 2.17. We say that a function f is operator monotone increasing (or
simply operator monotone) on an interval (a, b) if we have

A ≤ B ⇒ f(A) ≤ f(B).

for any hermitian matrices A and B with eigenvalues in (a, b). Similarly we say
that f is operator monotone decreasing if

A ≤ B ⇒ f(A) ≥ f(B).

If f is operator monotone increasing then −f is operator monotone
decreasing, and if f is operator monotone decreasing then −f is operator
monotone increasing.
If f(x) is operator monotone increasing then f(x−1) and f(x)−1 are operator
monotone decreasing.

Theorem 2.18. Let f : (0,∞) → R be a continuous, operator monotone
increasing function. Then f is operator concave.

Similarly a continuous, operator monotone decreasing function f : (0,∞)→
R is operator convex.
Remark 2.19. 2.18 can be proven by using the integral representation for operator
monotone increasing functions introduced later, or see [Bha97, Theorem V.2.5].

Example 2.20. The linear operator Φ(A) = XAX∗ is operator monotone
increasing.
Let A ≤ B, and let C be such that B −A = C∗C. Then

XBX∗ −XAX∗ = X(B −A)X∗ = XC∗CX∗ = (CX∗)∗CX∗

which is positive.
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2. Preliminaries

Example 2.21. The function f(x) = x−1 is operator monotone decreasing on
(0,∞).
First note that if I ≤ A we get

I ≤ A

A−
1
2 IA−

1
2 ≤ A− 1

2AA−
1
2

A−1 ≤ I.

Now let 0 < A ≤ B. Then

A ≤ B

I ≤ A− 1
2BA−

1
2

I ≥ (A− 1
2BA−

1
2 )−1

I ≥ A 1
2B−1A

1
2

A−1 ≥ B−1.

Example 2.22. Although f(x) = x2 is monotone increasing on [0,∞) it is not
operator monotone increasing. We have[

1 1
1 1

]
≤
[
2 1
1 1

]
but [

2 1
1 1

]2
−
[
1 1
1 1

]2
=
[
3 1
1 0

]
=

[ 1
2 (3−

√
13) 1

2 (3 +
√

13)
1 1

] [ 1
2 (3−

√
13) 0

0 1
2 (3 +

√
13)

] [− 1√
13

1
2 + 3

2
√

13
1√
13

1
2 −

3
2
√

13

]
.

Integral representation. The source for this section is [Bha97, Section V.4].

Theorem 2.23. Let K be the set of all functions f that are operator monotone
increasing on (−1, 1) and such that f(0) = 0 and f ′(0) = 1. Then K is convex,
compact in the pointwise convergence topology, and its extreme points have the
form

f(x) = x

1− ax, where a = 1
2f
′′(0).

The next theorem is a consequence of 2.23.

Theorem 2.24. Let f be a nonconstant operator monotone increasing function
on (−1, 1). Then f has an integral representation

f(x) = f(0) + f ′(0)
∫ 1

−1

x

1− λxdµ(λ)

for a unique probability measure µ on [−1, 1].

2.24 gives us an integral representation of operator convex functions.
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Theorem 2.25. Let f be a nonlinear operator convex function on (−1, 1). Then
f has an integral representation

f(x) = f(0) + f ′(0)x+ 1
2f
′′(0)

∫ 1

−1

x2

1− λxdµ(λ)

for a unique probability measure µ on [−1, 1].

A function f is operator monotone increasing on an interval (a, b) if and only
if f
( (b−a)t

2 + b+a
2
)
is operator monotone increasing on (−1, 1), so the theorems

above holds for functions on (a, b) as well.
Denote by H+ the upper halfplane {z ∈ C : Im(z) > 0} of the complex plane,
and by H− the lower halfplane {z ∈ C : Im(z) < 0}.

Definition 2.26. A function f : H+ → H+ is called a Pick function if it is
complex analytic. The set of all Pick functions will be denoted by P.

From Nevanlinna’s Theorem we get the following theorem.

Theorem 2.27. A function f is in P if and only if it has an integral
representation

f(z) = a+ bz +
∫ ∞
−∞

1
λ− z

dµ(λ) + C

where a ∈ R, b ≥ 0, µ is a positive Borel measure on R and C is the constant

C :=
∫ ∞
−∞

λ

λ2 + 1dµ(λ).

The representation can be shown to be unique. Denote by P (a, b) the subset
of P consisting of functions that can be analytically continued across the open
interval (a, b) to H− by reflection.
The results above leads to the following two theorems.

Theorem 2.28. A function f is in P (a, b) if and only if the measure µ in its
representation is such that µ(a, b) = 0.

Theorem 2.29. A function f is in P (a, b) if and only if f is operator monotone
increasing on (a, b).

Means.

Definition 2.30. For matrices A and B the arethmetic mean AOB is defined to
be

AOB := A+B

2 .

Definition 2.31. For invertible matrices A and B the harmonic mean A!B is
defined to be

A!B :=
(
A−1 +B−1

2

)−1

.

We have the relation

A!B = (A−1OB−1)−1.

8



3. Main Theorem

Definition 2.32. For positive matrices A and B the geometric mean A#B is
defined to be

A#B := A
1
2 (A− 1

2BA−
1
2 ) 1

2A
1
2 .

Theorem 2.33. Let A and B be positive matrices. We then have the order
relation

A!B ≤ A#B ≤ AOB.

Proof. Assume for contradiction that A!B > A#B. Then we get(
A−1 +B−1

2

)−1

> A
1
2 (A− 1

2BA−
1
2 ) 1

2A
1
2

A−1 +B−1 < 2A− 1
2 (A− 1

2BA−
1
2 )− 1

2A−
1
2

I +A
1
2B−1A

1
2 < 2(A 1

2B−1A
1
2 ) 1

2

I +A
1
2B−1A

1
2 < 2A 1

2B−1A
1
2

I < A
1
2B−1A

1
2

A−1 < B−1.

Since the means are symmetric we also get B−1 < A−1. This is a contradiction,
so A!B ≤ A#B. Assume for contradiction that A#B > AOB. Similarly to the
above we get

A
1
2 (A− 1

2BA−
1
2 ) 1

2A
1
2 >

A+B

2
2(A− 1

2BA−
1
2 ) 1

2 > I +A−
1
2BA−

1
2

2A− 1
2BA−

1
2 > I +A−

1
2BA−

1
2

A−
1
2BA−

1
2 > I

B > A.

Since the means are symmetric we also get A > B. This is a contradiction, so
A#B ≤ AOB. �

3 Main Theorem

Definition 3.1. Define F to be the set of functions f that are non-decreasing
and concave on (0,∞) with limx→∞

f(x)
x = 0.

Definition 3.2. Let f ∈ F . Define the function f̂ by

f̂(x) := inf
t∈(0,∞)

(
tx− f(t)

)
.

Given a function f we can find f̂ by differentiating tx− f(t) with respect
to t and finding its minimum.

Example 3.3. For f(x) = x
1
2 we get

f̂(x) = inf
t∈(0,∞)

(tx− t 1
2 ).

9



The derivative of tx− t 1
2 is

∂

∂t
(tx− t 1

2 ) = x− 1
2
√
t

which has the root t = 1
4x2 . This gives us

f̂(x) = − 1
4x.

Lemma 3.4 ([Hia16]). Let f ∈ F and B ∈M++
n . Then

Tr f(B) = inf
A∈M++

n

(
TrAB − Tr f̂(A)

)
.

proof (sketch). Writing B = UDU∗ we get, from the trace property,

Tr f(B) = TrUf(D)U∗ = TrUU∗f(D) = Tr f(D)

and
TrAB = TrAUDU∗ = TrAD.

We can therefore assume that B is diagonal and write B = diag(b1, b2, . . . , bn)
for b1 ≥ b2 ≥ . . . ≥ bn. It can be shown that ˆ̂

f = f , so we have
f(x) = inft∈(0,∞)

(
tx− f̂(t)

)
. Now we get

Tr f(B) =
n∑

i=1
f(bi)

= inf
a1,a2,...,an

n∑
i=1

(
aibi − f̂(ai)

)
= inf

A:=diag(a1,a2,...,an)∈M++
n

(
TrAB − Tr f̂(A)

)
≥ inf

A∈M++
n

(
TrAB − Tr f̂(A)

)
.

It can be shown, for A ∈ M++
n with eigenvalues a1 ≥ a2 ≥ . . . ≥ an, that

TrAB ≥
∑n

i=1 aibn+1−i. With this we get

TrAB − Tr f̂(A) ≥
n∑

i=1

(
aibn+1−i − f̂(ai)

)
≥

n∑
i=1

f(bi) = Tr f(B).

Taking infimum we get

inf
A∈M++

n

(
TrAB − Tr f̂(A)

)
≥ Tr f(B).

With both

Tr f(B) ≥ inf
A∈M++

n

(
TrAB−Tr f̂(A)

)
and inf

A∈M++
n

(
TrAB−Tr f̂(A)

)
≥ Tr f(B)

we get
Tr f(B) = inf

A∈M++
n

(
TrAB − Tr f̂(A)

)
.

�
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3. Main Theorem

Lemma 3.5 ([KY20]). Let f : (0,∞) → (0,∞) be an operator monotone
decreasing function, g : (0,∞)→ R an operator monotone increasing function
and Φ : M++

n →M++
m a strictly positive linear operator.

Then the map
M++

n →M++
m , A 7→ g

(
Φ
(
f(A)

))
is convex.

To prove this lemma we need two lemmas:

Lemma 3.6 ([KY20]). Let f : (0,∞) → (0,∞) be an operator monotone
decreasing function. Then we have

f(AOB) ≤ f(A)!f(B)

for A,B ∈M++
n .

Lemma 3.7 ([KY20]). Let Φ: M++
n →M++

m be a strictly positive linear operator.
Then we have

Φ(A!B) ≤ Φ(A)!Φ(B)

for positive A,B ∈M++
n .

proof of 3.5. As g is operator monotone increasing we have, from 3.6, that

g
(

Φ
(
f(AOB)

))
≤ g
(

Φ
(
f(A)!f(B)

))
.

Since g is operator monotone increasing we have, from 3.7, that

g
(

Φ
(
f(A)!f(B)

))
≤ g
(

Φ
(
f(A)

)
!Φ
(
f(B)

))
.

Since g is operator monotone increasing the function h(x) := g(x−1) is operator
monotone decreasing on (0,∞) and is therefore operator convex. Thus, for
C,D ∈M++

n , we have

g
(
(COD)−1) = h(COD) ≤ h(C)Oh(D) = g(C−1)Og(D−1).

Using this we get

g
(

Φ
(
f(A)

)
!Φ(f(B)

))
= g

((
Φ
(
f(A)

)−1
OΦ
(
f(B)

)−1
)−1

)
≤ g
((

Φ
(
f(A)

)−1
)−1

)
Og

((
Φ
(
f(B)

)−1
)−1

)
= g
(

Φ
(
f(A)

))
Og
(

Φ
(
f(B)

))
.

In summary we have

g
(

Φ
(
f(AOB)

))
≤ g
(

Φ
(
f(A)

))
Og
(

Φ
(
f(B)

))
,

and A 7→ g
(

Φ
(
f(A)

))
is convex. �
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Theorem 3.8. Let f1, f2 : (0,∞) → (0,∞) be operator monotone decreasing
functions, g(x) an operator monotone increasing function on (0,∞) such that
limx→0 g(x)x = 0 and ̂−g(x−1) is operator monotone increasing on (0,∞), and
let Φ: M++

n → M++
k , Ψ: M++

m → M++
k be strictly positive linear operators.

Then the map

M++
n ×M++

m → R, (A,B) 7→ Tr g
(

Φ
(
f1(A)

) 1
2 Ψ
(
f2(B)

)
Φ
(
f1(A)

) 1
2
)

is jointly convex.

Proof. Define the function h by h(x) := −g(x−1), which is operator monotone
increasing. We have

Tr g
(

Φ
(
f1(A)

) 1
2 Ψ
(
f2(B)

)
Φ
(
f1(A)

) 1
2
)

= −Trh
(

Φ
(
f1(A)

)− 1
2 Ψ
(
f2(B)

)−1Φ
(
f1(A)

)− 1
2
)
,

so we show the concavity of Trh
(

Φ
(
f1(A)

)− 1
2 Ψ
(
f2(B)

)−1Φ
(
f1(A)

)− 1
2
)
instead.

By 3.4 we have

Trh
(

Φ
(
f1(A)

)− 1
2 Ψ
(
f2(B)

)−1Φ
(
f1(A)

)− 1
2
)

= inf
Y ∈M++

k

(
TrY Φ

(
f1(A)

)− 1
2 Ψ
(
f2(B)

)−1Φ
(
f1(A)

)− 1
2 − Tr ĥ(Y )

)
= inf

Y ∈M++
k

(
TrY Φ

(
f1(A)

)−1Ψ
(
f2(B)

)−1 − Tr ĥ(Y )
)
.

Define the positive matrix X :=
(
Y Φ
(
f1(A)

)−1
) 1

2 which gives Y =
X2Φ

(
f1(A)

)
. This gives us

inf
Y ∈M++

k

(
TrY Φ

(
f1(A)

)−1Ψ
(
f2(B)

)−1 − Tr ĥ(Y )
)

= inf
X∈M++

k

(
TrX2Ψ

(
f2(B)

)−1 − Tr ĥ
(
X2Φ

(
f1(A)

)))

We look at the term TrX2Ψ
(
f2(B)

)−1 first. Define the strictly positive linear
operator Ψ′(Z) := Ψ(Z)X−2, so that Ψ′(Z)−1 = X2Ψ(Z)−1. We have

TrX2Ψ
(
f2(B)

)−1 = Tr Ψ′
(
f2(B)

)−1
.

Define the operator monotone increasing function k by k(x) := −x−1. We get

Tr Ψ′
(
f2(B)

)−1 = −Tr k
(

Ψ′
(
f2(B)

))
,

which is concave by 3.5.
Now we look at the term −Tr ĥ

(
X2Φ

(
f1(A)

))
. Define the strictly positive

linear operator Φ′(Z) := X2Φ(Z). This gives

−Tr ĥ
(
X2Φ

(
f1(A)

))
= −Tr ĥ

(
Φ′
(
f1(A)

))
.

12



3. Main Theorem

By assumption ĥ(x) = ̂−g(x−1) is operator monotone increasing. The term
−Tr ĥ

(
Φ′
(
f1(A)

))
is therefore, by 3.5, operator concave.

Let Z almost minimize infX∈M++
k

(
TrX2Ψ

(
f2(B)

)−1 − Tr ĥ
(
X2Φ

(
f1(A)

)))
for A = A1OA2 and B = B1OB2, and let ε > 0. Inserting Z in the expression
and using concavity we get

inf
X∈M++

k

(
TrX2Ψ

(
f2(B)

)−1 − Tr ĥ
(
X2Φ

(
f1(A)

)))
+ ε

≥ TrZ2Ψ
(
f2(B)

)−1 − Tr ĥ
(
Z2Φ

(
f1(A)

))
≥ 1

2

(
TrZ2Ψ

(
f2(B1)

)−1 + TrZ2Ψ
(
f2(B2)

)−1

− Tr ĥ
(
Z2Φ

(
f1(A1)

))
− Tr ĥ

(
Z2Φ

(
f1(A2)

)))
≥ 1

2

(
inf

Z1∈M++
k

(
TrZ2

1 Ψ
(
f2(B1)

)−1 − Tr ĥ
(
Z2

1 Φ
(
f1(A1)

)))

+ inf
Z2∈M++

k

(
TrZ2

2 Ψ
(
f2(B2)

)−1 − Tr ĥ
(
Z2

2 Φ
(
f1(A2)

))))

= 1
2

(
Trh

(
Φ
(
f1(A1)

)− 1
2 Ψ
(
f2(B1)

)−1Φ
(
f1(A1)

)− 1
2
)

+ Trh
(

Φ
(
f1(A2)

)− 1
2 Ψ
(
f2(B2)

)−1Φ
(
f1(A2)

)− 1
2
))

,

By letting ε go to zero we thus get joint concavity of

Trh
(

Φ
(
f1(A)

)− 1
2 Ψ
(
f2(B)

)−1Φ
(
f1(A)

)− 1
2
)
.

�

Hiai showed in [Hia16] the following theorem:

Theorem 3.9 ([Hia16]). Let g be a non-increasing function on (0,∞),
Φ: M++

n → M++
k , Ψ: M++

m → M++
k be strictly positive linear operators and

p, q ∈ [0, 1]. If either g(x1+p) or g(x1+q) is convex on (0,∞) then the maps

M++
n ×M++

m → R , (A,B) 7→ Tr g
(
Φ(Ap) 1

2 Ψ(Bq
)
Φ(Ap) 1

2
)

M++
n ×M++

m → R, (A,B) 7→ Tr g
((

Φ(A−p) 1
2 Ψ(B−q)Φ(A−p) 1

2
)−1
)

are jointly convex.

We see that the map (A,B) 7→ Tr g
(

Φ
(
f1(A)

) 1
2 Ψ
(
f2(B)

)
Φ
(
f1(A)

) 1
2
)
in

3.8 is more general than the maps in 3.9, but that this comes at the cost of
assuming g(x) and ̂−g(x−1) are operator monotone increasing instead of g(x1+p)
or g(x1+q) being convex.
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Example 3.10. With g(x) = x
1
2 , f1(x) = f2(x) = x−1 and Φ(A) = Ψ(A) = A

we get that

Tr g
(

Φ
(
f1(A)

) 1
2 Ψ
(
f2(B)

)
Φ
(
f1(A)

) 1
2
)

= Tr
(
(A−1) 1

2B−1(A−1) 1
2
) 1

2

= Tr(BA)− 1
2

is jointly convex.

Example 3.11. With g(x) = log(x), f1(x) = f2(x) = x−
1
2 , Φ(A) = XA and

Ψ(A) = Y B for some X ∈M++
n , Y ∈M++

m we get that

Tr g
(

Φ
(
f1(A)

) 1
2 Ψ
(
f2(B)

)
Φ
(
f1(A)

) 1
2
)

= Tr log
(
(XA− 1

2 ) 1
2Y B−

1
2 (XA− 1

2 ) 1
2
)

is jointly convex.

4 Closeness to convexity.

We saw earlier that the function f(x) = x3, although convex on (0,∞) is not
operator convex. This only means that the inequality f

(
A+B

2
)
≤ f(A)+f(B)

2
does not hold for general positive matrices A and B, not that it breaks for all
A and B. It is therefore possible to develop a notion of "closeness to convexity"
by asking the following question: If we generate random positive matrices A
and B, how often does the convexity inequality hold? First we need a way to
generate random matrices. We will use the Gaussian Unitary Ensemble.

Definition 4.1. Let A ∈Mn have the entries

Ak,l :=
a1

k,l + a2
k,li√

2n
, 1 ≤ k < l ≤ n

above the main diagonal, and

Ak,k := ak,k√
n
, 1 ≤ k ≤ n

on the main diagonal, where a1
k,l, a2

k,l and ak,k are independent, centered
Gaussian variables with variance 1. Then A is called the Gaussian Unitary
Ensemble.

A matrix A generated this way isn’t necessarily positive, but we can define
the matrix B by

B := (A2) 1
2

and use this instead.

The cube function. With f(x) = x3, A,B randomly generated positive
matrices and checking the convexity inequality we get for dimensions n =
2, . . . , 10 with 10000 trials the graph in 0.1. We see that the convexity inequality
holds more often than not in dimension 2, but drops off quickly as the dimension
increases.
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4. Closeness to convexity.

Figure 0.1: The cube function.

Figure 0.2: Some power functions.
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Figure 0.3: The exponential function.

Some power functions. The function f(x) = x3 may not be operator convex,
but g(x) = x2 is. The graph in 0.2 shows the power function h(x) = xr for
some values between 2 and 3 with 2500 trials. We see that the closeness to
convexity drops off in every dimension as r increases.

The exponential function. The exponential function f(x) = ex is convex as
a real function, but it is not operator convex. The graph in 0.3 shows that it
starts off close to convex for dimension 2 and drops off slowly as the dimension
increases.

16



5. Appendix.

5 Appendix.

Code used to produce 0.1, 0.2 and 0.3:

1 import numpy as np
2 import scipy as sp
3 from scipy.linalg import fractional_matrix_power, expm, eigvals
4 from math import sqrt
5 import scipy.stats as stats
6 import matplotlib.pyplot as pp
7

8

9 def GUE(N):
10 A = np.matrix([[stats.norm.rvs(loc=0, scale=1)/sqrt(2*N)
11 + stats.norm.rvs(loc=0, scale=1)*1j/sqrt(2*N)
12 for i in range(N)] for j in range(N)])
13 for i in range(N):
14 for j in range(N):
15 if i<j:
16 A[i, j] = np.conj(A[j, i])
17 if i==j:
18 A[i, j] = stats.norm.rvs(loc=0, scale=1)/sqrt(N)
19 A = fractional_matrix_power(A**2, .5)
20 return A
21

22

23 # f(x) = x^3
24

25 n = 10
26 its = 10000
27 dim_size = range(2, n+1)
28

29 convex_plot = []
30 for N in dim_size:
31 convex_counter = 0
32 for i in range(its):
33 A = GUE(N)
34 B = GUE(N)
35 if min(eigvals((A**3+B**3)/2-((A+B)/2)**3)) >= 0:
36 convex_counter += 1
37 convex_plot.append(convex_counter)
38 pp.ylim([0, its])
39 pp.xlabel("Dimension")
40 pp.bar(dim_size, convex_plot)
41 pp.legend(["f(x)=x^3."])
42

43

44 # f(x) = e^x
45

46 n = 10
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47 its = 10000
48 dim_size = range(2, n+1)
49

50 convex_plot = []
51 for N in dim_size:
52 convex_counter = 0
53 for i in range(its):
54 A = GUE(N)
55 B = GUE(N)
56 if min(eigvals((expm(A)+expm(B))/2-expm((A+B)/2))) >= 0:
57 convex_counter += 1
58 convex_plot.append(convex_counter)
59 pp.ylim([0, its])
60 pp.xlabel("Dimension")
61 pp.bar(dim_size, convex_plot)
62 pp.legend(["f(x)=e^x"])
63

64

65 # f(x) = x^r
66

67 n = 10
68 its = 2500
69 exponents = [2.2, 2.4, 2.6, 2.8]
70 dim_size = range(2, n+1)
71

72 fig, axs = pp.subplots(2, 2)
73 first_axis = 0
74 second_axis = 0
75

76 for exp in exponents:
77 def f(A):
78 return fractional_matrix_power(A, exp)
79

80 convex_plot = []
81 for N in dim_size:
82 convex_counter = 0
83 for i in range(its):
84 A = GUE(N)
85 B = GUE(N)
86 if min(eigvals((f(A)+f(B))/2-f((A+B)/2))) >= 0:
87 convex_counter += 1
88 convex_plot.append(convex_counter)
89

90 axs[first_axis, second_axis].bar(dim_size, convex_plot)
91 axs[first_axis, second_axis].legend(["f(x)=x^"+str(exp)])
92 axs[first_axis, second_axis].set(ylim=[0, its])
93 axs[first_axis, second_axis].set(xlabel="Dimension")
94

95 if second_axis <= first_axis:
96 second_axis += 1
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5. Appendix.

97 else:
98 second_axis -= 1
99 first_axis += 1
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