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© 2021 Åsmund Hausken Sande

Prospective Reserves of Life Insurance Policies under the
Heath-Jarrow-Morton Framework

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/


Abstract

In this thesis we consider a general stochastic interest rate under the HJM
(Heath-Jarrow-Morton) framework. We further present a general model for the
pricing of life insurance policies allowing for a wider range of stochastic policy
functions than previously done within the HJM framework. This is carried out
by modelling them under a general financial market model with Gaussian noise.

Furthermore, we develop standard pricing formulas based on financial arbi-
trage methods for both current time and future time-points. It is worth noting
that these equations are contingent on formulas pricing the instantaneous values
of the policy functions as financial claims.

Lastly, we give an example where the theory is applied to exactly evaluate the
price of reserves within a new theoretical pension scheme with stochastic policy
functions tied to the interest rate. As a part of this example we develop small
generalizations of some financial pricing formulas for call and digital options on
zero-coupon bonds.

In order to rigorously justify these results the thesis covers a large amount
of background material. This includes measure and probability theory, as well
as using these to introduce important concepts in interest rate, finance and
classical insurance theory.
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Chapter 1

Introduction

1.1 General Background

The discipline of actuarial science, on which this thesis will primarily focus,
applies mathematical and statistical methods to fields such as insurance and
finance. Mainly, we will be considering rigorous mathematical modelling of
uncertainty in the field of life insurance.

The job of an actuary is to apply such actuarial methods in order to compute
and analyse risk. In life insurance, for example, actuaries are often tasked
with the study of mortality, which includes computing survival probabilities for
different groups of people. Another important task in life insurance, which will
be a major part of this thesis, is the pricing of insurance contracts. The payouts
of these agreements, referred to as reserves, are determined by policy functions
which state how much the insured is owed under different circumstances.

The methods used for such analysis has changed significantly over time.
While dating back at as far as antiquity the field of actuarial science had its
scientific beginnings in the 17th century. Here personal risk, like mortality,
was studied alongside annuities, compound interest and eventually probability
theory, all of which are essential for the field’s foundation.

Early actuarial models were generally deterministic, but with the formal-
ization of stochastic processes in the 20th century much more general methods
have been introduced. The advent of modern computers further revolutionized
the field and allowed more complicated models to be practically utilized. This
has led to the possibility of stochastic models for both interest rates and pol-
icy functions. Along with these advancements there have been many concepts
borrowed from mathematical finance, primarily in regards to bond and option
pricing.

While such methods are available, many insurance models still utilize de-
terministic, or even constant, interest rates in their analysis. Even so, much
work has been done with the application of stochastic short-rate models in the
realm of life insurance, see Persson [10] or Zaglauer [12] for examples. However,
a common problem with short-rate models, mentioned in Filipović [3], is the
difficulty in fitting the model to the forward curve.

There are many ways of resolving this problem, for example one could use
the BDT (Black-Derman-Toy) short-rate model. As mentioned in Gaillardetz
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[5] “the BDT model is used by practitioners because it matches the current term
structure of interest rates and the volatilities”, where it is referred to [8] and
others for a detailed justification.

Solutions like the BDT model, however, assumes a positive short-rate, and
as recent times have shown, this is not always the case. We will in this thesis
present a framework that allows for both easy integration of the entire forward
curve in model calibration as well as allowing for negative interest rates. The
HJM (Heath-Jarrow-Morton) forward rate framework allows for both of these
as mentioned in Filipović [3], which is there justified by the initial forward curve
explicitly appearing in the definition.

Unfortunately, as far as we are aware, not much work has been done with
the pricing of reserves under direct modelling of forward rates within the general
HJM framework. In Baccinello [1] this class of interest rate models is used to
compute the current price of reserves for a limited class of stochastic policy
functions, utilizing policy functions based on stock price models with constant
drift and volatility. We will aim to generalize this setting by allowing for a much
broader class of policy functions.

1.2 General Outline

In this thesis we will similarly consider a general stochastic interest rate under
the HJM framework. We will create a general model allowing for a wider range of
stochastic policy functions by modelling them under a general financial market
model with Gaussian noise.

Furthermore, we will develop pricing formulas based on financial arbitrage
methods for both current time and future time-points. It is worth noting that
these equations will be contingent on formulas pricing the instantaneous values
of the policy functions as financial claims. Lastly, we give an example where
the theory is applied to exactly evaluate the price of reserves within a new
theoretical pension scheme. In this example we will consider stochastic policy
functions based on the price of zero-coupon bonds, thereby tying them directly
to the forward rate.

In order to rigorously justify these results, the thesis will cover a large amount
of background material. This will include measure and probability theory, as
well as using these to introduce important concepts in interest rate, finance and
classical insurance theory.

1.3 Structure of the Thesis

• We start in Chapter 2 by covering the necessary theoretical background
material. Firstly, basic concepts in measure and probability theory are
introduced, along with the main results needed to work with them. These
concepts are then used to formulate the standard Lebesgue integral as well
as giving our own thorough construction of the Lebesgue-Stieltjes integral
based on a finite variation approach. Several important results regarding
integration theory is also given, including the monotone and dominated
convergence theorems. The final part of the chapter covers stochastic
processes, conditional expectations and the Itô integral. This is then used
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to define stochastic differential equations and several important classes of
stochastic processes. Some relevant examples and applications are given
along with our own proofs of several known results.

• Chapter 3 introduces many important concepts from mathematical finance
as well as defining our market model. Arbitrage theory is then introduced
leading into the two first fundamental theorems of asset pricing. These
are applied to define arbitrage-free prices for attainable claims which will
be essential for our later evaluation of reserves.

• We move on to Chapter 4 where we specify the HJM framework for forward
rates together with some important results. Using this framework we
introduce the concept of forward measures and apply these to formulate
pricing formulas for European and digital options which generalizes earlier
known results.

• In Chapter 5 we cover classical life insurance based on deterministic in-
terest rates and policy functions. Explicit pricing formulas are presented
along with two versions of Thiele’s differential equation.

• The main part of our contribution starts in Chapter 6. Here, we specify
our framework for modelling insurance policies with both stochastic policy
functions and interest rates under HJM. We then prove two explicit pricing
formulas analogous to results covered in Chapter 5. We then apply these
equations in an example utilizing both our framework and the pricing
formulas we developed in Chapter 4.

• The aforementioned example is further analysed in Chapter 7 where we
apply numerical and statistical methods to demonstrate how the theory
can be used. We here specify an exact interest model with stochastic policy
functions in order to compute current and future reserve prices through
simulation.

• In Chapter 8 a brief summary is given along with a lamentation of work
left undone.

• Appendix A stores the relevant code used for exact computation and sim-
ulation in Chapter 7.

3



Chapter 2

Theoretical Background

2.1 Measure Theory

Nearly every part of the upcoming modelling work will include either integration,
probability theory, or both. The underpinning of both fields is measure theory,
the mathematical approach to sizes of sets.

The upcoming subsections will be mainly based on theory covered in [9],
which we refer to for further reading.

2.1.1 Properties of σ-algebras

The basic building blocks of measure theory are subsets, but in order to en-
sure we can perform the necessary operations on these sets we will need some
structure on the sets we will measure. In probability theory for instance, if a
set consists of all possible outcomes of an experiment, then a σ-algebra would
contain all events that can be assigned a probability.

Definition 2.1. A σ-algebra on a set Ω is a collection A of subsets of Ω with
the following properties

• Ω ∈ A.

• A ∈ A ⇒ Ac ∈ A.

• {An}n≥1 ⊂ A ⇒
⋃
n≥1An ∈ A.

Here we have used Ac to denote the complement of A, i.e. all elements in Ω
that are not in A, and {An}n≥1 to denote a countable collection of sets. We
may note that these properties also imply

• ∅ ∈ A.

• {An}n≥1 ⊂ A ⇒
⋂
n≥1An ∈ A.

We will call all sets A ∈ A A-measurable, or simply measurable if there is no
ambiguity.

In many cases we are interested in the smallest possible σ-algebra containing
a set E ∈ Ω, in this case we let Σ be the collection of all σ-algebras that contain
E. Note that this collection is non-empty since 2Ω, the collection of all subsets
of Ω, is trivially a σ-algebra. We then have the following result.
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Proposition 2.1. The smallest σ-algebra containing E exists and is on the
following form.

σ(E) =
⋂
A∈Σ

A.

Proof. We will demonstrate each defining property separately and in order.

• Since both Ω and E is in A for all A ∈ Σ they are also contained in σ(E).

• If A ∈ E then A ∈ A for all A ∈ Σ then by the second defining property
of σ-algebras Ac must be in all A ∈ Σ and thus in E.

• If {An}n≥1 ⊂ E then {An}n≥1 ⊂ A for all A ∈ Σ then by the third
defining property of σ-algebras

⋂
n≥1An must be in all A ∈ Σ and thus

in E.

This proves that σ(E) is a σ-algebra containing E, but since σ(E) is the
intersection of all such σ-algebras we must have σ(E) ⊂ A for all A ∈ Σ, and
conclude that σ(E) must be the smallest σ-algebra containing E.

The σ-algebras generated by other collections of sets can often be compli-
cated and may contain intricate and exotic sets. In order to actually work with
these generated σ-algebras we will need the monotone class theorem, which
requires a few more definitions and results.

Definition 2.2. An algebra on a set Ω is a collection A of subsets of Ω with
the following properties

• Ω ∈ A.

• A ∈ A ⇒ Ac ∈ A.

• {Ai}ni=1 ⊂ A ⇒
⋃n
i=1Ai ∈ A.

This is the exact same requirements as a σ-algebra, but with the requirement on
countable unions weakened to finite unions.

Definition 2.3. A monotone class M is a collection of subsets of Ω with the
following properties

• If we have an increasing sequence of sets in M, i.e. {An}n≥1 ⊂ M and
n ≤ m⇒ An ⊂ Am we have

⋃
n≥1An ∈M.

• If we have a decreasing sequence of sets in M, i.e. {An}n≥1 ⊂ M and
n ≤ m⇒ Am ⊂ An we have

⋂
n≥1An ∈M.

Another way to put it is that monotone classes are closed under monotone limits
of sets.

In a nearly identical way to when we showed the existence of σ(E) there
exists a smallest monotone class containing E denoted by M(E). These two
constructions are closely related by the monotone class theorem

Theorem 2.1 (The Monotone Class Theorem for Sets). For an algebra A we
have that σ(A) =M(A). A proof of this statement can be found in [9, Theorem
1.1].
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2.1.2 Measure Spaces

Now that our building blocks are in place we can begin to define the namesake
of measure theory, the measure.

Definition 2.4. A measurable space is a pair (Ω,A) where A is a σ-algebra on
Ω.

Definition 2.5. A measure on a measurable space (Ω,A) is a function µ : A →
[0,∞] with the following properties.

• µ(∅) = 0.

• Countable additivity: If {An}n≥1 ⊂ A and n 6= m ⇒ An ∩ Am = ∅, we
have

µ

⋃
n≥1

An

 =
∑
n≥1

µ(An).

This definition implies a few more useful properties.

• Monotonicity: Let A,B be A-measurable sets, then A ⊂ B ⇒ µ(A) ≤
µ(B).

• Continuity of measures:

– if {An}n≥1 ⊂ A is an increasing collection of sets, i.e. n ≤ m ⇒
An ⊂ Am, we have

µ

⋃
n≥1

An

 = lim
n→∞

µ(An).

– if {An}n≥1 ⊂ A is a decreasing collection of sets, i.e. n ≤ m ⇒
Am ⊂ An, and µ(A1) <∞ we have

µ

⋂
n≥1

An

 = lim
n→∞

µ(An).

If µ(Ω) = 1 we often call the measure µ a probability measure.

Definition 2.6. A measure space (Ω,A, µ) is a measurable space equipped with
a measure. In the cases where µ(Ω) = 1 we will often call the measure space
(Ω,A, µ) a probability space.

We say that a measure space is finite if µ(Ω) < ∞. If the space is not
finite we have a weaker condition that often serves the same purpose, namely
σ-finiteness.

Definition 2.7. A measure µ on a measurable space (Ω,A) is called σ-finite
if there is a sequence of measurable sets {An}n≥1 such that ∪nAn = Ω and
µ(An) <∞ for all n.

If we have a measure space (Ω,A, µ) such that µ is σ-finite we will say that
the measure space (Ω,A, µ) is σ-finite.
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When dealing with measure spaces we can often ignore events that occur on
small sets. For any property that holds except on a set of measure zero we say
that it occurs almost everywhere or a.e. for short. We will specify that we are
referring to a measure µ in such a context by saying the event happens µ-a.e. if
there is ambiguity.

If the measure space is also a probability space we often instead say that the
event occurs almost surely or a.s. instead.

We will now consider some common constructions and specific examples of
measure spaces, the first of which is perhaps the simplest.

Example 2.1. Let Ω be any space and let 2Ω be its power set, the collection of
all subsets of Ω. We can then define the counting measure # on (Ω, 2Ω) as

#(A) = {The number of elements in A}
For any A ⊂ Ω. Note that this measure will never be σ-finite if Ω is not

countable

To properly justify some of constructions in the next examples we will need
to use the monotone class theorem for sets to guarantee uniqueness in certain
cases. We will not prove the existence, but the construction of these extensions
can be found in [9, Chapter 6].

Lemma 2.1 (Uniqueness of Measure Extensions). Assume we have a mea-
surable space (Ω,G) such that G = σ(A) for some algebra A. If we have two
σ-finite measures µ, υ such that µ(A) = υ(A) for all A ∈ A then µ = υ, i.e.
µ(G) = υ(G) for all G ∈ G.

Proof. Let M be the collection of all sets E such that µ(E) = υ(E). We then
have A ∈M and the following properties by continuity of measures.

If {En}n≥1 ⊂M is a monotone increasing sequence then

µ

(⋃
n

En

)
= lim
n→∞

µ(En) = lim
n→∞

υ(En) = υ

(⋃
n

En

)
,

which implies that ∪nEn is in M
For the next step we need to use σ-finiteness. Let {Bn}n≥1 be a measurable

partition of Ω such that µ(Bn) is finite for all n and let {Cn}n≥1 be a partition
of Ω such that υ(Cn) is finite for all n. We can then define {Dn} to be the
countable collection of all intersections on the form Bi∩Cj for i, j ∈ N and note
that both µ(Dn) and υ(Dn) is finite for all n.

If {En}n≥1 is a monotone decreasing sequence then we define Emn = En∩Dm

for all n,m ∈ N and note that Emn is of finite measure. This allows us to apply
continuity of measures and countable additivity to get

µ

(⋂
n

En

)
= µ

(⋃
m

⋂
n

Emn

)
=
∑
m

µ

(⋂
n

Emn

)

=
∑
m

lim
n→∞

µ(Emn ) =
∑
m

lim
n→∞

υ(Emn )

=
∑
m

υ

(⋂
n

Emn

)
= υ

(⋃
m

⋂
n

Emn

)
= υ

(⋂
n

En

)
.
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This means that ∩nEn is in Ω which proves that M is a monotone class.
SinceM also contains A it must therefore contain the monotone class generated
by A. This means that M must contain the σ-algebra generated by A which,
by assumption, equals G. In other words µ(G) = υ(G) for all G ∈ G.

This lemma allows us to consider many new constructions, the first of which
is known as the completion of a σ-algebra. Whenever a set N is contained within
a measurable set A such that µ(A) = 0 we will call N a null set with respect to
µ, or simply a null set if there is no ambiguity. A null set N is not necessarily
measurable, but intuitively, we should be able to assign N a measure of zero.

Definition 2.8. Let (Ω,A, µ) be a measure space and denote the collection of
all null sets N . We then define the completion of A with respect to µ, usually
referred to as simply the completion of A, as

σ (N ∪A) .

We could define µ on N ∪A by µ(N) = 0 for all N ∈ N . Then, by Lemma
2.1, we can uniquely extend µ to the completion of A.

If A already contains N we will say that (Ω,A, µ) is complete.

Example 2.2. Once we have two σ-finite measure spaces (Γ,G, µ) and (Λ,H, υ)
we can define the product measure space (Γ × Λ,G ⊗ H, µ × υ). The con-
struction defines G ⊗ H, the product σ-algebra on Γ × Λ, as the completion
of the σ-algebra generated by all measurable squares, i.e. sets on the form
E × A such that E ∈ G, A ∈ H. The so-called product measure µ × υ is then
defined on these measurable rectangles by (µ × υ)(E × A) = µ(E)υ(A). Note
that the collection of all finite disjoint unions of measurable rectangles forms an
algebra which means that by extending µ× υ by finite additivity to that algebra
we can apply our uniqueness result to ensure the measure has a unique extension
to all sets in G ⊗H.

Example 2.3. Sometimes when considering a measure space (Ω,A, µ) we would
like to work with only a measurable subset Γ ⊂ Ω. In this case we can construct
a σ-algebra on Γ by defining H = {E ∩ Γ : E ∈ A}. By restricting µ to H
we get a new measure space (Γ,H, µH). We will refer to this construction as a
restricted measure space.

Example 2.4. It is also worth mentioning the canonical measure space on the
real line (R,B(R), λ) where B(R) is the completion of σ({U : U open in R}).
This could be equivalently constructed by taking the completion of the σ-algebra
generated by the algebra of finite disjoint unions of closed and bounded intervals,
this means that the topology of R would be contained in B(R). We then define λ
by λ([a, b]) = b−a and then extend it uniquely to all of B(R). In other words, this
measure generalizes the concept of length on R. We will refer to this measure
as the Lebesgue measure on the real line. For a more detailed construction we
refer to [9].

By Example 2.2 we can extend this to Rn for any n, in this case the measure
will be an extension of n-dimensional volume.

Similarly, by Example 2.3, we can consider the restricted Borel σ-algebra on
some measurable subset of R, usually on the form [0, T ] for some T > 0.

We will refer to these σ-algebras as B(Rn) or B([0, T ]) respectively, or simply
B if there is no ambiguity.

8



2.1.3 Measurable Functions

We will usually deal with functions to analyse in the context of measure theory,
however there may exist functions that do not play well with our measurable
sets. We will therefore define the following class of functions.

Definition 2.9. For a measure space (Ω,A, µ) a function X : Ω→ Rn is called
measurable if for all B ∈ B we have that X−1(B) = {ω ∈ Ω : X(ω) ∈ B} is
A-measurable.

If µ is a probability measure we will call X a random variable, or an n-
dimensional random variable if the dimension is important.

This definition can be extended to functions between any two measurable
spaces, but this extension will not be necessary in this text.

It is also worth noting that measurability of functions are preserved under
many operations, such as those described below.

Theorem 2.2. Consider the measure space (Ω,A, µ). Let f, g be A-measurable
functions, let a ∈ R and let {hn}n≥0 be a sequence of A-measurable functions

• The collection of measurable functions form an algebra i.e. the following
conditions hold.

∗ f + g is A-measurable.

∗ af is A-measurable.

∗ f · g is A-measurable.

• If (Ω,A, µ) is complete and some function k is such that k = f µ-a.e.
then k is A-measurable.

• The functions max(f, g) and min(f, g) are A-measurable.

• If it exists, the pointwise limit limn→∞ hn is A-measurable.

• If X : Rn → Rm and Y : Ω → Rn are measurable functions such that the
image of Y is contained in the range of X then their composition, X(Y ),
is measurable as function X(Y ) : Ω→ Rm.

Similarly to working with σ-algebras we can struggle to prove things for
large classes of functions. We will mention several results that will help us in
later sections, but we will also occasionally have use for the function version of
the monotone class theorem. This theorem allows us, under certain conditions,
to extend properties of indicator functions to larger classes of functions. Note
that the indicator function 1E of a set E is defined by 1E(ω) = 1 if ω ∈ E and
0 otherwise. This result is a slight simplification of [3, Theorem 6.3].

Theorem 2.3 (Monotone Class Theorem for Functions). Assume that Γ is any
collection of subsets of a set Ω such that Γ is closed under finite intersections.
Let H be any collection of real valued functions on Ω satisfying the following
conditions.

1. H is a vector space.

2. For all G ∈ Γ the indicator function 1G is in H.
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3. Let {fn}n≥1 ⊂ H be a monotone increasing sequence of functions. If
fn → f pointwise for some bounded function f then f ∈ H.

In this case we have that H contains all bounded σ(Γ)-measurable functions.

While we mostly deal with real valued function we will occasionally encounter
functions on the form f : Ω → Rn, in dealing with these we will first clarify
some standard notation. For two n-dimensional vectors x, y ∈ Rn we denote
the following.

• The i’th component of x: x(i).

• The inner product on Rn: x · y =
∑n
i=1 x

(i)y(i).

• The absolute value of x: |x| = x · x =
√∑n

i=1 x
(i)2.

We will use the similar notation for functions, let f, g : Ω → Rn, we then
define.

• The i’th component of f(ω): f (i)(ω) = (f(ω))(i).

• Dot product of f and g: (f · g)(ω) = f(ω)g(ω) =
∑n
i=1 f

(i)(ω)g(i)(ω).

2.2 Integration Theory

We are now ready to define integration in the context of measure theory, this
will be an extension of the classical Riemann integral in the case of the Lebesgue
measure on the real line, but will also apply to many new measure spaces.

The following subsections will mainly be based on theory covered in [9],
which we refer to for further reading.

2.2.1 Lebesgue Integration

Once we have defined a measure space (Ω,A, µ) we can begin defining integrals
under our measure. We will start by considering our integrands to be measurable
one-dimensional functions, but will extend the definition by carrying out our
integration componentwise.

To construct this integral we first need a simple class of functions where we
can intuitively define our integral. The most basic of which is the indicator
functions defined by 1E(ω) = 1 if and only if ω ∈ E and 0 otherwise. We then
define, for all E ∈ A, ∫

Ω

1E(ω)dµ(ω) = µ(E).

We will often suppress the notation of some or all of the integrating variables,
in this case ω. With this convention our definition is written as∫

Ω

1Edµ = µ(E).

We then extend this by linearity to simple functions, which are functions on
the form

∑n
i=1 an1En where the En’s are disjoint, i.e. n 6= m⇒ En ∩ Em = ∅.

For this class we define

10



∫
Ω

n∑
i=1

an1Endµ =

n∑
i=1

an

∫
Ω

1Endµ =

n∑
i=1

anµ(En).

It turns out that for all nonnegative measurable functions f there exists an
increasing sequence {sn}n≥1 of nonnegative simple functions such that sn →
f pointwise. With this we can extend our definition of the integral to any
nonnegative measurable function by the following method. Since there exists
simple functions approximating f the intuitive argument is that the integrals
of these simple functions should approximate the integral of f . We state this
mathematically by the following definition.∫

Ω

fdµ = sup
s

∫
Ω

sdµ,

where the supremum is taken over all simple functions s such that s ≤ f ,
we can also easily define ∫

E

fdµ =

∫
Ω

f1Edµ.

Now that the integral is defined for nonnegative functions we have some
useful properties.

Proposition 2.2. Let f and g be nonnegative measurable functions, E be a
measurable set and let a, b ∈ R+. We then have the following.

• Linearity: ∫
E

(af + bg)dµ = a

∫
E

fdµ+ b

∫
E

gdµ.

• Monotonicity: if f ≤ g on E then
∫
E
fdµ ≤

∫
E
gdµ.

• If µ(E) = 0 then for any measurable function h we have
∫
E
hdµ = 0 .

• When A and B are measurable sets with A ∩B = ∅ we also have∫
A∪B

fdµ =

∫
A

fdµ+

∫
B

fdµ.

When we wish to apply these definitions we will often run into functions that
are measurable, but with an infinite integral. This is still permitted within the
definition, but can be impractical to work with. As such we usually say that a
function f is Lebesgue integrable (or just integrable) if the integral of f is finite.
We also say that a function is integrable over E whenever f1E is integrable.

The final step is to include measurable functions with real, not just nonneg-
ative, values. By simply using that f = f+ − f− where f+(x) = max(0, f(x))
and f−(x) = min(0, f(x)), and that both f+ and f− are nonnegative, we get
the following. Note that this definition does not make sense if f+ and f− are
both non-integrable. ∫

Ω

fdµ =

∫
Ω

f+dµ−
∫

Ω

f−dµ

11



Now that we have introduced potentially negative functions we will say that a
measurable function f is integrable if |f | is integrable. Note that for f = f+−f−
we have |f | = f+ + f− and integrability of |f | is therefore equivalent to the
integrability of both f+ and f−.

In the case where µ is a probability measure we will often write
∫

Ω
Xdµ as

Eµ[X] or simply E[X] if there is no ambiguity.
Now that we have finally extended our definition to real functions we can

restate our properties, note that we now require integrability in order to ensure
our definitions hold.

Theorem 2.4 (Properties of the Lebesgue integral). Let f and g be integrable
over E, and let a, b ∈ R. We then have the following.

• Linearity: af + bg is integrable over E and∫
E

(af + bg)dµ = a

∫
E

fdµ+ b

∫
E

gdµ.

• Monotonicity: if f ≤ g on E then
∫
E
fdµ ≤

∫
E
gdµ.

• |
∫
E
fdµ| ≤

∫
E
|f |dµ.

• When A and B are measurable sets with A ∩B = ∅ we also have∫
A∪B

fdµ =

∫
A

fdµ+

∫
B

fdµ.

• If µ(E) = 0 then
∫
E
fdµ = 0.

Sometimes the condition of integrability is insufficient for certain applica-
tions. In these cases we will need an extension of integrability in the form of
Lp-spaces.

Definition 2.10. For any measure space (Ω,A, µ) and p > 0 we define

Lp(Ω,A, µ) = {X : X A-measurable and

∫
Ω

|X|pdµ <∞}.

We will also denote the value (
∫

Ω
|X|pdµ)

1
p as ‖X‖p. Furthermore, if there is

no ambiguity, Lp(Ω,A, µ) will be denoted by Lp(µ) or simply Lp.

Note that for p = 1 the definition coincides with our previous definition
of being integrable, we will similarly say that X is Lp-integrable if X ∈ Lp.
Furthermore since ‖X‖p is by definition finite on Lp we can use it to measure
the size of our functions. In fact ‖X‖p constitutes a pseudo-norm on Lp. If
we identify functions with all functions that are a.e. equal then ‖X‖p will be a
proper complete norm on this new space henceforth denoted by Lp, making them
Banach spaces. In practice we will work with Lp as if they were Banach spaces
and keep in mind that convergence results are only valid almost everywhere.

Special attention will be given to the L2-spaces as the function 〈X,Y 〉 =∫
Ω
XY dµ forms an inner product, making L2 a Hilbert space.

Lastly, we will say that an n-dimensional function f is Lp integrable if f (i) ∈
Lp for all 1 ≤ i ≤ n.

12



2.2.2 Multidimensional Integration

Since we can extended measures to several dimensions by Example 2.2 we can
define our integral on the product space in the same we way define it on any other
measure space. This however raises questions of measurability and whether we
can interchange the order of integration, these are answered by the following
theorems. For a proof of these results we refer to [9, Theorem 6.6,Theorem 6.7].

Theorem 2.5 (Tonelli’s Theorem). Let (Γ,G, µ) and (Λ,H, υ) be σ-finite mea-
sure spaces. Then the following hold for a nonnegative extended real-valued
G ⊗H-measurable function f(x, y). For clarity we will have x ∈ Γ, y ∈ Λ.

1. The function x 7→ f(x, y) is G-measurable for all y ∈ Λ.

2. The function y 7→ f(x, y) is H-measurable for all x ∈ Γ.

3. The function x 7→
∫
E
f(x, y)dυ(y) is G-measurable for all y ∈ Λ, E ∈ H.

4. The function y 7→
∫
E
f(x, y)dµ(x) is H-measurable for all x ∈ Γ, E ∈ G.

5. The following equalities hold.∫
Γ×Λ

f(x, y)d(µ× υ)(x, y)

=

∫
Γ

(∫
Λ

f(x, y)dυ(y)

)
dµ(x)

=

∫
Λ

(∫
Γ

f(x, y)dµ(x)

)
dυ(y).

This result holds generally for nonnegative functions, but we can extend it
to real functions at the cost of some light restrictions.

Theorem 2.6 (Fubini’s Theorem). Let (Γ,G, µ) and (Λ,H, υ) be σ-finite mea-
sure spaces. Let f be a real valued G × H-measurable function such that for
the nonnegative function |f | we have that any of the integrals in (5) from the
Tonelli theorem is finite. The following then holds. For clarity we will again
have x ∈ Γ, y ∈ Λ.

1. The function x 7→ f(x, y) is in L1(µ) for υ-almost all y ∈ Λ.

2. The function y 7→ f(x, y) is in L1(υ) for µ-almost all x ∈ Γ.

3. The function x 7→
∫
E
f(x, y)dυ(y) is defined and in L1(µ) for υ-almost all

y ∈ Λ.

4. The function y 7→
∫
E
f(x, y)dµ(x) is defined and in L1(υ) for µ-almost all

x ∈ Γ.

5. The following equalities hold.∫
Γ×Λ

f(x, y)d(µ× υ)(x, y)

=

∫
Γ

(∫
Λ

f(x, y)dυ(y)

)
dµ(x)

=

∫
Λ

(∫
Γ

f(x, y)dµ(x)

)
dυ(y).
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2.2.3 Limit Theorems

Now that our definitions are finished we will cover the main limit theorems for
the Lebesgue integral. These are the monotone and dominated convergence
theorem. These are the main theorems for pulling limits inside and outside
the Lebesgue integral. Proofs for these results can be found in [9, Theorem
5.6,Theorem 5.9].

In our original construction of the nonnegative integral we used a monotone
increasing sequence of simple functions to approximate measurable functions
and used that to justify the definition of our integral. This idea leads to the first
limit theorem that extends this method to approximating integrals by monotone
sequences of general nonnegative functions.

Theorem 2.7 (MCT, The Monotone Convergence Theorem). If {fn}n≥1 is a
monotone increasing sequence of nonnegative functions converging pointwise to
a function f we have for any measurable set E that

lim
n→∞

∫
E

fndµ =

∫
E

lim
n→∞

fndµ =

∫
E

fdµ.

Furthermore, if f ∈ L1 then

lim
n→∞

‖f − fn‖1 = lim
n→∞

∫
Ω

|f − fn|dµ = 0.

The second result is the dominated convergence theorem and covers more
than just nonnegative functions.

Theorem 2.8 (DCT, The Dominated Convergence Theorem). Let {fn}n≥1 be
a sequence of measurable functions converging pointwise to a function f . If there
exists some integrable g such that |fn| ≤ g for all n then we have that

lim
n→∞

‖f − fn‖1 = lim
n→∞

∫
Ω

|f − fn|dµ = 0.

We note that this implies for any measurable set E that we again have

lim
n→∞

∫
E

fndµ =

∫
E

lim
n→∞

fndµ =

∫
E

fdµ.

The monotone convergence theorem in particular implies the following well
known corollary, which provides both a numeric method for calculating Lebesgue
integrals as well as providing a connection to the classical Riemann integral. We
first recall that λ denotes the canonical Lebesgue measure on the real line

Theorem 2.9. Let f be a continuous function and let a < b ∈ R. We then pick

any sequence of partitions πn = {t(n)
i }ni=0 with t

(n)
i < t

(n)
i+1 for all i, n, as well as

t
(n)
0 = a and t

(n)
n = b. Further assume that mesh(πn) = maxi{|t(n)

i+1− t
(n)
i |} → 0

as n→∞. We then have∫
[a,b]

f(x)dλ(x) = lim
n→∞

∑
πn

f
(
t
(n)
i

)(
t
(n)
i+1 − t

(n)
i

)
.
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Proof. First we define

fn(t) =

n−1∑
i=0

f(ti)1(t(n)
i+1−t

(n)
i

](t),
and note that fn(t)→ f(t) as n→∞. We can then compute from our definition
of Lebesgue integrals that∫

[a,b]

fn(t) =

n−1∑
i=0

f
(
t
(n)
i

)(
t
(n)
i+1 − t

(n)
i

)
.

Since f is continuous it is bounded on [a, b] by some value M , by our definition
of fn we must also have fn(t) ≤M for all t, n.

This means we can apply the dominated convergence theorem which yields
the desired formula.

2.2.4 Distribution Functions

A common trick in classic calculus is substitution, in particular for a monotone
differentiable f and g(x) = h(f(x)) we have the useful equality

∫ b

a

g(x)
df(x)

dx
dx =

∫ b

a

g(x)df(x) =

∫ b

a

h(f(x))df(x) =

∫ f(b)

f(a)

h(u)du.

This idea highlights the possibility of integrating with respect to functions,
but we are limited by the requirement of monotonicity and differentiability. We
are therefore going to define ∫

E

X(s)dA(s)

for all E ∈ B and any measurable function A with right-continuous paths and
finite variation, the meaning of which will be defined later. This is often called
the Riemann-Stieltjes integral and will be done by integrating with respect to
certain measures on the real line. When this approach is used the integral is
usually referred to as the Lebesgue-Stieltjes integral.

Note that finite variation is sufficient, but not required for this construction.
In order to further extend this notion one could use another approach, e.g.
Young integration.

In the upcoming sections we will work with measures on the measurable
space (R,B), these will be referred to as Borel measures.

In order to approach this integral we will begin by exploring the following
useful class of functions.

Definition 2.11. If µ is a finite Borel measure we may define the distribution
function of µ to be

Fµ(x) = µ((−∞, x])

This definition yields a few important properties, a proof of these can be
found [9, Proposition 6.6].
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Proposition 2.3. If µ is a finite Borel measure then its distribution function
F has the following properties

1. F is monotone non-decreasing

2. F is right continuous

3. F is bounded

4. limx→−∞ F (x) = 0

It turns out that there is a one-to-one correspondence between functions
satisfying (1-4), referred to as distribution functions, and finite Borel measures.
For a proof of this statement we refer to [9, Theorem 6.3].

Theorem 2.10. If a real-valued function F satisfies the properties in the pre-
vious proposition there exists a unique finite Borel measure with F as its distri-
bution function.

With this we can for any distribution distribution A with a corresponding fi-
nite Borel measure µ define the so-called Lebesgue-Stieltjes integral with respect
to A. For any measurable function f and E ∈ B we define∫

E

f(u)dA(u) =

∫
E

f(u)dµ(u).

Note that this implies that
∫

(s,t]
1dA = A(t)−A(s).

2.2.5 Signed Measures

In order to extend the notion of integrating with respect to functions past the
nonnegative case we will need a few results regarding signed measures.

Definition 2.12. A signed measure µ on a measurable space (Ω,A) is an ex-
tended real-valued function with the following properties.

• µ(∅) = 0.

• µ is countably additive, i.e. if {Ai}i≥1 is a disjoint collection of sets in A
then

µ

⋃
i≥1

Ai

 =
∑
i≥1

µ(Ai).

Note that the second requirement assumes that µ must be bounded either above
or below in order for the sum to be defined.

The main way to work with signed measures is to consider two positive
measures whose difference equal the original signed measure. These measures
will come from the two following theorems, for proofs we refer to [9, Theorem
9.1, Theorem 9.2].

Theorem 2.11 (Hahn Decomposition Theorem). For any signed measure µ on
a measurable space (Ω,A) there exists a set D ∈ A such that µ(E) ≥ 0 for all
E ⊂ D and µ(E) ≤ 0 for all E ⊂ Dc. We will call the pair (D,Dc) a Hahn
decomposition for µ.

Note that there may very well be several Hahn decompositions, but the dif-
ference is made up by null-sets of µ and will not matter in applications.
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Theorem 2.12 (Jordan Decomposition Theorem). For any signed measure µ
on a measurable space (Ω,A) there exists two unsigned measures, µ+ and µ−,
with the following properties. If (D,Dc) is any Hahn decomposition for µ we
have µ−(E) = 0 for all E ∈ D and µ+(E) = 0 for all E ∈ Dc. Furthermore
we have the representation µ = µ+ − µ−. This representation is known as the
Jordan decomposition of µ and is unique despite our choice of D.

With the Jordan decomposition we may define the integral of a function over
a set E with respect to a signed measure as∫

E

f(x)dµ(x) =

∫
E

f(x)dµ+(x)−
∫
E

f(x)dµ−(x).

2.2.6 The Lebesgue-Stieltjes Integral

We are now ready to extend the Lebesgue-Stieltjes integral to real functions.
We will start by defining the total, positive and negative variation of a function
A over an interval J = [a, b]. Here Π is the collection of partitions π = {ti}ni=0

on J with a = t0 < t1 < · · · < tn = b and we wil again use x+ = max(x, 0) and
x− = −min(x, 0).

1. V (A, J) = supπ∈Π V̂ (A, π) where V̂ (A, π) =
∑n
i=1 |A(ti)−A(ti−1)|.

2. V +(A, J) = supπ∈Π V̂
+(A, π) where V̂ +(A, π) =

∑n
i=1(A(ti)−A(ti−1))+.

3. V −(A, J) = supπ∈Π V̂
−(A, π) where V̂ −(A, π) =

∑n
i=1(A(ti)−A(ti−1))−.

If value (1) is finite on a set J we say that A is of bounded variation on J ,
note that, for any x ∈ R, since x++x− = |x| and both x+ and x− is nonnegative
we have that (1) being finite is equivalent to (2) and (3) being finite

Mimicking the idea of the Jordan decomposition we will now show that a
function of finite variation can be split in a similar manner and use this for our
extension. This lemma and the following theorem are known results, but we will
provide our own proof of the construction to hopefully more clearly highlight
the role of variation.

Lemma 2.2. Any function A of finite variation can be decomposed in the fol-
lowing ways V (A, J) = V +(A, J) + V −(A, J) and A(b) − A(a) = V +(A, J) −
V −(A, J). For simplicity we will suppress the notation of A and J .

Proof. We start by noting the following two facts

1. for any specific partition we have V̂ +(π) − V̂ −(π) = A(b) − A(a) and

V̂ +(π) + V̂ −(π) = V̂ (π)

2. if π′ is a refinement of π we have V̂ (π) ≤ V̂ (π′)

Now, for any ε we may pick three refinements (πt, π+, π−) such that

• V − V̂ (πt) ≤ ε/3

• V + − V̂ +(π+) ≤ ε/3

• V − − V̂ −(π−) ≤ ε/3
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By fact (2) we see that all these values must be nonnegative and that any
refinement of our partitions will preserve these inequalities. We define π =
πt ∪ π+ ∪ π− and note that by the triangle inequality we have

|V − (V + + V −)| ≤ 3ε/3 + |V̂ (π)− (V̂ +(π) + V̂ −(π))| = ε

|A(b)−A(a)−(V +−V −)| ≤ 2ε/3+ |A(b)−A(a)−(V̂ +(π)−V̂ −(π))| = 2ε/3 < ε.

Since ε was arbitrary we conclude that V = V + + V − and A(b) − A(a) =
V + − V −

This lemma allows us to define the variation processes for a function A of
bounded variation on an interval J = [a, b]

• V(x) = V (A, [a, x])

• V+(x) = V +(A, [a, x])

• V−(x) = V −(A, [a, x])

We let V(x) = V+(x) = V−(x) = 0 whenever x ≤ a and set them equal to
their value at b for all x > b. Note that these functions are bounded monotone
non-decreasing functions with a limit of zero when x → −∞, we also see that
if A is right-continuous so are the variation processes, which would make them
distribution functions.

Theorem 2.13. For any right-continuous function of bounded variation on
an interval J there exists a unique finite signed measure µ on the measurable
space ([a, b],B([a, b])) with the property that µ((x, y]) = A(y) − A(x). Here
B([a, b]) = {B ∩ [a, b], B ∈ B} is the Borel σ-algebra on J .

Proof. We apply Theorem 2.10 to W+ to generate a measure µ+ and do the
same to W− to generate µ−. We define µ = µ+ − µ− and note that

µ((x, y]) = µ+((x, y])− µ−((x, y])

= V+(y)− V+(x)− (V−(y)− V−(x))

= A(y)−A(x)

as desired. Uniqueness can be proved by the monotone class theorem in a similar
fashion to Lemma 2.1, which would also allow us to extend µ uniquely to all of
R. However, these technicalities will be skipped.

Note that the measures, µ+, µ−, we produce are the same as those who appear
in the Jordan decomposition of µ.

It is common to define for any measure υ the total variation measure |υ| as

|υ|(E) = sup
π∈Π

n∑
i=1

|υ(En)|

Where Π is any finite measurable partition of E i.e the En’s are disjoint and
∪En = E. For our newly constructed measure µ this definition coincides with
the measure generated by V and equals µ+ + µ−.

This now allows us to define the Lebesgue-Stieltjes integral with respect to
any right-continuous A of bounded variation by setting for any E ∈ B∫

E

X(u)dA(u) =

∫
E

X(u)dµ(u).

18



2.2.7 Independence and Distributions

One of the main properties in the realm of probability theory is the concept of
independence, which will be essential for many upcoming results. We will here
work within a probability space (Ω,A, P ).

Definition 2.13. We have the following definitions for independence.

• Two events A,B ∈ A are independent if and only if

P (A)P (B) = P (A ∩B).

• A finite collection of one-dimensional random variables {Xi}ni=1 is inde-
pendent of another finite collection of one-dimensional random variables
{Yj}mj=1 if for any two collections {Ai}ni=0, {Bi}ni=0 with Ai, Bi ∈ B for all
i we have

P (Xi ∈ Ai for all i, Yj ∈ Bj for all j)

= P (Xi ∈ Ai for all i)P (Yj ∈ Bj for all j)

Note that, as proven in [9, Theorem 7.5], it suffices to require

P (Xi ≤ xi for all i, Yj ≤ yj for all j)

= P (Xi ≤ xi for all i)P (Yj ≤ yj for all j)

for all x1, · · · , xn, y1, · · · , ym ∈ R.

In the case where we have collections of multidimensional random variables
{Xi}ni=1 and {Yj}mj=1 we say that these collections are independent if and
only if ⋃

k

{X(k)
i }i is independent from

⋃
l

{Y (l)
j }j,l.

• A collection of random variables {Xi}i∈I is independent of another col-
lection of random variables {Yj}j∈J if for all I ⊂ I , J ⊂J such that I
and J are finite we have that {Xi}i∈I and {Yj}j∈J are independent.

• A collection of random variables {Xi}i∈I is said to be pair-wise indepen-
dent if Xi is independent from Xj for any i, j ∈ I such that i 6= j.

• A collection of random variables {Xi}i∈I is said to be mutually indepen-
dent if and only if

Xj is independent of {Xi}i∈I ,i6=j for all j ∈ I

In the one-dimensional case it suffices to require

P (Xi ≤ xi for all i ∈ I) =
∏
i∈I

P (Xi ≤ xi)

for all finite I ⊂ I and any x1, · · · , xn ∈ R.
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• We say that a random variable X is independent of a σ-algebra G if and
only if X is independent of 1G for any G ∈ G.

In order to properly state the consequences of independence we will need the
concept of a random variable’s law.

Definition 2.14 (Law of a Random Variable). Let X1, · · · , Xn be random vari-
ables, we define the law of these variables, denoted LX1,··· ,Xn , as the set function
on B(Rn) defined by

LX1,··· ,Xn(B) = P ((X1, · · · , Xn) ∈ B)

for any B ∈ B(Rn). By [9, Proposition 7.5] we have that the law is a measure
on (Rn,B(Rn)). Lastly, if n = 1 then we see that the law of X1 equals

LX1(B) = P (X1 ∈ B).

This definition is very useful in conjunction with the following result .

Theorem 2.14. Let X1, · · · , Xn be random variables, then for any B(Rn)-
measurable function g we have

E[g(X1, · · · , Xn)] =

∫
Rn
g(x1, · · · , xn)dLX1,··· ,Xn(x1, · · · , xn) (2.1)

whenever either side of the equation exists and is finite.

The law also allows us to define an equivalent condition for mutual indepen-
dence of a finite collection of random variables, in the case where it holds we
can also simplify the calculation of equation (2.1). A proof of this result can be
found in [9, Theorem 7.4].

Theorem 2.15. If X1, · · · , Xn are random variables then they are mutually
independent if and only if

LX1,··· ,Xn(x1, · · · , xn) = LX1(x1)× · · · ×LXn(xn).

We then see that when X1, · · · , Xn are mutually independent we can rewrite
equation (2.1) as

E[g(X1, · · · , Xn)] =

∫
R
· · ·
∫
R
g(x1, · · · , xn)dLX1(x1) · · · dLXn(xn).

As a corollary of this we get the following famous result.

Corollary 2.1. If X,Y are independent random variables with finite expecta-
tions then XY has finite expectation as well. Lastly, we have

E[XY ] = E[X]E[Y ].

Remark 1. In the one-dimensional case we have for a random variable X that
for any measurable function g that

E[g(X)] =

∫
R
g(x)dLX(x).
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If we denote the distribution function of LX as FX we could alternatively write
this as

E[g(X)] =

∫
R
g(x)dFX(x).

Furthermore, if FX is differentiable with derivative fX we have from classical
calculus that

E[g(X)] =

∫
R
g(x)

dFX(x)

dx
dx =

∫
R
g(x)fX(x)dx.

The function fX is called the probability density function and is widely used in
the field of statistics. This notion could easily be extended to several dimensions,
but would require distribution functions for multidimensional random variables
which are not needed in this text and therefore omitted. Lastly we could extend
this notion to a discontinuous fX whenever LX is absolutely continuous, a
property which will be defined in the upcoming chapter.

2.3 Stochastic Analysis

In this section we will cover the study of stochastic processes, an essential tool
for modelling many aspects of both finance and insurance.

The following subsections will be based on theory covered in [13],[3], as well
as [9] and [2]. We refer to these sources for further reading.

2.3.1 Conditional Expectations

In the upcoming sections we will occasionally have several measures on the same
measure space, in this case we often want some way of relating these measures.

Definition 2.15. Let µ and υ be measures on the measurable space (Ω,A). If
we have that υ(E) = 0 whenever µ(E) = 0 we say that υ is absolutely continuous
with respect to µ, denoted as υ � µ.

Starting with one measure µ it is possible to define a host of other measures
by defining υ(E) =

∫
E
fdµ for all E using any nonnegative measurable extended

real-valued function f . Note that if µ(E) = 0 we must have υ(E) =
∫
E
fdµ = 0,

implying that υ � µ. Furthermore, it turns out that absolute continuity is also a
sufficient condition on a measure in order for it to be on the form υ(E) =

∫
E
fdµ.

Theorem 2.16 (The Radon-Nikodym Theorem). If we have two σ-finite mea-
sures µ and υ with υ � µ there exists a nonnegative measurable extended real
valued function, denoted by dυ

dµ , such that υ(E) =
∫
E
dυ
dµdµ for any E ∈ A. Fur-

thermore dυ
dµ is unique µ-almost everywhere. Lastly, we will refer to dυ

dµ as the
Radon-Nikodym derivative.

A common occurrence in stochastic analysis is updating distributions of
random variables given new information, this is usually done through conditional
expectations.

We will now present the two main ways of considering conditional expecta-
tions.
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Definition 2.16 (Conditional Probability and Expectation with respect to an
Event). For a random variable X and any two events E,A ∈ A with P (E) > 0
we define

P (A|E) = P (A ∩ E)/P (E),

E[X|E] = E[X1E ]/P (E).

We may note that P (·|E) constitutes a measure on the restricted probability
space (E, {E ∩ C}, C ∈ A) as explained in Example 2.3. We further have that
the conditional probability and expectation are just the canonical probability and
expectation, respectively, in the restricted probability space.

This definition allows us to formulate a common result of basic statistics.

Theorem 2.17 (Law of Total Probability). Let (Ω,A, P ) be a probability space
and let {Ei}i∈I be a countable or finite collection of disjoint sets such that⋃
i∈I Ei = Ω and P (Ei) > 0 for all i ∈ I. We then have the following for any

events A,B ∈ A such that P (B) > 0.

1.
P (A) =

∑
i∈I

P (A|Ei)P (Ei)

2.
P (A|B) =

∑
i∈I

P (A|B,Ei)P (Ei|B)

Proof. We note that {A ∪ Ei}i∈I is a disjoint partition of A which means
that (1) follows from the countable additivity of P along with P (A ∪ Ei) =
P (A|Ei)P (Ei).

Repeating this argument for the measure space restricted to B yields (2).

The other main way of conditioning on information is conditioning with
respect to a collection of information instead of a single set.

Definition 2.17 (Conditional Expectation with respect to a σ-algebra). Let
(Ω,A, P ) be a probability space, and let X : Ω → R be L1(Ω,A, P )-integrable.
The conditional expectation of X with respect to a σ-algebra G ⊂ A, denoted
E[X|G], is a G-measurable function such that for all G ∈ G we have∫

G

XdP =

∫
G

E[X|G]dP.

Example 2.5. If G is the σ-algebra generated by a countable partition {Ei}i∈I
of Ω such that P (Ei) > 0 for all i we have for any X ∈ L1 that

E[X|G] =
∑
i∈I

1EiE[X|Ei].

Proof. Any G-measurable function must be constant on Ei for all i, we also have
for any i that ∫

Ei

E[X|G]dP =

∫
Ei

XdP = E[X|Ei]P (Ei).

This means that E[X|G] must have the value E[X|Ei] a.s. for all ω ∈ Ei for
all i.
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With this definition in place we would like to guarantee existence of the
conditional expectation for general σ-algebras, which can be done via the Radon-
Nikodym theorem.

Proposition 2.4. Let (Ω,A, P ) be a probability space and let X ∈ L1(P ). If
we have a σ-algebra G ⊂ A then the conditional expectation E[X|G] exists and
is P -a.s unique.

Proof. Without loss of generality we consider a nonnegative random variable X,
the general case is achieved by noting the decomposition X = X+ −X−. We
will also consider the slightly different probability space (Ω,G, P ) and define a
measure µ by µ(A) =

∫
A
XdP for all A ∈ G. Note that µ� P which means we

can apply the Radon-Nikodym theorem and get a G-measurable Radon-Nikodym
derivative dµ

dP such that for all E ∈ G∫
E

XdP = µ(E) =

∫
E

dµ

dP
dP.

We conclude by noting that the Radon-Nikodym theorem also guarantee unique-
ness P -almost surely.

The conditional expectation could easily be defined for any measure space,
and will exist under the same conditions. For our purposes, however, the defi-
nition for probability spaces will suffice.

Theorem 2.18 (Properties of Conditional Expectations). Assume the follow-
ing. (Ω,A, P ) is a probability space, X,Y ∈ L1(Ω,A, P ), a ∈ R and G,H ⊂ A
are σ-algebras. We then have the following properties for the conditional expec-
tation.

• Linearity: E[aX + Y |G] = aE[X|G] + E[Y |G].

• Tower property: if H,G are σ-algebras with G ⊂ H we have E[E[X|H]|G] =
E[X|G].

• Expectation: E[E[X|G]] = E[X].

• If X is independent of G then E[X|G] = E[X].

• If Y is G-measurable then E[Y X|G] = Y E[X|G].

• If Xn → X in L2(Ω,A, P ) then E[Xn|G]→ E[X|G] in L2(Ω,A, P ).

We also have versions of the monotone and dominated convergence theorems
for conditional expectations.

Theorem 2.19 (Dominated/Monotone Convergence). We again assume that
(Ω,A, P ) is a probability space with H ⊂ A as a σ-algebra. Let {Xn}n≥1 be a
sequence of integrable random variables converging a.s. to an integrable random
variable X. We also assume that any of the following hold.

• There exists an integrable Y such that |Xn| ≤ Y .

• The sequence Xn is monotone increasing or decreasing.

Then we have that

E[X|G](ω) = lim
n→∞

E[Xn|G]ω P-a.s.
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2.3.2 Stochastic Processes

Some of the main objects of study in this text are functions that develop ran-
domly over time. This concept is expressed mathematically through stochastic
processes.

Definition 2.18. For a probability space (Ω,A, P ) a stochastic process is a
function X : Ω × R+ → Rn where for every t ∈ R+, ω ∈ Ω we have that
ω 7→ X(ω, t) is a random variable. We will often suppress the notation of ω and
denote X(ω, t) as Xt. Furthermore we will also consider the function X to be
the collection {ω 7→ X(ω, t), t ∈ R+} for purposes of e.g. independence.

Now that we have two parameters without assuming jointA⊗B-measurability
we will need a new way of saying that two processes are similar. Note that if we
were to have joint measurability this will be a slightly stronger condition than
being equal P × dt-almost everywhere.

Definition 2.19. For two stochastic processes X and Y we say that Y is a
modification of X if and only if Xt = Yt almost surely for all t.

An important aspect of having our processes depend on time is the flow of
information available. We will represent this flow by the following definition.

Definition 2.20. A filtration F is an increasing sequence of σ-algebras {Ft}t≥0

i.e. s < t⇒ Fs ⊂ Ft.

Definition 2.21. A filtered probability space (Ω,A,F , P ) is a probability space
also equipped with a filtration F . We will make the following assumptions, which
are know as the usual conditions.

• A = σ(
⋃
t≥0 Ft).

• Ft is complete, moreover, Ft contains all null-sets.

• F is right-continuous i.e. Ft =
⋂
s>t Fs.

Note that we may often fix a finite time horizon, in this case we will have
A = FT for some T .

We will often work with filtrations of the following form.

Definition 2.22 (Filtration Generated by a Process). For any process X we

may define the filtration F̂X by

F̂Xt = σ

⋃
s≤t

⋃
E∈B
{X−1

s (E)}

 .

This filtration contains all inverse images under X of measurable sets and
therefore aims to contain all available information about X up to a certain time.
We call this the filtration generated by X. We would like the filtrations we work
with to be complete, as such we will define the filtration generated by X as

FXt = σ(F̂Xt ∪N ),

where N is the collection of all null-sets on (Ω,A, P ).
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We may also want to have a collection C = {X(i)}i∈I of processes generate
a filtration, in this case we define

HCt = σ

(⋃
i∈I

GX
(i)

t

)
.

Definition 2.23 (Augmented Filtrations). We are sometimes interested in forc-
ing a filtration F to be complete and right-continuous. In this case we define

Gt =
⋂
s>t

(Fs ∪N ) ,

where N is the collection of all null-sets, and note that G is automatically com-
plete and right-continuous. We will refer to G as the augmentation of F .

Once we have a filtration we will need to specify how it relates to our pro-
cesses.

Definition 2.24. Assume we have a process X : Ω × R+ → Rn, we will then
define the following properties.

• We say that X is adapted if ω 7→ X(ω, t) is Ft-measurable for any t.

• We say that X is progressively measurable (or just progressive) if when
we restrict X : Ω × [0, t] → Rn we have (ω, s) 7→ X(ω, s) Ft ⊗ B[0, t]-
measurable for any t.

We will define Prog to be the σ-algebra generated by all progressive processes,
it can be shown that being progressive and being Prog-measurable is equivalent.
We will also, for any S > 0, denote Prog restricted to Ω× [0, S] as ProgS.

Note that this definition implies that any stochastic process X is adapted
with respect to the filtration generated by itself, in fact, this is the smallest such
filtration.

However, being adapted is often insufficient for our purposes. With this in
mind we present a sufficient condition for an adapted process to be progressive.

Proposition 2.5. If a stochastic process X(ω, t) is right- or left-continuous in
t and adapted to a filtration F it is also progressive with respect to the same
filtration.

Proof. We start by proving this for a left-continuous X. For any interval [0, t]

we may pick a sequence of partitions πn = {t(n)
i }ni≥0 with t

(n)
0 = 0 and t

(n)
n = t

such that mesh(πn) = maxi(|t(n)
i+1 − t

(n)
i |)→ 0 as n→∞.

We define

Xn(ω, s) =

n−1∑
i=0

X(ω, t
(n)
i )1

[t
(n)
i ,t

(n)
i+1)

(s)

and note the following.

• (ω, s) 7→ X(ω, t
(n)
i )1

[t
(n)
i ,t

(n)
i+1)

(s) is Ft ⊗ B[0, t]-measurable.

• Xn → X pointwise as a left limit.
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Since measurability is preserved by both sums and pointwise limits X is Ft ⊗
B[0, t]-measurable for all s and thus progressive.

For a right-continuous X we define Xn by the right limit of the interval, i.e.

Xn(ω, s) =

n−1∑
i=0

X(ω, t
(n)
i+1)1

[t
(n)
i ,t

(n)
i+1)

(s).

We repeat the argument as before but now have that Xn → X pointwise as
right limits, the result follows.

An important class of adapted processes are the martingales and the local
martingales, we will start by defining the former.

Definition 2.25. Let X be a stochastic process adapted to a filtration F , X is
then called a martingale if E[|Xt|] <∞ and

E[Xt|Fs] = Xs

for all s ≤ t.

To properly state the definition of local martingales we need the concept of
a stopping time.

Definition 2.26. Let F be a filtration and let A = σ(
⋃
t≥0 Ft). A stopping time

T with respect to F is a A-measurable random variable such that {T ≤ t} ∈ Ft
for all t.

The intuition behind this definition is that at time t we should now whether
or not we are past the stopping time, hence the event {T ≤ t} should be Ft
measurable.

With stopping times defined we can move on to martingales.

Definition 2.27. Let X be a stochastic process adapted to a filtration F . We
say that X is a local martingale if there exists a sequence of stopping times {Tn}
such that the following hold.

• for i < j we have P (Ti < Tj) = 1.

• P (limn→∞ Tn =∞) = 1.

• t 7→ Xmin(t,Tn) is a martingale for all n.

We may note by considering the sequence of deterministic stopping times
{Tn} with Tn = n that all martingales are also local martingales.

The most famous martingale is the Wiener process, a central part of defining
the upcoming Itô integral.

Definition 2.28. The Wiener process, also known as Brownian motion, is a
stochastic process Wt = W (ω, t) with the following properties.

• W0 = 0 almost surely.

• W has continuous paths, i.e. t 7→Wt is continuous almost surely.
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• Wt has independent increments. This means that for any τ ∈ R+ the
collection of random variables on the form Wt −Ws with τ ≤ s ≤ t is
independent of the collection of random variables on the form Wu −Wv

with v ≤ u ≤ τ .

• For s ≤ t we have that Wt −Ws is normally distributed with mean zero
and variance t− s.

We will also need an n-dimensional Wiener process which will be defined as
W = (W (1), · · ·W (n)) where any component W (i) is a one-dimensional Wiener
process. We will also assume that the components are independent.

We will now prove that the Wiener process W is a martingale, but to that
we will first need a small lemma. Note that while the result of this lemma is
widely known, we will provide our own proof for the sake of clarity.

Lemma 2.3. Let F be the σ-algebra generated by some process Y : Ω×R+ → Rn
and let G be the σ-algebra generated by a process X : Ω × R+ → Rm. We then
have that X independent of Y is equivalent to G independent of F . Note that
this implies specifically that X is independent of F .

Proof. We start by setting some notation.

X−1(B) = {α : α = X−1
t (B) for some t ∈ R+, B ∈ B}

Y −1(B) = {β : β = Y −1
t (B) for some t ∈ R+, B ∈ B}.

Firstly, we show that G independent of F implies X independent of Y . For
any finite indicator sets I, J we define the following.

AX =
⋂
i∈I

αi, where αi ∈ X−1(B) ⊂ G,

AY =
⋂
j∈J

βj , where βj ∈ Y −1(B) ⊂ F .

We note that since AX ⊂ F and AY ⊂ G we have that AX is indepen-
dent of AY . Since I and J were arbitrary we conclude by definition that X is
independent of Y .

For the converse result we will use Theorem 2.1, the monotone class theorem
for sets. We assume that X is independent of Y and aim first to prove that X
is independent of F .

We then define

C = {F ∈ A : F is on the form
⋃
i∈I

⋂
j∈J

βi,j}

where I, J finite and βi,j is in Y −1(B) for all i ∈ I, j ∈ J . Note that C by
definition becomes an algebra by the following arguments.

• C is closed under finite unions by⋃
k∈K

⋃
i∈I

⋂
j∈J

βi,j
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=
⋃
I×K

⋂
j∈J

β(i,k),j .

Note here that K is assumed to be finite, which means I ×K is finite.

• Since βi,j ∈ Y −1(B) means βci,j ∈ Y −1(B) we have that C is closed under
complements by

F c =
(⋃
i∈I

⋂
j∈J

βi,j
)c

=
⋂
i∈I

⋃
j∈J

βci,j

=
⋃
j∈J

⋂
i∈I

βci,j .

Then, we choose an arbitrary α =
⋂
l∈L αl, with αl ∈ X−1(B) and L finite. For

this α we define the class

H = {H ∈ F : H is independent of α}.
The aim is show that F ⊂ H regardless of our choice of α by way of the

monotone class theorem, which would show that X−1(B) is independent of F .
In order to apply the monotone class theorem we need C ⊂ H and that H is

a monotone class.
We start by proving that C ⊂ H, it suffices to show that

⋂n
i=1

⋃
j∈J βi,j ∈ H

for any n, any J finite and any βi,j ∈ Y −1(B) for all i, j. However, to prove this
we will prove a slightly stronger condition, namely that for any n and any K,J
finite we have that

n⋃
i=1

⋂
j∈J

βi,j ∩
⋂
k∈K

βk

is in H. To show this we will use induction on n. Note that for n = 0 we
have the statement trivially from our assumption of independence of X from Y .
We now assume that our statement holds for n and prove it for n+ 1 by using
that P (A ∩B) = P (A)− P (A ∩Bc) for any events A and B.

= P

α ∩ n+1⋂
i=1

⋃
j∈J

βi,j ∩
⋂
k∈K

βk


= P

α ∩ n⋂
i=1

⋃
j∈J

βi,j ∩
⋂
k∈K

βk ∩
⋃

j∈Jn+1

βn+1,j



= P

α ∩ n⋂
i=1

⋃
j∈J

βi,j ∩
⋂
k∈K

βk

−P
α ∩ n⋂

i=1

⋃
j∈J

βi,j ∩
⋂
k∈K

βk ∩
( ⋃
j∈Jn+1

βn+1,j

)c

= P

α ∩ n⋂
i=1

⋃
j∈J

βi,j ∩
⋂
k∈K

βk

−P
α ∩ n⋂

i=1

⋃
j∈J

βi,j ∩
⋂
k∈K

βk ∩
( ⋂
j∈Jn+1

βcn+1,j

)
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= P

α ∩ n⋂
i=1

⋃
j∈J

βi,j ∩
⋂
k∈K

βk

−P
α ∩ n⋂

i=1

⋃
j∈J

βi,j ∩
⋂
k∈K

βk ∩
( ⋂
j∈Jn+1

βcn+1,j

)
By applying our induction hypothesis we then get

= P (α)P

 n⋂
i=1

⋃
j∈J

βi,j ∩
⋂
k∈K

βk

−P (α)P

 n⋂
i=1

⋃
j∈J

βi,j ∩
⋂
k∈K

βk ∩
( ⋂
j∈Jn+1

βcn+1,j

)

= P (α)P

 n⋂
i=1

⋃
j∈J

βi,j ∩
⋂
k∈K

βk

−P (α)P

 n⋂
i=1

⋃
j∈J

βi,j ∩
⋂
k∈K

βk ∩
( ⋃
j∈Jn+1

βn+1,j

)c

= P (α)P

n+1⋂
i=1

⋃
j∈J

βi,j ∩
⋂
k∈K

βk


This proves that C ⊂ H which puts us one step closer to applying the

monotone class theorem. The final step is proving that H is a monotone class.

• Let {Hn}n∈N be a monotone increasing sequence of sets in H. We then
have by continuity of measures that

P

(
α ∩

⋃
n

Hn

)

= lim
n→∞

P (α ∩Hn)

= lim
n→∞

P (α)P (Hn)

= P (α)P

(⋃
n

Hn

)
.

Which implies
⋃
nHn ∈ H

• Let {Hn}n∈N be a monotone decreasing sequence of sets in H. We then
have by continuity of measures that

P

(
α ∩

⋂
n

Hn

)

= lim
n→∞

P (α ∩Hn)

= lim
n→∞

P (α)P (Hn)

= P (α)P

(⋂
n

Hn

)
.

Which implies
⋂
nHn ∈ H
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This means that H is a monotone class, since H also contains an algebra
containing Y −1(B) it must be a σ-algebra containing σ(Y −1(B)). Further-
more, because null sets are independent from any set, we have that all null
sets of σ(Y −1(B)) are in H. Finally, we note that H is a σ-algebra containing
σ(Y −1(B)) and all its null sets. From this we know that H must contain the
completion of σ(Y −1(B)), which is our definition of F .

We now have F ⊂ H, but used no properties of α, implying that F ⊂ H for
any choice of α. This means that any α =

⋂
l∈L αl would be independent of any

set in F , but since F is closed under intersections we have that α is independent
of
⋂
l′∈L′ Fl′ with Fl′ ∈ F and L′ finite. This implies by definition that X−1(B)

is independent of F .
Lastly we note that if we repeated this argument with the role of X−1(B)

replaced by F and the role of F replaced by G we would demonstrate that F is
independent of G.

Proposition 2.6. The Wiener process W is a martingale with respect to the
filtration F generated by W .

Proof. Since W has independent increments we have for any u ≤ s ≤ t that
Wt − Ws is independent from u 7→ Wu, u ≤ s. By Lemma 2.3 we see that
Wt −Ws is independent from Fs which yields

E[Wt|Fs] = E[Wt −Ws +Ws|Fs]
= E[Wt −Ws|Fs] + E[Ws|Fs]
= E[Wt −Ws] +Ws

= Ws

.

The Wiener process also has the following useful property, see [7, Theorem
4] for a proof.

Theorem 2.20. The filtration FW generated by a Wiener process W is right-
continuous

Remark 2. Note that this result relies on our definition of FW , the filtration
generated by W . We assumed in Definition 2.22 that all null-sets were included
in Ft for all t, another option was to instead simply take the completion of Ft
as part of the definition. In this case however we would lose right-continuity
with ⋂

n∈N
{Wt+h > Wt for some h ∈ (0, n−1)}

as a counterexample. This set is the complement of a null-set and is not included
in Ft by independent increments of W . Since there is no real drawback in
including null-sets this example justifies the inclusion of N in Definition 2.22.
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2.3.3 The Itô Integral

Our construction of the Lebesgue-Stieltjes integral is limited by the constraint of
bounded variation. This is problematic in the case of a Wiener process, which
is famously a.s. of unbounded variation. To solve this we will need another
approach, specifically the Itô integral.

During this construction we will work within the filtered probability space
(Ω,A,F , P ). This space is assumed to be equipped with an n-dimensional
Wiener process W , and we assume that W is a martingale with respect to F .
Note that We can pick a filtration larger than the one generated by W as long
as our assumption of the martingale property is preserved as explained in [13,
Chapter 3.3]. In any case we will make the usual assumptions of complete-
ness and right-continuity of F along with A being the completion of σ (

⋃
t Ft).

Furthermore we will often use the following classical notation for integration
whenever we are integrating over an interval on the real line.∫ b

a

f(t)dt =

∫
[a,b]

f(t)dλ(t),

where λ is the canonical Lebesgue measure on the real line. We will also
often work with the following classes of integrands when constructing the Itô
integral. Here we will not fix a time horizon and instead let T be our time
horizon i.e. T = [0, T ] or R+.

Definition 2.29.

L2(W ) = L2(Ω×T , P rog, P × λ) =

{
X ∈ Prog : E

[∫
T

|X(ω, t)|2dt
]
<∞

}
.

We may recall the L2-norm on this space.

‖X‖2 =

(
E

[∫
T

|X(ω, t)|2dt
])1/2

Definition 2.30. We also define the slightly larger class

L(W ) = {X ∈ Prog :

∫ t

0

|X(ω, s)|2ds <∞ a.s. for all t ∈ T }.

Note here the inclusion L2(W ) ⊂ L(W ).

These definitions may apply to processes of any dimension, as such we will
always assume that all processes in any of these spaces share the dimension of
W .

Once our integrands are established the first step in our construction is to de-
fine the integral of one-dimensional processes with respect to a one-dimensional
Wiener process. For notational clarity we will for the moment assume that W
is one-dimensional.

We will first define the integral for elementary processes which are functions
on the form

φ(ω, t) =
∑
n≥0

an(ω)1[tn,tn+1)(t).
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Where, for all n, an is some Ftn -measurable one-dimensional random vari-
able. Note that this ensures all elementary processes being progressive. For
these simple functions we can define the integral with respect to W for any
i ≤ j ∈ N as ∫ tj

ti

φ(ω, u)dWu =

j−1∑
n=i

an(ω)(Wtn+1 −Wtn).

If we wish to integrate over an interval [s, t] for any s ≤ t ∈ T we define∫ t

s

φ(ω, u)dWu =
∑
n

an(ω)(Wsn+1
−Wsn).

Here sn = min(max(tn, s), t) to ensure we do not integrate outside [s, t].
From here we can extend the definition to any φ ∈ L2 by picking a sequence

of elementary functions {φn}n≥1 ⊂ L2(W ) converging in the L2-norm of L2(W )
to φ and defining ∫ t

s

φ(u, ω)dWu = lim
n→∞

∫ t

s

φn(u, ω)dWu

where the limit of the integrals is in the L2(Ω,A, P )-norm. This definition
makes sense for all of L2 and is independent of our choice of {φn}. The proofs
for the construction will be omitted, but can be found in [13, Chapter 3.1].

The integral can similarly be extended to L(W ) [13, Chapter 3.3]. In order
to explain the idea of this extension we will need the concept of convergence in
probability.

Definition 2.31. We say that a sequence of random variables {Xn}n≥1 con-
verges to a random variable X in probability if and only if

P (|Xn −X| > ε)→ 0 for every ε > 0.

To construct our extension we use that there exists a sequence of elementary
functions {φn}n≥1 ⊂ L(W ) such that

∫
T |φ(t) − φn(t)|2dt → 0 as n → ∞.

It turns out that
∫ t
s
φndW converges in probability to some random variable

dependent only on φ. With this we define∫ t

s

φ(u, ω)dWu = lim
n→∞

∫ t

s

φn(u, ω)dWu.

With the integral defined for one-dimensional processes we now define the
integral of an n-dimensional stochastic process φ = (φ(1), · · ·φ(n)) with respect
to an n-dimensional Wiener process. To do this we now assume that W is a
general n-dimensional Wiener process denoted W = (W (1), · · ·W (n)). With this
we define ∫ t

s

φudWu =

n∑
i=1

∫ t

s

φ(i)
u dW (i)

u .

Note that this differs from our definition of the Lebesgue integral on multi-
dimensional functions which simply integrates component-wise.

With our construction complete we can state some of the most important
properties of the Itô integral.

32



Theorem 2.21 (The Itô Isometry). Let Xt ∈ L2(W )

E

[(∫
T

XtdWt

)2
]

=

(
E

[∫
T

|X(ω, t)|2dt
])

In other words, the Itô integral preserves the norm from L2(W ) to L2(Ω,A, P )

We also have these further properties of the Itô integral.

Theorem 2.22. Let the processes X,Y be in L(W ) and a, b ∈ R. For ease

of notation both here and later we will denote the process t 7→
∫ t

0
XsdWs as

(X •W )t, or as (X •W ) to denote the whole process.

1. There exists a continuous modification of (X •W ).

2. (X •W ) is a local martingale with respect to the filtration generated by
W , if X is in L2(W ) then (X •W )t is a martingale.

3. The Itô integral is linear, i.e.(
(aX + bY ) •W

)
t

= a (X •W )t + b (Y •W )t .

4.
∫ b
a
XsdWs +

∫ c
b
XsdWs =

∫ c
a
XsdWs almost surely.

Note that by (1),(2), Theorem 2.2 and Proposition 2.5 (X •W ) is progressive.

Whenever the integrand is deterministic we get an explicit description of the
integrals distribution. While this is a well known result it is often left as an
exercise, as such we will present our own proof.

Theorem 2.23. Let f be a deterministic and square integrable function, we then
have that

∫ t
0
f(s)dWs is normally distributed with expectation 0 and variance∫ t

0
f(s)2ds.

Proof. We start by approximating f by deterministic step functions on the form

fn(s) =

n−1∑
i=0

Ki1
[
t
(n)
i ,t

(n)
i+1

)(s).

Here we will assume a standard sequence of partitions πn = {t(n)
i }ni≥0 with

t
(n)
i < t

(n)
i+1 for all i, n, as well as t

(n)
0 = 0 and t

(n)
n = t. Further assume that

mesh(πn) = maxi{|t(n)
i+1−t

(n)
i |} → 0 as n→∞ and that fn → f in L2(R)-norm.

Since fn is simple we can compute from the definition of Itô integrals that∫ t

0

fn(s)dWs =

n−1∑
i=0

Ki

(
W
t
(n)
i+1
−W

t
(n)
i

)
.

We note that this is a sum of independent normally distributed random
variables (by the assumption that W has independent and normally distributed
increments), which means it is itself normally distributed. Since, by definition,
we have ∫ t

0

f(s)dWs = lim
n→∞

∫ t

0

fn(s)dWs
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in probability we must have that
∫ t

0
f(s)dWs is normally distributed as well.

For the expectation we note that since f is deterministic and square inte-
grable we have f ∈ L2(W ). This means that (f •W ) is a martingale which
yields

E [(f •W )t] = E
[
E
[
(f •W )t

∣∣F0

]]
= E [(f •W )0]

= 0.

Finally, the variance is a direct consequence of Itô’s isometry, Theorem 2.21.

Another important property of the Itô integral is how it interacts with the
Lebesgue integral.

Theorem 2.24 (Fubini’s Theorem for Stochastic Integrals). [3, Thm 6.2] Let
X(ω, s, t) be an n-dimensional ProgT ⊗ B[0, T ]-measurable stochastic process
with two indices s, t ∈ [0, T ]. We also require that sups,t≤T |X(s, t)| < ∞ for
almost all ω. We then have the following.

• The process s 7→
∫ T

0
X(s, t)dt is in L(W )

• There exists a progressive modification Y (t) of t 7→
∫ T

0
X(s, t)dWs such

that
∫ T

0
Y (t)2dt <∞.

• The order of integration can be changed, i.e.∫ T

0

(∫ T

0

X(s, t)dWs

)
dt =

∫ T

0

(∫ T

0

X(s, t)dt

)
dWs.

As a corollary we can note that the function t 7→
∫ T

0
1[0,t](s)X(ω, s, t)ds =∫ t

0
X(ω, s, t)ds is Prog⊗B measurable. More specifically we also have

∫ t
0
X(ω, s)ds

progressive. Both of these facts will be useful to guarantee progressiveness of
processes in upcoming sections.

2.3.4 Itô Processes

Definition 2.32. A one-dimensional Itô process is a stochastic process X on
the following form.

Xt = X0 +

∫ t

0

asds+

∫ t

0

bsdWs.

Here we must require b ∈ L(W ) and a : Ω× R+ → R to be progressive with∫ t
0
|as|ds < ∞ for all t to ensure the integrals are both defined and that X is

progressive. This is often written in a short-hand notation as

dXt = atdt+ btdWt or even more compactly as dX = adt+ bdW

This notation will be referred to as the dynamics of X. Moreover, it can be
shown that this representation is unique in the sense that if we have

Xt = X0 +

∫ t

0

a′sds+

∫ t

0

b′sdWs
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for some other processes a′, b′ then a = a′ and b = b′ dP ⊗ dt-a.e.

We can define, for any Itô process X with dynamics dXt = atdt+ btdWt the
following classes of integrands. Here we will assume that Y is a one-dimensional
and adapted stochastic process in addition to the stated requirements.

L2(X) =

{
Y : E

[∫
T

(Ytat)
2dt

]
<∞ and Y b ∈ L2(W )

}

L(X) =

{
Y :

∫ t

0

|Ysas|ds <∞ a.s. for all t and Y b ∈ L(W )

}
Note again the inclusion L2(X) ⊂ L(X). With these definitions we can

define the integral of a one-dimensional process Y with respect to X when
Y ∈ L(X) by setting∫ t

0

YsdXs =

∫ t

0

Ysasds+

∫ t

0

YsbsdWs.

This definition can be extended to d-dimensional processes. Note here that
d is not necessarily equal to n, the dimension of W . We call X = (X(i), · · ·X(d))
a d-dimensional Itô process if all components X(i) are Itô processes. In this case
we define

L2(X) =
{
Z : Z(i) ∈ L2(X(i)) for all i ≤ d

}
and

L(X) =
{
Z : Z(i) ∈ L(X(i)) for all i ≤ d

}
.

With this we define the integral for any d-dimensional process Y ∈ L(X) as∫ t

0

YsdXs =

d∑
i=1

∫ t

0

Y (i)
s dX(i)

s

Note that these definitions coincides with our previous definition of L2(W ),
L(W ), and Itô integration when X = W .

Definition 2.33. Let X and Y be one-dimensional Itô processes with dynamics
dXt = atdt+ btdWt and dYt = utdt+ vtdWt. The covariation process of X and
Y , denoted [X,Y ]t, is defined as ∫ t

0

bsvsds.

It can also be equivalently defined as

lim
n→∞

n∑
i=1

(Xti −Xti−1
)(Yti − Yti−1

) in probability,

defined for any partition of [0, t] with a mesh tending to zero. The quadratic
variation of a single process X is then defined as [X]t = [X,X]t.
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As a side-note it is provable that being of bounded variation implies a quadratic
variation of zero, and a non-zero quadratic variation implies infinite varia-
tion. The final part of the side-note is that if X is of bounded variation then
[X,Y ]t = 0 for all Y and all t.

The most important example of this definition is the quadratic variation of
the one-dimensional Wiener process. Since Wt =

∫ t
0

1dWs we see that W is
trivially an Itô process with [W,W ]t = t. This property can also be used to
define the Wiener process as it is the only martingale with a linear quadratic
variation, see [3, Theorem 4.2].

A neat formal trick is formally treating the dynamics of the quadratic vari-
ation as a product of dynamics i.e.

d[X,Y ] = dXdY = au(dt2) + avdtdW + budWdt+ bv(dW 2) = bvdt

where dt2 = dtdW = dWdt = 0 and dW 2
t = d[W,W ]t = dt. This trick is

defined here as simply formal manipulation, but is justified by the finite variation
of the function t 7→ t and is useful as an intuitive shorthand.

These definitions are useful for formulating what is probably the most impor-
tant results when it comes to working with stochastic integration and stochastic
differential equations. Because of this importance it will be presented as a the-
orem despite its name.

Theorem 2.25 (Itô’s Lemma). Let X be an Itô process on the form dX = adt+
bdW and let (t, x) 7→ f(t, x) ∈ C(1,2)([0,∞)×R) i.e. continuously differentiable
in t and twice continuously differentiable in x. We can then construct a new
process Yt = f(t,Xt) and have that Yt is an Itô process with dynamics

dYt =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)dXt +

1

2

∂2f

∂x2
(t,Xt)d[X]t.

This extends to processes of higher dimensions, let X(i) be an Itô process on
the form dX(i) = a(i)dt+b(i)dW (i) for 1 ≤ i ≤ n and let f ∈ C(1,2)([0,∞)×Rn).
We can now for the n-dimensional Itô process X = (X(1), · · · , X(n)) again
define Yt = f(t,Xt) and get that Y is an Itô process with dynamics

dYt =
∂f

∂t
(t,Xt)dt+

∑
i

∂f

∂x(i)
(t,Xt)dX

(i)
t +

1

2

∑
i,j

∂2f

∂x(i)∂x(j)
(t,Xt)d[X(i), X(j)]t.

This means that the class of Itô processes are closed under transformation
by twice-differentiable functions

We immediately see the similarities to classic calculus, in particular, if the
dependence onW is removed in the one-dimensional equation reduces to the fun-

damental theorem of calculus. The reason the corrective term ∂2f
∂t2 (t,Xt)d[X]t

appears is due to the Wiener process having non-zero second order variation.

2.3.5 Stochastic Differential Equations

We are now ready to define stochastic differential equations, our main tool for
modelling stochastic processes.
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Definition 2.34. Let the processes µ(ω, t, x), σ(ω, t, x) be Prog⊗R-measurable
functions and let x0 ∈ R. We then call X the solution of the SDE (stochastic
differential equation)

dXt = µ(ω, t,Xt)dt+ σ(ω, t,Xt)dWt and X0 = x0

if X is an Itô process with dynamics satisfying the equation

We may ask when there exists solutions to a specific SDE, the following
result shows that under certain conditions on µ and σ there will always exist
solutions.

Theorem 2.26. Let µ(t, x) and σ(t, x) be deterministic functions satisfying
Lipschitz continuity and linear growth uniformly in time, i.e.

|µ(t, x)− µ(t, y)|+ |σ(t, x)− σ(t, y)| ≤ K|x− y|

|µ(t, x)|+ |σ(t, x)| ≤ K(1 + |x|),

for every t ≥ 0 and all x, y ∈ R. Then there exists, for every pair (t0, x0),
an adapted solution Xt of the SDE such that

dXt = µ(t0 + t,X(t))dt+ σ(t0 + t,X(t))dWt

X0 = x0

Furthermore, if there exists some other X ′ that also solves the SDE then
Xt = X ′t for all t almost surely.

One notable example of a solution to a SDE, which we will have use for later,
is the stochastic exponential of an Itô process X. We define

Et(X) = eXt−X0− 1
2 [X]t .

This is also known as the Doléans-Dade exponential and has the following
useful properties.

Lemma 2.4. Let X be an Itô process, and E(X) its stochastic exponential. We
then have

• E(X) is the unique solution to dY = Y dX, Y0 = 1.

• E(X) is positive almost surely.

• if X is a local martingale then E(X) is a local martingale as well.

• E(X)E(Y ) = E(X + Y )e[X,Y ].

• E(X)−1 = E(−X)e[X].
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2.3.6 Markov Chains

An essential part of financial and insurance modelling is the concept of Markov
processes, functions whose future is only dependent on the present and not the
past. In dealing with these processes we will here assume the standard setup
of a filtered probability space (Ω,A,F , P ) with A and F satisfying the usual
conditions, i.e. completeness and right-continuity of F along with A being the
completion of σ (

⋃
t Ft).

To state the Markov property in the way it is often presented we will intro-
duce the notation

P (A|G) = E[1A|G]

For any event A ∈ A, and any σ-algebra G ⊂ A. Note that, since the in-
dicator function is bounded, the conditional expectation will always be defined
regardless of the properties of X. This notation is closely related to our defini-
tion of conditional expectations with respect to events, which will be useful in
working with some of our upcoming definitions.

Definition 2.35. A stochastic process X : Ω×R→ Rn is said to be a Markov
process with respect to F if

P (Xt ∈ A|Fs) = P (Xt ∈ A|σ(Xs))

for all s ≤ t and all A ∈ B(Rn). Here σ(Xs) is the sigma algebra generated
by the inverse images of ω 7→ Xs and the null sets. This could be equivalently
defined by requiring

E[φ(X)|Ft] = E[φ(X)|σ(Xt)]

for all bounded measurable functions φ : Rn → R.

A common example of a Markov chain is the Wiener process, but to show
this we will need a short lemma.

Lemma 2.5. Assume Γ is a σ-algebra and X,Y are two random variables such
that X is Γ-measurable and Y is independent of Γ.

Then for any bounded B(R2)-measurable function g : R2 → R

E[g(X,Y )|Γ] = E[g(X,Y )|σ(X)] (2.2)

Proof. For this result we provide our own proof, this will be done by applying
Theorem 2.3, the monotone class theorem for functions. First, consider B×B =
{A × E : A,E ∈ B}, the set of all measurable rectangles on R2, along with
H = {g : R2 → R such that (2.2) holds}. We then need to prove the following.

1. H is a vector space

2. For all B ∈ B × B the indicator function 1B is in H

3. Let {fn}n≥1 ⊂ H is a monotone increasing sequence of functions. If
fn → f pointwise for some bounded function f then f ∈ H.

We will prove these in order.
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1. The first property follows from linearity of conditional expectations, con-
tained in Theorem 2.18.

2. Let B = A × E ∈ B × B with A,E ∈ B, this would imply that we have
1B(x, y) = 1A(x)1E(y). Note that since Y is independent of Γ it is also
independent of σ(X) ⊂ Γ, yielding

E[1E(Y )|Γ] = E[1E(Y )] = E[1E(Y )|σ(X)].

This implies that

E[1B(X,Y )|Γ] = E[1A(X)1E(Y )|Γ]

= 1A(X)E[1E(Y )|Γ]

= 1A(X)E[1E(Y )|σ(X)]

= E[1A(X)1E(Y )|σ(X)]

= E[1B(X,Y )|σ(X)].

With this we conclude that 1B is in H for all B ∈ B × B

3. The third and last property follows from Theorem 2.19, the monotone
convergence theorem for conditional expectations.

This means that we can apply the monotone class theorem and conclude that
equation (2.2) holds for any bounded σ(B × B) = B(R2)-measurable function.

Example 2.6. The Wiener process W is Markovian with respect to the filtration
FW generated by W .

Proof. For simplicity we assume a one-dimensional Wiener process, furthermore
we assume s, t ∈ R, s ≤ t and that φ : R → R is some bounded B-measurable
function.

We then define X = Ws, Y = Wt−Ws and g(x, y) = φ(x+y) and note from
Proposition 2.6 that X is Ws-measurable and that Y is independent of Fs. By
applying Lemma 2.5 we get that

E[g(X,Y )|FWs ] = E[g(X,Y )|σ(X)].

Filling in for X and Y we get

E[φ(Wt)|FWs ] = E[φ(Wt)|σ(Ws)].

Since φ was chosen to be any bounded function we conclude that W is a
Markov process.

We will also make use of Markov processes with a finite image.

Definition 2.36. A Markov chain will here be defined as a stochastic process
X : Ω × R+ → S where S is a finite space and X is Markovian. Furthermore,
any Markov chain in this text will be assumed to be càdlàg (right-continuous
and with left limits).

We will refer to S as the state space of X.
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This class of processes will be useful in insurance by modelling the state of
the insured. A common choice in this regard is the simple state space {∗, �, †},
where ∗ means healthy, � means disabled and † means dead.

In order to describe these Markov chains we will need the probability of
being in some state at a certain time given the state at a prior time.

Definition 2.37. We define the transition probabilities of a Markov chain X
with state space S as functions on the following form.

pi,j(s, t) = P (Xt = j|Xs = i),

where we require s ≤ t ∈ R+ and i, j ∈ S.

To prove the most fundamental property of transition probabilities, the
Chapman-Kolmogorov equation, we will first need a small lemma. Note that the
following property of Markov chains is usually taken as the defining property in
the case of discrete-time Markov chains.

Lemma 2.6. Consider a finite sequence of time points {ti}ni=1 such that ti ≤
ti+1 for all i < n with an associated sequence of sets {Ai}ni=1. If we have that
P (Xi ∈ Ai for all i < n) > 0 we get

P (Xtn ∈ An|Xti ∈ Ai for all i < n) = P (Xtn ∈ An|Xtn−1 ∈ An−1).

Proof. For this result we provide our own proof, we will here denote Xi = Xti

for readability. We start by noting the following two facts for any A ∈ A.

1.
P (Xn ∈ A|σ(Xi, i < n)) = P (Xn ∈ A|σ(Xn−1)),

where σ(Xi, i < n) and σ(Xn−1) are the sigma algebras generated by
inverse images of {Xi}n−1

i=1 and Xn−1. As before we also include the null
sets in both.

This follows from the tower property of conditional expectations along
with the Markov property, which yields

P (Xn ∈ A|σ(Xi, i < n)) = E[1{Xn∈A}|σ(Xi, i < n)]

= E[E[1{Xn∈A}|Ftn−1
]|σ(Xi, i < n)]

= E[E[1{Xn∈A}|σ(Xn−1)]|σ(Xi, i < n)]

= E[1{Xn∈A}|σ(Xn−1)]

= P (Xn ∈ A|σ(Xn−1)).

2. We have the following equalities, note that we will both here and later
only sum over the indices where P (Xi = Si for all i < n) 6= 0.

P (Xn ∈ A|σ(Xi, i < 1))

=
∑
S1∈S

· · ·
∑

Sn−2∈S

∑
Sn−1∈S

1[Xi=Si,i<n]P (Xn ∈ A|Xi = Si, i < n),

and in particular
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P (Xn ∈ A|σ(Xn−1))

=
∑

Sn−1∈S
1{Xn−1=Sn−1}P (Xn ∈ A|Xn−1 = Sn−1).

This is a result of the fact that any σ(Xi, i < 1)-measurable function must
be constant on the sets Xi = Si for all i < n, which are the smallest sets
making up σ(Xi, i < 1). The exact value of these functions follows from
the definition of conditional expectations. Alternatively, we can note this
as a consequence of Example 2.5.

Putting these facts together we get∑
S1∈S

· · ·
∑

Sn−2∈S

∑
Sn−1∈S

1{Xi=Si,i<n}P (Xn ∈ A|Xi = Si, i < n)

=
∑

Sn−1∈S
1{Xn−1=Sn−1}P (Xn ∈ A|Xn−1 = Sn−1),

which implies, by multiplying both sides by 1{Xn−1=Sn−1} for some choice
of Sn−1 ∈ S, that∑

S1∈S
· · ·

∑
Sn−2∈S

1{Xi=Si,i<n}P (Xn ∈ A|Xi = Si, i < n)

= 1{Xn−1=Sn−1}P (Xn ∈ A|Xn−1 = Sn−1).

Furthermore, since P (Xn ∈ A|Xn−1 = Sn−1) is constant on the set {Xn−1 =
Sn−1}, we have that∑

S1∈S
· · ·

∑
Sn−2∈S

1{Xi=Si,i<n}P (Xn ∈ A|Xi = Si, i < n)

must be constant and equal to P (Xn ∈ A|Xn−1 = Sn−1) on {Xn−1 = Sn−1}.
Since Sn−1 was chosen arbitrarily the only way this can hold is if

P (Xn ∈ A|Xi = Si, i < n) = P (Xn ∈ A|Xn−1 = Sn−1),

which yields the desired result.

We now move on to the Chapman-Kolmogorov equations.

Theorem 2.27. For any s, u, t ∈ R+ with s ≤ u ≤ t and any i, j ∈ S we have

pi,j(s, t) =
∑
k∈S

pi,k(s, u)pk,j(u, t)

Proof. By applying the law of total probability and Lemma 2.6 we get that

pi,j(s, t) = P (Xt = j|Xs = j)

=
∑
k∈S

P (Xt = j|Xs = j,Xu = k)P (Xu = k|Xs = j)

=
∑
k∈S

P (Xt = j|Xu = k)P (Xu = k|Xs = j)

=
∑
k∈S

pi,k(s, u)pk,j(u, t)
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This result will be particularly useful in combination with the following
definition.

Definition 2.38. We define the following transition rates for a Markov chain
X whenever the respective limits exist. We will here use the notation limx→0+

to mean that x→ 0 and x > 0. For any i ∈ S we then define

µi(t) = lim
h→0+

1− pi,i(t, t+ h)

h
.

If i, j ∈ S and i 6= j we define

µi,j(t) = lim
h→0+

pi,j(t, t+ h)

h
.

By convention we also define µi,i(t) = −µi(t), note that this implies that

µi,j(t) = lim
h→0+

pi,j(t, t+ h)− pi,i(t, t)
h

=
∂pi,j(s, t)

∂t

∣∣∣
s=t

for all i, j ∈ S along with, for any i ∈ S,∑
j∈S

µi,j(s, t) = 0.

Definition 2.39. A Markov chain is said to be regular if for all i, j ∈ S we
have that t 7→ µi,j(t) is defined and continuous.

This leads us to the famous Kolmogorov equations, which are useful as they
provide a way to recover transition probabilities from the transition rates. In
practical applications it is generally the rates that are observable, which means
the following result is needed to compute the probabilities.

Theorem 2.28 (Kolmogorov’s Equations). Assume X is a regular Markov
chain, we then have the following equations.

• The backwards Kolmogorov equation:

∂pi,j(s, t)

∂s
= −

∑
k∈S

µi,k(s)pk,j(s, t)

• The forwards Kolmogorov equation:

∂pi,j(s, t)

∂t
=
∑
k∈S

pi,k(s, t)µk,j(t)

We might also be interested in knowing the chance of X staying in a certain
state i ∈ S for an interval of time [s, t] ⊂ R+. We then denote

p̄i,i(s, t) = P

( ⋂
u∈[s,t]

{Xu = i}
∣∣∣∣Xs = i

)
.
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Note that
⋂
u∈[s,t]{Xu = i} is an uncountable intersection and thus not auto-

matically measurable. However, by our assumption of right-continuity we may,
for any u < t, consider a rational decreasing sequence of numbers {qn}n∈N con-
verging to u. We then have that if Xqn = i for all n then Xu = limn→∞Xqn = i.
This means that if Xq = i for all rational numbers q ∈ [s, t]∪Q then Xu = i for
all u ∈ [s, t), which yields⋂

u∈[s,t]

{Xu = i} =
⋂

u∈[s,t]∩Q

{Xu = i} ∩ {Xt = i}.

Since the right-hand side of the equation is a countable intersection it is
measurable, which guarantees us that our definition is well defined.

Example 2.7. Let us assume a simple insurance model for modelling the state
of the insured. We will here consider a regular Markov chain with state-space
S = {∗, †} where ∗ means that the insured is alive and † means that they are
dead. Furthermore we assume that the probability of returning from the dead
state is 0, which means that

p̄∗,∗(s, t) = p∗,∗(s, t) = 1− p∗,†(s, t).

By applying the forward Kolmogorov equation we get

∂p∗,∗(s, t)

∂t

= p∗,∗(s, t)µ∗,∗(t) + p∗,†(s, t)µ†,∗(t)

= p∗,∗(s, t)µ∗,∗(t).

Using that p∗,∗(s, s) = 1 we have that the solution to this differential equation
is

p∗,∗(s, t) = p̄∗,∗(s, t) = exp

(∫ t

s

µ∗,∗(u)du

)
.

The argument given generalizes to general Markov chains, yielding the fol-
lowing result.

Theorem 2.29. Let X be a regular Markov chain, we then have for any i ∈ S
that

p̄i,i(s, t) = exp

(∫ t

s

µi,i(u)du

)
.

Note that we could equivalently write

p̄i,i(s, t) = exp

−∑
j∈S
j 6=i

∫ t

s

µi,j(u)du

 .
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Chapter 3

Financial Markets and
Arbitrage Theory

3.1 Financial Markets

Financial markets is an important area of study, not only in its own right, but
also for the applications it offers. In particular, the financial market allows for
the hedging of risk which affects pricing in other fields, such as insurance. We
will cover the specific effects on pricing in the next section on arbitrage, but
first we need a few basic definitions and results.

For these definitions we will be working within a filtered probability space
(Ω,A,F , P ). We assume the filtration F is right-continuous and complete and

that A is the completion of σ
(⋃

t∈R+
Ft
)

. Lastly we assume the existence of a

Wiener process W that is a martingale with respect to F .
Note that in this chapter we will be covering theory mainly based on what

is covered in [3, Chapter 4], which we refer to for further reading.

Definition 3.1. A zero-coupon bond is a financial agreement that the holder of
this bond is guaranteed one unit of currency at a time of maturity T . The value
of a zero-coupon bond at time t, with maturity T , also referred to as a T -bond
is often denoted P (t, T ). We will make the following assumptions.

1. There exists an unrestrained market for T -bonds for any maturity T > 0

2. P (T, T ) = 1

3. P (t, T ) is differentiable in T

Remark 3. Property (1) is never satisfied in reality. T -bonds are usually only
traded for specific maturities, e.g. monthly, and selling large amounts of these
T -bonds is restricted due to the risk of the issuer defaulting. This same risk
means Property (2) could fail as well if the issuer is again at risk of defaulting.
Despite the lack of perfect realism these conditions will be useful for developing
our mathematical framework. It is hard to comment on the realism of property
(3) as P (t, T ) is only given for discrete values in reality, so we consider it a
purely technical condition.
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Definition 3.2. We define the forward rate f(t, T ) and the short-rate rt as

f(t, T ) = −∂P (t, T )

∂T
,

rt = f(t, t).

Note that by the definition of f(t, T ), along with our assumption that
P (T, T ) = 1, we have that

P (t, T ) = e−
∫ T
t
f(t,s)ds.

We will often refer to the function T 7→ f(t, T ) as the forward curve.
With this we need one final definition before properly starting on financial

markets.

Definition 3.3. We define the bank account B, often referred to as the risk-free
asset by

Bt = e
∫ t
0
rsds.

With this we can move on to financial markets, in the rest of this section
we will assume that we have a filtered probability space (Ω,A,F , P ) equipped
with an d-dimensional Wiener process. We will further assume as we did when
defining the Itô integral that W is a martingale with respect to F . Lastly we
require that F is right continuous, complete and that A is the completion of
σ(
⋃
t≥0 Ft).

Definition 3.4. A financial market S is a collection of assets represented by
the n+ 1-dimensional stochastic process (S(0), · · · , S(n)) Where S(0) = B is the
bank account discussed earlier and S(i) for i ≥ 1 is a financial asset on the form

dS(i) = S(i)dX(i)

where X(i) is some Itô process. We must therefore require S(i) ∈ L(X(i)) and
could equivalently define

S
(i)
t = S

(i)
0 Et(X)

A common choice for some of the assets will be zero-coupon bonds for differ-
ent time horizons, this choice will be essential in developing the HJM framework.
Note that S by definition becomes a n+ 1-dimensional Itô process.

We will later go on to price claims according to the zero arbitrage principle,
but before we can discuss arbitrage we need a concept of possible financial
trading strategies.

A portfolio or trading strategy φ = (φ(0), · · ·φ(n)) is an n + 1-dimensional
progressive process and its value process V is defined by

Vt = φt · St =

n∑
i=0

φ
(i)
t S

(i)
t .

Such a portfolio is called self-financing if φ ∈ L(S) and that all change in
the value process comes changes in the value of our assets. To state the latter
mathematically we require dVt = φtdSt.
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We will often consider normalized asset values, which is done by scaling
the value of our assets by certain processes known as nemeraires. A numeraire
then becomes the base value of the market and is usually chosen to be U.S.
dollars. There are many ways of normalizing, such as scaling both assets with
the conversion rate between dollars and Norwegian kroner to get our prices in
NOK. We will here consider S(0) = B as our numeraire. We will use calligraphic
letters for the discounted price vector and value process, and with this we get

S = S/B = (1, S(1)/B, · · · , S(n)/B) = (1,S(1), · · · ,S(n)).

We will use this following lemma to ensure this scaling does not interfere
with our other definitions.

Lemma 3.1. If φ ∈ L(S)∩L(S) then φ is self-financing for S if and only it is
self-financing for S.

We may also calculate the dynamics of S by an application of the two-
dimensional version of Itô’s lemma. This will be calculated for any component
S(i), i 6= 0.

We start by noting that B−1 = e−
∫ t
0
rsds implying d(B−1) = −rB−1dt.

Applying Itô’s lemma to f(x, y) = xy yields

dS(i) = d(S(i)B−1) = d(f(S(i), B−1))

= S(i)d(B−1) +B−1dS(i)

= −rS(i)B−1dt+ S(i)B−1(µ(i)dt+ σ(i)dW )

= S(i)
(
(µ(i) − r)dt+ σ(i)dW

)
. (3.1)

With this we see that the discounted asset price S(i) is still a stochastic
exponential, but with a discounted drift.

These definitions now mimic real-life trading strategies, but we still might
have arbitrage opportunities. An arbitrage portfolio is usually defined as a
portfolio φ with a value process V satisfying

V (0) = 0 , V (T ) ≥ 0 , P [V (T ) > 0] > 0 for some T

This is problematic because it allows for strategies that guarantee no loss
while offering a chance for profit. If this model was representative of reality
everyone could simply scale this strategy in order to eventually make riskless
profit. In a stable market there should not exist such opportunities. In order to
avoid this we need further conditions on which strategies are admissible, along
with conditions to ensure our market can be free of arbitrage.

3.2 Arbitrage Theory

In order to avoid arbitrage we need the concept of an equivalent (local) martin-
gale measure, and in order to construct such a measure we need a few theoretical
results.
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Definition 3.5. An equivalent measure Q of a measure P , denoted Q ∼ P is a
measure s.t. Q� P and P � Q.

An equivalent martingale measure (EMM) is a probability measure Q ∼ P
such that S(i) is a martingale under Q for every i.

An equivalent local martingale measure (ELMM) is a probability measure
Q ∼ P such that S(i) is a local martingale under Q for all i.

Note that every EMM is also an ELMM

When such a measure exists we will often be interested to see how the dynam-
ics of our Wiener process behaves under Q, to see this we will use Girsanov’s
theorem. In order to properly state this theorem we will need the technical
condition of uniform integrability.

Definition 3.6. A collection of functions {fi}i∈I on a measure space (Ω,A, µ)
is called uniformly integrable if for every δ there exists an ε such that for every
i and every E ∈ A with µ(E) ≤ ε we have∫

E

fidµ ≤ δ

This now allows us to properly state Girsanov’s theorem. Note that there
are many versions of this result, but we here present the same version as stated
in [3, Theorem 4.6].

Theorem 3.1 (Girsanov’s Theorem). Let γ ∈ L(W ) be such that E(γ•W ) is a
uniformly integrable martingale. We also require that ET (γ •W ) > 0 for some
time horizon T and get that

dQ

dP
= ET (γ •W ) (3.2)

defines an equivalent probability measure Q ∼ P . We also have for any
equivalent measure given by equation (3.2) that the process W ∗ defined by

W ∗t = Wt −
∫ t

0

γsds

is a Wiener process under Q.
Lastly by exchanging T for ∞ we have the same results for an infinite time

horizon. In this case we would define

E∞(γ •W ) = lim
u→∞

Eu(γ •W ).

The requirements for E(γ •W ) can be troublesome. Luckily there exists a
sufficient, but not necessary, condition for these properties to hold.

Theorem 3.2 (Novikov’s condition). [3, Thm 4.7] If

E
[
e

1
2

∫ T
0
|γt|2dt

]
<∞ (3.3)

then E(γ) is a uniformly integrable martingale on [0, T ] and ET (Γ) > 0.
Again, exchanging T for∞ gives the same result for an infinite time horizon.
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If an equivalent measure on the form in Girsanov’s theorem, equation (3.2),
that is also an E(L)MM exists we have the following Q-dynamics for S(i),i 6= 1,
by using dW = dW ∗ + γdt.

dS(i)/S(i) = (µ(i) − r)dt+ σ(i)dW

= (µ(i) − r)dt+ σ(i)(dW ∗ + dt)

= (µ(i) − r + σ(i)γ)dt+ σ(i)dW ∗.

In order for S to be a local martingale we cannot have non-zero drift term
and must require

− γ = (µ(i) − r)/σ(i) for all i ≥ 1. (3.4)

This is often referred to as the market price of risk. Note that if the converse
holds and there exists a process γ solving (3.4) in such a way that γ also meets
the conditions for Girsanov (3.2) (or Novikov (3.3)), then there exists an ELMM
for our market.

With this established we can move on to finally define the class of trading
strategies we will consider. Here we will use the definition of Filipović

Definition 3.7. An admissible trading strategy φ is a self-financing strategy
such that the discounted value process V is a Q-martingale for some ELMM Q.

Another common way of defining admissible strategies is instead requiring
them to be bounded from below. As noted in [3, p. 70], the next result would
still hold under these conditions. This is however not needed for our purposes,
and we will stick to this more manageable definition.

We are now finally ready to present the main reason why the existence of an
ELMM is important

Theorem 3.3 (The First Fundamental Theorem of Asset Pricing). If there
exists an ELMM the market has no admissible arbitrage portfolios

Proof. Let V be the discounted value process of some admissible trading strategy
φ such that V(0) = 0 and V(T ) ≥ 0. We then have by definition of admissibility
that V is a martingale for some Q ∼ P and get

0 ≤ EQ[VT ] = V0 = 0.

This means that Q(VT > 0) = 0, which by equivalence to P means that P (VT >
0) = 0. This means that φ cannot be an arbitrage opportunity.

The converse is not exactly true, it is possible to have an arbitrage free mar-
ket without an ELMM. There is however a slightly stronger condition than the
absence of arbitrage, known as ”no free lunch without risk”, which is equivalent
to the existence of an ELMM. Regardless we shall assume both the absence
of arbitrage and then existence of an ELMM of the Girsanov form given in
equation (3.2) for our market.

Now that we have established the absence of arbitrage we will move on to
find a way of assigning prices to our options.

Definition 3.8. A contingent claim due at time T or T -claim is some payoff
due at time T and is defined to be any FT -measurable random variable X.
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Notice that if a T -claim X is equal to the payout of some portfolio V i.e.
X = VT then the value of X at time t given all information up to t should be
Vt. If this was not the case we could obviously buy the cheaper one and short
the other to generate profit while paying nothing at time T. Furthermore we
have that V = V/B and that V is a martingale under Q, yielding

BtE[X/BT |Ft] = BtE[VT /BT |Ft]

= BtE[VT |Ft] = BtVt = Vt.

So we have another way of calculating an arbitrage free price, we will use
this pricing method on what will be defined as attainable claims.

Definition 3.9. An attainable claim is a T -claim X with X = VT for the value
function of some portfolio at time T . We will refer to such a portfolio as a
replicating portfolio.

In order to work with attainability we will need some way to represent our
T -claims. To do this we will use the following representation theorem.

Theorem 3.4. Assume that our filtration F is the filtration generated by our
Wiener process W . Then for every P-local martingale M with respect to F there
exists some ψ ∈ L2 such that

Mt = M0 +

∫ t

0

ψsdWs.

This will be necessary for the second fundamental theorem of asset pricing,
which we will use to define arbitrage-free prices for our claims. First, however,
we have a short corollary showing that when F is generated by W all ELMMs
are on the Girsanov form(3.2).

Corollary 3.1. [3, Thm 4.8] Let Q be an ELMM, and let dQ
dP be the Radon-

Nikodym derivative with respect to P . Then there exists some process γ such
that.

dQ

dP
= ET (γ •W ) .

Proof. We define Dt = E
[
dQ
dP |Ft

]
and note that Dt is a martingale by the tower

property of conditional expectations. By our representation theorem we then
have for some ψ

Dt = D0 +

∫ t

0

ψdW.

Since dQ
dP is positive so is Dt for all t and we get

dDt = ψtdWt = Dt(ψt/Dt)dW

We then define γ = ψ/D and note that d(γ •W )t = γtdWt to see that

dDt = Dtd(γ •W ).

Which shows that Dt = Et(γ •W ) implying dQ
dP = DT = ET (γ •W )
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This corollary implies that if F is generated by W then any ELMM must be
of the Girsanov form given in equation (3.2). In this case we could simplify our
assumption about the Girsanov form of our ELMM and just equivalently assume
that some ELMM exists.

Lastly note that this result also applies in the case where our time horizon is
infinite, in which case we would get

dQ

dP
= E∞ (γ •W ) .

Now that this is established we return to pricing. We know how to price
attainable claims, but we would like to know which T -claims are attainable.

Definition 3.10. A market is complete if for all T any T -claim with bounded
discounted payoff X/BT is attainable

We can now present conditions for when our market is complete.

Theorem 3.5 (The Second Fundamental Theorem of Asset Pricing). [3, The-
orem 4.9] Assume that F is generated by W and that there exists an ELMM for
our market. The following are then equivalent

• The market is complete

• Our ELMM is unique

• The market price of risk γ is unique dP ⊗ dt-a.e.

Furthermore, if these hold then any claim X with

EQ

[
|X|
BT

]
<∞ (3.5)

is attainable.

We know from (3.4) that γ is uniquely defined by our assets which means
that our market is complete as long as there exists some ELMM on the Girsanov
form (3.2). We can then define the arbitrage free price of any T -claim satisfying
(3.5) as

π(X, t) = BtE [X/BT |Ft].
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Chapter 4

Interest Rate Modelling

We will now cover the class of interest models we are going to apply in this text.
Like in Chapter 3 on finance we will work within a filtered probability space
(Ω,A,F , P ). We assume the filtration F is right-continuous and complete and

that A is the completion of σ
(⋃

t∈R+
Ft
)

. We also assume the existence of a

Wiener process W that is a martingale with respect to F and lastly that we
have a market as defined in Chapter 3 with a unique ELMM.

In this chapter we will mainly present theory covered in [3, Chapter 6,Chap-
ter 7], which we refer to for further reading.

4.1 The HJM Framework

One of the issues with many short-rate models is calibrating them to the initial
term structure (i.e. the function T 7→ P (0, T )). The HJM framework (named
after Heath Jarrow and Morton) was proposed in the late 80’s which models the
entire forward curve directly.

We make the same assumptions as stated earlier, but we will also assume a
model for the forward rate f(t, T ) from Definition 3.2 based on two stochastic
processes, α and σ. While these processes are stochastic we will as usual suppress
the notation of ω and denote α(t, T ) = α(ω, t, T ), σ(t, T ) = σ(ω, t, T ). The
assumptions we will make on these processes are the following.

• HJM1: α and σ are Prog ⊗ B-measurable.

• HJM2:
∫ T

0

∫ T
0
|α(s, t)|dsdt <∞.

• HJM3: sups,t≤T |σ(s, t)| <∞ for all T and all ω.

We will also assume that we have given some integrable initial forward curve
(T 7→ f(0, T )). With this we can specify our model for f(t, T ) for any T as

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds+

∫ t

0

σ(s, T )dWs.

Note that HJM2 guarantees the existence of the first integral and HJM1
along with the non-stochastic Fubini theorem (Theorem 2.6) makes it progres-
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sive. We also see that HJM3 implies that∫ t

0

|σ(s, T )|2ds ≤ t sup
u,v≤T

|σ(u, v)|2 <∞,

for all t, ω. This along with HJM1 means we have σ ∈ L(W ) which makes
the second integral defined as well. Moreover, by continuity Proposition 2.5
ensures that t 7→ f(t, T ) is progressive.

We also define the short-rate.

rt = f(t, t) = f(0, t) +

∫ t

0

α(s, t)ds+

∫ t

0

σ(s, t)dWs.

It is worth noting that r is no longer necessarily continuous due to the
dependence on t inside the integrals. To ensure progressiveness we need the
following result.

Proposition 4.1. Assume X(ω, s, t) is a stochastic process satisfying the con-
ditions in the stochastic Fubini theorem (Theorem 2.24), i.e. X is Prog ⊗ B-

measurable and bounded jointly in s, t for all ω. Then s 7→
∫ t

0
X(ω, s, t)dWs has

a progressive modification Jt such that
∫ T

0
J2
t dt <∞ almost surely.

Since σ(s, t) satisfies the given conditions we see that t 7→
∫ t

0
σ(s, t)dWs

has a progressive modification. By the non-stochastic version of Fubini’s theo-
rem (Theorem 2.6) we also have that

∫ t
0
α(s, t)ds is progressive. Putting these

together we get that rt is progressive.
Moving on to our zero-coupon bonds we have by definition that

P (t, T ) = e
∫ T
t
f(t,s)ds.

We can also specify the dynamics of P (t, T ) in t.

Lemma 4.1. For every T > 0 we have that t 7→ P (t, T ) is an Itô process with
the following dynamics.

dP (t, T )

P (t, T )
= (rt + b(t, T ))dt+ v(t, T )dWt.

For t ≤ T where we have defined the following.

v(t, T ) = −
∫ T

t

σ(t, u)du

b(t, T ) = −
∫ T

t

α(t, u)du+
1

2

∣∣∣∣∣
∫ T

t

σ(t, u)du

∣∣∣∣∣
2

The proof of this statement will be omitted, but it will be a direct consequence
of the Leibniz integral rule for Itô processes, Lemma 6.1, which will be proved
in Chapter 6.

As a corollary we can also consider the discounted zero-coupon bond price.

Corollary 4.1. For all t ≤ T we have

d

(
P (t, T )

Bt

)/P (t, T )

Bt
= b(t, T )dt+ v(t, T )dWt.
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Proof. The proof is a repetition of the arguments in equation (3.1).

For Q to be an ELMM we need by definition that P (t,T )
Bt

is a local martingale
under Q. We assume that Q ∼ P exists as an equivalent measure on the
Girsanov form given by equation (3.2) and we let W ∗t = Wt −

∫ t
0
γsds be the

Wiener process under Q from Girsanov’s theorem.

Theorem 4.1 (HJM Drift Condition). We have that Q is an ELMM if and
only if

b(t, T ) = −v(t, T )γt dP × dt-a.e. for all T.

In this case we also have that the Q-dynamics of f(t, T ) for t ≤ T is

df(t, T ) =

(
σ(t, T )

∫ T

t

σ(t, s)ds

)
dt+ σ(t, T )dW ∗t .

We also have from Corollary 4.1 and Lemma 2.4 that

P (t, T )

Bt
= P (0, T )Et(v(·, T ) •W ∗)

for t ≤ T .

4.2 Forward Measures

Most of our financial theory has used the concept of an ELMM Q to develop
arbitrage free pricing of claims and assets. In this chapter we extend this notion
to include more equivalent measures to get several useful results. To do this we
must assume that Q is an EMM. With this assumption we get that P (t, T )/Bt
is a martingale which yields the following fact

EQ

[
P (T, T )

P (0, T )BT

]
= EQ

[
1

P (0, T )BT

]
=
P (0, T )

P (0, T )
= 1.

This allows us to define an equivalent measure QT ∼ Q on FT by

dQT

dQ
=

1

P (0, T )BT
=

P (T, T )

P (0, T )BT
,

for any T . These measure are known as forward measures, furthermore,
since P (t, T )/Bt is a martingale we can define

dQT

dQ

∣∣∣∣
Ft

= EQ

[
dQT

dQ

∣∣∣∣Ft] =
P (t, T )

P (0, T )Bt
.

Remark 4. We could equivalently define dQT

dQ

∣∣
Ft

as the Radon-Nikodym deriva-

tive of QT with respect to Q when both measures are restricted to Ft. This
equivalence follows from

∫
A

XdQT =

∫
A

X
dQT

dQ
dQ =

∫
A

EQ

[
X
dQT

dQ

∣∣∣∣Ft] dQ =

∫
A

XEQ

[
dQT

dQ

∣∣∣∣Ft] dQ
for any QT -integrable and Ft-measurable X, and any A ∈ Ft.
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Regardless of definition we know that this process, by Theorem 4.1, has the
representation.

dQT

dQ

∣∣∣∣
Ft

= Et(v(·, T ) •W ∗).

Applying Girsanov’s theorem we get that WT defined by

dW ∗t = dWT
t + v(t, T )dt

is a Wiener process under QT .
In order to properly utilize these forward measures we will need a small result

that generalizes Bayes’ rule to conditional expectations based on σ-algebras.

Lemma 4.2 (Bayes’ Rule). We denote

Dt =
dµ

dυ

∣∣∣∣
Ft

for any two probability measures µ and υ. We then have for any µ-integrable
and FT -measurable random variable X that

Eµ [X|Ft] =
Eυ [XDT |Ft]

Dt
.

Since this is left as an exercise in [3] we will provide our own proof.

Proof. From the argument in Remark 4 we know that Dt is equal to the Radon-
Nikodym derivative of µ with respect to υ when both measures are restricted
to Ft. This yields for any K ∈ Ft ⊂ FT that

∫
K

Eµ [X|Ft]Dtdυ =

∫
K

Eµ [X|Ft] dµ

=

∫
K

Xdµ

=

∫
K

XDT dυ

=

∫
K

Eυ [XDT |Ft] dυ,

which proves the result.

Using this formula we get the following useful result.

Lemma 4.3. For t ≤ min(S, T ) we have that P (t,S)
P (t,T ) is a QT -martingale, we

also have the representation

P (t, S)

P (t, T )
=
P (0, S)

P (0, T )
Et
(
vS,T •WT

)
,

where we define

vS,T (t) =

∫ T

S

σ(t, u)du.
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Proof. Let s ≤ t ≤ min(S, T ), Bayes’ rule then yields

EQT

[
P (t, S)

P (t, T )

∣∣∣∣Fs] =
EQ

[
P (t,T )
P (0,T )Bt

P (t,S)
P (t,T )

∣∣Fs](
P (s,T )
P (0,T )Bt

) =

(
P (s,S)
Bs

)
(
P (s,T )
Bs

) =
P (s, S)

P (s, T )
.

As a result of this lemma, we can relate QS and QT for t ≤ min(T, S) by

dQS

dQT

∣∣∣∣
Ft

=
dQS

dQ

∣∣∣∣
Ft

dQ

dQT

∣∣∣∣
Ft

=
P (t, S)P (0, T )

P (0, S)P (t, T )
= Et

(
vS,T •WT

)
.

Remark 5. When we defined an EMM we required that the discounted assets
were martingales under Q. However, from this lemma we see that if we used
P (t, T ) as our numeraire (the discount factor) we could use QT as an EMM
instead. This means that we now have an EMM for every T , each with its own
numeraire. Note that doing so would assume that all our assets, except the bank
account, would be zero-coupon bonds.

The main advantage with forward measures is option pricing, where we have
the following result.

Proposition 4.2. Let X be a T -claim with

EQ

[
|X|
BT

]
<∞.

We then have that

EQT
[
|X|
]
<∞,

and that

BtEQ

[
X

BT

∣∣∣∣Ft] = P (t, T )EQT
[
X
∣∣Ft] .

Proof. The first statement follows from

EQT
[
|X|
]

= EQ

[
|X|dQ

T

dQ

]
= EQ

[
|X|

P (0, T )BT

]
<∞.

For the second statement we have by Bayes’ rule that

BtEQ

[
X

BT

∣∣∣∣Ft] = P (0, T )BtEQ

[
X

BTP (0, T )

∣∣∣∣Ft]
= P (0, T )Bt

P (t, T )

P (0, T )Bt
EQT

[
X
BTP (0, T )

BTP (0, T )

∣∣∣∣Ft]
= P (t, T )EQT

[
X
∣∣Ft] .
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In the rest of this section we will use this result to, under certain conditions,
calculate the arbitrage free price of assets more explicitly. We will follow the
arguments from [3, Chapter 7.2], but will present a more thorough proof, along
with a generalization of some results. In [3] the price of a call option was
calculated for t = 0, we will generalize this to any t, as well as calculating the
price of digital options.

Consider a European call option with strike price K and expiry date T on
a zero-coupon bond with maturity at time S. Such an option has a payout of
(P (T, S)−K)

+
, which means the unique arbitrage free price at time t must be

BtEQ

[
(P (T, S)−K)+

BT

∣∣∣∣Ft] .
We have an explicit formula for this expression under certain conditions by

the following result.

Theorem 4.2. Assume a general financial setup as described in Section 3 and
with interest rates determined by an HJM model as described in Section 4.1.
Further assume that the ELMM Q is an EMM and that the volatility process
σ(t, T ) of the forward rates f(t, T ) are deterministic.

We then have that unique arbitrage-free price of a European call option with
payout (P (T, S)−K)

+
is

P (t, S)Φ

 log
(

P (t,S)
KP (t,T )

)
+ 1

2

∫ T
t
|vT,S(u)|2du√∫ T

t
|vT,S(u)|2du


−KP (t, T )Φ

 log
(

P (t,S)
KP (t,T )

)
− 1

2

∫ T
t
|vT,S(u)|2du√∫ T

t
|vT,S(u)|2du

 ,

where Φ is the distribution function of the standard normal distribution.

Proof. We start by splitting up the pricing formula.

BtEQ

[
(P (T, S)−K)+

BT

∣∣∣∣Ft]
= BtEQ

[
P (T, S)1P (T,S)≥K

BT

∣∣∣∣Ft]−KBtEQ [1P (T,S)≥K

BT

∣∣∣∣Ft] .
Applying Proposition 4.2 to the first term we get

BtEQ

[
P (T, S)1P (T,S)≥K

BT

∣∣∣∣Ft] = P (t, S)EQT
[
P (T, S)1P (T,S)≥K

∣∣Ft] ,
and by applying Bayes’ rule and Lemma 4.3 we get

56



P (t, T )EQT
[
P (T, S)1P (T,S)≥K

∣∣Ft]
= P (t, T )

dQS

dQT

∣∣∣∣
Ft
EQS

[
dQT

dQS

∣∣∣∣
FT
P (T, S)1P (T,S)≥K

∣∣∣∣Ft
]

= P (t, T )
P (t, S)P (0, T )

P (0, S)P (t, T )
EQS

[
P (T, T )P (0, S)

P (0, T )P (T, S)
P (T, S)1P (T,S)≥K

∣∣∣∣Ft]
= P (t, S)EQS

[
1P (T,S)≥K

∣∣Ft]
= P (t, S)QS(P (T, S) ≥ K|Ft).

The second term can be simplified in a similar manner, by Proposition 4.2
we have

−KBtEQ
[
1P (T,S)≥K

BT

∣∣∣∣Ft] = −KP (t, S)EQT
[
1P (T,S)≥K

∣∣Ft]
= −KP (t, S)QT (P (T, S) ≥ K|Ft).

It now remains to calculate the probability of P (T, S) ≥ K under QS and
QT , to do this we first note that

QS(P (T, S) ≥ K|Ft) = QS
(
P (T, T )

P (T, S)

P (t, S)

P (t, T )
≤ 1

K

P (t, S)

P (t, T )

∣∣∣∣Ft) ,
QT (P (T, S) ≥ K|Ft) = QT

(
P (T, S)

P (T, T )

P (t, T )

P (t, S)
≥ KP (t, T )

P (t, S)

∣∣∣∣Ft) . (4.1)

To simplify notation we will define

ΓT,Su =
P (u, T )

P (u, S)
,

ΓS,Tu =
P (u, S)

P (u, T )
.

From Lemma 4.3 we have the representations

ΓT,ST
ΓT,St

= exp

(∫ T

t

vT,S(u)dWT
u −

1

2

∫ T

t

|vT,S(u)|2du

)
and

ΓS,TT
ΓS,Tt

= exp

(∫ T

t

vS,T (u)dWS
u −

1

2

∫ T

t

|vS,T (u)|2du

)
.

From this we see that if vT,S is deterministic then both of these are log-
normally distributed by Theorem 2.23 under their respective measures. This
motivates our assumption that σ(t, T ), and therefore vT,S , is deterministic.

By the assumption of independent increments of the Wiener process we have
that the process (ω, t) 7→ WT

u , u ≤ t and the process (ω, t) 7→ WT
u , u ≥ t are

independent. By Lemma 2.3 we get that the σ-algebra generated by WT
u for

u ≥ t, denoted F∗t , must then be independent of Ft. Since
∫ T
t
vT,S(u)dWT

u is
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measurable with respect to F∗t it must therefore be independent of Ft. Since

this argument holds for WS as well we have that
∫ T
t
vS,T (u)dWS

u is independent

of Ft. From this we have that ΓT,ST /ΓT,St and ΓS,TT /ΓS,Tt are independent of Ft,
by applying Lemma 2.5 we get

QS

(
ΓT,ST
ΓT,St

≤ 1

KΓT,St

∣∣∣∣Ft
)

= QS

(
ΓT,ST
ΓT,St

≤ 1

KΓT,St

∣∣∣∣σ (ΓT,St

))
,

QT

(
ΓS,TT
ΓS,Tt

≥ K

ΓS,Tt

∣∣∣∣Ft
)

= QT

(
ΓS,TT
ΓS,Tt

≥ K

ΓS,Tt

∣∣∣∣σ (ΓS,Tt

))
.

Furthermore, we have

QS

(
ΓT,ST
ΓT,St

≤ 1

KΓT,St

∣∣∣∣σ (ΓT,St

))
= QS

(
ΓT,ST
ΓT,St

≤ 1

Kx

)∣∣∣∣
x=ΓT,St

,

QT

(
ΓS,TT
ΓS,Tt

≥ K

ΓS,Tt

∣∣∣∣σ (ΓT,St

))
= QT

(
ΓS,TT
ΓS,Tt

≥ K

x

)∣∣∣∣
x=ΓS,Tt

.

(4.2)

We will here prove the first part of equation (4.2), to show this we need

EQS

[
1 (A)1

(
ΓT,ST
ΓT,St

≤ 1

KΓT,St

)]

= EQS

[
1 (A)EQS

[
1

(
ΓT,ST
ΓT,St

≤ 1

Kx

)] ∣∣∣∣
x=ΓT,St

]
,

for any set A ∈ σ
(
ΓT,St

)
. We can without loss of generality assume that

A = {ω ∈ Ω : ΓT,St ∈ B} with B ∈ B(R) as σ(ΓT,St ) is generated by these sets
and the null sets of F∞.

To keep notation orderly we here denote the indicator function of an event
E as 1(E) instead of the usual 1E(ω), and will denote the distribution functions

of the laws of ΓT,St and ΓT,ST /ΓT,St under QS as F and G respectively. Since we
are dealing with a function of two independent random variables we can apply
Theorem 2.14 and 2.15 to get

EQS

[
1

(
ΓT,St ∈ B

)
1

(
ΓT,ST
ΓT,St

≤ 1

KΓT,St

)]

=

∫
R

∫
R
1 (x ∈ B)1

(
y ≤ 1

Kx

)
dG(y)dF (x)

=

∫
R
EQS

[
1 (x ∈ B)1

(
ΓT,ST
ΓT,St

≤ 1

Kx

)]
dF (x)

=

∫
R
EQS [1 (x ∈ B)]EQS

[
1

(
ΓT,ST
ΓT,St

≤ 1

Kx

)]
dF (x)

= EQS

[
1

(
ΓT,St ∈ B

)
EQS

[
1

(
ΓT,ST
ΓT,St

≤ 1

Kx

)] ∣∣∣∣
x=ΓT,St

]
,
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which proves the first part of (4.2), the second part follows from the same
arguments.

With equation (4.2) we can easily calculate the probabilities from equation
(4.1). The computation starts by noting that from Theorem 2.23 we have the
following.

log
(

ΓT,ST
ΓT,St

)
+ 1

2

∫ T
t
|vT,S(u)|2du√∫ T

t
|vT,S(u)|2du

=

∫ T
t
vT,S(u)dWS(u)√∫ T
t
|vT,S(u)|2du

is standard normally distributed under QS , and

−
log
(

ΓS,TT
ΓS,Tt

)
+ 1

2

∫ T
t
|vS,T (u)|2du√∫ T

t
|vS,T (u)|2du

= −
∫ T
t
vS,T (u)dWT (u)√∫ T
t
|vS,T (u)|2du

is standard normally distributed under QT . From this we get

QS

(
ΓT,ST
ΓT,St

≤ 1

Kx

)∣∣∣∣∣
x=ΓT,St

= QS

 log
(

ΓT,ST
ΓT,St

)
+ 1

2

∫ T
t
|vT,S(u)|2du√∫ T

t
|vT,S(u)|2du

≤
log
(

1
Kx

)
+ 1

2

∫ T
t
|vT,S(u)|2du√∫ T

t
|vT,S(u)|2du

∣∣∣∣∣
x=ΓT,St

= Φ

 log
(

1

KΓT,St

)
+ 1

2

∫ T
t
|vT,S(u)|2du√∫ T

t
|vT,S(u)|2du


= Φ

 log
(

P (t,S)
KP (t,T )

)
+ 1

2

∫ T
t
|vT,S(u)|2du√∫ T

t
|vT,S(u)|2du

 ,

(4.3)

Where Φ is the distribution function for the standard normal distribution.
Similarly, by noting that vS,T = −vT,S implies |vS,T |2 = |vT,S |2 we get
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QS

(
ΓS,TT
ΓS,Tt

≥ K

x

)∣∣∣∣∣
x=ΓS,Tt

= QS

 log
(

ΓS,TT
ΓS,Tt

)
+ 1

2

∫ T
t
|vS,T (u)|2du√∫ T

t
|vS,T (u)|2du

≥
log
(
K
x

)
+ 1

2

∫ T
t
|vS,T (u)|2du√∫ T

t
|vS,T (u)|2du

∣∣∣∣∣
x=ΓS,Tt

= QS

− log
(

ΓS,TT
ΓS,Tt

)
+ 1

2

∫ T
t
|vT,S(u)|2du√∫ T

t
|vT,S(u)|2du

≤
−log

(
K
x

)
− 1

2

∫ T
t
|vT,S(u)|2du√∫ T

t
|vT,S(u)|2du

∣∣∣∣∣
x=ΓS,Tt

= Φ

−log
(

K

ΓS,Tt

)
− 1

2

∫ T
t
|vT,S(u)|2du√∫ T

t
|vT,S(u)|2du


= Φ

 log
(

ΓS,Tt
K

)
− 1

2

∫ T
t
|vT,S(u)|2du√∫ T

t
|vT,S(u)|2du


= Φ

 log
(

P (t,S)
KP (t,T )

)
− 1

2

∫ T
t
|vT,S(u)|2du√∫ T

t
|vT,S(u)|2du

 .

(4.4)

With these probabilities explicitly calculated we get the price at time t of a
European call with payout (P (T, S)−K)+ as

P (t, S)QS(P (T, S) ≥ K)−KP (t, T )QT (P (T, S) ≥ K),

where we may plug in the probabilities from equation (4.3) and (4.4) to get

P (t, S)Φ

 log
(

P (t,S)
KP (t,T )

)
+ 1

2

∫ T
t
|vT,S(u)|2du√∫ T

t
|vT,S(u)|2du


−KP (t, T )Φ

 log
(

P (t,S)
KP (t,T )

)
− 1

2

∫ T
t
|vT,S(u)|2du√∫ T

t
|vT,S(u)|2du

 ,

as desired.

As a corollary to our calculations we will also get the price of a digital option
with payout 1(P (T, S) ≥ K). The unique arbitrage free price at time t ≤ T for
such an option is

BtEQ

[
1(P (T, S) ≥ K)

BT

∣∣∣∣Ft] .
Applying Proposition 4.2 we see that this equals

P (t, T )QT
(
P (T, S) ≥ K

∣∣Ft),
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which equals

P (t, T )Φ

 log
(

P (t,S)
KP (t,T )

)
− 1

2

∫ T
t
|vT,S(u)|2du√∫ T

t
|vT,S(u)|2du


by applying equation (4.4).
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Chapter 5

Classical Life Insurance

Life insurance policies are agreements where the insurer takes on risk from
the insured by agreeing to compensate in the case of e.g. death or injury.
There are also pension schemes which guarantee the insured an agreed-upon
payment stream after retiring. Finding fair prices for these types of policies
is an important part of actuarial science which helps insurance companies set
premiums for their contracts.

In this chapter we will be developing the basic theory of life insurance in
the case of deterministic interest rates. We will work within the time horizon
R+ along with a filtered probability space (Ω,A,F , P ) where the filtration F
satisfies the usual conditions. These conditions state that F is right-continuous,

complete and that A is the completion of σ
(⋃

t∈R+
Ft
)

. We will also assume

the existence of a regular càdlàg Markov chain X that is progressive with respect
to F .

We here mainly cover theory discussed in [6], which we refer to for further
reading.

5.1 Basic Definitions

We will need the following definitions.

Definition 5.1.
Ii(t) = 1{Xt=i}(t),

Ni,j(t) = #{s ∈ (0, t] : Xs− = i,Xs = j},

where # is the counting measure and 1 is the indicator function. In other words,
Ni,j(t) counts the number of jumps from state i to state j. Also note that Xs− is
shorthand for limu→s− Xu where similarly to before limu→s− means that u→ s
and u < s.

In order to use Ni,j we need to ensure certain properties. By our assumption
that X is càdlàg we have that Ni,j is well defined and right-continuous. Lastly,
we need that Ni,j is of finite variation which. Since Ni,j is monotone non-
decreasing this is equivalent to it being finite, which is ensured by the following
result from [11, Example, page 454-455].
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Lemma 5.1. The process Ni,j is bounded on any finite interval almost surely.
Furthermore, the expectation of the Lebesgue-Stieltjes integral of a function b(s) :
R→ R with respect to dNi,j can be calculated by

E

[∫ T

t

b(s)dNj,k(s)

∣∣∣∣Xt = i

]
=

∫ T

t

b(s)pi,j(t, s)µj,k(s)ds.

With this we are ready to construct our insurance model, we will start by
defining some terminology.

Definition 5.2. A stochastic cash flow is a stochastic process A such that the
paths of A are a.s. right-continuous and of bounded variation.

Definition 5.3. Policy functions are stochastic processes ai, ai,j (i, j ∈ S) that
model either of the following insurance quantities.

ai(t) = the total payout the insured receives over a time period [0, t],

assuming the state of the insured Xu = i for all u ∈ [0, t].

ai,j = the payment the insured receives when the state of the insured X

has a jump from i to j at time t.

In order to properly define policy cash flows later, we will require that the
paths of the ai’s are almost surely right-continuous and of finite variation. Note
that in this chapter we will assume that our policy functions are deterministic,
the stochastic element will be considered in later chapters.

Combining these definitions along with our Markov chain X we may then
define the following.

Definition 5.4. Let ai, ai,j be policy functions describing an insurance policy.
We then define the policy cash flow as

A(t) =
∑
i∈S

Ai(t) +
∑
i,j∈S
i 6=j

Ai,j(t),

where

Ai(t) =

∫ t

0

Ii(s)dai(s) and Ai,j(t) =

∫ t

0

ai,j(s)dNi,j(s).

These cash flows represent the total payouts from all different sources given
a Markov chain representing the state of the insured over time.

We reintroduce our bank account Bt, but will in this chapter consider B as
deterministic. We recall the definition as

Bt = exp

(∫ t

0

rudu

)
,

where ru is some deterministic integrable function modelling the short-rate,
the stochastic case will be considered in later chapters. Following convention
and for ease of notation we will introduce the discount factor
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vt =
1

Bt
= exp

(
−
∫ t

0

rudu

)
.

We will similarly to Chapter 3 use B to discount the value of future money,
in this case it will give us the current value of a policy cash flow.

For ease of notation we will be denoting∫ ∞
t+

f(s)da(s) =

∫
(t,∞)

f(s)da(s).

∫ T

t+
f(s)da(s) =

∫
(t,T ]

f(s)da(s),

for any function f . Note that this means that
∫ T
t+
da = a(T )− a(t).

Definition 5.5. The prospective value of a cash flow A, also known as the
stochastic prospective reserve at time t is the discounted future value of the total
cash flow, mathematically defined as

V +(t, A) =
1

vt

∫ ∞
t+

vsdA(s).

We may also break this equation down as

V +(t, A) =
1

vt

∑
i∈S

∫ ∞
t+

vsdAi(s) +
∑
i,j∈S
i6=j

∫ ∞
t+

vsdAi,j(s)

 ,

or expand it completely to

V +(t, A) =
1

vt

∑
i∈S

∫ ∞
t+

vsIi(s)dai(s) +
∑
i,j∈S
i 6=j

∫ ∞
t+

vsai,j(s)dNi,j(s)

 .

Note that this definition deals with future information and is therefore not
adapted. As a result we will need a new definition that only relies on information
up to the current time.

Definition 5.6. The prospective reserve V +
F (t, A) is then defined as

V +
F (t, A) = E[V +(t, A)|Ft]

Note that we here assume that V +(t) is integrable with respect to P for any
t.

Furthermore, we can note that since V +(t, A) is a function of Xs for s ≥ t
we have by the Markov property of X that

E[V +(t, A)|Ft] = E[V +(t, A)|σ(Xt)].

Since Xt is discrete we have that
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E[V +(t, A)|σ(Xt)] =
∑
i∈S

Ii(t)E[V +(t, A)|Xt = i],

which leads to another definition of the prospective reserve. For any i ∈ S
we define

V +
i (t, A) = E[V +(t, A)|Xt = i].

Remark 6. Note that this is analogous to the pricing we developed in the chap-
ter on arbitrage theory, in this case however, we have no way of hedging the
risk coming from the uncertainty in the state of the insured. This means that
we could, in theory, price our reserves as EQ[V +(t, A)|Ft] for any equivalent
measure Q. This is only a theoretical curiosity as the ordinary expectation is
the only reasonable option in this case.

Another way to consider the choice to use an equivalent measure is in pricing
a coin flip with equal probability of yielding 1 and −1. The rational fair price
would be the expectation, i.e. 1 · 1

2 − 1 · 1
2 = 0. However, in the absence of

hedging possibilities we would not introduce any arbitrage by pricing the coin
flip as 1 · q +−1 · (1− q) for any probability q ∈ (0, 1).

Returning to our chosen definition of the prospective reserve we note that
by splitting up the policy cash flow into the smaller cash flows Ai, Ai,j , we get
a way to break the prospective reserve down as well.

Definition 5.7. The mathematical reserves for being in state j over a time
interval J ⊂ [t,∞) given Xt = i is

Vi(t, Aj , J) = E

[
1

vt

∫
J

vsIj(s)daj(s)

∣∣∣∣Xt = i

]
.

Similarly we define the mathematical reserve for transitioning from state i
to state j over a time interval J ⊂ [t,∞) given Xt = i as

Vi(t, Aj,k, J) = E

[
1

vt

∫
J

vsaj,k(s)dNj,k(s)

∣∣∣∣Xt = i

]
.

We will also denote Vi(t, Aj , (t,∞)) and Vi(t, Aj,k, (t,∞)) as Vi(t, Aj) and
Vi(t, Aj,k) respectively.

5.2 Integral and Differential Equations

With this we will present an explicit formula for calculating our mathematical
reserves and, by extension, the prospective reserve.

Theorem 5.1. Let J ⊂ [t,∞) ⊂ R+ be an interval and let i, j, k ∈ S. Fur-
thermore we assume that b, c are functions such that b is integrable and c is
right-continuous and of bounded variation on J . We then have

E

[∫
J

Ij(s)dc(s)

∣∣∣∣Xt = i

]
=

∫
J

pi,j(t, s)dc(s)

and
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E

[∫
J

b(s)dNj,k(s)

∣∣∣∣Xt = i

]
=

∫
J

b(s)pi,j(t, s)µj,k(s)ds

Proof. The first formula follows from Theorem 2.6, Fubini’s theorem, which
yields

E

[∫
J

Ij(s)dc(s)

∣∣∣∣Xt = i

]
= E

[
Ii(t)

∫
J

Ij(s)dc(s)

]
/P (Xt = i)

=

∫
J

E [Ii(t)Ij(s)] dc(s)/P (Xt = i)

=

∫
J

E[Ij(s)|Xt = i]dc(s)

=

∫
J

pi,j(t, s)dc(s).

The second equation is simply restating Lemma 5.1.

We may now apply these to the mathematical reserves.

Theorem 5.2. From Theorem 5.1 we have the following explicit formulas.

Vi(t, Aj) = E

[
1

vt

∫ ∞
t+

vsIj(s)daj(s)

∣∣∣∣Xt = i

]
=

1

vt

∫ ∞
t+

vspi,j(t, s)daj(s),

Vi(t, Aj,k) = E

[
1

vt

∫ ∞
t+

vsaj,k(s)dNj,k(s)

∣∣∣∣Xt = i

]
=

1

vt

∫ ∞
t+

vspi,j(t, s)aj,k(s)µj,k(s)ds.

Putting these together we get the explicit formula for the prospective reserve.

vtV
+
i (t, A) =

∑
j∈S

∫ ∞
t+

vspi,j(t, s)daj(s) +
∑
j,k∈S
j 6=k

∫ ∞
t+

vspi,j(t, s)aj,k(s)µj,k(s)ds.

This leads into Thiele’s differential equation, a useful tool for both analysis
of policies and an efficient numerical method for computation.

To simplify we will suppress notation of the cash flow A and denote

W+
i (t) = vtV

+
i (t).

We start by presenting a useful integral equation for W+.

Lemma 5.2 (Integral Lemma for Thiele’s Equation).

W+
i (t) =

∑
j∈S

pi,j(t, u)W+
j (u)

+
∑
j∈S

∫ u

t+
vspi,j(t, s)daj(s) +

∑
k∈S
k 6=j

∫ u

t+
vspi,j(t, s)µj,k(s)aj,k(s)ds


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Proof. The idea is to use Theorem 5.2 to consider W+
i (t) as an integral over

(t,∞), and then split the interval into (t, u] and (u,∞) to get the two sums.
The technical details will be omitted, but can be found in [6, Lemma 4.7.2].

With this we can discuss Thiele’s differential equation, we will first consider
the version where dai is absolutely continuous with respect to the Lebesgue
measure λ, i.e. ai(t) =

∫ t
0
ȧi(s)ds where ȧi is the Radon-Nikodym derivative

dai/dλ. We then have the following result.

Theorem 5.3 (Thiele’s Differential Equation).

dWi(t)

dt
= −vt

ȧi(t) +
∑
j∈S
i 6=j

µi,j(t)ai,j(t)

−∑
j∈S

µi,j(t)Wj(t).

Proof. Note that since dai is absolutely continuous we can simplify the notation
of our integrals and get from applying our integral lemma with u = t+ h, h > 0
that

W+
i (t) =

∑
j∈S

pi,j(t, t+ h)W+
j (t+ h)

+
∑
j∈S

∫ t+h

t

vspi,j(t, s)daj(s) +
∑
k∈S
k 6=j

∫ t+h

t

vspi,j(t, s)µj,k(s)aj,k(s)ds

 .

By subtracting this from W+
i (t+ h) we get that

W+
i (t+ h)−W+

i (t) = W+
i (t+ h)−

∑
j∈S

pi,j(t, t+ h)W+
j (t+ h)

−
∑
j∈S

∫ t+h

t

vspi,j(t, s)daj(s) +
∑
k∈S
k 6=j

∫ t+h

t

vspi,j(t, s)µj,k(s)aj,k(s)ds

 .

We then proceed with dividing by h and note the following facts.

• For i 6= j we have by definition

lim
h→0+

pi,j(t, t+ h)/h = µi,j(t).

• Similarly, by definition of µi,i(t) we have

lim
h→0+

(1− pi,i(t, t+ h))/h = −µi,i(t).

• By the fundamental theorem of calculus along with our assumption that
(dai/dλ)(s) = ȧi we have
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lim
h→0+

∫ t+h

t

vspi,j(t, s)daj(s)/h

= lim
h→0+

∫ t+h

t

vspi,j(t, s)ȧj(s)ds/h

= vtpi,j(t, t)ȧj(t).

• By the same argument we have

= lim
h→0+

∫ t+h

t

vspi,j(t, s)µj,k(s)aj,k(s)ds/h

= vtpi,j(t, t)µj,k(t)aj,k(t).

• Lastly we note that pi,j(t, t) = 0 for i 6= j and that pi,i(t, t) = 1.

Putting these together we see that

lim
h→0+

(W+
i (t+ h)−W+

i (t))/h

= −
∑
j∈S

µi,j(t)W
+
j (t)− vtȧi(t)−

∑
k∈S
k 6=i

vtµi,k(t)ai,k(t)

= −vt

ȧi(t)−∑
j∈S
j 6=i

µi,k(t)ai,j(t)

−∑
j∈S

µi,j(t)W
+
j (t),

as desired. This proves Thiele’s equation for the right derivative of V +
i ,

but by repeating the argument where we instead apply our integral lemma to
W+
i (t−h) with u = t we get the same result for the left derivative and conclude

our argument.

We also have a version of Thiele’s equation for V +
i where we can also allow

ai(t) to have a single discontinuity at t = T , note that this only affects the
boundary condition.

Theorem 5.4. Assume that dai is absolutely continuous with respect to λ on
[0, T ) and assume that ai(t) has at most one discontinuity in t = T . For a
reserve V +

i (t), t ∈ [0, T ] we then have

dV +
i (t)

dt
= rtV

+
i (t)− ȧi(t)−

∑
j∈S
i 6=j

µi,j(t)

(
ai,j(t) + V +

j (t)− V +
i (t)

)
,

with a border condition of V +
i (T ) = ai(T )− ai(T−). Note that if ai has no

discontinuities the differential equation would hold for V +
i (t), t ∈ R+.
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Proof. Since dai is absolutely continuous on [0, T ) we will again use the Radon-
Nikodym derivative ȧi. By also taking into account the single discontinuity of
ai at T we get that∫ T

0

f(s)dai(s) = f(T )(ai(T )− ai(T−)) +

∫ T

0

f(s)ȧi(s)ds

for any function f that is integrable with respect to dai. Applying this to
our explicit formula for V +

i (Theorem 5.2) we get

vtV
+
i (t) =

∑
j∈S

vT pi,j(t, T )(aj(T )− aj(T−))

+
∑
j∈S

∫ ∞
t+

vspi,j(t, s)daj(s) +
∑
j,k∈S
j 6=k

∫ ∞
t+

vspi,j(t, s)aj,k(s)µj,k(s)ds.

We will simplify this expression by denoting the following.

Gi(t) = vT
∑
j∈S

pi,j(t, T )(aj(T )− aj(T−))

Fi(t, s) =
∑
j∈S

vspi,j(t, s)

ȧj(s) +
∑
k∈S
k 6=j

aj,k(s)µj,k(s)

 (5.1)

Note that this implies that

vtV
+
i (t) = Gi(t) +

∫ T

t

Fi(t, s)ds.

To differentiate V we will need the derivatives of Gi and Fi. We will here
use the backwards Kolmogorov equation (theorem 2.28). Note that by

−µi,i(t) =
∑
k∈S
k 6=i

µi,k(t)

we have

∂pi,j(t, T )

∂t
= −

∑
k∈S

µi,k(t)pk,j(t, T )

= −µi,i(t)pi,j(t, T )−
∑
k∈S
k 6=j

µi,k(t)pk,j(t, T )

=
∑
k∈S
k 6=j

µi,k(t)(pi,j(t, T )− pk,j(t, T )).
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By applying this we can calculate the derivatives of G and F . For G we have

dGi(t)

dt
= vT

∑
j∈S

∂pi,j(t, T )

∂t
(aj(T )− aj(T−))

= vT
∑
j∈S

∑
k∈S
k 6=j

µi,k(t)(pi,j(t, T )− pk,j(t, T ))(aj(T )− aj(T−))

=
∑
k∈S
k 6=j

µi,k(t)(Gi(t)−Gk(t)),

(5.2)

and by using the same method for F we get

∂Fi(t, s)

∂t
=
∑
k∈S
k 6=j

µi,k(t)(Fi(t, s)− Fk(t, s)). (5.3)

The last thing we need is to differentiate

I(x, y) =

∫ T

y

Fi(x, s)ds

for x = y = t. We may calculate the partial derivatives to be the following.

• For the derivative with respect to y we have by the fundamental theorem
of calculus that

∂
(∫ y

0
Fi(x, s)ds

)
∂y

= Fi(x, y).

However, since
∫ y

0
Fi(x, s)ds+ I(x, y) =

∫ T
0
Fi(x, s)ds is constant in y we

have

∂I(x, y)

∂y
= −Fi(x, y).

• In calculating the derivative with respect to x we start by denoting

fj(s) = vsȧj(s) + vs
∑
k∈S
k 6=j

aj,k(s)µj,k(s),

and note that fj does not rely on x. We then define µj by

dµj
dλ

(s) = fj(s),

and get

lim
h→0

I(x+ h, y)− I(x, y)

h
= lim
h→0

∑
j∈S

∫ T

y

pi,j(x+ h, s)− pi,j(x, s)
h

dµj(s).

By the mean-value theorem we have
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pi,j(x+ h, s)− pi,j(x, s)
h

=
∂pi,j(x̂, s)

∂x

for some x̂ with |x̂−x| ≤ h. Since ∂pi,j(x, s)/∂x is continuous we see that
∂pi,j(x̂, s)/∂x is bounded for s ∈ [y, T ] uniformly in h, and we can apply
the dominated convergence theorem to get

lim
h→0

∫ T

y

∂pi,j(x̂, s)

∂x
dµj(s) =

∫ T

y

∂pi,j(x, s)

∂x
dµj(s).

With this we conclude that

∂I(x, y)

∂x
=

∫ T

y

∂Fi(x, s)

∂x
ds.

With the partial derivatives calculated we can move on to I(t, t), the classical
chain rule then yields that

dI(t, t)

dt
=
∂I(x, y)

∂y

∣∣∣∣
(x,y)=(t,t)

+
∂I(x, y)

∂x

∣∣∣∣
(x,y)=(t,t)

= −Fi(t, t) +

∫ T

t

∂F (t, s)

∂t
ds

To calculate the integral term we may note that by combining equation (5.1)
and (5.3) we get

∫ T

t

∂Fi(t, s)

∂t
ds =

∫ T

t

∑
k∈S
k 6=j

µi,k(Fi(t, s)− Fk(t, s))ds

=
∑
k∈S
k 6=j

µi,k

∫ T

t

(Fi(t, s)− Fk(t, s))ds

= vt
∑
k∈S
k 6=j

µi,k(V +
i (t)− V +

k (t))−
∑
k∈S
k 6=j

µi,k(Gi(t)−Gk(t)).

By recognizing the derivative of G from equation (5.2) we get∫ T

t

∂Fi(t, s)

∂t
ds = vt

∑
j∈S
j 6=i

µi,j(V
+
i (t)− V +

j (t))− dGi(t)

dt
. (5.4)

Lastly, we have that

Fi(t, t) =
∑
j∈S

vtpi,j(t, t)

ȧj(t) +
∑
k∈S
k 6=j

aj,k(t)µj,k(t)


= vtȧi(t) + vt

∑
j∈S
j 6=i

ai,k(t)µi,k(t)
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With this we are ready to differentiate V +
i directly by

d(vtV
+
i (t))

dt
= −rtvtV +

i (t) + vt
dV +

i (t)

dt
.

We also have that

d(vtV
+
i (t))

dt
=
dGi(t)

dt
+
dI(t, t)

dt

=
dGi(t)

dt
+−Fi(t, t) +

∫ T

t

∂F (t, s)

∂t
ds

= −vtȧi(t)− vt
∑
j∈S
j 6=i

ai,k(t)µi,k(t) + vt
∑
k∈S
k 6=j

µi,k(V +
i (t)− V +

j (t))

= −vtȧi(t)− vtµi,k(t)
∑
j∈S
j 6=i

(
ai,k(t) + V +

j (t)− V +
i (t)

)
.

Combining these formulas for d(vtV
+
i (t))/dt and dividing by vt we get

dV +
i (t)

dt
= rtV

+
i (t)− ȧi(t)−

∑
j∈S
i6=j

µi,j(t)

(
ai,j(t) + V +

j (t)− V +
i (t)

)

as desired.
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Chapter 6

Insurance Policies with
Stochastic Interest Rate
under HJM

6.1 Setup

We are now finally ready to tackle insurance policies in the case where both the
interest rate and the policy functions are stochastic.

In this section we will consider two filtered probability spaces, the first of
which represents the world of insurance, denoted by (ΩX ,FX∞,FX , PX). We
will here assume the following.

• The filtration FX is the augmented filtration generated by a right-continuous
and regular Markov chain X, making FX complete and right-continuous
by Definition 2.23.

• We also assume FX∞ = σ
(⋃

t∈R+
FXt
)

, which means the last of the regular

conditions are satisfied.

The forward rate f and policy functions ai, ai,j will be assumed to exist in
the financial world denoted by (ΩW ,FW∞ ,FW , PW ). We will here assume the
following.

• The filtration FW is generated by a Wiener process W , note that this
makes FW right-continuous and complete by Theorem 2.20.

• For the last of the regular conditions we require FW∞ = σ
(⋃

t∈R+
FWt

)
.

• We assume a market as discussed in Chapter 3.

– The market is assumed to have a unique ELMM as in Definition
3.5. Note that this makes the market arbitrage free and complete by
Theorem 3.3 and 3.5.

– We assume an interest rate model within the HJM framework as
discussed in Chapter 4.1.
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• Lastly, we require policy functions as in Definition 5.3, but will now as-
sume them stochastic and adapted to FW , making them progressive by
Proposition 2.5.

We will combine these spaces by considering the product space, denoted as

(Ω,F∞, P ) = (ΩW × ΩX ,FW∞ ⊗FX∞, PW × PX).

To justify the notation of F∞ we define the filtration F by

Ft = σ
(
FWt ⊗FXt ∪N

)
,

where N is the collection of all null-sets on F∞. Note that F is complete by
definition and inherits right-continuity from FW and FX .

The first thing we will need is to find a way to price our reserves within the
structure of financial markets. Similarly to Chapter 5 we will define the fair
price of any payout based purely on insurance information (i.e. FX∞-measurable
random variables) to be it’s ordinary expectation as mentioned in Remark 6. In
the financial world however, we have from Theorem 3.5 that any FW∞ -measurable
T -claim Y with EQW [|Y |/BT ] < ∞ has a unique arbitrage-free price at time t
given by EQW [|Y |/BT |FXt ]. Combining these we get that the fair price of any
F∞-measurable T -claim Y must be

EPX

[
EQW

[
Y

BT

∣∣∣∣FWt ] ∣∣∣∣FXt ] . (6.1)

We may also write this more compactly as

EQ

[
Y

BT

∣∣∣∣Ft] ,
where Q = QW × PX by the following result.

Proposition 6.1. For any integrable F∞-measurable variable Z we have

EPX
[
EQW

[
Z|FWt

]
|FXt

]
= EQ [Z|Ft]

Proof. By the definition of conditional expectations (Definition 2.17) the result
would follow from showing that the left-hand side is Ft-measurable with∫

G

EPX
[
EQW

[
Z|FWt

]
|FXt

]
dQ =

∫
G

ZdQ

for any G ∈ F∞. By Theorem 2.3, the monotone class theorem for functions, it
suffices to prove the result for Z = 1A1B with A ∈ FW∞ , B ∈ FX∞. Furthermore,
by Theorem 2.1, the monotone class theorem for sets, it suffices the result for
G = C ×D with C ∈ FW∞ , D ∈ FX∞. By noting

EPX
[
EQW

[
1A1B |FWt

]
|FXt

]
= EQW

[
1A|FWt

]
EPX

[
1B |FXt

]
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we see that the double conditional expectation is Ft-measurable and that∫
G

EPX
[
EQW

[
Z|FWt

]
|FXt

]
dQ =

∫
C

∫
D

EPX
[
EQW

[
1A1B |FWt

]
|FXt

]
dPXdQW

=

∫
C

EQW
[
1A|FWt

]
dQW

∫
D

EPX
[
1B |FXt

]
dPX

=

∫
C

1AdQ
W

∫
D

1BdP
X

=

∫
G

ZdQ

With this we can price insurance policies by using equation (6.1). To do this
we first recall the following functions from Definition 5.1.

Ii(t) = 1{Xt=i},

Ni,j(t) = #{s ∈ (0, t] : Xs− = i,Xs = j}.
With these we define the policy cash flow as in Definition 5.4 to be

A(t) =
∑
i∈S

Ai(t) +
∑
i,j∈S
i 6=j

Ai,j(t),

where

Ai(t) =

∫ t

0

Ii(s)dai(s) and Ai,j(t) =

∫ t

0

ai,j(s)dNi,j(s).

In order to price the cash flow we need to calculate the discounted value of
the future cash flow at time t. This is the stochastic prospective reserve from
Definition 5.5, defined as

V +(t, A) =
1

vt

∫ ∞
t+

vsdA(s),

where we recall vt = B−1
t with Bt as the bank account. We may also break

this equation down as

V +(t, A) =
∑
i∈S

V (t, Ai) +
∑
i,j∈S
i 6=j

V (t, Ai,j),

where

V (t, Ai) =
1

vt

∫ t

0

vsIi(s)dai(s)

and

V (t, Ai,j) =
1

vt

∫ t

0

vsai,j(s)dNi,j(s)

are the stochastic mathematical reserves.
equation (6.1) now allows us to calculate the fair value of a policy at time t

by means of the conditional expectation.
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Definition 6.1. We define the prospective reserve in the presence of a financial
market analogously to the case in Definition 5.6, but with r and A no longer
deterministic. We first define

V +
F (t) = EQ

[
V +(t)

∣∣∣∣Ft] . (6.2)

By expanding the expectation via Proposition 6.1 and noting that V +
F (t) is a

function of Xs for s ≥ t we have from the Markov property of X that

V +
F (t) = EPX

[
EQW

[
V +(t)

∣∣∣∣FWt ] ∣∣∣∣FXt ]
=
∑
i∈S

Ii(t)EPX

[
EQW

[
V +(t)

∣∣∣∣FWt ] ∣∣∣∣Xt = i

]
.

Which, like before, justifies the definition of

V +
i (t) = EPX

[
EQW

[
V +(t)

∣∣∣∣FWt ] ∣∣∣∣Xt = i

]
. (6.3)

Like before we may split the prospective reserve into the mathematical re-
serves.

Definition 6.2. The mathematical reserves for being in state j over a time
interval J ⊂ [t,∞) given Xt = i is

Vi(t, Aj , J) =
1

vt
EPX

[
EQW

[∫
J

vsIj(s)daj(s)

∣∣∣∣FWt ] ∣∣∣∣Xt = i

]
.

Similarly we define the mathematical reserve for transitioning from state i
to state j over a time interval J ⊂ [t,∞) given Xt = i as

Vi(t, Aj,k, J) =
1

vt
EPX

[
EQW

[∫
J

vsaj,k(s)dNj,k

∣∣∣∣FWt ] ∣∣∣∣Xt = i

]
.

We will also denote Vi(t, Aj , (t,∞)) and Vi(t, Aj,k, (t,∞)) as Vi(t, Aj) and
Vi(t, Aj,k) respectively.

6.2 Explicit Formulas

In order to more explicitly state these values we will need analogues of the
formulas in Theorem 5.1 and Theorem 5.2. To develop these results we will
have to assume that the ai’s have absolutely continuous paths, we then define
t 7→ ȧi(ω, t) path-wise as t 7→ (dai(ω)/dλ)(t) where λ is the canonical Lebesgue
measure on the real line.

Theorem 6.1. Let J ⊂ [t,∞) ⊂ R+ be an interval and let i, j, k ∈ S. Further-
more we assume that b, c : R+ × FW∞ → R are stochastic processes such that b
and c are integrable on J . We then have

EPX

[
EQW

[∫
J

Ij(s)c(s)ds

∣∣∣∣FWt ] ∣∣∣∣Xt = i

]
=

∫
J

pi,j(t, s)EQW
[
c(s)|FWT

]
ds,
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and

EPX

[
EQW

[∫
J

b(s)dNi,j(s)

∣∣∣∣FWt ] ∣∣∣∣Xt = i

]
=

∫
J

EQW [b(s)]pi,j(t, s)µj,k(s)ds

Proof. This proof follows the same structure as the proof of Theorem 5.1 with
some minor modifications.

The first equation follows from Fubini’s theorem, yielding

EPX

[
EQW

[∫
J

Ij(s)c(s)ds

∣∣∣∣FWt ] ∣∣∣∣Xt = i

]
= EPX

[∫
J

EQW

[
Ij(s)c(s)

∣∣∣∣FWt ] ds∣∣∣∣Xt = i

]
= EPX

[∫
J

Ij(s)EQW

[
c(s)

∣∣∣∣FWt ] ds∣∣∣∣Xt = i

]
=

∫
J

EPX
[
Ij(s)EQW

[
c(s)|FWT

] ∣∣Xt = i
]
ds

=

∫
J

EPX
[
Ij(s)

∣∣Xt = i
]
EQW

[
c(s)

∣∣FWT ] ds
=

∫
J

pi,j(t, s)EQW
[
c(s)

∣∣FWT ] ds
For the second equation we will for convenience denote

d(s) = EQW [b(s)|FWt ].

With this we note that for a.s. every path of X we have that Ni,j provides a
deterministic measure on J allowing us to apply Fubini’s theorem which yields

EQW

[∫
J

b(s)dNi,j(s)

∣∣∣∣FWt ] =

∫
J

EQW
[
b(s)

∣∣FWt ] dNi,j(s) =

∫
J

d(s)dNi,j(s).

It then remains to calculate

EPX

[∫
J

d(s)dNi,j(s)

∣∣∣∣Xt = i

]
,

where we note that by the monotone class theorem for functions it suffices to
calculate the expectation for d(s) = 1F (ω)1B(s) where F ⊂ FWt and B ⊂ J .

We then get by Lemma 5.1

EPX

[∫
J

d(s)dNi,j(s)

∣∣∣∣Xt = i

]
= EPX

[∫
J

1F (ω)1B(s)dNi,j(s)

∣∣∣∣Xt = i

]
= 1F (ω)EPX

[∫
J

1B(s)dNi,j(s)

∣∣∣∣Xt = i

]
= 1F (ω)

∫
J

1B(s)pi,j(t, s)µj,k(s)

=

∫
J

1F (ω)1B(s)pi,j(t, s)µj,k(s)

=

∫
J

d(s)pi,j(t, s)µj,k(s)

which proves our result.
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With this we may calculate more explicit formulas for our reserve analogously
to Theorem 5.2.

Corollary 6.1. We have the following equations for our reserves, note here
that since the measure of a single point is 0 we can drop the + in the limit of
the integrals.

Vi(t, Aj) =
1

vt
EPX

[
EQW

[∫ ∞
t+

vsIj(s)ȧjds

∣∣∣∣FWt ] ∣∣∣∣Xt = i

]
=

1

vt

∫ ∞
t

pi,j(t, s)EQW
[
vsȧj(s)|FWT

]
ds,

and

Vi(t, Aj,k) =
1

vt
EPX

[
EQW

[∫ ∞
t+

vsaj,k(s)dNi,j(s)

∣∣∣∣FWt ] ∣∣∣∣Xt = i

]
=

1

vt

∫ ∞
t

EQW [vsaj,k(s)|FWt ]pi,j(t, s)µj,k(s)ds.

By combining these we have the following formula for the prospective reserve.

V +
i (t, A) =

∑
j∈S

Vi(t, Aj) +
∑
j,k∈S
j 6=k

Vi(t, Aj,k)

=
1

vt

∑
j∈S

∫ ∞
t

pi,j(t, s)EQW
[
vsȧj(s)|FWt

]
ds

+
1

vt

∑
j,k∈S
j 6=k

∫ ∞
t

EQW [vsaj,k(s)|FWt ]pi,j(t, s)µj,k(s)ds.

The most problematic term is the conditional expectations EQW
[
vsȧj(s)|FWt

]
and EQW [vsaj,k(s)|FWt ]. In many cases, some which will be covered in upcom-
ing examples, these can be written explicitly as Itô process. From this we refine
the formulas in Corollary 6.1 by the following results.

Lemma 6.1 (Leibniz Integral Rule). Let Y (t, s) be an Itô process on the form

Y (t, s) = Y (0, s) +

∫ t

0

a(u, s)du+

∫ t

0

b(u, s)dWu,

such that the volatility b satisfies supu,s≤S |b(u, s)| <∞ a.s. and the drift a

satisfies
∫ S

0

∫ S
0
|a(u, s)|duds < ∞. We then have that I(t, S) =

∫ S
t
Y (t, s)ds is

an Itô process on the form

I(t, S)= I(0, S)+

∫ t

0

(∫ S

u

a(u, s)ds− Y (u, u)

)
du+

∫ t

0

(∫ S

u

b(u, s)ds

)
dWu.

Proof. By applying the deterministic and stochastic version of Fubini’s theorem
(Theorem 2.6 and Theorem 2.24) we get
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∫ t

0

∫ t

u

a(u, s)dsdu =

∫ t

0

∫ t

0

1u≤s(u, s)a(u, s)dsdu

=

∫ t

0

∫ t

0

1u≤s(u, s)a(u, s)duds

=

∫ t

0

∫ s

0

a(u, s)duds,

and similarly∫ t

0

∫ t

u

b(u, s)dsdWu =

∫ t

0

∫ t

0

1u≤s(u, s)b(u, s)dsdWu

=

∫ t

0

∫ t

0

1u≤s(u, s)b(u, s)dWuds

=

∫ t

0

∫ s

0

b(u, s)dWuds.

Applying these equations we get∫ S

t

Y (t, s)ds

=

∫ S

t

(
Y (0, s) +

∫ t

0

a(u, s)du+

∫ t

0

b(u, s)dWu

)
ds

=

∫ S

t

Y (0, s)ds+

∫ S

t

∫ t

0

a(u, s)duds+

∫ S

t

∫ t

0

b(u, s)dWuds

=

∫ S

t

Y (0, s)ds+

∫ t

0

∫ S

t

a(u, s)dsdu+

∫ t

0

∫ S

t

b(u, s)dsdWu

=

∫ S

0

Y (0, s)ds+

∫ t

0

∫ S

u

a(u, s)dsdu+

∫ t

0

∫ S

u

b(u, s)dsdWu

−
∫ t

0

Y (0, s)ds−
∫ t

0

∫ t

u

a(u, s)dsdu−
∫ t

0

∫ t

u

b(u, s)dsdWu

=

∫ S

0

Y (0, s)ds+

∫ t

0

∫ S

u

a(u, s)dsdu+

∫ t

0

∫ S

u

b(u, s)dsdWu

−
∫ t

0

Y (0, s)ds−
∫ t

0

∫ s

0

a(u, s)duds−
∫ t

0

∫ s

0

b(u, s)dWuds

=

∫ S

0

Y (0, s)ds+

∫ t

0

∫ S

u

a(u, s)dsdu+

∫ t

0

∫ S

u

b(u, s)dsdWu

−
∫ t

0

(
Y (0, s) +

∫ s

0

a(u, s)du+

∫ s

0

b(u, s)dWu

)
ds

= I(0, S) +

∫ t

0

(∫ S

u

a(u, s)ds− Y (u, u)

)
du+

∫ t

0

(∫ S

u

b(u, s)ds

)
dWu
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Corollary 6.2. For all j, k ∈ S we define Yj(t, s) = 1
vt
EQW [vsȧj(s)|FWt ] and

Yj,k(t, s) = 1
vt
EQW [vsȧj,k(s)|FWt ] and assume that these are Itô processes with

t-dynamics

dYj(t, s) = aj(t, s)dt+ bj(t, s)dWt,

dYj,k(t, s) = aj,k(t, s)dt+ bj,k(t, s)dWt,

satisfying the conditions of Lemma 6.1. We then have that

Vi(t, Aj) = Vi(0, Aj)− 1(i = j)

∫ t

0

Yj(u, u)du

−
∫ t

0

∫ ∞
u

∑
k∈S

µi,k(u)pk,j(u, s)Yj(u, s)dsdu

+

∫ t

0

∫ ∞
u

pi,j(u, s)aj(u, s)dsdu

+

∫ t

0

∫ ∞
u

pi,j(u, s)bj(u, s)dsdWu,

Vi(t, Aj,k) = Vi(0, Aj,k)− 1(i = j)

∫ t

0

µj,k(u)Yj,k(u, u)du

−
∫ t

0

∫ ∞
u

∑
k∈S

µi,k(u)pk,j(u, s)Yj,k(u, s)dsdu

+

∫ t

0

∫ ∞
u

pi,j(u, s)µj,k(s)aj,k(u, s)dsdu

+

∫ t

0

∫ ∞
u

pi,j(u, s)µj,k(s)bj,k(u, s)dsdWu.

Proof. We will prove this statement for

Vi(t, Aj) =

∫ S

t

pi,j(t, s)Y (t, s)ds,

Vi(t, Aj) =

∫ S

t

pi,j(t, s)µj,k(s)Y (t, s)ds,

note that this result then easily extends to S =∞ by the dominated convergence
theorem.

We first see that this assumption yields

Vi(t, Aj) =

∫ S

t

gj(t, s, Yj(t, s))ds,

Vi(t, Aj,k) =

∫ S

t

gj,k(t, s, Yj,k(t, s))ds,

where
gj(t, s, x) = pi,j(t, s)x,

gj,k(t, s, x) = pi,j(t, s)µj,k(s)x.
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Applying Theorem 2.25, Itô’s lemma, we get that the gj(t, s, Yj(t, s))’s and
gj,k(t, s, Yj,k(t, s))’s are Itô processes in t on the following form.

gj(t, s, Yj(t, s)) = gj(0, s, Yj(0, s)) +

∫ t

0

∂pi,j(u, s)

∂u
Yj(u, s)du

+

∫ t

0

pi,j(u, s)aj(u, s)du+

∫ t

0

pi,j(u, s)bj(u, s)dWu, (6.4)

gj,k(t, s, Y sj,k(t)) = gj,k(0, s, Y sj,k(0)) +

∫ t

0

∂pi,j(u, s)

∂u
µj,k(s)Yj,k(u, s)du

+

∫ t

0

pi,j(u, s)µj,k(s)aj,k(u, s)du

+

∫ t

0

pi,j(u, s)µj,k(s)bj,k(u, s)du. (6.5)

Note that since both pi,j(u, s) and µj,k(s) are continuous they are bounded
on [0, S]× [0, S], which means that the g’s still satisfy the conditions in Lemma
6.1.

From Theorem 2.28, the backwards Kolmogorov equation we also have that

∂pi,j(u, s)

∂u
= −

∑
k∈S

µi,k(u)pk,j(u, s).

By plugging this into equation (6.4) and (6.5) along with applying Lemma 6.1
we get

Vi(t, Aj) = Vi(0, Aj)−
∫ t

0

gj(u, u, Yj(u, u))du

−
∫ t

0

∫ S

u

∑
k∈S

µi,k(u)pk,j(u, s)Yj(u, s)dsdu

+

∫ t

0

∫ S

u

pi,j(u, s)aj(u, s)dsdu

+

∫ t

0

∫ S

u

pi,j(u, s)bj(u, s)dsdWu,

Vi(t, Aj,k) = Vi(0, Aj,k)−
∫ t

0

gj,k(u, u, Yj,k(u, u))du

−
∫ t

0

∫ S

u

∑
k∈S

µi,k(u)pk,j(u, s)Yj,k(u, s)dsdu

+

∫ t

0

∫ S

u

pi,j(u, s)µj,k(s)aj,k(u, s)dsdu

+

∫ t

0

∫ S

u

pi,j(u, s)µj,k(s)bj,k(u, s)dsdWu.
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Finally we note that pi,j(u, u) = 1(i = j), this implies

gj,k(u, u, Yj,k(u, u)) = pi,j(u, u)µj,k(u)Yj,k(u, u)

= 1(i = j)µj,k(u)Yj,k(u, u),

gj(u, u, Yj(u, u)) = pi,j(u, u)Yj(u, u)

= 1(i = j)Yj(u, u),

which yields the desired formula.

With this result we will, in many cases, get that the mathematical reserves
are Itô processes. This means that they are both continuous and progressive,
furthermore, it provides another explicit formula that could be used for compu-
tations.

6.3 Applications to Continuous Time CD Lad-
ders with Minimum Guarantee

Zero-coupon bonds are generally offered with better rates than what an invest-
ment in a bank account would yield while also locking in the interest rate and
thus protecting your investment from market volatility. This, however, comes
at the cost of liquidity as the investment cannot be readily accessed before the
maturity of the bond.

We will in this section consider a ”CD ladder”, where CD stands for cer-
tificate of deposit, another name for zero-coupon bonds. A CD ladder is an
investment strategy where the investor purchases zero-coupon bonds with equal
time to maturity at regularly spaced intervals. For example, one could purchase
zero-coupon bonds with a five year time to maturity quarterly. This means that
every quarter the investor would receive a set amount of money to be spent or
reinvested into the ladder. This allows the cash to be more readily available and
thus maintaining liquidity while still providing the regular benefits of investing
in zero-coupon bonds.

We then consider a pension scheme based on a continuous version of such
a CD ladder, with payments starting at some time S0 and ending upon death.
We assume that at any time s ≥ S0 the insured purchases zero-coupon bonds
with maturity at time s+ ∆ at a deterministic rate of Ks+∆ from the insurance
company. We further assume that at the same time the insured will receive a
deterministic payout at a rate of Ks, either from previously purchased bonds or
otherwise financed as part of the pension contract, this means the insured will
receive payments at a rate of Ks −Ks+∆P (s, s+ ∆).

Lastly we consider a deterministic minimum payout guarantee at time s, de-
noted K̂s, which means the insurance company would have to pay an additional
amount at a rate equal to(

Ks+∆P (s, s+ ∆)−Ks + K̂s

)+

,

where (·)+ = max(0, ·). This brings the total rate of the payout received at
time s to

Ks −Ks+∆P (s, s+ ∆) +
(
Ks+∆P (s, s+ ∆)−Ks + K̂s

)+

≥ K̂s.
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When the insured dies they will leave a collection of bonds, these can then
either be paid out to the beneficiaries of the insured, either over a time period
of ∆ or settled with a lump sum. Another way to settle this is by letting the
bonds pass to the insurance company, effectively annulling them. We will for
now consider the latter for simplicity, but will tackle generalizations later.

We will here consider two possible states, living, denoted by ∗, and dead,
denoted by †. We assume that the insured cannot return from the dead state to
the living state. Furthermore, in order to compute the value of these policies,
we will use forward measures. As such we will assume that our ELMM QW is
an EMM and that σ(t, T ), the volatility process of the forward rates f(t, T ), is
deterministic. With this established we move on to define our policy functions
for s ≥ S0 as

ȧ†(s) = a∗,†(s) = a†,∗(s) = 0,

ȧ∗(s) = Ks −Ks+∆P (s, s+ ∆) +
(
Ks+∆P (s, s+ ∆)−Ks + K̂s

)+

.

We note that the only non-zero mathematical reserve is the one corresponding
to being in state ∗, the living state. From Corollary 6.1 we get that the fair
price of such an agreement at time t, assuming the insured is alive, must be

V +
∗ (t, A) =V∗(t, A∗)

=

∫ ∞
t

p∗,∗(t, s)
1

vt
EQW

[
vsȧ∗(s)|FWt

]
ds

=

∫ ∞
t

p∗,∗(t, s)
1

vt
EQW

[
vsKs|FWt

]
ds

−
∫ ∞
t

p∗,∗(t, s)
1

vt
EQW

[
vsKs+∆P (s, s+ ∆)|FWt

]
ds

+

∫ ∞
t

p∗,∗(t, s)
1

vt
EQW

[
vs

(
Ks+∆P (s, s+ ∆)−Ks + K̂s

)+

|FWt
]
ds.

To compute an explicit formula we first note that by Theorem 2.29 or Ex-
ample 2.7 we have an explicit representation of the transition probability by

p∗,∗(t, s) = exp

(
−
∫ t

s

µ∗,†(u)du

)
. (6.6)

However, to keep notation compact we will still write the probability in
the less explicit form as p∗,∗(t, s). Secondly, by our definition of zero-arbitrage
pricing or by Proposition 4.2 we have

1

vt
EQW

[
vsKs

∣∣FWt ] = P (t, s)Ks,

and by our assumption that QW is an EMM, which implies that the process
u 7→ vuP (u, s+ ∆) is a martingale under QW , we get

1

vt
EQW

[
vsKs+∆P (s, s+ ∆)

∣∣FWt ] = P (t, s+ ∆)Ks+∆.
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Lastly, we note that, assuming Ks+∆ > 0, we have

1

vt
EQW

[
vs

(
Ks+∆P (s, s+ ∆)−Ks + K̂s

)+
∣∣∣∣FWt ]

= Ks+∆
1

vt
EQW

vs(P (s, s+ ∆)− Ks − K̂s

Ks+∆

)+ ∣∣∣∣∣FWt
 ,

which is the value at time t of Ks+∆ units of a European call on P (s, s+ ∆)

with strike price (Ks − K̂s)/Ks+∆. By Theorem 4.2 this equals

Ks+∆P (t, s+ ∆)ϕ+
(
t, s, P (t, s+ ∆), P (t, s)

)
− (Ks − K̂s)P (t, s)ϕ−

(
t, s, P (t, s+ ∆), P (t, s)

)
,

where we have defined

ϕ±(t, s, x, y) = Φ

 log
(

Ks+∆x

(Ks−K̂s)y

)
± 1

2

∫ s
t
|vs,s+∆(u)|2du√∫ s

t
|vs,s+∆(u)|2du

 ,

in order to keep our notation compact. We may also recall the definition

vs,s+∆(u) =
∫ s+∆

s
σ(u, v)dv, and that Φ is the standard normal distribution

function.
Combining these equations we get an explicit formula for V +

∗ .

V +
∗ (t, A) =V∗(t, A∗)

=

∫ ∞
t

p∗,∗(t, s)P (t, s)Ksds

−
∫ ∞
t

p∗,∗(t, s)P (t, s+ ∆)Ks+∆ds

+

∫ ∞
t

p∗,∗(t, s)Ks+∆P (t, s+ ∆)ϕ+
(
t, s, P (t, s+ ∆), P (t, s)

)
ds

−
∫ ∞
t

p∗,∗(t, s)(Ks − K̂s)P (t, s)ϕ−
(
t, s, P (t, s+ ∆), P (t, s)

)
ds.

(6.7)

In addition to the explicit formula we also note that our calculations have
shown that Y (t, s) = 1

vt
EQW [vsȧj(s)|FWt ] is made up from twice differentiable

functions of Itô processes. This means that Y itself is an Itô process by Itô’s
lemma (Theorem 2.25). Applying Corollary 6.2 we then see that the prospec-
tive reserve must be an Itô process which guarantees that it is continuous and
progressive in t.

As previously mentioned we can also consider a death benefit based on the
remaining bonds. If the insured dies at time s there will be a collection of zero-
coupon bonds that would grant payouts at a rate of Ku for u ∈ [s, s+ ∆]. The
fair price of such a cash flow at time s is therefore

EQW

[
1

vs

∫ s+∆

s

vuKudu

∣∣∣∣∣FWs
]

=

∫ s+∆

s

P (s, u)Kudu.
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With this we see that the insurance company could reasonably offer this sum
as a death benefit in this pension scheme, essentially buying back all bonds at

the time of death. With this adjustment we get a∗,†(s) =
∫ s+∆

s
P (s, u)Kudu,

which yields an explicit formula for the reserve at time t.

V∗(t, A∗,†)

=
1

vt

∫ ∞
t

EQW
[
vsa∗,†(s)|FWt

]
p∗,∗(t, s)µ∗,†(s)ds

=
1

vt

∫ ∞
t

EQW

[
vsEQW

[
1

vs

∫ s+∆

s

vuKudu

∣∣∣∣∣FWs
] ∣∣∣∣∣FWt

]
p∗,∗(t, s)µ∗,†(s)ds

=
1

vt

∫ ∞
t

EQW

[∫ s+∆

s

vuKudu

∣∣∣∣∣FWt
]
p∗,∗(t, s)µ∗,†(s)ds

=

∫ ∞
t

(∫ s+∆

s

P (t, u)Kudu

)
p∗,∗(t, s)µ∗,†(s)ds.

(6.8)

By noting that V∗(t, A∗) is unaffected by the change in a∗,† we get an explicit
formula for the new prospective reserve by combining equation (6.7) and (6.8)
to get

V +
∗ (t, A) =V∗(t, A∗) + V∗(t, A∗,†)

=

∫ ∞
t

p∗,∗(t, s)P (t, s)Ksds

−
∫ ∞
t

p∗,∗(t, s)P (t, s+ ∆)Ks+∆ds

+

∫ ∞
t

p∗,∗(t, s)Ks+∆P (t, s+ ∆)ϕ+
(
t, s, P (t, s+ ∆), P (t, s)

)
ds

−
∫ ∞
t

p∗,∗(t, s)(Ks − K̂s)P (t, s)ϕ−
(
t, s, P (t, s+ ∆), P (t, s)

)
ds

+

∫ ∞
t

(∫ s+∆

s

P (t, u)Kudu

)
p∗,∗(t, s)µ∗,†(s)ds.

(6.9)
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Chapter 7

Implementation of CD
Ladder Insurance Pricing
under HJM

In this chapter we will give an example of how to implement the pricing methods
developed in earlier chapters for the pension scheme based on a continuous time
CD ladder considered in Section 6.3. We will here consider the case without a
death benefit, i.e. the prospective reserve given by equation (6.7).

7.1 Model Specification

For the forward rate we will make the following assumptions, here a, b and c
will be real parameters.

• The initial forward curve is on the form

f(0, T ) = b+ (f(0, 0)− b) e−aT .

We will refer to b as the reversion level and a as the speed of mean rever-
sion.

• The drift term α(t, T ) is assumed to equal 0 under P .

• The volatility term is taken to be one-dimensional and on the form

σ(t, T ) = ce−a(T−t).

We will refer to c as the instantaneous volatility.

With these assumptions we get

f(t, T ) = b+ (f(0, 0)− b) e−aT +

∫ t

0

ce−a(T−s)dWs. (7.1)

For convenience we will define
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ψ(t) = (f(0, 0)− b) +

∫ t

0

ceasdWs,

which implies f(t, T ) = b+ e−aTψ(t).

Remark 7. We may note that this implies by inserting T = t into equation
(7.1) we get

rt = b+ (r0 − b) e−at +

∫ t

0

ce−a(t−s)dWs.

From this we get∫ t

0

a(b− rs)ds = −a (r0 − b)
∫ t

0

e−asds− a
∫ t

0

∫ s

0

ce−a(s−u)dWuds

= (r0 − b) e−at − (r0 − b)− a
∫ t

0

∫ s

0

ce−a(s−u)dWuds

= (r0 − b) e−at + b− r0 − a
∫ t

0

∫ t

u

ce−a(s−u)dsdWu

= (r0 − b) e−at + b− r0 +

∫ t

0

ce−a(t−u)dWu −
∫ t

0

cdWu

= rt − r0 −
∫ t

0

cdWu.

This means that r must satisfy the stochastic differential equation

drt = a(b− rt)dt+ cdWt,

which is a common way to define the famous Vaš́ıček short-rate model.

As for the pension scheme specifications we will assume that the payout
function Ks and the minimum guarantee K̂s are both at a constant value ad-
justed for inflation. The rate of inflation, ρ, will be assumed constant. To state
these assumptions precisely we have

Ks = K0e
ρs,

K̂s = K̂0e
ρs.

We will also assume that K0 is on the form

K0 =
K̂0

1− e(ρ−b)∆ .

Note that if the forward rates were constant and equal to the reversion level
b this assumption would yield

Ks −Ks+∆P (s, s+ ∆) = K̂s.

This value of K0 therefore assures that the CD-ladder would be self-financing
in this case.

For the transition rates we will be using the mortality basis known as K2013
[4]. K2013 is a letter published by Finanstilsynet, the Norwegian Supervisory
Authority of Norway, detailing mortality rates which Norwegian insurance com-
panies have to comply with. A more exact description is given in the next
section, see equation (7.4).
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7.2 Formulas for Exact Computation

These model assumption also allows us to more exactly calculate some aspects
of our pricing equations, let us first consider the function

ϕ±
(
t, s, P (t, s+∆), P (t, s)

)
= Φ

 log
(
Ks+∆P (t,s+∆)

(Ks−K̂s)P (t,s)

)
± 1

2

∫ s
t
|vs,s+∆(u)|2du√∫ s

t
|vs,s+∆(u)|2du

 .

We note from Definition 3.2 that P (t, T ) = exp
(
−
∫ T
t
f(t, s)ds

)
, which

means we get

log

(
P (t, s+ ∆)

P (t, s)

)
= log

exp
(
−
∫ s+∆

t
f(t, u)du

)
exp

(
−
∫ s
t
f(t, u)du

)


= −
∫ s+∆

s

f(t, u)du

= −
∫ s+∆

s

(
b+ e−auψ(t)

)
du

= −b∆−
(
e−as − e−a(s+∆)

) ψ(t)

a
.

(7.2)

Using the same calculations we also get an explicit formula for P (t, s) by

P (t, s) = exp

(
−b(s− t)−

(
e−at − e−as

) ψ(t)

a

)
.

Likewise, we can compute other parts of ϕ, from basic calculus we get∫ s

t

|vs,s+∆(u)|2du =

∫ s

t

(∫ s+∆

s

σ(u, v)dv

)2

du

=

∫ s

t

(∫ s+∆

s

ce−aveaudv

)2

du

= c2
∫ s

t

e2audu

(∫ s+∆

s

e−avdv

)2

=
c2

2a3

(
e2as − e2at

) (
e−as − e−a(s+∆)

)2

=
c2

2a3

(
1− e−2a(s−t)

) (
1− e−a∆

)2
.

(7.3)

For our survival probabilities the K2013 mortality for a person aged x in
calendar year u > 2013 is given by

µ(x, u) = µ(x, 2013)

(
1 +

w(x)

100

)u−2013

. (7.4)

This is the mortality at age x in 2013 scaled down with a factor based on
w(x), the mortality reduction. These values are specified by
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Men: w(x) = min(2.671548− 0.17248x+ 0.001485x2, 0)

Women: w(x) = min(1.287968− 0.10109x+ 0.000814x2, 0),

and

Men: 1000µ(x, 2013) = 0.241752 + 0.004536 · 10(0.051x)

Women: 1000µ(x, 2013) = 0.085411 + 0.003114 · 10(0.051x).

We recall equation (6.6) which allows for computation of the survival prob-
abilities using the K2013 parameters.

p∗,∗(t, s) = exp

(
−
∫ t

s

µ∗,†(u)du

)
.

Finally we will need a way of simulating ψ(t), which is the only non-deterministic
part of our equations. We note from Theorem 2.23 that ψ(t) is normally dis-
tributed with expectation f(0, 0)− b and a variation which can be computed by
Theorem 2.25, Itô’s lemma, to be

V ar[ψ(t)] =

∫ t

0

(ceas)
2
ds

= c2
∫ t

0

e2asds

=
c2

2a

(
e2at − 1

)
.

(7.5)

For our computations we will give time in units of years with t = 0 in the
current year of 2021. The parameters will also be set to the following values.

• Reversion level: b = 5%.

• Current short-rate: f(0, 0) = r0 = 3%.

• Instantaneous volatility: c = 2%.

• Speed of mean reversion: a = 50%.

• Initial minimum payout guarantee: K̂0 = 1, note that if we considered the
reserves as a function of K̂0 we would get V +(t, K̂0) = K̂0V

+(t, 1). This
means that by setting the initial payout to 1 we effectively consider the
payout in units of K̂0.

• As a consequence of K̂0 = 1 we get that K0 = 7.179162.

• Rate of inflation: 2%.

• Time to maturity of bonds: ∆ = 5.

We also assume that the insured is a 39 year old woman that retires at age
67, t = 28. Payments will therefore start at t = 28, and for convention we will
assume the chance of surviving past an age of 114, t = 75, to be negligible. This
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convention is justified by the K2013 probability of the insured to reach this age,
which equals

p∗,∗(0, 75) ≈ 5.6 · 10−7.

These choices imply that the prospective reserve must be on the form

V +
∗ (t, A) =

∫ 75

max(t,28)

I(t, s)ds,

where the integrand I is the regular integrand from equation (6.7),

I(t, s) = p∗,∗(t, s)P (t, s)Ks

− p∗,∗(t, s)P (t, s+ ∆)Ks+∆

+ p∗,∗(t, s)Ks+∆P (t, s+ ∆)ϕ+
(
t, s, P (t, s+ ∆), P (t, s)

)
− p∗,∗(t, s)(Ks − K̂s)P (t, s)ϕ−

(
t, s, P (t, s+ ∆), P (t, s)

)
.

We finally note that the only stochastic term present in these equations is
the term ψ(t), so V +(t, A) could be considered a function of t and ψ(t). Since ψ
and r are directly related by rt = b+ e−atψ(t) we could, and will, equivalently
consider V +(t, A) as a function of t and rt.

7.3 Results and Comments

Computing the reserve and dropping the notation of A in favour of rt we get

V +(0, A) = V +(0, r0) ≈ 8.0.

However we may note that since we chose K̂0 = 1 we are effectively getting
the value of the reserve in units of the minimum guarantee, if we chose another
value we would get

V +(0, r0) ≈ 8.0 · K̂0.

Our framework also allows to easily calculate the value of the reserve at
t > 0. Let us for example consider the value of the reserve at retirement age,
t = 28, under the assumption that r28 = b. direct computation then yields

V +(28, b) ≈ 32.3.

We could then, for example, consider the inflation-adjusted value of this to
get a present value of

V +(28, b)e−28ρ ≈ 32.3e−28ρ ≈ 18.5.

If we are interested in seeing how V +(t, rt) develops in time we could get an
impression by calculating V +(t, b) for an array of time points as shown in the
following graph.
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We see the reserves increase as we approach t = 28 as the payments get
closer in time and thus less affected by the devaluation of the interest rate. As
we pass t = 28, however, we lose out on more and more of the payments which
causes the drop in value.

Of course, rt is not known, but we can calculate the reserves for a reasonable
range of values.

To select a range we note that

rt = b+ e−at
∫ t

0

ceaudWu

is normally distributed with mean

b+ e−at(r0 − b)

and a variance of

c2e−2at

∫ t

0

e2audu =
c2

2a

(
1− e−2at

)
.

This means that when t→∞ we get an expectation of b and a variance of c2

2a .
We could then choose our range to be the long-run 95% confidence interval of
rt, which equals[

b− 1.96

√
c2

2a
, b+ 1.96

√
c2

2a

]
≈ [b− 4%, B + 4%] = [1%, 9%].

Using this range we get the following graph of values.
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We see that V + decreases in r, this is expected as a high interest rate devalues
future payouts.

Furthermore, since r0 is known we can also calculate the distribution V +(28),
and therefore several statistical properties, of V +(28) numerically. To produce
the following graph we used 2000 simulations of r28 and a Gaussian kernel
density estimation with the standard deviation of the kernels equal to 0.226.
More explicitly, the distribution is approximated by the graph of

D(x) =

2000∑
i=1

φ(x, V̄i, 0.226),

where {V̄i} is the collection of simulated values of V +(28) and

φ(x, µ, σ) =
1

σ
√

2π
e−

1
2 ( x−µσ )

2

is the density function of a normal variable with mean µ and standard devia-
tion σ. From these simulations we also get the empirical cumulative distribution
function as shown.
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We may note the marked median in the cumulative distribution graph at
x = 32.3 ≈ V +(28, b). Since r28 is normally distributed its mean and median
coincide, this along with V +(28, r) being monotone in r forces the median of
V +(28, r) to V +(28, E[r]) ≈ V +(28, b). The distribution of V +(28, r), however,
is not symmetric as it has a slightly heavier tail for large values. To better
understand the source of this we consider the payout rate of the policy

Ks −Ks+∆P (s, s+ ∆) +
(
Ks+∆P (s, s+ ∆)−Ks + K̂s

)+

.
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We see that while high interest rates reduce the value of future payment it
also increases the payout function, therefore somewhat lessening the impact that
high interest rates have on V +. In the case of low interest rates however, the
payout function is bounded by the minimum guarantee which allows V + to rise
unrestrained as r decreases. This can perhaps be more clearly seen by analysing
a simpler example, we consider constant mortality µ∗,† and interest rate r, as
would approximately be valid in the short-term. If we then also use a constant
payout function K̂, which would occur when the interest rate is sufficiently low,
we would get

V +(t, r) =

∫ ∞
t

K̂e−(s−t)re−(s−t)µ∗,†ds =
K̂

r + µ∗,†
.

Since this value increases with the inverse of r we see that the short-term im-
pact of low interest rates would contribute to the heavy tails in the distribution
of V +.

As a final note we could now compute any number of statistics from the
distribution of V +, some of which are listed below.

Variance Expectation Median 10’th percentile 90’th percentile
0.652 32.4 32.3 31.5 33.5
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Chapter 8

Final Conclusions and
Further Work

We have now demonstrated how our framework can be used to explicitly com-
pute reserves for a wide range of payout functions under HJM at both current
time and at future time points. This theory also extends past the example where
we considered payout functions based purely on the interest rate, we could for
example consider unit-linked insurance based on the performance of a fund or
other financial instrument. In order to apply this framework to other insurance
policies we would need to develop pricing formulas for the payout functions ȧj
and aj,k. Whenever that is possible the framework would then immediately
provide us with explicit formulas to compute relevant information about the
reserves.

More general work still remains when it comes to numerical methods. While
we have developed two explicit ways of computing and simulating the reserve
we could still benefit from an analogue to Thiele’s differential equation. Such
an equation could possibly be developed for sufficiently nice classes of interest
rate and payout function models, which could yield more efficient computation
algorithms for the reserves.

The presented example can also be more thoroughly analysed, in particular
through comparisons to other pension policies. Furthermore, we could also
compute the distribution of the stochastic prospective reserve under P without
much issue. Such simulations are highly relevant for insurance companies as
they are required to maintain sufficient liquidity under e.g. the Solvency II
directive.
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Appendix A

Appendix: Code

A.1 K2013 survival probabilities

The following code was used to compute survival probabilities in accordance
with the K2013 mortality basis.

Variables used in this code are

• G: Denotes gender

• x: Denotes age in year 2013, not current age.

• t, s: Denotes calendar year (assumed t, s > 2013)

Mortality Reduction:

w <- function(G, x){

if(G==0){

return( min(2.671548-0.17248*x+0.001485*x^2,0) )

}

if(G==1){

return( min(1.287968-0.10109*x+0.000814*x^2,0) )

}

}

Mortality in 2013:

mu.kol.2013 <- function(G, x){

#men

if(G==0){

return( (0.241752+0.004536*10^(0.051*x))/1000 )

}

#women

if(G==1){

return( (0.085411+0.003114*10^(0.051*x))/1000 )

}

}
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Adjusted Mortality in Year t:

mu.kol <- function(G, x,t){

return(mu.kol.2013(G, x+t-2013)

*(1+w(G, x+t-2013)/100)^(t-2013))

}

Survival Probability:

p_surv <- function(G,x,t,s){

temp_int <- integrate(f=Vectorize(mu.kol),

lower=t,upper=s,G=G,x=x)[[1]]

return(exp(-temp_int))

}

A.2 CD Ladder Functions

The code in this section contains functions relevant for computing the value of
the reserve in our ”CD ladder”-based pension scheme. Note that these functions
assume that the following global variables are defined.

• a: The speed of mean reversion

• b: Reversion level

• c: Short-rate volatility

• delta: Time to maturity for bonds

• r0: Short-rate value at time 0

• rho: Rate of inflation

• K: Payout function at time 0

• Kmin: Minimum payout at time 0

• S0: Start age of retirement payout

• Smax: Maximum age

Computing K0:

Kmaker <-function(){

return( Kmin / (1-exp(delta*(rho-b) ) ) )

}

Simulating ψ(t):

generatepsi <- function(t,n=1){

mean_temp <- r0 - b

sd_temp <- sqrt( (c^2/(2*a))*(exp(2*a*t)-1) )

stdnorm_temp <- rnorm(n,mean=mean_temp,sd=sd_temp)

return(stdnorm_temp)

}
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Converting rt to ψ(t):

rtopsi <- function(r_t,t){

return( (r_t-b)*exp(a*t) )

}

Converting ψ(t) to rt:

psitor <- function(psi,t){

return( b+exp(-a*t)*psi )

}

Zero-Coupon Bond Value:

Pts <- function(t,s,psi_t){

return(exp(-b*(s-t)-(exp(-a*t)-exp(-a*s))*(psi_t/a) ))

}

Variation Factor in Pricing Formula for Call:

var_call <- function(t,s){

return( (c^2/(2*a^3))*(1-exp(2*a*(t-s)))

*(1-exp(-a*delta))^2 )

}

Computing ϕ±:

#Returns list with phi+ in [1] and phi- in [2]

phi <- function(t,s,x,y){

log_term <- log( (K*exp(rho*(s+delta))*x)

/((K-Kmin)*exp(rho*s)*y) )

var_term <- var_call(t,s)

if (var_term==0){

var_term <- 0.00000001

}

total_term_plus <- (log_term+var_term/2)/sqrt(var_term)

total_term_minus <- (log_term-var_term/2)/sqrt(var_term)

out_plus <- pnorm(total_term_plus)

out_minus <- pnorm(total_term_minus)

return(c(out_plus,out_minus))

}
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Computing the Integrand of the Reserve:

Note that the default values imply the insured is a woman aged 31 in the year
2013.

integrand_lifereserve <- function(t,s,psi_t,age13=31,gender=1){

surv <- p_surv(gender,age13,2021+t,2021+s)

P_sd <- Pts(t,s+delta,psi_t)

P_s <- Pts(t,s,psi_t)

phi_temp <- phi(t,s,P_sd,P_s)

phi_plus <- phi_temp[1]

phi_minus <- phi_temp[2]

payout_term <- surv*P_s *K*exp(rho*s)

payment_term <- surv*P_sd*K*exp(rho*(s+delta))

call_term1 <- surv*P_sd*K*exp(rho*(s+delta))*phi_plus

call_term2 <- surv*P_s *(K-Kmin)*exp(rho*s) *phi_minus

return(payout_term-payment_term+call_term1-call_term2)

}

Computing the Reserve:

lifereserve <- function(t,psi_t,n=1000,age13=31,gender=1){

lower <- max(t,S0-2021+2013-age13)

upper <- Smax-2021+2013-age13

dt <- (upper-lower)/n

number_range <- (1:n-1)*dt + lower

int_temp <- sum( Vectorize(integrand_lifereserve)(t,

number_range,psi_t,age13,gender) )

int_temp <- int_temp*dt

return(int_temp)

}

Graphing V +(t, b):

time_list <- 0:70

reserve_list <- Vectorize(lifereserve)(time_list,0)

plot(time_list,reserve_list,type="l",xlab = "t", lwd=2,

ylab = expression("V"^"+"*"(t,b)"),main =

expression("Progression of V"^"+"*"(t,b)"))

abline(v=seq(0,70,10), col="gray",lwd=2)

abline(h=seq(5,30,5), col="gray",lwd=2)

#Plot again to overlay graph over grid

par(new=TRUE)

plot(time_list,reserve_list,type="l",xlab = "t", lwd=2,

ylab = expression("V"^"+"*"(t,b)"),main =

expression("Progression of V"^"+"*"(t,b)"))
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Graphing V +(28, r):

r_list <- b+(0:800-400)/(10000)

temptime <- 28

psi_list <- Vectorize(rtopsi)(r_list,28)

new_reserve_list <- Vectorize(lifereserve)(28,psi_list)

plot(r_list,new_reserve_list,type="n",

ylab=expression(paste("V"^"+"*"(28,r)")), xlab="r",

main = expression("Graph of V"^"+"*"(28,r)"),

xaxt="n",lwd=2)

axis(1,at=seq(0.01,0.09,0.01))

abline(v=seq(0.01,0.09,0.01), col="gray",lwd=2)

abline(h=seq(31,34.5,0.5), col="gray",lwd=2)

#Plot again to overlay graph over grid

par(new=TRUE)

plot(r_list,new_reserve_list,type="n",

ylab=expression(paste("V"^"+"*"(28,r)")), xlab="r",

main = expression("Graph of V"^"+"*"(28,r)"),

xaxt="n",lwd=2)

Simulating V +(28):

set.seed(51)

new_psi_list <- generatepsi(28,2000)

new_new_reserve_list <- Vectorize(lifereserve)(28,new_psilist)

Plot Density of V +(28) :

plot(density(new_new_reserve_list,bw=0.226),lwd=2,main =

expression("Density Function, f, of V"^"+"*"(28)"),

xlab="x",ylab = "f(x)")

Plot Cumulative Distribution of V +(28):

plot(ecdf(new_new_reserve_list),lwd=2,main=

expression("Cumulative Distribution Function, F, of V"^"+"*"(28)"),

ylab = "F(x)",yaxt="n")

axis(2,at=seq(0,1,0.1))

axis(1,at=c(32.3))

abline(v=c(32.3), col="gray",lwd=2)

abline(h=c(0.5), col="gray",lwd=2)

#Plot again to overlay graph over grid

par(new=TRUE)

plot(ecdf(new_new_reserve_list),lwd=2,main=

expression("Cumulative Distribution Function, F, of V"^"+"*"(28)"),

ylab = "F(x)",yaxt="n")
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