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A B S T R A C T

Similar to the Stokes drift in periodic gravity waves, we introduce a second-order Stokes effect on the particle
drift in isolated linear surface disturbances (pulses) in shallow water. For a linear disturbance with the shape
and length scale of a KdV solitary wave, the model results agree surprisingly well with the observed drift in
moderately steep solitary waves in the laboratory, as well as with more comprehensive theory for surface drift
in solitary waves.
. Introduction

Wave-induced particle drift in shallow water is a phenomenon that
s of considerable interest for coastal engineers and environmentalists.
t has an impact on sediment transport as well as the spread of effluents
nd pollution in the near-shore zone. For periodic irrotational waves,
he story goes back to the seminal paper by Stokes (1847). Since then
he number of papers on the mean drift in periodic surface waves has
rown enormously. The next major step forward was due to Longuet-
iggins (1953), introducing the effect of viscosity into the wave drift
roblem. For a recent overview of direct Lagrangian calculations of the
ave-induced drift in a viscous ocean, the reader is referred to Weber

2019), where also relevant references to inviscid studies are listed.
For non-periodic flows such as the motion of isolated disturbances,

r pulses, along the sea surface, there is also a mass transport. Unlike
he spiraling forward particle motion in periodic irrotational waves,
his drift is just a finite forward particle displacement caused the
assage of single pulse. The most celebrated disturbance of this kind
s the solitary wave observed by Russell (1838, 1845), which led to
heoretical investigations by Boussinesq (1871) and Rayleigh (1876).
he lowest order solution is obtained by the KdV equation (Korteweg
nd de Vries, 1895), valid asymptotically in the limit of small amplitude
nd long wavelength. The solitary wave has been studied to third
rder in the parameter 𝜀 = 𝐴∕𝐻 by Grimshaw (1971), where 𝐴 is
he maximum surface amplitude and 𝐻 is the undisturbed fluid depth,
nd to ninth order by Fenton (1972); see the review by Miles (1980).
xistence theory for solitary waves has been developed by, amongst
thers, Amick and Toland (1981). More recently, Constantin and Escher
2007) analyzed formally particle paths associated with solitary-wave
olutions; see also Constantin (2010) and Constantin et al. (2011). In
orluk and Kalisch (2012) velocity fields related to exact solutions of
he KdV equation are reported, and particle trajectories are computed
umerically.

E-mail address: j.e.weber@geo.uio.no.

In the present study, we follow the approach by Eames and McIntyre
(1999) for the Lagrangian displacement due to periodic wave motion,
but apply it to isolated surface pulses. The rest of the paper is organized
as follows: In Section 2 we derive the exact equations for the particle
drift in irrotational waves, and Section 3 gives the well-known results
for periodic waves. Section 4 considers non-periodic flows in the form
of isolated disturbances or pulses in shallow water, and discusses the
Stokes drift in the general case. The pulses are solutions of the small-
amplitude shallow water equation. In Section 5, we study a linear pulse
with the spatial shape of solitary wave in the KdV approximation.
However, we do not derive asymptotically valid results for the KdV
solitary wave. When the Stokes drift is added to the drift in the linear
pulse, we obtain surprisingly good fit with laboratory experiments on
moderately steep solitary waves, as well as with higher order theory.
Finally, Section 6 contains some concluding remarks.

2. Mathematical derivation

We consider two-dimensional motion of an incompressible and
irrotational fluid in a horizontal layer. When undisturbed, the depth
is constant and equal to 𝐻 . The effect of the earth’s rotation is not
taken into account. The 𝑥-axis is along the undisturbed surface, and
the 𝑧-axis is vertically upward. The bottom at 𝑧 = −𝐻 is impermeable.
When we have a disturbance, the velocity components are (𝑢,𝑤), and
free surface is given by 𝑧 = 𝜂(𝑥, 𝑡), where 𝑡 denotes time. Since the fluid
is irrotational, we can write the velocity components 𝑢 = 𝜕𝜑∕𝜕𝑥,𝑤 =
𝜕𝜑∕𝜕𝑧, where 𝜑 is the velocity potential. Hence

𝑢 = 𝐷𝑋∕𝐷𝑡 = 𝜕𝜑∕𝜕𝑥, (1)

where 𝑋 is a horizontal particle coordinate, and 𝐷∕𝐷𝑡 is the rate of
change following a fluid particle. We consider waves of permanent form
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that propagates with constant phase speed 𝐶. In that case 𝐶𝜕∕𝜕𝑥 =
−𝜕∕𝜕𝑡 and we can write (1) (Eames and McIntyre, 1999):

𝐷𝑋∕𝐷𝑡 = −𝐶−1𝜕𝜑∕𝜕𝑡 = −𝐶−1[𝐷𝜑∕𝐷𝑡 − ∇𝜑 ⋅ ∇𝜑]. (2)

This expression has been derived earlier by Eames et al. (1994) in
connection with the Darwin drift caused by a single body moving
through an inviscid fluid.

In the same way, we can use that the fluid is incompressible, and
write 𝑤 = 𝜕𝜓∕𝜕𝑥, where 𝜓 is the stream function. Hence

𝑍∕𝐷𝑡 = −𝐶−1𝜕𝜓∕𝜕𝑡 = −𝐶−1[𝐷𝜓∕𝐷𝑡 − ∇𝜑 ⋅ ∇𝜓] = −𝐶−1𝐷𝜓∕𝐷𝑡, (3)

where 𝑍 is a vertical particle coordinate (Weber et al., 2014). We
realize that although (2) and (3) are exact equations, the particle
displacements are given in an implicit way. In integrating these equa-
tions in time, we must follow a fluid particle which at time 𝑡 = 0
has a position 𝑋0 (𝑎, 𝑐) , 𝑍0 (𝑎, 𝑐), where (𝑎, 𝑐) are the independent La-
grangian variables. The gradient operator in (2) must also be evaluated
in Lagrangian terms. Formally, from (2) and (3) we obtain for the
Lagrangian horizontal and vertical displacements, skipping constants
of integration:

𝑋 (𝑎, 𝑐, 𝑡) = −𝐶−1𝜑 (𝑎, 𝑐, 𝑡) +𝑋𝑆 , (4)

𝑍 (𝑎, 𝑐, 𝑡) = −𝐶−1𝜓 (𝑎, 𝑐, 𝑡) , (5)

where

𝑋𝑆 (𝑎, 𝑐, 𝑡) = 𝐶−1
∫ [(𝜕𝑋∕𝜕𝑡)2 + (𝜕𝑍∕𝜕𝑡)2]𝑑𝑡. (6)

Here 𝑋𝑆 is the Stokes particle displacement.

3. Periodic motion

For a periodic disturbance due to an infinite train of waves, we have
that 𝜑 and 𝜓 are purely periodic. Integrating (2) over the time period
𝜏, we find

𝑋 (𝑡 + 𝜏) −𝑋 (𝑡) = −𝐶−1 [𝜑 (𝑡 + 𝜏) − 𝜑 (𝑡)] +𝑋𝑆 (𝑡 + 𝜏) −𝑋𝑆 (𝑡). (7)

Since the bracket on the right-hand side vanishes, one obtains the
Lagrangian drift velocity 𝑢𝐿 by dividing by the period (Eames and
McIntyre, 1999):

𝑢𝐿 = 𝜏−1 [𝑋 (𝑡 + 𝜏) −𝑋 (𝑡)] = 𝜏−1
[

𝑋𝑆 (𝑡 + 𝜏) −𝑋𝑆 (𝑡)
]

= 𝑢𝑆 , (8)

where 𝑢𝑆 is the Stokes drift. This again demonstrates that the La-
grangian mean drift and the Stokes drift is equal in irrotational, in-
viscid periodic wave motion, i.e. the Eulerian mean motion vanishes
identically (Longuet-Higgins, 1953).

Likewise, from (3) we obtain the trivial result for the vertical
Lagrangian drift 𝑤𝐿:

𝑤𝐿 = 𝜏−1 [𝑍 (𝑡 + 𝜏) −𝑍 (𝑡)] = −(𝜏𝐶)−1[𝜓 (𝑡 + 𝜏) − 𝜓 (𝑡)] = 0. (9)

The result (9) is also valid for horizontally propagating internal waves,
which possess vorticity (Weber et al., 2014).

For periodic waves, the Stokes drift can be written from (6)

𝑢𝑆 = 𝜏−1
[

𝑋𝑆 (𝑡 + 𝜏) −𝑋𝑆 (𝑡)
]

= (𝜏𝐶)−1 ∫

𝑡+𝜏

𝑡
∇𝜑 ⋅ ∇𝜑𝑑𝑡 (10)

To lowest order, the Lagrangian and Eulerian solutions for periodic
waves are equal. Therefore, one can evaluate the Stokes drift to second
order from (10) by inserting for the linear Eulerian velocities in the

integral on the right-hand side; see Longuet-Higgins (1953). {

2

4. Non-periodic flows

The aim of this paper is to study the effect of the Stokes drift in
small amplitude non-periodic waves. In the nonrotating, shallow-water
approximation the lowest order surface elevation is governed by

𝜕2𝜂∕𝜕𝑡2 + 𝐶2
0 𝜕

2𝜂∕𝜕𝑥2 = 0, (11)

where 𝐶2
0 = 𝑔𝐻 . A general solution for isolated disturbances, or pulses,

that propagates to the right can be written

𝜂 = 𝐹 (𝜉). (12)

Here

𝜉 = (𝑥 − 𝐶0𝑡)∕𝐿 (13)

is the phase, where 𝐿 is the typical lateral extent of the disturbance.
The corresponding velocity components (𝑢,𝑤) become

𝑢 = 𝑔𝐹 (𝜉)∕𝐶0, (14)

𝑤 = −𝐶0 (𝑧 +𝐻)𝐹 ′(𝜉)∕(𝐿𝐻), (15)

where the prime denotes differentiation with respect to 𝜉. Hence, since
𝑢 = 𝜕𝜑∕𝜕𝑥, 𝑤 = 𝜕𝜓∕𝜕𝑥, we obtain from (4) and (5)

𝑋 = −(𝐿∕𝐻)
(

∫ 𝐹𝑑𝜉 +𝐻−1
∫ 𝐹 2𝑑𝜉

)

, (16)

= (1 + 𝑧∕𝐻)𝐹 (𝜉), (17)

here the last term in (16) is the Stokes displacement in a linear pulse.
ere we have used the shallow-water approximation 𝑢2 ≫ 𝑤2 in (16).

Assuming that the pulse is symmetrical, and that the peak is situated
t the origin at 𝑡 = 0, we can write the maximum horizontal and vertical
isplacements {𝑋} and {𝑍} as

𝑋} = 2𝐿𝐻−1
(

∫

∞

0
𝐹 (𝜉) 𝑑𝜉 +𝐻−1

∫

∞

0
𝐹 2 (𝜉) 𝑑𝜉

)

, (18)

𝑍} = 𝐻−1 (𝑧 +𝐻)𝐹 (𝜉 = 0). (19)

his is a general result for linear symmetric pulses in shallow water
here the effect of the Stokes drift has been taken into account.

. A solitary wave-like pulse

The results in the last section can be applied to linear pulses of
ny shape. Of particular interest, is the surface shape that resembles
solitary wave in the KdV approximation. In this approximation the

urface displacement is given by

= 𝐴 sech2[𝛼 (𝑥 − 𝐶𝑡) ∕𝐻], (20)

here
2 = 3𝜀∕4, (21)

nd
2 = 𝐶2

0 (1 + 𝜀). (22)

We consider a linear pulse with the shape of a KdV solitary wave,
.e. we take that

= 𝐹 (𝜉) = 𝐴sech2(𝜉), (23)

here 𝜉 is given by (13). The maximum horizontal and vertical drift of
articles during the passage of this wave becomes from (18) and (19)

𝑋} = 2𝐿𝜀
(

∫

∞

0
sech2(𝜉)𝑑𝜉 + 𝜀∫

∞

0
sech4 (𝜉) 𝑑𝜉

)

= 2𝐿𝜀(1+2𝜀∕3), (24)
𝑍} = (𝑧 +𝐻) 𝜀. (25)
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Fig. 1. Maximum horizontal drift versus maximum vertical drift induced by solitary
waves. Filled black boxes: data for surface drift from Longuet-Higgins (1981). Filled
black circles: data for surface drift from Hsu et al. (2012). Filled red diamonds: selected
theoretical values from the ninth order theory by Fenton (1972). Blue curve: present
theory from (27)–(28).

It is interesting to compare our results with the surface data in the
laboratory experiments on solitary waves by Longuet-Higgins (1981)
and Hsu et al. (2012), considering cases of not too steep waves. In linear
theory the ratio 𝐿∕𝐻 in (18) is arbitrary, as long as 𝐿 ≫ 𝐻 . From (21)

e have for long waves in the KdV approximation that

= 2𝐻∕(3𝜀)1∕2. (26)

his appears to be the relevant length scale we should use in our theory
or comparison with laboratory experiments. Inserting into (24), the
aximum particle displacements at the surface become

𝑋} ∕𝐻 = 2(𝐿∕𝐻)𝜀(1 + 2𝜀∕3) = (4∕3) (3𝜀)1∕2 [1 + 2𝜀∕3], (27)

𝑍} ∕𝐻 = 𝜀. (28)

he results for the surface drift are depicted in Fig. 1, where the
on-dimensional maximum displacements have been defined as Xm =
𝑋} ∕𝐻 and Zm = {𝑍} ∕𝐻 .

We note from the figure that our simple theoretical model, with
he inclusion of the Stokes drift and the KdV length scale, is able to
eproduce fairly well the surface drift in laboratory experiments, as well
s the ninth order theoretical results by Fenton (1972). Formally, from
small-amplitude point of view, we have obviously depicted the blue

urve in Fig. 1 for too large values of the parameter 𝜀 = 𝐴∕𝐻 , where
is the maximum surface amplitude and 𝐻 is the undisturbed fluid

epth. It is therefore quite surprising that the fit with experimental data
nd highly nonlinear theory are so good for larger 𝜀.

It is an interesting fact that formal power series expansions in
he parameter 𝜀 for solitary waves breaks down rather quickly. As
ointed out by Longuet-Higgins (1981), the Zm vs. Xm curve from the
dV solution very soon deviates from the experimental data when 𝜀

ncreases. It is also found that third order theory (Grimshaw, 1971)
oes not improve that result very much. Even Fenton’s ninth order
olution loses accuracy for 𝜀 > 0.7 (Longuet-Higgins and Fenton, 1974).

The present approach does not constitute a formal power series
xpansion, although it contains higher powers in 𝜀. We start out with
linear pulse, but this is not a linear drift model. More correctly, it is
3

hybrid model that includes a nonlinear Stokes drift and a KdV length
cale. Judging from Fig. 1, this combination apparently captures some
f the essence of this problem.

. Concluding remarks

Particle drift in isolated surface pulses in shallow water is a quantity
hat are of considerable interest for coastal engineers and environ-
entalists. A considerable amount of work has been devoted to the

tudy of steep solitary waves; see Jonsson et al. (2000). However,
solated disturbances traveling along the sea surface are usually not
ery steep. An example here is a tsunami in the open ocean. Then a
imple theoretical approach, like the present one, may yield reasonable
esults for the particle drift in small and moderately steep surface
ulses.
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