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Abstract

This work provides measurements of the γSF and NLD of both 188Re and 187Re, which will
enable the first experimental constraints on the 186Re(n,γ) cross sections to better understand
the s-process branching point of 186W. This will also provide insight on resonances in the γSF.

Data for both isotopes were extracted from a single experiment done at the Oslo Cyclotron
Laboratory in 2016, with a 30 MeV α-beam with SiRi for particle detection and CACTUS for
γ-detection. The data was then analysed using the Oslo method.

Neither γSF showed signs of a low energy enhancement above 1 MeV, or a strong scissors
resonance. A pygmy resonance could not be concluded from this work alone, but there are
signs of additional strength above 4 MeV when comparing to previous measurements above Sn.
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Chapter 1

Introduction

It’s only physics if it’s from the Physique region of France. Otherwise it’s just
sparkling math.

Unknown, Twitter.

1.1 Discovering our place in the cosmos

It was once believed that our universe was something unchanging and static that had always
been. Even the idea of there being a universe as we know it today, was at one point new and
unimaginable. From the old Mesopotamian societies beliefs in a vast, primordial sea, to the
Egyptian sun god, daily pushing back the darkness of the abyss, and the Greek belief in Gaia
herself, mother earth, arising from chaos, it is evident that humans always have been curious of
our origin.

However, to find a more scientific approach, we must wander to ancient Greece. Amidst the
first proposals of heliosentricity by Aristarchus of Samos1, Archimedes estimated the size of
cosmos to be the equivalent of about two light years in the 3rd century BC when he tried to
estimate an upper bound of how many grains of sand that could possibly fit in the cosmos2.

As early as the 12th century, islamic astronomers discussed the possibility of there being
“thousands of thousands of worlds”, and in the 13th century, another Persian scholar and the
father of trigonometry, Nas̄ır al-Dı̄n al-Tūs̄ı provides the first empirical evidence that the earth
rotates around its axis.

In 1543, Copernicus published his heliocentric model, where Thomas Digge later modified
this Copernican model by adding an unbound and star-filled space. It was not until 1584
Giordano Bruno finally proposed a universe in which our solar system is not the center. He
filled the night sky with stars that were just like our sun, with their own planets that might
foster life on their own. This, together with the belief that the cosmos was infinite, implied
there was no centre.

This was not the leading view, however, and there was other problems with this model. If
the universe was infinite with an infinite amount of stars, why is the night sky dark3? This
would mean that the universe was finite, though if it was, Newton predicted it would collapse
under the gravity he himself tried to explain. It was not until the 20th century and the rise of
modern cosmology we began to find answers.

Einstein first modelled the universe from his newly discovered general relativity, and though
he assumed it to be static, he added something remarkable to counter the collapsing gravity. A

1This idea of heliosentricity was promptly rejected by other contemporaries such as Ptolemy and Aristotle,
and the seemingly lacking parallaxe of the stars was a significant problem as they severely underestimated how
far away the stars really were.

2Published in his essay “The Sand Reckoner”.
3This is also called Olbers’ paradox. As it turns out, since the speed of light is finite and absolute, the

universe is just not old enough for all the light to reach us.
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cosmological constant, which he later called “his biggest blunder”, but today is theorised to be
what we call dark energy, which still, a hundred years later is one of the biggest mysteries in
cosmology.

For the next discovery, Vesto Slipher and Edwin Hubble was looking at the spectra of other
galaxies, and noticed an almost universal trend. The further away the galaxy, the more it was
redshifted and therefore, the faster it moved away from us. Everything seemed to expand from
one another and everything moved away from everything else as if everywhere was stretching
out in an accelerated speed. This was proof of a universal expansion, and thus a beginning
where everything and everywhere was closer than today, forming the idea of a big bang, or, as
it has also been nicknamed, “The everywhere stretch”.

Another observation fundamental to the evidence of this everywhere stretch, and thus
the universe having a beginning, is the cosmic microwave background, denoted CMB. From
thermodynamics, we know that if the universe used to be a lot smaller, it would also need to
be a lot hotter and denser. This would be to the point of matter itself not sticking together,
but boiling around in a primordial soup. It was so dense that, in fact, light could not travel
freely, but would constantly be bounced around, and thus, the universe was opaque. When it
then cooled down to the point of particles combining, the universe became see-through and
all the light recently bouncing off in random directions could now travel freely. This light has
travelled ever since, and as the universe has expanded it has cooled down this light.

In New Jersey in 1964, scientists were working on a highly sensitive horn antenna designed
to detect radio waves bouncing of satellites, but there was a strange background signal they
were not able to get rid of. They tried observing at different times of day, pointing the antenna
at different parts of the sky, and even removed some pigeons nesting in the horn, but the signal
persisted. This, as it turned out, was the massively redshifted signal of 3.5 kelvin from the
recombination at our universes infancy.

Thus, it is widely accepted that our universe is not, in fact, static, but began a long time
ago from a subatomic, primordial soup which recombined to hydrogen and helium.

1.2 Nuclear astrophysics - the origin of elements

Since our universe, in fact had a beginning, and the initial composition of our universe was
nothing but hydrogen and some helium, everything else in it must come from somewhere. As
our universe was young, even after the cooling and recombining of particles, there were no
heavy elements. The rest of the elements must have been produced somewhere, as we live
in a universe containing carbon, iron and gold. The very foundation of our modern ideas of
where the elements came from stems from two simultaneous papers independently discovered
and published in 1957. One is the paper often called B2FH by Margaret Burbidge, Geoffrey
Burbidge, William A. Fowler, and Fred Hoyle [1], and the other is by Alastair G. W. Cameron
[2]. This has been further developed into the field of nuclear astrophysics, which aims to explore
and explain the origin of the elements in our universe.

To understand the nuclear physics behind all of this, some terminology is needed. Since
nuclei contain neutrons and protons, these are notated N and Z respectively. The total mass
number is denoted A, which is the sum of N and Z. By plotting the neutron and proton number
on a grid, we find the nuclear physics equivalent of the periodic table, the nuclear chart as in
fig. 1.1, which shows all nuclei measured so far.

There are two distinct regions of element synthesis; the elements lighter than iron, and
the elements heavier than iron. The lighter elements fusing together is what keeps the stars,
our sun included, shining. Hydrogen gets fused into helium through the proton-proton-chains
(pp-chains), later fusing to carbon through the triple-α-process, and then into heavier elements
if the star is sufficiently massive. At the end of a stars’ lifetime, different deaths will come
dependent on its mass, but most will explode in some manner, ejecting large amounts of matter
into space, to reform into new stars, planets and other celestial objects.

The creation of the heavier-than-iron elements was a big mystery for a long time. One of
the main differences of these elements compared to the lighter ones, is the average nuclear
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Figure 1.1: The nuclear chart of all known nuclei, where the number of neutrons is plotted in
the x-axis and the proton number on the y-axis. The color coding shows the main decay mode,
and the black squares are the stable nuclei, making up “the valley of stability”. Generally, the
further away a nucleus is from the stable ones, the more unstable it is and the shorter the
lifetime. The zoomed area is of Z from 73 to 77, which is the tungsten (W), rhenium (Re) and
osmium(Os) mass area. Figure adapted from [3].
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binding energy, which peaks at iron. This means that fusing elements lighter than iron will
produce excessive energy, but fusing trans-iron nuclei into heavier elements needs an energy
input. Therefore, neutron capture reactions must be responsible for the formation of (most
of) the heavy elements. However, free neutrons are not stable, and have a half-life of about
15 minutes, which means no synthesis relying on neutron capture can occur unless there is a
production of neutrons.

Elements heavier than iron are made in a few different processes as outlined in B2FB[1]
and Cameron [2]. One of them is the s-process[4], which is short hand for the slow neutron
capture. This process relies on heavy, stable nuclei capturing neutrons in a low neutron-flux
environment. If the new nucleus is unstable, it will β-decay, turning one of its neutrons into a
proton. Then the process continues, forming ever more massive elements.

The counterpart to the s-process is the rapid neutron capture, nicknamed the r-process. This
process takes place under extremely high neutron fluxes, forming nuclei close to the neutron
drip line, i.e. the limit of where nuclei can even be bound. This process happens in some of the
most extreme events in the universe, and evidence of the process was observed in a neutron
star merger in 2017 [5].

The s-process and r-process are thought to be responsible of roughly half of the heavy
elements each. These processes are only capable of producing nuclei on the neutron-rich side of
the valley of stability, as well as nuclei that can decay from these. The whole proton-rich part
of the nuclear chart is simply inaccessible. We do, however, have some proton-rich nuclei in our
galaxy, totalling around 0.1-1 percent of the total abundance. These are thought to be made
in the p-process, which is a distinctly different process than the latter ones. The p-process is
not exclusive proton capture, but involves other reactions, in particular photodisintegration, of
already formed heavy nuclei, such as, for example (γ, n), (γ, p) and (γ, α).

In this thesis, I am working specifically on the s-process, but by understanding more about
the s-process, the better we can constrain the r-process contributions. The s-process might be a
perceivable simple process, however, it is complicated by external factors from the astrophysical
perspective of which these processes take place, as well as the branching points contributing to
otherwise r-process exclusive isotopes. There are several branching points in the tungsten(W)
and rhenium (Re) region, where the s-process nuclei which would normally β-decay might be
long-lived enough to capture another neutron and become a stable nucleus again.

The final isotopic ratios of the s-process branching points is dependent on (n, γ) cross
sections of unstable nuclei. Direct study with neutron beams are very challenging as neutron
are both unstable and carries no charge for acceleration. Unstable targets also adds to the
challenge and introduces the need for very specialised experimental setups for radioactive beams
or on-site isotope production. Indirect study is therefore essential to work as replacements, and
may use more available equipment such as the cyclotron used in this thesis. By understanding
the s-process contribution to the branching point isotopes better, the relative contributions from
the r-process and s-process may be understood better. This may in turn also help understanding
the complex system of other synthesis, such as the r-process, by giving better estimates on
these nuclei which, without an active branching point, may only be produced by the r-process.

To calculate the (n,γ) reaction rates and crosss sections, nuclear rection software such as
TALYS[6] is important, where statistical properties of nuclei can be used to understand their
interactions.

1.3 This work

This work focuses on the s-process branching point of 186W, of which an illustration is given
in fig. 1.2. The experiment discussed provides data on the reactions 186W(α,d)188Re and
186W(α,t)187Re from a single experiment. By applying the Oslo method, the nuclear level
densities and γ strength functions are extracted from both 187Re and 188Re. This work
also explores structural features of the γSFs which together with the NLDs enables the first
experimental constrains on 186Re(n,γ) in future work.

7



Figure 1.2: The s-process of the 186W branching point. The horizontal lines are the neutron
capture of stable nuclei, and the diagonal are β-decay, where a neutron is turned into to a
proton. The dotted lines are the branching point neutron captures, which can lead to s-process
producing stable 186W and 187Re. Note the lifetime of 187Re on the scale of 40 Gy, i.e. 4 · 1010

years. Figure adapted from [3].
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Chapter 2

Nuclear theory of the
quasi-continuum

§15 Kongen kan bestemme at det skal innføres rett til ferietid i inntil 5 virkedager
ut over ferietiden etter §5.

Utdrag fra Ferieloven §15, kapittel IV

To characterise nuclear excitation states above the discrete levels, we must use statistical
methods and measurements to be able to quantify the nuclear behaviour. The most important
we focus on in this thesis in the nuclear level densities, NLD, and the γ strength function, γSF,
which can both be extracted with the Oslo method as explained in later chapters. This Oslo
method also relies on the Brink hypothesis, which is a well discussed subject in nuclear physics.
Both the NLD and γSF are important input parameters in Hauser-Feshback theory[7] of nuclear
reaction codes, such as TALYS [6].

2.1 Defining the quasi-continuum

Before discussing characteristics of the quasi-continuum, it’s beneficial to clearly define this
concept. When looking at excitation levels of excited nuclei, the lowest excitations are discrete
and well separated in energy. When exciting nuclei to these lower energies, specific states of
spin and parity may be identified and we can make level schemes. Statistical properties become
more prominent when there are many levels very close to one another. We therefore distinguish
between the discrete, quasi-continuum and continuum region.

To help identify these regions, we make use of two parameters, D and Γ. The parameter D
is the average distance between two levels in a given energy bin, D = ∆E

∆N = ρ, i.e. energy of
the bin per level in the given bin. This is also, per definition, the inverse of the level density
ρ = ∆N

∆E of levels per energy. The Γ is the average width of the states which is dependent on

the lifetime τ of the state as Γ = ~
τ .

In the discrete energy region at low excitation energy, Γ << D, which means that the width
of each state is significantly less than the distance between the levels, i.e. they are clearly
distinct. As the energy increases the average distance between levels will decrease and the
discrete levels will be harder to distinguish, which is the quasi-continuum region where Γ ≤ D.
In the continuum where Γ ≥ D, levels are overlapping and statistical properties are the most
appropriate to use.

2.2 Hauser-Feshbach and TALYS

The Hauser-Feshbach formalism is a statistical model of nuclear decay and reactions first
developed by Hauser and Feshbach[7] in 1952. It is focused on the inelastic scattering of
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neutrons, as the title of the original paper suggests, though it can be expanded for other
reactions as well. This model is based on the assumption that the compound nucleus is
sufficiently excited such that the angular distribution of the inelastically scattered neutrons is
isotropic, as described in the original paper. The paper describes how, if the neutron energy is
“moderate”, only a few levels will be excited, and thus the total cross section, as well as the
energy- and angular distribution of the scattered neutron will be dependent on quantities such
as the angular momentum and parity of the populated levels. However, if the excitation energy
is significantly higher, in what we now call the quasi-continuum and continuum, the inelastically
scattered neutron will no longer have a strong dependence on these detailed properties but
can be calculated from statistical properties, such as the nuclear level density and γ strength
function.

The formalism is central in nuclear reaction codes, such as TALYS[6]. The code is available at
https://tendl.web.psi.ch/tendl_2019/talys.html under a GNU General Public Licence.

Using TALYS is how further work can be done on the γSF and NLD of this thesis, to extract
(n,γ) reaction rates. In the TALYS library there are many models available for use, and it
contains large amounts of the available experimental data as well as theoretical estimates for
nuclei of which we have little to no experimental data. For example are there several different
theoretical mass models which also have theoretical estimations of deformation in ground state
nuclei, which will be used later in this chapter.

2.3 Nuclear level density

One of the central statistical properties of nuclei is the nuclear level density, NLD, which
is a measure of the number of levels per energy bin. As soon as we excite nuclei into the
quasi-continuum, distinct levels become hard to distinguish, and the nuclear level density is a
much more useful concept.

When the NLD is plotted as a function of excitation energy, ρ(Ex) is an exponential function,
often appearing roughly linear in a logarithmic plot. It’s an important input into calculating
cross sections in nuclear reaction networks, (as mentioned in section 2.2) and directly influence
reaction rates which depend on available levels. Formally, we can define the total level density
over all spins J and parities Π as a function of excitation energy Ex as

ρtot(Ex) =
∑
J

∑
Π

ρ(Ex, J,Π). (2.1)

When comparing level densities of different nuclei, there are some very significant patterns
worth noting. In general, the further away from a shell closure you are, the more valence
particles you have and the more levels you have, even at low excitation energy. There is also a
strong reliance on whether the number of protons and neutrons are odd or even. As nuclei with
even N, even Z have all their nucleons in pairs, the NLD is generally lower. The odd N, even Z
or even N, odd Z nuclei have a single nucleon which is not bound in a pair, and will therefore
have more levels on average. The odd N, odd Z nuclei, however, have two unpaired nucleons
and will have an even higher level density compared to their neighbours.

These odd/even effect are generally very predictable and are only a constant factor off of
their NLDs, appearing largely parallel when plotted together. This odd/even phenomena is
also explored in M. Guttormsen et al. [8] where it is connected to entropy. In this paper they
discuss the case of 160−162Dy showing a strong similarity between the even N, even Z 160Dy
and 162Dy NLDs, and a larger NLD of the odd N, even Z 161Dy. They observed that the single
valence neutron contribute to the NLD with a constant factor of around e2 ≈ 7.40 compared to
the nuclei without the extra valence neutron. If this is also valid for the odd N, odd Z 188Re
compared to the even N, odd Z 187Re, then we should expect the level densities to be very
similar in shape and related by a constant factor of around e2 as ρ188Re(E) ≈ 7.4 · ρ187Re(E).

10
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Figure 2.1: An illustration of the main different types of macroscopic resonances discussed.
These are not to scale in any way, but can serve as a simplified main idea of these collective
excitation modes.

2.4 The γ strength function

The γ-strength function (γSF) reveals the average γ decay behaviour of a nucleus, and is a
measure of the average reduced partial radiation width. This is a very important property and
together with the NLD can be used to calculate cross sections.

Defined as

fXL(Eγ , Ex, I,Π) =
< ΓXLγ (Eγ , Ex, I,Π) >

D(Eγ , Ex, I,Π)E2L+1
γ

(2.2)

in [9], as a function of Eγ , spin I, parity Π, and excitation energy Ex where XL denotes the
electromagnetic character and multipole type, such as M1 or E2. Assuming the spin and parity
distributions of the initial and final states are statistically distributed and that we populate a
wide variety in our experiments, we measure the average γSF of a wide spin and parity range.
The γSF is assumed in the Oslo method to be dominated by E1-contributions with smaller
contributions of M1 in the quasi-continuum.

The γSF is closely related to radiative decay and (n,γ) cross sections. Assuming the
statistical γ-rays are dominated by dipole transitions, the γSF can be compared to previously
measured photo absorption cross section, σ(Eγ) by eq.

f(Eγ) =
1

3(π~c)2

σ(Eγ)

Eγ
= 8.674 · 10−8 σ(Eγ)

Eγ
. (2.3)

from [10]. Calculating with σ given in [mb] and using Eγ in [MeV], the total factor 1
3(π~c)2 =

8.674 · 10−8 1
mb·MeV will give an output of the γSF in [MeV−3].

The γSF displays resonance-like structures, such as the Giant Dipole-, the Pygmy- and
Scissors Resonance, as well as a low energy enhancement. As illustrated in fig 2.1, the excitation
modes discussed are largely isovector, i.e. the neutrons and protons are moving against one
another in a simplified macroscopic picture.

2.4.1 Giant dipole resonance

The giant resonances are highly collective excitations, dominated by the isovector giant dipole
resonance, (IV)GDR and they are usually very broad with a maximum value at higher Eγ . To
be considered an actual giant resonance, the excitation has to be highly collective, meaning that
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a high number of particles in the nucleus is involved in the excitation in contrast to for example
single-particle excitations. Isovector means that the neutrons and protons are moving against
each other, as illustrated in fig. 2.1 where they oscillate around a common center-of-mass.

The GDR can provide bulk properties of nuclei such as deformation and in 187Re the GDR
is double-humped, as will be seen later in the results-chapter, ch.6 in fig. 6.3. This was observed
in a previous experiment from [11], and may be caused by K-splitting implicating that the
nucleus is deformed[12].

2.4.2 Pygmy resonance

The pygmy resonance, of which a thorough review is given in [13], is located at the lower energy
tail of the GDR at around Eγ ≈ 6− 9 MeV. It’s been observed in many neutron rich nuclei,
and is traditionally considered to be the effect of a N ≈ Z core with a neutron skin containing
the excess neutrons oscillating against the common center-of-mass as in fig. 2.1.

It’s a dipole E1 resonance and has previously been identified by using the Oslo method,
for example in several of the 116−122Sn isotopes[14]. The centroid of the resonance has been
observed both below, close to or above the neutron separation energy, as exampled by fig. 8 in
the same paper, showing the centroid of the pygmy resonance in several Sn isotopes compared
to their neutron separation energy. As it’s a significant enhancement of the γSF and it might
be close to the Sn, its presence may have important implications for the reaction rates and
cross sections, especially in the r-process.

2.4.3 The scissors resonance

The scissors resonance is typically found around Eγ ≈ 2− 4 MeV and is generally dependent
on deformation of the nuclei. It is only present in some nuclei, and can be understood both as
a micro- and macroscopical phenomena.

Macroscopically, this resonance revolves around the idea of a common core of N ≈ Z, but
with the distribution of the neutron and protons oscillating against each other and have an
orbital/spin-flip and rotational generation, resulting in the “scissors”-motion. A two-dimensional
representation is drawn in fig. 2.1, but it is more of a three-dimensional motion than the
illustration suggests.

Microscopically, as explained in [15], the SR are connected transitions described in the
Nilsson model, which describes deformed shell model with additional splitting of levels compared
to the spherical shell model. The resonance stems from ∆Ω = ±1 where Ω is a new quantum
number describing the projection of the total angular momentum onto the symmetry axis of
the nucleus. The bigger the deformation, the bigger the split of ∆Ω and therefore the larger
gap and higher Eγ directly dependent on the deformation.

The centroid of the scissors resonance is dependent on deformation, and according to [16] it
should be following

Ex ≈ 66 · δA−1/3MeV (2.4)

where δ is the quadrupole deformation parameter and A is the mass number. Referencing
TALYS’s mass models there are theoretical estimates of the deformations on rhenium. Using
these to give theoretical estimates of the centroid, we find values Ex ≈ 2.29 − 2.51 MeV, as
seen in table 2.1.

Systematics of experimental results of the scissors resonance has also been done, for example
in J. Enders et al. [17], where results of approximately mass 140 ≤ A ≤ 200 in the N = 82−126
major shell. Though they only considered even N, even Z, the systematics are still interesting
for comparing to rhenium. Looking at their results in fig. 2.2a, the observed mean excitation
energy Ex denoted ωM1 is consistently fluctuating around 3 MeV.

The observed summed strengths
∑
B(M1) shows a clear correlation to deformation in fig.

2.2c, and if we are to compare this to the strengths of 185 < A < 190 in fig. 2.2a(b), we do
not expect a strong M1 scissors strength in 187,188Re, though it can be present. This assumes
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(a) Figure 1 from J. Enders et al. [17],
comparing experimental results of the
M1 strength that might be related
to the scissors resonance. a) is the es-
timated centroids of the M1 strengths,
and b) is the summed strengths of
the M1 γs. Where the strength is
significantly high, there is probably a
scissors resonance.

(b) Experimental scissors resonance energies re-
viewed in [17] in plot 2.2a(a) compared to the
predicted mean excitation energies given by eq.
2.4 on the deformations and masses given in the
same paper. The discrepancy of the data points
below A ≈ 50 and above A ≈ 180 might be a
consequence of the formula not being valid due to
a lack of significant M1 scissors strength.

(c) Using the reviewed nuclei in [17] and plot-
ting the strength of the scissors resonance as a
function of deformation. The lines show the theo-
retical x-axis deformations of 187−188Re given in
the TALYS mass model.

Figure 2.2: Systematic predictions of the presence of the scissors resonance in 187−188Re, based
on eq. 2.4 from [16] and the systematic experimental review in [17]. Comparing the strengths
of 2.2a(b) to the predicted centroids of fig. 2.2b, the centroid estimates of the nuclei with a
significant M1 strengths are generally consistent between 150 < A < 180.
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Theoretical mass model Nuclei β2 Predicted Ex [MeV]

Hartree-Fock-Bogolyubov 187Re 0.23 2.51
with Skyrme force (hfb) 188Re 0.21 2.29

Hartree-Fock-Bogolyubov 187Re 0.23 2.51
with Gogny force (hfb1m) 188Re 0.22 2.40

Table 2.1: The predicted centroid of the scissors resonance based on eq. 2.4 and δ = β2∗
√

0.8952,
using the theoretical deformation from the hfb and hfb1m mass tables in TALYS.

that the odd/even N, odd Z nature of rhenium does not make it deviate strongly from their
neighbouring even/even N, Z nuclei.

The scissors resonance has also been found to present stronger in Oslo method type
experiments compared to photo induced type reactions[18]. This is widely discussed, but
believed/hypothesised to be a result due to the different moment of inertia of the quasi-
continuum compared to the ground state.

2.4.4 Low energy enhancement

There is also a low energy mode[19] that has been observed with the Oslo method previously[20],
often called the low energy enhancement. This enhancement has been observed in the low
energy γ up to around Eγ ≈ 3.5 MeV. It has been observed in nuclei such as 95Mo[21] and
56Fe[20].

2.5 The Brink hypothesis

The Brink hypothesis was first proposed in the doctoral thesis of Brink in 1955 [22] and was
further used and popularised by Axel in 1962 [10]. Brink originally wrote:

”(Earlier) we have considered the nuclear photo effect from the ground state of
the nucleus. Now we assume that the energy dependence of the photo effect is
independent of the detailed structure of the initial state so that, if it were possible
to perform the photo effect on an excited state, the cross section for absorption of a
photon of energy would still have an energy dependence given by (15)”

It states the assumption that the general shape of the gamma strength is independent on
the specific state on which it is built upon.

The assumption in the Oslo method, as discussed in chapter 4, is regarding the primary γ
spectra, i.e. the first γ-rays emitted from a nuclei excited to an energy Ex. The method relies
on the primary gamma ray matrix being factorised into independent functions, which can be
done by using the Brink hypothesis, simplifying as

P (Ei, Eγ) ∝ τi→fρf → P (Ei, Eγ) ∝ τ(Eγ)ρf . (2.5)

Here, P (Ei, Eγ) is the first generation matrix of initial state i, τ is the transmission coefficient
and ρf is the level density at the final level f . This means that it is assumed the transmission
coefficient/function is not specifically dependent on the initial and final spin, but in the γ
energy only. This relies on a statistical compound nuclei and is not valid in low excitation
energy with distinguishable levels. This means that the overall shape and distribution of the
first generation γs are the same, independent of excitation energy.
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By showing the general shape of the primary γ rays are preserved for different Ex, it does
support the use of the assumption on the specific cases. As the nuclei studied in this thesis,
187,188Re display very statistical characteristics due to their odd numbers of nucleons and
being far away from any shell closures. It is therefore also reasonable to think a statistical
approximation should be valid.
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Chapter 3

Experimental methods and
calibration

-”What are you doing?”
-”Spinning counterclockwise.
Each turn robs the planet of angular momentum,
slowing it’s spin the tiniest bit
lengthening the night,
pushing back the dawn
giving me a little more time here
with you.”

- xkcd.com/162

In this thesis, the reactions 186W(α, d)188Re and 186W(α, t)187Re have been used to extract
the nuclear level density and γ strength functions of 188Re and 187Re. The experiment was done
at the Oslo Cyclotron Laboratory (OCL) in March and April of 2016, with SiRi for particle
detection and CACTUS for γ-detection. In this chapter I will describe how the experiment was
performed and how to obtain the raw, calibrated matrices to use in the Oslo method.

For the calibration and data sorting, I used several software packages, such as ROOT,
OCL usersort and peaks2D. Here, complemented by appendix A and https://github.com/

Loopdiloop/master_thesis, a complete guide will be given of the steps of the sorting and
main data analysis.

3.1 The Oslo Cyclotron Laboratory.

Located at the physics department of the University of Oslo, OCL currently has a unique
experimental setup of LaBr3 detectors and light ion detection. Serving mainly the nuclear
physics-, biophysics-, and nucelar chemistry group, as well as collaborators, it is used for medical
and fundamental nuclear research. It also provides hands-on training for educating master and
PhD students. OCL is also a backup for local medical isotope production and there is flexibility
on proposal of experiments. New collaborators are encouraged and welcome.

The Scanditronix MC35 cyclotron was originally built in Uppsala, Sweden, in 1978, and
was producing it’s first beam the year after, in 1979. It is capable of accelerating protons,
deuterons, 3He and 4He in energies between 2− 47 MeV dependent on particle type, usually at
an intensity of a few nA.

The brand new system of Lanthanum-Bromide (LaBr3:Ce) detectors named the Oslo
SCintillator ARray (OSCAR) was commissioned in January 2019. It consists of 30 detectors in
a spherical array, with a significant improvement in both timing and energy resolution compared
to previous setups, opening possibilities of new experiments. This will, for example, be used
for prompt fission energy research where it is predicted to be able to discriminate between

16

xkcd.com/162
https://github.com/Loopdiloop/master_thesis
https://github.com/Loopdiloop/master_thesis


Figure 3.1: The CACTUS detector array.

γ-radiation and delayed neutrons. This thesis uses data from the previous NaI setup, CACTUS1,
as described in later sections.

3.2 CACTUS for γ detection

CACTUS, pictured in fig. 3.1, is an array of up to 28 NaI:Tl 5in.×5in. γ-ray detectors [23],
whereas 26 of them were used in this experiment due to geometrical constraints of the cylindrical
target chamber used. The detectors were placed at six different angles relative to the beam
direction, as shown in fig.3.2, spherically enclosing the target chamber with the particle detector
array SiRi within. This also enables angular correlation analysis if the amount of data is
sufficient.

The detectors have 10cm thick conical lead collimators to suppress Compton scattering
with front openings of 70mm, and absorbers of 2mm thick Cu in front of the opening to reduce
incoming X-rays. Each detector covers a solid angle of 0.53% of 4π, and the array has a total
efficiency of 14.1(1)% at 1332keV for 26 detectors, measured with a 60Co source.

The high energy γ entering the crystal will produce photons in the visible range, which hit a
photocathode and releasing electrons which are further amplified by the photomultiplier tubes
attached to each detector. The signal is then collected and sent as analogue electric signal to a
shaper which produces a well behaved signal to be read in an analog-to-digital converter (ADC)
which gives the photon energy, and a time-to-digital converter (TDC) giving a coincidence time
signal from a leading-edge discriminator. When an event in SiRi is triggered, a gate is opened
in the ADC for 2µs and the TDC for 1.2µs.

3.3 SiRi for particle detection

SiRi[24] is a silicon ring detector for charged ion particle detection, made to measure the incident
energies and discriminate between charged particles. The detector consists of two layers, one
thin front counter, dE, with a thickness of ≈ 130µm, and a back counter E which is ≈ 1550µm
thick. There are eight main sections of SiRi. Every thin dE-layer has eight individual strips
each, totalling 64 individual detector combinations as can be seen in fig. 3.3. The back counter
is not segmented into strips and is then correlated with dE to discriminate different outgoing
particles of different energies.

1Named so as it looks kind of spikey like a cactus.
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Figure 3.2: Angular distribution relative to the beam direction of the NaI detectors in the
CACTUS array.

Figure 3.3: The SiRi-detector (left) and the dE angles relative to the beam in forward angles
(right). In the experiment discussed in this thesis, SiRi was placed in a backwards angle
corresponding to angle θbackwards = 180◦ − θforwards. Figures from Guttormsen et. al. [24].
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Target
186W thickness Carbon backing

0.31 mg
cm2 24 µg

cm2

α-Beam

Energy Intensity RF frequency

30 MeV 1.5− 2.2 nA 23.76 MHz

Target chamber

Length of cylinder Inner diameter

48.0 cm 11.7 cm

Table 3.1: Specifications of target and beam of the experiment.

The particles will deposit some energy in the thin front counter before depositing the rest
in the thick back counter. This will form the characteristic “bananas”, as in fig. 3.4. Here,
the Z = 1 particles , i.e. the protons, deuterons and tritons, are clearly distinguishable. If the
particles are not stopped in the thick E-counter then we have punch-through, and this will
render the signal in these areas ambiguous and therefore not usable. This is therefore a limiting
factor to the beam energy used in a given experiment.

SiRi is located within the cylindrical target chamber and centered around the beam, mounted
such that the centres of each section is 5cm from the target center. At backward angles, which
was used in this experiment, the detector spans 140◦ to 126◦ relative to the beam direction.

The detectors also require a bias voltage on the back detectors of 360V to be fully depleted,
and due to this high voltage, the detectors also have guard rings. It also has a thin ≈ 10.5µm
cover of aluminium foil to suppress δ-electrons.

The signals detected in SiRi are sent directly to five pre-amplifiers, one responsible for all
eight E-counters, and the other four are connected to 16 strips in the dEs each. The signals
are then sent to a shaper and a leading-edge discriminator with an energy threshold. It is
then finally to an ADC. When one E-detector is triggered above the set threshold, it opens a
master gate for the TDC for 1.2µs and all ADCs for 2µs sending the data from both the NaI γ
detectors and SiRi to an event builder. This creates a single event with a time, γ-energy and
particle information, which is saved for later analysis.

3.4 The experiment and raw data

The experiment discussed in this thesis was done at OCL with a 30 MeV α-beam on a 186W
target with carbon backing, see table 3.1. The master gate trigger set at a threshold of 200mV
in the thick E back counter of SiRi. This experiment was originally optimised for a scattering
experiment of (α, α′) on 186W, meaning that there is punch-through in the protons due to them
not being stopped in the back counter of SiRi.

To be able to do the Oslo method analysis, we need to know the excitation energy of the
nuclei calculated from the outgoing particle, as well as the γ-rays measured in coincidence. We
are also interested in all energy bins from low energy (g.s.) up to the neutron separation energy
Sn, as the Oslo method can not be used above the neutron separation energy since γ-decay will
compete with neutron decay. Some fundamental information on the relevant nuclei such as the
neutron separation energies, half lives and ground states are shown in table 3.2.

There is also a README.md in the github at https://github.com/Loopdiloop/master_
thesis with instructions on running. This project used Qkinz version 1.3.02 to do kinematic

2Qkinz can be found on the github of OCL at https://github.com/oslocyclotronlab/Qkinz

19

https://github.com/Loopdiloop/master_thesis
https://github.com/Loopdiloop/master_thesis
https://github.com/oslocyclotronlab/Qkinz


186Re 187Re 188Re

Ground state

Spin and parity 1− 5/2+ 1−

Lifetime ≈ 3.72 d ≈ 4.33 · 1010 y ≈ 17.0 h

Main decay β− β− β−

Binding energy

Sn [keV] 6179.38± 0.17 7360.71± 0.87 5871.65± 0.04

Sp [keV] 5828.26± 0.68 5996.92± 1.12 6401.81± 1.12

Table 3.2: Details of the experiment and propertiesof 186−188Re, from the National Nuclear
Data Center (NNDC)[25]

calculations and ROOT build v6.223 for calibration. I also used Python 3.84, but the python
scripts I’ve used are simple enough to not be very version dependent.

The raw output files need to be sorted into ROOT-files for analysis using sorting code
based on the usersort-code from OCL, https://github.com/oslocyclotronlab/usersort.
Here, there is also some flexibility on what data to sort, changing gain and shift, and adding
gates on particle peaks and species. My software version used for this thesis can be found at
https://github.com/Loopdiloop/master_thesis within the folder “usersort” and contains
several specific files for this analysis. For clarity, sorting in this context means taking the raw
data files and filter, then add calibrations and make raw arrays and matrices into .root files
that can be handled and opened in ROOT. The initial sorting was run with a constant shift of
0 and gain of 5 for E and 2.5 for dE, which is taken into account when calculating the correct
gain and shift.

3.5 Particle energy calibration and peak identification

To calibrate the energy of the outgoing particles in the banana plots of SiRi, we need at least
two reference peaks to do a linear fit. Firstly, we had to identify as many peaks as possible in
the spectra, both to understand the data better and find peaks that are known. We then did
kinematic calculations with Qkinz, and then did a linear calibration in comparison to this.

To find peaks to use in the calibration, a good candidate is the triton ground state, see fig.
3.4. This is supported by Lu et. al [26], who performed the same 186W(α, t) at 60◦ in 1971, see
fig. 3.5. The triton ground state peak should be a pure ground state, as the next significant
peaks in the spectra are located at around 400keV.

We also found peaks from 16O(α, p)19F, due to oxygen in the target and carbon backing.
The excited level at 2779.8 keV (9/2+) in 19F was strongly populated and well isolated from
other peaks so we were able to use it.

For both peaks I used two dimensional Gaussian fits for all 64 combinations of the eight dE-
and eight E-counters of SiRi5. This script zooms in visually on the peak you want to fit and
then does Gaussian fits parallel to the x- and y- axis, and diagonal fits 45◦ relative to the axes.
This gives two very close estimates of the centroid, of which I used an average.

These fits were compared to kinematic calculations in Qkinz. These calculations assume
angular symmetry around the beam and give separate values for each of the eight strips, i.e.

3ROOT v6.22 was run on Ubuntu 20.04. It can be found on ROOTS official website here: https://root.

cern/releases/release-62202/
4Python is used with additional packages such as numpy, matplotlib and others. They are specified in each

plot.
5This was done using the automated script peaks2D.cpp by Alexander Bürger in ROOT as described in the

github[27]
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Figure 3.4: Data from one of the 64 detector/strip combinations of SiRi. Proton-, deuteron-
and triton bananas are plotted as E-dE of energy deposited from the particles in the front and
back detectors of SiRi. Peak 1 is 15N excited to 5270.2keV, peak 2 is the 2779.8keV excitation
level in 19F, and peak 3 is the ground state of 187Re. Peak 2 and 3 is used for the particle
calibration of the banana plots in section 3.5, and peak 1 and 2 is gated on to calibrate the γ
energies in section 3.6. Peak 4 is a contamination from 16O which is later visible in the matrices.
These circles are not representative of the sizes of the gates used in the analysis.

Figure 3.5: Figure from Lu et. al. [26] showing their measured populated levels from the
reaction 186W(α, t)187Re. The ground state, peak 0, is well separated from other lower lying
states, confirming that the ground state in the triton dE-E “banana” in fig. 3.4 as being the
isolated ground state. This experiment was done with the same target and beam, although this
measurement is performed at 60◦ relative to the beam direction, compared to our 126− 140◦.
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angles, of SiRi. Then all 64 combinations of strips and sections are compared to the eight
different angles, and calibration factors (gain and shift) are calculated as a linear calibration as:

calibrated = raw · gain+ shift (3.1)

These values went back into the usersort program in the gainshift-file(see appendix A.3),
together with corrections for the initial gain and shift used6.

After adding this calibration, when looking at a plot of the E-dE of all the different strips,
peak 4 in the deuterons of fig. 3.4 seem to be very angle dependent. This peak stems from
16O of unknown origin. Several hypotheses were tested as to the origin of the oxygen. As it’s
located in the deutron “banana”, 14N(α,d)16O seems like the most plausible candidate, though
the prescence of large amounts of 14N is not known, but it would have to be present on the
target to produce such an amount of reactions, which means that imperfect vacuum could not
account for this. It is still present in the final raw matrix, but as it is located above the neutron
separation energy Sn of 188Re, it does not interfere with the further analysis.

3.6 γ-calibration

To calibrate both the energy and timing of the γ-spectra, we used gates in the particle spectra,
plotting all the γ coincidences of these events only. I used peak 1 and 2 from fig. 3.4, which is
the 5270 and 5298 keV excitations of 15N and the excitation level at 4648 keV from 19F. These
excitations result in the γ cascades in fig. 3.6. Finding and identifying these peaks included a
lot of testing and cross-validation with correlating γ’s, but the final identified cascades can be
seen in the simplified decay schemes of fig. 3.6.

The gates on the residual particles are added as conditional statements in the usersort code,
when filling events into the plot. The gate is added such that events of E ∈ [7930, 9030] keV and
dE ∈ [1040, 1300] keV, or if E ∈ [6050, 7200] keV and dE ∈ [1200, 1520] keV which looks like:

1 #if defined(MAKE_CACTUS_TIME_ENERGY_PLOTS) && (MAKE_CACTUS_TIME_ENERGY_PLOTS >0)

2 if((e_int >7930 && e_int <9030 && de_int >1040 && de_int <1300) || (e_int >6050

&& e_int <7200 && de_int >1200 && de_int <1520))

3 {

4 m_nai_e_t[id] ->Fill( na_e_int , na_t_int );

5 }

6 ...

7 #endif

and if this is true, add the event to a γ-t plot7. This γ-t plot shows the γ energy of the detected
γ’s as a function of the time relative to the event trigger.

The 15N, produced by reactions on the carbon backing by 12C (α, p)15N, was strongly
excited up to the 5/2+ state at 5270.2 keV and the 1/2+ at 5298.8 keV. Due to the energy
resolution, these can not be separated. Both are therefore used, and as they differ no more
than 28.6 keV or 0.5% of the absolute value, it should not introduce significant error. They
both decay straight to the ground state with γs of 5269.2 keV and 5297.8 keV. There is also a
cascade from 19F’s excitation level 13/2+ at 4648 keV with a 100% branching to 9/2+ 2779.8
keV producing a γ at 1868 keV, and from 9/2+ to 197 keV with a γ of 2582 keV. Choosing the
most distinct peaks and the best energy span of the peaks, we used the 5270 keV from 15N and
the 1868 keV from 19F to do a fit.

Plotting the time correlated γ peaks in all 26 NaI detector spectra, we had to manually set
the correct interval of the y-axis to enclose the prompt events in the time spectra as seen in
fig. 3.7. The other lines of coincidences above and below the prompt events is a result of the
frequency of the beam pulses from the cyclotron.

To do the fit, the data in the set range is then projected down onto the x-axis to do a
Gaussian fit of both peaks in each detector8. The centroid from each peak was saved to file

6i.e. the gain and shifts mentioned in section 3.4. This is very simple, but important to remember.
7Please refer to the github[27] for details.
8This was also done with a script , see the github[27]
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Figure 3.6: The γ cascades and decay from the first 13/2+ state in 19F and the first excited
5/2+ and first 1/2+ in 15N. These correlating γ cascades were used in the γ energy calibration.
Both schemes based on γ- and excitation information from NNDC[25]. This level scheme is
simplified to only contain the information relevant for this analysis.

Figure 3.7: One of the 26 NaI detectors γ-t plots of γ-rays relative to the internal time of the
event. This is the energy calibration of γ peaks supposed to be at 1868 keV from 19F and 5269
keV from 15N. The 2582 keV peak from 19F can also be seen between 3 and 4 MeV as well.
By projecting everything between the cuts of the left plot down onto the x-axis, we obtain the
right hand plot. A Gaussian fit is done to both peaks and the centroids are used for the linear
calibration.

and used to make another linear fit of gain and shift for all individual detectors. These were
then added to the gainshift file as well.

The second stage after calibrating the energy, i.e. the x-axis, the prompt events needed to
be lined up in time. The exact value we line it up to is not important, but for practical reasons
they are lined up at channel = 200. Since the x-axis is already calibrated, the same gate on the
x-axis around the 5269 keV peak was used for all the detectors from bin 715 to bin 787 and
projected onto the y-axis, as seen in fig. 3.8. A Gaussian fit is then also done and shifts are
calculated and added as well. This initial line up is needed both to align the time spectra, but
are also important for the leading edge-correction later, as that is only done once for the whole
data set.
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Figure 3.8: Time lineup of the γ spectra, centering the 5 MeV peak around relative time t =
channel 200 on the y axis. A gate is set in the same fashion as in fig 3.7, though here on the
x-axis since the energy here is already calibrated. This peak is then used to calculate shifts to
align the time of all detectors.

3.7 Leading edge corrections

The electronics was set to trigger at a fixed threshold, i.e. a leading-edge discrimination. This
means that lower-energy signals trigger in the detector at a later time than higher-energy
signals, since it takes longer for a low energy signal to reach the set threshold compared to a
higher-energy signal. This is what is causing the low energy upturn in e.g. fig. 3.7. This will
need to be corrected for both in the NaI γ detectors and in SiRi. To make the trend in the
data more visible, the particle gate previously used is removed, and for the γ correction, all
coincidences in the whole proton banana is plotted. The protons are used purely due to the
statistics being better than deuterons and tritons, but the fit is then confirmed to be applicable
for deuterons and tritons as well.

The leading edge needs to be corrected and it has been found in [24] that the function

t(E) = t0 +
α

E + β
+ γE = 200 + δt0 +

α

E + β
+ γE, (3.2)

where t0 = 200 + δt0 to line up at channel 200, and this is a generally good fit that is used and
has already been implemented in the usersort input. Essentially how it can be done in ROOT9

is to draw a manual function “on top” of the data in the energy-time plot and fitted with least
squares to the equation above. This produces the four parameters δt0, α, β and γ, of eq. 3.2
which is also added in the input file of usersort. This will ideally “straighten” out the prompt
event “banana”. It also centers the peak around channel 200 to make it easier to set a gate
around these prompt coincidences later.

To ensure minimal loss of low-energy data points, we need a leading edge correction in the
particle-time spectra as well. This was done by plotting all the deuteron-data and manually
drawing over the data, as in fig. 3.10, approximating the effect. The imposed graph is then also
fitted to the same equation as for the γs and the parameters are also added to the batchfile.
Without this correction, we would lose a lot more low-energy particles inside the time gate, and
would lose more data in the higher Ex region, making a visible lack of data close to Sn.

—

9For how to do this with ROOT, there is a guide in the calibration folder of the github[27]
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Figure 3.9: The correction of leading edge effects for the γs in CACTUS. Here, a gate on all
protons are used for the coincidences. The second plot shows how the correction looks for (α, d)
after the leading edge correction of SiRi as well, as this can affect the result.

Figure 3.10: The correction of leading edge effects for the protons in the E detectors of SiRi.
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Figure 3.11: The final time lineup of (α, dγ) for all NaI detectors after a manual correction.

3.8 Final data adjustments before analysis.

A final time-lineup is done after the leading-edge correction to line up the final, straightened
spectra of the γ spectra properly. This was done manually and corresponds to the final shift in
the NaI timing in the final calibration. The result can be seen in fig. 3.11.

The first generation matrices, as in fig. 3.14, are the ones we will be using in the further
analysis and Oslo method, and it is plotted as a scatter plot of Eγ − Ex. The diagnoal at
Ex = Eγ is when the nuclei are being excited to Ex and decaying directly to the ground state
with a γ of corresponding energy. A small, additional correction of Ex in (α,tγ) is needed, as
the data in the uncorreted matrix in fig. 3.13 doesn’t hit Ex = Eγ quite as well as expected.

Looking at the E + dE spectra of both (α, dγ) and (α, tγ), they both look good other than
a small change of the particle energies in (α, tγ). The ground state is not centered properly on
Ex = 0, so a final shift was needed, as seen in fig. 3.12. There is also a peak around ≈ 800
keV after the calibration, which, compared to the plot in fig 3.5 in this thesis from Lu. et
al [26], should be what they named peak no. 9 at 775 keV10. There is also a large peak at
≈ 1200− 1300 keV, which seems to correspond to the double peak no. 15 and 16 at 1202 keV
and 1208 kev respectively. The data for Lu et al stops at 2.0 MeV, so the peak above that in
our data could not be used for comparison.

We know, however, that Lu et al. has their data from a 60◦ angle, so there might be changes
compared to our data. Using the groud state and double peak would, in theory, give a better
span for calculating the shift and gain, but doing so is not possible for both peaks.

We then, choose to instead do a shift to line up the ground states, and a moderate reduction
of 5%. I used Gaussian fits on the ground state peak of each of the eight rings of the different
angles to shift the spectra to center the ground state at Ex = 0. We then evaluated the peak in
the matrix in fig. 3.13, at around 800 keV in both the x- and y- axis and lining this up such
that Ex ≈ Eγ by lowering the the Ex values by 5% by adding a gain of 0.95. The final result is
the shifts and gains for each ring in rising order for the (α,t)11:

1 # empirical excitation energy correction for the above , e.g. from known peaks

2 parameter ex_corr_exp = 43 0.95 \

3 63 0.95 \

4 48 0.95 \

5 45 0.95 \

6 58 0.95 \

7 54 0.95 \

8 51 0.95 \

9 51 0.95

From this we end up with two Ex−Eγ coincidence matrices with corresponding d or t gates,
one for 187Re and one for 188Re as shown in fig. 3.14.

10Which, if you search in modern databases has been updated to a peak at Ex ≈ 773 keV
11This was added in the batch(input) file of usersort for (α,t) only, see batch W186 a t.batch in the github[27]
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Figure 3.12: The Ex from one of the angles relative to the beam in SiRi for the final, manual
correction of the Exin(α, t).

Figure 3.13: Comparison of the (α,tγ) Ex vs. Eγ plot before the final corrections on the left
hand side and after the corrections on the right. The shifts were found by evaluating the ground
state of the Ex plots for each ring as in fig 3.12. The 5% reduction in gain enabled the line up
of the peak around 700− 800 keV, as well as the general trend at higher energies where the Ex
generally was a little high compared to the Eγ . The black diagonal line shows Ex = Eγ .
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Figure 3.14: The Ex − Eγ matrices, not rebinned, of both (α, dγ) (top), and (α, tγ) (bottom).
The raw bin sizes for both matrices are 7.0 keV/channel on the x-axis, and 31.0 keV/channel
on the y-axis. The peak in the upper panel at around Ex = 6− 7 MeV, is from 16O.
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Chapter 4

The Oslo method

Today, we consider the previous methods as premature, and we will now present
in the following a completely new, exact and convergent technique...
It is of course discouraging that an infinite number of equally good solutions
exists...

A. Schiller et al. [28]

The Oslo method is a collection of methods to extract both the γ strength function (γSF),
and the nuclear level density (NLD) from a single data set of particle-γ coincidences. The first
generation γs are extracted from an unfolded spectra and used to find the γSF and NLD. The
NLD must then be normalized to known excitation levels and calculated level density for the
neutron binding energy. The γSF is then normalized as a result of the NLD normalization
parameters and < Γ0 > from literature.

4.1 Development, use and input.

The method was developed by the nuclear physics group at the University of Oslo and was first
described in 1983 [29]. It has been continuously improved, refined and expanded ever since,
for example with a thorough analysis of the method in [30]. The Oslo method with inverse
kinematics has also been developed and was first used by Ingeberg et al. [31], whereas another
version based on β-decay has also been developed, firstly by Spyrou et al. [32].

One of the limitations of this method is that the γSF and NLD may only be extracted
up to the neutron separation energy threshold where γ emission will then begin to compete
with particle (neutron) emission. The analysis is also dependent on the validity of the Brink
hypothesis as outlined in chapter 2.5 and external data to normalize the results.

The input to the Oslo method software must be a matrix of calibrated data from one single
reaction channel. The y-axis is the excitation energy calculated from the outgoing, charged
particle and the x-axis is the corresponding γs.

4.2 The iterative unfolding

The raw γ-ray spectra must be unfolded, i.e. the γ-ray spectrum for every excitation energy bin
must be unfolded according to the detector response of the specific experimental setup. This
must be done as the signals recorded in the γ-ray detector does not only show the full-energy
peak. A mono-energetic input signal would produce a peak of its original energy, but also
single- and double escape peaks, the 511-keV peak (from back scattering of electron - positron
annihilation), Compton scattering and so forth. The response functions are unique to each
detector setup and must be known to be able to unfold the detected γ-ray spectra. It is therefore
essential to use the correct response matrix when running this analysis.
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To unfold such a collection of signals can be done by several different methods, such as a
matrix inversion[33], by neural networks [34] or by iterative unfolding. Some solutions may
be computationally taxing and might be unstable and introduce artificial fluctuations. The
currently used iterative method described in [35] has proven to be very stable and focuses on
reproducing the raw spectra. The Compton subtraction method is a unique feature of this
technique. Using this method preserves and propagates the statistical uncertainties and does
not introduce significant artificial fluctuations. Unfolding is a non-trivial problem, and a stable
solution is especially important in data sets with poorer statistics, such as the one used in this
thesis.

Assuming a good response function is known for all γ-ray energies, the different peaks are
identified as; The full energy (f), single escape (s), double escape (d), and the annihilation (a).
The full Compton contribution is added in (c). The probabilities are normalised, so that

pf + pc + ps + pd + pa = 1. (4.1)

The unfolding itself uses the response in the detector, Rij , which is the response in channel
i from a γ-ray with an initial energy of j. With every response function normalised to

∑
iRij

= 1, the folded(f) spectra can then be described as

f = Ru (4.2)

where R is the response matrix and u is the true, incoming spectrum. Here, f and u are vectors
of length i, and R the full response matrix of size i x j. The iteration begins with a trial function
u0 = r, where r is the observed spectrum as an arbitrary, and obviously wrong, guess of the
unfolded spectrum.

u0 = r. (4.3)

Then, the folded version of this spectra is calculated:

f0 = Ru0, (4.4)

and the next trial function found by adding the difference of the spectrum from the first trial

u1 = u0 + (r − f0) (4.5)

By another folding we get another new f1 which is again used to find a new trial function

u2 = u1 + (r − f1). (4.6)

Whenever fk ≈ r in iteration k, the first estimate of the unfolded spectrum uk is obtained.
This spectrum is now the input for the Compton subtraction. The full description can be

found in [35]. The main idea is to define a new spectrum of all the full energy contributions
as well as the single-, double escape and annihilation. This spectrum uses the normalized
probabilities of eq. 4.1 and the unfolded spectrum uk to generate a new spectrum v:

v = uf (i) + us(i− i511) + ud(i− i1022) + ua(i511keV ) (4.7)

with appropriate smoothing relative to the FWHM of the experiment. The Compton background
is then the only contribution not accounted for in v and the Compton spectrum can be calculated
as

c(i) = r(i)− v(i) (4.8)

which is then smoothed, and the final unfolded U can be calculated after correcting for the
energy dependent detector efficiency.
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4.3 Extracting the first generation γ spectra

As decay from an excitation level Ex may feature cascades of many γ-rays, we need a way of
isolating the γs that are uniquely from this excitation energy, and therefore the first decays in
the cascades. Due to the Brink hypothesis and assuming the levels that decay are of compound
nature, this means that an exited nucleus of excitation energy Ex will have the same properties
independent on whether it’s a result of a de-excitation from a higher Ex or if it’s been directly
excited via the reaction. This means that in any excitation energy bin Ex the γs from the lower
bins can be subtracted to obtain the first γ-rays emitted from Ex. These first γs from any Ex
are called the first generation γs and is the foundation for the further analysis.

For any excitation energy bin i, the unfolded spectrum fi is therefore the sum of the primary
γ-ray spectra hi and all further γs in the cascades gi. If we can then find gi, we can find the
primary γ-ray spectra by:

hi = fi − gi. (4.9)

Here, gi contains all γ-rays from lower energy bins, fj<i, and therefore all γ rays except the
primary γs from bin i. gi is calculated using a weighted sum of all lower spectra

gi = ni1wi1f1 + ni2wi2f2 + ...+ nijwijfj =
∑
j

nijwijfj (4.10)

where all weights w are normalised to ∑
j

wij = 1.

This weight works as a branching ratio, denoting the probability of decay from state i to j,
which means the weighting function will directly correspond to the first generation spectrum. n
is defined so that the number of cascades is preserved in each fi. To find this a normalisation
needs to be done, which can be done either using singles spectra or γ-ray multiplicities, of
which we use the latter. First, the average γ-ray multiplicity can be defined as the total energy
carried by the γ-rays divided by the average γ energy

< M >=
E

< Eγ >
(4.11)

and can then be calulated for each excitation energy bin i. Defining the total amount of counts
in fi as A(fi), the singles particle cross section should be proportional to A(fi)/ < Mi >,
i.e. the total number divided by the average multiplicity in excitation energy bin i. n is then
calculated as the relation between energy bin i and j as

nij =
A(fi)/ < Mi >

A(fi)/ < Mi >
=
< Mj > A(fi)

< Mi > A(fi)
(4.12)

To obtain the first generation (primary) γ-rays, an iterative subtraction method is used. By
normalizing all γ spectra to unity and then subtracting all underlying weighted spectra from
the lower Ex bins, the γ-rays are extracted for all excitation energy bins.

4.4 Extracting the γSF and NLD from the first genera-
tion γ matrix

A new method of extracting the γSF and the NLD from the first generation γ spectra presented
by A. Schiller et al. [28] is the basis for the rhosigchi program of the Oslo method.

As the probability for a level in an initial excitation energy bin Ei to decay to a final
excitation energy bin Ef is dependent upon the number of available levels in Ef , the first
generation γs decaying to Ef will give information on ρ(Ef ). The transition energy is given by

Eγ = Ei − Ef . (4.13)
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Normalize each first generation spectrum for all excitation energy bins Ex to unity as

Eγ=Ex∑
Eγ=Eminγ

P (Ex, Eγ) = 1. (4.14)

Then, the decay probability of a γ-ray from energy Ei to Ef is proportional to the level density
ρ(Ef ) and the γ-energy dependent transmission coefficient τ(Eγ). Note how the transmission
coefficient is only dependent on the γ energy Eγ , which assumes the Brink hypothesis, and
enables the factorisation of the first generation (primary) γ-ray matrix as

P (Ei, Eγ) ∝ ρ(Ei − Eγ)τ(Eγ) = ρ(Ef )τ(Eγ). (4.15)

There is also an assumption that the decay is from compound states. This mean that the
probabilities of the decay of any state is independent on its creation, which is believed to be a
good assumption for sufficienty high Ex.

The functions ρ and τ are found by an iterative procedure which adjusts the points of
these two functions until an optimal χ2 is found with respect to the experimental P(Ei,Eγ).
This solution is uniquely determined from data, save for some normalization constants for
which there is an infinite number of solutions. Neither the absolute values, nor the slope of the
solutions are known, but this is solved by normalizing the result to external data.

In [28] it has been shown that any solution on the form

ρ̃(Ei − Eγ) = A exp
(
α(Ei − Eγ)

)
ρ(Ei − Eγ), (4.16)

and
τ̃(Eγ) = B exp(αEγ)τ(Eγ) (4.17)

are valid and give identical fits to the first generation matrix P (Ei −Eγ). The parameters α,
A and B should therefore be found by normalizing to auxiliary data.

By assuming every data point of ρ and τ as Nfree number of independent variables, the
main idea is to minimize a χ2 as:

χ2 =
1

Nfree

Emaxi∑
Ei=Emini

Ei∑
Eγ=Emaxγ

(
Pth(Ei, Eγ)− P (Ei, Eγ)

∆P (Ei, Eγ)

)
, (4.18)

where ∆P (Ei, Eγ) is the uncertainty in the primary γ matrix.

4.5 Normalizing the NLD

The NLD is normalized to the semi-experimental ρ(Sn) and the experimentally known levels
at low excitation energy. To calculate ρ(Sn), we use the ground state spin It of the target
nucleus in a neutron resonance experiment, i.e. the N -1 nucleus compared to the one we are
studying. The average neutron spacing for s-wave neutrons, which will have all levels with spin
J = It ± 1/2 available as

1

D0
=

1

2

(
ρ(Sn, J = It + 1/2) + ρ(Sn, J = It − 1/2

)
(4.19)

if we assume both parities contribute equally at the high excitation energy Ex = Sn. Using eq.
(4) and (5) from [36], we find

ρ(U, J) =

√
π

12

exp(2
√
aU)

a1/4U5/4

(2J + 1) exp[−(J + 1/2)2/2σ]

2
√

2πσ
(4.20)

and

ρ(U) =

√
π

12

exp[2
√
aU ]

a1/4U5/4

1√
2πσ

, (4.21)
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together with eq. 4.19, we can calculate ρ(Sn). The parameter input is fetched from [37] to
calculate and find the level-density parameter a and the spin cutoff parameter σ, as well as the
intrinsic excitation energy U The upper normalisation point is calculated by:

ρ(Sn) =
2σ2

D0
· 1

(It) exp[−(It + 1)2/2σ2] + It exp[−I2
t /2σ

2]
(4.22)

The normalization of the NLD is done to this estimated ρ(Sn) and the known levels. The
low-lying levels are obtained from NNDC[25] and binned to fit the data binning size. This fit
determines the parameters A and α of eq. 4.16.

4.6 Normalizing the γSF

Since the transmission coefficient τ and the γSF is connected as

fXL(Eγ) =
1

2π

τXL(Eγ)

E
(2L+1)
γ

, (4.23)

where X is the electromagnetic character and L the multipolarity.
The normalization of the γSF is partially described by the α which decribes the slope

and was found from normalizing the NLD. The last parameter B, from eq. 4.16 is not yet
determined. This is determined from the average total radiative width < Γγ > at the neutron
binding energy Bn, as described in [38].

We assume dominance of dipole transitions, so that the experimental γ-ray transmission
coefficient reads

τexp ≈ τE1 + τM1. (4.24)

If It and Π are the spin and parity of the target nuclceus t, i.e. N -1, and ρ is the level density,
the normalization parameter can be calculated by

< Γγ0(Bn, It ± 1/2,Πt) > =
1

2ρ(Bn, It ± 1/2,Πt)

∫ Bn

Eγ=0

dEγ B f(Eγ) ρ(Bn − Eγ) (4.25)

×
1∑

J=−1

g(Bn − Eγ , It ± 1/2 + J).

where g is the spin distribution of the level density, defined as

g(E, I) =
2I + 1

2σ2
exp[− (I + 1/2)2

2σ2
, (4.26)

where σ is the spin cut-off parameter, and the spin distribution is normalized to 1 by
∑
I g ≈ 1.
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Chapter 5

Data analysis

-xkcd, https://xkcd.com/1162/

In this section I will describe and go through the analysis of the raw matrices obtained from
the experiment. By using the Oslo method software1 and analysis, we can obtain the gSF and
NLD of both 187Re and 188Re. I will also give a brief overview of the Oslo method software and
focus on how to run to reproduce the analysis. All input files and parameters are documented
on the github[27] under the folders mama d and mama t.

5.1 Oslo method software structure

The Oslo method software was developed in a period from the late 80s to around year 2000 and
has been continuously updated ever since. It is is a collection of smaller software pieces which
are run with a command line interface. When run for the first time in a folder, all values will
be a default which will need to be changed, but they will save your input in text files for your
next run. It does require ROOT to be available for plotting. This is a short introduction to the
components of the Oslo method software, and the version used in the analysis is the [39].

For more recent, thorough analysis of the method, please see [30]. This paper by Larsen
et. al. also contains a well-written synthetic example of the first-generation method in a clear
and precise way, friendly both to people without a lot of prior familiarity to the analysis and
seasoned individuals who wants further understanding.

The whole Oslo method analysis has recently also been completely redesigned to run in
python 3.8+ as ompy [40] with an improved, rigorous statistical uncertainty propagation.

1https://github.com/oslocyclotronlab/oslo-method-software
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Nucleus D0 [eV] < Γ0 > [meV ]

187Re 2.26± 0.23 92.5∗ ± 10

188Re 3.61± 0.13 57± 3

Table 5.1: Input values for the Oslo method analysis. D0 and < Γ0 > are both from
Mughabghab[41] for the N-1 nuclei, which is already accounted for. σ(Sn) is calculated
from Robins rigid body model(RMI). ∗This is the value given in Mughabghab. From system-
atics and evaluating the results (see the text), the value for 188Re was used instead, but the
original value is evaluated later in the results chapter.

Please note that some inputs in the routine are non-essential. They are simply for calculating
the initial condition of an iteration and will contribute to the iteration converging easier. Tests
have been done where these inputs were arbitrary, still arriving at the same final answer.

The Oslo method software includes the following:
mama, short hand for MAtrix MAnipulation, is the first program to run which takes the

raw matrix as input. With this code, the unfolding in performed and has different response
matrices for different experimental setups. This changes the spectra back to the actual spectra
of γ-rays to then extract the first generation γ rays. This is also a way to easily plot the
matrices, compress the axes and inspect bins to do sensible cuts in the data later.

rhosigchi is designed to extract the level density (ρ) and γSF (σ) from the first generation
γ spectra made in mama. This is done by assuming FGnorm(Ex, Eγ) = ρ(Ex − Eγ) ∗ τ(Eγ)
which follows from the compound nuclear decay and equations outlined in chapter 4 and the
Brink hypothesis outlined in chapter 2.5

robin is software to calculate level densities and the spin cut-off parameters at ρ(Bn) for a
given nucleus. This is a program mainly to find appropriate parameters from different models
and generate input files to add into the analysis itself. It has four spin cut-off formulas built in,
whereas the rigid moment of inertia, constant temperature and Fermi gas formula are used in
this analysis. This uses models by Egidy and Bucurescu2.

d2rho calculates level density from the level spacing, D, at a specific binding energy, here
the neutron binding Bn, formed by l = 0 neutrons. This is based on neutron.f by Andreas
Schiller, and is needed to do the normalization of the nuclear level density, as it is normalized
to ρ(Bn) later.

counting normalizes and generates, among other files, counting.cpp (level density), spin-
cut.cpp (spin cutoff σ) and sigext.cpp (γ ray transmission coefficient). The level density is
normalized to known levels, given in a file called counting.dat which must be manually made,
and resonance spacing data at Bn. Intervals of data points to use in these normalizations must
also be chosen here, so it’s a good idea to manually evaluate the final plots and datapoints
properly.

normalization does what the name might suggest, and normalizes the γSF (f(E)) to the
total average radiation width measured at Bn. This is based on normalization.f by Andreas
Schiller, and needs several files as input from the other programs. It produces strength.cpp
which is used for plotting the γSF.

Both counting and normalization generates .cpp files that can be run with ROOT as, for
example,

1 $ root strength.cpp

plotting the results. The .cpp files can then be altered with fitting titles and other explanations
at a later stage.

2E&B2009 from PRC 80, 054310 (2009) and E&B2006 from PRC 72, 044311 (2005) and PRC 73, 049901 (E)
(2006). See the oslomethod software documentation for a further elaboration.
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Nucleus σ(Sn)100% σ(Sn)90% σ(Sn)80% σ(Sn)70% σ(Sn)60%

187Re 7.685 7.291 6.874 6.430 5.953

188Re 7.519 7.133 6.725 6.291 5.824

Table 5.2: Input values for σ(Sn) calculated from Robins rigid body model(RMI). The uncer-
tainty of this σ(Sn) value is not calculated directly, but to estimate parameter uncertainty, the
reduction factor is varied from 100% to 60% of the full RMI.

5.2 Finding initial values before running.

As an initial input, we need the raw matrices. There are also other important input parameters,
such as the neutron and proton numbers, as well as the neutron binding energy and spin/parity
of the ground states. For counting, we also need a file with all known experimental levels for
the normalization of the NLD which needs to be named counting.dat. All values are fetched
from the NNDC database[25] and are saved in the folders where the analysis is performed.

For the spin-cutoff we use a model further described in [42] nick named “Alex” which requires
an average of experimental spins and energies of low energy states. For 188Re we average the
levels from the g.s. up to, and including, the level at 353 keV. Averaging energies and spin
(ignoring parity) gives us Ē = 233 keV and average spin cutoff σ̄ = 2.78. For 187Re we used the
states from 303 keV to 647 keV. Some of the states does not have confirmed spin/parity, but
using the suggested values in parenthesis should be sufficient. This gives us Ē = 538keV and
σ̄ = 3.1.

From Mughabghab[41] we obtain the neutron resonance spacing parameter D0 as well as
the average total radiative resonance width < Γ0 > for the final normalizations of the results.
These values must be for the Z = Z,N − 1 nuclei compared to the one we are analyzing for,
since in a neutron capture reaction, the N − 1 would be the target nucleus. I.e. for the (α,d)
producing 188Re, I must use the values from 187Re, and the values for 187Re we use the values
from 186Re. The applied values are given in table 5.1.

For the < Γ0 >-value of 187Re from 186Re(n,γ), the value given in Mughabghab seem higher
than expected from systematics from the neighbouring nuclei. In Kullman et al. [43], a thorough
review is done of the values given in the 2006 edition of Mughabghab[44] and RIPL-3[45] for
the same mass area as this thesis. In fig. 6 of [43], both 186Re and 188Re have given values,
from both sources, at around < Γ0 >≈ 60 meV. For A= 187, no value is given for Re, but
the estimate from Mughabghab for W is close to 50 and estimates for 187Os is given with
three different values from 50 to 75 meV. From this systematics, we have chosen to use the
< Γ0 >= 57 meV for both nuclei, though the original suggested value from Mughabghab of
92.5 meV is commented on in the discussion later.

The values of σ(Sn) is calculated with the code Robin with the rigid body of inertia (RMI)
model in table 5.2. As reduction factor 1.0 of RMI would give the full RMI and a theoretical
maximum. A factor 0.6 of RMI can be viewed as the ground-state estimate. I used 0.8 in the
results and 0.8± 0.1 and 0.8± 0.2 in the systematic uncertainties later in the results.

5.3 Running the Oslo method software for 186W(α, d)

I will focus on the (α,d) analysis, as the analysis for (α,t) is very similar, and I will outline the
differences in the next section. I will go through the different steps of the analysis, and all the
input files and results are located in the github[27]-folder mama d. Note that this is specifically
for this dataset. Firstly, we need the raw matrix in the correct format, which can be obtained
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by saving it directly from the sorting batchfile by the command “save alfna”. This will produce
the raw input matrix of the correct format to read into mama.

5.3.1 MAMA: unfolding the raw matrix

First, we must run mama (MAtrix MAnipulation), read the matrix and plot it. Triple dots
represent removed text. Where nothing else is stated, assume no change in input. The command
ds2 is used for plotting in the interactive window and wr is used to save the matrix whenever
you need to.

1 $ mama

2 ...

3 mama >re

4 Destination spectrum <1>:

5 Filename <TEST >:alfna

6 FILE=Disk

7 KIND=Matrix

8 LABORATORY=Oslo Cyclotron Laboratory (OCL)

9 EXPERIMENT=Sirius

10 COMMENT=E(NaI) : E_{x}

11 TIME=16-Oct -20 10:51:56

12 CALIBRATION EkeV=6, 0.000000E+00, 7.000000E+00, 0.000000E+00 , -5.000000E+02,

3.100000E+01, 0.000000E+00

13 PRECISION =16

14 DIMENSION =2 ,0:1999 ,0: 499

15 CHANNEL =(0:1999 ,0: 499)

16 ..........

The command re is used to read the matrix alfna. There is also information here on the
calibration, so out of the six values (not counting the first which gives the number of values)
given in line 12 above, the bin widths are 7 keV and 31 keV.

We then want to fill in the negative counts. This is not essential, but the first step of fn adds
a slight smoothing to all negative counts, replacing them with surrounding values. This is useful
as we do not expect big changes in neighbouring bins. The rn command used afterwards forces
the remaining negative values to zero. This also ensure that the unfolding doesn’t suddenly
introduce very large negative numbers where they have no physical reason to be so.

1 mama >fn

2 ...

3 Dimension along x-axis <2000>:

4 Dimension along y-axis < 500>:

5 ...

6 Before number of neg. ch. was: 57994 , with total counts: -91263

7 After number of neg. ch. is: 1436, with total counts: -1492

8 mama >rn

9 ...

10 Give new value for the counts to be replaced < 0.00 >:

11 Delete counts with value lower than < 0.00>:

12

13 Number of channels replaced: 1436

14 Number of counts before: 212745.0

15 Number of counts after: 214237.0

16 Increase of counts: 1492.0

17 mama >ds2

The raw matrix can be seen in fig. 5.1. After this you must specify the response matrix, rm.
This is to do the unfolding as different setups and different geometries will respond differently
to the same signals. For this dataset, response function (3) of NaI 2012 is the correct one.

1 mama >rm

2 ...

3 List of response functions. The ones marked old , are not recommended

4 (0) Gaussian

5 (1) NaI_old CACTUS 5x5 inch before 2012

6 (2) LaBr_2012 Campaign 4x8 inch LaBr from Milano in CACTUS frame

7 (3) NaI_2012 CACTUS 5x5 inch after 2012
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Figure 5.1: The raw alfna (α,d) matrix after removal of negative counts. Bin sizes are 7.0
keV/channel on the x-axis, and 31.0 keV/channel on the y-axis.

8 (4) Seg2 SuN at MSU 2014, with target inside (2 cm?), GEANT4

9 (5) Seg3 SuN at MSU 2014, with target outside (2 cm?), GEANT4

10 (6) Clover_old Notre Dame 2015, GEANT4

11 (7) Clover Notre Dame 2015, GEANT4

12 (8) Seg23 SuN at MSU 2015 with target in center , GEANT4

13 (9) Oscar2017 [For comparison] "Old" OSCAR at OCL 2017 with 15 LaBr ,

GEANT4

14 (10) Afrodite_Clover iThemba 2015, 8 Clover , GEANT4 (2018)

15 (11) Afrodite_LaBr iThemba 2015, 2 LaBr , GEANT4 (2018)

16 (12) Gretina2018 MSU , GEANT4 one quad , Remco and Lew

17 or:

18 (13) Read from disk: # OSCAR 2017 LaBr; SCALED compton by 1.15

19

20 Choose your response function <13>:3

21 ...

22 Give relative energy resolution at Egam =1.33 MeV (FWHM/Egam) (%) < 6.770 >:

23 ...

24 Parameters for response function written to respout.dat

25 mama >cr

26 Type X or click on green button to exit

27 x= 96, energy = 672.000 keV

28 y= 22, energy = 182.000 keV

29 ...

30 x= 966, energy = 6762.000 keV

31 y= 220, energy = 6320.000 keV

32 ...

After selecting the correct response matrix and loading that, I needed to make a cut to unfold
only where there is data. The actual channels I chose to cut are x ∈ [96, 966] and y ∈ [22, 220].
This is added in the unfolding itself.

The next step is the actual unfolding. It is important that this unfolding is able to converge.
The folding routine will choose the iteration with the best resulting spectrum. Then, setting
the number of iterations to the maximum 499 and adding the limits for the interpolations:

1 mama >un

2 Destination spectrum <2>:
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3 Source spectrum <1>:

4

5 New (0) or old (1) unfolding procedure <0>:

6

7 Dimension along x-axis <2000>:

8 Dimension along y-axis < 500>:

9 ...

10 First point x1 < 1999 >:96

11 First point y1 < 0>:22

12 Second point x2 < 1999 >:966

13 Second point y2 < 499 >:220

14 Give limits for the chisquare -test:

15 Opt. 1: Recommended for LaBr - and NaI -spectra. For full -

16 energy gammas above 2 MeV , we set lower limit at 500 keV.

17 Below , the limit is 1/4 of the full -energy. Remember ,

18 full -energy is taken from the upper unfolding limit

19 Opt. 2: A fixed lower limit for the chi -test is applied

20 Opt. 3: Return and set proper upper limits for unfolding

21

22

23 Option (1/2/3) <1>:

24

25 Include total detector efficiency (y/n) <y>:

26 ...

27 Do you want to change the discriminator threshold <n>:

28

29 Number of iterations ( <500 ) <100>:499

30 ...

31 Weight on fluctuations <0.2>:

32 ...

33 Row: 498 Mode: n Area: 0( 0) Chi: 0.00 Fluct: 1.00

34 Row: 499 Mode: n Area: 0( 0) Chi: 0.00 Fluct: 1.00

35 Calibration is a0= 0.0keV , a1= 7.00 keV/ch

The weight on experimental fluctuations serves as a regularisation on the unfolding. Then,
remove the negative counts again and save the unfolded matrix with wr.

1 mama >fn

2 ...

3 Before number of neg. ch. was: 160519 , with total counts: -198523

4 After number of neg. ch. is: 17246 , with total counts: -9204

5 mama >rn

6 ...

7 Number of channels replaced: 17246

8 Number of counts before: 224020.8

9 Number of counts after: 233212.8

10 Increase of counts: 9192.1

11 mama >ds2

12 mama >wr

13 ...

14 Filename <TEST >: alfna_un_fnrn

The unfolded matrix is shown in fig. 5.2.

5.3.2 MAMA: extracting first generation γs

Extracting the first generation γs from the unfolded spectra is done with the command fg in
mama. This part of the routine is also an iterative method.

1 mama >fg

2 ...

3 Calibration for gamma -energies:

4 Cal. coeff. a0 (keV) on x-axis < 0.0>:

5 Cal. coeff. a1 (keV/ch) on x-axis < 7.0>:

6

7 Calibration for excitation energies:

8 Cal. coeff. a0 (keV) on y-axis < -500.0>:

9 Cal. coeff. a1 (keV/ch) on y-axis < 31.0>:

10
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Figure 5.2: The (α,d) unfolded spectra after subtracting the negative counts. Bin sizes are 7.0
keV/channel on the x-axis, and 31.0 keV/channel on the y-axis.

11 Excitation energy of highest gate (keV) < 9048.0 >:

These values are picked up from the unfolded matrix itself.

1 Normalization: singles (1) or multiplicity (2) <2>:

2 Multiplicity: statistical (1) or total (2) <1>:

3 Area correction for 1. gen. spectra (y/n) <y>:

4 Experimental lower gamma thresholds (keV) < 300.>:

5 Upper threshold for nonstat. gammas (keV) < 300.>:

6 Average entry point in ground band (keV) < 0.>:

We choose the multiplicity normalization, as we do not have information to pick out singles,
and using the statistical is simpler. The experimental lower γ threshold was chosen both from
limitations of the electronics, but also from looking at the unfolded spectra in fig. 5.2, where
the γ spectra look more complete from 300keV and above. Since there are no isomers present
and there are many excited states at low Ex, decaying to g.s. should be no problem.

1 ...

2 Give ratio R (no sliding = 100.) < 0.30 >:

3 ...

4 Assumes Fermi gas distribution

5 Level density parameter a (1/ MeV) <17.44>:

6 Exponent n for Eg**n < 4.20 >:

The Fermi gas distribution parameters a and n are found from Robin. Then, use the
multiplicity suggested for all the channels and press enter through. After this, the first
generation iteration can be looped. I looped around 20 times,

1 Multiplicity in each gate:

2 -----------------------------------

3 Y-ch= 38 Ex= 9032.5 keV < 3.143 >:

4 ...

5 Y-ch= 22 Ex= 182. Area= 15.0 Alpha= 1.00 dA/A(%)= 0.00

6 Y-ch= 21 Ex= 151. Area= 3.4 Alpha= 1.00 dA/A(%)= 0.00

7 Y-ch= 20 Ex= 120. Area= 5.7 Alpha= 1.00 dA/A(%)= 0.00

8 Y-ch= 19 Ex= 89. Area= 28.2 Alpha= 1.00 dA/A(%)= 0.00

9 Y-ch= 18 Ex= 58. Area= 27.7 Alpha= 1.00 dA/A(%)= 0.00
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Figure 5.3: The first generation matrix of (α,d) both with the original bin size of 7.0keV/channel
and 31.0keV/channel, as well as the matrix compressed by a factor of 35 on the x-axis and 8 on
the y-axis to 245.0keV/channel and 248.0keV/channel, ready for further use in the analysis.
The bins are plotted centered on their values. Here, we can also see how the oxygen peak above
6 MeV is also above the neutron separation energy, and does not interfere with the γ spectra of
188Re.
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10 Y-ch= 17 Ex= 27. Area= 19.6 Alpha= 1.00 dA/A(%)= 0.00

11 Y-ch= 16 Ex= -4. Area= 0.0 Alpha= 1.00 dA/A(%)= 9999.99

12 ----------------------------------------------

13

14 Iteration loop = 20, stop (0), activate/modify direct decay (1) or continue (2)

<2>:0

15 Last iteration 20 stored in matrix 1

16 Additional results written to figegaout.dat

The dA/A is the change in area of the first generation from one iteration to the next. Having
it converge to 0 shows that the first generation iteration has converged, which is a good sign.
The large values of dA/A > 9000 is a divide-by-zero kind of result, and is expected. Then, as
before removing the negative counts with fn and rn.

1 mama >fn

2 ...

3 Before number of neg. ch. was: 110698 , with total counts: -74576

4 After number of neg. ch. is: 15894 , with total counts: -13096

5 mama >rn

6 ...

7 Number of channels replaced: 15894

8 Number of counts before: 87586.7

9 Number of counts after: 100682.9

10 Increase of counts: 13096.2

11 mama >ds2

12 .

13 mama >wr

14 ...

15 Cal. coeff. a0 (keV) on x-axis < 0.0>:

16 Cal. coeff. a1 (keV/ch) on x-axis < 7.000 >:

17 ...

18 Cal. coeff. a0 (keV) on y-axis < -500.0>:

19 Cal. coeff. a1 (keV/ch) on y-axis < 31.000 >:

20 ...

21 Filename <TEST >: alfna_fg

The first generation matrix after removing negative counts in fig. 5.3 is the final result so
far. To show how the spectra changes from the raw to unfolded and finally the first generation,
a projected comparison of Ex ∈ [4, 5] MeV is plotted in fig 5.4.

After saving this matrix with wr, it is now important to have dimensions of maximum
500 × 500 since that is the most the code extracting the NLD and γSF can handle. As the
statistics is low, we compress the bin widths to ≈ 250 keV to get more counts in each pixel.

1 mama >co

2 ...

3 Compression along x-axis < 1>:35

4 Compression along y-axis < 1>:8

5 ...

6 New dimension (0: 56,0: 61)

7 mama >wr

8 Cal. coeff. a0 (keV) on x-axis < 119.0 >:

9 Cal. coeff. a1 (keV/ch) on x-axis < 245.000 >:

10 ...

11 Cal. coeff. a0 (keV) on y-axis < -391.5>:

12 Cal. coeff. a1 (keV/ch) on y-axis < 248.000 >:

13 ...

14 Dimension on x-axis (max =4096) < 57>:

15 Dimension on y-axis (max =2048) < 62>:

16 Filename <TEST >: alfna_fg_cofinal

5.3.3 Robin and spin-cutoff parameters.

Robin is a code for calculating parameters for a given nucleus based on different models. No
matter which model you want to use, the initial part is always similar. You are asked for the
proton and mass number, and presented with the different model options.
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Figure 5.4: Projections of the γ count of Ex ∈ [4, 5] MeV from the (α, dγ) matrices, a) fig.
5.1, b) fig. 5.2 and c) fig. 5.3a). The projections are rebinned with a factor 4 compared to
the initial matrices on the x-axis to suppress random fluctuations, so the x-axis bin sizes are
28keV/channel.

1 $ robin

2 ...

3 Give proton number of the nucleus < 75>:

4 Give mass number of the nucleus <188>:

5 ...

6 You may choose between 4 spin cut -off formulas:

7 1 The rigid moment of inertia formula (RMI)(E&B2006)

8 2 The Gilbert and Cameron formula (G&C) Can. J. Phys 43(1965) 1446

9 3 The constant temperature (CT) formula (E&B2009) and NPA 481 (1988) 189

10 4 The Fermi gas formula with appropriate cut -off parameter (E&B2009)

11 Type 1 for RMI: sig **2=0.0146*(A**(5/3))*T for FG (E&B2006)

12 Type 2 for G&C: sig **2=0.0888*(A**(2/3))*a*T for FG

13 Type 3 for E&B: sig **2=(0.98*(A**(0.29)))**2 for CT

14 Type 4 for E&B: sig **2=0.391*A**0.675*(E-0.5* Pa_prime)**0.312 for FG

15 Choose RMI(FG) (1), G&C(FG) (2), E&B(CT) (3) or E&B(FG) (4) <4>:

Choosing number 1, the rigid moment of inertia will give you another choice between the
”common fermigas formula” and the ”somewhat more advanced fermigas formula”, of which we
choose the latter.

1 You may choose between 2 temperature formulas:

2 1 The common fermigas formula (CFG)

3 2 The somewhat more advanced fermigas formula (AFG) (E&B2006)

4 Type 1 for CFG: T = SQRT(U/a) (G&C)

5 Type 2 for AFG: T = (1+ SQRT (1+4*a*U))/(2*a)(E&B2006)

6 Choose CFG (1) or AFG (2) <2>:

7

8 You may choose a reduction factor of RMI at Sn

43



9 Typically , 0.8 -1.0 is an appropriate reduction factor

10 Give reduction factor of RMI <1.00 >:0.8

11 You may choose another a and/or E1 than proposed by E&B2009:

12 Level density parameter a < 19.271 >:

13 Total backshift parameter E1 < -1.093>:

This reduction factor of the RMI is what gives the different values of σ(Sn) (called sig n) of
table 5.2. All the output values are then given, where the Fermi gas parameter a, and the level
densities at Sn is given as rho n.

1 Results for 188Re with sig **2=0.0146*(A**(5/3))*(1+ SQRT (1+4*a*U))/(2*a):

2 Shell values : S= -0.744 MeV , dS/dA= -0.196 MeV

3 Pairing energies : P_n= 0.662 MeV , P_p= 0.761 MeV , P_d= -1.592

MeV , Pa_prime= -1.592 MeV

4 Binding energies : B_n= 5.872 MeV , B_p= 6.400 MeV

5 Fermi gas parameters : a= 19.271 1/MeV , E1= -1.093 MeV

6 Spin cut -off parameters : sig_n= 6.725 sig_p= 6.844

7 Level densities : rho_n= 0.42699E+07 1/MeV , rho_p= 0.90781E+07 1/MeV

8 Temperature (FG) : T(Bn)= 0.62766E+00 MeV , T(Bp)= 0.65003E+00 MeV

9 Calculate rho and sigma at Ex (MeV) < 5.872 >:

10 For Ex = 5.872 MeV : rho = 0.42699E+07 1/MeV , sig = 6.725

11 Write file with spin distribution for spin cut -off sig = < 4.474 >:

12

13 File spindis.rbn written with <I> = 5.10, Pmax @ I = sigma -0.5 = 4.0 and sum_P

=1.002

All output is then written to file.
The second formula of Gilbert and Cameron is not used in this analysis, but if you choose

the third of constant temperature formula, you see a suggested T and E0. Here I specified
T = 0.545 MeV.

1 You may choose another T and/or E0 than proposed by CT(E&B):

2 Constant temperature T(MeV) < 0.538 >:0.545

3 Total backshift parameter E0 < -1.800>:

This then calculates new values for this nuclear temperature.

1 Results for 188Re with sig **2=(0.98*(A**(0.29)))**2.:

2 Shell values : S= -0.744 MeV , dS/dA= -0.196 MeV

3 Pairing energies : P_n= 0.662 MeV , P_p= 0.761 MeV , P_d= -1.592

MeV , Pa_prime= -1.592 MeV

4 Binding energies : B_n= 5.872 MeV , B_p= 6.400 MeV

5 Constant temp. param. : T= 0.545 MeV , E0= -1.800 MeV

6 Spin cut -off parameters : sig_n= 4.474 sig_p= 4.474

7 Level densities : rho_n= 0.23818E+07 1/MeV , rho_p= 0.62825E+07 1/MeV

8 Calculate rho and sigma at Ex (MeV) < 5.872 >:

9 For Ex = 5.872 MeV : rho = 0.23818E+07 1/MeV , sig = 4.474

10 Write file with spin distribution for spin cut -off sig = < 4.474 >:

11

12 File spindis.rbn written with <I> = 5.10, Pmax @ I = sigma -0.5 = 4.0 and sum_P

=1.002

The last and fourth model, the Fermi gas formula with cut-off parameter will again give
you two initial options of parameters. The value of a and E1 and thus calculating other values.

1 You may choose another a and/or E1 than proposed by E&B2009:

2 Level density parameter a < 17.442 >:

3 Total backshift parameter E1 < -1.177>:

4

5 Shell values : S= -0.744 MeV , dS/dA= -0.196 MeV

6 Pairing energies : P_n= 0.662 MeV , P_p= 0.761 MeV , P_d= -1.592

MeV , Pa_prime= -1.592 MeV

7 Binding energies : B_n= 5.872 MeV , B_p= 6.400 MeV

8 Fermi gas parameters : a= 17.442 1/MeV , E1= -1.177 MeV

9 Spin cut -off parameters : sig_n= 4.922 sig_p= 4.981

10 Level densities : rho_n= 0.21794E+07 1/MeV , rho_p= 0.44515E+07 1/MeV

11 Temperature (FG) : T(Bn)= 0.66503E+00 MeV , T(Bp)= 0.68841E+00 MeV

12 Calculate rho and sigma at Ex (MeV) < 5.872 >:

13 For Ex = 5.872 MeV : rho = 0.21794E+07 1/MeV , sig = 4.922
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14 Write file with spin distribution for spin cut -off sig = < 4.474 >:

15

16 File spindis.rbn written with <I> = 5.10, Pmax @ I = sigma -0.5 = 4.0 and sum_P

=1.002

5.3.4 d2rho - level density and spacing.

This program needs no input files, but will load its previous input. This program calculates the
level density, ρ(Sn) at the neutron separation energy to normalize the level density.

These values come from s-wave neutron resonance capture, l=0. The g.s. spin of 187Re
is 5/2+, so the target spin is 2.5. From table 5.1 we find that the average resonance spacing
D0 = 3.61± 0.13 eV and from table 5.2 we use the spin cut-off parameter of 80% of RMI at
σ(Sn)80%. This is chosen as a reasonable estimate, and as we evaluate standard deviations later,
this value is set to zero. The systematic uncertainties arising from these values are considered
in the final results. This program then calculates the nuclear level density at the neutron
separation energy and the uncertainty associated with it.

1 $ d2rho

2 ...

3 s- (l=0) or p- (l=1) wave neutron/proton capture <0>:

4 Target spin in (n,g) or (p,g) reaction (for the A-1 nucleus) < 2.5>:

5 Neutron or proton resonance spacing parameter D (eV) < 3.61>:

6 Standard deviation for resonance spacing parameter dD (eV) < 0.13>:

7 Spin cut -off parameter sigma < 6.72>:

8 Standard deviation of spin cut -off parameter sigma < 0.00>:

9

10 Spin populated in nucleus A: 2, 3. Parity = parity of gs of nucleus A-1

11 Level density is rho = 4.649E+06 +/- 1.674E+05 1/MeV

12 ...

5.3.5 Rhosigchi - extracting the NLD and γSF

This is the code reading the first generation matrix from mama. Rhosigchi will only read a
maximum of 511 channels on each axis, which means we send in the compressed matrix. Using
mama to plot out and look at the compressed first generation matrix, we need to choose areas
to use which have good statistics. As a lower limit of γ energy (x-axis), we choose the first area
where it looks like a complete dataset and its not oversubracted or “empty” in fig. 5.3. We
therefore chose to set the lower γ energy limit to the bin close to ≈ 850 keV, and the limit of
the exitation energy between ≈ 2000 keV and around the neutron separation energy at ≈ 5800
keV.

1 $ rhosigchi

2 ...

3 Filename <TEST >: alfna_fg_cofinal

4 ...

5 Lower limit of gamma energy (keV) < 848.5 >:

6 Lower limit of excitation energy (keV) < 2088.5 >:

7 Upper limit of excitation energy (keV) < 5808.5 >:

8 Number of data points 216

9 DOF , data points -rho -sig 178

10 Common calibration is a0= -887.50 keV and a1= 248.00 keV/ch

11 Dimension is 57 x 28

12 excitation energy region is 2088. keV to 5808. keV

13 rho extracted from -888.keV to 5064. keV

14 sig extracted from 848. keV to 13000. keV

15 ...

16 _______________________________________________________

17 Convergence test using various indicators

18 Indicator Iteration = 0 10 20 30 40 50

19 Rho/Rho0 at U= 600. 1.00 1.37 1.38 1.39 1.40 1.41

20 Rho/Rho0 at U=2336. 1.00 1.15 1.15 1.14 1.14 1.13

21 Rho/Rho0 at U=4072. 1.00 0.82 0.81 0.80 0.78 0.77

22 Sig/Sig0 at Eg =2336. 1.00 1.12 1.11 1.11 1.11 1.10
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23 Sig/Sig0 at Eg =4072. 1.00 1.52 1.49 1.47 1.45 1.43

24 Chi^2 for 1.gen.sp. 4.13 1.16 1.16 1.16 1.16 1.16

25 _______________________________________________________

26 ...

27 Observed first generation matrix written to file: fg.rsg

28 Estimated first gen. err. matrix written to file: fgerr.rsg

29 Theoret. first generation matrix written to file: fgteo.rsg

30 Unnormalized Rho and dRho written to array file: rhopaw.rsg

31 Unnormalized T and dT written to array file: sigpaw.rsg

32 Unnormalized Rho and dRho written to mama file: rhosp.rsg

33 Unnormalized T and dT written to mama file: sigsp.rsg

34 ...

The iteration very quickly converges after only 10 iterations with a χ2 of 1.16.

5.3.6 Counting - normalizes the NLD

Finally, the NLD and the γSF must be normalized to external data. Counting is where we add
the final parameters and choose in which areas to do the fits for the NLD. A run with a “wide
fit” of a large range of data points was done to determine the optimal nuclear temperature
T, by looking at the χ2 result. The best fit ended up being T = 0.545 MeV. The data point
ranges entered in this given run is the same ones as the final result shown. These are chosen
both after evaluating comparisons with earlier data presented in the results in chapter 6.

When running counting, the first thing it does is to load datafiles from several of the previous
programs, as well as the previously mentioned counting.dat with the experimentally known
levels for normalisation of the low energy NLD.

1 $ counting

2 ...

3 Reading calibration and dimensions from: rhosp.rsg

4 rhosp.rsg has dimension (0 : 27, 0 : 1) and calibration (a0 , a1) = ( -887.500000 ,

248.000000)

5 Reading calibration and dimensions from: sigsp.rsg

6 sigsp.rsg has dimension (0 : 56, 0 : 1) and calibration (a0 , a1) = ( -887.500000 ,

248.000000)

7

8 Reading data and errors of experimental nuclear level density: rhopaw.rsg

9 ...

10 Reading data and errors of experimental transmision coefficient: sigpaw.rsg

11 ...

12 Reading excitation energies of known levels: counting.dat

13 ...

14 You may want to smooth the discrete level density with the

15 resolution of the experimental level density (FWHM = 100 -500 keV).

16 If no smoothing , set FWHM = 0.

17 Excitation energy FWHM (keV) <150.000 >:

18 ...

After this, some basic information is needed and then spin cut model to use. We have
chosen the nicknamed “Alex” model [42].

1 Mass number A <188>:

2 Neutron or proton binding energy (Bn or Bp) (MeV) < 5.871 >:

3 Choose constant temperature CT (1) or Fermi gas FG (2) formula <1>:

4 ...

5 Choose RMI(FG+CT) (1), G&C(FG+CT) (2), E&B(CT) (3), E&B(FG+CT) (4), or Alex (5)

<5>:

6 ...

Then, the excitation energy for Ex1 is the average Ex calculated for Alex, and the spin
cutoff is the one calculated from this and the average spin. Excitation energy of upper point is,
of course, the neutron binding energy, and the spin cutoff here is calculated from Robin and
can be found as the ρ(Sn) at 80% of RMI in table 5.2. The level density and uncertainty at Bn
is the one given from d2rho.

1 Give excitation energy Ex1 for lower point < 0.233 >:
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2 Give spin cutoff sig1 for lower point < 2.650 >:

3 Give excitation energy Ex2 for upper point < 5.871 >:

4 Give spin cutoff sig2 for upper point < 6.725 >:

5 Constants for sig**2 = A + B * Ex: A = 5.443691 and B = 6.776007 MeV**(-1)

6

7 Be sure to use the correct Rho(Bn or Bp) according

8 to type 1, 2, 3, 4 or 5. Run the d2rho program to find Rho

9 or use the systematic value found by running Robin

10 Level density at Bn or Bp (1/MeV) < 4649000 >:

11 Uncertainty of level density at Bn or Bp (1/MeV) < 167400 >:

12

13 You need to run the program Robin to get the constant temperature parameters T:

14 Temperature parameter T (MeV) < 0.545 >:

15

16 The level density goes through Rho(Bn), thus determining the

17 const. temp. shift parameter to be E0 = -2.165 MeV

We then choose which ranges of data points to use in the fits specifically. This is something
that does require some testing, just adding the data points with reasonable statistics and testing
how the resulting plot “looks”.

1 No Ex(keV) RhoLeV (1/ MeV)

2 ...

3 3 -143.50 1.946e+00

4 -----------------------------

5 4 104.50 3.081e+01

6 5 352.50 7.699e+01

7 6 600.50 1.160e+02

8 7 848.50 1.943e+02

9 -----------------------------

10 8 1096.50 2.000e+02

11 ...

12 Lower fit limit L1 for known levels < 4>:

13 Higher fit limit L2 for known levels < 7>:

14

15 No Ex(keV) Rho(1/ MeV) dRho (1/ MeV)

16 ...

17 17 3328.50 7.733e-01 9.992e-02

18 ---------------------------------------------

19 18 3576.50 6.679e-01 1.009e-01

20 19 3824.50 5.018e-01 8.629e-02

21 20 4072.50 7.705e-01 1.087e-01

22 21 4320.50 2.622e-01 9.611e-02

23 22 4568.50 2.748e-01 1.221e-01

24 23 4816.50 2.036e-01 1.526e-01

25 24 5064.50 4.759e-01 3.234e-01

26 ---------------------------------------------

27 25 5312.50 0.000e+00 0.000e+00

28 ...

29 Lower fit limit H1 for Rho around Bn or Bp < 18>:

30 Higher fit limit H2 for Rho around Bn or Bp < 24>:

31

32 No Eg(keV) Trans dTrans

33 ...

34 6 600.50 0.000e+00 0.000e+00

35 ---------------------------------------------

36 7 848.50 1.277e+00 1.471e-01

37 8 1096.50 1.879e+00 1.382e-01

38 9 1344.50 2.150e+00 1.191e-01

39 ---------------------------------------------

40 10 1592.50 2.122e+00 1.101e-01

41 ...

42 Lower fit limit L1 for low energy region of T(Eg) < 7>:

43 Higher fit limit L2 for low energy region of T(Eg) < 9>:

44

45 No Eg(keV) Trans dTrans

46 ...

47 19 3824.50 4.307e-01 6.238e-02

48 ---------------------------------------------
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49 20 4072.50 4.475e-01 6.101e-02

50 21 4320.50 2.738e-01 4.313e-02

51 22 4568.50 1.799e-01 3.974e-02

52 23 4816.50 2.086e-01 4.266e-02

53 ---------------------------------------------

54 24 5064.50 2.392e-01 6.816e-02

55 ...

56 Lower fit limit H1 for high energy region of T(Eg) < 20>:

57 Higher fit limit H2 for high energy region of T(Eg) < 23>:

After adding those data points for the normalization of the plot, the code will then give the
fitted nuclear temperatures T with a reduced χ2, which in this example does not look like a
good fit, but as previously mentioned, this is because the optimisation of T is done with a wider
choice of data points in a different run.

1 Fermi -gas level density has been multiplied with eta = 1.000

2 in order to match Rho(Bn or Bp) = 4649000.0 (1/ MeV)

3

4 Spin cutoff parameter used at Bn or Bp = 6.725

5

6 Fitting T to chosen data in the higher region

7 T E0 Chi2 Chi2/free

8 ...

9 0.535 -2.008 13.114 2.623

10 0.540 -2.086 12.819 2.564

11 0.545 -2.165 12.551 2.510

12 0.550 -2.244 12.309 2.462

13 0.555 -2.323 12.092 2.418

14 ...

15 Number of free parameter in upper region: 5

16 ...

17 File sigpawext.cnt (0:80) written to disk , (a0 ,a1)=( -887.50, 248.000)

18 File extendLH.cnt (0:80) (0:80) written to disk , (a0,a1)=( -887.50, 248.000)

19 File rholev.cnt (0:28) written to disk , (a0,a1)=( -887.50, 248.000)

20 File spincut.cnt (0:84) written to disk , (a0,a1)=( -887.50, 248.000)

21 File talys_nld_cnt.txt written to disk. The table has 43 rows and 35 columns.

22 File counting.cpp written to disk. Run root to plot normalized NLD.

23 File spincut.cpp written to disk. Run root to plot the spincut.

24 File sigext.cpp written to disk. Run root to plot sigextpaw.cnt.

This produces, most importantly, counting.cpp, which plots the NLD as well as sigext.cpp,
which is the transmission coefficients. The .cnt-files are the datafiles containing the data, and
the .cpp files are the ones plotting the data. The Spincut.cnt-file is also input of normalization
of the γSF in the next step.

5.3.7 Normalization - normalizes the γSF

The program normalization does a normalization of the γSF, and produces the last .cpp plotting
programs and .nrm data files with the γSF data. We choose the s-waves for neutron capture,
as well as the neutron binding energy and ground state spin of target nucleus (A− 1, N − 1)
(i.e. 187Re for this 186W(α,d)188Re-reaction)

The neutron resonance spacing parameter and average radiative width are both from table
5.1.

1 $ normalization

2 ...

3 Reading calibration and dimensions from: rhosp.rsg

4 Dimension (0 : 27, 0 : 1) and calibration (a0, a1) = ( -887.50, 248.000)

5 s- (l=0) or p- (l=1) wave neutron/proton capture <0>:

6 Neutron or proton binding energy (Bn or Bp) (MeV) < 5.871 >:

7 Target spin in (n,g) or (p,g) reaction (for the A-1 nucleus). Use

8 values 0.0, 1.0 ,... for even and 0.5, 1.5 ,... for odd spins < 2.5>:

9 Neutron resonance spacing parameter D (eV) < 3.6>:

10 Average total radiative resonance width G (meV) < 57.0 >:

11 ...

12 Normalization integral = 5.6766398e+11
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13 Normalization factor = 3.5952050e+10

14 File strength.nrm (0:57) written to disk , (a0 ,a1)=( -887.50, 248.000)

15 File trans.nrm (0:57) written to disk , (a0,a1)=( -887.50, 248.000)

16 File transext.nrm (0:289) written to disk , (a0 ,a1)=( -887.50, 248.000)

17 File strength.cpp written to disk. Run root to plot strength.nrm

5.4 Running the Oslo method software for 186W(α, t)

Since the explanation of the 186W(α,d) is relatively thorough and (α,t) has a lot in common
with it, I will focus on highlighting the differences and main points. After retrieving the raw
matrix, a very similar procedure is applied, mostly with some different parameters. As before,
final input files with all constants can be found on the github[27].

5.4.1 MAMA: Unfolding and extracting the first generation γs

Extracting the first generation matrix is very similar to the (a,d) and consists of mainly reading
the raw matrix, remove negatives, unfolding the matrix (then remove negatives again), and
then extracting the first generation γs before removing negative counts one final time and
compressing the bins.

Loading the matrix and removing negative counts:

1 $ mama

2 ...

3 mama >re

4 Destination spectrum <1>:

5 Filename <TEST >:alfna

6 ...

7 CALIBRATION EkeV=6, 0.000000E+00, 7.000000E+00, 0.000000E+00 , -5.000000E+02,

3.100000E+01, 0.000000E+00

8 PRECISION =16

9 DIMENSION =2 ,0:1999 ,0: 499

10 ...

11 mama >fn

12 ...

13 Before number of neg. ch. was: 45706 , with total counts: -63476

14 After number of neg. ch. is: 1513, with total counts: -1580

15 mama >rn

16 ...

17 Number of channels replaced: 1513

18 Number of counts before: 157028.0

19 Number of counts after: 158608.0

20 Increase of counts: 1580.0

The loaded matrix can be seen in fig. 5.5. Then, loading the same response matrix as for
(a,d), and choosing the cut off points to use in the unfolding:

1 mama >rm

2 ...

3 mama >cr

4 x= 98, energy = 686.000 keV

5 y= 24, energy = 244.000 keV

6 ...

7 x= 492, energy = 3444.000 keV

8 y= 115, energy = 3065.000 keV

9 ...

The bins used are x ∈ [98, 492] and y ∈ [24, 115]. Then, the unfolding itself also runs with the
maximum amount of iterations with the same weight on fluctuations.

1 mama >un

2 ...

3 First point x1 < 1999 >:98

4 First point y1 < 0>:24

5 Second point x2 < 1999 >:492

6 Second point y2 < 499 >:115
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Figure 5.5: The (α, tγ) raw spectra after subtracting the negative counts. Bin sizes are 7.0
keV/channel on the x-axis, and 31.0 keV/channel on the y-axis.

Figure 5.6: The (α, tγ) unfolded spectra after subtracting the negative counts. Bin sizes are 7.0
keV/channel on the x-axis, and 31.0 keV/channel on the y-axis.
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7 ...

8 Number of iterations ( <500 ) <100>:499

9 ...

10 Weight on fluctuations <0.2>:

11 ...

12 Row: 497 Mode: n Area: 0( 0) Chi: 0.00 Fluct: 1.00

13 Row: 498 Mode: n Area: 0( 0) Chi: 0.00 Fluct: 1.00

14 Row: 499 Mode: n Area: 0( 0) Chi: 0.00 Fluct: 1.00

15 Calibration is a0= 0.0keV , a1= 7.00 keV/ch

16 mama >fn

17 ...

18 Before number of neg. ch. was: 133656 , with total counts: -97698

19 After number of neg. ch. is: 20920 , with total counts: -7367

20 mama >rn

21 ...

22 Number of channels replaced: 20920

23 Number of counts before: 175531.6

24 Number of counts after: 182885.4

25 Increase of counts: 7353.9

The unfolded matrix can be seen in fig. 5.6. The next step is to obtain the first generation γs.
The level density parameter and exponent n are not essential values and only aid the iteration.

1 mama >fg

2 ...

3 Cal. coeff. a0 (keV) on x-axis < 0.0>:

4 Cal. coeff. a1 (keV/ch) on x-axis < 7.0>:

5

6 Calibration for excitation energies:

7 Cal. coeff. a0 (keV) on y-axis < -500.0>:

8 Cal. coeff. a1 (keV/ch) on y-axis < 31.0>:

9

10 Excitation energy of highest gate (keV) < 7994.0 >:

11

12 Normalization: singles (1) or multiplicity (2) <2>:

13 Multiplicity: statistical (1) or total (2) <1>:

14 Area correction for 1. gen. spectra (y/n) <y>:

15 Experimental lower gamma thresholds (keV) < 300.>:

16 Upper threshold for nonstat. gammas (keV) < 300.>:

17 Average entry point in ground band (keV) < 0.>:

18 ...

19 Give ratio R (no sliding = 100.) < 0.30 >:

20 ...

21 Weighting by exp. 1. gen. spectra (y/n) <n>:

22

23 Assumes Fermi gas distribution

24 Level density parameter a (1/ MeV) <17.62>:

25 Exponent n for Eg**n < 3.00 >:

26

27 Multiplicity in each gate:

28 -----------------------------------

29 Y-ch= 274 Ex= 7994.0 keV < 3.818 >:

30 ...

31 Y-ch= 22 Ex= 182. Area= 7.1 Alpha= 1.00 dA/A(%)= 0.00

32 Y-ch= 21 Ex= 151. Area= 1.8 Alpha= 1.00 dA/A(%)= 0.00

33 Y-ch= 20 Ex= 120. Area= 1.7 Alpha= 1.00 dA/A(%)= 0.00

34 Y-ch= 19 Ex= 89. Area= 0.0 Alpha= 1.00 dA/A(%)= 9999.99

35 Y-ch= 18 Ex= 58. Area= 0.0 Alpha= 1.00 dA/A(%)= 9999.99

36 Y-ch= 17 Ex= 27. Area= 0.0 Alpha= 1.00 dA/A(%)= 9999.99

37 Y-ch= 16 Ex= -4. Area= 3.8 Alpha= 1.00 dA/A(%)= 0.00

38 ----------------------------------------------

39

40 Iteration loop = 20, stop (0), activate/modify direct decay (1) or continue (2)

<2>:0

41 Last iteration 20 stored in matrix 1

42 Additional results written to figegaout.dat

43 mama >fn

44 ...

45 Before number of neg. ch. was: 82147 , with total counts: -51543
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46 After number of neg. ch. is: 10898 , with total counts: -4329

47 mama >rn

48 ...

49 Number of channels replaced: 10898

50 Number of counts before: 81984.9

51 Number of counts after: 86313.5

52 Increase of counts: 4328.6

After 20 iteration loops, all values of dA/A have converged to 1.0, except the divide-by-zero
values of 9999.99. The final first generation matrix as well as the same matrix compressed to
245.0keV/channel x-axis and 248.0 keV on the y-axis is plotted in fig. 5.7.

5.4.2 Robin, d2rho and rhosigchi

Robin was used in the same way as for (α, t), finding input parameters for the other parts of
the program.

D2rho calculates the level density, ρ(Sn) at the neutron separation energy to normalize the
level density. The g.s. spin and parity of 186Re is 1−, so target spin is 1.0, and the average
resonance spacing D0 = 2.26 ± 0.23 is from table 5.1. The spin cut-off parameter is again
calculated from Robin in table 5.2.

1 $ d2rho

2 ...

3 - (l=0) or p- (l=1) wave neutron/proton capture <0>:

4 Target spin in (n,g) or (p,g) reaction (for the A-1 nucleus) < 1.0>:

5 Neutron or proton resonance spacing parameter D (eV) < 2.26>:

6 Standard deviation for resonance spacing parameter dD (eV) < 0.23>:

7 Spin cut -off parameter sigma < 6.87>:

8 Standard deviation of spin cut -off parameter sigma < 0.00>:

9

10 Spin populated in nucleus A: 1/2, 3/2. Parity = parity of gs of nucleus A-1

11 Level density is rho = 1.439E+07 +/- 1.464E+06 1/MeV

12 ...

Rhosigchi needs the input of limits of where the statistics is sufficient. The lower Eγ spectra
is set to ≈ 850keV, and the limits of Ex is set from ≈ 1600keV up to around ≈ 5300keV
where the data in the matrix is quickly diminishing, and we do not have a sufficient amount of
coincidences to extract any meaningful results.

1 $ rhosigchi

2 ...

3 Filename <TEST >: alfna_fg_cofinal

4 ...

5 Lower limit of gamma energy (keV) < 848.5 >:

6 Lower limit of excitation energy (keV) < 1592.5 >:

7 Upper limit of excitation energy (keV) < 5312.5 >:

8 ...

9 _______________________________________________________

10 Convergence test using various indicators

11 Indicator Iteration = 0 10 20 30 40 50

12 Rho/Rho0 at U= 600. 1.00 1.68 1.71 1.71 1.71 1.72

13 Rho/Rho0 at U=2088. 1.00 1.06 1.07 1.07 1.07 1.06

14 Rho/Rho0 at U=3576. 1.00 0.47 0.46 0.46 0.46 0.46

15 Sig/Sig0 at Eg =2088. 1.00 1.33 1.34 1.34 1.34 1.34

16 Sig/Sig0 at Eg =3576. 1.00 1.54 1.53 1.52 1.52 1.51

17 Chi^2 for 1.gen.sp. 6.62 1.11 1.05 1.05 1.05 1.05

18 _______________________________________________________

19 ...

Again, we see how the iteration very quickly converges, as the χ2 falls to 1.05 after only 20
iterations, but already had a good result of χ2 = 1.11 after only 10 iterations.

5.4.3 Counting

Running counting for (α, tγ), the input parameters are found in the same way as for (α, dγ).
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Figure 5.7: The (α, tγ) first generation spectra after subtracting the negative counts. The
uppermost plot is before rebinning, where bin sizes are 7.0 keV/channel on the x-axis, and
31.0 keV/channel on the y-axis, and the lower is the final, compressed matrix of an x-axis with
245.0keV/channel and y-axis with 248.0keV/channel. The bins are plotted centered on their
values.
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1 $ counting

2 ...

3 Excitation energy FWHM (keV) <150.000 >:

4 ...

5 Mass number A <187>:

6 Neutron or proton binding energy (Bn or Bp) (MeV) < 7.360 >:

7 ...

8 Choose constant temperature CT (1) or Fermi gas FG (2) formula <1>:

9 ...

10 Please , choose your spin cutoff formula:

11 ...

12 5 Interpolate between known cutoff parameters (Alex2017)

13 ...

14 Choose RMI(FG+CT) (1), G&C(FG+CT) (2), E&B(CT) (3), E&B(FG+CT) (4), or Alex (5)

<5>:

15 ...

16 Give excitation energy Ex1 for lower point < 0.538 >:

17 Give spin cutoff sig1 for lower point < 2.850 >:

18 Give excitation energy Ex2 for upper point < 7.360 >:

19 Give spin cutoff sig2 for upper point < 6.874 >:

20 Constants for sig**2 = A + B * Ex: A = 5.037896 and B = 5.735595 MeV**(-1)

21 ...

22 Level density at Bn or Bp (1/MeV) <14390000 >:

23 Uncertainty of level density at Bn or Bp (1/MeV) < 1464000 >:

24

25 You need to run the program Robin to get the constant temperature parameters T:

26 Temperature parameter T (MeV) < 0.545 >:

The temperature parameter T was also optimised for this matrix, but the temperature was
found to be very close to the T = 0.545 MeV found for the (α, dγ) matrix, and as the statistics
of that matrix is a lot better, we use this value for both matrices.

Next is the areas chosen for the normalizations:

1 No Ex(keV) RhoLeV (1/ MeV)

2 ...

3 4 104.50 9.294e+00

4 -----------------------------

5 5 352.50 1.191e+01

6 6 600.50 3.890e+01

7 7 848.50 6.332e+01

8 -----------------------------

9 8 1096.50 5.556e+01

10 ...

11 Lower fit limit L1 for known levels < 5>:

12 Higher fit limit L2 for known levels < 7>:

13

14 No Ex(keV) Rho(1/ MeV) dRho (1/ MeV)

15 ...

16 16 3080.50 8.162e-01 8.674e-02

17 ---------------------------------------------

18 17 3328.50 5.887e-01 8.591e-02

19 18 3576.50 4.569e-01 8.201e-02

20 19 3824.50 4.997e-01 8.276e-02

21 20 4072.50 4.052e-01 1.053e-01

22 21 4320.50 3.339e-01 1.367e-01

23 ---------------------------------------------

24 22 4568.50 1.409e-01 1.366e-01

25 ...

26 Lower fit limit H1 for Rho around Bn or Bp < 17>:

27 Higher fit limit H2 for Rho around Bn or Bp < 21>:

28

29 No Eg(keV) Trans dTrans

30 ...

31 7 848.50 2.548e+00 1.891e-01

32 ---------------------------------------------

33 8 1096.50 2.747e+00 1.633e-01

34 9 1344.50 3.050e+00 1.678e-01

35 10 1592.50 2.542e+00 1.290e-01

36 ---------------------------------------------
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37 11 1840.50 2.221e+00 1.376e-01

38 ...

39 Lower fit limit L1 for low energy region of T(Eg) < 8>:

40 Higher fit limit L2 for low energy region of T(Eg) < 10>:

41

42 No Eg(keV) Trans dTrans

43 ...

44 17 3328.50 4.755e-01 7.556e-02

45 ---------------------------------------------

46 18 3576.50 4.647e-01 6.309e-02

47 19 3824.50 5.219e-01 7.337e-02

48 20 4072.50 2.685e-01 6.322e-02

49 21 4320.50 2.557e-01 5.425e-02

50 ---------------------------------------------

51 22 4568.50 2.335e-01 6.044e-02

52 ...

53 Lower fit limit H1 for high energy region of T(Eg) < 18>:

54 Higher fit limit H2 for high energy region of T(Eg) < 21>:

After this, the final adjustments can be done and, from not using a large amount of data points
in this run, the χ2 does not represent a realistic value for optimization.

1 Fermi -gas level density has been multiplied with eta = 1.000

2 in order to match Rho(Bn or Bp) = 14390000.0 (1/ MeV)

3

4 Spin cutoff parameter used at Bn or Bp = 6.874

5

6 Fitting T to chosen data in the higher region

7 T E0 Chi2 Chi2/free

8 ...

9 0.530 -1.039 0.794 0.265

10 0.535 -1.123 0.801 0.267

11 0.540 -1.208 0.837 0.279

12 0.545 -1.292 0.902 0.301

13 0.550 -1.376 0.991 0.330

14 0.555 -1.461 1.105 0.368

15 ...

16 Number of free parameter in upper region: 3

17 ...

The output is then written out to files and can be plotted.

5.4.4 Normalization

Finally, running normalization to get the γSF, the neutron binding energy, target spin of 186Re
g.s. and the neutron resonance spacing parameter D0 from table 5.1. The radiative resonance
width we used it the one given for 188Re, experimentally found from the N − 1 nuclei 187Re.
This is discussed in section 5.2.

1 $ normalization

2 ...

3 s- (l=0) or p- (l=1) wave neutron/proton capture <0>:

4 Neutron or proton binding energy (Bn or Bp) (MeV) < 7.360 >:

5 Target spin in (n,g) or (p,g) reaction (for the A-1 nucleus). Use

6 values 0.0, 1.0 ,... for even and 0.5, 1.5 ,... for odd spins < 1.0>:

7 Neutron resonance spacing parameter D (eV) < 2.3>:

8 Average total radiative resonance width G (meV) < 57.0 >:

9 ...
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Chapter 6

Results and interpretation

Mangt skal vi møte og mangt skal vi mestre!
Dagen i dag - den kan bli v̊ar beste dag.

Fra “V̊ar beste dag” av Erik Bye

After obtaining the final parameters and plots, the data must be compared and evaluated.
Comparing our data to previous measurements and predictions, provides a clearer context of
the results. I also evaluate the systematic errors from the input parameters of the normalization,
for both the γSF and NLD. A fit of the γSF is important to add it to nuclear reaction codes in
future work. There is a limited amount of γSF data available, and no previous measurement of
the γ strength functions below the neutron separation energies.

6.1 The extracted nuclear level densities

The level densities, as seen in fig. 6.1, are normalized to known levels at low excitation energies
and the calculated level density at Sn for each nuclei. Normalization is done with the constant
temperature model (CT), using T = 0.545 MeV for both nuclei. The last data point of 187Re
that was extracted had very poor statistics and is therefore not included. Experimental levels are
found at NNDC[25] for both nuclei, and are added in the Oslo method input files counting.dat
in the corresponding mama-folders in the github[27].

The extracted NLD of 188Re is generally higher than the one of 187Re, and they are generally
parallel in the logarithmic plot. Comparing the values of Ex which has a NLD for both nuclei
and excluding Ex ≈ 0, we define the relationship between the level densities as

∆ρ =
ρ188Re(Ex)

ρ187Re(Ex)
, (6.1)

and the resulting values are largely constant and average out as

µ =
∑(∆ρ

N

)
≈ 5.10 (6.2)

with a standard deviation of σ ≈ 1.07.
As detailed in chapter 2.3, a comparison was done of the NLD of 160−162Dy, and the level

densities of even N, even Z nuclei were compared to the neighbouring 161Dy of odd N in
Guttormsen et al. [8]. They found that the additional, unpaired nucleon of 161Dy carried an
additional factor of e2 ≈ 7.4 to the NLD compared to the even N neighbour.

Even though 187,188Re are odd/even N and odd Z, and different from 160−162Dy, the observed
pattern we found is still very similar. The values are also very close, and we found a factor
of ≈ 5.1 difference of the NLDs compared to ≈ 7.4 in [8], which is consistent with previous
findings.
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Figure 6.1: The normalized nuclear level densities of 187Re (red squares) and 188Re (green
triangles) from this experiment. The level density is approximately a factor of five different
from one another (see text for details).

6.2 The γ strength functions

The extracted γ strength functions are plotted in fig. 6.2, but before fully evaluating our results,
some preparations and comparisons to external data are necessary.

There are no previous data sets with similar energies for the γSF of these nuclei, but there
are supplementary data with a wide range of γ energies for 187Re above Sn to compare with
our results. We use the two γ cross section data sets measured by Goryachev et al. in 1973 [11]
and Shizuma et al. [46] in 2005. Goryachev et al. did measurements with bremsstrahlung, and
yields were then transformed to γ cross sections by an unfolding procedure. This carries some
challenges of the uncertanties of the results, as discussed in the paper [11] and by Shizuma
et al.[46] and references therein. The results are therefore a γ cross section of 187Re. The
data of Shizuma et al. were measures with quasimonochromatic photon beams to produce
photodisintegration cross sections 187Re(γ,n)186Re from Sn to 11 MeV. Since the (γ,n) cross
section diminished towards Sn as neutron decay competes with γ decay, the γSF calculated
from the (γ,n) cross sections becomes artificially low when calculated close to Sn. Because of
this, the lowest data point near Sn has been excluded. To calculate this external γ cross section
data to a γSF, it’s converted by eq. 2.3 as described in chapter 2.4. Our data together with the
external data is plotted in fig. 6.3

There are also some additional values of E1 and M1 of similar mass nuclei in the PSF
database of the Nuclear Data Services[47]. These data points have larger uncertainties and not
a large range in Eγ . I have therefore not chosen to use these in the fit of Lorentzians later, but
they do serve as a nice validation as a brief comparison in fig. 6.4

6.2.1 Fitting Lorenzian functions to the γSF

To use the γSF in reaction codes and to decode the components of the measurement, it is
conventional to fit a sum of functions, here collectively called Lorentzians. The parameters are
then simple to add into reaction codes, provides a smooth interpolation between data points

57



Figure 6.2: The γ strength functions of 187Re and 188Re from this experiment with inter- and
extrapolations generated in the Oslo method software.

and if the contributions are assumed to be a collection of Lorentz-shaped resonances, they may
provide some assistance in the physical interpretations.

The two functions used here, are the specialized Lorentzian (SLO) and the generalised
Lorentzian (GLO) from [48], where εγ is the γ energy (i.e. x-axis of plot 6.3). The parameters
T, Γ, E and σ0 (denoted T, Gamma0, E0 and sigma0 in the corresponding code) are used as
free parameters in the fit later. First, the SLO is defined from eq. 2.1 in [48]:

SLO : fSLOE1 (εγ) = 8.68 · 10−8
(

mb−1MeV−2
)
·

[
σ0εγΓ2

(ε2
γ − E2)2 + ε2

γΓ2

]
(6.3)

and the GLO is from eq. 2.4 in the same paper as:

GLO : fGLOE1 (εγ , T ) = 8.68 · 10−8
(

mb−1MeV−2
)
·

[
εγΓ(εγ)

(ε2
γ − E2)2 + ε2

γΓ(εγ)2
+

0.7Γ4π2T 2

E5

]
σ0Γ,

(6.4)
where

Γ(εγ) = Γ
ε2
γ + 4π2T 2

E2
. (6.5)

Note how the SLO will have a very different behaviour than the GLO when εγ → 0, going
towards fSLOE1 (εγ = 0, T ) = 0, i.e. steeply towards zero when Eγ ≈ 0 since it is multiplied with
εγ , where the GLO is not. This is also why the seemingly arbitrary choice was done of when to
use either, to better reflect the data close to ε→ 0.

To make a fit of the γ strength function, I used our data as well as the data from Shizuma
et al.[46] and Goryachev et al.[11] for both results. The giant resonances at higher γ energies
are fitted with Generalised Lorentzians (GLO) and the smaller peaks at around 5MeV and
8MeV are fitted with Specialized Lorentzians (SLO).

The number of functions to fit was decided by starting with two fits to describe the GDR,
then adding one more at a time until the total fit seem appropriate. The fitting algorithm
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(a) 188Re

(b) 187Re

Figure 6.3: The nuclear level densities of 187Re and 188Re from this experiment with fitted
Lorentzian functions. The parameters of the lowest Eγ special Lorentzian is locked for 187Re
with the one fitted for 188Re due to the lack of data closer to the neutron separation energy
and poor statistics. The parameters fitted are detailed in table 6.1.
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Figure 6.4: The data for 188Re with external data points for similar-mass and neighbouring
nuclei from the NDS PSF database[47] as described in the text. A singular high, outlying data
point has been omitted as it is not relevant for the main body of data.

187Re T = 0.992

E Γ σ0

SLO1 5.15± ∗ 0.43± ∗ 12.250± ∗

SLO2 8.87± 0.10 1.01± 0.25 14.939± 2.189

GLO1 12.56± 0.17 2.34± 0.35 323.429± 22.602

GLO2 15.97± 0.07 3.88± 0.33 611.374± 22.384

188Re T = 0.949

E Γ σ0

SLO1 5.15± 0.40 0.43± 0.41 12.247± 11.079

SLO2 8.94± 0.08 0.79± 0.17 21.070± 2.638

GLO1 12.55± 0.15 2.35± 0.33 309.718± 19.984

GLO2 15.99± 0.07 4.09± 0.33 598.993± 23.176

Table 6.1: The parameters of the GLO and SLO functions, eq. 6.3 and 6.4, in fig. 6.3. The E
parameter indicates the approximate centroid of the functions. *The first peak of 187Re with
E ≈ 5 MeV is not varied but set at a constant of the best fitted value of 188Re. The uncertainty
is therefore not defined.
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minimizes the residue from the fit ∆~F which is weighted for statistical errors. For the data
points ~D(εγ) with statistical error δ ~D(εγ) the least square error weighted for statistical errors
may be defined as:

∆~F =

[
~S(εγ , T, ~Γ, ~E, ~σ0)− ~D(εγ)

]2
(δ ~D)2

, (6.6)

if the sum of the Lorentzian functions, i.e. the total fit, are defined as

~S(εγ , T, ~Γ, ~E, ~σ0) =fSLO(εγ ,Γ
0, E0, σ0

0) + fSLO(εγ ,Γ
1, E1, σ1

0) (6.7)

+fGLO(εγ , T,Γ
2, E2, σ2

0) + fGLO(εγ , T,Γ
3, E3, σ3

0)

∆~F is then sent into the fitting algorithm with initial guesses of all parameters, except εγ
because it represents the x-axis values and is not needed by the algorithm. The algorithm
then minimises ∆~F with the least squares method by varying the parameters. A minimum
and maximum of the parameters is given, but they are set from previous runs and is closely
monitored so that the final values are not close to these limits.

The specific algorithm used is the lmfit package[49] which is a framework extending the
functionality from other python packages, such as scipy.optimize.leastsq. It also provides
easy calculations of error estimation, like the χ2 estimate and covariance matrices.

Final fit parameters are written out in table 6.1, and can be seen in fig. 6.3. The total
fitted function has two Lorentzians describing the GDR, and two at lower energies. The peak
at Eγ ≈ 5 MeV was added to fit the steep increase of the γSF compared to the GDR, and the
smaller addition at Eγ ≈ 8 MeV was needed as a last addition to not have a larger discrepancy
in this energy area. With these four peaks, the final reduced χ2 were found to be 24.2 for 187Re
and 15.9 for 188Re for the parameters in 6.1.

The covariance matrices are plotted in fig. 6.5 and show clear correlations between the
assumed independent variables of the fit. As a general rule-of-thumb, the covariance between
two variables show how much their variability is correlated, i.e. the larger the value, the more
correlated the parameters are and can no longer be viewed as independent variables. The
covariance matrix is a collection of all the covariances of all the parameters used in the calculated
fit. Its diagonal of a parameter intersecting with itself, is the variance of a parameter, and the
off-diagonal is symmetrical, as the relationship between two parameters are also symmetrical.
What we can see is that the σ0-values are significantly correlated, especially σ2

0 and σ3
0 which

are the values of the double-humped GDR. This should not be surprising, as the tails of the
combined GDR does affect the fit of the other peaks and σ0 does change this contribution. The
variance of σ0

0 is also very large, as the exact optimal “width” the lowest Eγ peak is hard to
estimate due to a lack of data in the Eγ right above. From this, we can conclude that caution
must be shown when using this fit to extrapolate physical meaning from these parameters, and
that we can not assume them to be independent.

6.2.2 Evaluation of the final γ strength function results

The GDR already present in the Goryachev and Shizuma-data are split into a double humped
peak. This might be due to deformation as described in [12]. When only adding these
Lorentzians in the fit, there was a distinct lack of strength around 8 MeV, which is why the
peak there was added, though we currently have no physical interpretation of what this might
be.

There is a possibility of a pygmy resonance at the tail of the GDR, and strength had to
be added in the area around Eγ ≈ 5 and above to fit the data properly. More data is needed
to make any conclusions, so having data with better statistics for 187Re all the way up to the
neutron binding energy would help. For the 188Re data, we found no known measurements
of the γ cross sections or γSF, so data is also needed here to conclude on the presence of a
potential pygmy resonance.

There are, however, no signs of a significant resonance around 3-4 MeV where the scissors
resonance is hypothesised. This is consistent with the theory and predictions about the scissors
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Figure 6.5: The covariance matrices of the parameters to fit the γSF of 187Re (upper) and
188Re (lower) in fig. 6.3 and parameters of table 6.1. The values are logarithmic absolute values,
and show strong correlations between the Sigma (σ0) values of the Lorentzians. Note how the
upper matrix has fewer elements as the parameters of the lowest Eγ peak of 187Re are locked
and not fitted directly.
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resonance in section 2.4.3 where the neighbouring nuclei did not have a strong M1 scissors
though the theorised deformation suggested a scissors resonance could be present, which we
have not found. Previous measurements of the scissors resonance of actinides (A ≈ 230) using
the Oslo method has also shown stronger resonances relative to some other experiments[18].
Since some previous measurements of the resonance in heavy nuclei have been clearly observed,
even at unexpected strengths, there is no reason to believe that if a scissors resonance was
present in 187,188Re that it would not have been observed.

No signs of a low energy enhancement was seen above 1 MeV.

6.3 Estimating systematic errors from parameters.

The Oslo method software propagates the statistical errors from the data sets, but the system-
atical errors introduced by the normalization constants, D0, < Γ0 > and σ(Sn) needs to be
estimated separately. ρ(Sn) is also used in the normalization, but as it’s correlated to D0 by
the highest D0 corresponding to the lowest ρ(Sn) and vice versa, only D0 has been evaluated.

By varying a single value of either parameter at a time within the given errors, we calculate
errors for the γSF and for the NLD of both nuclei as previously done in [43]. Separate lower
and higher error estimates are made, as the spin cutoff parameter σ doesn’t have a traditional
error parameter, but is varied from 60% to 100% of the rigid body inertia (RMI).

We denote the NLD as ρ, ρrec as the recommended NLD, and ∆ρrec as the statistical error
of ρrec. The equivalent notation is also used for the γSF, f . Which limit of which parameter
that produces high or low estimates of the total functions are given in table 6.2. Squaring and
summing the weighted differences for the NLD:

STD2
ρ,high = ρ2

rec

[(
ρD0↓ − ρrec

ρrec

)2

+

(
ρσ↑ − ρrec

ρrec

)2

+

(
∆ρrec
ρrec

)2]
, (6.8)

is the higher estimate, and the lower is

STD2
ρ,low = ρ2

rec

[(
ρD0↑ − ρrec

ρrec

)2

+

(
ρσ↓ − ρrec

ρrec

)2

+

(
∆ρrec
ρrec

)2]
. (6.9)

Doing the same for the γSF, f:

STD2
f,high = f2

rec

[(
fD0↓ − frec

frec

)2

+

(
f<Γ0>↑ − frec

frec

)2

+

(
fσ↑ − frec

frec

)2

+

(
∆frec
frec

)2]
(6.10)

STD2
f,low = f2

rec

[(
fD0↑ − frec

frec

)2

+

(
f<Γ0>↓ − frec

frec

)2

+

(
fσ↓ − frec

frec

)2

+

(
∆frec
frec

)2]
(6.11)

The higher and lower estimates of ρ and f are then equal to the recommended values with
the high or low standard deviation STD, calculated separately for each limit and each dataset
as:

ρhigh = ρrec + STDρ,high, (6.12)

ρlow = ρrec − STDρ,low, (6.13)

for ρ and for f:
fhigh = frec + STDf,high, (6.14)

flow = frec− STDf,low. (6.15)

For the different σ values, a band is made for σ = 0.8 ± 0.1 and another outer limit for
σ = 0.8± 0.2. The final error estimates of the NLD is in fig. 6.6, and the errors of the γSF in
fig. 6.7.
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estimate D0 < Γ0 > σ(Sn)

NLD ρ high ↓ × ↑
low ↑ × ↓

γSF f high ↓ ↑ ↑
low ↑ ↓ ↓

Table 6.2: An overview of what limit of which parameters gives the upper and lower estimates
of the NLD, σ, and the γSF, f. This is a visual representation of the calculations done in eq.
6.8, 6.9, 6.10 and 6.11.

In section 5.2, the values of the < Γ0 > was discussed and the well supported value of
57± 3 meV given for 188Re in Mughabghab[41] was used for both normalizations. The original
recommended value for 187Re of < Γ0 >= 92.5± 10 is plotted alongside the result in fig. 6.7a
(without consideration of it’s given error) as a comparison.
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Figure 6.6: The nuclear level densities of 187Re and 188Re from this experiment. Both
σ = 0.8± 0.1 and σ = 0.8± 0.2 are drawn, but are too narrow to be clearly visible.
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(a) 187Re

(b) 188Re

Figure 6.7: The γ strength functions of both nuclei with errorbands of estimated systematic
errors. 187Re also contains the calculation using the original recommended value of < Γ0 >
from table 5.1.
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Chapter 7

Summary and outlook

Professor X: What is your superpower?
Me: Hindsight
Professor X: That’s not going to help us
Me: Yes, I see that now.

Unknown, Twitter

In this thesis I have used data from the Oslo Cyclotron Laboratory of a 30 MeV α-beam
on 186W to study statistical properties of the quasi-continuum in 187Re and 188Re. By using
the Oslo method on the (α,t) and (α,d) reaction channels, I was able to extract the γSF and
NLD of both 187Re and 188Re. The γSF below the neutron separation energy of either nuclei
has never been measured before, and these results together with the NLD will enable the first
experimental constraints on the (n, γ) cross section from the unstable 186Re to 187Re.

The measured nuclear level densities behaved very similarly between the two neighbouring
nuclei, both being very smooth without significant structures and they had a constant factor of
≈ 5.1 difference, where the odd N, odd Z were the higher one. This is consistent with previous
results from similar experiments such as [8], though a more thorough, systematic comparison of
other similar-mass nuclei would be interesting.

No low energy enhancement was observed in the γSF above 1 MeV in any of the nuclei,
and the γ strength functions did not show a significant scissors resonance around 3− 4 MeV.
Since the scissors resonance is very dependent on deformation, this points towards there being
no significant and well defined deformation of the ground states of the nuclei. By comparing
previous measurements from [11] and [46] of the photo cross section of 187Re, there are signs of
a possible pygmy resonance around the neutron separation energy, but more data is needed to
make a conclusion. A pygmy-type peak had to be added to make a reasonable fit to Lorentzian
functions. By also identifying the resonances, or lack thereof, in the γ strength functions, this
work may also help understand the systematics of these structural features.

This work was motivated by the need for experimental data in this mass region, with a goal
to contribute to the understanding of the 186W s-process branching point and improve upon
current theoretical constraints. The next step in this research is to add the measured NLD and
γSF in to nuclear reaction networks such as TALYS to calculate its impact on the theorised (n,γ)
cross section of 187Re. This can then be evaluated in a larger context and reaction network to
see potential further impact on the branching point as a whole. The 188Re (n,γ) calculated from
the results of this thesis can also be compared to other external measurements to benchmark
this to measured cross sections.

To further refine this work, a further evaluation of the input parameters may improve the
confidence of the normalization on these results. The < Γ0 > given for 187Re from the data of
186Re in [41] is very sparse and more systematic evaluations, such as in [43], may show to be
beneficial.

As to the double-humped GDR observed in [11], a new experiment to re-examine the specific
structural implications predicted by this data would be interesting. As discussed in [46], this
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data do carry some challenges, and the given neutron detection has some very challenging
aspects to it and uncertainties connected to the uniqueness of all detected neutron signals.

A larger and more systematic evaluation of the nuclear level densities in this mass area would
also be very interesting. As the observed level densities of 187−188Re are very well behaved, a
systematic study of the evolution towards shell closures or deformation would be interesting,
highlighting the systematic review of the odd/even N and Z.

An experiment targeted at obtaining the γSF of 187Re up to Sn, and for 188Re above Sn
would also be important to obtain sufficient data to properly conclude on the presence and
characteristics of the pygmy resonance, as it cannot clearly be accounted for by this work alone.
As a pygmy resonance would strongly affect the γSF at and around Sn, it might be a large
contributor to the (n,γ) cross section and specifically important in astrophysical calculations.
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Appendix A

Sorting and calibrating

A.1 Running and modifying usersort.cpp

Usersort is locally written software made to sort and calibrate raw data from OCL to do analysis
with .root files. There are many local versions, some of which can be found at the OCL github
at https://github.com/oslocyclotronlab. The specific version used in this thesis can be
found in the github of this thesis at https://github.com/Loopdiloop/master_thesis[27].

It runs on C++ and is also dependent on root https://root.cern/. After building and
installing as stated in the README it can be run as "./sorting batchfile.batch".

To add a gate for the analysis on a specific particle peak, an if-test is added to only add
values in the γ-t spectra that is corresponding to a certain range of E and dE in Siri. This is
done as follows:

Gate for level in 15N:

#if defined(MAKE_CACTUS_TIME_ENERGY_PLOTS) && (MAKE_CACTUS_TIME_ENERGY_PLOTS>0)

if(e_int>6050 && e_int<7200 && de_int>1200 && de_int<1520){

// gate on the 5/2+ level in 15N at Ex = 5270 keV

if(ex_int>500){ // Reduce the influence of the elastic peak

m_nai_e_t[id] ->Fill( na_e_int, na_t_int );

m_nai_e_t_all ->Fill( na_e_int, na_t_int );

m_nai_e_t_c ->Fill( na_e_int, na_t_c );

}

m_siri_e_t[ei]->Fill( e_int, na_t_c );

m_siri_e_t_all->Fill( e_int, na_t_c );

}

#endif /* MAKE_CACTUS_TIME_ENERGY_PLOTS */

/

A.2 The batch file of usersort

The batch file of usersort is the input file of the C++ script sorting the files from the raw
output files of the OCL setup and convert it into .root files. The initial sortings are usually
done with initial gains, shifts etc., and then using the .root output file, we find calibrations and
other adjustments before re-sorting.

The batch-file, together with the gainshift, presented here contains all final adjustments
from the last sorting. Hashtag denotes inline comments. I will present all the variables with a
brief explanation before showing the full file used for this data analysis in usersort.

• gain file gainshifts.dat specifies the gainshift file containing parameters as explained
further in appendix A.3.
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• parameter tnai corr enai = ... Corrections walk and leading edge of the NaI cactus
detectors. These are the parameters from the fit of XX on m nai e t, leading to the
“straightened” version of the same plot m nai e t c.

• parameter tnai corr esi = ... Corresponding parameters of tnai corr enai for SiRi,
corrigating m siri e t, as explained in section 3.7

• rangefile zrange d.dat is a way of simple gating on different particle spectra which,
in this thesis, is either deutrons or tritons.

• parameter ede rect = ...

• parameter thick range = ... sets width and size of the rangefile gate.

• parameter ex from ede = ... is taken directly from kinematic simulations of Qkinz,
specifying corrections for ring 0-7 to calculate from particle incident energies on E-dE to
excitation energy.

• parameter ex corr exp = ... not in use.

• data directory ../master data/raw is the directory of the raw input data files.

• data file sirius-20160420-135618.data ... After specifying the directory, this is
where you add all filenames. All files are added one line at a time, all with the keywords
”data file”.

• export mama h ex f0 h ex f0 MAMA is used to export to MAMA matrices to do further
analysis with the Oslo method software, ompy or MAMA.

• export root W186 a d all calib.root exports the now sorted and manipulated data
to a .root file.

From this, the full .batch-file looks like this (some comments have been omitted):

1 # a,d

2

3 # where to load the gainshifts from; one can also use:

4 # parameter gain_e = ... and so on

5 #gain file gainshifts_plain.dat

6 gain file gainshifts_W186_final.dat

7

8 # (constant fraction) cactus energy correction parameters for cactus time

9 #parameter tnai_corr_enai = 0 1 0 0 // Default

10 parameter tnai_corr_enai = 0.589716 16054.1 96.2308 -0.000373339 // tcorr for a,

p

11

12 # (constant fraction) siri energy correction parameters for cactus time

13 #parameter tnai_corr_esi = 0 1 0 0 // Default

14 parameter tnai_corr_esi = 8.7091 -66527.8 -491.714 9.78023e-5 // Siricorr , v1 (a

,p)

15

16 # Parameters for the range curve , 3He or alpha

17 #rangefile zrange_he3.dat

18 #rangefile zrange_a.dat

19 rangefile zrange_d.dat

20 #rangefile zrange_p.dat

21

22 # Cut of low -energy events by making a rectangle which is excluded

23 # in the down , left corner of the banana.

24 # Contains E-minimum 1, DE -minimum 1, E-minimum 2, DE -minimum 2.

25 # Including Z=1 particles:

26 parameter ede_rect = 500 250 30 500

27 # Excluding Z=1 particles:

28 #parameter ede_rect = 500 2500 2000 2500

29
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30 # Thickness gate for proton banana

31 parameter thick_range = 125 15 0

32

33 # Thickness gate for 3He banana

34 #parameter thick_range = 48 8 0

35

36 # Thickness gate for alpha banana

37 #parameter thick_range = 165 10 0

38 #parameter thick_range = 48 5 0

39

40 # Fit from Qkinz for converting to energy.

41 # 186W (alpha , d gamma) 188Re, 30MeV. Strip 0-7 in that order. Deutron -data! [

keV]

42 parameter ex_from_ede = 1.4551283e+4 -1.000915 -8.04e-7 \

43 1.4556803e+4 -1.000073 -8.18e-7 \

44 1.4561938e+4 -9.999144e-1 -8.33e-7 \

45 1.4567338e+4 -9.98259e-1 -8.45e-7 \

46 1.4572350e+4 -9.97292e-1 -8.60e-7 \

47 1.4576298e+4 -9.96112e-1 -8.82e-7 \

48 1.4580493e+4 -9.94982e-1 -9.00e-7 \

49 1.4584253e+4 -9.93772e-1 -9.21e-7

50

51 # empirical excitation energy correction for the above , e.g. from known peaks

52 parameter ex_corr_exp = 0 1 \

53 0 1 \

54 0 1 \

55 0 1 \

56 0 1 \

57 0 1 \

58 0 1 \

59 0 1

60

61

62 #data directory Datafiles

63 data directory ../ raw_data_186W

64 #maximum number of buffers to read for each file; for testing

65 #max_buffers 1

66

67 #186W ALL FILES

68 data file sirius -20160420 -135618. data

69 data file sirius -20160420 -171400. data

70 data file sirius -20160420 -182451. data

71 data file sirius -20160420 -233716. data

72 data file sirius -20160421 -091709. data

73 data file sirius -20160421 -100724. data

74 data file sirius -20160421 -224045. data

75 data file sirius -20160422 -081940. data

76 data file sirius -20160422 -093300 -big -000. data

77 data file sirius -20160422 -093300 -big -001. data

78 data file sirius -20160422 -093300. data

79 data file sirius -20160422 -122054. data

80 data file sirius -20160422 -124416. data

81 data file sirius -20160422 -180843. data

82 data file sirius -20160423 -073059. data

83 data file sirius -20160423 -160731. data

84 data file sirius -20160423 -173835. data

85 data file sirius -20160423 -213756. data

86 data file sirius -20160424 -104217. data

87 data file sirius -20160424 -160703. data

88 data file sirius -20160424 -223103. data

89 data file sirius -20160425 -075414. data

90 data file sirius -20160425 -120131. data

91 data file sirius -20160425 -203224. data

92 data file sirius -20160425 -222023. data

93 data file sirius -20160426 -104456. data

94 data file sirius -20160426 -120853. data

95 data file sirius -20160426 -141446. data

96 data file sirius -20160426 -230123. data

97 data file sirius -20160427 -033555. data
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98 data file sirius -20160428 -091134. data

99 data file sirius -20160428 -122211. data

100 data file sirius -20160428 -173419. data

101 data file sirius -20160428 -230248. data

102 data file sirius -20160429 -070605. data

103 data file sirius -20160429 -094446 -big -000. data

104 data file sirius -20160429 -094446 -big -001. data

105 data file sirius -20160429 -094446 -big -002. data

106 data file sirius -20160429 -094446 -big -003. data

107 data file sirius -20160429 -094446. data

108

109

110 # Write to MAMA matrix

111 #export mama h_ex_f0 h_ex_f0_MAMA

112 export mama m_alfna alfna

113 #export mama m_alfna_bg alfna_bg

114

115 # at the end , spectra are dumped to the root file

116 # root output file

117 export root W186_a_d_all_calib.root

A.3 The gainshift file of usersort

The gainshift-file is used by the batchfile and contains a lot of it’s namesakes, gains and shifts,
but also other correctional parameters. Not all values are used in this project, and are therefore
set to 0 or 1 dependent on whether its an additive or multiplicative factor.

• Line 1 - 8 contains the gain of E of the particle spectra from SiRi.

• Line 10 - 17 containt the gain of dE , also in the particle spectra from SiRi.

• Line 19 not used in this project.

• Line 21 - 25 are the gain of the NaI found in the gamma calibration.

• Line 27 - 34 are the shift from the E particle spectra.

• Line 36 - 43 are also the shifts from SiRi, but for dE.

• Line 45 not used in this project.

• Line 47 - 51 is the shift of the NaI to line all detectors up. [shift-na]

• Line 53 not used in this project.

• Line 55 - 59 Shift in time alignment, t NaI. [shift-t-na]

• Line 61 not used in this project.

• Line 63 - 67 gain for NaI time alignment. Not used in this project, as shift was assumed
to be sufficient as we are only interested in a single data point area.

The final gainshift file used in this thesis, gainshifts W186 final.dat

1 7.111605 7.192546 7.165704 7.193396 7.206805 7.234765 7.289730 7.324634

2 7.196596 7.233484 7.263896 7.272741 7.315299 7.328453 7.398356 7.414511

3 7.167202 7.170212 7.194500 7.246569 7.281545 7.310820 7.404717 7.386424

4 6.975718 7.024869 7.028252 7.083781 7.097859 7.149961 7.109659 7.200620

5 6.946819 6.993517 7.026957 7.047295 7.076151 7.125504 7.137700 7.212225

6 7.077223 7.074586 7.076942 7.114307 7.216790 7.194236 7.274630 7.322052

7 6.844764 6.917340 6.968574 6.951104 6.978344 7.055593 7.086233 7.071235

8 7.211216 7.235998 7.203439 7.283856 7.286341 7.409412 7.397140 7.457746

9

10 4.174376 4.115991 4.250831 4.033260 4.026550 3.997319 4.011394 4.084808

11 4.140244 4.111594 4.056781 4.093695 4.015456 4.255210 3.950774 4.006675
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12 4.129231 4.015426 4.043565 3.838776 3.963493 3.956289 4.024921 3.758659

13 3.771913 3.919281 3.988218 3.884565 3.932603 3.829781 3.818998 3.726999

14 4.036192 3.964160 3.976061 3.964429 4.055050 3.911323 3.893128 3.770282

15 3.929877 3.990988 3.949096 3.956825 3.742416 3.770388 3.780629 4.003623

16 4.352694 4.177390 4.226649 4.255136 4.049544 3.981681 3.991627 4.063438

17 3.916964 3.903497 3.876270 4.039508 3.855534 3.954378 3.781481 3.845792

18

19 1 1 1 1 1 1

20

21 4.22126266 4.19030539 3.8570554 3.7899465 1. 3.65066897 3.66893719

22 3.72718986 1. 1. 3.74224491 3.70985893 1. 3.58915278

23 3.73955464 3.69676528 3.66708634 3.17364957 3.51663528 3.41175078 3.59380117

24 3.47351268 3.57904083 3.57727202 3.34178767 3.4555261 3.50219067 3.55393796

25 3.52347534 3.51858479 1. 1.

26

27 -1066.479620 -1195.256762 -1164.769548 -1224.911270 -1257.231552 -1303.654110

-1381.537586 -1407.424071

28 -881.297781 -924.458773 -999.578147 -1050.192690 -1125.757568 -1150.923314

-1258.121331 -1253.684091

29 -1336.875680 -1356.590457 -1398.399848 -1474.783926 -1526.231480 -1576.240511

-1718.244841 -1685.035131

30 -1270.234277 -1360.722425 -1377.324427 -1474.954013 -1504.357234 -1596.318047

-1551.434260 -1687.376864

31 -1107.128125 -1174.929501 -1219.177687 -1253.739359 -1291.318665 -1381.880786

-1408.777086 -1495.838971

32 -1367.888002 -1371.035662 -1405.282905 -1474.752397 -1627.979248 -1604.964863

-1724.996075 -1780.707526

33 -903.979748 -1011.532404 -1086.660327 -1081.699982 -1129.665508 -1248.341800

-1301.811781 -1273.422644

34 -1264.462740 -1287.621907 -1256.127670 -1375.963385 -1378.816815 -1555.193464

-1547.639706 -1622.252054

35

36 -24.089351 -26.947203 -47.955389 -17.417918 -15.092193 -20.721400 -13.302870

-21.590756

37 -41.203575 -39.475943 -34.997105 -26.249855 -23.556561 -54.837608 5.908771

-27.789510

38 -34.630406 -26.165100 -29.234317 -7.773120 -3.289071 -26.299861 -20.096267

10.294242

39 -19.851988 -59.037547 -12.435197 -24.429838 -5.102510 -41.054889 -10.403212

-7.654215

40 -322.759255 -264.762862 -210.655368 -187.140298 -213.822227 -298.758164

-241.905519 -257.623781

41 -341.748398 -294.517111 -336.559570 -243.625448 -343.251053 -199.761282

-263.978672 -216.679629

42 -332.695616 -419.962831 -543.683187 -409.732714 -334.578176 -298.509147

-352.127334 -277.410445

43 -329.753375 -274.911043 -383.453733 -343.429968 -355.566525 -330.279274

-389.287641 -283.017158

44

45 0 0 0 0 0 0

46

47 -102.63737344 -138.03328103 -46.07145416 -23.61535942 0. 23.91568049 -4.84568032

48 -4.18237594 0. 0. -34.57227967 -13.8482033 0. 18.31575682

49 -10.69989689 -57.72636113 -75.16704753 273.46324835 25.21981555 -8.31963752

27.93786379

50 29.05291746 37.24903265 26.1341824 -32.1471526 5.63729774 -22.19534441

-78.85431988

51 61.23231737 30.36983408 0. 0.

52

53 0 0 0 0 0 0

54

55 44 39 31 -14 0. 20.5 30

56 24.5 0. 0. 33 21 0. 24.5

57 24 21 18.5 27.6 30 22 24.5

58 22 20 18 18.5 22 17 23

59 17 17 0. 0.

60

61 1 1 1 1 1 1

62
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63 1 1 1 1 1 1 1

64 1 1 1 1 1 1 1

65 1 1 1 1 1 1 1

66 1 1 1 1 1 1 1

67 1 1 1 1
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[4] F. Käppeler, R. Gallino, S. Bisterzo, and Wako Aoki. The s process: Nuclear physics,
stellar models, and observations. Rev. Mod. Phys., 83:157–193, Apr 2011. doi: 10.1103/
RevModPhys.83.157. URL https://link.aps.org/doi/10.1103/RevModPhys.83.157.

[5] M. R. Drout, A. L. Piro, B. J. Shappee, C. D. Kilpatrick, J. D. Simon, C. Contreras,
D. A. Coulter, R. J. Foley, M. R. Siebert, N. Morrell, K. Boutsia, F. Di Mille, T. W.-S.
Holoien, D. Kasen, J. A. Kollmeier, B. F. Madore, A. J. Monson, A. Murguia-Berthier,
Y.-C. Pan, J. X. Prochaska, E. Ramirez-Ruiz, A. Rest, C. Adams, K. Alatalo, E. Bañados,
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