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Abstract  
Understanding of hydroelastic waves is essential since it interferes in several domains of 

study. This thesis presents an analytical investigation on wave-ice interaction, where ice is 

modelled as an elastic material. Mainly, in this thesis the focus is on the three wave 

interactions in the case of resonance for beam and plate structural elements. In addition, the 

non-resonant particular solution of the second order problem is also derived, where the 

analytical solution of the group line is found. The analysis starts by finding dispersion 

relations of different structural elements. After that, the governing equations of the coupled 

system between elastic sheet and fluid are derived. Then, the solution of the first order 

problem is found after applying regular perturbation. Three wave resonance investigation is 

done for beam and plate, the plate case is compared with the capillary-gravity waves. It is 

concluded that the hydro-elastic waves have a different behaviour than that of the capillary-

gravity waves. The interaction equations in case of resonance were derived by means of 

multiple scales perturbation method and Green’s theorem. It is proven that the stiffness of the 

elastic sheet covering fluid affects the group velocity and the amplitude of the wave field. To 

add, elastic parameters present in the interaction coefficients can influence the nonlinear 

interaction happening. The analytical solution of the group line is found by solving the second 

order problem of the coupled system, for the non-resonant case. The structure of the group 

line is probably a cloud looking like a straight line. 
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Notations 

 

(x, y, z): Distance in meter  

(t): Time in seconds  

η(x, t): Surface elevation/displacement of surface in form of waves 

 φ(x, z, t): Velocity potential of surface elevation 

k: Wavenumber  

λ: Wavelength  

ω: Angular frequency  

T: Wave period 

𝐴 : Complex amplitude  

𝒓 : Position vector 

χ: Phase function 

𝒄𝑔: Group velocity 

𝜖: Characteristic steepness  

𝐸 : Young’s modulus. 

𝐼 : Second moment of area 

𝑓(𝑥, 𝑡) : Load per unit length  

𝜌𝑓 : Mass density of fluid 

𝐷 : Flexural rigidity of the plate 

𝐼𝑚 : Moment of inertia per unit area 

𝑞(𝑥, 𝑦, 𝑡): Distributed load on the plate  

Further notations are presented in the text where it is applied. 
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Chapter 1 
 

Introduction  
 

Waves can be defined as a propagating dynamic disturbance of one or more quantities. One 

needs to understand a large set of possible waves and the interaction between them [1]. In 

fact, wave interaction with each other and with the surrounding material have a huge impact 

on the environment and humanity. 

 

1.1 Motivation 

Ocean waves affect the way sea-ice forms, contribute to how the ice edge moves, 

penetrate further into the sea-ice, have more destructive power to break up the ice and 

to change the distribution of floe sizes because the ice is weaker, and assist in lateral 

melting. These interactions collectively identify a parametrization currently absent 

from Earth system models, as well as shortcomings in wave forecasts arising from 

limited understanding of the impact of sea-ice on ocean waves and vice versa [2]. Ice 

can be modelled as an elastic material and exploring ice-water interaction will enhance 

the understanding of wave behaviour in elastic materials. Furthermore, pollution 

released close to the ice, for example oil contamination due to accidental blow-up 

during oil extraction near the arctic regions, can be brought under the ice and 

transported rapidly for long distances. A possible contribution to rapid spreading of 

pollution is the existence of the group line associated with induced current for the 

wave motion in ice. The group line was detected in the experiments of Olsen (2019) 

where irregular surface waves on water were sent into a region where the water was 

covered by an elastic sheet that was supposed to resemble ice [7]. In the figure below, 

the line coming from the origin is called the zeroth harmonic or the group line. 

 

Plot  1. Logarithmic scaled spectrum plot for Latex sheet with 0.2 mm thickness, Olsen 

(2019) 
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Information about the group line streaming is still lacking, therefore, it is essential to 

investigate the group line phenomenon. In this thesis, analytical investigation is made 

which may help in comprehension of ice-wave interaction, or elastic material-wave 

interaction.  

 

1.2 Previous work 

During the last period, the study of water waves was an area of great interest. The 

importance of water waves behaviour made researchers more engaged in investigating 

it. To add, recently research became richer due to the technological evolution, which 

increased the ability of accurate measurements. 

Furthermore, research about ice-wave interaction, and waves that propagate on elastic 

sheets or membranes can be found in several domains such as fluid mechanics, 

geophysics, and biophysics. Such interaction is affecting our daily lives and 

environment. One example is the detection of a series of waves with approximately 

one-meter amplitude and 18 seconds period 560 km away from the ice edge in the 

Weddell sea, which lead to the breakup of the ice pack. The latter was encountered by a 

scientist on the R/V Polarstern [6]. The Weddell sea extreme waves have been 

explained and analysed by Lui & Mollo Christensen in their article Wave Propagation 

in a Solid Ice Pack [6]. In their article they derived the dispersion relation for waves 

under pack compression and compared group velocity to critical mean compressive 

stress, in addition to carrying out a stability analysis using the non-linear cubic 

Schrödinger equation and providing a non-linear model to describe waves in ice [7].  

Regarding the resonant interaction, Harrison (1909) studied the three-wave resonance 

of two unidirectional capillary-gravity waves [19].  These waves are commonly called 

Wilton’s ripples, after Wilton (1915) [20], although they were previously described by 

Harrison (1909). Another study was done by Phillips (1960) where he proved the 

nonexistence of the three-wave resonance of deep-water gravity waves [21]. To add, 

the quartet resonance of gravity waves was investigated by Phillips (1960). After five 

years, McGoldrick (1965) studied the configuration of resonant triads of gravity-

capillary waves on infinite depth [15]. 

 

1.3 Research Questions  

Wave-ice interaction theory is a wide field and includes various cases. In this Master 

thesis an investigation of the wave-ice interaction, where the ice is modelled as a thin 

elastic sheet, is performed. In the nonlinear problem, the risk of resonant growth is 

investigated and found to be present for certain wave numbers in three wave 

interaction. This analysis made us able to comprehend the difference between the 

behaviour of elastic wave resonance triads and that of capillary gravity waves triads. 

The possibility of resonance blow up leads to the need of slow modulations on time 

and space and a solvability condition that arrests that growth. The solvability condition, 

which is the resonance interaction equations, is found by means of Green’s theorem. 

Those equations gave more understanding of how the interaction coefficients depend 
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on the elastic parameters. Besides, how the group velocity and amplitudes were 

affected by the elasticity of the structural element. Furthermore, the experiments 

showed the presence of a strong zeroth harmonic ‘‘group line’’. The existence of the 

group line implies an induced streaming that can possibly carry pollution under the ice. 

For that the analytical solution of this group line was derived. The latter will lead to 

computing the structure and predicting the distribution of energy intensity of the group 

line.  

 

1.4 Outline  

Chapter 2 includes mathematical background of some concepts used during fulfilment 

of this thesis. It presents a mathematical description of ocean waves, short explanation 

of the method of multiple scales, and Green’s second identity. 

 

In Chapter 3 a theoretical derivation of the linear dispersion relation of string, Euler- 

Bernoulli beam and plate is done. The plots of the dispersion relations are included and 

discussed shortly. 

 

Chapter 4 contains the second order problem by regular perturbation and multiple 

scales method for the Euler-Bernoulli beam. It also presents resonance investigation of 

three wave resonance and the resonant interaction equations. 

 

Chapter 5 presents same approach made in chapter 4 for a different structural element 

which is the plate. The resonant interaction equations for plate over fluid are derived. 

This chapter also includes the particular solution for the second order problem, where 

the analytical solution of the group line is derived. 

 

In Chapter 6, short discussion of the dispersion relations is stated. Then, deeper 

consideration of the resonance analysis is presented. Furthermore, the interaction 

equations are discussed in section 6.3. Lastly, the nonlinearly forced response is 

discussed. 

 

Chapter 7 presents a conclusion of this thesis and suggestions for further work are 

stated. 
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Chapter 2 
 

Mathematical background 

 

  
 Richard Feynman wrote about water waves in his book The Feynman lectures on physics [4] 

‘‘the worst possible example [of waves], because they are in no respect like sound and light; 

have all the complications that waves can have’’ [5]. In general, ocean waves can be 

described as unpredictable and random. In this chapter, we will present a mathematical 

description of ocean waves. We will also state some definitions that will be used in the 

coming chapters.  Besides, we will present the multiple scales method which is one of the 

most important methods in the applied mathematics domain. This method will be applied 

while solving the nonlinear system in chapter 4. Finally, from vector calculus, Green’s second 

identity is expressed.  

 

2.1 Description of waves 

In the very beginning, it is important to describe a monochromatic wave, which is also 

known as simple harmonic wave. By definition, it is a sinusoidal wave with a unique 

period 𝑇 and a unique wave length λ [9]. The monochromatic wave is represented as 

follows 

Where, 

 𝐴 is a complex amplitude  

𝒌 is the wavenumber vector 

𝒓 is the position vector 

 

The phase function is denoted by  

χ = (𝒌. 𝒓 − 𝜔𝑡 + arg𝐴) 

The phase surface is the equiscalar surface of the phase function χ = constant. 
One property of the wave is the phase speed, which is the speed that the phase surface 

moves in its normal direction. [9] 

 

Waves can be interpreted as free waves if they can exist without being forced, if not it 

will be a forced wave. Free waves satisfy what is called the dispersion relation, which 

is a relation between the wavenumber vector 𝒌 and the angular frequency 𝜔.  

Linear dispersion relation is the relation that is independent of the amplitude 𝐴. On the 

other hand, if the dispersion relation is depending on 𝐴 , then it is called nonlinear. The 

dispersion relation gives information about the behaviour of the wave.  

 

𝜂(𝑟, 𝑡) = 𝑅𝑒{𝐴𝑒𝑖(𝒌.𝒓−𝜔𝑡)} = |𝐴| cos(𝒌. 𝒓 − 𝜔𝑡 + arg𝐴) 
 

 

 

(2.1) 
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If the dispersion relation specifies a proportionality between the wavenumber k and the 

angular frequency ω, then the waves are said to be non-dispersive, otherwise we say 

they are dispersive. For non-dispersive waves, the phase speed does not depend on the 

frequency, while for dispersive waves it depends on the frequency. If the dispersion 

relation depends only on the wavenumber k and not on the direction of the 

wavenumber vector k the waves are said to be isotropic, otherwise we say they are 

anisotropic. Isotropic waves have the same properties in all directions, anisotropic 

waves have different properties in different directions. [9]   

By definition, the velocity of propagation through space of the whole envelope of the 

wave is called the group velocity.  Mathematically, the group velocity is the gradient 

𝒄𝑔 =
𝜕𝜔

𝜕𝒌
.  

Last but not least, if the system studied, meaning the governing equations was linear 

and unforced, then the waves will be free.  This means that the solution will be of the 

form stated in equation (2.1). The principle of superposition can be used to combine 

irregular wave solutions. 

Each term in the above equation is considered a free monochromatic wave with a 

complex amplitude 𝐴𝑛. 

 

In case the amplitudes 𝐴𝑛 are independent stochastic variables, then the Central Limit 

theorem predicts that the statistical distribution of the resulting wave field should be 

Gaussian. [9] 

For nonlinear governing equations, the linear superposition principle will be not valid. 

Nevertheless, for weakly nonlinear equations, with nonlinear contribution characterized 

by small parameter 𝜖 <<1, then the irregular wave solution can be expressed as follows 

 

 

2.2 The Multiple Scales Perturbation Method  

 

Equations arising from mathematical models usually cannot be solved in exact form. 

Therefore, we often resort to approximation and numerical methods. Foremost among 

approximation techniques are perturbation methods [10]. For a model equation that 

includes small terms, perturbation methods can be applied in order to find an 

approximation solution for the problem. If the effect of the physical process is small, 

then small terms will appear in the equations. To illustrate, the viscosity could be small 

contrasted to the advection in a fluid flow problem. Another example is in the motion 

of a projectile, where the force caused by air resistance may be small compared to 

gravity.  These low-order effects are represented by terms in the model equations, and 

 

𝜂(𝒓, 𝑡) =∑𝐴𝑛𝑒
𝑖(𝒌𝒏.𝒓−𝜔𝑛𝑡)

𝑛

 

 

 

(2.2) 

 

𝜂(𝒓, 𝑡) = 𝜂𝐿(𝒓, 𝑡) +  𝜖𝜂𝑁𝐿(𝒓, 𝑡) 
 

(2.3) 
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when compared to the other terms, are negligible. When scaled properly, the order of 

the magnitude of these terms is represented by small coefficient parameter called 𝜖. 

Perturbation methods can be used to all types of equations considered in applied 

mathematics. [10] 

 

The method of multiple scales is one of the most important perturbation methods. This 

method contains techniques that lead to constructing uniformly valid approximations to 

the solutions of perturbation problems for several values of independent variables. The 

headstone of the method of multiple scales is introducing fast scale and slow scale 

variables for an independent variable, then dealing with the introduced scales as if they 

are independent. As a consequence of the latter step, the additional freedom that came 

from the new independent variables will be utilized in removing the secular terms. The 

latter puts constraints on the approximate solution, which are called solvability 

conditions. [11]  

 

The starting point in the procedure of the method of multiple scales is letting 𝜏 =  𝜖𝑡 (𝜏 

defines a long-time scale because 𝜏 is not small when t is if order 1/ 𝜖 or larger [12]) 

Then, assuming a perturbation expansion as follows,  

 

𝑦(𝑡) = 𝑌0(𝑡, 𝜏) + 𝜖𝑌1(𝑡, 𝜏) + ⋯       (2.4) 

 

 

Subsequently, for finding the derivatives of 𝑦(𝑡) ,the chain rule is used for partial 

differentiation.   

 

𝑑

𝑑𝑡
=

𝜕

𝜕𝑡0
+ 𝜖

𝜕

𝜕𝑡1
+⋯ 

      (2.5) 

And  

𝑑2

𝑑𝑡2
= (

𝜕

𝜕𝑡0
+ 𝜖

𝜕

𝜕𝑡1
+⋯)

2

=
𝜕2

𝜕𝑡0
2 + 2𝜖

𝜕2

𝜕𝑡0𝜕𝑡1
+⋯ 

      (1.6) 

 

The next step will be substituting in the equations we need to solve, then using the 

accomplished freedom in removing the secular terms. 

 

The multiple scales method was studied by many researchers and it is used in several 

physical and mathematical problems. For instance, analysis of a damped oscillator, 

studying the Rayleigh oscillator and solving boundary layer problems. The multiple 

scales method is used in the solution process of our system, where the plate or beam is 

placed over fluid. 
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2.3 Green’s second identity 

Generally, Green’s theorem in vector calculus links a line integral around a simple 

closed curve C to a double integral over the plane region D bounded by C. One 

special case of Green’s theorem is Stokes’ Theorem for two dimensional systems. 

Using Green’s theorem, a set of identities was derived and named after the 

mathematician George Green, the discoverer of the theorem [13]. 

In this section, we will briefly shine light on Green’s second identity, which is a 

vector calculus identity that relates the bulk with the boundary of a region on which 

differential operators act. 

 

Green’s second identity is derived from Green’s first identity for the pair of 

functions (𝑢, 𝑣)over the domain D. The first identity in three dimensional is:   

∭𝑣∆𝑢𝑑𝑥 =∯(𝑣
𝜕𝑢

𝜕𝑛
)𝑑𝑆 −∭∇𝑢. ∇𝑣𝑑𝑥 

 

(2.7) 

 

When interchanging u and v, Green’s first identity will be then,  

 

∭𝑢∆𝑣𝑑𝑥 = ∯(𝑢
𝜕𝑣

𝜕𝑛
)𝑑𝑆 −∭∇𝑢. ∇𝑣𝑑𝑥 

 

(2.8) 

 

The second term of the right-hand side in equations (2.7) and (2.8) are exactly the 

same, then if we subtract the above equations, we will get, 

∭(𝑢∆𝑣 − 𝑢∆𝑣)𝑑𝑥 =∯(𝑢
𝜕𝑣

𝜕𝑛
− 𝑣

𝜕𝑢

𝜕𝑛
)𝑑𝑆 

 

(2.9) 

 

The above equation is known as Green’s second identity for a pair of functions 

(𝑢, 𝑣). 
Later during the chapters, Green’s second identity will be used to find a solvability 

condition that prevents the unbounded resonant growth of the nonlinear problem. 

This is accomplished by relating the bulk with the boundary of a region.  
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Chapter 3 
 

Linear dispersion relations for transverse waves in different 

structural elements 
 

Structural elements are the elements used in structural analysis making the study of complex 

systems simpler. Those elements are designed to withstand forces and moments. In the 

following sections different kinds of elements will be studied such as line elements (e.g., 

string and beam), surface elements (e.g., plate, free surface). 

Transversal waves are waves in which particles vibrate at right angles to the direction of 

propagation of wave. This type of wave is used in this chapter as a disturbance of the 

structural elements. 

 

3.1 Transverse waves in a string: 

 

In this section we will derive the wave equation of transverse waves in a string, in 

order to derive the dispersion relation. To start the analysis, it is beneficial to define 

the system studied. Consider a string under small transverse displacement, the 𝑥-

coordinate is along the string and the displacement 𝜓 is applied in the 𝑧-direction 

(tangent to the string).  

Consider a segment of the string in the 𝑥-direction that separates two points 𝑥 and  

 𝑥 + 𝑑𝑥 as shown in the figure below  

 

Fig 1. Segment of the string in the 𝑥-direction. Available at: 

https://www.people.fas.harvard.edu/~djmorin/waves/transverse.pdf  

Now using Newton’s second law of motion 𝐹 = 𝑚𝑎 , the wave equation is to be 

found.  

 

Fig 2. Forces acting on the string segment. Available at: 

https://www.people.fas.harvard.edu/~djmorin/waves/transverse.pdf 



18 

 

Starting from calculating the tension forces in the string where 𝑇 is string tension 

magnitude. 

 

 
𝑇⃗ 1 = −𝑇

𝑖𝑥⃗⃗⃗  + 𝜓𝑥𝑖𝑧⃗⃗  

√(1 + 𝜓𝑥
2)

 

 

 

(3.1) 

 
𝑇⃗ 2 = 𝑇

𝑖𝑥⃗⃗⃗  + 𝜓𝑥𝑖𝑧⃗⃗  

√(1 + 𝜓𝑥
2)

 

 

 

(3.2) 

 

Taylor expansion is applied on 𝑇2  around point 𝑥 to get  

  

 The total force will be as follows  

Knowing that the slope 𝜓𝑥 is considered small, only the terms that are linear in 𝜓 are 

included. Then the total force is  

Now applying Newton’s law knowing that the mass of small segment of string is µ𝑑𝑥 

where µ is the mass per unit length  

 

             

 The wave equation of a string under transverse displacement is then  

𝑇⃗ 2 = 𝑇

(

 
𝑖𝑥⃗⃗⃗  + 𝜓𝑥𝑖𝑧⃗⃗  

√(1 + 𝜓𝑥
2)

+ 𝑑𝑥
𝜕

𝜕𝑥

𝑖𝑥⃗⃗⃗  + 𝜓𝑥𝑖𝑧⃗⃗  

√(1 + 𝜓𝑥
2))

  

 

 

(3.3) 

𝐹 𝑛𝑒𝑡 = 𝑇𝑑𝑥

(

 
 
 
 
𝜓𝑥𝑥√1 + 𝜓𝑥

2 𝑖𝑧⃗⃗  − (𝑖𝑥⃗⃗⃗  + 𝜓𝑥𝑖𝑧⃗⃗  )
𝜓𝑥𝜓𝑥𝑥

√(1 + 𝜓𝑥
2)

1 + 𝜓𝑥
2

)

 
 
 
 

 

 

(3.4) 

 

𝐹 𝑛𝑒𝑡 = 𝑇𝑑𝑥𝜓𝑥𝑥𝑖𝑧⃗⃗   
 

 

(3.5) 

 

𝐹 = 𝑇𝑑𝑥𝜓𝑥𝑥 = µ𝑑𝑥𝜓𝑡𝑡 
 

 

(3.6) 

 

𝜓𝑡𝑡 =
𝑇

µ
𝜓𝑥𝑥 

 

 

(3.7) 
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Assuming that the solution is of the form  𝜓(𝑥, 𝑡) = 𝐴𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡), knowing that 𝜔 is the 

frequency and 𝑘 is the wave number. Then the dispersion relation is   𝜔 = √
𝑇

µ
𝑘. 

 

3.2 Transverse waves in a beam: 

 

By definition, beams are structural elements that resist loads applied laterally to the 

beam’s axis. In this section, Euler-Lagrange equation and Newton’s second law 

approaches are used to find the general form of Euler-Bernoulli beam equation. 

For simpler analysis, consider a homogeneous beam with constant rectangular cross 

section and it endures only linear elastic deformation. Also, it is slender with small 

deflections to be taken into consideration. 

Starting with the static beam equation; that is the relation between the deflection in the 

beam and the applied load.  

The Euler- Bernoulli equation 

 

Where, 

𝑤(𝑥) is the deflection of the beam in the 𝑧-direction at a position 𝑥. 

𝐸 is Young’s modulus. 

𝑓(𝑥, 𝑡)  is the load per unit length  

𝐼 is the second moment of area, with respect to the y-axis, of the beam’s cross-section 

which is given by 

 

Where, b is the width, and a is the thickness of the beam.  

Here, and due to forthcoming use, parallel axis theorem is applied for the second 

moment of area, then  𝐼 =
𝑏𝑎3

12
+
𝑏𝑎3

4
 

For such geometry and composition, 𝐸𝐼 will be considered constant (flexural rigidity) 

and the beam’s deflection (𝑤) can be written as follows 

Derivation of dynamic beam equation using the Euler-Lagrange equation 

 

Starting by the functional S which is given by  

 

𝜕2

𝜕𝑥2
(𝐸𝐼

𝜕2𝑤(𝑥, 𝑡)

𝜕𝑥2
) = 𝑓(𝑥, 𝑡) 

 

 

(3.8) 

 

𝐼 = ∫ ∫ 𝑧2𝑑𝑧𝑑𝑦

𝑎
2⁄

−𝑎
2⁄

=

𝑏
2⁄

−𝑏
2⁄

𝑏𝑎3

12
 

 

(3.9) 

 

𝐸𝐼
𝜕4𝑤(𝑥, 𝑡)

𝜕𝑥4
= 𝑓(𝑥, 𝑡) 

 

 

(3.10) 
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The first term is the kinetic energy knowing that µ is the mass per unit length, the 

second term is the potential energy due to internal forces which is considered with 

negative sign (sign convention). 

Now, Euler-Lagrange equation is used to determine the function that minimizes the 

functional S.  

Lagrangian is in this case 

 

The general form of the Euler-Lagrange equation is  

Then, 

 

Replace into the general form in (3.13) to get  

And when we consider the beam homogenous E and I will be constants, ending up 

with a simpler equation which is  

 

Equation (3.16) is the governing equation for the dynamics of the Euler-Bernoulli 

beam.  

As in the previous section, assume that the solution of equation (3.16) is of the form 

 𝑤 = 𝐴𝑒𝑖(𝑘𝑥−𝑤𝑡) and 𝑓(𝑥, 𝑡) equals zero, then the dispersion relation is 

𝜔 = ±√
𝐸𝐼

µ
𝑘2. 

 

 

𝑆 = ∫ ∫
1

2
µ (
𝜕𝑤

𝜕𝑡
)
2

−
1

2
𝐸𝐼 (

𝜕2𝑤

𝜕𝑥2
)

2

+ 𝑓(𝑥, 𝑡)𝑤(𝑥, 𝑡)
𝐿

0

𝑡2

𝑡1

𝑑𝑥𝑑𝑡 

 

 

(3.11) 

 

ℒ =
1

2
µ (
𝜕𝑤

𝜕𝑡
)
2

−
1

2
𝐸𝐼 (

𝜕2𝑤

𝜕𝑥2
)

2

+ 𝑓(𝑥, 𝑡)𝑤(𝑥, 𝑡) = ℒ(𝑥, 𝑡, 𝑤, 𝑤,̇ 𝑤𝑥𝑥) 

 

(3.12) 

 

𝜕ℒ

𝜕𝑤
−
𝜕

𝜕𝑡
(
𝜕ℒ

𝜕𝑤̇
) +

𝜕2

𝜕𝑥2
(
𝜕ℒ

𝜕𝑤𝑥𝑥
) = 0 

 

 

(3.13) 

 
𝜕ℒ

𝜕𝑤
= 𝑓 ;   (

𝜕ℒ

𝜕𝑤̇
) = µ𝑤̇;   (

𝜕ℒ

𝜕𝑤𝑥𝑥
) = −𝐸𝐼𝑤𝑥𝑥 

 

(3.14) 

 

𝑓 − µ𝑤̈ − (𝐸𝐼𝑤𝑥𝑥)𝑥𝑥 = 0 

 

(3.15) 

 

𝐸𝐼
𝑑4𝑤

𝑑𝑥4
= −µ

𝜕2𝑤

𝜕𝑡2
+ 𝑓 

 

 

(3.16) 
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Derivation of dynamic beam equation using the Newton’s second law 

 

Consider Euler- Bernoulli beam as presented in figure 3,  

 𝜂(𝑥, 𝑡) is the transverse displacement 

𝑓(𝑥, 𝑡)  is the load per unit length  

 

Take a differential slice 𝑑𝑥 

 

 

 

 

 

 

 

 

 

In the figure, 𝑉(𝑥, 𝑡) stands for the shear force, and 𝑀(𝑥, 𝑡) stands for the moment. 

The dotted line is the neutral axis of the beam. It is an axis in the cross section of a 

beam, along which there are no longitudinal stresses or strains.  

Firstly, Newton’s second law is applied to the beam element  

The force equation is  

∑𝐹 = 𝑚𝑎 

A(x) is the cross-sectional area of the beam, 𝜌 is the mass density.  

 

𝑉 − (𝑉 + 𝑑𝑉) + 𝑓(𝑥, 𝑡)𝑑𝑥 = 𝜌𝐴(𝑥)𝑑𝑥
𝜕2𝜂(𝑥, 𝑡)

𝜕𝑡2
  

 

(3.17) 

Fig 4. Differential slice of the beam. Available at: 

https://www.youtube.com/watch?v=3R8q3becNvg 

Fig 3. Euler/Bernoulli beam. Available at: 

https://www.youtube.com/watch?v=3R8q3becNvg 
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The moment equation at point O is (considering counter clockwise direction as 

positive) 

Note that the zero on the right-hand side is due to the Euler-Bernoulli assumption, that 

is there is no rotation at that element. 

We know from calculus that  

 Substitute equation (3.19-1) into equation (3.17) to get 

  

  

 

Now, substitute equation (3.19-2) into equation (3.18) to get 

 It should be noted that dx is infinitesimal, then 𝑑𝑥2 is negligible. 

Consequently, equation (3.21) can be written as  

 Substitute (3.22) into (3.20)  

 With Euler-Bernoulli beam assumption in mind, the moment 𝑀(𝑥, 𝑡) can be written as  

 𝑀(𝑥, 𝑡) = 𝐸𝐼
𝜕2𝜂(𝑥,𝑡)

𝜕𝑥2
  where EI is the flexural rigidity of the beam. 

Altogether 

We can write the Euler-Bernoulli beam equation as 

 

(𝑀 + 𝑑𝑀) −𝑀 − (𝑉 + 𝑑𝑉)𝑑𝑥 +
𝑓(𝑥, 𝑡)𝑑𝑥𝑑𝑥

2
= 0 

 

 

(3.18) 

 

𝑑𝑉 =
𝜕𝑉

𝜕𝑥
𝑑𝑥; 

 𝑑𝑀 =
𝜕𝑀

𝜕𝑥
𝑑𝑥 

 

 

(3.19-1) 

 

(3.19-2) 

 

 

𝜌𝐴(𝑥)
𝜕2𝜂(𝑥, 𝑡)

𝜕𝑡2
𝑑𝑥 = −

𝜕𝑉

𝜕𝑥
𝑑𝑥 + 𝑓(𝑥, 𝑡)𝑑𝑥 

 

(3.20) 

 

𝜕𝑀

𝜕𝑥
𝑑𝑥 − 𝑉𝑑𝑥 −

𝜕𝑉

𝜕𝑥
𝑑𝑥2 + 𝑓(𝑥, 𝑡)

(𝑑𝑥)2

2
= 0 

 

 

(3.21) 

 
𝜕𝑀

𝜕𝑥
= 𝑉 

 

 

(3.22) 

 

𝜌𝐴(𝑥)
𝜕2𝜂(𝑥, 𝑡)

𝜕𝑡2
= −

𝜕2𝑀(𝑥, 𝑡)

𝜕𝑥2
+ 𝑓(𝑥, 𝑡) 

 

(3.23) 
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Both approaches used in this section led to the general form of Euler-Bernoulli 

equation. 

Suppose now that the beam is situated on a fluid such that the force 𝑓(𝑥, 𝑡) is the net 

force between the beam and the fluid. Here, the contact area between the fluid and the 

beam 𝐴𝑐 = 𝑏𝑑𝑥, knowing that  𝑓(𝑥, 𝑡) is the force per unit length 𝑑𝑥.  

 For incompressible fluid and inviscid flow, the continuity equation and Navier Stokes 

equations can be written as  

 

 

Equation (3.25-2) is known also as Euler’s equation, where 𝑣  = (𝑢, 𝑣, 𝑤)is the fluid 

velocity. Assume a potential flow (𝑣 = ∇𝜑), where 𝜑(𝒓, 𝑡) denotes the velocity 

potential. 

Integrate with respect to all space coordinates to get Euler’s equation, which is also 

known as Bernoulli’s pressure equation  

 𝑝𝑓(x, z, t) =  𝑝𝑏 + 𝑝𝑎 − 𝜌𝑓 {
𝜕𝜑

𝜕𝑡
+
1

2
(∇𝜑)2 + 𝑔𝑧} 

where 𝑝𝑓 is the fluid pressure, 𝑝𝑏  is the pressure from the beam and 𝑝𝑎 is the 

atmospheric pressure. 

𝑧  is the vertical coordinate.  

𝜌𝑓 is the mass density of fluid. 

 

The dynamic surface condition at the interface between water and the beam is  

where 𝑎 is the thickness, 𝑏 is the width of the beam. 

 The kinematic surface condition at the interface between water and the beam is   

 

𝜌𝐴(𝑥)
𝜕2𝜂(𝑥, 𝑡)

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝜂(𝑥, 𝑡)

𝜕𝑥4
= 𝑓(𝑥, 𝑡) 

 

(3.24) 

∇. 𝑣 = 0 

 

𝜌𝑓
𝐷𝑣 

𝐷𝑡
≅ 𝜌𝑓𝑔 − ∇p 

(3.25-1) 

 

(3.25-2) 

 

𝑝𝑓 − 𝑝𝑏 − 𝑝𝑎 = 𝜌𝑎
𝜕2𝜂(𝑥, 𝑡)

𝜕𝑡2
+
𝐸𝐼

𝑏

𝜕4𝜂(𝑥, 𝑡)

𝜕𝑥4

= −𝜌𝑓 {
𝜕𝜑

𝜕𝑡
+
1

2
(∇𝜑)2 + 𝑔𝜂}  𝑎𝑡 𝑧 = 𝜂 

 

 

(3.26) 
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For simplification, only linear factors are used in this derivation. Apply Taylor 

expansion around 𝑧 = 0,then leading order problem will be 

Equations (1.28) and (1.29) can be solved by assuming a monochromatic elementary 

wave solution  

𝒌 = 𝑘𝒙𝑖𝒙 + 𝑘𝒚𝑖𝒚 is the wave vector 

𝒙 is the horizontal position vector 

𝒓 is the three-dimensional position vector 

𝜔 is the angular frequency 

In order to find the dispersion relation for the wave equation in (3.29), the solution of 

𝜑̂(𝑧) is found first from the continuity equation and the bottom boundary condition. 

Where, ℎ is the depth of the fluid 

Assume that  𝜑̂(𝑧) = 𝑒𝜆𝑧 

 

Then the characteristic polynomial from equation (3.31) is  

 
𝜕𝜂

𝜕𝑡
+ ∇𝜑. ∇𝜂 =

𝜕𝜑

𝜕𝑧
    𝑎𝑡 𝑧 = 𝜂 

 

(3.27) 

 
𝜕𝜂

𝜕𝑡
=
𝜕𝜑

𝜕𝑧
 

 

(3.28) 

𝜌𝑓 {
𝜕𝜑

𝜕𝑡
+ 𝑔𝜂} + (𝜌𝑎

𝜕2𝜂(𝑥, 𝑡)

𝜕𝑡2
) +

𝐸𝐼

𝑏

𝜕4𝜂(𝑥, 𝑡)

𝜕𝑥4
= 0 

(3.29) 

 

(
 𝜂(𝒙, 𝑡) 

𝜑(𝒓, 𝑡)
) = (

 𝜂̂  

𝜑̂(𝑧)
) 𝑒𝑖(𝒌.𝒙−𝜔𝑡) 

 

(3.30) 

 

𝛻2𝜑 = 0  at − h < z < 0 

 

(3.31) 

𝜕𝜑

𝜕𝑧
= 0  𝑎𝑡  𝑧 = −ℎ 

 

 (3.32) 

 

−𝑘2 + 𝜆2 = 0   
 

 

(3.33) 



25 

 

 As a result, 𝜆 = ±𝑘 

Take the solution of 𝜑̂(𝑧) =
𝐶𝑐𝑜𝑠ℎ 𝑘(𝑧+ℎ)

sinh(𝑘ℎ)
+
𝐷𝑠𝑖𝑛ℎ 𝑘(𝑧+ℎ)

sinh(𝑘ℎ)
 , it is preferred to divide by 

sinh(𝑘ℎ) to avoid reaching infinity as ℎ tends to infinity. 

Substituting 𝜑̂(𝑧) in to the boundary condition (3.32) will lead to  

𝜑̂(𝑧)  = 𝐶
cosh𝑘(𝑧+ℎ)

sinh(𝑘ℎ)
 , where 𝑘 = √𝑘𝑥2 + 𝑘𝑦2 is the wave number. 

The equations (3.29) and (3.31) then give the following linear system  

Finally, to avoid trivial solution, the determinant of coefficient matrix must be zero, 

which will therefor give the dispersion relation for a beam over fluid,  

𝜔2 =

𝐸𝐼
𝜌𝑓𝑏

𝑘5 + 𝑔𝑘

𝜌𝑎
𝜌𝑓
𝑘 + coth(𝑘ℎ)

 

 

3.3 Transverse waves in a plate: 

 

This section presents a discussion of transvers waves in plates under no load, and 

plates placed over fluid. Plates are plane structural elements that have small thickness 

compared to the planer dimensions.  

Finding the equations of motion in order to model the dynamics of a plate, some 

simplifying assumptions are used.  

•  The plate is not subjected to any in-plane forces when it is under transverse 

vibration, which means that the neutral fibres in the plate remains unstrained 

• There is no shear deformation in the z-direction (Kirchhoff hypothesis) 

• During the transverse deflection of the plate the slopes remain small 

• Plate thickness is constant 

 

Consider a plate of thickness 𝑎 laying in the x-y plane, and it deflects in the z-

direction. Take a differential element from this plate, the stresses acting on this 

element are the normal stresses 𝜎𝑥𝑥, 𝜎𝑦𝑦, and shear stresses 𝜎𝑥𝑦, 𝜎𝑥𝑧 , 𝜎𝑦𝑧.  

(
−𝑖𝜔 −𝑘

𝐸𝐼

𝑏
𝑘4 + 𝜌𝑓𝑔 − 𝜌𝑎𝜔

2 −𝜌𝑓𝑖𝜔 coth(𝑘ℎ)
) (
 𝜂̂
𝐶
) = (

0
0
) 

 

 

(3.34) 
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Fig 5. Stresses on infinitesimal element 

In order to have a two-dimensional model, integrate over the thickness.  

 

Fig 6. Force resultants on infinitesimal element 

 

The stress resultants per unit length due to the normal stresses are  

In plane normal stress resultant per unit length due to shear stress is  

Out of plane shear stress resultants per unit length are  

𝑁𝑥 = ∫ 𝜎𝑥𝑥

𝑎
2⁄

−𝑎
2⁄

𝑑𝑧 ;  𝑁𝑦 = ∫ 𝜎𝑦𝑦

𝑎
2⁄

−𝑎
2⁄

𝑑𝑧 ;    

 

 

(3.35) 

  𝑁𝑥𝑦 = ∫ 𝜎𝑥𝑦

𝑎
2⁄

−𝑎
2⁄

𝑑𝑧    

 

 

(3.36) 

𝑄𝑥 = ∫ 𝜎𝑥𝑧

𝑎
2⁄

−𝑎
2⁄

𝑑𝑧 ;   𝑄𝑦 = ∫ 𝜎𝑦𝑧

𝑎
2⁄

−𝑎
2⁄

𝑑𝑧 ;    

 

 

(3.37) 
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Fig 7. Moment resultants on infinitesimal element 

Moment resultants per unit length are  

Hooke’s law is to be used next in order to find a relation between the stresses and 

strains. Hooke’s law is also known as the law of elasticity, it states that for relatively 

small deformations of an object, the displacement or size of the deformation is directly 

proportional to the deforming force or load [22]. 

 

The relation between stresses and strains is then 

𝜀𝑥𝑧 = 𝜀𝑦𝑧 = 0  there is no shear deformation of the element along the z-direction 

(Kirchhoff hypothesis). 

 

E is Young’s modulus and 𝜈 is Poisson ratio. 

Next, the strain in terms of the deflection of the plate is calculated from the geometry 

of deformation of the plate as shown in figure 8. 

 𝑡𝑎𝑛θ =
𝜕𝜂

𝜕𝑥
≅ 𝑠𝑖𝑛θ ≅ θ( for small angleθ) the location of a point from the neutral 

surface. 

The deflection in the x-direction and the y-direction can approximately written as 

 𝑢(𝑥, 𝑦, 𝑧, 𝑡) = −𝑧
𝜕𝜂(𝑥,𝑦,𝑡)

𝜕𝑥
 ; 𝑣(𝑥, 𝑦, 𝑧, 𝑡) = −𝑧

𝜕𝜂(𝑥,𝑦,𝑡)

𝜕𝑦
 

 

𝑀𝑥 = ∫ 𝑧𝜎𝑥𝑥

𝑎
2⁄

−𝑎
2⁄

𝑑𝑧 ;  𝑀𝑦 = ∫ 𝑧𝜎𝑦𝑦

𝑎
2⁄

−𝑎
2⁄

𝑑𝑧 ;      𝑀𝑥𝑦 = ∫ 𝑧𝜎𝑥𝑦

𝑎
2⁄

−𝑎
2⁄

𝑑𝑧  

 

 

(3.38) 

𝜎𝑥𝑥 =
𝐸

1 − 𝜈2
[𝜀𝑥𝑥 + 𝜈𝜀𝑦𝑦] ;    𝜎𝑦𝑦 =

𝐸

1 − 𝜈2
[𝜈𝜀𝑥𝑥 + 𝜀𝑦𝑦] ;  

 

 𝜎𝑥𝑦 =
𝐸

1 + 𝜈
𝜀𝑥𝑦  

  
 

 

(3.39) 
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Fig 8. Geometry of deformation 

 

Then, the strain field will be  

Clearly, the strains are linear in the z-direction, then the stresses in equation (3.39) are 

also linear in z- direction. Consequently, the normal stress resultants 𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦 in 

equations (3.35) and (3.36) will go to zero, and the non-zero remaining resultants are 

the shear and moment. 

The moment resultants can be calculated by substituting equations (3.39) and (3.40) in 

the moment resultants expressions in equation (3.38) and doing the integration  

𝑀𝑥 = ∫ 𝑧𝜎𝑥𝑥

𝑎
2⁄

−𝑎
2⁄

𝑑𝑧 

= ∫ 𝑧 (
𝐸

1 − 𝜈2
[𝜀𝑥𝑥 + 𝜈𝜀𝑦𝑦] )

𝑎
2⁄

−𝑎
2⁄

𝑑𝑧 

= ∫ 𝑧2 (−
𝐸

1 − 𝜈2
[
𝜕2𝜂

𝜕𝑥2
+ 𝜈

𝜕2𝜂

𝜕𝑦2
] )

𝑎
2⁄

−𝑎
2⁄

𝑑𝑧 

= −
𝐸𝑎3

12(1 − 𝜈2)
[
𝜕2𝜂

𝜕𝑥2
+ 𝜈

𝜕2𝜂

𝜕𝑦2
] 

Then,  

 

𝐷 is the flexural rigidity of the plate 𝐷 =
𝐸𝑎3

12(1−𝜈2)
 

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
= −𝑧

𝜕2𝜂

𝜕𝑥2
 

𝜀𝑦𝑦 =
𝜕𝑣

𝜕𝑦
= −𝑧

𝜕2𝜂

𝜕𝑦2
 

𝜀𝑥𝑦 =
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
= −𝑧

𝜕2𝜂

𝜕𝑥𝜕𝑦
 

 

 

(3.40) 

𝑀𝑥 = −𝐷 [
𝜕2𝜂

𝜕𝑥2
+ 𝜈

𝜕2𝜂

𝜕𝑦2
] 

𝑀𝑦 = −𝐷 [
𝜕2𝜂

𝜕𝑦2
+ 𝜈

𝜕2𝜂

𝜕𝑥2
] 

𝑀𝑥𝑦 = −𝐷(1 − 𝜈)
𝜕2𝜂

𝜕𝑥𝜕𝑦
 

 

 

(3.41) 
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Altogether, the equations of motion can be written as 

Transverse dynamics 

 

Rotational dynamics 

Rotation about the y- axis  

Rotation about the x- axis  

 Where, 𝐼𝑚 is the moment of inertia per unit area 𝐼𝑚 =
𝜌𝑎3

12
+
𝜌𝑎3

4
 

Using equations (3.43) and (3.44),𝑄𝑥 and 𝑄𝑦  in equation (3.42) can be written as 

function of deflection of plate and moments. 

Finally, the equation of motion of a plate can be written as  

If the moment of inertia per unit area 𝐼𝑚 was small, equation (3.45) will reduce to 

Assume that the solution of equation (3.45) is of the form  𝜂(𝑥, 𝑦, 𝑡) = 𝐴𝑒𝑖(𝒌.𝒓−𝜔𝑡) 

𝒌 is the wave vector 

𝒓 is the position vector 

𝜔 is the angular frequency 

Then the dispersion relation is 𝜔2 =
𝐷𝑘4

𝜌𝑎+𝐼𝑘2
 

In case of presence of distributed load on the plate such as lateral pressure 𝑞(𝑥, 𝑦, 𝑡), 
that is force per unit area, the equation of motion (1.45) will be of the form  

𝜌𝑎𝑑𝑥𝑑𝑦
𝜕2𝜂

𝜕𝑡2
=
𝜕𝑄𝑦

𝜕𝑦
𝑑𝑦𝑑𝑥 +

𝜕𝑄𝑥
𝜕𝑥

𝑑𝑥𝑑𝑦 
 

(3.42) 

𝐼𝑚
𝜕2

𝜕𝑡2
(
𝜕𝜂

𝜕𝑥
) = −

𝜕𝑀𝑥

𝜕𝑥
−
𝜕𝑀𝑥𝑦

𝜕𝑦
+ 𝑄𝑥 

 

(3.43) 

𝐼𝑚
𝜕2

𝜕𝑡2
(
𝜕𝜂

𝜕𝑥
) = −

𝜕𝑀𝑦

𝜕𝑥
−
𝜕𝑀𝑥𝑦

𝜕𝑥
+ 𝑄𝑦 

 

(3.44) 

𝜌𝑎
𝜕2𝜂

𝜕𝑡2
− 𝐼𝑚𝛻

2
𝜕2𝜂

𝜕𝑡2
+ 𝐷∇4𝜂 = 0 

 

(3.45) 

𝜌𝑎
𝜕2𝜂

𝜕𝑡2
+ 𝐷∇4𝜂 = 0 

 

(3.46) 
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Just like the process done to the beam, suppose that the plate is situated on a fluid such 

that the force 𝑞(𝑥, 𝑦, 𝑡) is the fluid pressure on the plate. In order to find the dispersion 

relation for a plate over fluid, the only difference will be in the dynamic condition. 

The dynamic condition on the interface between the fluid surface and the plate is   

After finding the solution for 𝜑(𝑧), equations (3.27) and (3.48) give the following 

linear system  

Finally, to avoid trivial solution, the determinant of coefficient matrix must be zero, 

which will therefor give the dispersion relation of a plate over fluid 

𝜔2 =

𝐷
𝜌𝑓
𝑘5 + 𝑔𝑘

𝜌𝑎
𝜌𝑓
𝑘 +

𝐼𝑚
𝜌𝑓
𝑘3 + coth(𝑘ℎ)

 

 

3.4 Dispersion relations plots: 

In the previous three sections, dispersion relations for string, Euler-Bernoulli beam, 

beam over fluid, plate and plate over fluid were found. Now, in order to discuss those 

dispersion relations further, plots for the angular frequency versus the wavenumber for 

the structural elements studied are represented below. The plots are created using 

MATLAB codes, the vertical axis shows the angular frequency(1 𝑠⁄ ) and the 

horizontal axis represents the wavenumber(1 𝑚⁄ ). 
 

To start by the dispersion relation of the string which is given by 

𝜔 = √
𝑇

µ
𝑘 

𝜌𝑎
𝜕2𝜂

𝜕𝑡2
− 𝐼𝑚𝛻

2
𝜕2𝜂

𝜕𝑡2
+ 𝐷∇4𝜂 + 𝑞(𝑥, 𝑦, 𝑡) = 0 

 

(3.47) 

𝜌𝑎
𝜕2𝜂

𝜕𝑡2
− 𝐼𝑚𝛻

2
𝜕2𝜂

𝜕𝑡2
+ 𝐷∇4𝜂 + 𝜌𝑓

𝜕𝜑

𝜕𝑡
+ 𝜌𝑓𝑔𝜂 = 0 𝑎𝑡 𝑧 = 0 

 

(3.48) 

 

(
−𝑖𝜔 −𝑘

𝜌𝑓𝑔 − 𝜌𝑎𝜔
2 − 𝐼𝑚𝜔

2𝑘2 + 𝐷𝑘4 −𝜌𝑓𝑖𝜔 coth(𝑘ℎ)
) (
 𝜂̂
𝐶
) = (

0
0
) 

 

 

(3.49) 
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plot  2. Dispersion relation of transverse waves in a string 

In the graph above, the value of the angular frequency increases proportionally to the 

value of the wave number. The dispersion relation above shows that the transverse 

waves in string are non-dispersive, since the wave number and angular frequency are 

proportional. As well as string dispersion relation is isotropic because waves behave 

equally in all directions, meaning that the dispersion relation depends on the value of 

wavenumber and not the wavenumber vector. 

Secondly, the Euler-Bernoulli beam dispersion relation 

𝜔 = ±√
𝐸𝐼

µ
𝑘2 

 

plot  3. Dispersion relation of transverse waves in Euler-Bernoulli beam 
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For the Euler-Bernoulli beam, the graph presents the positive part of a parabola since 

the value of wavenumber is positive. Obviously, the wavenumber and the angular 

frequency are not proportional, then the dispersion relation is dispersive, and the speed 

of wave propagation is not constant. 

Before getting into the Euler Bernoulli beam over fluid it is important to show the 

dispersion relation of infinite depth gravity waves to illustrate the competition between 

the two behaviours; gravity waves and the beam placed over fluid. 

 

Dispersion relation of infinite depth gravity waves 

𝜔2 = 𝑔𝑘 

 

 

plot  4. Dispersion relation of infinite depth gravity waves 

Further, Euler Bernoulli beam situated over fluid dispersion relation 

𝜔2 =

𝐸𝐼
𝜌𝑓𝑏

𝑘5 + 𝑔𝑘

𝜌𝑎
𝜌𝑓
𝑘 + coth(𝑘ℎ)
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plot  5. Dispersion relation of transverse waves in free Euler-Bernoulli beam and Euler-

Bernoulli beam over water 

In the above graph, both dispersion relations for the free Euler-Bernoulli beam (dashed 

line) and Euler-Bernoulli beam over fluid are presented in order to make it more 

obvious how the Euler-Bernoulli beam behaves when placed over fluid. At low 

wavenumbers, that is high wave length; the behaviour of gravity waves leads, and the 

presence of the beam has less effect. However, as the wavenumber rises the behaviour 

of beam leads, after an inflection point is observed at 𝑘 approximately equals 

36.5(1 𝑚⁄ ). After this point, as the wavenumber increases the angular frequency 

increases similar to the free beam. 

Last but not least, the dispersion relation of the plate  

𝜔2 =
𝐷𝑘4

𝜌𝑎 + 𝐼𝑘2
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plot  6. Dispersion relation of transverse waves in plate 

The behaviour of free plate is similar to that of the Euler-Bernoulli beam. Also, here 

the dispersion relation is dispersive, and the speed of wave propagation is not constant. 

Finally, the dispersion relation of plate over fluid 

𝜔2 =

𝐷
𝜌𝑓
𝑘5 + 𝑔𝑘

𝜌𝑎
𝜌𝑓
𝑘 +

𝐼𝑚
𝜌𝑓
𝑘3 + coth(𝑘ℎ)

 

 

plot  7. Dispersion relation of transverse waves in free plates and plates over fluid 
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For the plate, a competition between two behaviours is observed just like what was 

observed in the behaviour of the beam. At low wave numbers, that is high wave 

length; the behaviour of gravity waves leads, and the presence of the plate has less 

effect. However, as the wave number increases the behaviour of the plate leads, after 

an inflection point is observed after 𝑘 = 50(1 𝑚⁄ ).  

The inflection point in the beam was detected at smaller wave number (at 𝑘 

approximately equals 36.5(1 𝑚⁄ )) than that of the plate. 

It should be noted that the material properties have an obvious impact on the curvature 

of the dispersion relation graph.  
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Chapter 4 
 

Nonlinear dispersion relation for transverse waves in 

Euler-Bernoulli beam 
 

In the previous chapter, the wave equations for string, Euler-Bernoulli beam and plate were 

found. Then, we assumed that the plate and the beam were placed over a fluid and the 

dispersion relations for those wave equations were discussed. Up to this point, we were 

concentrating on the linear parts of equations in order to find linear dispersion relations for the 

structural elements. In this chapter, Euler-Bernoulli beam will be studied, where nonlinear 

terms will be included which will influence the dispersion relation found previously. 

4.1 Governing equations, normalization  

It is useful to start by recalling the equations that describe the fluid motion (when the 

beam is placed over it) for potential flow used in the previous chapter. 

The continuity equation for incompressible fluid 

The kinematic bottom condition 

𝜕𝜑

𝜕𝑧
= 0  𝑎𝑡  𝑧 = −ℎ 

 

(4.2) 

The kinematic surface condition  

 
𝜕𝜂

𝜕𝑡
+ ∇𝜑. ∇𝜂 =

𝜕𝜑

𝜕𝑧
    𝑎𝑡 𝑧 = 𝜂 

 

(4.3) 

The dynamic surface condition 

Now, we need to scale (normalize) with respect to a characteristic wave field that have 

the following features 

𝑘𝑐  is a characteristic wave number  

𝜔𝑐  is the characteristic angular frequency  

 

𝛻2𝜑 = 0    𝑎𝑡 − h < z < 𝜂 

 

             (4.1) 

 

𝜌𝑓 {
𝜕𝜑

𝜕𝑡
+
1

2
(∇𝜑)2 + 𝑔𝜂} + (𝜌𝑎

𝜕2𝜂(𝑥, 𝑡)

𝜕𝑡2
) +

𝐸𝐼

𝑏

𝜕4𝜂(𝑥, 𝑡)

𝜕𝑥4
= 0 𝑎𝑡 𝑧 = 𝜂 

 

 

            (4.4) 
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𝑎𝑐  is the characteristic amplitude for the surface elevation  

Thus, we can define a characteristic steepness which is given by 𝜖 = 𝑘𝑐𝑎𝑐. 

At this time, normalization can be carried out as follows  

(𝑥′, 𝑦′, 𝑧′) = 𝑘𝑐(𝑥, 𝑦, 𝑧) ;   𝑡
′ = 𝜔𝑐𝑡  ; 𝜂 = 𝑎𝑐𝜂

′ ; 𝜑 =
𝜔𝑐𝑎𝑐

𝑘𝑐
𝜑′ ; 𝑔 =

𝜔𝑐
2

𝑘𝑐
𝑔′ ; ℎ′ = 𝑘𝑐ℎ  ; 

𝜌𝑎

𝜌𝑓
=

1

𝑘𝑐

𝜌′𝑎′

𝜌′𝑓
 ;   

𝐸𝐼

𝜌𝑓𝑏
=

𝜔𝑐
2

𝑘𝑐
5

𝐸′𝐼′

𝜌′𝑓𝑏
′
 

Substitute the normalized quantities in equations (4.1-4.4), then the normalized equations 

will be as follows 

The continuity equation for incompressible fluid 

The kinematic bottom condition 

𝜕𝜑′

𝜕𝑧′
= 0  𝑎𝑡  𝑧′ = −ℎ′ 

 

(4.6) 

The kinematic surface condition  

 
𝜕𝜂′

𝜕𝑡′
+ 𝜖∇′𝜑′. ∇′𝜂′ =

𝜕𝜑′

𝜕𝑧′
    𝑎𝑡 𝑧′ = 𝜖𝜂′ 

 

(4.7) 

The dynamic surface condition 

For simplicity, we will drop the primes in the equations keeping the steepness 𝜖. 

Assuming that the steepness is considerably small, 𝜖 ≪ 1, then, the next step is to carry 

out Taylor- expansion about 𝑧 = 0  such that for any function 𝑓(𝑧) 

And we get within the first three orders 

The continuity equation for incompressible fluid 

The kinematic bottom condition 

 

𝛻′2𝜑′ = 0    𝑎𝑡 − h′ < z′ < 𝜖𝜂′ 
 

(4.5) 

 

𝜕𝜑′

𝜕𝑡′
+
1

2
𝜖(∇′𝜑′)2 + 𝑔′𝜂′ +

𝜌′𝑎′

𝜌′
𝑓

𝜕2𝜂′

𝜕𝑡′2
+
𝐸′𝐼′

𝜌′
𝑓
𝑏′
𝜕4𝜂′(𝑥,𝑡)

𝜕𝑥′4
= 0 𝑎𝑡 𝑧 = 𝜂 

 

 

(4.8) 

 

𝑓(𝑧) = 𝑓(0) + 𝜖 𝜂
𝜕𝑓

𝜕𝑧
(0) +

1

2
𝜖2𝜂2

𝜕2𝑓

𝜕𝑧2
(0) + ⋯ 

 

 

(4.9) 

 

𝛻2𝜑 = 0    𝑎𝑡 − h < z < 0 

 

(4.10) 
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𝜕𝜑

𝜕𝑧
= 0  𝑎𝑡  𝑧 = −ℎ 

 

(4.11) 

 

The kinematic surface condition  

 
𝜕𝜂

𝜕𝑡
+ 𝜖 ∇𝜑. ∇𝜂 + 𝜖2𝜂∇

𝜕𝜑

𝜕𝑧
. ∇𝜂 =

𝜕𝜑

𝜕𝑧
+ 

𝜖 𝜂 
𝜕2𝜑

𝜕𝑧2
+
1

2
𝜖2𝜂2  

𝜕3𝜑

𝜕𝑧3
   𝑎𝑡 𝑧 = 0 

 

       (4.12) 

 

The dynamic surface condition 

 

4.2 Regular perturbation 

After normalizing the governing equations of the system, we can now apply regular 

perturbation expansions in order to solve the above equations 

 

Then the equations will be of the form (perturbing to the third order) 

The continuity equation for incompressible fluid 

The kinematic bottom condition 

𝜕𝜑𝑛
𝜕𝑧

= 0  𝑎𝑡  𝑧 = −ℎ 
 

       (4.17) 

 

 

{
𝜕𝜑

𝜕𝑡
+ 𝜖 𝜂 

𝜕2𝜑

𝜕𝑧𝜕𝑡
+
1

2
𝜖2𝜂2

𝜕3𝜑

𝜕𝑧2𝜕𝑡
+
1

2
𝜖(∇𝜑)2 + 𝜖2𝜂∇𝜑. ∇

𝜕𝜑

𝜕𝑧
+ 𝑔𝜂} +

𝜌𝑎

𝜌𝑓

𝜕2𝜂

𝜕𝑡2

+
𝐸𝐼

𝜌𝑓𝑏

𝜕4𝜂(𝑥, 𝑡)

𝜕𝑥4
= 0 𝑎𝑡 𝑧 = 0 

 

 

 

(4.13) 

 

𝜂 = 𝜂1 + 𝜖𝜂2 + 𝜖
2𝜂3 +⋯ 

 

(4.14) 

 

𝜑 = 𝜑1 + 𝜖𝜑2 + 𝜖
2𝜑3 +⋯ 

 

(4.15) 

 

𝛻2𝜑𝑛 = 0    𝑎𝑡 − h < z < 0 

 

       (4.16) 
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The kinematic surface condition  

 
𝜕𝜂1
𝜕𝑡

+ 𝜖
𝜕𝜂2
𝜕𝑡

+ 𝜖2
𝜕𝜂3
𝜕𝑡

+ 𝜖∇𝜑1. ∇𝜂1 + 𝜖
2∇𝜑2. ∇𝜂1 + 𝜖

2∇𝜑1. ∇𝜂2

+ 𝜖2𝜂1∇
𝜕𝜑1
𝜕𝑧

. ∇𝜂1 =
𝜕𝜑1
𝜕𝑧

+ 𝜖
𝜕𝜑2
𝜕𝑧

+ 𝜖2
𝜕𝜑3
𝜕𝑧

 

+𝜖𝜂1  
𝜕2𝜑1
𝜕𝑧2

+ 𝜖2𝜂2  
𝜕2𝜑1
𝜕𝑧2

+ 𝜖2𝜂1  
𝜕2𝜑2
𝜕𝑧2

+
1

2
𝜖2𝜂1

2  
𝜕3𝜑1
𝜕𝑧3

   𝑎𝑡 𝑧 = 0 

 

     (4.18) 

 

The dynamic surface condition 

4.3  Second order problem and resonance analysis   

In chapter three, we assumed a monochromatic elementary wave solution given in 

equation (3.30).  Depending on the matrix (3.34), a nontrivial solution will be as 

follows  

Note that 𝑑 is a complex amplitude. The matrix (3.34) has one zero eigen value, then 

the nontrivial solution (4.20) depends on precisely one free complex amplitude 𝑑. 

Due to the linearity of the first order problem, the principle of superposition can be 

used in order to form a general solution for an irregular sea as a sum of 

monochromatic waves. 

For a discrete superposition we have  

 

 

{
𝜕𝜑1
𝜕𝑡

+ 𝜖
𝜕𝜑2
𝜕𝑡

+ 𝜖2
𝜕𝜑3
𝜕𝑡

+ 𝜖𝜂1  
𝜕2𝜑1
𝜕𝑧𝜕𝑡

+ 𝜖2𝜂2  
𝜕2𝜑1
𝜕𝑧𝜕𝑡

+ 𝜖2𝜂1  
𝜕2𝜑2
𝜕𝑧𝜕𝑡

+
1

2
𝜖2𝜂1

2
𝜕3𝜑1
𝜕𝑧2𝜕𝑡

+
1

2
𝜖(∇𝜑1)

2 + 𝜖2∇𝜑2. ∇𝜑1

+ 𝜖2𝜂1∇𝜑1. ∇
𝜕𝜑1
𝜕𝑧

+ 𝑔𝜂1 + 𝜖𝑔𝜂2 + 𝜖
2𝑔𝜂3} + 

𝜌𝑎

𝜌𝑓
{
𝜕2𝜂1
𝜕𝑡2

+ 𝜖
𝜕2𝜂2
𝜕𝑡2

+ 𝜖2
𝜕2𝜂3
𝜕𝑡2

} + 

𝐸𝐼

𝜌𝑓𝑏
{
𝜕4𝜂1
𝜕𝑥4

+ 𝜖
𝜕4𝜂2
𝜕𝑥4

+ 𝜖2
𝜕4𝜂3
𝜕𝑥4

} = 0     𝑎𝑡 𝑧 = 0 

 

 

 

 

 

 

 

 

(4.19) 

 

𝜂1 =
𝑑

2
  𝑎𝑛𝑑  𝐶 = −𝑖

𝜔

𝑘

𝑑

2
 

 

 

(4.20) 

 

𝜂1(𝒙, 𝑡) =
1

2
∑𝑑𝑗𝑒

𝑖(𝒌𝒋.𝒙−𝜔𝑗𝑡)

𝑗

 

 

 

(4.21) 



40 

 

 

 

𝑑𝑗 are complex amplitudes, and each pair of wave vector 𝑘𝑗 and 𝜔𝑗 satisfies the 

dispersion relation found for the Euler-Bernoulli beam over fluid. The sum over 𝑗 
should include complex conjugates in order to have real surface elevation. 

 

Second order problem  

The leading order problem (linear) was solved in the previous chapter. 

Now regarding the second order problem( 𝜖1), the equations will be  

The continuity equation for incompressible fluid 

The kinematic bottom condition 

𝜕𝜑2
𝜕𝑧

= 0  𝑎𝑡  𝑧 = −ℎ 
 

(4.21) 

 

The kinematic surface condition  

 

𝜕𝜂2
𝜕𝑡

+ ∇𝜑1. ∇𝜂1 =
𝜕𝜑2
𝜕𝑧

+ 𝜂1  
𝜕2𝜑1
𝜕𝑧2

   𝑎𝑡 𝑧 = 0 

 

   (4.22) 

 

The dynamic surface condition 

 

Rearranging the equations above and substituting the solutions in (4.21) and (4.22) we 

will get the following  

 

 

 

 

 

𝜑1(𝒓, 𝑡) =
1

2
∑−𝑖

𝜔𝑗 cosh (𝑘𝑗(𝑧 + ℎ))

𝑘𝑗 sinh(𝑘𝑗ℎ)
𝑑𝑗𝑒

𝑖(𝒌𝒋.𝒙−𝜔𝑗𝑡)

𝑗

 

 

 

(4.22) 

 

𝛻2𝜑2 = 0    𝑎𝑡 − h < z < 0 

 

(4.23) 

 

{
𝜕𝜑2
𝜕𝑡

+ 𝜂1  
𝜕2𝜑1
𝜕𝑧𝜕𝑡

+
1

2
(∇𝜑1)

2 + 𝑔𝜂2} + 

𝜌𝑎

𝜌𝑓
{
𝜕2𝜂2
𝜕𝑡2

} +
𝐸𝐼

𝑏
{
𝜕4𝜂2
𝜕𝑥4

} = 0     𝑎𝑡 𝑧 = 0 

 

 

 

(4.23) 
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The continuity equation for incompressible fluid. 

The kinematic bottom condition 

𝜕𝜑2
𝜕𝑧

= 0  𝑎𝑡  𝑧 = −ℎ 
 

(4.25) 

 

The kinematic surface condition  

 

𝜕𝜂2
𝜕𝑡

−
𝜕𝜑2
𝜕𝑧

= 𝜂1  
𝜕2𝜑1
𝜕𝑧2

− ∇𝜑1. ∇𝜂1

=
1

4
∑−𝑖𝜔𝑗 (

𝒌𝑗 . 𝒌𝑙

𝑘𝑗
+ 𝑘𝑗)

𝑗,𝑙

coth(𝑘𝑗ℎ) 𝑑𝑗𝑑𝑙𝑒
𝑖(𝑲𝒋,𝒍.𝒙−𝛺𝑗,𝑙𝑡)    

𝑎𝑡 𝑧 = 0 

 

   (4.26) 

 

The dynamic surface condition 

 

Where, 𝑲𝒋,𝒍 = 𝒌𝑗 + 𝒌𝑙 and 𝛺𝑗,𝑙 = 𝜔𝑗 + 𝜔𝑙. 

 

 

 Nonlinear Resonance analysis  

Indeed, at this time we should check if resonance could occur at the second order. 

Namely if two waves with wave numbers 𝒌1 𝑎𝑛𝑑 𝒌2 are present at a certain time 

instant, then the nonlinear interaction between them will produce a wave with wave 

number 𝒌3 such that 𝒌3 = 𝒌1 ± 𝒌2. The produced wave frequency 𝜔3 will be 

equivalent to the sum or difference frequency 𝜔3 = 𝜔1 ± 𝜔2 where the signs ± occur 

together. If the latter is satisfied, meaning the sum or difference of frequency equals 

to 𝜔3 which is the natural frequency of the 𝒌3 wave, then  𝒌3 wave is excited at its 

natural frequency and the resonance can occur.  

 

Now, we can write the resonance conditions as follows 

 

𝛻2𝜑2 = 0    𝑎𝑡 − h < z < 0 

 

(4.24) 

 

𝜕𝜑2
𝜕𝑡

+ 𝑔𝜂2 +
𝜌𝑎

𝜌𝑓

𝜕2𝜂2
𝜕𝑡2

+
𝐸𝐼

𝑏

𝜕4𝜂2
𝜕𝑥4

 

= −𝜂1  
𝜕2𝜑1
𝜕𝑧𝜕𝑡

−
1

2
(∇𝜑1)

2 

=
1

4
∑𝜔𝑗

2 −
𝜔𝑗𝜔𝑙

2
(
𝒌𝑗 . 𝒌𝑙

𝑘𝑗𝑘𝑙
coth(𝑘𝑗ℎ) coth(𝑘𝑙ℎ) − 1)

𝑗,𝑙

𝑑𝑗𝑑𝑙𝑒
𝑖(𝑲𝒋,𝒍.𝒙−𝛺𝑗,𝑙𝑡)     

𝑎𝑡 𝑧 = 0 

 

 

 

(4.27) 
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{
±𝒌3 = 𝒌1 ± 𝒌2 
±𝜔3 = 𝜔1 ± 𝜔2

 
 

(4.28) 

In case of presence of solutions for the above equations, resonance may take place. In 

order to make the calculation easier we will use plus sign instead of  ±  signs in 

equation (4.28). 

 

Special case: Three wave resonance of two unidirectional waves  

 

One special case for the Euler-Bernoulli beam situated over fluid is assuming that 

𝒌1 = 𝒌2 and the depth is infinite.  This configuration was made by Wilton for 

capillary-gravity waves, where waves were commonly called Wilton’s ripples, after 

Wilton (1915), although they were previously described by Harrison (1909). 

We have 

𝒌3 = 2𝒌1 

𝜔1 + 𝜔2 = 2𝜔1 = 𝜔3 

 

 

(4.29) 

 

Substituting the dispersion relation for Euler-Bernoulli beam situateded over fluid in 

to the resonance condition, hence the condition will be as follows  

  

2√

𝐸𝐼
𝜌𝑓𝑏

𝑘1
5 + 𝑔𝑘1

𝜌𝑎
𝜌𝑓
𝑘1 + 1

= √
32

𝐸𝐼
𝜌𝑓𝑏

𝑘1
5 + 2𝑔𝑘1

2
𝜌𝑎
𝜌𝑓
𝑘1 + 1

 

 

 

(4.30) 

 

The table below represents the properties of the Latex sheet  

Property of sheet Latex 

Thickness [𝒎𝒎] 0.2 

Width [𝒎𝒎] 1 

Density [
𝒌𝒈

𝒎𝟑
] 960 

E-module [
𝑵

𝒎𝟐
] 0.0015 

Table 1 Properties of Latex sheet 

Assume that the fluid is water with density 𝜌𝑓 = 1000
𝑘𝑔

𝑚3
 and acceleration of gravity 

𝑔 = 9.81
𝑚

𝑠2
. 

 

Subsituting the values presented in table 1 into equation (4.30) yields to a fifth order 

polynomial.  After solving for 𝑘1 five roots were achived, one positive real root, two 

negative real roots and two complex roots. 
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The positive real root found means that resonance condition is satisfied and resonance 

could occur. Consequently, slow modulation scales should be considered in order to 

have a non sacular solution.  

 

4.4 Resonant interaction equations  

Resonant interactions occur when a simple set of criteria coupling wave-vectors and 

the dispersion relation are met [15]. In the previous section we proved that resonance 

could occur, then we are forcing the linear system by its own natural frequency.  The 

investigation of resonant interaction equations is popular in many fields, and it has 

numerous applications in engineering, medicine, etc. The theoretical analysis that 

leads to finding the resonant interaction equations will be presented in this section. 

Here, the multiple scales perturbation expansion will be used in order to arrest the 

unbounded growth in the solution. As mentioned in chapter 2, the technique is based 

on letting the amplitude 𝜂̂ and φ̂ vary slowly, much slower than the natural oscillation 

of the harmonic oscillator. To achieve the latter, the complex amplitudes of the 

leading order solution should be modulated using slow scales as follows 𝑡1 = 𝜖𝑡  and 

𝒙1 = 𝜖𝒙0. 

Then, 𝜂 and 𝜑 will be as a function of ( 𝑡0, 𝑡1, 𝒙0 , 𝒙1). Time and derivation is made 

by the chain rule as follows  

𝑑

𝑑𝑡
=

𝜕

𝜕𝑡0
+ 𝜖

𝜕

𝜕𝑡1
+⋯ 

      (4.31) 

And  

𝑑2

𝑑𝑡2
= (

𝜕

𝜕𝑡0
+ 𝜖

𝜕

𝜕𝑡1
+⋯)

2

=
𝜕2

𝜕𝑡0
2 + 2𝜖

𝜕2

𝜕𝑡0𝜕𝑡1
+⋯ 

      (4.32) 

 

Similarly, the position vector derivation is performed. After applying time and space  

modulation to the kinematic and dynamic surface conditions (4.12) and (4.13) 

respectively we will get the following  

 The kinematic surface condition  

 
𝜕𝜂

𝜕𝑡0
+ 𝜖

𝜕𝜂

𝜕𝑡1
+ 𝜖∇𝜑. ∇𝜂 + 𝜖2𝜂∇

𝜕𝜑1
𝜕𝑧

. ∇𝜂 =
𝜕𝜑

𝜕𝑧
 

+𝜖𝜂 
𝜕2𝜑

𝜕𝑧2
+
1

2
𝜖2𝜂2  

𝜕3𝜑

𝜕𝑧3
   𝑎𝑡 𝑧 = 0 

 

     (4.33) 

 

 

The dynamic surface condition 
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The suitable way to solve the above equations is to apply a regular perturbation 

expansion as shown in equations (4.14-15) . Equations (4.33) and (4.34) are then  

The kinematic surface condition  

 

(
𝜕𝜂1
𝜕𝑡0

+ 𝜖
𝜕𝜂1
𝜕𝑡1

) + 𝜖 (
𝜕𝜂2
𝜕𝑡0

+ 𝜖
𝜕𝜂2
𝜕𝑡1

) + 𝜖2 (
𝜕𝜂3
𝜕𝑡0

+ 𝜖
𝜕𝜂3
𝜕𝑡1

) + 𝜖∇𝜑1. ∇𝜂1

+ 𝜖2∇𝜑2. ∇𝜂1 + 𝜖
2∇𝜑1. ∇𝜂2 + 𝜖

2𝜂1∇
𝜕𝜑1
𝜕𝑧

. ∇𝜂1

=
𝜕𝜑1
𝜕𝑧

+ 𝜖
𝜕𝜑2
𝜕𝑧

+ 𝜖2
𝜕𝜑3
𝜕𝑧

 

+𝜖𝜂1  
𝜕2𝜑1
𝜕𝑧2

+ 𝜖2𝜂2  
𝜕2𝜑1
𝜕𝑧2

+ 𝜖2𝜂1  
𝜕2𝜑2
𝜕𝑧2

+
1

2
𝜖2𝜂1

2  
𝜕3𝜑1
𝜕𝑧3

   𝑎𝑡 𝑧 = 0 

 

     (4.35) 

 

The dynamic surface condition 

 

The modulated first order problem will be exactly the same as the one solved in 

chapter 3, for that we are not going to re-mention it here. But the fundamental 

difference now is the assumption that complex amplitudes are modulated. Assume 

now that the solution of the above equations is of the following form 

{
𝜕𝜑

𝜕𝑡0
+ 𝜖

𝜕𝜑

𝜕𝑡1
+ 𝜖𝜂 

𝜕2𝜑

𝜕𝑧𝜕𝑡0
+ 𝜖2𝜂 

𝜕2𝜑

𝜕𝑧𝜕𝑡1
+
1

2
𝜖2𝜂2

𝜕3𝜑

𝜕𝑧2𝜕𝑡0
+
1

2
𝜖(∇𝜑)2

+ 𝜖2𝜂∇𝜑. ∇
𝜕𝜑

𝜕𝑧
+ 𝑔𝜂} + 

𝜌𝑎

𝜌𝑓
{
𝜕2𝜂

𝜕𝑡0
2 + 2𝜖

𝜕2𝜂

𝜕𝑡0𝜕𝑡1
+ 𝜖2

𝜕2𝜂

𝜕𝑡1
2} + 

𝐸𝐼

𝜌𝑓𝑏
{
𝜕4𝜂

𝜕𝑥0
4 + 4𝜖

𝜕4𝜂

𝜕𝑥03𝜕𝑥1
} = 0     𝑎𝑡 𝑧 = 0 

  

 

 

 

 

(4.34) 

 

{
𝜕𝜑1
𝜕𝑡0

+ 𝜖
𝜕𝜑2
𝜕𝑡0

+ 𝜖2
𝜕𝜑3
𝜕𝑡0

+ 𝜖 (
𝜕𝜑1
𝜕𝑡1

+ 𝜖
𝜕𝜑2
𝜕𝑡1

) + 𝜖𝜂1  
𝜕2𝜑1
𝜕𝑧𝜕𝑡0

+ 𝜖2𝜂2  
𝜕2𝜑1
𝜕𝑧𝜕𝑡0

+ 𝜖2𝜂1  
𝜕2𝜑2
𝜕𝑧𝜕𝑡0

+ 𝜖2𝜂1  
𝜕2𝜑2
𝜕𝑧𝜕𝑡1

+
1

2
𝜖2𝜂1

2
𝜕3𝜑1
𝜕𝑧2𝜕𝑡0

+
1

2
𝜖(∇𝜑1)

2 + 𝜖2∇𝜑2. ∇𝜑1

+ 𝜖2𝜂1∇𝜑1. ∇
𝜕𝜑1
𝜕𝑧

+ 𝑔𝜂1 + 𝜖𝑔𝜂2 + 𝜖
2𝑔𝜂3} + 

𝜌𝑎

𝜌𝑓
{
𝜕2𝜂1

𝜕𝑡0
2 + 𝜖

𝜕2𝜂2

𝜕𝑡0
2 + 𝜖

2
𝜕2𝜂3

𝜕𝑡0
2 + 2𝜖

𝜕2𝜂1
𝜕𝑡0𝜕𝑡1

+ 2𝜖2
𝜕2𝜂1
𝜕𝑡0𝜕𝑡1

+ 𝜖2
𝜕2𝜂1

𝜕𝑡1
2} + 

𝐸𝐼

𝜌𝑓𝑏
{
𝜕4𝜂1

𝜕𝑥0
4 + 𝜖

𝜕4𝜂2

𝜕𝑥0
4 + 𝜖

2
𝜕4𝜂3

𝜕𝑥0
4 + 4𝜖

𝜕4𝜂1
𝜕𝑥03𝜕𝑥1

+ 4𝜖2
𝜕4𝜂2

𝜕𝑥03𝜕𝑥1
} = 0     𝑎𝑡 𝑧 = 0 

 

 

 

 

 

 

(4.36) 
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then, the nontrivial solution will be as follows  

Note that 𝑑(𝒙1, 𝑡1) is a complex amplitude that depends on 𝒙1and 𝑡1. Linearity of the 

first order problem, permits the employment of the principle of superposition forming 

a general solution for an irregular sea as a sum of monochromatic waves. 

 

For a discrete superposition we have  

 

 

 

𝑑𝑗(𝒙1, 𝑡1) are complex amplitudes, and each pair of wave vector 𝑘𝑗 and 𝜔𝑗 satisfies 

the dispersion relation found for the Euler-Bernoulli beam over fluid. The sum over 𝑗 
should include complex conjugates in order to have real surface elevation. 

 

 

Modulated second order problem ( 𝝐𝟏) 

The second order problem( 𝜖1) after time modulation and regular perturbation, the 

equations will be  

The continuity equation for incompressible fluid 

The kinematic bottom condition 

𝜕𝜑2
𝜕𝑧

= 0  𝑎𝑡  𝑧 = −ℎ 
 

(4.42) 

 

The kinematic surface condition   

 

(
 𝜂(𝒙, 𝑡) 

𝜑(𝒓, 𝑡)
) = (

 𝜂̂(𝒙1, 𝑡1) 

𝜑̂(𝒙1, 𝑧, 𝑡1)
) 𝑒𝑖(𝒌.𝒙0−𝜔𝑡0) 

 

(4.37) 

 

𝜂1 =
𝑑(𝒙1, 𝑡1)

2
  𝑎𝑛𝑑  𝐶 = −𝑖

𝜔

𝑘

𝑑(𝒙1, 𝑡1)

2
 

 

 

(4.38) 

 

𝜂1(𝒙, 𝑡) =
1

2
∑𝑑𝑗(𝒙1, 𝑡1)𝑒

𝑖(𝒌𝒋.𝒙0−𝜔𝑗𝑡0)

𝑗

 

 

 

(4.39) 

 

𝜑1(𝒓, 𝑡) =
1

2
∑−𝑖

𝜔𝑗 cosh (𝑘𝑗(𝑧 + ℎ))

𝑘𝑗 sinh(𝑘𝑗ℎ)
𝑑𝑗(𝒙1, 𝑡1)𝑒

𝑖(𝒌𝒋.𝒙0−𝜔𝑗𝑡0)

𝑗

 

 

 

(4.40) 

 

𝛻2𝜑2 = 𝐻2 = −2
𝜕2𝜑1
𝜕𝑥0𝜕𝑥1

− 2
𝜕2𝜑1
𝜕𝑦0𝜕𝑦1

 𝑎𝑡 − h < z < 0 

 

(4.41) 
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(
𝜕𝜂1
𝜕𝑡1

) + (
𝜕𝜂2
𝜕𝑡0

) + ∇𝜑1. ∇𝜂1 =
𝜕𝜑2
𝜕𝑧

+ 𝜂1  
𝜕2𝜑1
𝜕𝑧2

   𝑎𝑡 𝑧 = 0 

 

After rearranging we will get, 

 

𝜕𝜂2
𝜕𝑡0

−
𝜕𝜑2
𝜕𝑧

= 𝐹2 = −
𝜕𝜂1
𝜕𝑡1

− ∇𝜑1. ∇𝜂1 + 𝜂1  
𝜕2𝜑1
𝜕𝑧2

   𝑎𝑡 𝑧 = 0 

 

 

     (4.43) 

 

The dynamic surface condition 

 In order to solve this problem, let 𝜂1 and 𝜑1 be of the form  

 

Where, 𝜃𝑗 = (𝒌𝒋. 𝒙0 − 𝜔𝑗𝑡0) 𝑓𝑜𝑟 𝑗 = 1,2,3 

Then, 

 

{
𝜕𝜑2
𝜕𝑡0

+
𝜕𝜑1
𝜕𝑡1

+ 𝜂1  
𝜕2𝜑1
𝜕𝑧𝜕𝑡0

+
1

2
(∇𝜑1)

2 + 𝑔𝜂2} +
𝜌𝑎

𝜌𝑓
{
𝜕2𝜂2

𝜕𝑡0
2 + 2

𝜕2𝜂1
𝜕𝑡0𝜕𝑡1

}

+
𝐸𝐼

𝜌𝑓𝑏
{
𝜕4𝜂2

𝜕𝑥0
4 + 4

𝜕4𝜂1
𝜕𝑥03𝜕𝑥1

} = 0    𝑎𝑡 𝑧 = 0 

 

After rearranging we will get, 

{
𝜕𝜑2
𝜕𝑡0

+ 𝑔𝜂2} +
𝜌𝑎

𝜌𝑓
{
𝜕2𝜂2

𝜕𝑡0
2} +

𝐸𝐼

𝜌𝑓𝑏
{
𝜕4𝜂2

𝜕𝑥0
4} = 

𝐺2 = −
𝜕𝜑1
𝜕𝑡1

− 𝜂1  
𝜕2𝜑1
𝜕𝑧𝜕𝑡0

−
1

2
(∇𝜑1)

2 − 2
𝜌𝑎

𝜌𝑓

𝜕2𝜂1
𝜕𝑡0𝜕𝑡1

− 4
𝐸𝐼

𝜌𝑓𝑏

𝜕4𝜂1
𝜕𝑥03𝜕𝑥1

    

 𝑎𝑡 𝑧 = 0 

 

We arranged the equations in a way that all the second order unknows are on 

the left-hand side, and the forcing is at the right-hand side. 

 

 

 

(4.44) 

 

 

 

 

 

𝜂1(𝒙, 𝑡) =
1

2
∑𝐴1,𝑗(𝒙1, 𝑡1)𝑒

𝑖(𝜃𝑗) + 𝑐. 𝑐

3

𝑗=1

 

 

 

(4.45) 

 

𝜑1(𝒓, 𝑡) =
1

2
∑−𝑖

𝜔𝑗 cosh (𝑘𝑗(𝑧 + ℎ))

𝑘𝑗 sinh(𝑘𝑗ℎ)
𝐴1,𝑗(𝒙1, 𝑡1)𝑒

𝑖(𝜃𝑗) + 𝑐. 𝑐

3

𝑗=1

 

 

 

(4.46) 

 

𝐻2 = −∑
𝜔𝑗 cosh (𝑘𝑗(𝑧 + ℎ))

𝑘𝑗 sinh(𝑘𝑗ℎ)

3

𝑗=1

𝒌𝒋
𝜕𝐴1,𝑗

𝜕𝒙1
𝑒𝑖(𝜃𝑗) + 𝑐. 𝑐 

 

 

       (4.47) 
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𝐹2 = −
𝜕𝜂1
𝜕𝑡1

− ∇𝜑1. ∇𝜂1 + 𝜂1  
𝜕2𝜑1
𝜕𝑧2

= −
1

2
∑

𝜕𝐴1,𝑗

𝜕𝑡1
𝑒𝑖(𝜽𝒋)

3

𝑗=1

−
1

4
∑ 𝑖𝒌𝒎. 𝒌𝒏𝐴1,𝑚𝐴1,𝑛

𝜔𝑚
𝑘𝑚

coth (𝑘𝑚ℎ)𝑒
𝑖(𝜃𝑚+𝜃𝑛)

3

𝑚,𝑛=1

−
1

4
∑ −𝑖𝒌𝒎. 𝒌𝒏𝐴1,𝑚𝐴1,𝑛

∗
𝜔𝑚
𝑘𝑚

coth (𝑘𝑚ℎ)𝑒
𝑖(𝜃𝑚−𝜃𝑛)

3

𝑚,𝑛=1

+
1

4
∑ −𝑖𝜔𝑛𝑘𝑛𝐴1,𝑚𝐴1,𝑛coth (𝑘𝑛ℎ)𝑒

𝑖(𝜃𝑚+𝜃𝑛)

3

𝑚,𝑛=1

+
1

4
∑ 𝑖𝜔𝑛𝑘𝑛𝐴1,𝑚𝐴1,𝑛

∗ coth (𝑘𝑛ℎ)𝑒
𝑖(𝜃𝑚−𝜃𝑛)

3

𝑚,𝑛=1

+𝑐. 𝑐 

 

 

Taking out just one harmonic 

 

𝐹2 = −
1

2

𝜕𝐴1,1
𝜕𝑡1

𝑒𝑖(𝜃1) +
1

4
𝑖𝒌𝟑. 𝒌𝟐𝐴1,3𝐴1,2

∗
𝜔3
𝑘3
coth (𝑘3ℎ)𝑒

𝑖(𝜃3−𝜃2)

+
1

4
𝑖𝜔2𝑘2𝐴1,3𝐴1,2

∗ coth (𝑘2ℎ)𝑒
𝑖(𝜃3−𝜃2) + 𝑐. 𝑐 

 

 

 

 

     (4.48) 

Taking out just one harmonic 

𝐻2 = −
𝜔1 cosh(𝑘1(𝑧 + ℎ))

𝑘1 sinh(𝑘1ℎ)
𝒌𝟏
𝜕𝐴1,1
𝜕𝒙1

𝑒𝑖(𝜃1) + 𝑐. 𝑐 
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If we are only interested with  𝜂2 𝑎𝑛𝑑 𝜑2  of the following forms (first harmonic) 

𝜂2 =
1

2
𝐴2,1(𝒙1, 𝑡1)𝑒

𝑖(𝜃1) + 𝑐. 𝑐 

𝜑2(𝒓, 𝑡) = −
1

2
𝑖
𝜔1 cosh(𝑘1(𝑧 + ℎ))

𝑘1 sinh(𝑘1ℎ)
𝐴2,1(𝒙1, 𝑡1)𝑒

𝑖(𝜃1 ) + 𝑐. 𝑐 

 

Then, the equations above will be  

Continuity equation  

𝐺2 = −
𝜕𝜑1
𝜕𝑡1

− 𝜂1  
𝜕2𝜑1
𝜕𝑧𝜕𝑡0

−
1

2
(∇𝜑1)

2 − 2
𝜌𝑎

𝜌𝑓

𝜕2𝜂1
𝜕𝑡0𝜕𝑡1

− 4
𝐸𝐼

𝜌𝑓𝑏

𝜕4𝜂1
𝜕𝑥03𝜕𝑥1

= −
1

2
∑−𝑖

𝜔𝑗

𝑘𝑗

𝜕𝐴1,𝑗

𝜕𝑡1
coth (𝑘𝑗ℎ)𝑒

𝑖(𝜃𝑗)

3

𝑗=1

−
1

4
∑ −𝜔𝑛

2𝐴1,𝑚𝐴1,𝑛𝑒
𝑖(𝜃𝑚+𝜃𝑛) −

1

4
∑ −𝜔𝑛

2𝐴1,𝑚𝐴1,𝑛
∗ 𝑒𝑖(𝜃𝑚−𝜃𝑛)

3

𝑚,𝑛=1

3

𝑚,𝑛=1

− 
1

8
∑ 𝒌𝒎. 𝒌𝒏𝐴1,𝑚𝐴1,𝑛

1

𝑘𝑚𝑘𝑛
coth (𝑘𝑚ℎ)coth (𝑘𝑛ℎ)𝑒

𝑖(𝜃𝑚+𝜃𝑛)

3

𝑚,𝑛=1

−
1

8
∑ 𝒌𝒎. 𝒌𝒏𝐴1,𝑚𝐴1,𝑛

∗
1

𝑘𝑚𝑘𝑛
coth (𝑘𝑚ℎ)coth (𝑘𝑛ℎ)𝑒

𝑖(𝜃𝑚−𝜃𝑛)

3

𝑚,𝑛=1

−
1

8
∑ −𝜔𝑚𝜔𝑛𝐴1,𝑚𝐴1,𝑛𝑒

𝑖(𝜃𝑚+𝜃𝑛) −
1

8
∑ 𝜔𝑚𝜔𝑛𝐴1,𝑚𝐴1,𝑛

∗ 𝑒𝑖(𝜃𝑚−𝜃𝑛)
3

𝑚,𝑛=1

3

𝑚,𝑛=1

−
𝜌𝑎

𝜌𝑓
∑−𝑖𝜔𝑗

𝜕𝐴1,𝑗

𝜕𝑡1
𝑒𝑖(𝜃𝑗) − 2

𝐸𝐼

𝜌𝑓𝑏
∑−𝑖

3

𝑗=1

𝑘𝑗𝒌𝒋
𝜕𝐴1,𝑗

𝜕𝒙1
𝑒𝑖(𝜃𝑗)

3

𝑗=1

+ 𝑐. 𝑐 

Taking out just one harmonic 

 

𝐺2 =
1

2
𝑖
𝜔1
𝑘1

𝜕𝐴1,1
𝜕𝑡1

coth (𝑘1ℎ)𝑒
𝑖(𝜃1) +

1

4
𝜔2
2𝐴1,3𝐴1,2

∗ 𝑒𝑖(𝜃3−𝜃2)  

−
1

8
𝒌𝟑. 𝒌𝟐𝐴1,3𝐴1,2

∗
1

𝑘3𝑘2
coth (𝑘3ℎ)coth (𝑘2ℎ)𝑒

𝑖(𝜃3−𝜃2)  

−
1

8
𝜔3𝜔2𝐴1,3𝐴1,2

∗ 𝑒𝑖(𝜃3−𝜃2) +
𝜌𝑎

𝜌𝑓
𝑖𝜔1

𝜕𝐴1,1
𝜕𝑡1

𝑒𝑖(𝜃1)

+ 2
𝐸𝐼

𝜌𝑓𝑏
𝑖𝑘1𝒌𝟏

𝜕𝐴1,1
𝜕𝒙1

𝑒𝑖(𝜃1) + 𝑐. 𝑐 

 

 

 

 

(4.49) 

 

 

 

 

 

1

2
𝑖
𝜔1 cosh(𝑘1(𝑧 + ℎ))

sinh(𝑘1ℎ)
(𝑘1

2 − 𝑘1
2)𝐴2,1𝑒

𝑖(𝜃1) + 𝑐. 𝑐

= −
𝜔1 cosh(𝑘1(𝑧 + ℎ))

𝑘1 sinh(𝑘1ℎ)
𝒌𝟏.

𝜕𝐴1,1
𝜕𝒙1

𝑒𝑖(𝜃1) + 𝑐. 𝑐 

 

 

 

(4.50) 
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The kinematic surface condition    

 

The Dynamic surface condition   

 

Obviously, the assumed solution for the second order problem is not adequate for this 

problem, for that we should find a solvability condition that prevents the unbounded resonant 

growth. The homogeneous version of the boundary value problem has 𝜂1(𝒙, 𝑡) and 𝜑1(𝒓, 𝑡) as 

a nontrivial solution. Then, the inhomogeneous problem must satisfy a solvability condition, 

which follows by applying Green’s theorem, to 𝜂1(𝒙, 𝑡), 𝜑1(𝒓, 𝑡), 𝜂2(𝒙, 𝑡) and 𝜑2(𝒓, 𝑡)[3]. 

The identity used here is Green’s second identity. 

 

 

Green’s second identity 

Let f and g be twice continuously differentiable functions in the control volume V, 

then  

 

In the case we are studying, let 𝑓 = 𝜑1(𝒓, 𝑡) and 𝑔 = 𝜑2(𝒓, 𝑡) 

 

−
1

2
𝑖𝜔1𝐴2,1𝑒

𝑖(𝜃1) +
1

2
𝑖
𝜔1 sinh(𝑘1(𝑧 + ℎ))

sinh(𝑘1ℎ)
𝐴2,1𝑒

𝑖(𝜃1) + 𝑐. 𝑐

= −
1

2

𝜕𝐴1,1
𝜕𝑡1

𝑒𝑖(𝜃1) +
1

4
𝑖𝒌𝟑. 𝒌𝟐𝐴1,3𝐴1,2

∗
𝜔3
𝑘3
𝑒𝑖(𝜃3−𝜃2)

+
1

4
𝑖𝜔2𝑘2𝐴1,3𝐴1,2

∗ 𝑒𝑖(𝜃3−𝜃2) + 𝑐. 𝑐 = 0 𝑎𝑡 𝑧 = 0 

 

 

 

(4.51) 

 

1

2
(−𝑖

𝜔1
2

𝑘1
+ 𝑔 −

𝜌𝑎

𝜌𝑓
𝜔1
2 +

𝐸𝐼

𝜌𝑓𝑏
𝑘1
4)𝐴2,1𝑒

𝑖(𝜃1) + 𝑐. 𝑐

=
1

2
𝑖
𝜔1
𝑘1

𝜕𝐴1,1
𝜕𝑡1

coth (𝑘1ℎ)𝑒
𝑖(𝜃1) +

1

4
𝜔2
2𝐴1,3𝐴1,2

∗ 𝑒𝑖(𝜃3−𝜃2)  

−
1

8
𝒌𝟑. 𝒌𝟐𝐴1,3𝐴1,2

∗
1

𝑘3𝑘2
coth(𝑘3ℎ) coth(𝑘2ℎ) 𝑒

𝑖(𝜃3−𝜃2)  

−
1

8
𝜔3𝜔2𝐴1,3𝐴1,2

∗ 𝑒𝑖(𝜃3−𝜃2) + 𝑖
𝜌𝑎

𝜌𝑓
𝜔1
𝜕𝐴1,1
𝜕𝑡1

𝑒𝑖(𝜃1)

+ 2
𝐸𝐼

𝜌𝑓𝑏
𝑖𝑘1𝒌𝟏.

𝜕𝐴1,1
𝜕𝒙1

𝑒𝑖(𝜃1) + 𝑐. 𝑐 

 

 

(4.52) 

 

∭𝑓𝛻2𝑔 − 𝑔𝛻2𝑓𝑑𝑉 = ∮(𝑓𝛻𝑔 − 𝑔𝛻𝑓). 𝒏𝑑𝑠 

 

 

 

 

(4.53) 
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Notice that from the continuity equation of the first two orders of the problem, we know that  

𝛻2𝑓 = 𝛻2𝜑1 = 0 

And  

𝛻2𝑔 = 𝛻2𝜑2 = 𝐻2(𝜑1) 

Then the second factor of the right-hand side of the identity will cancel out. Regarding the 

left-hand side of the identity, it will only have contribution at the free surface, that is 𝑎𝑡 𝑧 =

0. Also, for the right-hand side we will focus only on the z-direction  

 

Then the whole equation will be of the following form  

 

We know from the kinematic surface condition of the modulated second order problem that  

From the dynamic condition we can find that  

From the assumed solution for the second order problem, we have  

𝜕𝜑2
𝜕𝑡0

= −𝑖𝜔1𝜑2 𝑡ℎ𝑒𝑛 𝜑2 =
𝑖

𝜔1

𝜕𝜑2
𝜕𝑡0

 

As well as, from the kinematic condition in first order problem we have  

𝜕𝜑1
𝜕𝑧

=
𝜕𝜂1
𝜕𝑡0

 

 

∫ 𝜑1𝐻2(𝜑1)𝑑𝑧 = [𝜑1
𝜕𝜑2
𝜕𝑧

− 𝜑2
𝜕𝜑1
𝜕𝑧

]
𝑧=0

0

−ℎ

 

 

 

 

 

(4.54) 

 

  
𝜕𝜑2
𝜕𝑧

=
𝜕𝜂2
𝜕𝑡0

− 𝐹2 =
𝜕𝜂2
𝜕𝑡0

+
𝜕𝜂1
𝜕𝑡1

+ ∇𝜑1. ∇𝜂1 − 𝜂1  
𝜕2𝜑1
𝜕𝑧2

    

 

 

 

 

 

(4.55) 

 

𝜕𝜑2
𝜕𝑡0

= 𝐺2 − 𝑔𝜂2 −
𝜌𝑎

𝜌𝑓

𝜕2𝜂2

𝜕𝑡0
2 −

𝐸𝐼

𝜌𝑓𝑏

𝜕4𝜂2

𝜕𝑥0
4

= −
𝜕𝜑1
𝜕𝑡1

− 𝜂1  
𝜕2𝜑1
𝜕𝑧𝜕𝑡0

−
1

2
(∇𝜑1)

2 − 2
𝜌𝑎

𝜌𝑓

𝜕2𝜂1
𝜕𝑡0𝜕𝑡1

− 4
𝐸𝐼

𝜌𝑓𝑏

𝜕4𝜂1
𝜕𝑥03𝜕𝑥1

− 𝑔𝜂2 −
𝜌𝑎

𝜌𝑓

𝜕2𝜂2

𝜕𝑡0
2 −

𝐸𝐼

𝜌𝑓𝑏

𝜕4𝜂2

𝜕𝑥0
4 

 

 

 

 

 

(4.56) 
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After substituting the above expressions into the right-hand side of Green’s formula (4.54), 

the factors including 𝜂2(𝒙, 𝑡) and 𝜑2(𝒓, 𝑡) will cancel out, and consequently we will then get 

the following  

 

Concerning the left-hand side of equation (4.54) 

 

 

As 𝑘1ℎ tends to infinity, and by using L’Hȏpital’s rule [25], we can find that  

(
2𝑘1ℎ + sinh (2𝑘1ℎ)

4𝑘1𝑠𝑖𝑛ℎ2(𝑘1ℎ)
) =

1

2𝑘1
 

After finding the derivatives in the right hand-side of equation (4.57), picking out just the 

second harmonic (all the factors that include 𝑒2𝑖𝜃1), the overall equation is then  

 

∫ 𝜑1𝐻2(𝜑1)𝑑𝑧
0

−ℎ

= {
𝑖

𝜔1
(
𝜕𝜂1
𝜕𝑡1

) (−𝑔𝜂1 +
𝜌𝑎

𝜌𝑓

𝜕2𝜂1

𝜕𝑡0
2 −

𝐸𝐼

𝜌𝑓𝑏

𝜕4𝜂2

𝜕𝑥0
4)}

+ {
𝑖

𝜔1
(∇𝜑1. ∇𝜂1) (−𝑔𝜂1 −

𝜌𝑎

𝜌𝑓

𝜕2𝜂1

𝜕𝑡0
2 −

𝐸𝐼

𝜌𝑓𝑏

𝜕4𝜂2

𝜕𝑥0
4)}

+ {
𝑖

𝜔1
(𝜂1  

𝜕2𝜑1
𝜕𝑧2

)(𝑔𝜂1 +
𝜌𝑎

𝜌𝑓

𝜕2𝜂1

𝜕𝑡0
2 +

𝐸𝐼

𝜌𝑓𝑏

𝜕4𝜂2

𝜕𝑥0
4)}

− {
𝑖

𝜔1
(−

𝜕𝜂1
𝜕𝑡0

) (
𝜕𝜑1
𝜕𝑡1

+ 𝜂1  
𝜕2𝜑1
𝜕𝑧𝜕𝑡0

+
1

2
(∇𝜑1)

2

+ 4
𝐸𝐼

𝜌𝑓𝑏

𝜕4𝜂1
𝜕𝑥03𝜕𝑥1

)}  𝑎𝑡 𝑧 = 0 

 

 

 

 

 

 

 

 

 

(4.57) 

 

∫ 𝜑1𝐻2(𝜑1)𝑑𝑧
0

−ℎ

=
𝑖

2

𝜔1
2

𝑘1
2 𝒌1. ∇1𝐴1,1𝐴1,1 (

2𝑘1ℎ + sinh (2𝑘1ℎ)

4𝑘1𝑠𝑖𝑛ℎ2(𝑘1ℎ)
) [𝑒2𝑖𝜃1 + 𝑒0] + 𝑐. 𝑐 

 

 

(4.58) 
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    Rearranging the above equation will lead to following, and assuming coth(𝑘1ℎ) = 1  

 

Similarly, we will get the two other interaction equations and the set of equations will be as 

follows  

 

Where, 

𝑖

4

𝜔1
2

𝑘1
3 𝒌1. ∇1𝐴1,1 +

𝑖

𝜔1

𝜕𝐴1,1
𝜕𝑡1

(
1

4
𝑔 +

1

4

𝜌𝑎

𝜌𝑓
𝜔1
2 +

1

4

𝐸𝐼

𝜌𝑓𝑏
𝑘1
4 +

1

4

𝜔1
2

𝑘1
)

+
𝑖

𝜔1
(
𝐸𝐼

𝜌𝑓𝑏
𝜔1𝑘1

2𝒌1. ∇1𝐴1,1)

=
𝑖

𝜔1
[
𝑖

8
𝒌3. 𝒌2

𝜔3
𝑘3
(−𝑔 −

𝜌𝑎

𝜌𝑓
𝜔1
2 +

𝐸𝐼

𝜌𝑓𝑏
𝑘1
4)𝐴1,3𝐴1,2

∗ ]

+
𝑖

𝜔1
[
𝑖

8
𝜔2𝑘2 (𝑔 −

𝜌𝑎

𝜌𝑓
𝜔1
2 +

𝐸𝐼

𝜌𝑓𝑏
𝑘1
4)𝐴1,3𝐴1,2

∗ ]

−
𝑖

𝜔1
[−

𝑖

8
𝐴1,3𝐴1,2

∗ 𝜔2
2𝜔1 +

𝑖

16
𝐴1,3𝐴1,2

∗ 𝜔1𝜔2𝜔3
𝒌3. 𝒌2
𝑘3𝑘2

+
𝑖

16
𝐴1,3𝐴1,2

∗ 𝜔1𝜔2𝜔3] 

(4.59) 

 
𝜕𝐴1,1
𝜕𝑡1

+ 𝒄𝑔1. ∇1𝐴1,1 = 𝛼1𝐴1,3𝐴1,2
∗  

 

 

(4.60) 

 
𝜕𝐴1,1
𝜕𝑡1

+ 𝒄𝑔1. ∇1𝐴1,1 = 𝛼1𝐴1,3𝐴1,2
∗  

𝜕𝐴1,2
𝜕𝑡1

+ 𝒄𝑔2. ∇1𝐴1,2 = 𝛼1𝐴1,3𝐴1,1
∗  

𝜕𝐴1,3
𝜕𝑡1

+ 𝒄𝑔3. ∇1𝐴1,3 = 𝛼1𝐴1,1𝐴1,3
∗  

 

 

(4.61) 

 

  

𝒄𝑔𝑗 =

2
𝐸𝐼
𝜌𝑓𝑏

𝑘𝑗
3𝜔𝑗

𝐸𝐼
𝜌𝑓𝑏

𝑘𝑗
4 + 𝑔

+

𝐸𝐼
𝜌𝑓𝑏

𝑘𝑗
2𝜔𝑗

2 (
𝐸𝐼
𝜌𝑓𝑏

𝑘𝑗
4 + 𝑔) (

𝜌𝑎
𝜌𝑓
+
1
𝑘𝑗
)
+

𝑔𝜔𝑗

2𝑘𝑗
2 (

𝐸𝐼
𝜌𝑓𝑏

𝑘𝑗
4 + 𝑔) (

𝜌𝑎
𝜌𝑓
+
1
𝑘𝑗
)
 

 

 The group velocity can also be expressed in a factorized form  

𝒄𝑔𝑗 =

𝐸𝐼
𝜌𝑓𝑏

𝑘𝑗
4 (4

𝜌𝑎
𝜌𝑓
𝑘𝑗 + 5)

2 (
𝜌𝑎
𝜌𝑓
𝑘𝑗 + 1)

3/2

√𝑘𝑗 (
𝐸𝐼
𝜌𝑓𝑏

𝑘𝑗
4 + 𝑔)

 

 

  

 

 

 

(4.62) 
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And 

 

Where, j=1,2,3; m=1,2,3 and n=1,2,3.  

Knowing that  

 

𝜔𝑗 = √

𝐸𝐼
𝜌𝑓𝑏

𝑘𝑗
4 + 𝑔

𝜌𝑎
𝜌𝑓
+
1
𝑘𝑗

 

 

 

 

𝛼𝑗 =

{
 

 
1

𝑔 +
𝜌𝑎
𝜌𝑓
𝜔𝑗
2 +

𝐸𝐼
𝜌𝑓𝑏

𝑘𝑗
4 +

𝜔1
2

𝑘𝑗 }
 

 

{(
𝑖

2
𝒌𝑚. 𝒌𝑛

𝜔𝑚
𝑘𝑚

(−𝑔 −
𝜌𝑎

𝜌𝑓
𝜔𝑗
2 +

𝐸𝐼

𝜌𝑓𝑏
𝑘𝑗
4))

+ (
𝑖

2
𝜔𝑛
2𝑘𝑛 (𝑔 −

𝜌𝑎

𝜌𝑓
𝜔𝑗
2 +

𝐸𝐼

𝜌𝑓𝑏
𝑘𝑗
4))

− (−
𝑖

2
𝜔𝑛
2𝜔𝑗 +

𝑖

4
𝜔𝑗
𝒌𝑚. 𝒌𝑛
𝑘𝑚𝑘𝑛

+
𝑖

4
𝜔𝑗𝜔𝑛𝜔𝑚)} 
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Chapter 5 
 

Nonlinear dispersion relations for transverse waves in a 

plate 
 

In this chapter, we will go through same process as the previous one, but here the studied 

structural element will be a plate. In fact, the plate case is more interesting since ice sheets can 

be modelled as plates. 

5.1 Plate governing equations, normalization 

To begin with, the governing equations 

The continuity equation for incompressible fluid 

The kinematic bottom condition 

𝜕𝜑

𝜕𝑧
= 0  𝑎𝑡  𝑧 = −ℎ 

 

(5.2) 

The kinematic surface condition  

 
𝜕𝜂

𝜕𝑡
+ ∇𝜑. ∇𝜂 =

𝜕𝜑

𝜕𝑧
    𝑎𝑡 𝑧 = 𝜂 

 

(5.3) 

The dynamic surface condition 

 

The normalization process is similar to that of the beam, here we will add the flexural 

rigidity and the moment of inertia per unit area factors 

𝐼𝑚

𝜌𝑓
=

1

𝑘𝑐
3

𝐼𝑚
′

𝜌′𝑓
 ;   

𝐷

𝜌𝑓
=

𝜔𝑐
2

𝑘𝑐
5

𝐷′

𝜌′𝑓
 

Introducing the normalized quantities in equations (5.1-5.4), then the normalized 

equations will be as follows 

 

 

 

 

𝛻2𝜑 = 0    𝑎𝑡 − h < z < 𝜂 

 

             (5.1) 

 

𝜌𝑓 {
𝜕𝜑

𝜕𝑡
+
1

2
(∇𝜑)2 + 𝑔𝜂} + 𝜌𝑎

𝜕2𝜂

𝜕𝑡2
− 𝐼𝑚𝛻

2
𝜕2𝜂

𝜕𝑡2
+𝐷∇4𝜂 = 0 𝑎𝑡 𝑧 = 𝜂 

 

 

(5.4) 
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The continuity equation for incompressible fluid 

The kinematic bottom condition 

𝜕𝜑′

𝜕𝑧′
= 0  𝑎𝑡  𝑧′ = −ℎ′ 

 

(5.6) 

The kinematic surface condition  

 
𝜕𝜂′

𝜕𝑡′
+ 𝜖∇′𝜑′. ∇′𝜂′ =

𝜕𝜑′

𝜕𝑧′
    𝑎𝑡 𝑧′ = 𝜖𝜂′ 

 

(5.7) 

The dynamic surface condition 

  

After dropping the prime for simplicity and keeping the steepness 𝜖, applying Taylor’s-

expansion about 𝑧 = 0 similar to equation (4.9) in the previous chapter, the first three 

orders of the governing equations will be  

The continuity equation for incompressible fluid 

The kinematic bottom condition 

𝜕𝜑

𝜕𝑧
= 0  𝑎𝑡  𝑧 = −ℎ 

 

(5.10) 

 

The kinematic surface condition  

 
𝜕𝜂

𝜕𝑡
+ 𝜖 ∇𝜑. ∇𝜂 + 𝜖2𝜂∇

𝜕𝜑

𝜕𝑧
. ∇𝜂 =

𝜕𝜑

𝜕𝑧
+ 

𝜖 𝜂 
𝜕2𝜑

𝜕𝑧2
+
1

2
𝜖2𝜂2  

𝜕3𝜑

𝜕𝑧3
   𝑎𝑡 𝑧 = 0 

 

              (5.11) 

 

𝛻′2𝜑′ = 0    𝑎𝑡 − h′ < z′ < 𝜖𝜂′ 
 

(5.5) 

 

𝜕𝜑′

𝜕𝑡′
+
1

2
𝜖(∇′𝜑′)2 + 𝑔′𝜂′ +

𝜌′𝑎′

𝜌′
𝑓

𝜕2𝜂′

𝜕𝑡′2
−
𝐼𝑚

′

𝜌′
𝑓

𝜕2𝜂′

𝜕𝑡′2
+
𝐷′

𝜌′
𝑓

∇′4𝜂′ = 0 𝑎𝑡 𝑧 = 𝜂 

 

 

(5.8) 

 

𝛻2𝜑 = 0    𝑎𝑡 − h < z < 0 

 

(5.9) 



56 

 

    

 

The dynamic surface condition 

For significance, we will not state the regular perturbed problem and the second order 

problem here, but resonance analysis for the plate will be stated. The regular 

perturbation of the above equations will be stated in section 5.4 since it will be utilized 

there. 

5.2 Resonance analysis for Plate over fluid 

In this section, we will study the existence of unbounded resonant growth if three 

waves can resonate in a triad. 

 

The resonance conditions are 

 

{
±𝒌3 = 𝒌1 ± 𝒌2 
±𝜔3 = 𝜔1 ± 𝜔2

 
 

(5.13) 

 

The fulfilment of the above conditions means that resonant growth is expected. Also, 

here the positive sign will be considered to simplify the calculation. 

 

General case for nonlinear resonance condition  

Consider the following confugration 

 

 

Fig 9. Resonance triad configuration 

 

 

{
𝜕𝜑

𝜕𝑡
+ 𝜖 𝜂 

𝜕2𝜑

𝜕𝑧𝜕𝑡
+
1

2
𝜖2𝜂2

𝜕3𝜑

𝜕𝑧2𝜕𝑡
+
1

2
𝜖(∇𝜑)2 + 𝜖2𝜂∇𝜑. ∇

𝜕𝜑

𝜕𝑧
+ 𝑔𝜂} +

𝜌𝑎

𝜌𝑓

𝜕2𝜂

𝜕𝑡2

−
𝐼𝑚
𝜌𝑓
𝛻2
𝜕2𝜂

𝜕𝑡2
+
𝐷

𝜌𝑓
∇4𝜂 = 0 𝑎𝑡 𝑧 = 0 

 

 

 

(5.12) 
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Let θ be the angle between 𝒌1 and 𝒌2, then the wave vectors will be represented as 

follows  

𝒌1 = 𝑘(1,0) , 𝒌2 = (𝛼𝑐𝑜𝑠 θ, 𝛼𝑠𝑖𝑛 θ),  𝒌3 = (𝑘 + 𝛼𝑐𝑜𝑠 θ, 𝛼𝑠𝑖𝑛 θ)  

Substituting in the resonance condition for infinite depth, will give  

 

√

𝐷
𝜌𝑓
𝑘3

5 + 𝑔𝑘3

𝜌𝑎
𝜌𝑓
𝑘3 +

𝐼𝑚
𝜌𝑓
𝑘3

3 + 1
= √

𝐷
𝜌𝑓
𝑘1

5 + 𝑔𝑘1

𝜌𝑎
𝜌𝑓
𝑘1 +

𝐼𝑚
𝜌𝑓
𝑘1

3 + 1
+ √

𝐷
𝜌𝑓
𝑘2

5 + 𝑔𝑘2

𝜌𝑎
𝜌𝑓
𝑘2 +

𝐼𝑚
𝜌𝑓
𝑘2

3 + 1
 

 

(5.14) 

 

Rearranging the equation and using the properties of Latex sheet found in Table 1. 

Note that the Possion’s ratio for the plate 𝜈 = 0.5. Assuming  that the fluid is water 

with density 𝜌𝑓 = 1000
𝑘𝑔

𝑚3
 , acceleration of gravity 𝑔 = 9.81

𝑚

𝑠2
. 

The resonance condition will then be a polynomial function of 𝑘, 𝛼 and cos θ. 

Solving for the value of cos θ for fixed values of 𝑘 and 𝛼 , will lead to at least one 

real root. Resonance will occurr if cos θ is smaller than 1.  

𝒌3 is the wave vector that will be produced due to the interaction of waves one and 

two having the wave numbers 𝒌1 and 𝒌2 respectively.  

 

 

plot 8. Solutions for resonance condition 
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It is important to note that an extended comprehension of the results will be done in 

chapter 6, the solutions for resonance in elastic plate triad will be compared with the 

outcomes found by McGoldrick (1964) for capillary-gravity waves. 

 

5.3 Resonance interaction equations  

 

The risk of occurrence of resonance shown in the previous section, means that the 

linear system is forced by its own natural frequency. The importance of the resonance 

interaction equations in the elastic plate waves and the popularity of the technique 

required the analysis in this field.  

Also, for the plate, we will use the multiple scales perturbation expansion in order to 

arrest the unbounded growth in the solution. The kinematic and dynamic conditions 

will then be  

 The kinematic surface condition  

 
𝜕𝜂

𝜕𝑡0
+ 𝜖

𝜕𝜂

𝜕𝑡1
+ 𝜖∇𝜑. ∇𝜂 + 𝜖2𝜂∇

𝜕𝜑1
𝜕𝑧

. ∇𝜂 =
𝜕𝜑

𝜕𝑧
 

+𝜖𝜂 
𝜕2𝜑

𝜕𝑧2
+
1

2
𝜖2𝜂2  

𝜕3𝜑

𝜕𝑧3
   𝑎𝑡 𝑧 = 0 

 

     (5.15) 

 

 

The dynamic surface condition 

 

Subsequently, apply now regular perturbation expansion as shown in equations (4.14-

15). The two surface conditions will be   

 

 

 

 

{
𝜕𝜑

𝜕𝑡0
+ 𝜖

𝜕𝜑

𝜕𝑡1
+ 𝜖𝜂 

𝜕2𝜑

𝜕𝑧𝜕𝑡0
+ 𝜖2𝜂 

𝜕2𝜑

𝜕𝑧𝜕𝑡1
+
1

2
𝜖2𝜂2

𝜕3𝜑

𝜕𝑧2𝜕𝑡0
+
1

2
𝜖(∇𝜑)2

+ 𝜖2𝜂∇𝜑. ∇
𝜕𝜑

𝜕𝑧
+ 𝑔𝜂} + 

𝜌𝑎

𝜌𝑓
{
𝜕2𝜂

𝜕𝑡0
2 + 2𝜖

𝜕2𝜂

𝜕𝑡0𝜕𝑡1
+ 𝜖2

𝜕2𝜂

𝜕𝑡1
2}

−
𝐼𝑚
𝜌𝑓
{∇0

2 𝜕
2𝜂

𝜕𝑡0
2 + 2𝜖∇0

2 𝜕2𝜂

𝜕𝑡0𝜕𝑡1
+ 2𝜖∇0. ∇𝟏

𝜕2𝜂

𝜕𝑡0
2} 

+
𝐷

𝜌𝑓
{∇0

4𝜂 + 4𝜖∇0
2∇0. ∇𝟏𝜂} = 0     𝑎𝑡 𝑧 = 0 

 

 

 

 

 

 

 

(5.16) 
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The kinematic surface condition  

 

(
𝜕𝜂1
𝜕𝑡0

+ 𝜖
𝜕𝜂1
𝜕𝑡1

) + 𝜖 (
𝜕𝜂2
𝜕𝑡0

+ 𝜖
𝜕𝜂2
𝜕𝑡1

) + 𝜖2 (
𝜕𝜂3
𝜕𝑡0

+ 𝜖
𝜕𝜂3
𝜕𝑡1

) + 𝜖∇𝜑1. ∇𝜂1

+ 𝜖2∇𝜑2. ∇𝜂1 + 𝜖
2∇𝜑1. ∇𝜂2 + 𝜖

2𝜂1∇
𝜕𝜑1
𝜕𝑧

. ∇𝜂1

=
𝜕𝜑1
𝜕𝑧

+ 𝜖
𝜕𝜑2
𝜕𝑧

+ 𝜖2
𝜕𝜑3
𝜕𝑧

 

+𝜖𝜂1  
𝜕2𝜑1
𝜕𝑧2

+ 𝜖2𝜂2  
𝜕2𝜑1
𝜕𝑧2

+ 𝜖2𝜂1  
𝜕2𝜑2
𝜕𝑧2

+
1

2
𝜖2𝜂1

2  
𝜕3𝜑1
𝜕𝑧3

   𝑎𝑡 𝑧 = 0 

 

     (5.17) 

 

The dynamic surface condition 

 

Now, we have the modulated perturbed problem, we can extract the modulated 

second order directly since the first order is the linear problem solved in chapter 3. 

Using the assumed solution stated in equations (4.37-40). 

 

Modulated second order problem ( 𝝐𝟏) 

The continuity equation for incompressible fluid 

The kinematic bottom condition 

 

 

{
𝜕𝜑1
𝜕𝑡0

+ 𝜖
𝜕𝜑2
𝜕𝑡0

+ 𝜖2
𝜕𝜑3
𝜕𝑡0

+ 𝜖 (
𝜕𝜑1
𝜕𝑡1

+ 𝜖
𝜕𝜑2
𝜕𝑡1

) + 𝜖𝜂1  
𝜕2𝜑1
𝜕𝑧𝜕𝑡0

+ 𝜖2𝜂2  
𝜕2𝜑1
𝜕𝑧𝜕𝑡0

+ 𝜖2𝜂1  
𝜕2𝜑2
𝜕𝑧𝜕𝑡0

+ 𝜖2𝜂1  
𝜕2𝜑2
𝜕𝑧𝜕𝑡1

+
1

2
𝜖2𝜂1

2
𝜕3𝜑1
𝜕𝑧2𝜕𝑡0

+
1

2
𝜖(∇𝜑1)

2

+ 𝜖2∇𝜑2. ∇𝜑1 + 𝜖
2𝜂1∇𝜑1. ∇

𝜕𝜑1
𝜕𝑧

+ 𝑔𝜂1 + 𝜖𝑔𝜂2 + 𝜖
2𝑔𝜂3} + 

𝜌𝑎

𝜌𝑓
{
𝜕2𝜂1

𝜕𝑡0
2 + 𝜖

𝜕2𝜂2

𝜕𝑡0
2 + 𝜖

2
𝜕2𝜂3

𝜕𝑡0
2 + 2𝜖

𝜕2𝜂1
𝜕𝑡0𝜕𝑡1

+ 2𝜖2
𝜕2𝜂1
𝜕𝑡0𝜕𝑡1

+ 𝜖2
𝜕2𝜂1

𝜕𝑡1
2}

−
𝐼𝑚
𝜌𝑓
{∇0

2 𝜕
2𝜂1

𝜕𝑡0
2 + 𝜖∇0

2 𝜕
2𝜂2

𝜕𝑡0
2 + 2𝜖∇0

2 𝜕2𝜂1
𝜕𝑡0𝜕𝑡1

+ 2𝜖∇0. ∇𝟏
𝜕2𝜂1

𝜕𝑡0
2} 

+
𝐷

𝜌𝑓
{∇0

4𝜂1 + 𝜖∇0
4𝜂2 + 4𝜖∇0

2∇0. ∇𝟏𝜂1} = 0     𝑎𝑡 𝑧 = 0 

 

 

 

 

 

 

(5.18) 

 

𝛻2𝜑2 = 𝐻2 = −2
𝜕2𝜑1
𝜕𝑥0𝜕𝑥1

− 2
𝜕2𝜑1
𝜕𝑦0𝜕𝑦1

 𝑎𝑡 − h < z < 0 

 

(5.19) 
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𝜕𝜑2
𝜕𝑧

= 0  𝑎𝑡  𝑧 = −ℎ 
 

(5.20) 

 

The kinematic surface condition   

 

(
𝜕𝜂1
𝜕𝑡1

) + (
𝜕𝜂2
𝜕𝑡0

) + ∇𝜑1. ∇𝜂1 =
𝜕𝜑2
𝜕𝑧

+ 𝜂1  
𝜕2𝜑1
𝜕𝑧2

   𝑎𝑡 𝑧 = 0 

 

After rearranging we will get, 

 

𝜕𝜂2
𝜕𝑡0

−
𝜕𝜑2
𝜕𝑧

= 𝐹2 = −
𝜕𝜂1
𝜕𝑡1

− ∇𝜑1. ∇𝜂1 + 𝜂1  
𝜕2𝜑1
𝜕𝑧2

   𝑎𝑡 𝑧 = 0 

 

 

     (5.21) 

 

The dynamic surface condition 

 

 

Green’s second identity 

Following, we will be applying Green’s second identity in order to find the interaction 

equations. The application of the identity will be same as that used for the beam. So, 

we will use equations (4.53-55). Despite, the dynamic surface condition is different 

from that of the beam. 

  

 

 

 

 

 

{
𝜕𝜑2
𝜕𝑡0

+
𝜕𝜑1
𝜕𝑡1

+ 𝜂1  
𝜕2𝜑1
𝜕𝑧𝜕𝑡0

+
1

2
(∇𝜑1)

2 + 𝑔𝜂2} +
𝜌𝑎

𝜌𝑓
{
𝜕2𝜂2

𝜕𝑡0
2 + 2

𝜕2𝜂1
𝜕𝑡0𝜕𝑡1

}

−
𝐼𝑚
𝜌𝑓
{∇0

2 𝜕
2𝜂2

𝜕𝑡0
2 + 2∇0

2 𝜕2𝜂1
𝜕𝑡0𝜕𝑡1

+ 2∇0. ∇𝟏
𝜕2𝜂1

𝜕𝑡0
2} 

+
𝐷

𝜌𝑓
{∇0

4𝜂2 + 4∇0
2∇0. ∇𝟏𝜂1} = 0    𝑎𝑡 𝑧 = 0 

 

After rearranging we will get, 

 

{
𝜕𝜑2
𝜕𝑡0

+ 𝑔𝜂2} +
𝜌𝑎

𝜌𝑓
{
𝜕2𝜂2

𝜕𝑡0
2} −

𝐼𝑚
𝜌𝑓
{∇0

2 𝜕
2𝜂2

𝜕𝑡0
2} +

𝐷

𝜌𝑓
{∇0

4𝜂2} = 

𝐺2 = −
𝜕𝜑1
𝜕𝑡1

− 𝜂1  
𝜕2𝜑1
𝜕𝑧𝜕𝑡0

−
1

2
(∇𝜑1)

2 − 2
𝜌𝑎

𝜌𝑓

𝜕2𝜂1
𝜕𝑡0𝜕𝑡1

+ 2
𝐼𝑚
𝜌𝑓
∇0

2 𝜕2𝜂1
𝜕𝑡0𝜕𝑡1

+ 2
𝐼𝑚
𝜌𝑓
∇0. ∇𝟏

𝜕2𝜂1

𝜕𝑡0
2   − 4

𝐷

𝜌𝑓
∇0

2∇0. ∇𝟏𝜂1   𝑎𝑡 𝑧 = 0 

 

 

(5.22) 
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Here we have  

 

From the assumed solution for the second order problem, we have  

𝜕𝜑2
𝜕𝑡0

= −𝑖𝜔1𝜑2 𝑡ℎ𝑒𝑛 𝜑2 =
𝑖

𝜔1

𝜕𝜑2
𝜕𝑡0

 

As well as, from the kinematic condition in first order problem we have  

𝜕𝜑1
𝜕𝑧

=
𝜕𝜂1
𝜕𝑡0

 

 

The substitution of the above expressions into the right-hand side of Green’s formula 

(4.54), factors that include  𝜂2(𝒙, 𝑡) and 𝜑2(𝒓, 𝑡) will cancel out, then Green’s identity 

will be as follows  

 

𝜕𝜑2
𝜕𝑡0

= 𝐺2 − 𝑔𝜂2 −
𝜌𝑎

𝜌𝑓

𝜕2𝜂2

𝜕𝑡0
2 +

𝐼𝑚
𝜌𝑓
∇0

2 𝜕
2𝜂2

𝜕𝑡0
2 −

𝐷

𝜌𝑓
∇0

4𝜂2

= −
𝜕𝜑1
𝜕𝑡1

− 𝜂1  
𝜕2𝜑1
𝜕𝑧𝜕𝑡0

−
1

2
(∇𝜑1)

2 − 2
𝜌𝑎

𝜌𝑓

𝜕2𝜂1
𝜕𝑡0𝜕𝑡1

+ 2
𝐼𝑚
𝜌𝑓
∇0

2 𝜕2𝜂1
𝜕𝑡0𝜕𝑡1

+ 2
𝐼𝑚
𝜌𝑓
∇0. ∇𝟏

𝜕2𝜂1

𝜕𝑡0
2   − 4

𝐷

𝜌𝑓
∇0

2∇0. ∇𝟏𝜂1  

− 𝑔𝜂2 −
𝜌𝑎

𝜌𝑓

𝜕2𝜂2

𝜕𝑡0
2 +

𝐼𝑚
𝜌𝑓
∇0

2 𝜕
2𝜂2

𝜕𝑡0
2 −

𝐷

𝜌𝑓
∇0

4𝜂2 

 

 

 

 

 

 

 

 

 

 

 

(5.23) 
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The left-hand side of equation (5.24) is same as that for the beam. After finding the 

derivatives in the right hand-side of equation (5.24), picking out just the second 

harmonic (all the factors that include 𝑒2𝑖𝜃1), the overall equation is then  

 

    Rearranging the above equation will lead to following, and assuming coth(𝑘1ℎ) = 1  

 

Similarly, we will get the two other interaction equations, then set of equations will be as 

follows  

∫ 𝜑1𝐻2(𝜑1)𝑑𝑧
0

−ℎ

= {
𝑖

𝜔1
(
𝜕𝜂1
𝜕𝑡1

) (−𝑔𝜂1 +
𝜌𝑎

𝜌𝑓

𝜕2𝜂1

𝜕𝑡0
2 −

𝐼𝑚
𝜌𝑓
∇0

2 𝜕
2𝜂1

𝜕𝑡0
2 −

𝐷

𝜌𝑓
∇0

4𝜂1)}

+ {
𝑖

𝜔1
(∇𝜑1. ∇𝜂1) (−𝑔𝜂1 −

𝜌𝑎

𝜌𝑓

𝜕2𝜂1

𝜕𝑡0
2 +

𝐼𝑚
𝜌𝑓
∇0

2 𝜕
2𝜂1

𝜕𝑡0
2

−
𝐷

𝜌𝑓
∇0

4𝜂1)}

+ {
𝑖

𝜔1
(𝜂1  

𝜕2𝜑1
𝜕𝑧2

)(𝑔𝜂1 +
𝜌𝑎

𝜌𝑓

𝜕2𝜂1

𝜕𝑡0
2 −

𝐼𝑚
𝜌𝑓
∇0

2 𝜕
2𝜂1

𝜕𝑡0
2 +

𝐷

𝜌𝑓
∇0

4𝜂1)}

− {
𝑖

𝜔1
(−

𝜕𝜂1
𝜕𝑡0

) (
𝜕𝜑1
𝜕𝑡1

+ 𝜂1  
𝜕2𝜑1
𝜕𝑧𝜕𝑡0

+
1

2
(∇𝜑1)

2

− 2
𝐼𝑚
𝜌𝑓
∇0. ∇𝟏

𝜕2𝜂1

𝜕𝑡0
2  + 4

𝐷

𝜌𝑓
∇0

2∇0. ∇𝟏𝜂1 )}  𝑎𝑡 𝑧 = 0 

 

(5.24) 

 

𝑖

4

𝜔1
2

𝑘1
3 𝒌1. ∇1𝐴1,1 +

𝑖

𝜔1
(
1

4
𝑔 +

1

4

𝜌𝑎

𝜌𝑓
𝜔1
2 +

1

4

𝐼𝑚
𝜌𝑓
𝑘1
2𝜔1

2 +
1

4

𝐷

𝜌𝑓
𝑘1
4 +

1

4

𝜔1
2

𝑘1
)
𝜕𝐴1,1
𝜕𝑡1

+
𝑖

𝜔1
(−

1

2

𝐼𝑚
𝜌𝑓
𝜔1
3 +

𝐷

𝜌𝑓
𝜔1𝑘1

2)𝒌1. ∇1𝐴1,1

=
𝑖

𝜔1
[
𝑖

8
𝒌3. 𝒌2

𝜔3
𝑘3
(−𝑔 −

𝜌𝑎

𝜌𝑓
𝜔1
2 −

𝐼𝑚
𝜌𝑓
𝑘1
2𝜔1

2 +
𝐷

𝜌𝑓
𝑘1
4)𝐴1,3𝐴1,2

∗ ]

+
𝑖

𝜔1
[
𝑖

8
𝜔2𝑘2 (𝑔 −

𝜌𝑎

𝜌𝑓
𝜔1
2 −

𝐼𝑚
𝜌𝑓
𝑘1
2𝜔1

2 +
𝐷

𝜌𝑓
𝑘1
4)𝐴1,3𝐴1,2

∗ ]

−
𝑖

𝜔1
[−

𝑖

8
𝐴1,3𝐴1,2

∗ 𝜔2
2𝜔1 +

𝑖

16
𝐴1,3𝐴1,2

∗ 𝜔1𝜔2𝜔3
𝒌3. 𝒌2
𝑘3𝑘2

+
𝑖

16
𝐴1,3𝐴1,2

∗ 𝜔1𝜔2𝜔3] 

 

 

(5.25) 

 
𝜕𝐴1,1
𝜕𝑡1

+ 𝒄𝑔1. ∇1𝐴1,1 = 𝛼1𝐴1,3𝐴1,2
∗  

 

 

(5.26) 
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Where, 

 

 

𝒄𝑔𝑗 can also be expressed as follows  

𝒄𝑔𝑗 =

𝐷
𝜌𝑓
𝑘𝑗
4 (4

𝜌𝑎
𝜌𝑓
𝑘𝑗 + 2

𝐼𝑚
𝜌𝑓
𝑘𝑗
3 + 5) − 2

𝐼𝑚
𝜌𝑓
𝑔𝑘𝑗

3 + 𝑔

2(
𝜌𝑎
𝜌𝑓
𝑘𝑗 +

𝐼𝑚
𝜌𝑓
𝑘𝑗
3 + 1)

3/2

√𝑘𝑗 (
𝐷
𝜌𝑓
𝑘𝑗
4 + 𝑔)

 

 

 
𝜕𝐴1,1
𝜕𝑡1

+ 𝒄𝑔1. ∇1𝐴1,1 = 𝛼1𝐴1,3𝐴1,2
∗  

𝜕𝐴1,2
𝜕𝑡1

+ 𝒄𝑔2. ∇1𝐴1,2 = 𝛼1𝐴1,3𝐴1,1
∗  

𝜕𝐴1,3
𝜕𝑡1

+ 𝒄𝑔3. ∇1𝐴1,3 = 𝛼1𝐴1,1𝐴1,3
∗  

 

 

(5.27) 

the expanded form of 𝒄𝑔𝑗 is  

  

𝒄𝑔𝑗 =

2
𝐷
𝜌𝑓
𝑘𝑗
3𝜔𝑗

𝐷
𝜌𝑓
𝑘𝑗
4 + 𝑔

+

𝐷
𝜌𝑓
𝑘𝑗
2𝜔𝑗

2 (
𝐷
𝜌𝑓
𝑘𝑗
4 + 𝑔) (

𝜌𝑎
𝜌𝑓
+
𝐼𝑚
𝜌𝑓
𝑘𝑗
2 +

1
𝑘𝑗
)

+
𝑔𝜔𝑗

2𝑘𝑗
2 (
𝐷
𝜌𝑓
𝑘𝑗
4 + 𝑔) (

𝜌𝑎
𝜌𝑓
+
𝐼𝑚
𝜌𝑓
𝑘𝑗
2 +

1
𝑘𝑗
)

−

𝐼𝑚
𝜌𝑓
𝑔𝑘𝑗𝜔𝑗

(
𝐷
𝜌𝑓
𝑘𝑗
4 + 𝑔) (

𝜌𝑎
𝜌𝑓
+
𝐼𝑚
𝜌𝑓
𝑘𝑗
2 +

1
𝑘𝑗
)

−

𝐷
𝜌𝑓

𝐼𝑚
𝜌𝑓
𝑘𝑗
5𝜔𝑗

(
𝐷
𝜌𝑓
𝑘𝑗
4 + 𝑔) (

𝜌𝑎
𝜌𝑓
+
𝐼𝑚
𝜌𝑓
𝑘𝑗
2 +

1
𝑘𝑗
)
 

 

  Knowing that  

 

𝜔𝑗 = √

𝐷
𝜌𝑓
𝑘𝑗
4 + 𝑔

𝜌𝑎
𝜌𝑓
+
𝐼𝑚
𝜌𝑓
𝑘𝑗
2 +

1
𝑘𝑗

 

 

 

 

 

 

(5.28) 
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The interaction coefficients 𝛼𝑗 are,  

Where, j=1,2,3; m=1,2,3 and n=1,2,3. 

 

5.4 Nonlinearly forced response 

 

So far, we have discussed the case where 𝑲𝒋,𝒍 and 𝛺𝑗,𝑙 are non-zero and satisfy the 

dispersion relation. The system is then forced with its natural wave solution, which 

will eventually lead to resonance. To avoid this problem, we added slow scales 𝑥1 =

𝜖𝑥  and 𝑡1 = 𝜖𝑡 and found the resonance interaction equations. 

In this section we will take into consideration the case where 𝑲𝒋,𝒍 and 𝛺𝑗,𝑙 are non-

zero and does not satisfy the dispersion relation.  

At this time, and for its importance we will state the regular perturbation of the 

governing equations (5.9-12) 

The continuity equation for incompressible fluid 

The kinematic bottom condition 

𝜕𝜑𝑛
𝜕𝑧

= 0  𝑎𝑡  𝑧 = −ℎ 
 

       (5.31) 

 

The kinematic surface condition  

 
𝜕𝜂1
𝜕𝑡

+ 𝜖
𝜕𝜂2
𝜕𝑡

+ 𝜖2
𝜕𝜂3
𝜕𝑡

+ 𝜖∇𝜑1. ∇𝜂1 + 𝜖
2∇𝜑2. ∇𝜂1 + 𝜖

2∇𝜑1. ∇𝜂2

+ 𝜖2𝜂1∇
𝜕𝜑1
𝜕𝑧

. ∇𝜂1 =
𝜕𝜑1
𝜕𝑧

+ 𝜖
𝜕𝜑2
𝜕𝑧

+ 𝜖2
𝜕𝜑3
𝜕𝑧

 

 

     (5.32) 

 

𝛼𝑗 =

{
 
 

 
 

1

(𝑔 +
𝜌𝑎
𝜌𝑓
𝜔𝑗
2 +

𝐼𝑚
𝜌𝑓
𝑘𝑗
2𝜔𝑗

2 +
𝐷
𝜌𝑓
𝑘𝑗
4 +

𝜔𝑗
2

𝑘𝑗
)
}
 
 

 
 

{(
𝑖

2
𝒌𝑚. 𝒌𝑛

𝜔𝑚
𝑘𝑚

(−𝑔 −
𝜌𝑎

𝜌𝑓
𝜔𝑗
2

−
𝐼𝑚
𝜌𝑓
𝑘𝑗
2𝜔𝑗

2 +
𝐷

𝜌𝑓
𝑘𝑗
4))

+ (
𝑖

2
𝜔𝑛𝑘𝑛 (𝑔 −

𝜌𝑎

𝜌𝑓
𝜔𝑗
2 −

𝐼𝑚
𝜌𝑓
𝑘𝑗
2𝜔𝑗

2 +
𝐷

𝜌𝑓
𝑘𝑗
4))

− (−
𝑖

2
𝜔𝑛
2𝜔𝑗 +

𝑖

4
𝜔𝑗𝜔𝑛𝜔𝑚

𝒌𝑚. 𝒌𝑛
𝑘𝑚𝑘𝑛

+
𝑖

4
𝜔𝑗𝜔𝑛𝜔𝑚)} 

 

 

(5.29) 

 

𝛻2𝜑𝑛 = 0    𝑎𝑡 − h < z < 0 

 

       (5.30) 



65 

 

+𝜖𝜂1  
𝜕2𝜑1
𝜕𝑧2

+ 𝜖2𝜂2  
𝜕2𝜑1
𝜕𝑧2

+ 𝜖2𝜂1  
𝜕2𝜑2
𝜕𝑧2

+
1

2
𝜖2𝜂1

2  
𝜕3𝜑1
𝜕𝑧3

   𝑎𝑡 𝑧 = 0 

 

The dynamic surface condition 

And the second order kinematic and dynamic equations will be 

The kinematic surface condition  

 

𝜕𝜂2
𝜕𝑡

−
𝜕𝜑2
𝜕𝑧

= −∇𝜑1. ∇𝜂1 + 𝜂1  
𝜕2𝜑1
𝜕𝑧2

   𝑎𝑡 𝑧 = 0 

 

     (5.32) 

 

The dynamic surface condition 

 

We assume that the particular solution due to each product term {𝑗, 𝑙} above will be 

bound or forced non-free simple harmonic waves,  

(
𝜂2𝑗,𝑙(𝒙, 𝑡)

𝜑2𝑗,𝑙(𝒓, 𝑡)
) = (

𝜂̂2𝑗,𝑙
φ̂2𝑗,𝑙(𝑧)

) 𝑒𝑖(𝑲𝒋,𝒍.𝒙−𝛺𝑗,𝑙𝑡) 
 

(5.34) 

 

We can find the solution of φ̂2𝑗,𝑙(𝑧) from equations (5.30) and (5.31). 

 

{
𝜕𝜑1
𝜕𝑡

+ 𝜖
𝜕𝜑2
𝜕𝑡

+ 𝜖2
𝜕𝜑3
𝜕𝑡

+ 𝜖𝜂1  
𝜕2𝜑1
𝜕𝑧𝜕𝑡

+ 𝜖2𝜂2  
𝜕2𝜑1
𝜕𝑧𝜕𝑡

+ 𝜖2𝜂1  
𝜕2𝜑2
𝜕𝑧𝜕𝑡

+
1

2
𝜖2𝜂1

2
𝜕3𝜑1
𝜕𝑧2𝜕𝑡

+
1

2
𝜖(∇𝜑1)

2 + 𝜖2∇𝜑2. ∇𝜑1

+ 𝜖2𝜂1∇𝜑1. ∇
𝜕𝜑1
𝜕𝑧

+ 𝑔𝜂1 + 𝜖𝑔𝜂2 + 𝜖
2𝑔𝜂3} + 

𝜌𝑎

𝜌𝑓
{
𝜕2𝜂1
𝜕𝑡2

+ 𝜖
𝜕2𝜂2
𝜕𝑡2

+ 𝜖2
𝜕2𝜂3
𝜕𝑡2

} −
𝐼𝑚
𝜌𝑓
{∇2

𝜕2𝜂1
𝜕𝑡2

+ 𝜖∇2
𝜕2𝜂2
𝜕𝑡2

} 

𝐷

𝜌𝑓
{∇4𝜂1 + 𝜖∇

4𝜂2} = 0     𝑎𝑡 𝑧 = 0 

 

 

 

 

 

 

 

 

(5.33) 

 

𝜕𝜑2
𝜕𝑡

+ 𝑔𝜂2 +
𝜌𝑎

𝜌𝑓

𝜕2𝜂2
𝜕𝑡2

−
𝐼𝑚
𝜌𝑓
∇2
𝜕2𝜂2
𝜕𝑡2

+
𝐷

𝜌𝑓
∇4𝜂2

= −𝜂1  
𝜕2𝜑1
𝜕𝑧𝜕𝑡

−
1

2
𝜖(∇𝜑1)

2     𝑎𝑡 𝑧 = 0 

 

 

 

 

(5.33) 
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φ̂2𝑗,𝑙(𝑧) = 𝐶2𝑗,𝑙
cosh𝐾𝑗,𝑙(z + h) 

sinh (𝐾𝑗,𝑙ℎ)
 

 

(5.35) 

 

Where 𝐾𝑗,𝑙 is |𝑲𝒋,𝒍|, for deep water (ℎ → ∞) the limiting behaviour of φ̂2𝑗,𝑙 =

𝐶2𝑗,𝑙𝑒
𝐾𝑗,𝑙𝑧. At this time, after substituting the assumed solution in the left-hand side of 

the kinematic and the dynamic boundary conditions (5.32-5.33) respectively. Also 

substituting the first order solution in equations (4.21-22) to the right-hand side of 

(5.32-5.33) respectively. We will have the following, 

(

−𝑖𝛺𝑗,𝑙 −𝐾𝑗,𝑙

𝑔 −
𝜌𝑎

𝜌𝑓
𝛺𝑗,𝑙

2 +
𝐼𝑚
𝜌𝑓
𝐾𝑗,𝑙

2𝛺𝑗,𝑙
2 +

𝐷

𝜌𝑓
𝐾𝑗,𝑙

4 −𝑖𝛺𝑗,𝑙𝑐𝑜𝑡ℎ𝐾𝑗,𝑙ℎ
)(
𝜂̂2𝑗,𝑙
𝐶2𝑗,𝑙

)

=

(

 
 

−𝑖𝜔𝑗 (
𝒌𝑗 . 𝒌𝑙

𝑘𝑗
+ 𝑘𝑗)𝐹𝑗

𝜔𝑗
2 −

𝜔𝑗𝜔𝑙

2
(
𝒌𝑗 . 𝒌𝑙

𝑘𝑗𝑘𝑙
𝐹𝑗𝐹𝑙 − 1)

)

 
 𝑑𝑗𝑑𝑙

4
 

 

(5.32) 

 

Where, 𝐹𝑗 is denotes 𝑐𝑜𝑡ℎ(𝑘𝑗ℎ) similarly for 𝐹𝑙. The pair 𝑲𝒋,𝒍 and 𝛺𝑗,𝑙 does not satisfy 

the dispersion relation, then the determinant of the coefficient matrix is non-zero (the 

matrix is not singular). Consequently, the matrix (5.32) can be solved straight 

forward. 

Then 𝜂̂2𝑗,𝑙and 𝐶2𝑗,𝑙 will have the following forms  

 

𝜂̂2𝑗,𝑙 =

{−𝑖𝛺𝑗,𝑙𝑐𝑜𝑡ℎ𝐾𝑗,𝑙ℎ (−𝑖𝜔𝑗 (
𝒌𝑗 . 𝒌𝑙
𝑘𝑗

+ 𝑘𝑗) 𝐹𝑗) + 𝐾𝑗,𝑙 (𝜔𝑗
2 −

𝜔𝑗𝜔𝑙
2

(
𝒌𝑗 . 𝒌𝑙
𝑘𝑗𝑘𝑙

𝐹𝑗𝐹𝑙 − 1))}
𝑑𝑗𝑑𝑙
4

−𝛺𝑗,𝑙
2𝑐𝑜𝑡ℎ𝐾𝑗,𝑙ℎ − 𝐾𝑗,𝑙 (𝑔 −

𝜌𝑎
𝜌𝑓
𝛺𝑗,𝑙

2 +
𝐼𝑚
𝜌𝑓
𝐾𝑗,𝑙

2𝛺𝑗,𝑙
2 +

𝐷
𝜌𝑓
𝐾𝑗,𝑙

4)
 

 

𝐶2𝑗,𝑙 =

{β (−𝑖𝜔𝑗 (
𝒌𝑗 . 𝒌𝑙
𝑘𝑗

+ 𝑘𝑗) 𝐹𝑗) − 𝑖𝛺𝑗,𝑙 (𝜔𝑗
2 −

𝜔𝑗𝜔𝑙
2

(
𝒌𝑗 . 𝒌𝑙
𝑘𝑗𝑘𝑙

𝐹𝑗𝐹𝑙 − 1))}
𝑑𝑗𝑑𝑙
4

−𝛺𝑗,𝑙
2𝑐𝑜𝑡ℎ𝐾𝑗,𝑙ℎ − 𝐾𝑗,𝑙 (𝑔 −

𝜌𝑎
𝜌𝑓
𝛺𝑗,𝑙

2 +
𝐼𝑚
𝜌𝑓
𝐾𝑗,𝑙

2𝛺𝑗,𝑙
2 +

𝐷
𝜌𝑓
𝐾𝑗,𝑙

4)
 

 

 

Noting that  

β=(−𝑔 +
𝜌𝑎

𝜌𝑓
𝛺𝑗,𝑙

2 −
𝐼𝑚

𝜌𝑓
𝐾𝑗,𝑙

2𝛺𝑗,𝑙
2 −

𝐷

𝜌𝑓
𝐾𝑗,𝑙

4) 

 

It is essential to note here that  𝜂̂2𝑗,𝑙 is the analytical solution for the group line, that is 

the zeroth harmonic in the plot 1, in section 1.1. One more case exists, where 𝑲𝒋,𝒍 or 

𝛺𝑗,𝑙 is zero, the second order solution will not be a propagating wave. We are not 

going to discuss this case in this thesis.  
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Chapter 6 
 

Discussion  
 

In this chapter, we will discuss the theoretical results attained during this study. First, we will 

take a brief look at the linear dispersion relations found in chapter 3. Secondly, the resonance 

analysis made for the beam and the plate is to be interpreted. Thereafter, a discussion of the 

beam and plate interaction equations found in chapter 4 and 5 is to be held. In the last section 

we will discuss the non-resonant interactions. 

 

6.1 Linear dispersion relations  

In chapter 3, the linear dispersion relations for the string, beam and plate were derived. 

For small thickness of the beam and the plate, the plots in chapter 1 showed that at low 

wavenumbers, the behaviour of gravity waves wins, then as the wave number 

increases, the elastic contribution become stronger and dominates after an inflection 

point. The wave length where the change of behaviour occurs is highly affected with 

the elasticity of the structural element. As the stiffness of the structural element 

increases the point of inflection will be detected at higher wavenumber. The results 

found where compatible with theoretical predictions, where a structural element is 

coupled with the hydrodynamics of inviscid incompressible flows [14]. 

    

6.2 Resonance  

Through the resonance analysis held in chapters 4 and 5, it has been proven that 

resonance could occur due to three wave interactions in case of fluid covered by 

elastic sheet, and deep-water assumption. The existence of non-colinear triads for the 

plate case, means that short-crested wave field could be detected.  

The resonance investigation showed that there exists a minimum value for 𝑘2 where 

the resonance could occur. The latter agrees with other studies such as Resonant 

interactions among capillary-gravity waves, which was held by McGoldrick (1964), 

and the study made by Phillips (1960) [15]. 

Following, a comparison is made between solutions of resonant triads for hydroelastic 

plate waves (plot 8) and capillary-gravity waves. The values of 𝑘1  studied range 

between 0.5𝑚−1 and 3𝑚−1, where the minimum values for 𝑘2 , (𝑘2 𝑚𝑖𝑛) range 

between 13𝑚−1 and 50 𝑚−1, respectively. That is to say the value of 𝑘2 𝑚𝑖𝑛 increases 

with the increasing value of 𝑘1. Unlike, the behaviour of resonant triads in case of 

capillary-gravity waves (McGoldrick -1964), where the minimum values for 𝑘2 

decreased with the increase of the values of 𝑘1.  In the capillary gravity waves, 𝑘2 𝑚𝑖𝑛  

ranged between 1.5𝑚−1 and 0.1𝑚−1, for 𝑘1 equals 1/3 and 3, respectively.  

Another difference between capillary-gravity waves and hydroelastic waves is that the 

values of 𝑘2 𝑚𝑖𝑛 in hydroelastic waves is higher than that of capillary gravity waves. 

Higher values of 𝑘2 𝑚𝑖𝑛 in hydroelastic waves could be due to the presence of the 
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elastic modulus 𝐸 and the plate density 𝜌, which have considerably bigger values than 

the surface tension coefficient present in the resonance condition for capillary-gravity 

waves. The presented contrasts demonstrate an important difference between capillary 

gravity waves and elastic plate waves. The polar plot below presents solutions of 

resonant triads of capillary-gravity waves. 

 

plot 9. Resonance solutions for capillary-gravity waves (McGoldrick-1964). 

 

6.3  Resonant interaction equations 

By definition, the resonant interaction is the interaction of three or more waves, which 

takes place when a certain configuration of wave vectors and dispersion equation are 

met. Resonant interactions can lead to wave instability, which in its turn will create 

turbulence, and high-dimensional chaos [15]. In the last decades, the interaction 

equations was popular due to their importance and the simplicity of the criteria. A. V. 

Marchenko studied the stability of flexural-gravity waves and quadratic interactions, 

where he used a numerical solution of the interaction equations to prove that in case of 

presence of resonant triad, the resonating waves may be strongly amplified [23]. The 

significance of the resonant case made interesting to be investigated in this thesis. The 

presented investigation is theoretical, but in fact it is remarkably close to experiments 

made in the laboratory. In (2019), experiments was held by Ingrid Olsen where 

irregular surface waves on water were sent into a region where the water was covered 

by an elastic sheet that was supposed to resemble ice [17]. Measurements were made 

of the surface elevation with good spatial resolution such that 2D Fourier analysis in 

time and space was possible. To illustrate the theoretical analysis held in this thesis, 
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we will present figures resulting from the latter described experiment and similar 

experiment held by Yiyi Whitchelo (2021). 

 

plot 10. Logarithmic scaled spectrum plot for Latex sheet with 0.2mm thickness Olsen (2019). 

 

plot 11. Logarithmic scales spectrum plot for Latex sheet with 0.25mm thickness Whitchelo 

(2021) 

 

In plot 10, the black dashed lines show linear dispersion relation and its harmonics up 

to the third order, the innermost is the first harmonic, which represents the linear 

dispersion relation. The curve above it is the second harmonic, and the straight line 

coming out of the origin is the zeroth harmonic, it is also known as the group line. 

Note that this plot is a reproduction from Olsen’s thesis, the black dashed line will be 

more obvious on screen than on paper. 
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In this research, the need of Green’s second identity is to the extent that the waves that 

occur on the dispersion relation (first harmonic) are forced by their own natural 

frequency. This will lead to resonant growth. To arrest the growth, a solvability 

condition is imposed on the forcing that we have on the right-hand side of the 

governing equations in the nonlinear system. The solvability condition is the set of 

interaction equations derived in chapter 4 and 5 for beam and plate, respectively. 

Using Green’s formula, we get a relationship between the three waves of the resonant 

triad, combined per wise in quadratic products. 

 

Now we will move into a closer look at the interaction equations. Regarding the group 

velocity term, one of the observations in the experiments held by Olsen (2019) is that 

the group velocity increases gradually as wave propagates into the elastic sheet.  The 

latter can be proven theoretically, using the interaction equations. We can see that the 

group velocity is highly affected by the elastic material properties present in its own 

form and in the interaction coefficients. Since the elastic material properties such as 

elastic modulus 𝐸 and density 𝜌 substantially have bigger effect than the surface 

tension coefficient present in the group velocity form of free surface waves, then the 

group velocity of elastic waves will be higher than that for free waves. To add, from 

the equation of 𝑐𝑔, it is intuitive to say that for lower wavenumbers, then longer 

waves, the group velocity is higher in elastic sheet.  

During wave propagation the energy flux is conserved, then if the group velocity 

increases, this means that the wave amplitude will decrease. This is also consistent 

with the experimental results showing attenuation of amplitudes in the hydroelastic 

waves.  

In case of three wave resonance, the interaction coefficients 𝛼𝑗 present in the 

interaction equations will identify the direction of energy transfer between waves in a 

resonating triad. The energy sharing between three wave modes is complicated, it can 

be periodic back and forth, or it can go asymptotically in one direction [17]. In reality, 

the presence of a whole continuum of different resonant triads makes the situation 

more challenging. The study A criterion for nonlinear wave stability by K. 

Hasselmann suggests that shorter waves have tendency to share their energy with 

longer waves [24].  

 

6.4 Nonlinearly forced response 

In the non-resonant case, the second order problem can be solved precisely, since 𝑲𝒋,𝒍 

and 𝛺𝑗,𝑙 are non-zero and does not satisfy the dispersion relation. In section 5.4, the 

second order problem was solved analytically and the equations of  𝜂̂2𝑗,𝑙and 𝐶2𝑗,𝑙 

where stated. In fact, 𝜂̂2𝑗,𝑙 is the analytical solution for the group line, that is the zeroth 

harmonic in the plots 11 and 12. Although the zeroth harmonic may look like a 

straight line, it is probably a cloud of a certain structure that looks like a straight line, 

having the slope of the group velocity of the principal wave component. The intensity 

of the cloud differs depending on the products of the two complex amplitudes 

interacting with each other. This means that the intensity of the cloud is not the same 
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in all locations. The analytical formulas of  𝜂̂2𝑗,𝑙and 𝐶2𝑗,𝑙 calculated in section 5.4 

predicts the distribution of intensity within the group line. 

In fact, the non-resonant equations calculated in section 5.4 corresponds to the 

equations (12-14) in the study Interpretation and observations of ocean wave spectra 

by Krogstad and Trulsen (2010) [26]. In the latter study, the nonlinear Schrödinger 

equation and its generalizations approach was used. Below is a plot presented by 

Krogstad and Trulsen (2010) for an example of the first and second order (𝑘, 𝜔)- 
spectrum for unidirectional waves. This plot is actually a solution of equations (12-14) 

in the preceding paper, and it is similar to the experimental observations. The 

analytical solution derived in section 5.4 can be used to produce a similar plot and to 

investigate the structure of the group line. 

 

plot 12. First and second order spectra for unidirectional waves (Krogstad and Trulsen 

(2010)) 
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Chapter 7 
 

Conclusion  
 

7.1 Conclusion 

‘Since a general solution must be judged impossible from want of analysis, we must be 

content with the knowledge of some special cases, and that all the more, since the 

development of various cases seems to be the only way of bringing us at last to a more 

perfect knowledge’ [18]. This thesis is a theoretical investigation for transverse waves 

in fluid covered by an elastic sheet. The governing equations of a plate and a beam 

placed over fluid systems was derived and studied for the linear and second order 

nonlinearity. Resonance investigation was performed and the resonant interaction 

equations for beam and plate was derived. For the non-resonant case, the particular 

solution was obtained for the plate over fluid. Resonance analysis showed that 

resonance could occur due to three wave interactions in hydroelastic waves, for deep 

water assumption. The resonance behaviour of waves in elastic sheet covering fluid is 

different from that for capillary-gravity waves, in regards of increasing value of 𝑘2 𝑚𝑖𝑛  

with the increase of 𝑘1. To add, the presence of elastic properties of the sheet leads to 

higher values of 𝑘2 than that for capillary gravity waves.  The group velocity of elastic 

waves is higher than that of free waves and it increases with the increase of the wave 

length. Effects of elasticity leads to lower amplitudes of elastic waves than that of free 

waves. The zeroth, first and second harmonic presented in by Olsen (2019) were 

detected during the investigation. The presence of elastic parameters in the interaction 

coefficients means that the value of the bending stiffness influences the nonlinear 

interactions happening. Studying the non-resonant case leads to finding the analytical 

solution of the group line. It is concluded that the group line probably have a cloud 

structure looking like a straight line. Last but not least, the hydro-elastic waves are 

highly affected by the stiffness of the covering sheet. Finally, the investigation of fluid 

covered by elastic sheet case made us more knowledgeable about the resonant and 

non-resonant interactions of hydro-elastic waves. 

 

7.2 Further work 

Future investigation is the quantitative comparison between the predicted formulas of 

𝜂̂2𝑗,𝑙and 𝐶2𝑗,𝑙 derived in chapter 5, with the structure of the group line in the 

experimental plots (plots 10- 11). In the experiments, the spectrum used to simulate 

the data file of surface elevation is the JONSWAP-spectrum. The structure of the 

group line can be computed by inserting the frequencies and the wavenumbers from 

the latter spectrum into the analytical solution  𝜂̂2𝑗,𝑙. A plot similar to that found in the 

study Interpretation and observations of ocean wave spectra by Krogstad and Trulsen 

(plot- 12 in this thesis) is to be computed.  In this thesis, the concern was about how 

the group line manifests in surface elevation, the next step can be to investigate how it 

manifests in velocity. In particular, if it implies enhanced mass transport into ice-
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covered water faster than we would have preferred due to environmental concerns. 

Besides, a similar analytical investigation could be done for sheets with different 

properties in order to emphasize the effect of elasticity on the waves. 
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