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Abstract. We study the computational complexity of three represen-
tations of irrational numbers: standard Baire sequences, dual Baire
sequences and contractors. Our main results: Irrationals whose standard AQ1

Baire sequences are of low computational complexity might have dual
Baire sequences of arbitrarily high computational complexity, and vice
versa, irrationals whose dual Baire sequences are of low complexity might
have standard Baire sequences of arbitrarily high complexity. Further-
more, for any subrecursive class S closed under primitive recursive oper-
ations, the class of irrationals that have a contractor in S is exactly the
class of irrationals that have both a standard and a dual Baire sequence
in S. Our results implies that a subrecursive class closed under primi-
tive recursive operations contains the continued fraction of an irrational
number α if and only if there is a contractor for α in the class.

Keywords: Computable analysis · Representation of irrationals ·
Subrecursion · Computational complexity · Baire sequences ·
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1 Introduction

The theorems proved below complement the picture drawn in Kristiansen [4,5]
and, particularly, Georgiev et al. [1]. Our investigations are motivated by the
question: Do we need, or do we not need, unbounded search in order to convert
one representation of an irrational number into another representation? A com-
putation that does not apply unbounded search is called a subrecursive computa-
tion. Primitive recursive computations and (Kalmar) elementary computations
are typical examples of subrecursive computations. A representation R1 (of irra-
tional numbers) is subrecursive in a representation R2 if the R1-representation
of α can be subrecursively computed in the R2-representation of α.

The reader that wants to know more about our motivations, or want further
explanations, should consult the first few sections of Georgiev et al. [1]. This is a
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2 L. Kristiansen

technical paper where our main concern is to give reasonably full proofs of some
new theorems.1

What we will call a Baire sequence is an infinite sequence of natural numbers.
Such a sequence a0, a1, a2, . . . represents an irrational number α in the interval
(0, 1). We split the interval (0, 1) into infinitely many open subintervals with
rational endpoints. We may, e.g., use the splitting

( 0/1 , 1/2 ) ( 1/2 , 2/3 ) ( 2/3 , 3/4 ) . . . ( n/(n + 1) , (n + 1)/(n + 2) ) . . . .

The first number of the sequence a0 tells us in which of these intervals we find
α. Thus if a0 = 17, we find α in the interval (17/18, 18/19). Then we split the
interval (17/18, 18/19) in a similar way. The second number of the sequence a1

tells us in which of these intervals we find α, and thus we proceed.
In general, in order to split the interval (q, r), we need a strictly increasing

sequence of rationals s0, s1, s2 . . . such that s0 = q and limi si = r. We will use
the splitting si = (a + ic)/(b + id) where a, b are (the unique) relatively prime
natural numbers such that q = a/b and c, d are (the unique) relatively prime
natural numbers such that r = c/d (let 0 = 0/1 and 1 = 1/1). This particular
splitting makes our proof smooth and transparent, but our main results are
invariant over all natural splittings.

We will say that the Baire sequences explained above are standard. The
standard Baire sequence of the irrational number α will lexicographically precede
standard Baire sequence of the irrational number β iff α < β. We will also
work with what we will call dual Baire sequences. The dual sequence of α will
lexicographically precede the dual sequence of β iff α > β. We get the dual
sequences by using decreasing sequences of rationals to split intervals, e.g., the
interval (0, 1) may be split into the intervals

( 1/1 , 1/2 ) ( 1/2 , 1/3 ) ( 1/3 , 1/4 ) . . . ( 1/n , 1/(n + 1) ) . . . .

Definition 1. Let f : N → N be any function, and let n ∈ N. We define the
interval In

f by I0
f = (0/1, 1/1) and

In+1
f =

(
a + f(n)c
b + f(n)d

,
a + f(n)c + c

b + f(n)d + d

)

if In
f = (a/b, c/d). We define the interval Jn

f by J0
f = (0/1, 1/1) and

Jn+1
f =

(
a + f(n)a + c

b + f(n)b + d
,

f(n)a + c

f(n)b + d

)

if Jn
f = (a/b, c/d). The function B : N → N is the standard Baire representation

of the irrational number α ∈ (0, 1) if we have α ∈ In
B for every n. The function

A : N → N is the dual Baire representation of the irrational number α ∈ (0, 1)
if we have α ∈ Jn

A for every n.
1 The author wants to thank Dag Normann for enlightening discussions which lead

up to this paper. The author wants to thank Eyvind Briseid for helpful advice and
for pinpointing weaknesses in an early version of this paper.
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Contractors and Baire Sequences 3

Before we discuss contractors, we will recall the trace functions introduced
in Kristiansen [4]. A trace function for α is a function that move any rational
number closer to α. The formal definition, which follows, is straightforward.

Definition 2. A function T : [0, 1] ∩ Q → (0, 1) ∩ Q is a trace function for the
irrational number α if we have |α − q| > |α − T (q)| for any rational q.

We will say that a trace function T moves q to the right (left) if q < T (q)
(T (q) < q). The easiest way to realize that a trace function indeed defines a
unique real number, is probably to observe that a trace function T for α yields
the Dedekind cut of α: if T moves q the right, then we know that q lies below
α; if T moves q the left, then we know that q lies above α. Obviously, T cannot
yield the Dedekind cut for any other number than α. It is proved in [4] that
trace functions are subrecursively equivalent to continued fractions.

Intuitively, a contractor is a function that moves two (rational) numbers
closer to each other. It turns out that also contractors can be used to represent
irrational numbers.

Definition 3. A function F : [0, 1] ∩ Q → (0, 1) ∩ Q is a contractor if we have

F (q) �= q and |F (q1) − F (q2)| < |q1 − q2|
for any rationals q, q1, q2 where q1 �= q2.

Theorem 4. Any contractor is a trace function for some irrational number.

Proof. Let F be a contractor. If F moves q to the right (left), then F also move
any rational less (greater) than q to the right (left); otherwise F would not be
a contractor. We define two sequences q0, q1, q2 . . . and p0, p1, p2 . . . of rationals.
Let q0 = 0 and p0 = 1. Let qi+1 = (qi + pi)/2 if F moves (qi + pi)/2 to the right;
otherwise, let qi+1 = qi. Let pi+1 = (qi + pi)/2 if F moves (qi + pi)/2 to the
left; otherwise, let pi+1 = pi (Definition 3 requires that a contractor moves any
rational number). Obviously, we have limi qi = limi pi, and obviously, this limit
is an irrational number α. It is easy to see that F is a trace function for α. ��
Definition 5. A contractor F is a contractor for the irrational number α if F
is a trace function for α (Theorem 4 shows that this definition makes sense).

Contractors, also known as contraction maps, come in a number of variants.
The variant given by Definition 3 is tailored for our purposes. Computational
aspects of contractors have also been studied in proof mining, see Kohlenbach
and Olivia [3] and Gerhardy and Kohlebach [2].

2 Technical Preliminaries

Definition 6. For any string τ ∈ {L,R}∗, we define the interval addressed by
τ inductively over the structure of τ : The empty sequence addresses the interval
(0/1, 1/1). Furthermore

τL addresses
(

a

b
,

a + c

b + d

)
and τR addresses

(
a + c

b + d
,

c

d

)

if τ addresses (a/b, c/d). We will use I[τ ] to denote the interval addressed by τ .
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4 L. Kristiansen

Definition 7. Let α be an irrational number in the interval (0, 1). Let a and b
be relatively prime natural numbers with b > 0. The fraction a/b is a left best
approximant of α if we have c/d ≤ a/b < α or α < c/d for any natural numbers
c, d with 0 < d ≤ b. The fraction a/b is a right best approximant of α if we have
α < a/b ≤ c/d or c/d < α for any natural numbers c, d with 0 < d ≤ b.

Lemma 8. Assume that the interval (a/b, c/d) is addressed by some τ ∈
{L,R}∗. Then, (i) a/b and c/d are, respectively, left and right best approx-
imants of any irrational number in the interval (a/b, c/d), and (ii) we have
c/d − a/b = 1/(db).

Proof. If an interval (a/b, c/d) is addressed by some τ ∈ {L,R}∗, then a/b and
c/d will be a Farey pair, that is, neighbors in the Farey series of order max(b, d).
It is well know that the mediant of the pair, that is, (a + c)/(b + d) will be in
its lowest terms and lie in the interval, moreover, for any other vulgar fraction
m/n that lie in the interval, we have n > b + d, see Richards [8]. It follows
that (i) holds. Moreover, it well know that we have cb − ad = 1, or equivalently
c/d − a/b = 1/(db), for any Farey pair (a/b, c/d), and thus (ii) also holds. ��

The next lemma is the key to the proof of one of our main theorems.

Lemma 9. (i) The string Rf(0)LRf(1)L . . . Rf(n)L addresses the interval In+1
f .

(ii) The string Lf(0)RLf(1)R . . . Lf(n)R addresses the interval Jn+1
f .

Proof. We prove (i). The proof of (ii) is symmetric.
Let τ = Rf(0)LRf(1)L . . . Rf(n−1)L. Observe that we have I[τ ] =

(0/1, 1/1) = I0
f when τ is the empty sequence.

Assume that I[τ ] = In
f = (a/b, c/d). We need to prove that

I[τRf(n)L] = In+1
f . (1)

Let k = f(n). We prove (1) by a secondary induction on k.
Assume k = 0. By Definition 6, we have

I[τRf(n)L] = I[τR0L] = I[τL] = ( a/b , (a + c)/(b + d) ) .

By Definition 1, we have

In+1
f = ( (a+kc)/(b+kd) , (a+kc+c)/(b+kd+d) ) = ( a/b , (a+c)/(b+d) ) .

Thus (1) holds when f(n) = 0. Now, assume by induction hypothesis that

I[τRkL] =
(

a + kc

b + kd
,

a + kc + c

b + kd + d

)
. (2)

Observe that the right hand side of (2) is the definition of In+1
f with k for f(n).

Now, by (2) and Definition 6, we have

I[τRk] =
(

a + kc

b + kd
,

c

d

)
. (3)
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Contractors and Baire Sequences 5

Furthermore, by (3) and Definition 6, we have

I[τRk+1] =
(

a + kc + c

b + kd + d
,

c

d

)
=

(
a + (k + 1)c
b + (k + 1)d

,
c

d

)
(4)

and by (4) and Definition 6, we have

I[τRk+1L] =
(

a + (k + 1)c
b + (k + 1)d

,
a + (k + 1)c + c

b + (k + 1)d + d

)
. (5)

Observe that the right hand side of (5) is the definition of In+1
f with k + 1 for

f(n). This proves that (1) holds. ��
Note that it follows from the two lemmas above that the endpoints of the

interval In
f (for any n and any f) will be best approximants of every irrational

in the interval. The same goes for and Jn
f .

Lemma 10. For any n and any f , let rn denote the right endpoint of the interval
In
f , and let �n denote the left endpoint of the Jn

f . Then, we have (i) rn − rn+1 >
rn+1 − rn+2 and (ii) �n+1 − �n > �n+2 − �n+1.

Proof. We prove (i). Assume In
f = (a/b, c/d) = I[τ ]. By Definition 1 and

Lemma 9, we have

In+1
f =

(
a + f(n)c
b + f(n)d

,
a + f(n)c + c

b + f(n)d + d

)
= I[τRf(n)L] . (6)

Let a = a + f(n)c, let b = b + f(n)d and let k = f(n). We can now rewrite (6)
as

In+1
f =

(
a
b

,
a + c

b + d

)
= I[τRkL] . (7)

By (7) and Definition 6, we have

I[τRk] = (a/b, c/d) and I[τRkR] = ((a + c)/(b + d), c/d) .

This shows that ((a + c)/(b + d), c/d) is addressed by some string in {L,R}∗.
Thus, by Lemma 8 (ii), we have

c

d
− a + c

b + d
=

1
d(b + d)

. (8)

By Lemma 9, we have In+2
f = I[τRkLRmL] where m = f(n+1). We can assume

that m = 0 since m = 0 yields the maximal distance between rn+1 and rn+2.
Thus, by Definition 6, In+2

f = I[τRkLL] = (a/b, (2a + c)/(2b + d)). Moreover,
again by Definition 6, we have

I[τRkL] =
(

a
b

,
a + c

b + d

)
and I[τRkLR] =

(
2a + c

2b + d
,

a + c

b + d

)
.
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6 L. Kristiansen

This shows that ((2a + c)/(2b + d), (a + c)/(b + d) is addressed by a string in
{L,R}∗, and thus, by Lemma 8 (ii), we have

a + c

b + d
− 2a + c

2b + d
=

1
(b + d)(2b + d)

. (9)

Now we can conclude our proof of (i) with

rn − rn+1 =
c

d
− a + c

b + d

(8)
=

1
d(b + d)

>
1

(b + d)(2b + d)
(9)
=

a + c

b + d
− 2a + c

2b + d
= rn+1 − rn+2 .

The proof of (ii) is symmetric. ��
The Hurwitz characteristic of an irrational α ∈ (0, 1) is the (unique) infi-

nite sequence Σ over the alphabet {L,R} such that we have α ∈ I[σ] for any
finite prefix σ of Σ. Hurwitz characteristics, which are subrecursively equiva-
lent to Dedekind cuts, have been studied by Lehman [7] and, more recently, by
Kristiansen and Simonsen [6].

3 Main Results

Theorem 11. Let B and A be, respectively, the standard and the dual Baire
sequence of α, and let F be any contractor for α. (i) We can compute B primitive
recursively in F . (ii) We can compute A primitive recursively in F .

Proof. We will show that the interval In+1
B and the value of B(n) can be

computed primitive recursively in F . It is trivial to compute the interval I0
B .

Assume that we have computed the interval In
B = (a/b, c/d). First, we compute

c′/d′ = F (c/d). Since F is a contractor for α, we have a/b < α < c′/d′ < c/d.
Next, we find j such that

a + jc

b + jd
<

c′

d′ ≤ a + jc + c

b + jd + d
.

Observe that (a+jc
b+jd , a+jc+c

b+jd+d ) is an addressable interval and that c′/d′ either lies
inside, or is the right endpoint of, the interval. Thus, by Lemma 8, we have
d′ ≥ b + jd + d. No unbounded search is needed to determine j. Indeed, j has to
be less than d′. Thus we can primitive recursively compute j such that

a

b
< α <

a + (j + 1)c
b + (j + 1)d

.

Finally, we search for the least i less than or equal to j + 1 such that F moves
(a+ ic+c)/(b+ id+d) to the left, and then we let B(n) equal that i. This shows
that we can compute B(n) primitive recursively in F , and thus (i) holds. The
proof of (ii) is symmetric. Use the contractor at the left endpoint of intervals in
place of the right endpoint. ��
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Contractors and Baire Sequences 7

Theorem 12. Let B and A be, respectively, the standard and the dual Baire
representation of α. We can compute a contractor for α primitive recursively in
B and A (and we will need both oracles).

Proof. Let ri denote the right endpoint of the interval Ii
B, and let �i denote the

left endpoint of the interval J i
A. For every rational number x ∈ [0, 1], we define

F (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ri+1 − (ri − x)
ri+1 − ri+2

ri − ri+1
if ri+1 < x ≤ ri

�i+1 + (x − �i)
�i+2 − �i+1

�i+1 − �i
if �i ≤ x < �i+1.

First we will prove that F is contractor, that is, we will prove that we have

|F (x) − F (y)| < |x − y| (10)

for any rationals x, y where x �= y. Once we have established that F is a con-
tractor, it will be clear that F is a contractor for α.

Assume that one of the rationals x and y lies below α and that the other lies
above. It is easy to see that F will move one of the numbers to the right and
the other one to the left, and thus, (10) holds. Assume that both x and y lie at
same side of α. We can w.l.o.g. assume that both lie below and that we have
x < y < α. The proof splits into two cases: (i) �i ≤ x < y < �i+1 for some i, and
(ii) �i ≤ x < �i+1 ≤ �j ≤ y < �j+1 for some i, j where j ≥ i + 1.

Case (i). Let k = (�i+2 − �i+1)/(�i+1 − �i). By Lemma 10, we have k < 1,
and then by the definition of F , we have

F (y) − F (x) = �i+1 + (y − �i)k − (�i+1 + (x − �i)k) = (y − x)k < y − x

and thus (10) holds.
Case (ii). This case is slightly more involved, but in the end everything is

straightforward. We omit the details.
This proves that F is a contractor for α. It remains to argue that F can be

computed primitive recursively in B and A. Let q be an arbitrary rational in the
interval [0, 1], and let m/n be q written in lowest terms.

(Claim) There exists j < n such that �j ≤ q < �j+1 or rj+1 < q ≤ rj .

In order to see that the claim holds, assume that α < q = m/n. It follows from
the lemmas in Sect. 2 that each rj = cj/dj is a right best approximant to α.
Thus we have n ≥ dj whenever m/n ≤ cj/dj . Moreover, as dj > j, we have
j < n such that rj+1 < q = m/n ≤ rj if α < q. If q = m/n < α, a symmetric
argument yields j < n such that �j ≤ q < �j+1. This proves the claim.

The sequence r0, r1, r2, . . . can be computed primitive recursively in B, and
the sequence �0, �1, �2, . . . can be computed primitive recursively in A. Thus,
it follows from the claim that F can be computed primitive recursively in B
and A. ��
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8 L. Kristiansen

It follows from the next theorem that we cannot compute the standard Baire
sequence of an irrational α subrecursively in the dual Baire sequence of α. That
requires unbounded search.

Theorem 13. Let S be any subrecursive class. There exists an irrational num-
ber α such that (i) the standard Baire sequence of α is not in S, and (ii) the
dual Baire sequence of α is (Kalmar) elementary.

Proof. A function f is honest, by definition, if 2x ≤ f(x), f(x) ≤ f(x + 1) and
the relation f(x) = y is elementary. Let B be the an honest function which is
not in S. Such a B exists (a proof can be found in Georgiev et al. [1]). Now, B is
the standard Baire sequence of some irrational number α, and since an irrational
number only has one standard Baire sequence, the standard Baire sequence of α
is not in S. It remains to prove that the dual Baire sequence of α is elementary.

Let an = B(0)+(
∑n

i=1 B(i)+1). Let A(x) = 1 if x = an for some n; otherwise,
let A(x) = 0. Since B is an honest function, we can check by elementary means
if there exists n such that x = an. Hence A is an elementary function. We will
prove that A is the dual Baire sequence of α.

For any natural number n, we define the strings σn and τn by

σn = LA(0)RLA(1)R . . . LA(an−1)RLA(an) and τn = RB(0)LRB(1)L . . . RB(n)L .

We will prove the following claim by induction on n: σn = τn (claim).
Let n = 0. We have a0 = B(0) and thus, by the definition of A, we have

σ0 = LA(0)RLA(1)R . . . LA(a0−1)RLA(a0) = Ra0L = RB(0)L = τ0 .

Let n > 0. By the definition of an, we have an = an−1 + B(n) + 1, and thus
B(n) = an − (an−1 + 1). Furthermore, we have

σn
(1)
= σn−1RLA(an−1+1)RLA(an−1+2) . . . RLA(an−1)RLA(an) (2)

=

σn−1R
an−(an−1+1)L

(3)
= σn−1R

B(n)L
(4)
= τn−1R

B(n)L
(5)
= τn

where (1) holds by the definition of σn; (2) holds by the definition of A; (3) holds
by the definition of an; (4) holds by the induction hypothesis; and (5) holds by
the definition of τn. This proves (claim).

It follows from (claim) and Lemma 9 that the inclusion Jan

A ⊆ In
B holds for

all n. This proves that A is the dual Baire sequence of α. ��
Just for the record, the proof of the next theorem is symmetric to the proof

of the preceding theorem.

Theorem 14. Let S be any subrecursive class. There exists an irrational num-
ber α such that (i) the dual Baire sequence of α is not in S, and (ii) the standard
Baire sequence of α is (Kalmar) elementary.
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Contractors and Baire Sequences 9

4 The Big Picture

Definition 15. For any subrecursive class S, let SF denote the class of irra-
tional numbers that have a contractor in S, let SsB denote the class of irrational
numbers that have a standard Baire sequence in S, and SdB denote the class of
irrational numbers that have a dual Baire sequence in S.

Corollary 16. Let S be any subrecursive class closed under primitive recursive
operations. Then, (i) SsB �⊆ SdB, (ii) SdB �⊆ SsB and (iii) SF = SdB ∩ SsB.

Proof. Theorem 13 entails (i). Theorem 14 entails (ii). Theorem 11 entails SF ⊆
SdB ∩ SsB . Theorem 12 entails SdB ∩ SsB ⊆ SF . Thus, (iii) holds. ��
Definition 17. Let α be an irrational number in the interval (0, 1). A left best
approximation of α is a sequence of fractions {ai/bi}i∈N such that (0/1) =
(a0/b0) < (a1/b1) < (a2/b2) < . . . and each ai/bi is a left best approximant
of α (see Definition 7). A right best approximation of α is a sequence of frac-
tions {ai/bi}i∈N such that (1/1) = (a0/b0) > (a1/b1) > (a2/b2) > . . . and each
ai/bi is a right best approximant of α. Clearly, both sequences converge to α.

Let S< denote the class of irrational numbers that have a left best approx-
imation in the subrecursive class S, and let S> denote the class of irrational
numbers that have a right best approximation in S.

Theorem 18. For any subrecursive class S closed under primitive recursion,
we have S< = SdB and S> = SsB.

Proof. We say that a right best approximation of α is complete if every right
best approximant occurs in the approximation. Note that the complete best
approximation of an irrational α in the interval (0, 1) is unique.

Let B be the standard Baire sequence of α. Consider the interval I addressed
by Rf(0)LRf(1)L . . . Rf(n)L. By Lemma 9, we have I = In+1

B . The right endpoint
of I will be the n’th best approximant in the complete right best approximation
of α. These considerations make it easy to see that the inclusion SsB ⊆ S> holds.

Let {ai/bi}i∈N be a right best approximation of α. We can w.l.o.g. assume
that {ai/bi}i∈N is complete since a complete right best approximation can be
computed primitive recursively in an arbitrary right best approximation. We
can primitive recursively in {ai/bi}i∈N compute a (unique) string of the form
Rk0LRk1L . . . RknL such that the right endpoint of the interval addressed by
Rk0L . . . RkiL equals ai+1/bi+1 (for all i ≤ n). Let B be the standard Baire
sequence of α. By Lemma 9, we have B(i) = ki (for all i ≤ n). These consid-
erations make it easy to see that the inclusion S> ⊆ SsB holds. This proves
S> = SsB . The proof of S< = SdB is of course symmetric. ��

For any subrecursive class S, let Sg↑ denote the class of irrational numbers
that have a general sum approximation from below in S, let Sg↓ denote the class
of irrational numbers that have a general sum approximation from above in S,
furthermore, let S[ ] denote the class of irrational numbers that have a continued
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10 L. Kristiansen

fraction in S. Definitions of general sum approximations from below and above
can be found in [4] and [1]. It is proved in [4] that we have S[ ] = Sg↑ ∩Sg↓ for any
S closed under primitive recursive operations. It is proved in [1] that we have
S< = Sg↑ and S> = Sg↓ for any S closed under primitive recursive operations.
Thus, we have the following corollary.

Corollary 19. For any subrecursive class S closed under primitive recursive
operations, we have S[ ] = SF and S< = Sg↑ = SdB and S> = Sg↓ = SsB.
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