
Finite-volume methods with
dense neural networks
Approximating solutions of two-dimensional scalar
conservation laws

Åsmund Danielsen Kvitvang
Master’s Thesis, Spring 2021

This master’s thesis is submitted under the master’s program Computational
Science, with program option Applied Mathematics and Risk Analysis, at the
Department of Mathematics, University of Oslo. The scope of the thesis is 60
credits.

The front page depicts a section of the root system of the exceptional
Lie group E8, projected into the plane. Lie groups were invented by the
Norwegian mathematician Sophus Lie (1842–1899) to express symmetries in
differential equations and today they play a central role in various parts of
mathematics.

Abstract

Hyperbolic conservation laws are an important part in classical physics to be
able to mathematically describe the actions of nature. To obtain approximate
solutions of such problems, several numerical methods have been developed,
most of which with both advantages and disadvantages in terms of accuracy,
efficiency and implementation simplicity.

Inspired by modern computer science we will in this thesis propose numerical
methods based on flux approximations obtained by using dense neural networks
(DNNs). We will investigate the accuracy and efficiency by performing
experiments with Burgers’ equation. The main result of this thesis is a proposed
numerical method for approximating solutions of two-dimensional nonlinear
conservation laws. As there does not exist exact solution formulas of such
two-dimensional problems, a possible approach is to use fine-resolution solvers
in order to properly approximate the solutions. These solvers are extremely
time consuming, and the hope is that the use of pre-trained DNN models will
lead to a precise and efficient numerical method. We will also explore the
possibility of using a physics-informed loss-function for approximating solutions
of one-dimensional conservation laws, and further discuss how this may be
applied to the two-dimensional methods.

The DNN based numerical methods tested in this thesis yielded promising
results with respect to both accuracy and efficiency. Due to time limitations
of this study we have restricted ourselves to only studying Burgers’ equation
with a narrow sample of parameters. Thus, some uncertainty follows with
the results, and thereby uncertainty in the conclusions. However, there are
strong indications that the proposed models are valuable, given the right set of
parameters.

i

Acknowledgements

First of all, I would like to thank my supervisor Ulrik Skre Fjordholm for giving
me such an interesting topic to investigate over the last year. It has by far
been my most educational experience, and you have been both patient and
supportive in order for the work to progress.

Secondly, thanks to all my friends at my study hall, B1001. We have had
much fun together, and you have all been very helpful when I have needed
someone to discuss academically related questions with.

Thanks to all my friends and family who have supported me throughout the
years, both at the university and otherwise.

Finally, I would like to thank my partner, Linda T. Haugen. I am eternally
grateful that I have you in my life. Thank you for all support you have given
me throughout my years as a student.

iii

Contents

Abstract i

Acknowledgements iii

Contents v

1 Introduction 1

2 Background and theory 9
2.1 Scalar conservation laws . 9

2.1.1 Physical interpretation 9
2.1.2 Characteristics of Riemann problems with convex flux 10
2.1.3 Weak solutions of Riemann problems 12
2.1.4 Entropy condition . 16

2.2 Finite-volume schemes . 17
2.2.1 Discretization . 18
2.2.2 Numerical scheme . 19
2.2.3 Godunov’s scheme . 20

2.3 Neural networks . 23
2.3.1 Terminology . 23
2.3.2 Backward propagation 26
2.3.3 Bias-variance trade-off 27
2.3.4 Activation functions 29
2.3.5 Universal approximation theorem 30

3 Numerical methods and experiments 33
3.1 Preliminaries . 33

3.1.1 Error measure . 34
3.1.2 Data generator . 34
3.1.3 Reproducibility . 35

3.2 DNN solver with MSE-loss in R 35
3.2.1 Numerical method . 36
3.2.2 Baseline for experiments 37
3.2.3 Experiments . 39

3.3 DNN solver with extended L1-loss in R 47
3.3.1 Numerical method . 48
3.3.2 Baseline for experiments 51

v

Contents

3.3.3 Experiments . 52
3.3.4 The extended L1-loss from a convolution point of view 57

3.4 DNN solver with MSE-loss in R2 57
3.4.1 Two-dimensional finite-volume method 58
3.4.2 DNN based finite-volume method 59
3.4.3 Baseline for experiments 64
3.4.4 Experiments . 67
3.4.5 Genuinely 2D experiments 73

3.5 Sources of error . 79

4 Summary and further work 81
4.1 Discussion and conclusion . 81
4.2 Improvements . 82
4.3 Further work . 82

A Python implementations 85
A.1 DNN based one-dimensional scheme 85
A.2 DNN based two-dimensional scheme 88
A.3 Godunov’s one-dimensional scheme 89
A.4 Godunov’s two-dimensional scheme 90
A.5 One-dimensional data generator 90
A.6 Two-dimensional data generator 92
A.7 Additional . 95

Bibliography 97

vi

CHAPTER 1

Introduction

Hyperbolic conservation laws play an important role in modern physics. At the
beginning of the 20th century E. Noether proved a theorem stating that every
differentiable symmetry of the action of a physical system has a corresponding
conservation law [Noe18]. The perhaps most famous example is given by the
first law of thermodynamics, stating that energy can neither be created nor
destroyed in a system of constant mass, although it may be converted into
different forms [Car60]. In other words, the energy is conserved over time, and
may be mathematically described by hyperbolic conservation laws.

The focus in this thesis is set on approximating solutions of nonlinear
conservation laws. Similar to other nonlinear equations, gradients tend to
‘explode’ which occurs as discontinuities in the solutions. This motivates for
existence of weak solutions, solving the PDEs in terms of distributions. Such
solutions lack uniqueness, leading to the creation of entropy conditions, which
ensures physically sensible solutions. The entropy condition is given as the
second law of thermodynamics [Car60].

The numerical methods presented in this thesis are developed by using
dense neural networks to approximate the flux of scalar conservation laws.
Neural networks, or more generally machine learning, has been in the minds of
scientists for nearly 80 years – starting with a paper from 1943 by W. McCulloch
and W. Pitts [MP43]. This started with a simple thought: is it possible to
artificially simulate a brain? This has then developed into its own field of study
for solving extremely complex models – calculations that would take a human
being maybe decades, or even centuries, to solve by hand. In 2019 M. Raissi et
al. introduced physics-informed neural network (PINN), which is a supervised
learning framework for solving nonlinear PDEs [RPK19]. These networks are
trained to solve supervised learning tasks with respect to given physical laws.
Then, in 2020, A. D. Jagtap published an article proposing a conservative
PINN method, considering nonlinear conservation laws with promising results.
One of the methods proposed in this thesis is rather similar to the latter, as
we introduce a physics-informed loss function for a DNN which is trained to
approximate the flux of one-dimensional initial-value problems. This is then
compared to results produced by a method using a regular MSE-loss function.

The main result of this thesis is the proposal of a DNN based numerical
method for approximating solutions of two-dimensional initial-value problems.
We will also present some experiments of this method, which we will compare
to both the one-dimensional experiments and the two-dimensional Godunov
scheme.

1

1. Introduction

Numerical schemes for approximating solutions to nonlinear conservation
laws have existed for several generations already, one of which is our basis for
network training in one spatial dimension, namely the Godunov scheme [God59].
Two important questions arises when developing a new numerical method for
solving any problem.

Question: Is the method accurate enough?

We need to make sure that the approximate solutions reflects the exact solutions
of the initial-value problems. Thus, we must measure the accuracy in terms of
some chosen error metric that compares the approximations to corresponding
reference solutions. For the two-dimensional methods, the accuracy of the
approximations will be compared to high resolution approximations obtained
from a standard finite-volume method.

Question: Is the method efficient enough?

Efficiency is also an important note. If a developed method is both less efficient
and less accurate compared to an already existing method, then it would not
be a preferred method in any way. However, if a method proves itself extremely
efficient with reduced accuracy, and vice versa, the method could be considered
useful, all depending on the problem we work on. Our goal is therefore to
study the accuracy of our models, as well as including a short note on the time
complexity of the performed calculations.

Outline

Chapter 2 contains the theoretical background needed for this thesis. It is
divided into three sections, namely PDE theory, numerical analysis and
foundations on machine learning.

Chapter 3 contains derivations of numerical methods, together with experi-
ments and results. It is built up by five sections. The first section gives
a common baseline needed for all experiments. In the second section we
develop and test a new numerical method for solving one-dimensional
initial-value problems, using a dense neural network with mean squared
error as loss function. The third section suggests a new physics-informed
loss function for solving the exact same problems, with the hopes that this
will increase stability of the numerical method by teaching the network
some structural properties. The forth section contains the main results of
this thesis. Here, we develop a neural network based method for approxi-
mating solutions of two-dimensional initial-value problems. We will train
the neural models using a high-resolution spatial mesh, with the hope
that this numerical method will approximate solutions of two-dimensional
initial-value problems more accurately and efficiently than already existing
methods. In the fifth and last section we mention potential sources of
error in the conducted experiments.

Chapter 4 contains summary and conclusion of the thesis, as well as discussions
on potential further work. We will also reflect on what we could have
done differently to improve the value of this study.

2

Appendix A contains the Python code implemented for all the experiments.
The resulting implementation is compactly written with package structure,
and may be found on https://github.com/aasmunkv/riemannDNNsolver.

3

https://github.com/aasmunkv/riemannDNNsolver

Notation

We will now go through the most essential notations and conventions needed
throughout this thesis.

Derivatives

We will use a similar notation of derivatives to what L. C. Evans uses [Eva10].
Assume u : Ω→ R where Ω ⊂ Rn. Then we use the following notations.

(i) The partial derivative of u with respect to x will in most cases be denoted
as ux or ∂xu (instead of ∂u∂x). Similarly, the double derivative of u with
respect to xi and xj is denoted uxixj

or ∂xixj
u, and so on.

(ii) We will denote the gradient of u as ∇u, which is defined as

∇u := (ux1 , ux2 , . . . , uxn
).

(iii) We denote the divergence of u as ∇ · u, defined by

∇ · u :=
n∑
i=1

∂xiu.

Machine learning

Given a dense neural network built up by an input layer, L hidden layers and
an output layer, the following notation will be used.

Symbol Description

X input layer of network
Ŷ output prediction of network
Y target values of network, for comparison with Ŷ
X dataset created for training, X =

(
X Y

)
nl number of neurons in layer l
bl bias vector of layer l
al vector of neurons in layer l
ali neuron number i in layer number l

further we have that i ∈ J1, nlK
Wl weight matrix between layer l − 1 and l

5

1. Introduction

Symbol Description

wlij weight connecting jth neuron in layer l − 1 to ith
neuron in layer l

W tensor containing all weight matrices
i.e. W :=

(
W1 W2 · · · WL+1)

zl non-activated input signal of layer l
i.e. zl := Wlal−1 + bl

zlj element j in zl
ϕl activation function between layer l − 1 and l

i.e. al := ϕl(zl)
C(·) cost (or loss) function
Hl full transition between layer l − 1 and l

i.e. Hl(al−1; Wl,bl) := ϕl(Wlal−1 + bl)
N fully-connected and dense neural network

i.e. N (X) := (HL+1 ◦ HL ◦ · · · ◦ H1)(X)∨∧ used for description of neural structure,
e.g. 4 ∨∧ 16 ∨∧ 64 means that we have a dense neural
network N with 3 hidden layers with 4, 16 and 64
neurons, respectively

Additional notations

Besides the notation mentioned above, the following table lists up other notations
chosen for this thesis.

Symbol Description

N natural numbers, not including zero
Z integers
Q rational numbers
R real numbers
N0 natural numbers, including zero
Rn n-dimensional Euclidean space, R = R1

R+ positive part of R
Ω subset of Rn
∂Ω boundary of Ω
Ω̄ closure of Ω
ΩT cross-product of Ω ⊂ Rn and [0, T) ⊂ R+
ΓT boundary of ΩT
Ja, bK integer interval from a to b,

defined as Ja, bK := [a, b] ∩ Z
x, y spatial parameters
t temporal parameter
∆x,∆y,∆t mesh step size with respect to x, y, t
T temporal maximum
u conservative quantity
f, g flux function
F,G numerical flux approximation of f, g
FGod Godunov’s flux function
γ(t) shock wave

6

Symbol Description

s(t) shock speed, i.e. s(t) = γ′(t)
ψ test function in C1

c

(η, q) entropy pair, made up of entropy function η and
entropy flux q

◦ composition operator, (f ◦ g)(x) = f(g(x))
∇x gradient operator for spatial dimensions
∂x, ∂y, ∂t partial derivative with respect to x, y, t
C1(·) set containing continuously differentiable functions
C1
c (·) set containing continuously differentiable functions

with compact support
L∞(·) essentially bounded measurable functions

7

CHAPTER 2

Background and theory

In this chapter we include all necessary theory needed for this study. Section 2.1
consists of a purely analytical point of view of scalar conservation laws. This
includes some examples and motivations for solutions, as well as explicit solution
formulas for general one-dimensional scalar conservation laws. In Section 2.2
we will derive the general finite-volume scheme for one-dimensional initial-value
problems, followed by an introduction to Godunov’s scheme. In Section 2.3 we
introduce the theory of dense neural networks, and the algorithms needed to
train such models.

2.1 Scalar conservation laws

The importance of a conservation law lies in the simple and elegant way it
describes physical phenomena of nature, where the total quantity of some
substance is preserved over time. Thus, the quantity is conserved in the sense
that it moves around in the spatial dimensions over time, and can not be
created, nor destroyed. Let u = u(x, t) denote the measure of a quantity which
we want to calculate analytically or estimate numerically. The general scalar
multi-dimensional conservation law is then given by

∂tu+∇x · f(u) = 0, (2.1)

where f(u) = (f1(u), f2(u), . . . , fn(u)) denotes the given flux functions and
x = (x1, x2, . . . , xn) ∈ Rn is the spatial parameters. We will start this section
by physically interpreting what a scalar conservation law is. Further, we will look
into the behavior of characteristics for solutions of such problems, which yields
an intuition of how to obtain physically sensible solution formulas. Moreover,
we look into the lack of existence of classical solutions, and then move on to
presenting weak solutions of both shock waves and rarefaction waves. Lastly,
the entropy condition is introduced, which leads to a complete introduction to
entropy satisfying solutions for one-dimensional scalar conservation laws.

2.1.1 Physical interpretation

Consider some quantity u = u(x, t), given by (x, t) ∈ Ω× R+, where Ω ⊂ Rn.
If we want to calculate the change over time of the total quantity u, that is

d

dt

∫
Ω
u(x, t) dx,

9

2. Background and theory

Ω

∂Ω

Figure 2.1: A two-dimensional illustration of flux, multiplied with the outward
unit normal, on boundary of a domain Ω.

we need to consider two factors, namely the sources/sinks (the amount of
quantity produced/destroyed) within the domain and the flux (the amount of
quantity going in or out) on the boundary of the domain. This yields

d

dt

∫
Ω
u(x, t) dx =

∫
Ω
s(x, t) dx−

∫
∂Ω

f(u(x, t)) · ν dS(x), (2.2)

where f = f(u) and s = s(x, t) denotes the flux and source/sink, respectively,
while ν is the outward unit normal of the domain and dS(x) is the spatial
domain’s surface measure. In Figure 2.1 we have an illustration of the flux,
multiplied with the outward unit normal. Using the divergence theorem on the
right term of (2.2), we obtain

d

dt

∫
Ω
u(x, t) dx+

∫
Ω
∇x · f(u) dx =

∫
Ω
s(x, t) dx.

Stating that the energy is conserved over time within the spatial domain is the
same as saying that there is neither sources nor sinks within the domain. Thus,
we wind up with the integral form of the conservation law∫

Ω
∂tu(x, t) +∇x · f(u) dx = 0.

Since this equality holds for all subdomains of Ω we may choose an arbitrary
small subdomain to obtain the differential form in (2.1).

2.1.2 Characteristics of Riemann problems with convex flux

Consider a subset Ω ⊂ R, and let f = f(u) be a smooth and strictly convex
function. Equation (2.1) rewritten as a general one-dimensional initial-value
problem yields {

∂tu+ ∂xf(u) = 0, (x, t) ∈ Ω× R+,

u(x, 0) = u0(x), x ∈ Ω,
(2.3)

10

2.1. Scalar conservation laws

x

u

uL

uR

(a) Shock propagation.

x

u

uL

uR

(b) Rarefaction propagation.

Figure 2.2: Riemann initial data where (a) results in a shock propagating
through space, while (b) results in a rarefaction propagation.

where f : R→ R denotes the flux and u : Ω× R+ → R is the unknown to be
found. Equation (2.3), together with the initial data

u0(x) =
{
uL if x < 0,
uR if x > 0,

(2.4)

illustrated in Figure 2.2, is commonly known as a Riemann problem. Since the
flux is assumed to be a smooth function we may write (2.3) in the quasi-linear
form as

∂tu+ f ′(u)∂xu = 0, (x, t) ∈ Ω× R+, (2.5)
which yields a system where information (quantity) propagates through the
spatial domain with speed f ′(u). Thus, the velocity field is dependent on the
solution u(x, t) itself. By applying the method of characteristics onto (2.3) with
Burgers’ flux function,

f(u(x, t)) = u(x, t)2

2 , (2.6)

we obtain three different outcomes, depending on whether uL > uR, uL = uR or
uL < uR. The characteristics of the former and latter with uL = 1, uR = 0 and
uL = 0, uR = 1 are illustrated in Figures 2.3a and 2.3b, respectively. Thus, we
have intersecting characteristics in the case of uL > uR, while uL < uR yields
non-existence of solution on a subset of the domain. In the case of equality
all characteristics will be parallel to one another, spanning the whole domain.
The two illustrated cases generalizes to all cases of uL > uR and uL < uR.
This leads to intersection of characteristics, whenever the temporal parameter t
satisfies the relations

uL < uR ⇐⇒ t < 0,
uL > uR ⇐⇒ t > 0.

(2.7)

Summarized, the one-dimensional scalar conservation laws have two types
of complications that may arise with respect to the characteristics, namely
intersecting characteristics and non-spanning areas, both of which are illustrated
in Figure 2.3. The case of intersection is problematic in the sense that every
intersecting point in the domain implies a non-uniqueness of the solution u(x, t).
On the other hand, the non-spanning, gray area in Figure 2.3b is problematic
since this implies that there is a subset ω ⊂ Ω × R+ where a solution u(x, t)
does not exist.

11

2. Background and theory

x

t

(a) Shock propagation.

x

t

(b) Rarefaction propagation.

Figure 2.3: Complications that may arise when working with conservation laws.
Figure (a) shows characteristics of a shock wave propagating through space over
time, yielding intersecting characteristics. Figure (b) shows characteristics of a
rarefaction wave propagating through space over time, yielding an untouched
sub-domain.

2.1.3 Weak solutions of Riemann problems

As we have seen, there are Riemann problems where solutions do not exist
within a subset of the domain. In 1973, Peter D. Lax provided us with a proof
showing that this is also the case for one-dimensional initial-value problems
with smooth initial data [Lax73]. His approach is based on showing that the
spatial derivative of the solution may ‘explode’ in finite time, i.e. the solution
u(x, t) contains a discontinuity. Many of the PDEs with discontinuous solutions
are found in the nature in some sense, indicating that there must be other
varieties of solutions. In this section we will introduce these solutions, known
as weak solutions.

To obtain finite results from integration when working on subsets Ω ⊂ Rn
it sometimes makes sense to restrict functions to only attain non-zero values
within the subset. This is needed for definition of weak solutions, thus we begin
with a definition of compactly supported functions [MW99].

Definition 2.1.1 (Compact Support). Consider a subset Ω ⊂ Rn. A function
f : Ω→ R is said to be supported in Ω if and only if f(x) = 0 for all x /∈ Ω. If
Ω is closed and bounded it is called a compact subset. If this is the case, f is
called compactly supported. The set of all continuously differentiable functions
in Rn with compact support is denoted C1

c (Rn).

Equation (2.3) is the differential form of the conservation law, and this
form only holds if the solution u and the flux function f are continuously
differentiable. A weak solution is a generalized solution of a PDE where the
derivatives of the solution may not exist, formally defined as followed [LeV02].

Definition 2.1.2 (Weak Solution). Let ψ be a continuously differentiable test
function in R×R+, with compact support. Further, consider (2.3) as our PDE
with initial data u0 ∈ L∞(R). Then, u is called a weak solution of the PDE if∫

R+

∫
R
uψt + f(u)ψx dxdt+

∫
R
u0(x)ψ(x, 0) dx = 0, (2.8)

12

2.1. Scalar conservation laws

holds for all test functions ψ ∈ C1
c (R× R+).

The weak solutions of a PDE do not need to be differentiable. They do not
even need to be continuous, which implies discontinuities occurring as so called
shock waves. These shock waves cannot be arbitrary in the x-t-plane and must
satisfy the conditions given in the following lemma – a proof of the lemma is
provided in [GR91].

Lemma 2.1.3 (Rankine–Hugoniot Condition). Let γ ∈ C1(R+), i.e. a contin-
uously differentiable function in R+. Further, let u ∈ L∞(Ω × R+) be of the
form

u(x, t) =
{
u−(x, t) if x < γ(t),
u+(x, t) if x > γ(t),

(2.9)

where both u− and u+ are continuously differentiable functions and γ denotes a
shock. Figure 2.4 illustrates such a setup. Then u is a weak solution of (2.3) if
and only if the following two properties are satisfied:

• Both u− and u+ solve (2.3) in a classical sense.

• The shock speed s(t) = γ′(t) satisfies the Rankine Hugoniot condition,

s(t) = f(u+(x, t))− f(u−(x, t))
u+(x, t)− u−(x, t) , (2.10)

at x = γ(t).

The weak solution formula defined in (2.8) is a generalized form of the
differential form of the one-dimensional scalar conservation law. Consequently,
all classical solutions are weak solutions.

Ω

x = γ(t)

Γ

Ω− Ω+

u− u+

ν

−ν

Figure 2.4: Illustration of sets and variables used in Lemma 2.1.3. Red dashed
line bounds the open set Ω. Cyan dashed line is a characteristic splitting Ω into
two subsets Ω− and Ω+. Green vectors are the outward unit normal.

13

2. Background and theory

In the rest of this section we will provide solution formulas for the Riemann
problem 

∂tu+ ∂xf(u) = 0, (x, t) ∈ Ω× R+,

u(x, 0) =
{
uL if x < 0,
uR if x > 0.

(2.11)

The first solution we will look into is a direct consequence of Lemma 2.1.3.

Corollary 2.1.4. Let the shock speed s(t) = γ′(t) solve the Rankine–Hugoniot
condition, (2.10), at the shock x = γ(t). Then

u(x, t) =
{
uL if x < st,

uR if x > st,
(2.12)

is a weak solution of (2.11).

By comparing (2.12) to Lemma 2.1.3 we see that this in fact must be a
solution to (2.11). By once again considering Burgers’ flux function, (2.6),
and applying (2.12), we obtain characteristics illustrated in Figure 2.5. Thus,
uL > uR yields characteristics emanating from the horizontal axis, whereas
uL < uR results in information created at the shock.

x

t

(a) Shock propagation.

x

t

(b) Rarefaction propagation.

Figure 2.5: Characteristics of solutions to the scalar conservation law for (a)
shock wave and (b) rarefaction wave, using Equation (2.12). Red lines represents
discontinuities.

Usually we are looking for a unique and physically sensible solution to a
PDE. Since the characteristics represents data flow, a reasonable criterion is to
ensure that the information is traveling from the horizontal axis and outward
in the domain, i.e. outward from the initial data. From Lemma 2.1.3, we know
that every weak solution of (2.3) must satisfy the Rankine–Hugoniot condition,
(2.10), so this is obviously an important criterion. However, this is not sufficient
to ensure that information travels out from the initial data, see Figure 2.5b.
Stating that the data must emanate from the initial bound is equivalent to
saying that any shock wave γ(t), having a speed of propagation γ′(t) = s(t),
satisfies

f ′(u−) > s(t) > f ′(u+), (2.13)
where f ′(u−) and f ′(u+) are the speeds of propagation of any two characteristics
on the left and right side of the shock γ(t), respectively. This is known as the

14

2.1. Scalar conservation laws

Lax entropy condition. Since f is assumed to be strictly convex, we have that
f ′(uL) > f ′(uR) implies uL > uR. Thus, a direct consequence of (2.13) is that
the solution proposed in (2.12) is a Lax entropy satisfying weak solution of
(2.11) if and only if uL > uR. The natural continuation is now to construct a
unique, Lax entropy satisfying solution in the cases where uL < uR, which is
given by the following lemma [Eva10].

Lemma 2.1.5. Let uL < uR and consider two shock waves propagating with
speeds f ′(uL) and f ′(uR). Then

u(x, t) =


uL if x < f ′(uL)t,
(f ′)−1(xt) if f ′(uL)t < x < f ′(uR)t,
uR if x > f ′(uR)t,

(2.14)

is a Lax entropy satisfying weak solution of (2.11).

x

t

Figure 2.6: Characteristics of the entropy satisfying weak solution of rarefaction
wave.

By considering (2.11) with Burgers’ flux function, (2.6), and uL = 0, uR = 1,
we obtain characteristics illustrated in Figure 2.6 when applying (2.14). Hence,
all information travels outwards from the initial state, which seems physically
sensible by argumentation above.

We have presented analytical solutions of one-dimensional Riemann problems
for both shock waves and rarefaction waves, and observed how the characteristics

x

u

uL

uR

(a) Shock propagation.

x

u

uL

0

uR

(b) Rarefaction propagation.

Figure 2.7: The velocity field (in green) of a shock wave (a) and rarefaction
wave (b).

15

2. Background and theory

appear in both cases, see Figures 2.5a and 2.6. However, we have not yet looked
into how these solutions propagate through space over time. In Figure 2.7 we
have illustrated the velocity fields of two waves, namely a shock wave and a
rarefaction wave. The green arrows illustrate the fields of velocity surrounding
the discontinuities. In the case of shock waves, where uL > uR, we see that the
wave propagates constantly along the whole discontinuity. On the other hand,
the propagation of rarefaction waves, where uL < uR, depends on where you
look, and will result in a smoothing of the discontinuity as time increases.

2.1.4 Entropy condition

So far, we have introduced two conditions, which has made us able to create a
foundation for unique and physically sensible solutions of scalar conservation
laws, namely Rankine–Hugoniot and Lax entropy. The latter is a local condition,
thus, we need to generalize this to a globally rigorous condition. We will derive
this for a general spatial dimension, by considering (2.1). By extending this to
include a vanishing viscosity term, we obtain

∂tu
ε +∇x · f(uε) = ε∆uε, (2.15)

where ∆ is the Laplacian operator and u = limε→0 u
ε. Further, define the

entropy function η and entropy flux q by

η : R→ R strictly convex,

q(u) =
∫ u

0
f ′(v)η′(v) dv ∈ Rn,

where f ′(u) := (f ′1(u), f ′2(u), . . . , f ′n(u)) – the function pair (η,q) is commonly
known as an entropy pair. Hence, we have q′(u) = f ′(u)η′(u) and thereby the
following calculation.

η′(uε)∂tuε + η′(uε)∇x · f(uε) = η′(uε)ε∆uε

⇒ ∂tη(uε) + η′(uε)f ′(uε)∇x · uε = ε
(

∆η(uε)−η′′(uε)(∇uε)2︸ ︷︷ ︸
≤0

)
⇒ ∂tη(uε) + q′(uε)∇x · uε ≤ ε∆η(uε)
⇒ ∂tη(uε) +∇x · q(uε) ≤ ε∆η(uε)

Hence, by passing ε→ 0 we get that (2.1) must satisfy

∂tη(u) +∇x · q(u) ≤ 0, (2.16)

which is known as the entropy condition for a scalar multi-dimensional
conservation law. For one-dimensional problems, this is reduced to

∂tη(u) + ∂xq(u) ≤ 0,

and in sense of distributions, this translates to∫
R+

∫
R
η(u)ψt + q(u)ψx dx dt+

∫
R
η(u0(x))ψ(x, 0) dx ≥ 0,

for all test functions ψ ∈ C1
c (R × R+), satisfying ψ ≥ 0. Weak solutions

satisfying the entropy condition are commonly known as entropy solutions – we
will state this as a definition.

16

2.2. Finite-volume schemes

Definition 2.1.6. A function u = u(x, t) is an entropy solution of (2.1) if and
only if

• u is a weak solution of (2.1),

• and u satisfies (2.16) for all entropy pairs (η,q).

All entropy pairs (η,q) satisfies the given results. However, there is one
particular pair which is of greater importance than other pairs, namely the
Kružkov entropy pair [Kru70], defined as

η(u; c) = |u− c| , q(u; c) = sign(u− c)
(
f(u)− f(c)

)
, c ∈ R.

The Kružkov entropy pair combined with (2.16) is called the Kružkov entropy
condition. This leads to the following lemma – a proof is provided in a book
written by H. Holden and N. H. Risebro [HR15].

Lemma 2.1.7. A function u = u(x, t) is an entropy solution of (2.1) if and
only if it satisfies the Kružkov entropy condition.

We have now laid the analytical foundation for the thesis, by introducing
explicit solution formulas for solving initial-value problems given in (2.3). We
have also looked into some fundamental properties yielding existence and
uniqueness of physically sensible solutions. When we develop numerical methods
and perform experiments in Chapter 3, these solution formulas will be useful to
be able to calculate the accuracy of our methods.

2.2 Finite-volume schemes

During the last decades finite-volume methods have shown themselves to be
accurate and useful for solving physical problems, such as conservation laws. In
contrast to finite difference methods – which uses pointwise approximations –
these volume methods uses averages, or volumes, to approximate the solutions.
The comparison scheme we have chosen for this thesis is Godunov’s scheme.
There are plenty of numerical methods for approximating solutions to nonlinear
conservation laws, besides Godunov’s scheme, and there are advantages
and disadvantages with all of them in terms of efficiency, accuracy and
implementation simplicity. Examples of methods we could have considered as
our baseline are schemes named Roe and Engquist–Osher. The Roe scheme
is a drastic simplification of Godunov’s scheme, which makes it less accurate
but more efficient and simple to implement – in fact it does not converge
towards the entropy solution. On the other hand, Engquist–Osher scheme is
a more accurate and less efficient scheme than Roe’s method, and could be
considered in place of Godunov’s scheme. In an article from 1984, B. V. Leer
studied upwind-differencing first-order schemes and their abilities to approximate
solutions of Burgers’ equation [Lee84]. Godunov’s scheme was then compared
to Engquist–Osher scheme and Roe scheme, and he came to the conclusion that
there is no reason to abandon Godunov’s scheme in favor of neither Roe nor
Engquist–Osher. There are many studies of Godunov’s method, verifying its
accuracy. In 1985 R. LeVeque published an article describing a generalization of
Godunov’s method for solving systems of conservation laws which can be applied
for arbitrarily large time steps [LeV85]. He only considered generalizing the

17

2. Background and theory

standard Godunov method but the same linearization could be useful elsewhere.
Further, in 1988 B. Einfeldt published an article describing a new Godunov-
type Riemann-solver, based on Roe scheme, showing that it is sufficient to
numerically approximate the largest and smallest signal velocities to obtain an
efficient Riemann solver for gas dynamics [Ein88]. The successful application
to the shock focusing problem shows the usefulness of the Riemann solver in a
higher-order Godunov-type scheme.

In this section we will derive the general form of any one-dimensional finite-
volume scheme for approximating scalar conservation laws. In the last part of
this section we will also derive Godunov’s scheme, which is the basis when we
create the datasets for our one-dimensional DNN solvers in Sections 3.2 and 3.3.
As for any numerical method, we start with the domain discretization.

2.2.1 Discretization

When we solve a PDE analytically we perform the calculations on the whole
domain, i.e. infinitely amount of points within a subset of Rn. However, when
we want to obtain a numerical approximation, e.g. with Godunov’s scheme,
we need to discretize our domain. That is, the domain must be divided into
discrete points with some step size in between each point. The spatial and
temporal step sizes will be denoted ∆x and ∆t, respectively. The simplest
choice of step size is to use uniformly distributed mesh grids, however, for the
temporal domain we will impose a dynamically changing ∆t for the sake of
stability. We are therefore in need of the notation ∆tn describing the step size
of one specific step.

Given a spatial domain [xL, xR] ∈ R we define our spatial mesh points to be

xi := xL +
(
i+ 1

2

)
∆x, ∀i = J0, NxK,

∆x := xR − xL
Nx + 1 .

Further, we also define the midpoints between these mesh points, which
consequently are

xi−1/2 := xL + i∆x, ∀i = J0, Nx + 1K.

Note that this includes boundary points outside the mesh as well. These
midpoints make up Nx + 1 subdomains

Ci := [xi−1/2, xi+1/2],

called computational cells – also known as control volumes. The averages, of
which the finite volume methods are based, are calculated with respect to these
computational cells. Lastly, the temporal mesh points, with dynamical changes
in step size, are defined as

tn := tn−1 + ∆tn, ∀n = 1, 2, . . . ,

where the initial temporal point is t0 = 0.

18

2.2. Finite-volume schemes

2.2.2 Numerical scheme

We will now derive the numerical schemes for approximations of the scalar
conservation laws. The basis of these schemes are the cell averages, defined by
the approximation

uni ≈
1

∆x

∫
Ci

u(x, tn) dx, ∀i ∈ J0, NxK, n = 1, 2

For each time step one updates the cell averages of the unknown, starting by
using the given initial function u0(x),

u0
i ≈

1
∆x

∫
Ci

u0(x) dx, ∀i ∈ J0, NxK.

Assume now that we have calculated the cell averages uni up to some time tn,
for all i’s. To obtain un+1

i , we integrate (2.3) over domain Ci× [tn, tn+1), which
yields ∫ tn+1

tn

∫
Ci

ut dxdt+
∫ tn+1

tn

∫
Ci

f(u)x dxdt = 0.

Further, by using the fundamental theorem of calculus, we obtain∫
Ci

u(x, tn+1)− u(x, tn) dx = −
∫ tn+1

tn
f(u(xi+1/2, t))− f(u(xi−1/2, t)) dt.

Furthermore, by defining

F̄ni+1/2 := 1
∆tn+1

∫ tn+1

tn
f(u(xi+1/2, t)) dt, (2.17)

and dividing both sides by ∆x, we wind up getting

un+1
i = uni −

∆tn+1

∆x

(
F̄ni+1/2 − F̄

n
i−1/2

)
. (2.18)

un
i

un+1
i

un
i−1 un

i+1

x

t

xi−1/2 xi+1/2

tn

tn+1
F n

i−1/2 F n
i+1/2

(a) Mesh grid.

x
xi−1/2 xi+1/2

uni−1

uni
uni+1

(b) Cell average.

Figure 2.8: Mesh grid and cell averages. (a) shows a typical example of a finite
volume grid with cell averages and fluxes. (b) illustrates interfaces consisting of
Riemann problems.

19

2. Background and theory

This formula is not explicit as F̄ni+1/2 requires knowledge of the exact solution.
The numerical approximation of this flux component is the useful and clever
part in a good finite-volume scheme, one of which is Godunov’s scheme.

Figure 2.8 may give an intuition on how a finite-volume scheme works.
Figure 2.8a shows the cell grid, where each cell contains a cell average, while
the green arrows represent the fluxes traveling through each cell interface in
spatial direction. Figure 2.8b illustrates the calculated cell averages for three
spatial cells, within one temporal step. The interfaces between these averages
is then what defines a Riemann problem.

2.2.3 Godunov’s scheme

The Russian mathematician S. K. Godunov wrote a paper in 1959 [God59]
introducing a brilliant scheme for approximating the numerical flux in (2.18).
What we want, is to approximate (2.17) at each cell interface xi+1/2, and since
the cell averages uni are constant within each cell Ci, see Figure 2.8b, Godunov
observed that this makes up a Riemann problem at each of the cell interfaces,

ut + f(u)x = 0,

u(x, tn) =
{
uni if x < xi+1/2,

uni+1 if x > xi+1/2.

(2.19)

The solutions of such problems consist of shock waves, rarefactions and
compound waves, and can thus be solved at every time level explicitly, in terms
of waves arising from each interface (from tn to tn+1). Further, intersection
of waves may occur, which motivates for a condition preventing the waves to
interact with the spatial cell boundaries before reaching the temporal boundaries,
see Figure 2.8a. As mentioned when discretizing the domain in Section 2.2.1, we
will consider dynamically changing temporal step sizes, the reason being these
potential collisions. Each of the waves has a finite speed of propagation and
this bound is given by maxi |f ′(uni)|, i.e. the maximum change of flux within
one time step. The temporal step sizes ∆tn will therefore be bounded by

∆tn ≤ CCFL
∆x

maxi |f ′(uni)| , (2.20)

where CCFL ∈ (0, 1) is called the CFL coefficient. Equation (2.20) is commonly
known as the CFL condition and is used to ensure stability by ensuring no
collision of characteristics – the name has its origin from an article by Courant,
Friedrichs and Lewy, republished in 1967 [CFL67]. While deriving the numerical
scheme, we will now assume that this CFL condition is satisfied. Moreover, we
have that each solution is self-similar, which means that the solution u(x, t;n, i)
to the Riemann problem in (2.19) may be written as a function v(ξ) of a single
variable ξ = x−xi+1/2

t−tn ,

u(x, t;n, i) = v

(
x− xi+1/2

t− tn

)
.

By the self-similarity property we obtain a constant solution whenever ξ is
constant. This is due to the fact that this implies that v(ξ) is constant. For
the sake of argument we will assume that ξ = 0. This corresponds to the curve

20

2.2. Finite-volume schemes

x = xi+1/2, for all t > tn. Then, the flux across the cell interface is given
by f(u(xi+1/2, t;n, i)) = f(v(0)). We now have two cases, namely that v is
continuous in ξ = 0, or contrary discontinuous. If continuity holds it is easy to
see that

lim
ξ→0+

f(v(ξ)) = lim
ξ→0−

f(v(ξ)). (2.21)

On the other hand, if discontinuity holds, we have discontinuity along the line
x = xi+1/2, for all t > tn, thus a stationary shock is positioned at the cell
interface. Since this discontinuity must satisfy the Rankine–Hugoniot condition
in (2.10), due to the conditions of shock waves, we have

f(v(0+))− f(v(0−)) = 0 · (v(0+)− v(0−)),

and (2.21) is true under discontinuity as well. This leads to the definition of an
edge-centered flux,

Fni+1/2 := f(v(0+)) = f(v(0−)), (2.22)
and the approximate flux, (2.17), is constant in time and may be calculated by
(2.22). Substituting this flux into (2.18) yields our final finite-volume scheme,

un+1
i = uni −

∆tn+1

∆x

(
Fni+1/2 − F

n
i−1/2

)
. (2.23)

The formula for the numerical flux in (2.23) can be computed explicitly, and
we will state this as a theorem.

Theorem 2.2.1 (Godunov flux). Let u = v(ξ) be the solution to the scalar
Riemann problem in (2.19) and consider the numerical scheme in (2.23) with
the flux in (2.22). Then, the numerical flux Fni+1/2 = F

(
uni , u

n
i+1
)
is given by

Fni+1/2 =


min

un
i
≤θ≤un

i+1

f(θ) if uni ≤ uni+1,

max
un

i+1≤θ≤u
n
i

f(θ) if uni > uni+1.
(2.24)

This is referred to as the Godunov flux.

To be able to prove Theorem 2.2.1, we first need to define what convex and
concave envelopes are.

Definition 2.2.2 (Envelope). The lower convex envelope of a function f over an
interval [a, b] is defined as

fc(x) := sup
{
g(x)

∣∣ g(y) is convex and g(y) ≤ f(y), ∀y ∈ [a, b]
}
,

see Figure 2.9a. Similarly, we define an upper concave envelope as the infimum
of the set of all concave functions g : R→ R where g(y) ≥ f(y) for all y ∈ [a, b],
see Figure 2.9b.

The numerical flux given in (2.24) is also valid for non-convex flux functions.
As we want to end up with (2.24), and since

min
y
fc(y) = min

y
f(y), max

y
fc(y) = max

y
f(y),

it is sufficient to consider the convex envelope of f . The following proof is based
on a proof presented in 1991, in a book by E. Godlewski and P. A. Raviart [GR91].

21

2. Background and theory

f(x)

fc(x)

(a) Lower convex envelope.

f(x)

fc(x)

(b) Upper concave envelope.

Figure 2.9: Illustrations of a lower convex envelope (a) and an upper concave
envelope (b).

The proof is split into two cases where the minimum case and maximum case of
(2.24) are proven separately, using convex and concave envelopes, respectively.
The book also proves the formula for non-convex flux functions, which is done
by subdividing [uL, uR] into alternating sub-intervals consisting of rarefactions
and shocks.

Proof of Theorem 2.2.1. Let u(x, t;n, i) = v(ξ) solve (2.19). Further, assume
that uni < uni+1 and consider a convex envelope fc of the flux function f over
the interval [uni , uni+1]. Now we have three possible scenarios for fc. It is either
increasing or decreasing in all of [uni , uni+1], or it is vanishing in some point
in [uni , uni+1]. Assume that f ′c > 0. Then, the whole solution of the Riemann
problem will go to the right in the x-t-plane, and the solution in x = xi+1/2
will be the leftmost value of the interval, namely uni . Now, assume that f ′c < 0.
Then, the solution moves to the left, and the rightmost value of the interval is
the solution in x = xi+1/2, namely uni+1. Thus, these two cases yields

v(0) = u(xi+1/2, t;n, i) =
{
uni if f ′c > 0,
uni+1 if f ′c < 0,

(2.25)

which gives us
Fni+1/2 = f(v(0)) = min

θ∈[un
i
,un

i+1]
f(θ). (2.26)

Assume now that f ′c vanishes in some point un∗ ∈ [uni , uni+1]. Then,

f(v(0)) = f(un∗) = min
θ∈[un

i
,un

i+1]
fc(θ) = min

θ∈[un
i
,un

i+1]
f(θ),

and (2.26) is true in this case as well. The last equality is a direct consequence
of Definition 2.2.2.

It remains to prove (2.24) for uni > uni+1. In this case we consider a concave
envelope fc of f over [uni+1, u

n
i]. As above, we now have three cases. If f ′c > 0

in the entire interval, the solution will go to the left, and the solution is the
rightmost value, namely uni . If, on the other hand, f ′c < 0 in the entire interval,
the solution of the Riemann problem moves to the right and the solution is
uni+1. This yields (2.25) once again, however, this corresponds to taking the
maximum of the flux function over the domain, which gives us

Fni+1/2 = f(v(0)) = max
θ∈[un

i+1,u
n
i

]
f(θ). (2.27)

22

2.3. Neural networks

If we now assume, as above, that f ′c vanishes in some point un∗ ∈ [uni+1, u
n
i], we

obtain
f(v(0)) = f(un∗) = max

θ∈[un
i+1,u

n
i

]
fc(θ) = max

θ∈[un
i+1,u

n
i

]
f(θ),

and the last equality here is also a direct consequence of Definition 2.2.2. This
completes the proof. �

We are now equipped with the numerical baseline for the one-dimensional
initial-value problems considered in Chapter 3. The derived Godunov flux is
what we will use when creating the dataset for training the DNN model used
in our one-dimensional DNN based numerical methods. Further, we will use a
two-dimensional Godunov scheme for comparison of the results obtained by our
proposed two-dimensional DNN based method.

2.3 Neural networks

Since the dawn of computer technology there has been several theoretical studies
regarding neural networks. These are inspired by the biological point of view
where humans has been eager to both understand the brain as well as to simulate
it. The first crucial step in the direction of developing trainable neural networks
came in 1943, when W. McCulloch and W. Pitts wrote a paper modelling a
rather simple neural system using electrical circuits [MP43]. Since then, more
and more complex neural models have been developed, side by side with the
increase of computational power. This has brought us to modern dense neural
networks (DNN), which is a type of artificial neural networks (ANN). In this
section we will introduce this topic by first presenting the terminology. Then
we will move on to more technical details, by deriving the backpropagation
algorithm, and then look at potential problems arising during training in terms
of bias-variance trade-off. Further, we will present the choice of activation
function for this thesis, and lastly introduce an important theorem within the
studies of ANNs, namely the universal approximation theorem.

2.3.1 Terminology

A DNN consists of a set of neurons organized into layers, yielding a directed
graph structure, which serves as a computational system for approximating
functions. Figure 2.10 illustrates a general multilayered DNN with two input
variables, X1 and X2, and one output variable, Ŷ – in general, the number of
nodes in the input layer and output layer may be arbitrary, but for simplicity we
have restricted the figure to two in and one out as this is essential for the first
developed numerical method. In between the input layer and output layer there
are L hidden layers, where the figure shows the first and last hidden layers with
n1 and nL neurons, respectively. The yellow nodes illustrate the bias vectors,
which work as shifting parameters for our output, for better results. Figure 2.11
illustrates the actions happening in between each pair of layers in the neural
network. The output of the previous layer is multiplied with a set of weights
and then added, together with a bias. Lastly, the result is then sent through an
activation function ϕl. The incoming and outgoing values of a layer are often
referred to as incoming and outgoing signals, respectively. We will now turn
the attention towards a more mathematical point of view.

23

2. Background and theory

X1X1

X2X2

a1
1

a1
2

a1
n1

aL1

aL2

aLnL

Ŷ Ŷ

b1 bL bL+1

Hidden
layer 1

Hidden
layer L

Input
layer

Output
layer

Figure 2.10: Illustration of a general DNN with n0 = 2 input variables, L ≥ 2
hidden layers and nL+1 = 1 output. The arrows represent multiplication with
weights, summation and activation.

The matrix of weights that connect the neurons in layer l − 1 with the
neurons in layer l will be denoted Wl. If there are nl−1 neurons in layer l − 1
and nl neurons in layer l this is written out as

Wl =

wl11 wl12 · · · wl1nl−1
...

...
wlnl1 wlnl2 · · · wlnlnl−1

 ,

where wlij is the weight connecting the jth neuron in layer l − 1 to the ith
neuron in layer l. Further, the collection of all weight matrices in the DNN will
be denoted W, and is written out as

W =
(
W1 W2 · · · WL+1) .

The total signal going out of the neurons in layer l will be denoted al and the
total signal coming into layer l is a linear combination of al−1 and Wl with
added bias, and will be denoted zl. This is defined as

zl := Wlal−1 + bl,

where bl denotes the vector of biases for layer l. The necessity of the bias lies
in the fact that it enables the DNN to map zero onto a non-zero output, and
vice versa. To ensure nonlinearity of the network so that it may be trained
to produce non-trivial outputs we need an activation function, denoted ϕl(·).
Consequently, the outgoing signal in each layer is

al := ϕl
(
zl
)
.

Iteration through a given DNN will be called a forward pass, with pseudocode
shown in Algorithm 1. A forward pass consists of a series of function
compositions, with added bias in every iteration. By studying Figure 2.10,

24

2.3. Neural networks

al−1
1

al−1
2

al−1
nl−1

wli,1

wli,2

wli,nl−1

bl

Σ ϕl ali

Bias and
weightsInput Linear

combination Activation Output

Figure 2.11: Illustration of the actions performed between two arbitrary layers
of a DNN. The output of previous layer is multiplied with weights, summed up
(including a bias) and lastly sent through an activation function.

Algorithm 1 Feed-forward
Initialize weights and dimensions of network.
z1 = W1X + b1

a1 = ϕ
(
z1)

for i = 2, . . . , L do
zi = Wiai−1 + bi
ai = ϕi

(
zi
)

Ŷ = WL+1aL + bL+1

together with Figure 2.11, we can therefore explicitly write out the computation,
which gives us the following.

Ŷ = ϕL+1
(
WL+1aL + bL+1)

= ϕL+1
(
WL+1ϕL(zL) + bL+1)

= ϕL+1
(
WL+1ϕL(WLaL−1 + bL

)
+ bL+1)

...
= ϕL+1

(
WL+1ϕL(WLϕL−1(· · ·ϕ1(W1X + b1) · · ·) + bL) + bL+1)

By defining
Hl(al−1; Wl,bl) := ϕl(Wlal−1 + bl),

as the transition between two arbitrary layers al−1 and al in a DNN, see
Figure 2.11, this calculation may be written in terms of composition as
Ŷ = N (X), where

N (X) := (HL+1 ◦ HL ◦ · · · ◦ H1)(X).

Lastly, we end by mentioning that the input variables X may be referred to
as layer number zero and may therefore be denoted a0. Similarly, the output

25

2. Background and theory

layer Ŷ may be denoted aL+1 in a DNN consisting of L hidden layers. The
activation function ϕL+1 between the last hidden layer and the output layer is
often chosen to be the identity mapping – this is what we have chosen in the
developed numerical methods introduced in Chapter 3.

2.3.2 Backward propagation

When initializing a DNN, the weights are randomly chosen, and therefore
not fitted for our problem. Thus, a training session is required, for the
DNN to become a useful model. The procedures for such training are called
backpropagation algorithms – hereby abbreviated BPA. We will assume we are
working with a network consisting of N output values. As we will consider a
so called supervised learning model, we have a training set consisting of input
values to send through the network, as well as target values to compare the
output with. The BPA considers the output variable Ŷ = (Ŷ1, . . . , ŶN) and
compares it to the known target/solution Y = (Y1, . . . , YN). We then evaluate
the error between the target and the output, and propagate backward in the
DNN system to adjust the weights and biases to be more accurate – the reason
for backpropagation is that we only have information forward in the network.
The function used to compute the error is called a cost function – also known
as a loss function – and the perhaps simplest choice is the mean squared error,
hereby abbreviated MSE,

C(Ŷ,Y; W,b) := 1
N

N∑
k=1

(
Ŷk − Yk

)2
, (2.28)

which is the one used in our first line of experiments in Section 3.2. The goal is
now to find the weights and biases that minimize (2.28), hence we need to find
the gradient of C with respect to Wl and bl of each layer l. We will do this
component-wise by considering

zlj :=
nl−1∑
i=1

wlija
l−1
i + blj , ali := ϕl

(
zli
)
.

Using the chain rule and the fact that Ŷk = aL+1
k , we have

∂C

∂wlij
= ∂C

∂aL+1
k

∂aL+1
k

∂alj

∂alj
∂zlj

∂zlj
∂wlij

,

where the first term on the right-hand side may be calculated directly from
(2.28), while the two latter terms may be written out as

∂alj
∂zlj

∂zlj
∂wlij

= ϕ′l
(
zlj
)
al−1
i .

This leaves us with the second term which is obtained by the following
calculation, where we denote an arbitrary index in layer r as qr ∈ J1, nrK,
with ql = j and qL+1 = k.

∂aL+1
k

∂alj
= ∂aL+1

k

∂aLqL

∂aLqL

∂aL−1
qL−1

· · ·
∂al+1

ql+1

∂alj

26

2.3. Neural networks

=
(
∂aL+1

k

∂zL+1
k

∂zL+1
k

∂aLqL

)(
∂aLqL

∂zLqL

∂zLqL

∂aL−1
qL−1

)
· · ·
(
∂al+1

ql+1

∂zl+1
ql+1

∂zl+1
ql+1

∂alj

)

=
L+1∏
r=l+1

∂arqr

∂zrqr

∂zrqr

∂ar−1
qr−1

=
L+1∏
r=l+1

ϕ′r
(
zrqr

)
wrqr−1,qr

The same calculations holds for the gradient with respect to the bias. Further,
by defining

δlj := ∂C

∂alj
ϕ′l
(
zlj
)
, (2.29)

we may write out the change of the cost function with respect to a given weight
and bias as

∂C

∂wlij
= δlja

l−1
i ,

∂C

∂blj
= δlj , (2.30)

respectively. The defined expression for δlj is an important measure of error.
The first term on the right-hand side of (2.29) is a measure on how fast the
cost function changes with respect to jth output signal, while the second term
measures how fast the activation function changes with respect to the input
signal zlj . As we have seen in the derivation of (2.30), we have explicit formulas
for computing the gradients with respect to the weights and biases in each layer
in the DNN, and are thus equipped for BPA, see Algorithm 2. The learning
rate κ mentioned in the algorithm is a measure on how great an adjustment
should be for each training epoch. Further, δl denotes the vector containing δlj ,
for all j. Lastly, M denotes the number of training data we have in our dataset.

Algorithm 2 Backpropagation
Initialize weights and biases of the DNN.
for i = 1, . . . ,M do

Run feed-forward Algorithm 1 on input.
Compute the error term δL+1.
for l = L, . . . , 1 do

Compute δl using (2.29).
Update weights and biases by computing

Wl
next ←Wl

prev − κδlal−1,

blnext ← blprev − κδl,

where κ is the learning rate.

2.3.3 Bias-variance trade-off

A well known problem within supervised learning is the bias-variance trade-
off. When developing and testing a new DNN model, we want to capture

27

2. Background and theory

the best pattern recognition possible, which is done by training on a given
dataset. However, we also want the model to generalize in the best way possible,
meaning that the model must be able to produce results well, based on unseen
data. A high variance model yields a good fit for the training data, in terms of
recognizing regularities, but fails at precision for individual data points. On
the other hand, high bias yields a good fit in terms of single data points, but
fails at recognizing regularities. It is not possible to obtain the best of both
worlds, thus, an optimization problem must be solved. The following derivation
is inspired from a book about elements of statistical learning, by T. Hastie et
al. [HTF09].

Underfitting Overfitting

Variance Bias
Total error

Model complexity

Er
ro
r

Figure 2.12: Illustration of the bias–variance trade-off. Left-hand side consist
of underfitted models, while right-hand side consist of overfitted models. The
optimal model complexity is along the dotted line.

Consider a random variable U , and let a function with noise be defined as
Fε = F (U) + ε, where the noise ε has zero mean and variance σ2. Further, let
N = N (U) be the network we want to train with respect to F . The bias of N
is then defined as

Bias(N) := F − E[N],
where E[·] denotes the expected value. Furthermore, since F is deterministic,
we have that E[F] = F . Moreover, the variance of N may be written in terms
of the expected value by the identity

Var(N) = E
[
(E[N]−N)2].

Lastly, by using the identity Var(ε) = E[ε2]− E[ε]2, we have

Var(Fε) = E
[
(Fε − E[Fε])2

]
= E

[
(F + ε− F)2

]
= E

[
ε2] = Var(ε) + E[ε]2 = σ2.

The MSE-loss function of the network is given by

MSE(N) = E
[
(Fε −N)2],

and by using the mentioned identities, we have

MSE(N) = E
[
(F + ε−N + E[N]− E[N])2]

28

2.3. Neural networks

= E
[
(F − E[N])2]+ E

[
(E[N]−N)2]+ E

[
ε2]+ 2E[ε(E[N]−N)]

+ 2E[(F − E[N])ε] + 2E[(F − E[N])(E[N]−N)]
= Bias(N)2 + Var(N) + σ2 + 2E[ε]E[(E[N]−N)]

+ 2(F − E[N])E[ε] + 2(F − E[N])E[(E[N]−N)],

where the three last terms vanishes. Thus, we end up with

MSE(N) = Bias(N)2 + Var(N) + σ2,

which shows that the MSE may be decomposed in terms of variance and bias –
this bias-variance decomposition is illustrated in Figure 2.12. The dotted line
illustrates our desired training precision, while right- and left-hand sides yields
over- and underfitted models, respectively.

By substituting the function F to be Godunov’s flux function FGod, and
considering two random variables being cell averages uni and uni+1, this may be
translated to apply for our one-dimensional initial-value problems. Thus, when
developing the numerical methods and running experiments, such a bias-variance
trade-off must be considered to avoid over- and underfitted models.

2.3.4 Activation functions

The term activation function comes from the fact that the functions are used to
activate the layers in some sense, i.e. the values are constrained in some desired
way. Some properties of activation functions are pretty standard among most
experimental data scientists, namely

• nonlinearity, which opens for broader usage of DNNs,

• boundedness, which ensures more stability for gradient-based methods,

• continuous differentiability, which enables for gradient-based optimization,

• monotonicity, which ensures convexity for the error-surface of a single-
layered DNN.

The choice of activation function when initializing a DNN is crucial for the sake
of performance, but there may be many good and efficient alternatives. The one
used in Chapter 3 is chosen due to its simplicity and its well known performance,
historically speaking. This might not be the best choice for solving initial-value
problems, but since the aim of this thesis is to show that the numerical DNN
solvers are usable for solving such problems, we will not focus on optimizing
the choice of activation function.

The function used in the DNN solvers presented in this thesis is the Rectified
Linear Unit function – hereby abbreviated ReLU. This is a piecewise linear,
monotone and unbounded function which is differentiable almost everywhere.
The function is defined as

ϕ(x) =
{

0, 0 < x,

x, x ≥ 0,

and has the derivative

ϕ′(x) =
{

0, 0 < x,

1, x ≥ 0,

29

2. Background and theory

ϕ(x)

ϕ′(x)

x

y

1

Figure 2.13: ReLU activation function (green), and its derivative (red).

illustrated in Figure 2.13. The lack of continuous differentiability may cause
problems. However, its simplicity has shown itself useful when working with
complex models, as it does not require a lot of computational power. Another
issue with the ReLU function is that it does not span the whole real line. This
is a problem since we aim at approximating the flux of a conservation law, and
this might hold negative values. But as long as this is known by the developer,
a way to avoid this is to not use the ReLU activation in between the last two
layers – as mentioned at the end of the introductory terminology we will use
the identity mapping in the last transition.

2.3.5 Universal approximation theorem

The research field concerning DNNs is quite young and theories are therefore
under constant development. One of the most famous results within the field
is the Universal Approximation Theorem. The most common version of the
result was given by G. Cybenko in 1989 [Cyb89] and K. Hornik in 1991 [Hor91].
Cybenko showed us that by fixing the number of hidden layers in a DNN, one
may obtain arbitrarily good results when approximating a continuous function,
by only increasing the width of the network, as long as we use a continuous
activation function. Contrary to this, Hornik showed that one might as well
keep the width of the network fixed, while increasing the depth of the network.
Thus, this makes up a theorem stating that we may approximate any continuous
function with arbitrary good precision, by using a complex enough DNN model,
with a continuous activation function. Quite a few years later, in 2017, L. Zhou
extended this result to hold for any Lebesgue measurable function, and not just
continuous functions [Zho+17]. However, this only applies for DNNs using the
ReLU activation function. We will state this as a theorem.

Theorem 2.3.1. For any Lebesgue-integrable function f : Rn → R and any
ε > 0, there exists a fully-connected ReLU network N = N (x) with width
d ≤ n+ 4, such that the network satisfies∫

Rn

|f(x)−N (x)| dx < ε.

Furthermore, as recently as in 2020 more generalized versions extending
to non-affine activation functions and arbitrary depth in the network have

30

2.3. Neural networks

been presented [KB20; KL20]. However, since we will use ReLU as activation
function in all of our experiments, it is sufficient to consider Theorem 2.3.1.

We started this chapter by looking into the analytical aspect of scalar
conservation laws, which gave us explicit solution formulas for one-dimensional
initial-value problems. These solutions will work as reference during experiments
in Chapter 3, and will tell us how accurate our implemented methods are.
Further, we have derived the general form of a one-dimensional finite-volume
scheme, which will come in handy when we introduce our new methods in
Sections 3.2 and 3.3. The numerical method for approximating the two-
dimensional initial-value problems of Section 3.4 will be derived in full detail in
that section, but it contains similarities to already derived method. Lastly, we
have looked into the fundamental properties of DNN models, as well as how to
train such models. The pseudocodes introduced in Algorithms 1 and 2 are the
basis of the implementations, and more details may be located in Appendix A.

31

CHAPTER 3

Numerical methods and
experiments

In this chapter we will develop and test DNN based numerical methods, all
of which will approximate solutions of initial-value problems – both one- and
two-dimensional. The hope is that DNN based two-dimensional methods can
give us a significant advantage with respect to efficiency, compared to other
numerical methods. During the experiments we will get an indication on
usefulness of our methods by looking at both the accuracy and the efficiency. In
Section 3.1 we will introduce common preliminaries for all experiments, which
includes the accuracy measure used, how to create a good dataset and how
to ensure reproducibility of our results. When moving on to Section 3.2 we
will present the first numerical method, which is a DNN based method for
solving one-dimensional initial-value problems by using an intuitive choice of
loss function. The aim of this section is not to outperform the efficiency of
alternative numerical schemes, as the DNNs will most likely be significantly
more time consuming than e.g. Godunov’s scheme. However, the focus is on
accuracy to ensure that such methods actually function. In Section 3.3 we
will approximate solutions to the same problems as in previous section, but
with a physics-informed DNN, i.e. we use a loss function which will teach the
network some structural properties of the scalar conservation law. The hope
of this section is to obtain more stability and a greater rate of convergence.
Section 3.4 contains the main result of this thesis, namely a new numerical DNN
based method for approximating solutions of two-dimensional conservation laws.
Such problems do not have explicit solution formulas, and existing numerical
methods are therefore extremely time consuming as one must use high resolution
grids to obtain accurate estimates. Thus, the aim is to obtain significantly
more efficiency, with approximately similar results as one would get by using a
fine-mesh solver. Lastly, Section 3.5 closes this chapter by mentioning potential
sources of error in all experiments.

3.1 Preliminaries

All performed experiments of this thesis have common factors which have
been considered throughout the entire process of development. To measure
accuracy of the methods we have considered relative errors, which is a metric
introduced in the following subsection. Each and every DNN model used in

33

3. Numerical methods and experiments

the numerical schemes require good datasets, thus we will list some important
properties of what we consider a great dataset. Lastly, we will look into the
degree of reproducibility of results, which includes notes on both the software
and hardware.

3.1.1 Error measure

When performing the experiments of the DNN solvers it is important to have a
concise and precise measure of accuracy with respect to the reference solutions.
Let uDNN denote the DNN based approximation, and let u be the reference
solution. A natural and intuitive metric is to calculate the Lp-norm of the
difference,

ea = ‖u− uDNN‖p,
known as the absolute error, which yields a direct comparison between the
approximation and the reference solution. However, comparing absolute errors
of two approximations from different initial-value problems, i.e. different initial
conditions, does not make sense. We need to scale this error down to a
dimensionless number where comparisons may be done, regardless of parameters.
By dividing the absolute error by the norm of the reference solution we obtain,

er = ea
‖u‖p

=
‖u− uDNN‖p
‖u‖p

,

which is known as the relative error. This essentially tells us how good of a
decimal precision the approximations hold – meaning that er = 10−(n+1) may
be roughly translated to being precise down to the nth decimal. The choice of
Lp-norm varies, often with respect to the specific problem at hand. During the
experiments, we will determine the accuracy in terms of the Euclidean distance
between the approximate solutions and their corresponding reference solutions.
Euclidean distance is often a computationally preferable choice when we are
dealing with gradients. Thus, we will consider the Euclidean relative error.

3.1.2 Data generator

Behind every great DNN model, there exists a great dataset. During the
experiments, we must generate our own datasets, which contain two pieces of
information, namely the input values and the desired output values. When
working in the numerical world, there are some limitations we need to consider.
We have a finite range of precision, all relying on the software and hardware
used for the experiments. We must also make sure that the datasets span as
much of the desired space as possible, otherwise the model will be poorly trained
due to inconsistencies in the training data. This motivates the following list of
things to think about when creating a dataset. Every dataset should be

• accurate: the target values must be calculated as precisely as possible,

• valid: the values must lie within the desired domain,

• consistent: data must be stable, i.e. not discontinuities when changing
input slightly,

• complete: data covers all of the domain in best fashion possible,

34

3.2. DNN solver with MSE-loss in R

• unique: the input combinations do not map to more than one combination
in the output.

3.1.3 Reproducibility

When doing experiments, it is important that the reader is able to reproduce
the results, so that the conclusions given in the thesis may be retested and
verified. This would mean that the developer needs to share mainly two bulks
of information, namely the seed used under random number generation and
the software versions used. For consistency in the experiments, we have used
seeding with respect to the two main packages used in the development, namely
NumPy and PyTorch. Both of these packages are used with their respective
builtin random number generators. The seeding values are in both cases set to
be 42, using the following code.

1 torch.random.manual_seed(42)
2 torch.manual_seed(42)
3 torch.cuda.manual_seed(42)
4 np.random.seed(42)

By using this seed value, we will obtain consistency to some extent both in data
generation and the network training process. However, there are some processes
within PyTorch which are stochastic. The given seeding is a way of limiting the
non-deterministic processes, but will not eliminate these fully. Another source
of stochastic processes is the library called cuDNN, which is a GPU-accelerated
library. It is possible to set the imported packages to a fully deterministic
behavior, however, this is not done due to the lack of efficiency while doing so.
The created implementation behind this thesis is already computationally heavy,
and we have therefore decided to use the stochastic processes to obtain an
efficient code. Table 3.1 shows the versions of software used for the experiments.
The reader should also be aware of the differences that may be found in the

Package NumPy PyTorch matplotlib
Version 1.19.2 1.7.0 3.3.2

Table 3.1: Versions of software.

hardware of the computer used for calculations – this could e.g. be two different
GPU cards. This could lead to differences in results, even though seeding
is applied with respect to the libraries used and all processes are set to be
deterministic.

3.2 DNN solver with MSE-loss in R

In this section we will consider a dense neural network (DNN) as simple as
they come, with mean squared error (MSE) as our loss function. This network
will then work as an approximation of the flux in (2.17), and thereby makes
up a complete alternative numerical method for approximating the solution of
one-dimensional, initial-value problems,{

ut + f(u)x = 0, (x, t) ∈ Ω× R+

u(x, 0) = u0(x), x ∈ Ω.
(3.1)

35

3. Numerical methods and experiments

First, we introduce the methodology, and then move on to the experiments
and results. The method will be compared to the Godunov scheme in terms of
relative errors, together with a short discussion. We will also study the training
process in terms of two factors, namely how the loss and weights changes during
each epoch. This will give a strong indication whether or not the DNN models
converge toward a stable state.

3.2.1 Numerical method

In this section we will derive a DNN based numerical method for approximating
solutions of one-dimensional initial-value problems. Many numerical methods
for approximating such problems already exist, one of which is Godunov’s
method, which is the basis for the training of our DNN models. We will use
the discretization introduced in Section 2.2.1, together with the derived general
form of any finite-volume scheme, (2.18). The aim of this section is then to
replace F̄ with a pre-trained DNN, trained on a dataset created by using (2.24),
with the hope that this yields accurate approximations of the solution to (3.1).

Let the DNN for our numerical method be denoted N . The creation of
training data used for N is quite straight forward. Godunov’s flux function,
given in (2.24), is a function dependent on two variables, FGod : R2 → R.
Consequently, N needs 2 input neurons and 1 output neuron, to be able to
approximate FGod. Further, we let M denote the number of data points to
train over, yielding an M × 3-matrix,

X =

X1,1 X1,2 Y1
...

...
...

XM,1 XM,2 YM

 ,
where Xi,1 and Xi,2 represents the input values, while Yi is their respective
target values – a network for this data is what is illustrated in Figure 2.10. The
pseudocode for the data generator algorithm is given in Algorithm 3. After

Algorithm 3 Data generator
Select M × 2 standard normally distributed numbers Xi,1, Xi,2, ∀i ∈ J1,MK.
for i = 1, . . . ,M do

Yi = FGod(Xi,1, Xi,2)

forward passing Xi,1 and Xi,2 through the network, using Algorithm 1, we
obtain output value Ŷi = N (Xi,1, Xi,2) which will be compared to Yi by using
the MSE loss function,

C(Ŷ,Y; W,b) := 1
N

N∑
k=1

(
Ŷi,k − Yi,k

)2
.

In this section we simply have N = 1, since the output dimension of N is 1, so
we simply write Ŷi = Ŷi,1 and Yi = Yi,1. Thus, the backpropagation algorithm
derived in Section 2.3.2, Algorithm 2, will be used by applying this value for
N . During the DNN training we will use data batches with a specified batch
size, i.e. the M data rows will be divided into equally sized batches. Therefore,

36

3.2. DNN solver with MSE-loss in R

the loss value we will use for backpropagation will be the mean average of
the loss from each member of the batch. After each epoch, i.e. when we have
iterated through the whole dataset once, we will forward pass unseen data from
a validation dataset, which will show how the network performs on unseen
data during the training – the network will not adjust based on performance of
these results. When the training session is complete we wind up with a fully
functional numerical method,

un+1
i = uni −

∆tn+1

∆x
(
N
(
uni , u

n
i+1
)
−N

(
uni−1, u

n
i

))
,

yielding an approximate solution of (3.1).

3.2.2 Baseline for experiments

We will perform experiments using a standard one-dimensional scalar conserva-
tion law, with Burgers’ flux function. Thus, the initial-value problem is written
out as {

∂tu(x, t) + ∂x

(
u(x,t)2

2

)
= 0, (x, t) ∈ Ω× R+,

u(x, 0) = u0(x), x ∈ Ω,
(3.2)

where we will test different choices of initial functions u0(x). The experiments
will be performed using the spatial domain Ω = [−1, 1]. The spatial mesh
points are distributed uniformly in the domain, with mesh size Nx = 50, and
are thence given by

xi := −1 +
(
i+ 1

2

)
∆x, ∆x := 2

51 .

To ensure stability of the method, we induce a CFL-condition, (2.20), with
Courant number CCFL = 1/2, leading to temporal bounded step sizes defined as

∆tn := ∆x
2 maxi(f ′(uni)) = ∆x

2 maxi(uni) ,

where we have written out the derivative of Burgers’ flux function. This will
ensure that we avoid collision with spatially neighboring Riemann problems,
i.e. the wave reaches the temporal boundary of the cell, before approaching the
spatial boundary. Moreover, the maximum time of propagation is set to be
T = 0.5.

We will perform tests using 4 different initial conditions, which will show
propagation over time for both shock waves and rarefaction waves. The first
initial function we will test is the well known Heaviside function. This is defined
as

u0(x) =
{

0 if x < 0,
1 if x > 0,

(3.3)

illustrated in Figure 3.1a. This will hopefully show us how positive valued
rarefaction waves typically propagate through space over time. The next initial
condition we will test is the additive inverse function of Heaviside, defined as

u0(x) =
{

1 if x < 0,
0 if x > 0,

(3.4)

37

3. Numerical methods and experiments

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(a) Heaviside.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(b) Mirrored Heaviside.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) Scaled Heaviside.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(d) Sine wave.

Figure 3.1: The four initial conditions used for one-dimensional experiments.
(a) Heaviside step function. (b) Mirrored Heaviside, i.e. the additive inverse of
the Heaviside function. (c) Scaled Heaviside. (d) Sine function.

illustrated in Figure 3.1b. This will show us how a single shock wave propagates
in space over time. The third function considered is a shifted and scaled
Heaviside function, given by

u0(x) =
{
−1 if x < 0,
1 if x > 0,

(3.5)

illustrated in Figure 3.1c. Contrary to the original Heaviside function, this
will show us how the networks can handle both negative and positive valued
rarefaction waves. Lastly, we will test the DNN based method on continuous
initial data, by considering a sine wave given by

u0(x) = sin(4πx), (3.6)

illustrated in Figure 3.1d. This will show how the numerical method will be
able to handle an alternating combination of shock waves and rarefaction waves.

When performing the experiments one must consider what conditions the
boundary of the domain must satisfy. This gives us many choices, some of which
are better than others. During experiments with the three initial conditions
in Figures 3.1a to 3.1c, we will use a boundary condition known as Neumann
boundary condition – named after the German mathematician Carl Neumann.
This condition specifies the value of derivatives of the solution at the boundary.
The derivative at the boundaries x = −1 and x = 1, at time tn, is set equal to

38

3.2. DNN solver with MSE-loss in R

the derivative on the boundary for the previous temporal step, tn−1. Thus, the
implemented Neumann condition is written out as

∂xu(x, tn) = ∂xu
(
x, tn−1), ∀n = 1, 2, . . . , x = −1, 1.

When considering the fourth initial condition, namely the sine function in
Figure 3.1d, we will set a periodic boundary condition to our problem,
i.e. changes at the boundary will be reflected on the opposite side of the
boundary. This is written out as

u(−1, tn) = u(1, tn),

for all n ∈ N0. Apart from the parameters mentioned for the discretization,

Name Parameter
Data distribution Gauss/Normal
Training data size |X| = 100.000× 3
Validation data size |XV | = 10.000× 3
Batch size 100
Epochs 20
Loss function C = torch.nn.MSELoss
Activation function ϕ = torch.relu
Optimizer torch.optim.Adam
Learning rate κ = 10−3

Hidden layer number L ∈ J1, 4K *
Nodes per layer nl ∈ J4, 1024K *

Table 3.2: DNN parameters used for experiments. *These parameters vary.

there are a few other parameters chosen during the implementation of the
numerical method, for specific machine learning purposes. These parameters
are listed in Table 3.2. The data distribution, being normally distributed, refers
to the input parameters created by the dataset generator. The Adam optimizer
is an optimization algorithm presented by D. Kingma in an article in 2015
[KB15]. It is a computationally efficient extension to the stochastic gradient
descent algorithm. Batch size of 100 means that the network is fed 100 rows
of data, before it backpropagates and corrects the weights and biases, thus
correcting with respect to the whole batch. The number of epochs being 20
means that we will iterate all batches through the network 20 times during the
training process. The two last rows of Table 3.2 marked with a ∗ is the only
parameters varied throughout the experiments.

3.2.3 Experiments

In the following experiments we will start by studying how increasing the
number of hidden layers in the network affects the solution. This will be done
in two steps, first with the total number of nodes being constantly low, and
then we perform the same batch of experiments on the same number of layers
but with higher number of nodes in each layer – this is to verify our results.
Then, we will study how changing the number of nodes affects the results, by

39

3. Numerical methods and experiments

keeping the number of layers constant in the same matter. In theory, the results
should improve as long as we keep increasing the complexity of our model,
i.e. increasing the number of hidden layers and nodes. However, by increasing
either the number of nodes or layers to much, this will result in a very inefficient
numerical method, as well as yielding an increase of the run time complexity
of our training process – this would also require greater amount of training
data and/or epochs. Hence, our goal is to test and determine how good of a
model we could make, with as little time complexity as possible. Thus, we
are faced with an optimization problem, which consists of a correctness- and
runtime-trade-off.

0 10000 20000

10 3

10 2

10 1

100
Training
Validation

(a) 1 hidden.

0 10000 20000

10 4

10 3

10 2

10 1

100
Training
Validation

(b) 2 hidden.

0 10000 20000
10 4

10 3

10 2

10 1

100 Training
Validation

(c) 3 hidden.

0 4 8 12 16 20

10 4

10 3

10 2 Layer 0-1
Layer 1-2

(d) 1 hidden.

0 4 8 12 16 20
10 5

10 4

10 3

Layer 0-1
Layer 1-2
Layer 2-3

(e) 2 hidden.

0 4 8 12 16 20

10 4

10 3

10 2
Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4

(f) 3 hidden.

Figure 3.2: The training loss (upper blue), validation loss (upper yellow) and
change of weights (lower), where the total number of nodes are 24, while the
number of hidden layers vary from 1 to 3. The horizontal axes are number of
iterations in the loss plots, and number of epochs in weight plots.

Network Heaviside Mirrored Scaled Sine
24 8.56× 10−2 2.36× 10−2 9.15× 10−2 5.24× 10−1

12 ∨∧ 12 1.43× 10−2 5.82× 10−3 2.36× 10−2 1.76× 10−1

8 ∨∧ 8 ∨∧ 8 4.39× 10−2 4.34× 10−2 5.13× 10−2 3.22× 10−1

6 ∨∧ 6 ∨∧ 6 ∨∧ 6 8.65× 10−2 5.72× 10−2 8.69× 10−2 4.35× 10−1

Table 3.3: Relative Euclidean error of 16 experiments with varying number of
hidden layers and initial functions. The total number of nodes in network is
constantly 24. Green cells show the best results for each initial function.

40

3.2. DNN solver with MSE-loss in R

1.0 0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0 Exact
Network
Godunov

(a) 1 hidden.

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Exact
Network
Godunov

(b) 2 hidden.

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0 Exact
Network
Godunov

(c) 3 hidden.

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Exact
Network
Godunov

(d) 1 hidden.

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Exact
Network
Godunov

(e) 2 hidden.

1.0 0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Exact
Network
Godunov

(f) 3 hidden.

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0 Exact
Network
Godunov

(g) 1 hidden.

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0 Exact
Network
Godunov

(h) 2 hidden.

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0 Exact
Network
Godunov

(i) 3 hidden.

1.0 0.5 0.0 0.5 1.0

0.4

0.2

0.0

0.2

0.4
Exact
Network
Godunov

(j) 1 hidden.

1.0 0.5 0.0 0.5 1.0

0.4

0.2

0.0

0.2

0.4 Exact
Network
Godunov

(k) 2 hidden.

1.0 0.5 0.0 0.5 1.0

0.4

0.2

0.0

0.2

0.4 Exact
Network
Godunov

(l) 3 hidden.

Figure 3.3: Result of 1D experiments with 24 nodes, T = 0.5, Nx = 50,
Ω = [−1, 1]. Boundary condition: Neumann (row 1-3) and periodic (row 4).
Row 1: Heaviside, row 2: Heaviside mirrored at x = 0, row 3: Heaviside scaled
and shifted, row 4: sine function. Horizontal axes: spatial dimension, vertical
axes: solution values u. Blue: exact solution, green: Godunov’s approximation,
yellow: DNN based approximation.

41

3. Numerical methods and experiments

We start by creating a DNN with the possibility of arbitrary number of
hidden layers and number of nodes, as well as two input parameters and one
output parameter. Then, we perform controlled, seeded tests with few layers
and nodes, and study the impact of increasing the number of hidden layers,
while holding the number of nodes constant. Further, we set the number of
nodes to 24. For simplicity, we will not perform experiments with network depth
greater than 4, so this allows us to perform four tests with layer sizes 24, 12, 8
and 6 for networks with 1, 2, 3 and 4 hidden layers, respectively. The idea in this
first batch of testing is to find out whether or not there exist some advantages
by keeping the depth restricted. When running these four simulations for 20
epochs, we obtain the losses illustrated in Figures 3.2a to 3.2c – not including
plots for 4 hidden layers. Observe that these losses have flattened out after 20
epochs, which indicates that more training hardly would make any significant
difference. At this point, one should be aware that the plots in Figure 3.2
are made with logarithmic scales. Their respective change of weights between
each epoch is illustrated in Figures 3.2d to 3.2f, which shows the distribution
of change among the weights in the DNN, during the training process. The
numerical approximations to the scalar conservation law after time T = 0.5
are illustrated in Figure 3.3, which show results for the different number of
hidden layers in the columns, from 1 to 3. The rows show different choices of
initial conditions, introduced in previous section. As we may observe, there is
not necessarily an advantage when introducing a new hidden layer, given that
we keep the total number of nodes constantly low (in this case equal to 24 for
division simplicity). In the case with one hidden layer we see that the results
are somewhat unstable when dealing with rarefaction waves, see Figures 3.3a
and 3.3g. On the other hand, we may observe, from Figure 3.3d, that the results
are nearly identical to the Godunov flux for shock waves. When alternating
between rarefaction waves and shock waves we make the same observation, see
Figure 3.3j. From the 12 figures given in Figure 3.3, we see that the absolute
best choice of number of hidden layers, when using 24 nodes, is 2, assuming
that the nodes are divided equally among the hidden layers. To emphasize
this conclusion we can also study the relative errors of the DNN solver with
respect to Godunov’s scheme, see Table 3.3. The green cells verify that the
smallest errors are found in the network consisting of 2 hidden layers. Since
our first results are based on quite few nodes, this can not be generalized to
examples of sufficiently larger amount of nodes, divided equally among the
layers. A reasonable hypothesis, for why 2 hidden layers yield better results
than 3 and 4 hidden layers, is that this has to do with the number of nodes
per layer being too small in the two latter cases. This leaves us two choices if
we want to improve our model, namely either increasing the number of nodes
per layer, or keep using the number of nodes as in the case of 2 hidden layers,
namely 12, and increasing the number of hidden layers.

The next experiments are performed using a higher number of nodes per
layer. The ratios of nodes per layer are kept 1 as above, but the total number of
nodes is now set to be 48, i.e. double of the amount from earlier. The expected
results would then be that models with 3 and 4 hidden layers have increasingly
better outputs, depending on our choice of the total number of nodes. Contrary
to the weight changes in previous experiments, Figures 3.4d to 3.4f yields an
interesting observation. In these cases, we see that the further outward in the
network you go the less of a change is made during training. It seems that

42

3.2. DNN solver with MSE-loss in R

0 10000 20000

10 4

10 3

10 2

10 1

100
Training
Validation

(a) 2 hidden.

0 10000 20000

10 4

10 3

10 2

10 1

100 Training
Validation

(b) 3 hidden.

0 10000 20000

10 4

10 3

10 2

10 1

100 Training
Validation

(c) 4 hidden.

0 4 8 12 16 20

10 5

10 4

Layer 0-1
Layer 1-2
Layer 2-3

(d) 2 hidden.

0 4 8 12 16 20

10 6

10 5

10 4

Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4

(e) 3 hidden.

0 4 8 12 16 20

10 6

10 5

10 4

10 3
Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4
Layer 4-5

(f) 4 hidden.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(g) 2 hidden.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(h) 3 hidden.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(i) 4 hidden.

Figure 3.4: The training loss (upper blue), validation loss (upper yellow), change
of weights (middle) and results (lower), in their respective rows. Columns show
different number of hidden layers. All DNN models have a total of 48 nodes
distributed uniformly.

Network Heaviside Mirrored Scaled Sine
48 4.32× 10−2 3.46× 10−2 3.01× 10−2 2.03× 10−1

24 ∨∧ 24 2.79× 10−2 2.69× 10−2 2.32× 10−2 1.52× 10−1

16 ∨∧ 16 ∨∧ 16 3.29× 10−2 3.79× 10−3 2.65× 10−2 1.95× 10−1

12 ∨∧ 12 ∨∧ 12 ∨∧ 12 2.52× 10−2 2.06× 10−2 2.10× 10−2 1.02× 10−1

Table 3.4: Relative Euclidean error of 16 experiments with varying number of
hidden layers and initial functions. The total number of nodes in network is
constant 48. Green cells show the best results for each initial function.

43

3. Numerical methods and experiments

the greatest changes during the 20 epochs are done to weights between layer
0 and 1, and then between 1 and 2, etc. And this seems to apply for all four
test cases. We will in this case only show the results for the sine waves, as
this will tell us the networks behavior for both rarefaction waves and shock
waves, see Figures 3.4g to 3.4i. It is hard to tell which is the better model, so
as above we will include the table of relative error to easier point out the right
one. Glimpsing at Table 3.4, we observe that the relative errors of the results
are tremendously better for the cases of 3 and 4 hidden layers. This indicates
that our hypothesis may be correct – more results, with different number of
nodes and seed values, are needed to be certain.

The next batch of experiments is for studying the advantage – or disadvantage
– of increasing the number of nodes in each layer, while keeping the number of
layers constant. We start by using 1 hidden layer, while varying the number of
nodes as 4i for i ∈ J1, 5K, see Table 3.5. Once again, the green cells highlight the
best trained models. We see that by increasing the complexity we obtain more
satisfactory models. However, this is only true up to some bound of complexity.
By increasing the number of nodes too much, the size of the network requires
more training – solved by either increasing the data size, changing the batch
size or simply increasing the number of epochs to train over. When looking
at Figure 3.5, we see that all losses are flattening a great deal already, so
increasing the number of epochs to train over would hardly help the models in
this case. However, the non-flatness in change of weights in the model of 1024
nodes indicates that more training would most likely increase the correctness
of results to some extent, see Figure 3.5f. On the other hand, more training
could actually yield worse results, since the training data set might be scarce
– worse in the sense that we could wind up overfitting the model. To test the

Network Heaviside Mirrored Scaled Sine
4 3.08× 10−1 2.57× 10−1 2.55× 10−1 1.13× 100

16 9.55× 10−2 4.04× 10−2 8.87× 10−2 5.46× 10−1

64 2.75× 10−2 1.44× 10−2 2.28× 10−2 1.23× 10−1

256 7.74× 10−3 1.54× 10−3 6.12× 10−3 5.78× 10−2

1024 7.19× 10−3 1.13× 10−2 8.38× 10−3 9.03× 10−2

Table 3.5: Relative Euclidean error of 20 experiments with varying number
of nodes and initial functions. The number of hidden layers in network is
constantly 1. Green cells show the best results for each initial function.

Network Heaviside Mirrored Scaled Sine
256 6.56× 10−3 4.41× 10−3 7.61× 10−3 7.12× 10−2

1024 3.13× 10−3 4.03× 10−3 5.61× 10−3 5.03× 10−2

Table 3.6: Relative Euclidean error of the last two rows of experiments in
Table 3.5, but with 20 epochs further training, i.e. a total of 40 epochs. The
number of hidden layers in network is constantly 1. Green cells show the best
results for each initial function. The red cells show cases where the error is
worse than in the case of less training.

44

3.2. DNN solver with MSE-loss in R

0 10000 20000

10 4

10 3

10 2

10 1

100 Training
Validation

(a) 64 nodes.

0 10000 20000

10 5

10 4

10 3

10 2

10 1

100 Training
Validation

(b) 256 nodes.

0 10000 20000

10 5

10 4

10 3

10 2

10 1

100

Training
Validation

(c) 1024 nodes.

0 4 8 12 16 20

10 4

10 3

Layer 0-1
Layer 1-2

(d) 64 nodes.

0 4 8 12 16 20

10 5

10 4

Layer 0-1
Layer 1-2

(e) 256 nodes.

0 4 8 12 16 20

10 5

10 4

Layer 0-1
Layer 1-2

(f) 1024 nodes.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(g) 64 nodes.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(h) 256 nodes.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(i) 1024 nodes.

Figure 3.5: The training loss (upper blue), validation loss (upper yellow), change
of weights (middle) and results with sine initial (lower). Varying node number
with 1 hidden layer.

hypothesis of whether or not the last mentioned model performs better with
more training, we double the number of epochs, leading to training with 40
epochs. For comparison we also train the model of 256 nodes 20 extra epochs.
The results are shown in Table 3.6, where the results are as expected, i.e. the
most complex model outperforms the other model in every experiment. Another
observation made is that the less complex model is actually doing worse than in
the previous case of 20 epochs. This indicates that some weights are overfitted
to some batches of data.

To generalize our conclusions for multilayered DNNs we need to perform yet
another batch of experiments, where we increase the number of hidden layers,
and then test with varying number of nodes. We will set the number of layers
to 4 and then perform the same experiments as above, i.e. with the number of

45

3. Numerical methods and experiments

0 10000 20000
10 5

10 4

10 3

10 2

10 1

100 Training
Validation

(a) 16 nodes each.

0 10000 20000

10 5

10 4

10 3

10 2

10 1

100 Training
Validation

(b) 64 nodes each.

0 10000 20000

10 5

10 4

10 3

10 2

10 1

100 Training
Validation

(c) 256 nodes each.

0 4 8 12 16 20

10 5

10 4

Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4
Layer 4-5

(d) 16 nodes each.

0 4 8 12 16 20

10 5

10 4

Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4
Layer 4-5

(e) 64 nodes each.

0 4 8 12 16 20
10 6

10 5

10 4
Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4
Layer 4-5

(f) 256 nodes each.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(g) 16 nodes each.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(h) 64 nodes each.

1 0 1
x

0.4

0.2

0.0

0.2

0.4
u

Exact
Network
Godunov

(i) 256 nodes each.

Figure 3.6: The training loss (upper blue), validation loss (upper yellow), change
of weights (middle) and results with sine initial (lower). Varying node number
with 4 hidden layers.

Network Heaviside Mirrored Scaled Sine
4 ∨∧ · · · ∨∧ 4 8.36× 10−2 5.24× 10−2 8.42× 10−2 6.36× 10−1

16 ∨∧ · · · ∨∧ 16 1.53× 10−2 3.64× 10−3 1.34× 10−2 6.78× 10−2

64 ∨∧ · · · ∨∧ 64 7.69× 10−3 1.79× 10−3 1.16× 10−2 3.74× 10−2

256 ∨∧ · · · ∨∧ 256 8.56× 10−3 7.66× 10−3 5.25× 10−3 2.85× 10−2

Table 3.7: Relative Euclidean error of 20 experiments with varying number
of nodes and initial functions. The number of hidden layers in network is
constantly 4. Green cells show the best results for each initial function.

46

3.3. DNN solver with extended L1-loss in R

nodes in each layer being 4i, ∀i ∈ J1, 4K. The training loss and change of weights
are illustrated in Figure 3.6, and the relative errors are given in Table 3.7. As
we observe from the relative errors we once again have a model which is too
complex to be fully trained during the given 20 epochs. This hypothesis is
supported by the glimpse of Figure 3.6f, showing the change of weights. As in
the previous batch of experiments, we also here see that some of the weight
layers have not yet flattened out.

As we have seen from all above experiments, a DNN model on the form
described in the methodology works well when looking at the accuracy of the
models. However, in the introduction to this thesis we raised two questions in
need of consideration when implementing and testing a new numerical method,
namely accuracy and efficiency. Therefore, to be able to conclude, we must
consider the time complexity of the algorithms used. Let us assume that we
are given a pre-trained model, and so, we must compare Godunov’s scheme
up against our own model. The Godunov flux, given in (2.24), is calculated
numerically by essentially performing three steps, namely

(i) check whether uni < uni+1 or uni > uni+1,

(ii) create a uniformly distributed list of desired mesh size, lying between uni
and uni+1,

(iii) and calculate the flux of the list, and extract minimum or maximum value.

Thus, the complexity of Godunov’s scheme depends on the optimization
algorithm used to find the minimum/maximum values. It is therefore not
possible to generalize in a way where we say that the efficiency of any Godunov
implementation out-performs our model. However, based on all experiments
we have performed, it is required a degree of network complexity which will be
out-performed by most Godunov algorithms, to sufficiently approximate the
solutions.

This concludes the experiment part of the DNN models for the scalar one-
dimensional conservation laws with the intuitive choice of MSE-loss function.
The results given in this section are the baseline for comparison, together with
the Godunov scheme, when performing the later experiments using a different
loss function, and then also when we move on to the numerical analysis of scalar
conservation laws of two spatial dimensions.

3.3 DNN solver with extended L1-loss in R

In this section we will propose an alternative training methodology for the
DNN models. The finite-volume method for approximating solutions to the
initial-value problems are the same as in Section 3.2.1. The training method
involves using a new type of loss function, namely one that will force the network
to learn the structural properties of a finite-volume scheme, and not just the
numerical flux. The hope is that this will lead to a model with significantly
more stability than for the models used in previous section, i.e. we hope for
higher rate of convergence. First, we introduce the methodology by describing
the creation of datasets and how to use these to train the DNN models. Then,
we move on to the experiments and results, testing the accuracy and efficiency
of the method. We will perform similar simulations as in Section 3.2.3 – to be

47

3. Numerical methods and experiments

able to make viable comparisons and conclusions. Lastly, we end by drawing
lines to convolutional neural networks, since the new method is reminiscent to
such neural systems.

3.3.1 Numerical method

We will now derive a DNN based numerical method which will teach a DNN
model some structural properties of a scalar conservation law. The hope will
then be to obtain a stable method for solving one-dimensional initial-value
problems. We use the discretization in Section 2.2.1, together with the derived
general form of any finite-volume scheme for one-dimensional conservation laws,
see Section 2.2.2. The goal will then be to replace F̄ with a DNN which is
pre-trained with a loss function that teaches the network the structure of (2.18).
The DNN model and its usage within a finite-volume scheme is similar to the
described method used in Section 3.2.1. The difference of the two methods lies
in the choice of loss function, and consequently the structure of the training
data and time complexity of the training session. The dataset is created with
the following step-wise procedure, using Godunov’s flux approximation, (2.24).

(i) Fix integers M , N and K, and let the spatial step size be ∆x = 1
N .

(ii) Uniformly distribute xj ∈ [∆x, 1] for all j ∈ J1, NK and normally distribute
ak ∈ (0, 1

k) for all k ∈ J1,KK. Thus, x ∈ RN and a ∈ RK .

(iii) Calculate input data with the Fourier sine series,

v0
i,j =

K∑
k=1

ak sin(kπxj),

for all i ∈ J1,MK and j ∈ J1, NK.

(iv) Calculate temporal step sizes

∆ti = ∆x
2 maxj

(
|f ′(v0

i,j |
) ,

for all i ∈ J1,MK.

(v) Calculate target data to be

u1
i,j = v0

i,j −
∆ti
∆x

(
FGod(v0

i,j , v
0
i,j+1

)
− FGod(v0

i,j−1, v
0
i,j

))
,

for all i ∈ J1,MK and j ∈ J1, NK, where the boundary points with j = 1, N
are calculated by treating v0

i,j periodically. The function FGod denotes
Godunov’s flux function in (2.24).

By using this procedure, we obtain a dataset X as an M × 2×N tensor,

X =


[
v0

1,1, . . . , v
0
1,N
] [

u1
1,1, . . . , u

1
1,N
]

...
...[

v0
M,1, . . . , v

0
M,N

] [
u1
M,1, . . . , u

1
M,N

]
 ,

48

3.3. DNN solver with extended L1-loss in R

where we will forward pass the neighbouring data points v0
i,j and v0

i,j+1, for all j,
pair-wise through a DNN denoted N : R2 → R – thus, we need to pair-wise use
the feed-forward algorithm, Algorithm 1, N times in order to finally compute the
loss. We emphasize that v0

i,1 and v0
i,N are considered neighbouring in the sense

of periodicity. The outputs of the network N will be used as approximations of
the flux. Thence, they will be used for calculation of an approximate solution
of a scalar conservation law,

v1
i,j := v0

i,j −
∆ti
∆x

(
N
(
v0
i,j , v

0
i,j+1; W,b

)
−N

(
v0
i,j−1, v

0
i,j ; W,b

))
, (3.7)

where v1
i,j will be compared to u1

i,j during the training of N through the L1-loss
function. The L1-loss function is defined as

C
(
v1
i ,u1

i ; W,b
)

=
N∑
j=1

∣∣u1
i,j − v1

i,j

∣∣ ,
where W and b denote the weight and bias tensors of N , respectively. This
is then followed by a backpropagation algorithm similar to the one given in
Algorithm 2. Due to the differences of the loss functions we will perform full
derivation of method here as well.

For backpropagation purposes we need to derive the derivative of the loss
function with respect to the weights and biases. The derivative with respect to
a given weight wlpq is given by

∂C

∂wlpq
=

N∑
j=1

sgn
(
u1
i,j − v1

i,j

)(
−
∂v1

i,j

∂wlpq

)

=
N∑
j=1

sgn
(
u1
i,j − v1

i,j

)∆ti
∆x

(
∂

∂wlpq
N
(
v0
i,j , v

0
i,j+1; W,b

)
− ∂

∂wlpq
N
(
v0
i,j−1, v

0
i,j ; W,b

))
,

where we have substituted in the derivative of (3.7). The derivative with respect
to the bias is written out in a similar fashion. The only unknown above is ∂wl

pq
N ,

so we will derive this explicitly. As in the introduction to neural networks,
Section 2.3.1, we define the inactivated and activated signals going into layer l
of N as

zl :=Wlal−1 + bl,
al :=ϕl(zl),

where ϕl denotes the activation function of layer l. Component-wise, zl and al
is written out as

zlq :=
nl−1∑
p=1

wlpqa
l−1
p + blq,

alq := ϕl
(
zlq
)
,

49

3. Numerical methods and experiments

where nl−1 denotes the number of nodes in layer l − 1, al−1
p is output signal

of previous layer (and input in current) and blq is the bias. Assuming that we
have L hidden layers in the network, we have that N = aL+1, and further we
let aL+1

j = N (v0
i,j−1, v

0
i,j). Moreover, let r = (rl, rl+1, . . . , rL+1) denote a set

of indices specifying a neuron path through the network from layer l to L+ 1,
where rl = q, rL+1 = j and the rest are arbitrarily chosen. Then we have the
following calculation for the derivative of the output aL+1

j with respect to a
given weight wlpq.

∂aL+1
j

∂wlpq
=
∂aL+1

j

∂aLrL

∂aLrL

∂aL−1
rL−1

· · ·
∂al+1

rl+1

∂alq

∂alq
∂wlpq

=
(
∂aL+1

j

∂zL+1
j

∂zL+1
j

∂aLrL

)(
∂aLrL

∂zLrL

∂zLrL

∂aL−1
rL−1

)
· · ·

(
∂al+1

rl+1

∂zl+1
rl+1

∂zl+1
rl+1

∂alq

)(
∂alq
∂zlq

∂zlq
∂wlpq

)

=
(

L∏
m=l

∂amrm

∂zmrm

)(
L+1∏
m=l+1

∂zmrm

∂am−1
rm−1

)
∂aL+1

rL+1

∂zL+1
rL+1

∂zlq
∂wlpq

=
(

L+1∏
m=l+1

ϕ′m−1

(
zm−1
qm−1

)
wmrm−1rm

)
ϕ′L+1

(
zL+1
qL+1

)
︸ ︷︷ ︸

=1

al−1
p

=
(

L+1∏
m=l+1

ϕ′m−1

(
zm−1
qm−1

)
wmrm−1rm

)
al−1
p

Since the last transition in the network consists of an identity activation, we
have used that ϕ′L+1 ≡ 1. Hence, the derivative of the output with respect to
a specific weight is dependent on three parts, namely the value al−1

p traveling
along the weight, all weights coming after it and the change of all activations
after it. This is the reason why we are backpropagating through the system,
since we at each step only have information forward. Similarly, the derivative
of aL+1

j with respect to the bias blq is written out as

∂aL+1
j

∂blq
=

L+1∏
m=l+1

ϕ′m−1

(
zm−1
qm−1

)
wmrm−1rm

.

By substituting these results in for the derivative of the loss function above, we
obtain

∂C

∂wlpq
=

N∑
j=1

sgn
(
u1
i,j − v1

i,j

)∆ti
∆x

(
∂aL+1

j+1

∂wlpq
−
∂aL+1

j

∂wlpq

)
,

∂C

∂blq
=

N∑
j=1

sgn
(
u1
i,j − v1

i,j

)∆ti
∆x

(
∂aL+1

j+1

∂blq
−
∂aL+1

j

∂blq

)
,

giving us explicit formulas for the derivative of a DNN with respect to the weights
and biases. Hence, given a set of activation functions {ϕl}L+1

l=1 and a neural
network N , we may therefore use this when dealing with the backpropagation
during training of the network.

50

3.3. DNN solver with extended L1-loss in R

The reason for the superscript indices of input data v and target data u is
that this numerical method is designed for the possibility of multiple iterations.
That is, the idea is to calulate a new set of data with target values defined by

u2
i,j := u1

i,j −
∆ti
∆x

(
FGod(u1

i,j , u
1
i,j+1

)
− FGod(u1

i,j−1, u
1
i,j

))
,

which is then compared to a new set of predictions, defined as

v2
i,j := v1

i,j −
∆ti
∆x

(
N
(
v1
i,j , v

1
i,j+1; W,b

)
−N

(
v1
i,j−1, v

1
i,j ; W,b

))
,

using the L1-loss function, C
(
v2
i ,u2

i ; W,b
)
. Likewise, one could iteratively

define uni,j and vni,j , for all n ∈ N. The hope of this iterative approach is
to increase stability, and possibly also the convergence of the approximate
solution, along with the increase of n. However, due to time limitations and
computational resources we have restricted the experiments to n = 1.

3.3.2 Baseline for experiments

The baseline for experiments in this section is similar to the one in Section 3.2.2.
We are also here interested in performing tests with Burgers’ initial-value
problem {

∂tu(x, t) + ∂x

(
u(x,t)2

2

)
= 0, (x, t) ∈ Ω× R+,

u(x, 0) = u0(x), x ∈ Ω,
(3.8)

with the initial conditions illustrated in Figure 3.1. The discretization
parameters, which are identical to previous section, are listed in the upper part

Name Parameter
Spatial domain Ω = [−1, 1]
Spatial mesh size Nx = 50
Temporal maximum T = 0.5
Courant coefficient CCFL = 0.5
Boundary conditions Neumann, Periodic
Data distribution Gauss/Normal
Training data size |X| = 100.000× 2× 50
Validation data size |XV | = 10.000× 2× 50
Fourier range K = 50
Batch size 100
Epochs 20
Loss function C = torch.nn.L1Loss
Activation function ϕ = torch.relu
Optimizer torch.optim.Adam
Learning rate κ = 10−3

Hidden layer number L ∈ J1, 4K *
Nodes per layer nl ∈ J4, 1024K *

Table 3.8: Parameters used for experiments. *These parameters vary.

51

3. Numerical methods and experiments

of Table 3.8. Further, the DNN specific parameters are listed in the lower part,
where the only difference from earlier lies in the choice of loss function, thence
also the data structure.

3.3.3 Experiments

As in the previous section we start by studying how increasing the number of
hidden layers affects the solution, and then move on to increasing the number
of nodes while keeping the number of hidden layers constant. We will then
observe a pattern of behavior by comparing the resulting outputs of relative
errors to Tables 3.3 to 3.5.

Similar to Section 3.2.3, the first line of experiments is with varying number
of hidden layers, while the total number of nodes is constantly equal to 24. The
training and validation loss, as well as the change of weights, is illustrated in
Figure 3.7. Contrary to Section 3.2.3, the focus of these figures now lies on the
change of weight, while the losses are less informative. The reason why this
is the case is that we now work with a loss which is dependent on a total of
50 different results, all at once. What we therefore see in Figures 3.7a to 3.7c
is an average loss of multiple outputs, and thus very flattened curves. On the
other hand, if we instead glimpse at Figures 3.7d to 3.7f we see that there are
adjustments of network happening at every epoch – and more so in the more
complex model of 3 hidden layers. The relative errors of these experiments are
shown in Table 3.9, with green color highlighting the most accurate models with
respect to every initial function. When comparing these values to Table 3.3,
we have two main observations, namely that the best choice of the number of
layers is the same and that our new model is significantly more stable. The
stability is most perceptible with the sine function as initial condition, since the
alternating shocks and rarefactions naturally creates a bigger potential for error.
This is therefore a strong indication that our new physics-informed L1-loss is a
better choice for models, instead of the more instinctive choice of MSE-loss.

The next batch of experiments to compare previous results with is with
varying number of hidden layers and the total number of nodes being constantly
equal to 48. As earlier, this is to confirm our hypothesis, being that the models
become better with greater depth – as long as the number of nodes is sufficiently
large and the training sufficiently good. The losses and changes of weights
are illustrated in Figure 3.8, which shows similar conduct as in Figure 3.7.
The relative errors of these tests are shown in Table 3.10, of which shows
similar fashion as Table 3.4 – it comes to a point where we need to consider

Network Heaviside Mirrored Scaled Sine
24 3.41× 10−2 5.26× 10−2 2.58× 10−2 9.20× 10−2

12 ∨∧ 12 8.71× 10−3 1.59× 10−3 1.57× 10−2 5.38× 10−2

8 ∨∧ 8 ∨∧ 8 3.72× 10−2 4.66× 10−2 2.91× 10−2 1.20× 10−1

6 ∨∧ 6 ∨∧ 6 ∨∧ 6 1.85× 10−2 1.62× 10−2 1.95× 10−2 7.04× 10−2

Table 3.9: Relative Euclidean error of 16 experiments with varying number of
layers and 24 nodes. Loss function used is extended L1-loss. Green cells show
the best performing models for each initial condition.

52

3.3. DNN solver with extended L1-loss in R

0 10000 20000

10 2

Training
Validation

(a) 1 hidden.

0 10000 20000

10 2

Training
Validation

(b) 2 hidden.

0 10000 20000

10 2

Training
Validation

(c) 3 hidden.

0 4 8 12 16 20
10 5

10 4

10 3

Layer 0-1
Layer 1-2

(d) 1 hidden.

0 4 8 12 16 20

10 5

10 4

10 3 Layer 0-1
Layer 1-2
Layer 2-3

(e) 2 hidden.

0 4 8 12 16 20

10 6

10 5

10 4

10 3 Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4

(f) 3 hidden.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(g) 1 hidden.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(h) 2 hidden.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(i) 3 hidden.

Figure 3.7: The training loss (upper blue), validation loss (upper yellow), change
of weights (middle) and results with sine initial (lower). Varying number of
layers with total of 24 nodes. Loss function used is extended L1-loss.

Network Heaviside Mirrored Scaled Sine
48 1.69× 10−2 2.35× 10−2 1.39× 10−2 5.48× 10−2

24 ∨∧ 24 2.83× 10−2 4.71× 10−2 2.28× 10−2 5.92× 10−2

16 ∨∧ 16 ∨∧ 16 8.26× 10−3 1.18× 10−2 1.32× 10−2 5.30× 10−2

12 ∨∧ 12 ∨∧ 12 ∨∧ 12 8.58× 10−3 1.68× 10−3 9.01× 10−3 5.44× 10−2

Table 3.10: Relative Euclidean error of 16 experiments with varying number of
layers and 48 nodes. Loss function used is extended L1-loss. Green cells show
the best performing models for each initial condition.

53

3. Numerical methods and experiments

0 10000 20000

10 2

Training
Validation

(a) 2 hidden.

0 10000 20000

10 2

Training
Validation

(b) 3 hidden.

0 10000 20000

10 2

Training
Validation

(c) 4 hidden.

0 4 8 12 16 20
10 5

10 4

Layer 0-1
Layer 1-2
Layer 2-3

(d) 2 hidden.

0 4 8 12 16 20

10 5

10 4

10 3
Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4

(e) 3 hidden.

0 4 8 12 16 20

10 5

10 4

10 3
Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4
Layer 4-5

(f) 4 hidden.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(g) 2 hidden.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(h) 3 hidden.

1 0 1
x

0.4

0.2

0.0

0.2

0.4
u

Exact
Network
Godunov

(i) 4 hidden.

Figure 3.8: The training loss (upper blue), validation loss (upper yellow), change
of weights (middle) and results with sine initials (lower). Varying number of
hidden layers with total of 48 nodes. Loss function used is extended L1-loss.

not increasing our number of hidden layers any further, as this will result in
more instability of the model. As in the first batch of experiments, it shows
clear improvements in the error, as well as more stability – especially in the
trigonometric case. This is yet another strong indication that we are dealing
with a better and more stable choice of loss function, which handles rarefaction
waves and shock waves equally good.

Once again, the next batch of experiments consists of comparing our new
model to the previous, with respect to increasing the number of nodes, while
keeping the total number of layers constant. As before, we therefore perform
experiments with 1 hidden layer and 4i nodes, for i ∈ J1, 5K – the relative errors
of all i’s are included, but it is not included loss and weight plots for i = 1, 2.
The losses and changes of weights are illustrated in Figure 3.9. It is quite

54

3.3. DNN solver with extended L1-loss in R

0 10000 20000

10 2

Training
Validation

(a) 64 nodes.

0 10000 20000

10 2

Training
Validation

(b) 256 nodes.

0 10000 20000

10 2

Training
Validation

(c) 1024 nodes.

0 4 8 12 16 20

10 5

10 4

Layer 0-1
Layer 1-2

(d) 64 nodes.

0 4 8 12 16 20
10 5

10 4

10 3
Layer 0-1
Layer 1-2

(e) 256 nodes.

0 4 8 12 16 20

10 5

10 4

10 3 Layer 0-1
Layer 1-2

(f) 1024 nodes.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(g) 64 nodes.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(h) 256 nodes.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(i) 1024 nodes.

Figure 3.9: The training loss (upper blue), validation loss (upper yellow), change
of weights (middle) and results with sine initials (lower). Varying number of
nodes with 1 hidden layer. Loss function used is extended L1-loss.

Network Heaviside Mirrored Scaled Sine
4 1.70× 10−1 3.62× 10−2 1.57× 10−1 9.55× 10−1

16 3.33× 10−2 3.30× 10−2 2.48× 10−2 9.98× 10−2

64 3.08× 10−2 5.84× 10−2 2.41× 10−2 9.72× 10−2

256 1.92× 10−2 2.54× 10−2 1.65× 10−2 1.06× 10−1

1024 4.30× 10−2 7.82× 10−2 3.83× 10−2 7.07× 10−2

Table 3.11: Relative Euclidean error of 20 experiments with varying number of
nodes and 1 hidden layer. Loss function used is extended L1-loss. Green cells
show the best results for each initial function.

55

3. Numerical methods and experiments

interesting to compare the contrasts of the weight changes with the contrasts
of their respective losses. When the two weight-change curves are divergent
from one another, we see that the oscillations of the validation losses are more
frequent. On the other hand, Figure 3.9d consists of rather similar changes of
both sets of weights, and glimpsing at Figure 3.9a we see that this is reflected in
the oscillations of the validation loss. The relative errors of these experiments
are found in Table 3.11, which supports our already stated conclusion, i.e. the
extended L1-loss outperforms the MSE-loss in both stability and accuracy.

Lastly, we now increase the number of layers to be 4 while varying the
number of nodes in each layer. The resulting loss and change of weights are
shown in Figure 3.10, while the relative error is shown in Table 3.12. The
pattern of these relative errors are fairly similar to earlier observations from

0 10000 20000

10 2

Training
Validation

(a) 16 nodes each.

0 10000 20000

10 2

Training
Validation

(b) 64 nodes each.

0 10000 20000

10 2

Training
Validation

(c) 256 nodes each.

0 4 8 12 16 20

10 5

10 4

Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4
Layer 4-5

(d) 16 nodes each.

0 4 8 12 16 20

10 5

10 4

Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4
Layer 4-5

(e) 64 nodes each.

0 4 8 12 16 20

10 6

10 5

10 4

Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4
Layer 4-5

(f) 256 nodes each.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(g) 16 nodes each.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(h) 64 nodes each.

1 0 1
x

0.4

0.2

0.0

0.2

0.4

u

Exact
Network
Godunov

(i) 256 nodes each.

Figure 3.10: The training loss (upper blue), validation loss (upper yellow),
change of weights (middle) and results with sine initials (lower). Varying
number of nodes with 4 hidden layer. Loss function used is extended L1-loss.

56

3.4. DNN solver with MSE-loss in R2

Network Heaviside Mirrored Scaled Sine
4 ∨∧ · · · ∨∧ 4 3.50× 10−2 3.33× 10−2 3.12× 10−2 1.47× 10−1

16 ∨∧ · · · ∨∧ 16 1.72× 10−2 2.38× 10−2 1.96× 10−2 4.99× 10−2

64 ∨∧ · · · ∨∧ 64 1.30× 10−2 2.07× 10−2 1.18× 10−2 3.63× 10−2

256 ∨∧ · · · ∨∧ 256 5.75× 10−3 8.58× 10−4 1.58× 10−2 4.27× 10−2

Table 3.12: Relative Euclidean error of 16 experiments with varying number of
nodes and 4 hidden layers. Loss function used is extended L1-loss. Green cells
show the best results for each initial function.

previously performed experiments in Section 3.2.3.
As observed above, the new models, trained with the extended L1-loss, yield

very promising results. They have shown themselves significantly more stable
across the different initial conditions – this has been most visible when comparing
the sine results, as these were the most unstable of the first experiments with
regular MSE-loss. These new models require a great deal of computational
power during the training, compared to the MSE models. However, when
given a pre-trained model, this is obviously not a problem. Summarized, the
physics-informed L1-loss outperforms the MSE-loss in terms of accuracy, with
the same degree of efficiency when given pre-trained models. However, the
arguments about Godunov’s scheme with respect to efficiency – in terms of
time complexity – in the conclusion of Section 3.2.3 still applies.

3.3.4 The extended L1-loss from a convolution point of view

Convolutional Neural Networks – abbreviated CNN – are a special type of ANNs
which process data which has a grid-like topology. CNNs are most commonly
used within image analysis where one perform convolution on an image using
a filter/kernel. However, the setup of the numerical method with extended
L1-loss is rather familiar when comparing it to how a CNN model functions. The
weights of any DNN model coincides with the filters of a CNN model, and due
to how the training data is structured for our newly developed physics-informed
L1-loss, our input data essentially works in a way that one-dimensional images
work in a regular CNN setup. Since the size of our input structure is 2, the
algorithm used is therefore equivalent to using a filter of size 2 in a convolutional
setting. Due to the equivalence between our DNN models and a CNN, we should
be able to increase the efficiency of the implementation sufficiently by setting the
DNNs up as convolutional networks. Compared to CNNs where it is common
to use iteration of filters through e.g. images, our DNN works as a set of filters,
while the dataset works as a set of one-dimensional images. Thus, by looking
at the method from a convolutional perspective it may be possible to increase
efficiency to a degree where it can compete with Godunov’s method.

3.4 DNN solver with MSE-loss in R2

In this section we will present the main result of the thesis, being the development
of a new numerical method. The aim of the method is to approximate solutions

57

3. Numerical methods and experiments

of a two-dimensional initial-value problem, written out as{
ut + f(u)x + g(u)y = 0, (x, y, t) ∈ Ω× R+,

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω.
(3.9)

Exact solution formulas for such problems do not exist, but we may create
reference solutions by considering a spatial grid with high resolution. The finer
the resolution is, the better the approximation will be. Fine-mesh solvers based
on high resolution are extremely time consuming, and our goal is therefore to
design a numerical method which may be pre-trained using high resolution,
yielding an efficient method only dependent on a coarse spatial mesh.

We will start by deriving the general form of a two-dimensional finite-volume
scheme, followed by the derivation of a fine-mesh algorithm. When this is in
place, we turn our attention toward the DNN based numerical method and
describe how to create datasets and implement such a method. Finally, we
will test the method by first comparing results to Section 3.2.3 by setting the
vertical axis constant, and then test the method on genuine two-dimensional
initial-value problems.

3.4.1 Two-dimensional finite-volume method

We will now derive the general finite-volume scheme for approximating solutions
of Equation (3.9). As for any introduction to a numerical method, we will
start by defining our discrete temporal domain and spatial domain. Consider
the domain to be [xL, xR]× [yL, yR]× R+ and define step sizes of the spatial
dimensions to be

∆x = xR − xL
Nx + 1 , ∆y = yR − yL

Ny + 1 .

Further, as for the one-dimensional method introduced in Section 2.2.2, we
define the discrete points to be

xi = xL +
(
i+ 1

2

)
∆x,

yj = yL +
(
j + 1

2

)
∆y,

for all i ∈ J0, NxK and j ∈ J0, NyK. Thence, we define the midpoints as

xi−1/2 = xL + i∆x,
yj−1/2 = yL + j∆y,

for all i ∈ J0, Nx + 1K and j ∈ J0, Ny + 1K. Furthermore, similar to the one-
dimensional methodology, we define the points in time as

tn := tn−1 + ∆tn, ∀n = 1, 2, . . . ,

where ∆tn denotes a dynamically changing temporal step size, while t0 = 0.
Moreover, the midpoints are the basis for the computational cells, defined as

Cnij = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2]× [tn, tn+1],
C∗ij = [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2],

58

3.4. DNN solver with MSE-loss in R2

Cni∗ = [xi−1/2, xi+1/2]× [tn, tn+1],
Cn∗j = [yj−1/2, yj+1/2]× [tn, tn+1].

Be aware that we in this case use ∗ as notation for dimension exclusion, and
not to indicate that we consider all values within the dimension. The integral
form of (3.9) is written out as

0 =
∫∫∫

Cn
ij

ut + f(u)x + g(u)y dxdy dt,

=
∫∫

C∗
ij

u(x, y, tn+1)− u(x, y, tn) dxdy

+
∫∫

Cn
∗j

f(u(xi+1/2, y, t))− f(u(xi−1/2, y, t)) dy dt

+
∫∫

Cn
i∗

g(u(x, yj+1/2, t))− g(u(x, yj−1/2, t)) dxdt.

Following this, we define

F̄ni+1/2,j := 1
∆y∆tn+1

∫∫
Cn
∗j

f(u(xi+1/2, y, t)) dy dt,

Ḡni,j+1/2 := 1
∆x∆tn+1

∫∫
Cn

i∗

g(u(x, yj+1/2, t)) dx dt,

un+1
ij := 1

∆x∆y

∫∫
C∗

ij

u(x, y, tn+1) dxdy,

and consequently obtain

0 = ∆x∆y
(
un+1
ij − unij

)
+ ∆y∆tn+1

(
F̄ni+1/2,j − F̄

n
i−1/2,j

)
+ ∆x∆tn+1

(
Ḡni,j+1/2 − Ḡ

n
i,j−1/2

)
,

which leads to

un+1
ij = unij−

∆tn+1

∆x

(
F̄ni+1/2,j − F̄

n
i−1/2,j

)
−∆tn+1

∆y

(
Ḡni,j+1/2 − Ḡ

n
i,j−1/2

)
.

(3.10)

This equation is the general form of any two-dimensional finite-volume method
for approximating solutions to two-dimensional scalar conservation laws. It
is a statement of conservation with respect to one cell average given by the
difference in fluxes across the interfaces of the cells.

3.4.2 DNN based finite-volume method

Both F̄ and Ḡ in (3.10) need a priori knowledge of the exact solution.
Consequently, it does not exist exact solution formulas for F̄ and Ḡ, and
we will now derive the fine-mesh algorithm for approximating these fluxes,

59

3. Numerical methods and experiments

which forms the basis for our new DNN based method. The problem we are
faced with may be formulated as a Riemann problem,

ut +∇ ·
(
f(u)
g(u)

)
= 0, (x, y, t) ∈ Cnij ,

u(x, y, tn) =


uni,j x < xi+1/2, y < yj+1/2,

uni+1,j x > xi+1/2, y < yj+1/2,

uni,j+1 x < xi+1/2, y > yj+1/2,

uni+1,j+1 x > xi+1/2, y > yj+1/2,

(3.11)

where we aim at approximating the solution u = u(x, y, t) in a given
computational cell Cni,j – i.e we want to approximate the flux going through
the horizontal point x = xi+1/2 and vertical point y = yj+1/2. The idea of the
fine-mesh algorithm is to break every cell of our coarse discretization down to a
high-resolution mesh, and then use a one-dimensional numerical scheme in both
spatial directions. Thereafter, we will sum all flux values of interest, i.e. all
flux values propagating through the cell interface of the coarse mesh. We will
explain the implementation of both a data generator and a fine mesh algorithm.
However, a question arises when implementing a two-dimensional fine-mesh
solver like this: why are we in need of finer grids to properly approximate the
solution of a two-dimensional Riemann problem? The answer to this lies in the
behavior of the flux across a cell interface. As we may see from Figure 3.11, the

yj 1/2 yj yj + 1/2

-7.3e-01

0.0e+00

7.3e-01

t=0
t = T

2
t=T

(a) Flux, non-constant near yj−1/2.

xi xi + 1

yj 1

yj

yj + 1

2.174

1.024

0.126

1.276

(b) Cells.

yj 1/2 yj yj + 1/2

-1.8e-01

0.0e+00

1.8e-01

t=0
t = T

2
t=T

(c) Flux, non-constant near yj+1/2.

xi xi + 1

yj 1

yj

yj + 1

0.633

0.061

0.755

1.450

(d) Cells.

Figure 3.11: An illustration of flux movement in the horizontal direction, at
cell interface xi+1/2 along [yj−1/2, yj+1/2]. Similar behavior with non-constant
flux near four-cell intersections applies for flux in the vertical direction. (a) and
(c) show the flux magnitude, while (b) and (d) show the respective magnitudes
of cell averages.

60

3.4. DNN solver with MSE-loss in R2

flux becomes non-constant close to a four-cell intersection – meaning that if we
calculate the flux based on the cell averages on each side of an interface, we will
loose a significant portion of information, leading to significant errors in the
approximations. The reason for this non-constant behavior is the effect caused
by the upper and lower cell averages in Figures 3.11b and 3.11d. This motivates
the need of an algorithm which considers the flux across the cell interfaces in a
piecewise matter.

To properly approximate solutions of (3.11), we need to consider a total
of 8 cell averages, constituting two Riemann problems. That is, 6 cells
neighbouring the interface of interest in the horizontal direction, and 6 cells
neighbouring the interface of interest in the vertical direction, with 4 common
cells overlapping. The relevant cells are illustrated in Figure 3.12a, with red
and yellow arrows representing the horizontal and vertical fluxes we want to
approximate, respectively. The blue lines show the cells to be considered
for approximations of the horizontal flux. Similarly, the green cells will be
considered for the vertical flux approximation. As already discussed, we want to
approximate these fluxes piecewise, by dividing each cell into a finer mesh-grid,
illustrated for horizontal flux in Figure 3.12b – the red arrows show the piecewise
parts of the flux across the cell interface.

The rest of this section will be used to fully derive the numerical method in
details. We start by introducing a fine-mesh solver, which is an algorithm for
approximating the numerical fluxes F̄ and Ḡ, given in (3.10). Then, we describe
how this algorithm will be used with respect to DNNs, and furthermore, how to
create the training data for our DNN models. Lastly, we will look back at how
to obtain the final results, being the numerical approximate solutions of (3.9).

We will now derive a numerical method for solving two-dimensional Riemann
problems on the form given in (3.11). We start by considering the discretization
derived in Section 3.4.1 for a general finite-volume scheme. Thus, we have a
uniformly spaced mesh grid of the two-dimensional spatial domain, together
with a dynamically changing temporal domain, i.e. varying step sizes ∆tn for

F n
i+1/2,j

Gn
i,j+1/2

un
i,j

un
i+1,j+1

x

y

xi−1/2 xi+1/2

yj−1/2

yj+1/2

(a)

F̂ m
k+1/2,l

x

y

xi−1/2 xi+1/2

yj−1/2

yj+1/2

(b)

Figure 3.12: Mesh grid and flux in two spatial dimensions. (a) illustrates the
relevant cells and fluxes in both directions. (b) illustrates the fine mesh for flux
calculation in the horizontal direction.

61

3. Numerical methods and experiments

all temporal points t0, t1, . . . up to some chosen maximum time T . Further,
we ensure that the temporal step sizes are bounded by a two-dimensional
CFL-condition,

∆tn ≤ CCFL
min{∆x,∆y}

maxi,j
(∥∥f ′

(
uni,j
)∥∥

2

) , (3.12)

where CCFL ∈ (0, 1) and f ′(u) = (f ′(u), g′(u)). Moreover, we define domains

DF :=[xi−1/2, xi+3/2]× [yj−3/2, yj+3/2]× [tn, tn+1],
DG :=[xi−3/2, xi+3/2]× [yj−1/2, yj+3/2]× [tn, tn+1],

which we will use for approximating fluxes f and g of (3.11), respectively –
these domains are the areas illustrated in Figure 3.12a. The next step is now
discretization of DF and DG in a similar matter as in previous section. Let the
resulting variable notations be as earlier but with a ‘hat’ notation, i.e. ∆x̂ and
∆ŷ for spatial step sizes, ∆t̂m for dynamically changing temporal step sizes,
etc. Further, we let û0

k,l equal the corresponding cell average from the coarse
domain, e.g. û0

k,l = uni,j if (x̂k, ŷl) ∈ C∗i,j . We also enforce a CFL-condition on
the fine mesh-grid by choosing temporal step sizes satisfying

∆t̂m ≤ CCFL
min{∆x̂,∆ŷ}

maxk,l
(∥∥∥f ′

(
ûmk,l

)∥∥∥
2

) .
Furthermore, let the maximum temporal step be chosen uniformly from interval

T̂ ∈

0, CCFL
min{∆x̂,∆ŷ}

maxk,l
(∥∥∥f ′

(
û0
k,l

)∥∥∥
2

)
. (3.13)

There are mainly two reasons for choosing T̂ arbitrarily in this interval, first one
being that we ensure stability by bounding T̂ with respect to the CFL-condition.
The second reason is that we are going to train a DNN model to approximate
the flux, so by choosing T̂ randomly we may train the network to generalize
over the temporal parameter. Next, we will calculate the numerical fluxes in
both spatial directions, separately, given by Godunov’s formula,

F̂mk+1/2,l =


min

ûm
k,l
≤θ≤ûm

k+1,l

f(θ) if ûmk,l ≤ ûmk+1,l

max
ûm

k+1,l
≤θ≤ûm

k,l

f(θ) if ûmk,l > ûmk+1,l
∀k ∈ J0, N̂x + 1K, l ∈ J0, N̂yK,

Ĝmk,l+1/2 =


min

ûm
k,l
≤θ≤ûm

k,l+1

g(θ) if ûmk,l ≤ ûmk,l+1

max
ûm

k,l+1≤θ≤û
m
k,l

g(θ) if ûmk,l > ûmk,l+1
∀k ∈ J0, N̂xK, l ∈ J0, N̂y + 1K.

Lastly, it remains to sum up all flux values of interest, illustrated in Figure 3.12b.
This yields good approximations of the fluxes illustrated in Figure 3.12a. The
areas of interest with respect to domains DF and DG, are the sub-domains

dF :={xi+1/2} × Cn∗j ⊂ DF,

dG :={yj+1/2} × Cni∗ ⊂ DG.

62

3.4. DNN solver with MSE-loss in R2

Let IF and IG denote the sets of all indices (k, l,m) such that

(x̂k+1/2, ŷl, t̂
m) ∈ dF,

(x̂k, ŷl+1/2, t̂
m) ∈ dG,

respectively. This yields the final flux approximations

Fni+1/2,j = 1
|IF|

∑
(k,l,m)∈IF

F̂mk+1/2,l, (3.14)

Gni,j+1/2 = 1
|IG|

∑
(k,l,m)∈IG

Ĝmk,l+1/2. (3.15)

By substituting these approximations into (3.10), we obtain

un+1
ij = unij −

∆tn+1

∆x

(
Fni+1/2,j − F

n
i−1/2,j

)
− ∆tn+1

∆y

(
Gni,j+1/2 −G

n
i,j−1/2

)
,

which is a valid and explicit numerical method for approximating (3.11). This
fine-mesh solver algorithm for the horizontal direction is given as pseudocode
in Algorithm 4 – the vertically directed flux may be obtain in similar manner.
This method is what we use to create high-resolution reference solutions.

Algorithm 4 Fine-mesh solver in x-direction
Initialize ordinary grid setup, fluxes and initial condition.
Pass inputs

• u0 – six neighbouring cells,
• N̂x, N̂y – fine-mesh size,
• T̂ – ∆tn in coarse mesh.

Initialize fine mesh as 2N̂x × 3N̂y matrix.
while t < T̂ do

Update ∆t̂m wrt. CFL-condition.
Godunov’s one-dimensional scheme in both spatial directions.
Update t← t+ ∆t̂m.

Extract and sum up the final flux within sub-domain Cn∗j at interface xi+1/2.

The derived numerical fluxes in (3.14) and (3.15) are good numerical
approximations, given that we use a fine ‘enough’ mesh size. However, this
algorithm is not computationally effective. Thus, we aim at creating training
data for a DNN, using Algorithm 4, and the hope is then to obtain an efficient
and precise numerical method for solving general two-dimensional initial-value
problems using a pre-trained DNN model. As seen from the derivation of the
fine-mesh algorithm, we are in need of 6 neighbouring cell averages in order
to sufficiently approximate a flux travelling across a specified cell interface,
defined by the Riemann problem in (3.11). Due to the multiple choices we have
of T̂ in (3.13), the network should also be dependent on a seventh temporal
parameter. Thus, we are in need of two DNNs, both with 7 input parameters
and 1 output parameter, to approximate F̄ and Ḡ. Thence, each row in the
datasets should consist of 8 data points, namely the 7 mentioned input data

63

3. Numerical methods and experiments

points, together with an eighth target parameter, which will tell the networks
how well they performed during the training process. Let Nf and Ng denote
the DNNs used for the horizontal and vertical dimensions, respectively. Their
respective datasets are written out as

Xf =


Xf

1,1 . . . Xf
1,7 Y f1

...
...

...
...

Xf
Mf ,1 . . . Xf

Mf ,7 Y fMf

 , Xg =

 Xg
1,1 . . . Xg

1,7 Y g1
...

...
...

...
Xg
Mg,1 . . . Xg

Mg,7 Y gMg

 ,
where Mf and Mg denotes the number of data points in each set. The
pseudocode for the data generator in horizontal dimension is given in
Algorithm 5. The training process will be performed using the feed-forward

Algorithm 5 Data generator in horizontal dimension
Initialize flux function f .
Select Mf × 6 random numbers, standard normally distributed,

Xf
i,1, . . . , X

f
i,6, ∀i ∈ J1,Mf K.

Hard code ∆x and ∆y to desired values.
for i = 1, . . . ,Mf do

Set T̂ uniformly from interval
(

0, CCFL min{∆x,∆y}
maxj(‖f ′(Xf

i,j
)‖2)

)
, yielding Xf

i,7.

Perform Algorithm 4 with scaled temporal value T̂
min{∆x,∆y} .

Extract flux of interest and calculate mean value, yielding Y fi .

algorithm, Algorithm 1, with backpropagation, Algorithm 2, using the MSE-loss
function, see Sections 2.3.1 and 2.3.2. By defining

Un
i+1/2,j =

(
uni,j−1, u

n
i+1,j−1, u

n
i,j , u

n
i+1,j , u

n
i,j+1, u

n
i+1,j+1,

∆tn+1

min{∆x,∆y}

)
,

Un
i,j+1/2 =

(
uni−1,j , u

n
i−1,j+1, u

n
i,j , u

n
i,j+1, u

n
i+1,j , u

n
i+1,j+1,

∆tn+1

min{∆x,∆y}

)
,

and substituting pre-trained Nf and Ng into (3.10), we obtain a formula for
the approximate solution of (3.9),

un+1
i,j = uni,j−

∆tn+1

∆x

(
Nf
(

Un
i+1/2,j

)
−Nf

(
Un
i−1/2,j

))
−∆tn+1

∆y

(
Ng
(

Un
i,j+1/2

)
−Ng

(
Un
i,j−1/2

))
,

which completes the derivation of our numerical method.

3.4.3 Baseline for experiments

In the following section we aim at testing the DNN based numerical method
for approximating solutions of Burgers’ two-dimensional initial-value problems,

64

3.4. DNN solver with MSE-loss in R2

written out as{
∂tu+ ∂x

(
u2

2

)
+ ∂y

(
u2

2

)
= 0, (x, y, t) ∈ Ω× R+,

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω.
(3.16)

The spatial domain is similar to the one in the one-dimensional problems, being
Ω = [−1, 1]× [−1, 1]. We use spatial mesh sizes of Nx = 50 and Ny = 50, giving
us mesh points

xi = −1 +
(
i+ 1

2

)
∆x, ∆x = 2

51 ,

yj = −1 +
(
j + 1

2

)
∆y, ∆y = 2

51 .

We will also here induce a CFL-condition with Courant number CCFL = 1/2,
by defining

∆tn := min{∆x,∆y}
2 maxi,j

(∥∥f ′
(
uni,j
)∥∥

2

) = min{∆x,∆y}
2 maxi,j

(√
2
∣∣uni,j∣∣) ,

for all n, where we have used that f ′(u) = (f ′(u), g′(u)) with f = g. Moreover,
the maximum time of propagation is set to T = 0.5. When performing the
fine-mesh algorithm, Algorithm 4, we use spatial mesh sizes N̂x = 50 and
N̂y = 50.

The first experiments will be performed using initial conditions similar to
what we presented in Section 3.2.2, see Figure 3.1. The first initial function is
the Heaviside function in the horizontal direction, with y set to be constant,

u0(x, y) =
{

0 if x < 0,
1 if x > 0.

(3.17)

The next function is the additive inverse of Heaviside, given as

u0(x, y) =
{

1 if x < 0,
0 if x > 0.

(3.18)

Then we will perform tests using the scaled and shifted version of Heaviside,
defined by

u0(x, y) =
{
−1 if x < 0,
1 if x > 0.

(3.19)

Lastly, we will test with the continuous sine function given by

u0(x, y) = sin(4πx). (3.20)

When performing tests on these initial conditions we will compare the results
with what we got from the experiments in Section 3.2.3, to ensure that our
numerical method is implemented correctly. When we have confirmed that the
two-dimensional numerical method is implemented correctly, we will perform
further testing on genuine two-dimensional input data, i.e. the y-axis will no

65

3. Numerical methods and experiments

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.6

0.4

0.2

0.0

0.2

0.4

0.6

(a) Sigmoid–cosine function.

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

(b) LeVeque function

Figure 3.13: Authentic two-dimensional initial conditions used for experiments.

longer be kept constant. The first authentic two-dimensional initial function
used is a multiplication of a sigmoid function and a cosine function, and is
written out as

r(x, y) :=
√
x2 + y2,

u0(x, y) = er

1 + er
cos(4πr),

illustrated in Figure 3.13a. We will refer to this as the Sigmoid–cosine function.
The last initial condition used is inspired by R. J. LeVeque [LeV02], and is built
up of two regions where one contains a cone structure while the other consists
of a two-dimensional step function. The formula for LeVeque’s initial condition
is

r(x, y) :=
√

(x+ 0.45)2 + y2,

u0(x, y) =


1 if (x, y) ∈ (0.1, 0.6)× (−0.25, 0.25),
1− r

0.35 if r < 0.35,
0 otherwise,

illustrated in Figure 3.13b. This will be referred to as the LeVeque function.
The advantage of the LeVeque function is that we are able to observe how
different objects in the spatial domain may interact with one another.

The boundary conditions of the four former initial conditions are as in
Section 3.2.2, i.e. Neumann for the three first and periodic for the latter. A
similar mindset is used when choosing the boundary conditions for Sigmoid–
cosine function and LeVeque function. The Sigmoid–cosine function is of
trigonometric nature, thus we have chosen to use a periodic boundary condition,

u(−1, y, tn) = u(1, y, tn), ∀y ∈ (−1, 1),
u(x,−1, tn) = u(x, 1, tn), ∀x ∈ (−1, 1),

66

3.4. DNN solver with MSE-loss in R2

for all temporal points tn. On the other hand, the LeVeque function is tested
with a Neumann boundary condition, defined as

∂xu(x, y, tn) = ∂xu
(
x, y, tn−1), x ∈ {−1, 1}, ∀y ∈ (−1, 1),

∂yu(x, y, tn) = ∂yu
(
x, y, tn−1), ∀x ∈ (−1, 1), y ∈ {−1, 1},

for all n ≥ 1.
Just like in Section 3.2.2, we have some choices with respect to the machine

learning implementations. These are given in Table 3.13, being identical to the
parameters from the one-dimensional solver with the exception of the dataset
dimensions.

Name Parameter
Data distribution Gauss/Normal
Training data size |X| = 100.000× 8
Validation data size |XV | = 10.000× 8
Batch size 100
Epochs 20
Loss function C = torch.nn.MSELoss
Activation function ϕ = torch.relu
Optimizer torch.optim.Adam
Learning rate κ = 10−3

Hidden layer number L ∈ J1, 4K *
Nodes per layer nl ∈ J4, 1024K *

Table 3.13: DNN parameters for two-dimensional experiments. *These vary.

3.4.4 Experiments

The first batches of experiments we will perform uses one-dimensional initial
conditions so that we are able to verify that the solver is implemented correctly
in terms of the one-dimensional solver – this will be done by observing the
patterns of relative errors and comparing these to the first one-dimensional
experiments. When we are somewhat sure that the implementation works
well for one-dimensional problems, we will move on to tests with genuine two-
dimensional problems. Since the network takes 7 inputs – compared to 2 inputs
for the one-dimensional solvers – we could expect greater error during the
training. This is due to the fact that the network needs to learn and recognize
sufficiently greater number of permutations of the input values. To reduce this
difference of performance one could

• increase the size of training data,

• increase the number of epochs,

• increase, decrease or use dynamically changed batch size,

or a combination of these. We will not do any of these things when testing
that the implementation is correct, the reason being that we need to keep most
parameters constant to make sure that comparison with the one-dimensional

67

3. Numerical methods and experiments

solver is not biased. As seen from Section 2.3.5, the universal approximation
theorem states that we need to increase width or depth of the network
to be able to reproduce the results from the one-dimensional experiments,
see Theorem 2.3.1. Therefore, we could expect greater relative error in all
experiments performed in this section, given that we compare network results
produced with networks of same width and depth. Compared to the experiments
in Sections 3.2.3 and 3.3.3, the implementations of these two-dimensional
solvers yield some additional sources of error. The reason for this lies in
the implementation differences, where we now must consider a more complex
structure of code – we now rely on estimates produced by a fine-mesh solver.
The fine-mesh solver contains some parameters of choice of which must be
chosen carefully to be able to yield sufficiently small errors in the result. One
of the most important parameters in this case is the choice of size for the fine
mesh. If this mesh size is chosen poorly we will end up with unsatisfactory
target values, and consequently a deficient DNN model.

We start by performing tests with the total number of nodes being 24, and
the number of hidden layers varying from 1 to 4. The change of weights and
losses during training, as well as results, are illustrated in Figure 3.14 – not
including figures for 4 layers. By comparing these figures to Figure 3.2, we see
similar tendencies in the training process. However, the results of Figures 3.14g
to 3.14i indicates that the network lacks precision relative to the one-dimensional
models. This observation is clearer when looking at Table 3.14. By comparing
these relative errors to those of Table 3.3, we can see that the network is best
with 2 hidden layers here as well. Nevertheless, this is just an indication that
the implementation may work correctly. In this case we must actually look
back at Figure 3.14 to verify that the network does what we intended it to
do, within reasonable range of error. As already observed, we have reasonable
size of the relative errors, and the sine waves seem to adjust well along with
the Godunov scheme, so all in all a fairly promising result. Despite this, more
experiments are needed to support the hypothesis, and we will therefore proceed
as in the one-dimensional experiments by adding more neurons to our DNN
models, i.e. doubling the width of the network.

As before, we now perform the same batch of experiments, but with the
total number of nodes being 48. This yields the training process given in
Figure 3.15, which shows a more stable result than for the models with 24 nodes.
We can also see that the loss has flattened a great deal – especially for the
less complex models – and the changes of weights has shrunk to some degree.
However, the change of weights has not yet flattened out in the experiment

Network Heaviside Mirrored Scaled Sine
24 1.35× 10−1 1.15× 10−1 1.28× 10−1 1.19× 100

12 ∨∧ 12 7.30× 10−2 8.82× 10−2 6.89× 10−2 5.14× 10−1

8 ∨∧ 8 ∨∧ 8 6.14× 10−2 1.13× 10−1 1.08× 10−1 6.73× 10−1

6 ∨∧ 6 ∨∧ 6 ∨∧ 6 1.48× 10−1 2.22× 10−1 1.46× 10−1 8.51× 10−1

Table 3.14: Relative Euclidean error of 16 two-dimensional experiments with
varying number of hidden layers and 24 nodes. Green cells show the best results
for each initial function.

68

3.4. DNN solver with MSE-loss in R2

0 10000 20000

10 3

10 2

10 1

100
Training
Validation

(a) 1 hidden.

0 10000 20000

10 4

10 3

10 2

10 1

100

Training
Validation

(b) 2 hidden.

0 10000 20000
10 4

10 3

10 2

10 1

100
Training
Validation

(c) 3 hidden.

0 4 8 12 16 20

10 4

10 3

Layer 0-1
Layer 1-2

(d) 1 hidden.

0 4 8 12 16 20

10 5

10 4

10 3

Layer 0-1
Layer 1-2
Layer 2-3

(e) 2 hidden.

0 4 8 12 16 20
10 5

10 4

10 3
Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4

(f) 3 hidden.

1.0 0.5 0.0 0.5 1.0
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

u

(g) 1 hidden.

1.0 0.5 0.0 0.5 1.0
x

0.4

0.2

0.0

0.2

0.4

u

(h) 2 hidden.

1.0 0.5 0.0 0.5 1.0
x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

u

(i) 3 hidden.

Figure 3.14: The training loss (upper blue), validation loss (upper yellow),
change of weights (middle) and results with sine initial (lower). Two-dimensional
experiments with varying number of hidden layers and a total of 24 nodes.

Network Heaviside Mirrored Scaled Sine
48 5.39× 10−2 5.27× 10−2 8.72× 10−2 1.02× 100

24 ∨∧ 24 8.26× 10−2 8.06× 10−2 8.16× 10−2 4.69× 10−1

16 ∨∧ 16 ∨∧ 16 2.46× 10−2 1.77× 10−2 3.61× 10−2 2.51× 10−1

12 ∨∧ 12 ∨∧ 12 ∨∧ 12 4.13× 10−2 5.55× 10−2 7.87× 10−2 6.55× 10−1

Table 3.15: Relative Euclidean error of 16 two-dimensional experiments with
varying number of hidden layers and 48 nodes. Green cells show the best results
for each initial function.

69

3. Numerical methods and experiments

0 10000 20000
10 4

10 3

10 2

10 1

100
Training
Validation

(a) 1 hidden.

0 10000 20000

10 4

10 3

10 2

10 1

100
Training
Validation

(b) 2 hidden.

0 10000 20000

10 4

10 3

10 2

10 1

100 Training
Validation

(c) 3 hidden.

0 4 8 12 16 20

10 5

10 4

10 3

Layer 0-1
Layer 1-2

(d) 1 hidden.

0 4 8 12 16 20

10 5

10 4

10 3 Layer 0-1
Layer 1-2
Layer 2-3

(e) 2 hidden.

0 4 8 12 16 20

10 5

10 4

10 3

Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4

(f) 3 hidden.

1.0 0.5 0.0 0.5 1.0
x

0.4

0.2

0.0

0.2

0.4

u

(g) 1 hidden.

1.0 0.5 0.0 0.5 1.0
x

0.4

0.2

0.0

0.2

0.4

u

(h) 2 hidden.

1.0 0.5 0.0 0.5 1.0
x

0.4

0.2

0.0

0.2

0.4

u

(i) 3 hidden.

Figure 3.15: The training loss (upper blue), validation loss (upper yellow),
change of weights (middle) and results with sine initial (lower). Two-dimensional
experiments with varying number of hidden layers and a total of 48 nodes.

with 3 hidden layers, which indicates that more training is probably necessary.
The corresponding relative errors are given in Table 3.15, which shows that the
model with best performance is the one with 3 hidden layers, of which contains
16 nodes each. By comparing these values to Table 3.4, we see that our new
models performs poorer when holding 4 hidden layers, which is expected as
we have the exact same number of training data with a more complex input
structure. Thus, as mentioned in the introduction to this section, we would
probably need more complex models, to be able to reproduce results from
Section 3.2.3 using the two-dimensional solver.

As a last confirmation of performance, we will experiment with different
number of nodes in the DNNs, while keeping the number of layers constant. By
setting the number of hidden layers to 1 and varying the number of nodes to

70

3.4. DNN solver with MSE-loss in R2

0 10000 20000
10 4

10 3

10 2

10 1

100
Training
Validation

(a) 64 nodes.

0 10000 20000

10 5

10 4

10 3

10 2

10 1

100
Training
Validation

(b) 256 nodes.

0 10000 20000

10 5

10 4

10 3

10 2

10 1

Training
Validation

(c) 1024 nodes.

0 4 8 12 16 20

10 5

10 4

10 3
Layer 0-1
Layer 1-2

(d) 64 nodes.

0 4 8 12 16 20

10 5

10 4

10 3
Layer 0-1
Layer 1-2

(e) 256 nodes.

0 4 8 12 16 20

10 5

10 4

Layer 0-1
Layer 1-2

(f) 1024 nodes.

Figure 3.16: The training loss (upper blue), validation loss (upper yellow) and
change of weights (lower). Two-dimensional experiments with varying number
of nodes and 1 hidden layer.

Network Heaviside Mirrored Scaled Sine
4 4.17× 10−1 3.98× 10−1 3.63× 10−1 1.20× 100

16 2.09× 10−1 1.31× 10−1 1.90× 10−1 1.89× 100

64 1.11× 10−2 1.19× 10−1 8.45× 10−2 6.78× 10−1

256 4.26× 10−2 3.92× 10−2 4.57× 10−2 8.93× 10−1

1024 5.68× 10−2 8.91× 10−2 5.09× 10−2 1.58× 10−1

Table 3.16: Relative Euclidean error of 20 two-dimensional experiments with
varying number of nodes and 1 hidden layer. Green cells show the best results
for each initial function.

be 4i for all i ∈ J1, 5K, we obtain the relative errors listed in Table 3.16. The
relative errors shows somewhat the same pattern as earlier, however, yet again
with poorer results – due to lack of network complexity. The corresponding
training loss and weight changes are shown in Figure 3.16, and by comparing
these to Figure 3.5, we see similar tendencies in the movement and flatness of
the curves.

By increasing the number of layers to 4, while keeping the same number of
nodes, we obtain results given in Table 3.17, which confirms poor performance
compared to what we achieved in Sections 3.2.3 and 3.3.3. We see that 64 nodes
in each of the four layers is the best practice in the latter table. The training
progress of these experiments is given in Figure 3.17, showing a clear similarity

71

3. Numerical methods and experiments

0 10000 20000

10 4

10 3

10 2

10 1

100 Training
Validation

(a) 16 nodes each.

0 10000 20000

10 5

10 4

10 3

10 2

10 1

100
Training
Validation

(b) 64 nodes each.

0 10000 20000
10 6

10 5

10 4

10 3

10 2

10 1

100
Training
Validation

(c) 256 nodes each.

0 4 8 12 16 20
10 5

10 4

10 3

Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4
Layer 4-5

(d) 16 nodes each.

0 4 8 12 16 20

10 5

10 4

Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4
Layer 4-5

(e) 64 nodes each.

0 4 8 12 16 20

10 5

10 4 Layer 0-1
Layer 1-2
Layer 2-3
Layer 3-4
Layer 4-5

(f) 256 nodes each.

Figure 3.17: The training loss (upper blue), validation loss (upper yellow) and
change of weights (lower). Two-dimensional experiments with varying number
of nodes and 4 hidden layers.

1.0 0.5 0.0 0.5 1.0
x

0.4

0.2

0.0

0.2

0.4

u

(a) 1 hidden layer, 256 nodes.

1.0 0.5 0.0 0.5 1.0
x

0.4

0.2

0.0

0.2

0.4

u

(b) 4 hidden layer, 64 nodes.

Figure 3.18: Results of two-dimensional experiments with sine initial condition
for the best DNN models of 1 (left) and 4 (right) layers, namely 256 and 64
nodes, respectively.

72

3.4. DNN solver with MSE-loss in R2

Network Heaviside Mirrored Scaled Sine
4 ∨∧ · · · ∨∧ 4 1.84× 10−1 2.52× 10−1 2.00× 10−1 1.00× 100

16 ∨∧ · · · ∨∧ 16 7.00× 10−2 4.64× 10−2 5.78× 10−2 5.75× 10−1

64 ∨∧ · · · ∨∧ 64 5.24× 10−2 8.74× 10−2 3.14× 10−2 3.26× 10−1

256 ∨∧ · · · ∨∧ 256 1.15× 10−1 1.75× 10−1 9.10× 10−2 3.27× 10−1

Table 3.17: Relative Euclidean error of 16 two-dimensional experiments with
varying number of nodes and 4 hidden layers. Green cells show the best results
for each initial function.

to the behavior in Figure 3.6. To make sure that the models actually does what
we intended them to do we may inspect the behavior of the sine curves over
time, illustrated in Figure 3.18. These figures shows that both models produce
decent results, both similar to what the Godunov scheme produces.

As predicted in the introduction to this section, the accuracy of the method
is poorer when we use the same DNN structure as in Section 3.2.3. However,
the results indicate that the numerical method functions as intended, with
sufficient accuracy. Thus, we move on to studying initial-value problems where
the vertical axis is non-constant.

3.4.5 Genuinely 2D experiments

We have now executed all comparison experiments, and they all make up a
strong indication that the implementation works as intended. As illustrated
in Section 3.4.3, we will now move on to initial conditions yielding authentic
two-dimensional initial-value problems, see Figure 3.13. This will indicate how
good the models approximate solutions of actual two-dimensional problems, as
we have only looked at change in one spatial dimension so far. We will conduct
experiments using the exact same DNN models as in Section 3.4.4, however, now
we pick the four best models, one from each of the four batches of experiments.
By looking back at the relative errors from each of the tables, this yields hidden
layer structures 12 ∨∧ 12, 16 ∨∧ 16 ∨∧ 16, 256 and 64 ∨∧ 64 ∨∧ 64 ∨∧ 64. We will also
include two different temporal steps, namely T = 0.25 and T = 0.5, to be able
to observe the propagation through time to some extent. Lastly, we will also
perform tests with mesh sizes Nx = 100 and Ny = 100 to see whether or not
the method seems to converge toward the reference solutions. All illustrated
results will be compared to the reference solutions given in Figure 3.19, which
are approximate solutions calculated on spatial mesh with size 1000× 1000.

We start by running experiments with the Sigmoid–cosine function as our
initial data, see Figure 3.19a. This yields the relative errors shown in the
two leftmost columns of Table 3.18. The relative errors are in these cases
calculated with respect to the reference solutions, by up-scaling the mesh of
the approximate solutions from 50× 50 to 1000× 1000. The respective results
are given in Figure 3.20, showing the temporal state T = 0.25 in the leftmost
column, whereas the rightmost column shows the state T = 0.5. As reflected
in the relative errors, we see that the two most precise DNN solvers are the
ones with network structures 16 ∨∧ 16 ∨∧ 16 and 64 ∨∧ 64 ∨∧ 64 ∨∧ 64. This makes
sense, since earlier experiments have showed that the most complex models are

73

3. Numerical methods and experiments

the best performed ones, given that they are trained properly. The last row of
Table 3.18 contains the relative error of the Godunov scheme with respect to
the reference solution. As we can see, the Godunov scheme yields more accurate
approximation compared to our DNN models when considering the Sigmoid–
cosine initial function. The reason for this may be a poorly trained DNN
model or poor precision in the training data. It is most likely a combination of

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.6

0.4

0.2

0.0

0.2

0.4

0.6

(a) T = 0

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.6

0.4

0.2

0.0

0.2

0.4

0.6

(b) T = 0.25

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.6

0.4

0.2

0.0

0.2

0.4

0.6

(c) T = 0.5

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

(d) T = 0

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

(e) T = 0.25

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

(f) T = 0.5

Figure 3.19: Reference solutions with mesh size 1000×1000, for two-dimensional
initial-value problems with Sigmoid–cosine (upper) and LeVeque (lower) initials.

Network Sigmoid–cosine LeVeque
structure T = 0.25 T = 0.5 T = 0.25 T = 0.5

12 ∨∧ 12 4.41× 10−1 6.32× 10−1 2.96× 10−1 4.02× 10−1

16 ∨∧ 16 ∨∧ 16 4.32× 10−1 5.07× 10−1 2.32× 10−1 3.04× 10−1

256 4.92× 10−1 6.32× 10−1 2.54× 10−1 3.70× 10−1

64 ∨∧ 64 ∨∧ 64 ∨∧ 64 4.27× 10−1 4.90× 10−1 3.02× 10−1 4.40× 10−1

Godunov 4.20× 10−1 4.76× 10−1 2.41× 10−1 3.12× 10−1

Table 3.18: Relative Euclidean error of two-dimensional experiments with
genuine two-dimensional initial conditions. Hidden layers vary from 1 to 4,
with varying number of nodes. The DNN models used are the best performed
ones from their respective experiments of two-dimensional problems (with 1D
initial conditions) above. The errors are calculated by up-scaling the DNN
approximations from 50× 50 to 1000× 1000 mesh, to match their respective
reference solutions. The last row shows the performance of Godunov’s two-
dimensional scheme, for comparison. Green cells show the best results for each
temporal maximum and initial function.

74

3.4. DNN solver with MSE-loss in R2

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.6

0.4

0.2

0.0

0.2

0.4

0.6

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.6

0.4

0.2

0.0

0.2

0.4

0.6

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.6

0.4

0.2

0.0

0.2

0.4

0.6

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.6

0.4

0.2

0.0

0.2

0.4

0.6

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.6

0.4

0.2

0.0

0.2

0.4

0.6

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.6

0.4

0.2

0.0

0.2

0.4

0.6

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.6

0.4

0.2

0.0

0.2

0.4

0.6

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Figure 3.20: Approximate solutions of Burgers’ equation with Sigmoid–cosine
function. Columns: T = 0.25, 0.5. Rows: DNN structures 12 ∨∧ 12, 16 ∨∧ 16 ∨∧ 16,
256 and 64 ∨∧ 64 ∨∧ 64 ∨∧ 64, respectively. Spatial mesh size 50× 50.

75

3. Numerical methods and experiments

these, together with the lack of optimization with respect to other parameters,
e.g. batch size, number of epochs etc. The run-time of these experiments are
listed in the upper leftmost column of Table 3.19, showing that the usage of
such a DNN based method is much less time-consuming than performing the
fine-mesh algorithm.

The next batch of results are the ones using the LeVeque initial function,
see Figure 3.19d. By looking at the two rightmost columns of Table 3.18, it
seems that the best performing DNN model is the one with network structure
16 ∨∧ 16 ∨∧ 16. By comparing the relative errors of this model to the ones
of Godunov’s method, we see that our model outperforms the accuracy of
Godunov’s method. Figure 3.21 illustrates the wave propagations of these
experiments, and by comparing these figures with the respective reference
solution we see that second row seems to fit the most – this row is the results
corresponding to the 3-layered network with 16 nodes each. The run-time
of these experiments are given in the upper rightmost column of Table 3.19,
emphasizing once more that the temporal aspect of the fine-mesh solver is by
far outperformed by such DNN based methods.

Lastly, we perform experiments using the same DNN models, but with
increased mesh resolution. By setting Nx = 100 and Ny = 100, and running
the exact same experiments for Sigmoid–cosine function and LeVeque function,
we obtain the relative errors listed in Table 3.20. We see that the relative errors
of each and every experiment has shrunk, compared to Table 3.18. Further, we
will show results for the best performed models, which for both initial conditions
are the DNN with structure 16 ∨∧ 16 ∨∧ 16, illustrated in Figure 3.22. Since we
now use a finer mesh, it is easier to observe the structures of the approximate
solutions, when comparing these figures to the reference solutions in Figure 3.19.
We see obvious similarities between these approximations and the reference
solutions, which indicates that the numerical method performs well. The best

Network structure Sigmoid–cosine LeVeque
12 ∨∧ 12 0.65 0.93

16 ∨∧ 16 ∨∧ 16 0.80 1.27
256 0.55 0.80

64 ∨∧ 64 ∨∧ 64 ∨∧ 64 0.92 1.35
Fine-mesh solver 30.15 28.13

12 ∨∧ 12 6.77 7.82
16 ∨∧ 16 ∨∧ 16 7.50 10.85

256 5.48 6.67
64 ∨∧ 64 ∨∧ 64 ∨∧ 64 8.27 11.80
Fine-mesh solver > 30.15 > 28.13

Table 3.19: Run-time of DNN solver and fine-mesh solver, measured in minutes.
Time for DNN solver is based on a pre-trained network. Time for fine-mesh
solver is based on implementation used to train network. All methods in upper
half have been run using mesh size 50× 50, whereas the lower half are methods
with mesh size 100× 100. The fine-mesh solver is not ran with the latter mesh
size as this is extremely time consuming.

76

3.4. DNN solver with MSE-loss in R2

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.21: Approximate solutions of Burgers’ equation with LeVeque function.
Columns: T = 0.25, 0.5. Rows: DNN structures 12 ∨∧ 12, 16 ∨∧ 16 ∨∧ 16, 256 and
64 ∨∧ 64 ∨∧ 64 ∨∧ 64, respectively. Spatial mesh size 50× 50.

77

3. Numerical methods and experiments

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.6

0.4

0.2

0.0

0.2

0.4

0.6

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.6

0.4

0.2

0.0

0.2

0.4

0.6

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.22: DNN based approximate solution of initial-value problems with
Sigmoid-cosine (upper) and LeVeque (lower) initial functions, with temporal
maximum T = 0.25 (left) and T = 0.5 (right). The mesh size is 100× 100.

Network Sigmoid–cosine LeVeque
structure T = 0.25 T = 0.5 T = 0.25 T = 0.5

12 ∨∧ 12 3.39× 10−1 5.95× 10−1 2.60× 10−1 3.70× 10−1

16 ∨∧ 16 ∨∧ 16 2.98× 10−1 3.93× 10−1 1.68× 10−1 2.18× 10−1

256 4.46× 10−1 6.11× 10−1 2.06× 10−1 3.21× 10−1

64 ∨∧ 64 ∨∧ 64 ∨∧ 64 3.25× 10−1 4.04× 10−1 2.47× 10−1 3.96× 10−1

Godunov 2.75× 10−1 3.38× 10−1 1.72× 10−1 2.23× 10−1

Table 3.20: Relative Euclidean error of two-dimensional experiments with
genuine two-dimensional initial conditions, using mesh size 100× 100. Hidden
layers vary from 1 to 4, with varying number of nodes. The DNN models used are
the best performed ones from their respective experiments of two-dimensional
problems (with 1D initial condition) above. The errors are calculated by up-
scaling the DNN approximations from 100× 100 to 1000× 1000 mesh, to match
their respective reference solution. The green cells show the best results for
each temporal maximum and initial function.

78

3.5. Sources of error

performing methods are illustrated in green in Table 3.20, showing the same
pattern as previous experiments. This is as expected since we are using the exact
same pre-trained DNN models. The lower part of Table 3.19 shows the run-time
of these experiments. Since the fine-mesh solver is extremely time-consuming,
these experiments are not ran with this method. However, we know that the
time would be sufficiently greater than when we ran the method using lower
mesh resolution, which is a degree of efficiency outperformed by the DNN based
methods.

Summarized, we have looked at two-dimensional conservative initial-value
problems, using Burgers’ flux in both spatial directions, with Sigmoid–cosine
and LeVeque initial conditions. The DNN based method has been compared
to Godunov’s method for two different mesh sizes. With the LeVeque initials
we have seen that the DNN based method have the potential to outperform
Godunov’s method with respect to accuracy. Further, by comparing all error-
estimates of Godunov’s two-dimensional method in this thesis with the ones
given in an article by L. Gosse [Gos14], we see similar tendencies, indicating
correct implementations of the comparison scheme. Moreover, the run-time
of the method has been compared to an accurate fine-mesh algorithm, which
has shown that a DNN based method are way more efficient. Thus, we may
conclude that the proposed two-dimensional method has considerable potential
for further studies, given that we pre-train a DNN model sufficiently, using
sensible parameters.

3.5 Sources of error

All the methods we have implemented and tested are dependent on a high
number of parameters. The number of distinct experiments we are able to do
increases exponentially with respect to the parameters, and it is therefore a
problematic number of tests needed to be able to conclude precisely. Thus, the
performed experiments are a selection chosen to get an indication whether or
not the DNN based numerical methods work reasonably well. A bad choice of
this selection can effect the results, and consequently the conclusions.

A critical source of error in the results above is that it has been chosen one
specific seed during the experiments. If we are unfortunate, this has resulted
in a bad sample of data, or unstable training. The fix for this problem is
to run the experiments several times with different seeds, i.e. performing a
bootstrap method. The reason why this has not been done is that the run time
is proportional to the number of seeds chosen, and it would take an awful lot of
time to perform all the experiments with the desired precision.

A typical source of error is rounding errors, which is a consequence of the
finite precision in the computer. All implementations are written carefully, with
this in mind. However, it may be hard to detect such errors, so this may still
have impacted the results.

79

CHAPTER 4

Summary and further work

In this thesis we have explored the possibility of using DNN models as a tool
for obtaining approximate solutions of conservative initial-value problems. We
introduced a rigorous foundation on the theoretical aspects, and then moved
on to proposing three numerical schemes, of which the two-dimensional method
is considered the main result. All methods have been implemented and tested
to a degree where conclusions may be stated.

4.1 Discussion and conclusion

The first method, introduced in Section 3.2, was the DNN based numerical
method for solving one-dimensional conservative initial-value problems, using
DNNs with MSE-loss. The accuracy of the performed experiments was
acceptable. However, the method yielded poor efficiency, which was expected
and hypothesized on beforehand.

Secondly, we developed a numerical method based on a physics-informed
neural network, see Section 3.3. The only difference between this method and
the previous was the choice of loss function, which in this case was a physics-
informed L1-loss dependent on the structure of the finite-volume scheme. This
method resulted in an obvious improvement of stability, compared to when we
tested with regular MSE-loss. An additional benefit of this method is that the
time-complexity of the method is equal to the previous one, since the complexity
is only added during the training process of the DNN. Thus, this method is
preferable to the above, given pre-trained DNN models.

Lastly, we proposed a new finite-volume method for approximating solutions
to two-dimensional conservative initial-value problems, see Section 3.4. The
DNN models used was in this case the standard MSE-loss models, similar to the
ones used for the first method. These results also showed themselves somewhat
satisfactory, but did not yield convincingly good accuracy compared to a two-
dimensional Godunov solver. However, as we did not focus on optimizing
the parameters of the method, the accuracy ended satisfactory close to the
comparison scheme. When performing tests on the LeVeque initial-value problem
we actually obtained better results, which was a relief since the Godunov
scheme performed on a coarse mesh in two spatial dimensions is considered a
bad-performed two-dimensional scheme. Further, the run-time table showed
that the DNN based method was by far more efficient than the fine-mesh
algorithm itself. Thus, by training a DNN model to a sufficient degree, with

81

4. Summary and further work

optimized choice of parameters, we can expect the method to be both efficient
and accurate.

Summarized, it might be advantageous to consider DNN based numerical
schemes to approximate solutions of two-dimensional conservative initial-value
problems. However, it should be executed a parameter grid-search in order
to pre-train such a model to a satisfactory degree. Moreover, as strongly
indicated by the experiments in Section 3.3.3, the second and third method
should be considered together, creating a physics-informed neural network for
approximating solutions of two-dimensional conservation laws. The biggest
problem with such a method is the time complexity of the implementation of
a training data generator, as well as the training process itself. On the other
hand, we mentioned the idea of convolutional neural networks in Section 3.3.4,
which could ease the computational complexity to a significant degree. Another
area of machine learning which could help increase the efficiency of a numerical
scheme is unsupervised learning. However, by using such models we would most
likely loose accuracy of the results.

4.2 Improvements

Since the physics-informed L1-loss outperforms the regular MSE-loss, a natural
improvement of this study would be to include tests of the two-dimensional
solvers, using models with this loss function. However, this is excluded as this
would demand a great deal of resources, both temporal and with respect to
computational power.

Another strong improvement of this study would be to apply the tested
models on actual physical problems, such as the shallow water equations. This
is not considered simply due to time limitations, as this would require a whole
new setup of implementation since this includes a system of conservation laws.
This raises criticism to me as developer, as I could have facilitated this in
advance, had I ever thought so far ahead.

To increase efficiency of all methods, there are some possibilities which
are not yet mentioned. One option is to consider a lower level programming
language. Python is actually written in C, and all Python code must therefore
be compiled down to C before the logic is further translated to machine code.
Consequently, all Python implementations demands sufficiently more time than
C implementations. Another possibility is to consider gradient boosting libraries.
An example of this is XGBoost, which is an optimized distributed gradient
boosting library designed to be highly efficient. Moreover, we could also consider
using variable spatial mesh sizes ∆x̂ and ∆ŷ. As observed in the motivation to
Section 3.4.2, we have non-constant flux nearby a four cell intersection. Thus,
if we chose the fine-mesh cell sizes to be e.g. normally distributed – i.e. close to
a four cell intersection ∆x̂ and ∆ŷ decreases – we could obtain similar accuracy
with increased efficiency.

4.3 Further work

The above mentioned improvements contains a natural continuation for studies
on these problems. The first thing that should be considered is probably
tests with the extended L1-loss function on two-dimensional problems. In

82

4.3. Further work

Section 3.3.4 we mentioned how such problems may be considered in the eyes
of an image analyst as a convolutional problem, so this other way to look at
it could be a strong foundation for improvement of the time complexity, and
therefore also make it possible to ease computations if this loss is tested on
two-dimensional problems.

When experiments with L1-loss has been conducted with satisfactory results,
it is essential to properly implement and test the method for a system of
conservation laws, e.g. by testing with the shallow water equations. We do
not have explicit formulas for Godunov’s flux when dealing with such systems,
thus, the DNN based method has a better chance at outperforming alternative
methods and will therefore be potentially more valuable.

After all necessary tests are adequately executed, it should be completed
a full stability and convergence analysis of the DNN based method. In 1980
M. G. Crandall and A. Majda published an article proving convergence and
stability of monotone difference approximations for scalar conservation laws
[CM80], e.g. Godunov’s scheme. To prove similar results for the DNN based
methods, we are dependent on restricting the DNN with respect to both the
network structure and training process. That is, we could begin such an analysis
by assuming that the DNNs have one specific activation and loss function, and
moreover, restrict the depth and width of the network to be bounded by some
reasonably small integer.

83

APPENDIX A

Python implementations

In this appendix we will include short versions of the implemented code. The
fully completed code may be found on GitHub in repository riemannDNNsolver
under username aasmunkv.

GitHub link: https://github.com/aasmunkv/riemannDNNsolver

This appendix contains logic for Python implementation of DNN based methods,
Godunov’s method and data generators. In cases where methods of classes
are similar to already mentioned code, we only include the methods which
are fairly distinct. The code given here explains the logic thoroughly but will
not be functioning since logic with respect to type-conversions is removed,
e.g. conversion between NumPy-arrays and PyTorch-tensors. This is done for
the sake of readability.

A.1 DNN based one-dimensional scheme

The package contains a sub-package called dnn1d, which contains two code
files, namely the network and the DNN based finite-volume scheme for one-
dimensional problems. In this section we include code snippets from both of
these files.

The backpropagation for physics-informed L1-loss are similar to the
backpropagation with MSE-loss, see Listing A.3. However, with nn.L1Loss on
lines 12, 26 and 33, as well as with an additional loss calculations given by the
function loss_var, see Listing A.4.

1 def __init__(self, dimensions, activation=F.relu, final_activation=False):
2 self.dimensions = dimensions
3 self.size = len(dimensions)
4 self.activation = activation
5 self.final_activation = final_activation
6
7 self.layer_inp = nn.Linear(dimensions[0], dimensions[1])
8 self.layer_hid = nn.ModuleList([
9 nn.Linear(dimensions[i], dimensions[i+1])

10 for i in range(1, self.size - 2)
11])
12 self.layer_out = nn.Linear(dimensions[-2], dimensions[-1])

Listing A.1: Initialization of the network.

85

https://github.com/aasmunkv/riemannDNNsolver

A. Python implementations

1 def feedForward(self, inp):
2 inp = inp
3 out = self.layer_inp(inp)
4 out = self.activation(out)
5 for layer in self.layer_hid:
6 out = self.activation(layer(out))
7 out = self.layer_out(out)
8 return out if not self.final_activation else self.activation(out)

Listing A.2: Feed forward in network.

1 def backward(self, data_train, data_val, epochs, batchsize, destination,
name):

2 # Initialize inp_train,out_train,inp_val,out_val from data_train,
data_val

3
4 # Make a ’data-feeder’
5 sampler = torch.utils.data.DataLoader(
6 range(self.N),
7 batch_size=self.batchsize,
8 shuffle=True
9)

10
11 # Initialize lists: loss_train, loss_val, weights
12 val_loss = nn.MSELoss()(
13 self.network.forward(inp_val), out_val
14)
15 self.loss_val.append(val_loss)
16 best_loss, cur_loss = np.inf, np.inf
17
18 for epoch in range(self.epochs):
19 loss_tmp = []
20 for i, batch in enumerate(sampler):
21 self.opt.zero_grad()
22 loss_out = self.network.forward(
23 inp_train[batch]
24)
25 loss_tar = out_train[batch]
26 cur_loss = nn.MSELoss()(loss_out, loss_tar)
27 cur_loss.backward(retain_graph=True)
28 self.opt.step()
29 self.loss_train.append(cur_loss.data)
30 if cur_loss < best_loss:
31 best_loss = cur_loss
32 torch.save(self.network, ’[destination]/[filename]’)
33 val_loss = nn.MSELoss()(
34 self.network.forward(inp_val), out_val
35)
36 self.loss_val.append(val_loss)
37 self.weights.append(
38 [self.network.layer_inp.weight]
39 + [l.weight for l in self.network.layer_hid]
40 + [self.network.layer_out.weight]
41)

Listing A.3: Backpropagation with MSE-loss.

1 def loss_var(inp, out):
2 inp = inp
3 out = out
4 out = out.squeeze(-1)
5 loss = torch.zeros_like(inp, requires_grad=False)

86

A.1. DNN based one-dimensional scheme

6
7 dx = 1/self.N
8 dt = dx/(torch.max(torch.abs(self.dfdu(inp))))
9 C = dt/dx

10
11 loss[:,:-1] = inp[:,:-1] - C*(out[:,1:] - out[:,:-1])
12 loss[:,-1] = inp[:,-1] - C*(out[:,0] - out[:,-1])
13 return loss

Listing A.4: Backpropagation with physics-informed L1-loss.

1 class DNNscheme:
2 def __init__(self, f, dfdu, u0, bnd_cond, xmin, xmax, Nx, network, T

=1.0, C=0.5):
3 self.f = lambda U: f(U)
4 self.dfdU = lambda U: dfdu(U)
5 self.u0 = lambda x: u0(x)
6 self.bnd_cond = bnd_cond
7 self.xmin, self.xmax, self.Nx = xmin, xmax, Nx
8 self.x = torch.linspace(xmin, xmax, Nx)
9 self.dx = (xmax - xmin)/(Nx-1)

10 self.T = T
11 self.C = C
12 self.dt, self.Nt = None, None
13 self.net = network
14 self.u = [self.u0(self.x)]
15
16 def set_dt(self):
17 a = torch.max(torch.abs(self.dfdU(self.u[-1])))
18 dt = self.C*self.dx/a
19 self.Nt = np.ceil(self.T/dt)
20 _, self.dt = np.linspace(0, self.T, self.Nt, retstep=True)
21
22 def dnn_flux(self, u_l, u_r):
23 U = torch.stack((u_l, u_r), dim=1)
24 pred = []
25 for u in U:
26 pred.append(self.net.forward(u))
27 return torch.tensor(pred)
28
29 def scheme(self):
30 C = self.dt/self.dx
31 u = self.u[-1]
32 u_next = torch.zeros(u.shape)
33 u_next[1:-1] = u[1:-1] - C*(self.dnn_flux(u[1:-1], u[2:]) - self.

dnn_flux(u[:-2], u[1:-1]))
34 if (self.bnd_cond==’periodic’):
35 u_next[0] = u[0] - C*(self.dnn_flux(u[0] , u[1]) - self.

dnn_flux(u[-2] , u[0]))
36 u_next[-1] = u[-1] - C*(self.dnn_flux(u[-1], u[1]) - self.

dnn_flux(u[-2] , u[-1]))
37 elif (self.bnd_cond==’dirichlet’):
38 u_next[0] = u[0]
39 u_next[-1] = u[-1]
40 elif (self.bnd_cond==’neumann’):
41 u_next[0] = u_next[1] + (u[0] - u[1])
42 u_next[-1] = u_next[-2] + (u[-1] - u[-2])
43 elif (self.bnd_cond==’robin’):
44 a, b = 1, 1
45 c = (a*u[1])/self.dx + (b - a/self.dx)*u[0]
46 u_next[0] = (c - (a*u_next[1])/self.dx)/(b - a/self.dx)
47 d, e = 1, 1
48 f = (d*u[-1])/self.dx + (e - d/self.dx)*u[-2]

87

A. Python implementations

49 g = 1 - (e*self.dx)/2
50 u_next[-1] = u[-1] - g*u[-2] + g*u_next[-2]
51 else:
52 u_next[0] = u[0]
53 u_next[-1] = u[-1]
54 self.u.append(u_next)
55
56 @property
57 def solve(self):
58 t = 0
59 while t<self.T:
60 self.set_dt()
61 t += self.dt
62 if t>=self.T:
63 self.dt -= (t-self.T)
64 t = self.T
65 self.scheme()

Listing A.5: DNN based finite-volume scheme.

A.2 DNN based two-dimensional scheme

The package contains a sub-package called dnn2d, which contains two code
files, namely the network and the DNN based finite-volume scheme for two-
dimensional problems. In this section we include code snippets from both of
these files.

The implementations for solving two-dimensional problems are fairly similar
to the implementations of the one-dimensional scheme. However, there are
some crucial differences, and we will list the methods varying the most relative
to above implementations. This includes how to calculate the flux, Listing A.6,
and the scheme logic itself, Listing A.7.

1 def get_flux(u):
2 F = torch.zeros((u.size(0)-2, u.size(1)-1))
3 for i in range(F.size(0)):
4 for j in range(F.size(1)):
5 F_inp = torch.zeros(7)
6 F_inp[:-1] = u[i:i+3,j:j+2].reshape(6)
7 F_inp[-1] = self.dt/np.min((self.dx,self.dy))
8 F[i,j] = self.net.forward(F_inp)
9 return F

10
11 def dnn_flux(self):
12 u_pad = torch.cat((
13 self.u[-1][:,-2].reshape(self.u[-1].size(0),1),
14 self.u[-1],
15 self.u[-1][:,1].reshape(self.u[-1].size(0),1)
16), dim=1)
17 u_F = torch.cat((
18 u_pad[-2,:].reshape(1, u_pad.size(1)),
19 u_pad,
20 u_pad[1,:].reshape(1, u_pad.size(1))
21), dim=0)
22 u_G = u_F.rot90()
23 F, G = get_flux(u_F), get_flux(u_G).rot90(3)
24 return (F,G)

Listing A.6: DNN based flux algorithm.

88

A.3. Godunov’s one-dimensional scheme

1 def scheme(self):
2 u = self.u[-1]
3 C_x, C_y = self.dt/self.dx, self.dt/self.dy
4 god_flux_f, god_flux_g = self.dnn_flux()
5
6 u_next = torch.zeros(u.shape)
7 u_next[1:-1,1:-1] = u[1:-1,1:-1] \
8 - C_x*(god_flux_f[1:-1,2:-1] - god_flux_f[1:-1,1:-2]
9).reshape([self.u[-1].size(0)-2,self.u[-1].size(1)-2]) \

10 - C_y*(god_flux_g[2:-1,1:-1] - god_flux_g[1:-2,1:-1]
11).reshape([self.u[-1].size(0)-2,self.u[-1].size(1)-2])
12
13 if self.bnd_cond==’periodic’:
14 u_next[1:-1, 0] = u[1:-1,0] \
15 - C_x*(god_flux_f[1:-1,1] - god_flux_f[1:-1,0]) \
16 - C_y*(god_flux_g[2:-1,0] - god_flux_g[1:-2,0])
17 u_next[1:-1,-1] = u[1:-1,-1] \
18 - C_x*(god_flux_f[1:-1,-1] - god_flux_f[1:-1,-2]) \
19 - C_y*(god_flux_g[2:-1,-1] - god_flux_g[1:-2,-1])
20 u_next[0, 1:-1] = u[0,1:-1] \
21 - C_x*(god_flux_f[0,2:-1] - god_flux_f[0,1:-2]) \
22 - C_y*(god_flux_g[1,1:-1] - god_flux_g[0,1:-1])
23 u_next[-1,1:-1] = u[-1,1:-1] \
24 - C_x*(god_flux_f[-1,2:-1] - god_flux_f[-1,1:-2]) \
25 - C_y*(god_flux_g[-1,1:-1] - god_flux_g[-2,1:-1])
26 u_next[0,0] = (u_next[0,1] + u_next[1,0])/2
27 u_next[0,-1] = (u_next[0,-2] + u_next[1,-1])/2
28 u_next[-1,0] = (u_next[-1,1] + u_next[-2,0])/2
29 u_next[-1,-1] = (u_next[-1,-2] + u_next[-2,-1])/2
30
31 elif self.bnd_cond==’neumann’:
32 u_next[:, 0] = u_next[:, 1] + C_x*(u[:, 0] - u[:, 1])
33 u_next[:,-1] = u_next[:,-2] + C_x*(u[:,-1] - u[:,-2])
34 u_next[0, :] = u_next[1, :] + C_y*(u[0, :] - u[1, :])
35 u_next[-1,:] = u_next[-2,:] + C_y*(u[-1,:] - u[-2,:])
36
37 self.u.append(u_next)

Listing A.7: DNN based finite-volume scheme.

A.3 Godunov’s one-dimensional scheme

The package contains a sub-package called godunov, which contains two code
files, namely Godunov’s scheme for both one- and two-dimensional problems.
In this section we include code snippets from the one-dimensional file.

The Godunov scheme is implemented in a similar matter as to what is
done for the DNN based one-dimensional scheme above. However, the flux
calculations are done by logic in Listing A.8, and not by using a DNN.

1 def godunov_flux(self, U_L, U_R):
2 U_L, U_R = torch.flatten(U_L), torch.flatten(U_R)
3 arr = torch.linspace(0,1,resolution)
4 arr_mesh, U_L_mesh = torch.meshgrid(arr, U_L)
5 _, U_R_mesh = torch.meshgrid(arr, U_R)
6 diff = (U_R_mesh-U_L_mesh)
7 flip = (diff < 0)*(-1)
8 arr_mesh_flip = torch.abs(arr_mesh + flip)
9 U_min = torch.min(U_L, U_R).reshape(U_L.size(),1)

10 arr_scaled = torch.add(arr_mesh_flip*torch.abs(diff), U_min)
11 arr_f = self.f(arr_scaled)

89

A. Python implementations

12 flux_min = torch.min(arr_f, axis=0)[0]
13 flux_max = torch.max(arr_f, axis=0)[0]
14 cond = torch.stack(((U_L < U_R), (U_R <= U_L)))
15 cond_shape = cond.shape[1:]
16 cond = cond.reshape(cond.size()[0], flux_min.size()[-1])
17 flux = (flux_min*cond[0] + flux_max*cond[1])
18 return flux.reshape(cond_shape)

Listing A.8: Godunov’s scheme.

A.4 Godunov’s two-dimensional scheme

In this section we include code snippets from the two-dimensional file from
sub-package called godunov. The two-dimensional Godunov scheme is similar
to the regular, but with flux calculation in both spatial dimensions, separately.
The implementation of this is located in Listing A.9.

1 def get_flux(u):
2 F = torch.zeros((u.size(0), u.size(1)-1))
3 for i in range(0,F.size(0),10):
4 F[i:i+10,:] = self.godunov_flux(
5 u[i:i+10,:-1],u[i:i+10,1:]
6).reshape(F[i:i+10,:].size())
7 return F
8
9 def god_flux(self):

10 u_pad = torch.cat((
11 self.u[-1][:,-2].reshape(self.u[-1].size(0),1),
12 self.u[-1],
13 self.u[-1][:,1].reshape(self.u[-1].size(0),1)
14), dim=1)
15 u_F = torch.cat((
16 u_pad[-2,:].reshape(1, u_pad.size(1)),
17 u_pad,
18 u_pad[1,:].reshape(1, u_pad.size(1))
19), dim=0)
20 u_G = u_F.rot90()
21 F, G = get_flux(u_F[1:-1]), get_flux(u_G[1:-1]).rot90(3)
22 return (F,G)

Listing A.9: Godunov based flux algorithm.

A.5 One-dimensional data generator

This section contains the implementations for both one-dimensional data
generators. Listing A.10 shows the code used to generate data for one-
dimensional experiments with MSE-loss, whereas Listing A.11 contains data
generator for the experiments with physics-informed L1-loss.

1 class Dataset:
2 def __init__(self, N, f, loc=0.0, scale=1.0):
3 self.god_flux_mesh_size = 10000
4 self.N = N
5 self.f = f
6 self.l = loc
7 self.s = scale
8 self.data = torch.zeros((self.N, 3))
9

90

A.5. One-dimensional data generator

10 @property
11 def create(self):
12 self.data[:,0] = torch.randn((self.N)) * self.s + self.l
13 self.data[:,1] = torch.randn((self.N)) * self.s + self.l
14
15 for i in range(0,self.N, 1000):
16 U_L = self.data[i:i+1000, 0]
17 U_R = self.data[i:i+1000, 1]
18 arr = torch.linspace(0, 1, resolution)
19 arr_mesh, U_L_mesh = torch.meshgrid(arr, U_L)
20 _, U_R_mesh = torch.meshgrid(arr, U_R)
21 diff = (U_R_mesh-U_L_mesh)
22 flip = (diff < 0)*(-1)
23 arr_mesh_flip = torch.abs(arr_mesh + flip)
24 U_min = torch.min(U_L, U_R).reshape(U_L.size(),1)
25 arr_scaled = torch.add(
26 arr_mesh_flip*torch.abs(diff), U_min
27)
28 arr_f = self.f(arr_scaled)
29 flux_min = torch.min(arr_f, axis=0)[0]
30 flux_max = torch.max(arr_f, axis=0)[0]
31 cond = torch.stack(((U_L < U_R), (U_R <= U_L)))
32 cond_shape = cond.shape[1:]
33 cond = cond.reshape(
34 cond.size()[0], flux_min.size()[-1]
35)
36 self.data[i:i+1000,2] = (
37 flux_min*cond[0] + flux_max*cond[1]
38).reshape(cond_shape)
39
40 @property
41 def get_data(self):
42 return self.data
43
44 def save(self, destination, filename):
45 torch.save(self.data, ’[destination]/[filename]’)
46
47 def load(self, destination, filename):
48 self.data = torch.load(’[destination]/[filename]’)

Listing A.10: Data generator for one-dimensional experiments.

1 class Dataset_L1Loss:
2 def __init__(self, M, N, K, f, dfdu):
3 self.M = M
4 self.N = N
5 self.K = K
6 self.f = f
7 self.dfdu = dfdu
8 self.data = torch.zeros((self.M, 2, self.N))
9

10 @property
11 def create(self):
12 dx = 1/self.N
13 x = torch.transpose(
14 torch.linspace(dx, 1, self.N).expand(1, self.N), 0, 1
15)
16 for i in range(self.M):
17 coeffs = torch.tensor([
18 np.random.normal(0,1/k) for k in range(1,self.K+1)
19]).reshape(self.K,1)
20 k_inds = torch.linspace(1, self.K, self.K)
21 v_inp = torch.sin(x*k_inds*np.pi) @ coeffs

91

A. Python implementations

22 dt = dx/(2*torch.max(torch.abs(self.dfdu(v_inp))))
23 v_inp_neg, v_inp_pos = v_inp.roll(1), v_inp.roll(-1)
24 F_pos = self.godunovFlux(v_inp, v_inp_pos)
25 F_neg = self.godunovFlux(v_inp_neg, v_inp)
26 v_out = v_inp - (dt/dx)*(F_pos - F_neg)
27 self.data[i,0,:] = v_inp[:]
28 self.data[i,1,:] = v_out[:]
29
30 def godunov_flux(self, U_L, U_R):
31 U_L, U_R = torch.flatten(U_L), torch.flatten(U_R)
32 arr = torch.linspace(0,1,resolution)
33 arr_mesh, U_L_mesh = torch.meshgrid(arr, U_L)
34 _, U_R_mesh = torch.meshgrid(arr, U_R)
35 diff = (U_R_mesh-U_L_mesh)
36 flip = (diff < 0)*(-1)
37 arr_mesh_flip = torch.abs(arr_mesh + flip)
38 U_min = torch.min(U_L, U_R).reshape(U_L.size(),1)
39 arr_scaled = torch.add(
40 arr_mesh_flip*torch.abs(diff), U_min
41)
42 arr_f = self.f(arr_scaled)
43 flux_min = torch.min(arr_f, axis=0)[0]
44 flux_max = torch.max(arr_f, axis=0)[0]
45 cond = torch.stack(((U_L < U_R), (U_R <= U_L)))
46 cond_shape = cond.shape[1:]
47 cond = cond.reshape(cond.size()[0], flux_min.size()[-1])
48 flux = (flux_min*cond[0] + flux_max*cond[1])
49 return flux.reshape(cond_shape)
50
51 def save(self, destination, filename):
52 torch.save(self.data, ’[destination]/[filename]’)
53
54 def load(self, destination, filename):
55 self.data = torch.load(’[destination]/[filename]’)

Listing A.11: Data generator for one-dimensional experiments with physics-
informed L1-loss.

A.6 Two-dimensional data generator

This section contains two classes, namely the fine-mesh algorithm, Listing A.13,
and the data-generator class which uses this algorithm, Listing A.12.

1 class Dataset_2D:
2 def __init__(self, M, N, f, dfdu, g, dgdu):
3 self.M = M
4 self.f, self.dfdu = f, dfdu
5 self.g, self.dgdu = g, dgdu
6 self.N = N
7 self.T = None
8 self.data = torch.zeros(self.M, 8)
9 self.data[:,:-2] = torch.randn(self.M,6)

10 self.flux = []
11 self.dx = 1.0
12 self.dy = 2/3
13
14 def set_T(self, u0):
15 num = np.min((self.dx,self.dy))
16 denom = 2*torch.max(np.sqrt(self.dfdu(u0)**2 + self.dgdu(u0)**2))
17 self.T = float(np.random.rand(1)*float(num/denom))
18

92

A.6. Two-dimensional data generator

19 def set_F(self, flux, ind):
20 flux_of_interest = flux[:,self.N:2*self.N,flux.size(2)//2]
21 self.flux.append(flux_of_interest)
22 self.data[ind, -1] = torch.mean(flux_of_interest)
23
24
25 def create(self, cuda_num = 0):
26 for i, u0 in enumerate(self.data[:,:-2]):
27 self.set_T(u0=u0)
28 self.data[i,-2] = self.T
29 solver = FineMeshSolver(
30 u0 = u0,
31 N = self.N,
32 f = self.f,
33 dfdu = self.dfdu,
34 g = self.g,
35 dgdu = self.dgdu,
36 T = self.T/np.min((self.dx,self.dy)),
37 cuda_num=cuda_num
38)
39 solver.solve
40 flux = torch.stack(solver.god_flux[0])
41 self.set_F(flux=flux, ind=i)
42
43 def save(self, destination, filename):
44 torch.save(self.data, ’[destination]/[filename]’)
45
46 def load(self, destination, filename):
47 self.data = torch.load(’[destination]/[filename]’)

Listing A.12: Data generator for two-dimensional experiments.

1 class FineMeshSolver:
2 def __init__(self, u0, N, f, dfdu, g, dgdu, T, cuda_num = 0):
3 self.u0 = u0
4 self.N = N
5 self.f, self.dfdu = f, dfdu
6 self.g, self.dgdu = g, dgdu
7 self.T = T
8 self.C = 0.5
9 self.god_flux_mesh_size = 100

10 self.x_size, self.y_size = 2*self.N, 3*self.N
11 self.x, self.dx = np.linspace(
12 -1, 1, self.x_size, retstep=True
13)
14 self.y, self.dy = np.linspace(
15 -1, 1, self.y_size, retstep=True
16)
17 self.dt = None
18 self.god_flux = [[],[]]
19 init_mesh = torch.zeros((self.y_size, self.x_size))
20 init_mesh[:self.N,:self.N] = self.u0[0]
21 init_mesh[:self.N,self.N:] = self.u0[1]
22 init_mesh[self.N:2*self.N,:self.N] = self.u0[2]
23 init_mesh[self.N:2*self.N,self.N:] = self.u0[3]
24 init_mesh[2*self.N:,:self.N] = self.u0[4]
25 init_mesh[2*self.N:,self.N:] = self.u0[5]
26 self.u = [init_mesh]
27
28 def set_dt(self):
29 num = self.C*np.min((self.dx,self.dy))
30 denom = torch.max(torch.sqrt(
31 self.dfdu(self.u[-1])**2 + self.dgdu(self.u[-1])**2

93

A. Python implementations

32))
33 dt = num/denom
34 Nt = int(np.ceil(self.T/dt))
35 _, self.dt = np.linspace(
36 0, self.T, Nt, retstep=True
37)
38
39 @property
40 def solve(self):
41 t = 0
42 while t < self.T:
43 self.set_dt()
44 t += self.dt
45 if t >= self.T:
46 self.dt -= (t-self.T)
47 t = self.T
48 self.set_godunov_flux()
49 self.godunov()
50
51 def godunov(self):
52 god_flux_f = self.god_flux[0][-1]
53 god_flux_g = self.god_flux[1][-1]
54 Cx, Cy = self.dt/self.dx, self.dt/self.dy
55
56 u_next = torch.zeros(self.u[-1].size())
57 u_next[:,:] = (self.u[-1][:,:]) \
58 - Cx*(god_flux_f[:,1:] - god_flux_f[:,:-1]
59).reshape((self.u[-1].size(0),self.u[-1].size(1))) \
60 - Cy*(god_flux_g[1:,:] - god_flux_g[:-1,:]
61).reshape((self.u[-1].size(0),self.u[-1].size(1)))
62 self.u.append(u_next)
63
64 def set_godunov_flux(self):
65 u = torch.empty(self.u[-1].size(0)+2, self.u[-1].size(1)+2)
66 u[1:-1, 1:-1] = self.u[-1]
67 u[1:-1, 0] = u[1:-1, 1]
68 u[1:-1,-1] = u[1:-1,-2]
69 u[0, :] = u[1, :]
70 u[-1,:] = u[-2,:]
71
72 F = torch.empty(self.u[-1].size(0), self.u[-1].size(1)+1)
73 F[:,:] = self.godunov_flux(
74 u[1:-1, :-1], u[1:-1, 1:], func=self.f
75).reshape((self.u[-1].size(0), self.u[-1].size(1)+1))
76 self.god_flux[0].append(F)
77
78 G = torch.empty(self.u[-1].size(0)+1, self.u[-1].size(1))
79 G[:,:] = self.godunov_flux(
80 u[:-1, 1:-1],u[1:, 1:-1], func=self.g
81).reshape((self.u[-1].size(0)+1, self.u[-1].size(1)))
82 self.god_flux[1].append(G)
83
84 def godunov_flux(self, U_L, U_R, func):
85 U_L, U_R = torch.flatten(U_L).type(torch.float64), torch.flatten(

U_R).type(torch.float64)
86 arr = torch.linspace(0,1,self.god_flux_mesh_size)
87 arr_mesh, U_L_mesh = torch.meshgrid(arr, U_L)
88 _, U_R_mesh = torch.meshgrid(arr, U_R)
89 diff = (U_R_mesh-U_L_mesh)
90 flip = (diff < 0)*(-1)
91 arr_mesh_flip = torch.abs(arr_mesh + flip)
92 U_min = torch.min(U_L, U_R).reshape(U_L.size(),1)

94

A.7. Additional

93 arr_scaled = torch.add(
94 arr_mesh_flip*torch.abs(diff), U_min
95)
96 arr_f = func(arr_scaled)
97 flux_min = torch.min(arr_f, axis=0)[0]
98 flux_max = torch.max(arr_f, axis=0)[0]
99 cond = torch.stack(((U_L < U_R), (U_R <= U_L)))

100 cond_shape = cond.shape[1:]
101 cond = cond.reshape(cond.size()[0], flux_min.size()[-1])
102 flux = (flux_min*cond[0] + flux_max*cond[1]).reshape(cond_shape)
103 return flux

Listing A.13: Fine-mesh solver for two-dimensional experiments.

A.7 Additional

The following code snippets are additional lines of code essential for the package.
This includes imported packages, GPU-specifier and initial functions used.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import torch
4 import torch.nn as nn
5 import torch.nn.functional as F
6 import os

Listing A.14: Imports.

1 self.device = "cuda" if torch.cuda.is_available() else "cpu"
2 # then use obj.to(self.device) to cast object to GPU/CPU memory

Listing A.15: Initialize computation device (GPU/CPU).

1 class InitialFunc:
2 def __init__(self, func_name):
3 self.func_name = func_name
4 self.func_menu = [’heavi’, ’heavi_rev’, ’heavi_scaled’, ’sine’, ’

sigmoid_cosine’, ’leveque’]
5 self.func = None
6 self.set_func()
7
8 def set_func(self):
9 if self.func_name in self.func_menu:

10 eval("self."+self.func_name+"()")
11
12 def sigmoid_cosine(self):
13 def splash(mesh):
14 r = np.sqrt(mesh[:,:,0]*mesh[:,:,0] + mesh[:,:,1]*mesh[:,:,1])
15 return (np.exp(r)/(1 + np.exp(r)))*np.cos(4*np.pi*r)
16 self.func = lambda mesh: splash(mesh)
17
18 def leveque(self):
19 def cs(mesh):
20 x = np.logical_and(np.greater(mesh[:,:,1], 0.1), np.less(mesh

[:,:,1], 0.6))
21 y = np.logical_and(np.greater(mesh[:,:,0], -0.25), np.less(mesh

[:,:,0], 0.25))
22 sq = np.round(1.0*np.logical_and(x, y))
23 r = np.sqrt((mesh[:,:,1] + 0.45)**2 + mesh[:,:,0]**2)
24 circ = (1-r/0.35)*np.less(r, 0.35)

95

A. Python implementations

25 return (sq + circ)
26 self.func = lambda mesh: cs(mesh)
27
28 def heavi(self):
29 def heaviside(mesh):
30 low_mesh = np.logical_and(np.greater_equal(mesh,-1.0), np.less(

mesh,0.0))
31 hig_mesh = np.logical_and(np.greater_equal(mesh,0.0), np.

less_equal(mesh,1.0))
32
33 low_x, low_y = low_mesh[:,:,0], low_mesh[:,:,1]
34 hig_x, hig_y = hig_mesh[:,:,0], hig_mesh[:,:,1]
35
36 func = (0.0)*np.logical_and(low_x, low_y) \
37 + (0.0)*np.logical_and(low_x, hig_y) \
38 + 1.0*np.logical_and(hig_x, low_y) \
39 + 1.0*np.logical_and(hig_x, hig_y)
40 return func
41 self.func = lambda mesh: heaviside(mesh)
42
43 def heavi_rev(self):
44 def heaviside_rev(mesh):
45 low_mesh = np.logical_and(np.greater_equal(mesh,-1.0), np.less(

mesh,0.0))
46 hig_mesh = np.logical_and(np.greater_equal(mesh,0.0), np.

less_equal(mesh,1.0))
47 low_x, low_y = low_mesh[:,:,0], low_mesh[:,:,1]
48 hig_x, hig_y = hig_mesh[:,:,0], hig_mesh[:,:,1]
49 func = (1.0)*np.logical_and(low_x, low_y) \
50 + (1.0)*np.logical_and(low_x, hig_y) \
51 + 0.0*np.logical_and(hig_x, low_y) \
52 + 0.0*np.logical_and(hig_x, hig_y)
53 return func
54 self.func = lambda mesh: heaviside_rev(mesh)
55
56 def heavi_scaled(self):
57 def heaviside_scaled(mesh):
58 low_mesh = np.logical_and(np.greater_equal(mesh,-1.0), np.less(

mesh,0.0))
59 hig_mesh = np.logical_and(np.greater_equal(mesh,0.0), np.

less_equal(mesh,1.0))
60 low_x, low_y = low_mesh[:,:,0], low_mesh[:,:,1]
61 hig_x, hig_y = hig_mesh[:,:,0], hig_mesh[:,:,1]
62 func = (-1.0)*np.logical_and(low_x, low_y) \
63 + (-1.0)*np.logical_and(low_x, hig_y) \
64 + 1.0*np.logical_and(hig_x, low_y) \
65 + 1.0*np.logical_and(hig_x, hig_y)
66 return func
67 self.func = lambda mesh: heaviside_scaled(mesh)
68
69 def sine(self):
70 self.func = lambda mesh: np.sin(4*np.pi*mesh[:,:,0])
71
72 def get_func(self):
73 return self.func
74
75 def get_name(self):
76 return self.func_name

Listing A.16: All initial functions used throughout this thesis.

96

Bibliography

[Car60] Carnot, S. Reflections on the motive power of fire. And other
papers on the second law of thermodynamics by É. Clapeyron
and R. Clausius. Edited with an introduction by E. Mendoza. Dover
Publications, Inc., New York, 1960, pp. xxii+152.

[CFL67] Courant, R., Friedrichs, K., and Lewy, H. “On the partial difference
equations of mathematical physics.” In: IBM J. Res. Develop. vol. 11
(1967), pp. 215–234.

[CM80] Crandall, M. G. and Majda, A. “Monotone difference approximations
for scalar conservation laws.” In: Math. Comp. vol. 34, no. 149 (1980),
pp. 1–21.

[Cyb89] Cybenko, G. “Approximation by superpositions of a sigmoidal
function.” In: Math. Control Signals Systems vol. 2, no. 4 (1989),
pp. 303–314.

[Ein88] Einfeldt, B. “On Godunov-type methods for gas dynamics.” In:
SIAM J. Numer. Anal. vol. 25, no. 2 (1988), pp. 294–318.

[Eva10] Evans, L. C. Partial differential equations. Second. Vol. 19. Graduate
Studies in Mathematics. American Mathematical Society, Provi-
dence, RI, 2010, pp. xxii+749.

[God59] Godunov, S. K. “A difference method for numerical calculation of
discontinuous solutions of the equations of hydrodynamics.” In: Mat.
Sb. (N.S.) vol. 47 (89) (1959), pp. 271–306.

[Gos14] Gosse, L. “A two-dimensional version of the Godunov scheme for
scalar balance laws.” In: SIAM J. Numer. Anal. vol. 52, no. 2 (2014),
pp. 626–652.

[GR91] Godlewski, E. and Raviart, P.-A. Hyperbolic systems of conservation
laws. Vol. 3/4. Mathématiques & Applications (Paris) [Mathematics
and Applications]. Ellipses, Paris, 1991, p. 252.

[Hor91] Hornik, K. “Approximation capabilities of multilayer feedforward
networks.” In: Neural Networks vol. 4, no. 2 (1991), pp. 251–257.

[HR15] Holden, H. and Risebro, N. H. Front tracking for hyperbolic
conservation laws. Second. Vol. 152. Applied Mathematical Sciences.
Springer, Heidelberg, 2015, pp. xiv+515.

97

Bibliography

[HTF09] Hastie, T., Tibshirani, R., and Friedman, J. The elements of
statistical learning. Second. Springer Series in Statistics. Data mining,
inference, and prediction. Springer, New York, 2009, pp. xxii+745.

[KB15] Kingma, D. P. and Ba, J. “Adam: A Method for Stochastic
Optimization.” In: Published as a conference paper at the 3rd
International Conference for Learning Representations (ICLR), San
Diego. 2015. arXiv: 1412.6980.

[KB20] Kratsios, A. and Bilokopytov, E. “Non-Euclidean Universal Approxi-
mation.” In: Published as a conference paper at the 34th Conference
on Neural Information Processing Systems (NeurIPS). 2020. arXiv:
2006.02341.

[KL20] Kidger, P. and Lyons, T. J. “Universal Approximation with Deep
Narrow Networks.” In: Published as a conference paper at the 33rd
Conference on Learning Theory (COLT). 2020. arXiv: 1905.08539.

[Kru70] Kružkov, S. N. “First order quasilinear equations with several
independent variables.” In: Mat. Sb. (N.S.) vol. 81 (123) (1970),
pp. 228–255.

[Lax73] Lax, P. D. Hyperbolic systems of conservation laws and the mathe-
matical theory of shock waves. Conference Board of the Mathematical
Sciences Regional Conference Series in Applied Mathematics, No.
11. Society for Industrial and Applied Mathematics, Philadelphia,
Pa., 1973, pp. v+48.

[Lee84] Leer, B. van. “On the Relation Between the Upwind-Differencing
Schemes of Godunov, Engquist–Osher and Roe.” In: SIAM Journal
on Scientific and Statistical Computing vol. 5 (1984), pp. 1–20.

[LeV02] LeVeque, R. J. Finite volume methods for hyperbolic problems.
Cambridge Texts in Applied Mathematics. Cambridge University
Press, Cambridge, 2002, pp. xx+558.

[LeV85] LeVeque, R. J. “A large time step generalization of Godunov’s
method for systems of conservation laws.” In: SIAM J. Numer. Anal.
vol. 22, no. 6 (1985), pp. 1051–1073.

[MP43] McCulloch, W. S. and Pitts, W. “A logical calculus of the ideas
immanent in nervous activity.” In: Bull. Math. Biophys. vol. 5 (1943),
pp. 115–133.

[MW99] McDonald, J. N. and Weiss, N. A. A course in real analysis.
Biographies by Carol A. Weiss. Academic Press, Inc., San Diego,
CA, 1999, pp. xx+745.

[Noe18] Noether, E. “Invariante Variationsprobleme.” In: Nachrichten von
der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-
Physikalische Klasse vol. 1918 (1918), pp. 235–257.

[RPK19] Raissi, M., Perdikaris, P., and Karniadakis, G. E. “Physics-informed
neural networks: a deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations.”
In: J. Comput. Phys. vol. 378 (2019), pp. 686–707.

98

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2006.02341
https://arxiv.org/abs/1905.08539

Bibliography

[Zho+17] Zhou, L. et al. “The Expressive Power of Neural Networks: A View
from the Width.” In: Published as a conference paper at the 31st
Conference on Neural Information Processing Systems (NeurIPS).
2017. arXiv: 1709.02540.

99

https://arxiv.org/abs/1709.02540

	Abstract
	Acknowledgements
	Contents
	Introduction
	Background and theory
	Scalar conservation laws
	Physical interpretation
	Characteristics of Riemann problems with convex flux
	Weak solutions of Riemann problems
	Entropy condition

	Finite-volume schemes
	Discretization
	Numerical scheme
	Godunov's scheme

	Neural networks
	Terminology
	Backward propagation
	Bias-variance trade-off
	Activation functions
	Universal approximation theorem

	Numerical methods and experiments
	Preliminaries
	Error measure
	Data generator
	Reproducibility

	DNN solver with MSE-loss in TEXT
	Numerical method
	Baseline for experiments
	Experiments

	DNN solver with extended TEXT-loss in TEXT
	Numerical method
	Baseline for experiments
	Experiments
	The extended TEXT-loss from a convolution point of view

	DNN solver with MSE-loss in TEXT
	Two-dimensional finite-volume method
	DNN based finite-volume method
	Baseline for experiments
	Experiments
	Genuinely 2D experiments

	Sources of error

	Summary and further work
	Discussion and conclusion
	Improvements
	Further work

	Python implementations
	DNN based one-dimensional scheme
	DNN based two-dimensional scheme
	Godunov's one-dimensional scheme
	Godunov's two-dimensional scheme
	One-dimensional data generator
	Two-dimensional data generator
	Additional

	Bibliography

