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Abstract— This paper describes the current state of our work
towards a multi-function swarm of UAVs that adapts to user
preferences. To achieve this, we employ software simulation
and an evolutionary search method for offline generation of a
repertoire of controller parameters, covering a wide range of
swarm behaviors. By allowing the user to select the appropriate
controller parametrization online, the swarm system can adapt
to human preferences at run time. To validate our approach, we
have performed real-world validation of a few select controllers,
on a small fleet of modified commercial off-the-shelf UAVs. The
results so far are encouraging, and we plan to extend the range
of swarm behaviors and increase the swarm size in the future.

I. INTRODUCTION

Swarms have the potential to greatly simplify and speed up
the solving of a number of tasks simply by utilizing multiple
agents to solve problems cooperatively. Example areas of
application could be mapping and network relay in dangerous
or disaster areas, illustrated by Fig. [I] Traditional challenges
in swarm research, and in particular, swarm engineering,
have been how to make controllers that scale and provide the
desired high level behavior based on low level or individual
agent actions [1].

While there have been some works using evolutionary
methods to design low-level UAV controllers, most often
these use simulations [2], as working with a real-world aerial
swarm can pose several practical challenges. In our work, we
target a real-world implementation of the swarm, which puts
severe limits on the type of sensor information that can reli-
ably be obtained and used. In addition, the implementation
of a real-world swarm is of paramount importance in order
to visualize and demonstrate the increased capabilities and
value a swarm system can have.

In this paper, we give an overview of our current results
towards our goal of a multi-function aerial swarm, derived
from our work in [3]-[5]. We use software simulations and
evolutionary methods for offline generation of a repertoire
of controllers corresponding to different high-level swarm
behaviors. We also describe how we extend a commercial-
of-the-shelf (COTS) drone platform with networking capa-
bilities to enable real-world testing of the swarm behaviors,
and report from initial field testing.

The use of evolutionary repertoire generation is to our
knowledge new in a swarm context, and the application of
evolved rules to real-world flying drones has so far been little
explored.

II. METHODS / SYSTEM
A. Applications

For the initial experiments with multi-function swarm
systems, we consider two applications to examine further:

1Norwegian Defence Research Establishment, P.O. Box 25, 2027 Kjeller,
Norway Sondre.Engebraten@ffi.no

2University of Oslo, P.O. Box 1080, Blindern, 0316 Oslo, Norway

3Naval Postgraduate School, 699 Dyer Rd., Monterey, CA 93943, USA

Fig. 1. Example of our UAV swarm operating environment — exploration
and network coverage in an urban area.

exploration and networking of agents. Exploring an area is
a very basic behavior that might be useful for a number
of more specific application, such as search and rescue,
perimeter surveillance and 3D reconstruction using images
(photogrametry). Networking is essential in order to be able
to communicate between agents, for our initial experiments
the agents operate in a limited area and can expect to be
in communication range at all times, however in the future
a large swarm may easily extend over an area that is far
greater than the range of a single hop communication link. In
addition, the swarm could be considered a network backbone
provider, or in other words a way of providing network
infrastructure where there may be none or where the existing
infrastructure is unavailable.

B. Controller

A simple swarm controller can be made by weighting of
sensor data, in the form of input forces. The idea behind this
approach is to allow for each application to contribute some
information to the controller, which are then weighted or
scaled, in order to form the controller output. This allows the
controller to consider multiple applications at once, which is
essential for our multi-function swarm.

The currently implemented controller receives 4 inputs; the
direction and distance to the closest neighbor, second closest
neighbor, third closest neighbor and the direction to the least-
visited neighboring field (square). To find the least visited
square surrounding the agent, a histogram over visits to each
area is collected. This is based on a Moore neighborhood
model, i.e least of the eight surrounding squares.

Each parametric controller requires 16 parameters. There
are 4 parameters associated with each input. The 4 parame-
ters for each input describe a general attraction and repulsion
and the strength, range and center distance affecting the
distance held to other agents. Holding a distance to another
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Fig. 2.

The implemented hardware setup uses two control loops, an inner classical loop featuring a PID controller and an outer loop which employs

our new parametric control structure. Each drone receive telemetry from other nearby drones in the swarm allowing the parametric controller to use this

information as input to avoid collisions and optimize behavior performance.

agent is important for our networking application. We defined
a new function—the Sigmoid-well function—which incorpo-
rates these parameters and allows for a distance dependent
weighting of sensor inputs. An example of the Sigmoid-well
function can be seen in Fig. [3| where the strength of the force
depends on the distance to the sensed object.
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Fig. 3. The Sigmoid-well function is shown in the left part of the figure.
The green line represents the Sigmoid component, which gives a persistent
attractive or repulsive contribution to the Sigmoid-well function. The red line
is the gravity well component, which is responsible for holding a distance
to another agent. Added together they form the blue line: the Sigmoid-well
function. The right part of the figure depicts the integral of the Sigmoid-well
function, which has a clear strong attraction (minimum) around a center at
500.0. The shape of this function can be adapted parametrically.

The final output from our controller is a velocity setpoint
to the UAV. For these experiment the velocity setpoint is a 2D
vector in a local coordinate frame. The output is calculated
by accumulating the contribution from each of the input
forces after weighting them using the Sigmoid-well function.
A more complete discription of the controller structure can
be found in previous works [3]

C. Simulator setup and Evolutionary optimization

In simulation, each agent is a modeled as a simple
point mass with limits on velocity and acceleration. While
simplistic, this allows to make approximate models for a
wide range of platforms including non-holonomic platforms
through limiting velocity and acceleration. A simple model
is suitable as we are most interesting in examining the high
level behaviors of the swarm and the potential interactions
between agents that occur. The weakness of this approach
is obviously the lack of fidelity, which can pose a challenge
when transferring controllers to a real-world swarm.
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Fig. 4. Enhancement of the 3DR Solo COTS UAYV, enabling decentralized
swarm operations. Each 3DR Solo was extended with an additional onboard
computer, this enables each swarm agent to independently make decisions
on run time without relying on a single centralized control structure. The
individual controllers communicate over 5Ghz wifi, while the remote used
for manual remote piloting of the drone operates in 2.4Ghz.

The controllers are defined by 4 vectors of length 4,
which gives the weighting of each input force. This is
a structure that is highly suitable for optimization using
evolutionary algorithms. We chose MAP-elites [6] for this
task, as it makes it possible to evolve a repertoire of solutions
in a predefined and discretized space of multiple behavior
characteristics. The result from a single run of the algorithm
is a grid containing a wide range of controller behaviors.
The controllers are characterized according to two behavior
characteristics: the degree of exploration at the swarm level,
the network coverage of the swarm. Further, there is a
performance metric related to energy usage, which describes
the quality of the solution in each grid cell.

D. Hardware platform

In order to validate our control approach, we implement
a swarm using 3DR Solo COTS drones. In order to enable
agent to agent communication, we extend the 3DR Solo with
an onboard computer that communicates over a shared swarm
network. This allows the agents to exchange telemetry in-
formation, and enables reactive collision avoidance between
agents. A brief outline of the controller integration can be
seen in Fig. 4

The Solo drone is based on the open source flight con-
troller PX4 and uses a modified version of the Ardupilot
open source flight controller firmware. Previous work flying



multiple UAVs do so with a laptop or other centralized
computer as the main hub for communication and control. In
these experiments however we fully decentralize the swarm
control structure. Initial experiments also employed mesh
networking, however to reduce interference the swarm net-
work had to be moved to 5Ghz, which unfortunately does not
support mesh networking. As such, even the swarm system
described here, has one centralized weak point; the router
required for agent to agent communication. In the future,
it should be possible replace the swarm network with an
implementation that supports true mesh/ad-hoc networking.
The full details on the integration with the 3DR Solo to
enable swarm networking can be found in [5].

III. EXPERIMENTS
A. Evolutionary results from simulation

In [3], we used simulation in combination with the MAP-
elites algorithm to generate a behavior repertoire (Fig. [6).
This repertoire contains a wide variety of controllers and
associated swarm behaviors, as defined the behavior charac-
teristics, and shows that it is possible to evolve behaviors
for a multi-function swarm using our proposed controller
structure. Some examples, both hand coded and evolved, can
be seen in Fig. 3}
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Fig. 5. Example hand designed (top) and automatically designed (bottom)
controllers, both using the same controller structure. From left to right
are examples of exploration focus (left), combination of exploration and
network creation (middle) and a controller that results in a static network
(right). All these plots are the results of simulation a swarm. Videos of these
behaviors can be found at https://www.youtube.com/playlist?
1ist=PL18bgX3rX5tQON2HKdHSCna8ysbX91UeSM

B. Real-world testing

Preliminary results on real-world UAVs, reported in [4],
show the promise of the proposed control method. Fig. [7]
shows an example of our multi-function controller running
on the real-world UAVs. These results are preliminary and
do not yet fully address the issue of transferring a controller
from simulation to real UAVs. In particular, the real UAVs
appear to have a slower response compared to the simulated

UAVs. As such, the parameters of the controllers had to be
reduced in order to safely use the simulated controller on the
real UAVs. In the future, this may be solved by updating the
simulated UAV model, to make the two more similar.

Fig. [8] shows the separation distance between individual
UAVs during a flight, both for an exploration-focused con-
troller as well as a network-focused one. In the exploration
experiment, the controller had no incentive to maintain any
fixed distance, as such the distance between agents vary
greatly. Considering instead the controller where the focus
was on maintaining distance between agents in order to
facilitate a communication network, the distances between
agents are much more stable once the agents have reached an
equilibrium. Our real-world experiments also included a test
with a controller that is tailored to a combination of the two
applications. This controller exhibits a distance that varies
less than the exploration controller but more than the network
focused controller, as expected. This shows that the behaviors
can be adjusted to either application or a combination of the
two.

C. Discussion

Results so far on repertoire generation are promising. We
are able to generate a wide range of behaviors through evo-
lution, based only on the controller structure and the defined
characteristics. The evolutionary optimization method used,
MAP-elites, is greedy. This is problematic when dealing with
noisy evaluations, and we were forced to take measures to
reduce the variance in the fitness evaluation.

While the controller structure used in these experiment
are enough to demonstrate the concept of a multi-function
swarm, it may be necessary to augment the number of
inputs and potentially the type of inputs in order to satisfy
more complex applications. One simple extension could be
to include fixed inputs, in the form of a simulated senses
location, which would allow for the specification of areas of
interest within the current framework.

For the real world experiment we have found that with
current COTS technology, the weak link of the swarm
is communication. There are two potential approaches to
mitigating this weakness; to improve on the network used for
the swarm or to reduce the reliance on the swarm network.

Finally, while the 3DR Solo COTS drones used in this
experiments allow for rapid prototyping of a UAV swarm
system, it is also clear that flying numerous drones at once
was not a design requirement in the design process of this
drone. In particular, the requirement for having one controller
per drone scales poorly when operating a swarm of UAVs.

IV. CONCLUSION AND FUTURE WORK

In this paper we have presented the current state of
our approach to a multi-function swarm, summarizing the
work in [3]-[5]. On the software side we have proposed a
parametric controller automatically generated a repertoire of
low-level controllers which correspond to different degrees
of high-level swarm behavior. To deploy the swarm controller
on a fleet of real-world drones we have extended a COTS
platform with networking capabilities, and performed initial
field tests of the automatically designed controllers.

Further work on the system including studying the ef-
fects of increasing the swarm size and investigating the
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Fig. 6. The automatically generated repertoire of controllers after epoch 200 using the MAP-elites evolutionary method. Behaviors range from low to high
exploration and low to high network coverage. Black regions indicate that no controller was found for that exploration-network combination. Controller
performance is color coded from white to dark blue, ranging from lowest to highest energy efficiency. Each cell in the repertoire represents one potential
controller. All cells that are filled are valid controller structure, but due to the difference between simulated and real UAVs not all controllers may transfer

equally well. This is a topic for future research.
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Fig. 7. Bird’s-eye view of UAV paths for the exploration experiment. While
stochastic, the paths taken by the UAVs qualitatively resemble the results
seen in simulation by visual inspection. Experiments show that while there
is some differences between simulated UAVs and real UAVs the general
behaviors are the same. Experiments also show that a number of UAVs
are able to operate in a single horizontal plane without collisions due to a
reactive collision avoidance implementation.

dynamics when switching between behaviors. We also want
to extend the functionalities of the swarm by introducing
new behaviors such as source seeking. We believe it can
be very useful to have a repertoire of controllers, to select
appropriate behaviors in complex scenarios, however this
will require exploration of efficient ways for humans to
control the swarm.
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