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a b s t r a c t

Spatially damped continental shelf waves (CSWs) with diurnal tidal frequency outside Lofoten–
Vesterålen in north-west Norway are studied theoretically for an idealized shelf topography. Wave
damping is caused by the exchange of fluid on the shelf with an inner archipelago through a permeable
coastline. This exchange is modelled by the application of a Robin condition at the coastal boundary.
It is shown that CSWs with diurnal frequencies are possible in a small wave number range centred
around zero group velocity. By calculating the nonlinear radiation stress components in the spatially
damped CSWs, we find the time- and depth averaged Lagrangian mean drift current to second order
along the coast. We show that the Lagrangian mean drift current is independent of the value of the
damping coefficient, however small, as long as it is nonzero. This illustrates the singular behaviour of
the Lagrangian wave drift problem for CSWs.

© 2021 The Author(s). Published by ElsevierMasson SAS. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

We study sub-inertial wave motion over variable bottom to-
ography. Longuet-Higgins [1,2] has described how such waves
an propagate along a sloping bottom. The focus here is on
ave motion along a continental shelf that is limited laterally
y a coastal boundary; see e.g. Buchwald and Adams [3]. Such
aves have become known as continental shelf waves (CSWs).
he classic investigation on how CSWs are generated by the wind
s that of Gill and Schumann [4]. We here focus on the shelf west
f Norway. Traditionally, wind systems hitting the southwestern
art of Norway has a storm track with an oblique angle to the
oast. This generates CSWs that propagate northward along the
orwegian continental shelf, see e.g. [5] and [6]. These generation
vents are more frequent (and stronger) in the autumn and the
inter, but they are in all cases sporadic.
A more regular mechanism for the generation of CSWs is the

idal diurnal motion, in particular, strong tidal motion through
traits. We here refer to [7–9] for the generation of CSWs along
he Australian shelf from tides in the Bass Strait. Even in cases
ithout a strait, CSWs with diurnal tidal frequency may be gen-
rated on the shelf slope if the local group velocity is close to zero
ue to changes in topography; see [10] for the shelf near St. Kilda
n the UK, and [11] for the Greenland shelf.

In north Norway, the tidally driven Moskstraumen is a clear
arallel to the tidal motion in the Australian Bass strait, pressing
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4.0/).
water back and forth across the depth contours of the shelf
outside Lofoten. The cross-shelf transport has been modelled
in [12]. For the interested reader, Moskstraumen is the famously
strong Lofoten Maelstrom with written accounts back to medi-
aeval times; see Gjevik et al. [13]. In Fig. 1 we have inserted a
map of the Norwegian coastal area, with special reference to the
Lofoten–Vesterålen region.

Usually, in modelling CSWs, the coastline is taken to be a solid
wall. However, along the Norwegian coast there are a myriad of
small islands and narrow fjords with a lateral scale much smaller
than the CSW wavelength, as is evident from Fig. 1. Hence, since
CSWs have a velocity component normal to the depth contours,
which usually follows the coastline, there will be an exchange of
fluid between the shelf and the narrow fjords and small islands.
In the fjord system, the dissipation will be considerable. This will
remove energy from the CSW, and lead to spatial damping as
the wave propagates along the shelf slope. We note that this
phenomenon is a clear parallel to the damping of surface waves
over a permeable seabed by Reid and Kajiura [14]; see also [15]
for surface waves over coral reefs.

We demonstrate that a non-zero velocity normal to the coast-
line inevitably will lead to a spatial damping of the CSWs. This
is done by applying a Robin condition [16,17] at the coastal
boundary. The Robin condition is a weighted combination of
Dirichlet boundary conditions and Neumann boundary conditions
and is common in many branches of physics. The Robin condition,
through a small parameter, allows for a small velocity normal
to the coastline, which is exactly what happens when we have
access article under the CC BY license (http://creativecommons.org/licenses/by/
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Fig. 1. (a) Map of the Norwegian coastal area with bottom contours. The relevant region here is the narrow shelf outside Lofoten and Vesterålen. (b) Close-up of
he Lofoten–Vesterålen region where a red arrow indicates the position of Moskstraumen.
n inner archipelago with narrow fjords and small islands. The
amping rate is then obtained as a function of the small Robin
arameter.
As pointed out by Phillips [18], the vertically integrated flow

etween material surfaces (bottom and free surface) yields the
agrangian volume fluxes. These fluxes are forced by the radi-
tion stresses; see [19]. Weber and Drivdal [20] calculate the
agrangian mean drift when the wave decay is due to bottom
riction, which also affects the mean flow. Similar calculations are
ade in the present paper, where the wave decay is due to the
onzero flux condition at the permeable coastal boundary. Now
he sloping shelf region is taken to be inviscid. This simplifies
he calculation of the Lagrangian mean drift current, which is
iscussed for parameters that are typical for the shelf outside
ofoten.

. Linear analysis for idealized bottom profiles and an imper-
eable coastal wall

We first discuss the presences of CSWs with diurnal frequency
utside Lofoten–Vesterålen with the usual adoption of a solid
oastal wall. In a forthcoming paper [21], it is found from a
arotropic numerical model for tidal motion that a distinct am-
lification of the current speed occurs in the Lofoten–Vesterålen
egion for the diurnal K1 tidal component. This is shown in
ig. 2, where the intensity of the red colour marks the areas
ith prominent K1 tidal current amplification. The amplification
f the K1 tidal current through Moskstraumen is closely related to

the distortion of the northward propagating tidal wave when it
interacts with the Lofoten archipelago. The tidal wave is scattered
and deflected around the island chain resulting in an east–west
pressure gradient in the southern Lofoten, which enhances the
tidal flow through Moskstraumen. The tidal flow is forced across
the shallow ridge extending southwestward from the archipelago,
which further enhances the current speed amplitude. Outside
Vesterålen, on the other hand, the amplification in the K1 tidal
current amplitude cannot be explained by topographic features
along the narrow and shallow shelf. Here, the K1 amplification
has been attributed to generation/conversion to continental shelf
waves with diurnal frequency [22,23].

The places of particular interest here are the steep shelf re-
gions outside Vesterålen; see Fig. 1b. For a closer study, we have
chosen three particular transects, depicted in Fig. 3.
65
Fig. 2. Current speed amplification for the diurnal K1 tidal component near
Moskstraumen and along the shelf outside Vesterålen, based on Fig. 2 in [21].

Fig. 3. Positions of transects T1, T2, T3 across the shelf outside Vesterålen.

We idealize the shelf geometry as in [3], but allow for a

small flat inner shelf of width D and depth H , before the depth
0
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Fig. 4. Bottom profiles in transects T1, T2, T3 in Fig. 3.
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Fig. 5. Dispersion diagrams for transects T1, T2, T3 outside Vesterålen (first
ode), showing non-dimensional frequency ω/f vs wave number k. Here f is the
onstant Coriolis parameter. Solid lines represent an inner shelf where D ̸= 0,
nd dashed lines the case when D = 0. The upper horizontal dashed line is the
on-dimensional tidal frequency for the K1 component.

ncreases exponentially towards the deep ocean; see [6] and [11].
e place the x axis along the coast. The y axis is directed towards

he sea, and the z axis is vertically upwards. The bottom profile
s given by

=

⎧⎨⎩
H0, −D ≤ y ≤ 0
H1 = H0 exp (2by) , 0 ≤ y ≤ B
H2 = H0 exp (2bB) , y ≥ B.

(1)

ere b is a constant describing the steepness of the slope, and B
s the width of the sloping shelf.

Outside Vesterålen the flat part of the shelf is narrow, and
e present the bottom profiles in Fig. 4 from transects T1, T2, T3
ith a small D (solid black lines), and with D = 0 (dashed lines).
We use the analysis in [6] to compute the dispersion diagrams

or the idealized exponential bottom profiles in Fig. 4. The results
re depicted in Fig. 5.
We note from Fig. 5 that the effect on frequency of a nar-

ow inner shelf is practically negligible in the region outside
esterålen. More importantly, CSWs with a frequency corre-
ponding to the diurnal K1 component of the tidal motion are
ossible, as seen from the intersections with the upper broken
ine in Fig. 5. Furthermore, we note that at all transects the
roup velocity is close to zero for the diurnal frequency, which
66
Fig. 6. A diagram showing the configuration with an exponential shelf, con-
tinued by a flat deep ocean. The shelf edge is located at y = B. The coastline
at y = 0 is permeable (indicated by grey shading) and modelled by a Robin
ondition.

s similar to the findings in [11] for the Greenland shelf. This
eans that wave energy accumulates in the region, which may
xplain the current amplification along the shelf in Fig. 2. The
xistence of short CSWs on the shelf outside Vesterålen with
iurnal frequency has also been reported by Moe et al. [22].

. Linear waves with a robin condition at the coast

Having established that CSWs with a diurnal frequency may
orm in the Lofoten–Vesterålen region, we proceed to investigate
ome non-linear properties of these waves. For a solid coastal
all at y = 0, this problem has been studied in [20]. However,

t is fair to say that the western coast of Norway bordering the
ontinental shelf is far from impermeable. We note from Fig. 1
hat this region contains a myriad of narrow fjords and small
slands through which the shelf water may intrude. Therefore,
e adapt a novel approach, and take that the coastal boundary

s partly permeable. This has important consequences for the
ave-induced drift, as will be shown in the following sections.
The linear wave problem starts out in a classic fashion [3,4].
e have already shown that the effect of a narrow, flat inner shelf
utside Lofoten can be neglected. Our idealized shelf geometry is
herefore as in [3] with D = 0, see (1), but we now introduce a
novel feature at the coast. Here we apply a Robin condition [16,
17] to model a permeable boundary (see Fig. 6).
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The Robin condition is a weighted combination of Dirichlet
boundary conditions and Neumann boundary conditions, and is
common in many branches of physics. In our case, we can write
it as

rvy + v = 0, y = 0, (2)

where v is the velocity in the y direction and the subscript
enotes partial derivation. Here r is a real positive quantity (the
obin parameter) that characterizes the physical conditions at the
oundary. For example, if r = 0, we have an impermeable coastal
all. If on the other hand r → ∞, then vy → 0 and there is

no hindrance for particles to move through the boundary. In our
case we take that r is small. Since vy always must be finite, this
means we now consider a small normal velocity at the coastline.
This will be appropriate for an inner region with many narrow
fjords and small islands.

In the Lofoten–Vesterålen region the relevant physical param-
eters typically are H2 = 2300m, H0 = 50m, B = 60 km and
b = 3.2 · 10−5 m−1. Furthermore, the Coriolis parameter f is
taken to be constant and equal to 1.3 ·10−4 s−1. Using mid-depth
as a reference depth, the barotropic Rossby radius a0 is typically
larger than 800 km. Hence, in the shelf region B2/a20 ≪ 1. This
means that we can make the rigid lid approximation [4]. In fact,
a more thorough analysis for the CSW eigen-modes, allowing for a
moving surface, shows that the rigid lid approximation is indeed
well fulfilled for the Lofoten region; see [6] (their Fig. 5).

Generally, the velocity components in the x, y, z directions
over the shelf are u, v, w, and the surface elevation is η. Further-
more, we introduce the notation H (y) = H1(y) for simplicity.
With the rigid lid approximation, the continuity equation allows
for the introduction of a stream function ψ such that ũH = −ψy,
and ṽH = ψx, where a tilde denotes the linear part of the wave
field. We assume that the waves are so long that the pressure
is hydrostatic in the vertical direction. Neglecting any effects of
friction in the shelf region, the linearized momentum equations
become

−ψty − fψx = −gHη̃x, (3)

ψtx − fψy = −gHη̃y. (4)

Here g is the acceleration due to gravity. We now introduce a
travelling wave solution [24] by

ψ = H1/2ϕ (y) exp i(κx − ωt), (5)

where κ is the complex wave number (to allow for spatial damp-
ing), and ω is the real frequency. Then the governing equations
reduce to

ϕ′′
+ l2ϕ = 0, (6)

where the asterisk denote derivation with respect to y, and

l2 = 2fbκ/ω − b2 − κ2. (7)

At the edge of the shelf y = B, we must generally have
continuity of pressure (here surface elevation) and normal fluxes.
Utilizing that the deep ocean has a flat bottom, it easy to show
that the continuity conditions imply for the stream function at
the shelf edge that

ψy + κψ = 0, y = B, (8)

see [20]. In terms of the ϕ function in (5), the boundary condition
becomes

′
ϕ + (b + κ)ϕ = 0, y = B. (9)

67
Writing the solution to (6) as

ϕ = H−1/2
0 [A sin l (y − B)+ C cos l(y − B)], (10)

we find by applying (9) that C = −lA/(b + κ). Hence,

ϕ = AH−1/2
0 [sin l (y − B)− (l/(b + κ)) cos l(y − B)]. (11)

We note right away that if the coastal boundary is impermeable,
i.e. ϕ(0) = 0 and κ real, (11) yields the familiar relation for the
eigen-modes: tan (lB) = −l/(b + κ), as shown in [3]. In terms of
ϕ, we can write (2)

rϕ′
+ (1 + rb) ϕ = 0, y = 0. (12)

Using the solution (11), we then find the complex dispersion
relation from (12). It becomes

(b+κ) sin lB+ l cos lB = −r[
(
b2 + l2 + bκ

)
sin lB− lκ cos lB]. (13)

In this paper, we consider spatial damping, i.e.

= k + iα, (14)

here α/k is a small quantity. It is then seen from (7) that l
s complex. We take that the modified frequency is ω = ω0 +

(α/k)2 (to be verified later). From (7) we then obtain

= l0(1 + iδ). (15)

ere
2
0 = 2fbk/ω0 − b2 − k2, (16)

hile the small imaginary part is

= (α/k)[b2 + l20 − k2]/(2l20). (17)

nserting (16) and (17) into (7), we find

= ω0(1 + α2/k2), (18)

s anticipated, where ω0 is determined by (16).
Using (14), and expanding the trigonometric functions ap-

earing in (13), we find from the real part to lowest order that

an l0B = −l0/(b + k), (19)

s in [3]. From the imaginary part, we find to O(α/k) that

/k = [2Bl20{(b + k)2 + l20}/{
(
b2 + l20 − k2

)
L − 2kl20}]r/B, (20)

here L = b + k + B (b + k)2 + Bl20, and r/B is the small non-
imensional Robin parameter. In this problem, we can relate the
ttenuation coefficient directly to the group velocity cg = dω/dk.
rom [20], eqn. (A.12), we find for CSWs

b2 + l20 − k2
)
L − 2kl20 = cg

(
b2 + l20 + k2

)
L/c. (21)

here c = ω0/k. By substituting into (20), we arrive at

/k = [2Bl20{(b + k)2 + l20}/{
(
b2 + l20 + k2

)
L}](c/cg )(r/B). (22)

ince c is always positive (CSWs propagate with shallow water
o the right in the northern hemisphere [1]), we note from (22)
hat the sign of α is entirely dependent on the sign of cg . For
he present case of waves with K1 frequency outside Lofoten,
e notice from Fig. 5 that the wave number span for possible
SWs is rather small. Approximately, we find a permissible region
· 10−5 m−1 < k < 7 · 10−5 m−1, with zero group velocity for
critical wave number kc ≈ 5.4 · 10−5 m−1. For k < kc , the
ave energy propagates northwards, and the non-dimensional
amping coefficient is positive. For example, k = 4 · 10−5 m−1

ields α/k = 3.0r/B from (22). For k > kc , the group velocity
s negative, and the energy propagates southwards. In this case,
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ith x < 0, we must have α < 0 for damped waves. Taking
= 7 · 10−5 m−1, we obtain α/k = −1.7r/B from (22).
We note that α/k in (22) becomes infinitely large when cg →

(positive when approached from the smaller wave number side
nd negative when approached from the larger wave number
ide). Obviously, our calculations assuming a small damping rate
s not valid here, but this singular behaviour indicates that no
ave energy escapes in either direction from the point where the
roup velocity is zero.
For the application in the nonlinear calculations in the next

ection, we state real parts of the linear velocity components.

˜ = −ψy/H = −[AH−1
0 exp(−αx − by)/(b + k)]

× [
(
bF + F ′

)
cos θ − δl0(bG + G′) sin θ ], (23)

ṽ = ψx/H = −[AH−1
0 exp(−αx − by)/(b + k)]

× [kF sin θ + (αF + kδl0G) cos θ ], (24)

here θ = kx − ωt is the phase function, and

= (b + k) sin l0(y − B) − l0 cos l0(y − B), (25)

G = (y − B) [(b+k) cos l0 (y − B)+ l0 sin l0(y−B)]−d cos l0(y−B).
(26)

Here

d =
(
b3 + bl20 − bk2 + b2k − l20k − k3

)
/[(b+k)(b2+ l20−k2)]. (27)

4. The nonlinear drift problem

As demonstrated in [20], the spatial damping of the CSW field
leads to nonzero radiation stresses [19] which drives the mean
Lagrangian volume fluxes. In many cases of ocean wave problems,
the damping is taken to be the result of bottom friction. For very
long wave periods the theory by Charney and Eliassen [25] of
vertical pumping in a quasi-steady Ekman bottom layer yields
wave damping in the inviscid part of the fluid; see [24] for
CSWs. For shorter periods (typically diurnal), the Ekman bound-
ary layer is not properly developed, which makes this modelling
dubious [26]. To avoid these problems, the usual approach is to
assume a bottom stress that is linear or quadratic in the mean
velocity [27].

The new idea of the present paper with a permeable coastal
boundary, yields damping of the CSWs without the need to im-
plement bottom friction. Although this makes the calculation
of the radiation stress components lengthier due to the more
complicated cross-shelf structure of the wave field, it simplifies
considerably the derivation of the Lagrangian drift current.

In the previous sections, we considered the linearized equa-
tions. In calculating the mean drift, we need the equations to sec-
ond order in wave steepness. We first define the mean nonlinear
fluxes

U =

∫ η

−H
udz, V =

∫ η

−H
vdz, (28)

here the over-bar denotes average over the wave cycle. These
re actually the mean Lagrangian fluxes, since we integrate be-
ween material surfaces [18,28]. As before, we take that the waves
re long enough to make the hydrostatic approximation. Integrat-
ng the inviscid governing equations in the vertical, and utilizing
he full nonlinear boundary conditions at the free surface and
he sloping bottom, we obtain for the mean quantities, correct
o second order in wave steepness [18]:

U − f V = −gHη + R(x), (29)
t x

68
V t + f U = −gHηy + R(y), (30)

ηt = −Ux − V y. (31)

Here R(x), R(y) are the local radiation stress components; see [20],
defined by

R(x) = −
1
2
g(η̃2)x −

(
Hũ2

)
x
− (Hṽũ)y, (32)

(y)
= −

1
2
g(η̃2)y − (Hũṽ)x −

(
Hṽ2

)
y
. (33)

It was pointed out in [20] that since here B2/a20 ≪ 1, the surface
elevation terms in (32) and (33) are negligible compared to the
velocity square terms.

We realize that the system of Eqs. (29)–(31) has time depen-
dent free solutions (when we neglect the forcing from radiation
stress terms) in the form of CSWs. These solutions vanish when
we average over the wave period. We are here interested in the
forced stationary solution to these equations. When ∂/∂t = 0, it
is found from the curl of (29) and (30) that

2bgHηx = R(y)x − R(x)y . (34)

We note from (32) and (33) that if the waves are not spatially
damped, i.e. if the x-derivative of the mean quantities is zero,
both sides of (34) vanish, and it is not possible to determine η.
In this case, Lagrangian drift velocity along the bottom contours
will contain an arbitrary part in geostrophic balance with a mean
cross-shore surface tilt [29]. However, for spatially damped waves
we find

gHη = (1/(4αb)) [R(x)y − R(y)x ]. (35)

Hence, from (35)

gHηy = −(1/(4αb))[2b
(
R(x)y − R(y)x

)
− R(x)yy + R(y)xy ]. (36)

By inserting into (30), we finally obtain for the Lagrangian mean
flux

U = (1/f )[R(y) + (R(x)y − R(y)x )/(2α) + (R(y)xy − R(x)yy )/(4αb)]. (37)

From the definitions (32) and (33) it is seen that R(x)y and R(x)yy are
proportional to the small damping rate α. Hence, the Lagrangian
mean flux along the shelf is independent of the damping rate
(apart from the small amplitude attenuation). Calculation of the
terms in (37) by applying (23) and (24), leads to

U =
[
A2 exp (−2αx) /

(
fH0(b + k)2

)]
× [−2k2FF ′

+ k2
(
FF ′′

+ F ′2) /(2b) + Q ′/4 − Q ′′/(8b)]. (38)

Here

Q = 2(bF + F ′)2 − [(bF + F ′){F +
(
b2 + l20 − k2

)
G/(2l0)}

−
(
b2 + l20 − k2

)
(bG + G′)F/(2l0)]′, (39)

where F and G are given by (25) and (26), respectively. The cor-
responding along-shore Lagrangian drift velocity then becomes

uL = U/H. (40)

Since the constant A in the stream function (5) has dimension
m3 s−1, we can introduce a dimensional scaling factor u0 for the
drift velocity as

u0 = A2b3 exp(−2αx)/(fH2
0 ). (41)

The Lagrangian mean velocity can then be written

u = u [exp(−2by)/(8b4 b + k 2)]
L 0 ( )
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× [−16bk2FF ′
+ 4k2

(
FF ′′

+ F ′2)
+ 2bQ ′

− Q ′′
]. (42)

In Fig. 7 we have depicted the non-dimensional Lagrangian drift
current (42) for B = 60 km, and b = 3.2 · 10−5 m−1, which are
typical parameter values for CSWs with diurnal frequency outside
Lofoten. With reference to Fig. 5, we first consider the region
where the group velocity is positive (northward propagating en-
ergy) and take k = 4 · 10−5 m−1. The corresponding value of the
cross-shelf wave number then becomes l0 = 4.3 · 10−5 m−1. Sec-
ondly, we compute the Lagrangian drift current for the case when
the group velocity is negative (southward propagating energy). In
this case we take k = 7 · 10−5 m−1, and l0 = 4.5 · 10−5 m−1.

We observe from the figure that the Lagrangian drift velocity is
basically located over the shallow part of the shelf with a positive
value at the inner 10 km, and a distinct maximum at the coast.
Between 10 km and 40 km the drift is negative (southward) with
a smaller maximum value. We note that in the case of negative
group velocity (dashed curve) the maximum at the coast as well
as the southward flow are larger.

In the present formulation, we obtain directly the Lagrangian
mean flow, as pointed out in [18]. Quite often, however, the
Stokes drift [30] is taken to represent the particle drift in periodic
waves. This can be misleading, as we show below.

To second order in wave steepness, the Stokes drift uS can be
ritten (Longuet-Higgins [31]):

uS = (
∫

ũdt)ũx + (
∫
ṽdt)ũy. (43)

t is readily found from (23) and (24) that

uS = u0(b2+ l20+k2)[exp(−2by)/(4b4 (b + k)2)][2bFF ′
+FF ′′

+F ′2
].

(44)

he Stokes drift is related to the mean momentum in the wave
otion, and is virtually independent of the effect of a small fric-

ion. However, as pointed out in [31], for problems with decaying
aves the mean wave momentum will not be lost, but reappear
s Eulerian mean currents. Hence, we can write the Lagrangian
ean velocity as

uL = uS + uE, (45)

here uE is the mean Eulerian current. Accordingly, we have for
the Eulerian mean current that

uE = uL − uS . (46)

o compare the magnitude and spatial variation of the vari-
us non-dimensional drift components, we have plotted them in
ig. 8 for B = 60 km, b = 3.2 · 10−5 m−1, l0 = 4.3 · 10−5 m−1, and
= 4 · 10−5 m−1, i.e. positive group velocity as seen from Fig. 5.
We note that the Stokes drift (blue curve) is positive over al-

ost the entire shelf. Accordingly, by considering only the Stokes
rift, this would yield a very incomplete picture of how floating
articles in the sea (cod egg and larvae, oil spill) are transported
y CSWs along the shelf. In particular, one would miss the larger
aximum drift velocity at the coast, as well as the negative drift
ver the upper part of the slope, as seen from the black curve in
ig. 8.

. Hydrographic conditions west of Norway

West of Norway we find two northward flowing currents. Here
he relatively fresh and cold Norwegian Coastal Current (NCC)
s trapped at the coast. It is wedge shaped, reaching down to
bout 100 m at the coast, with a typical width of 50 km, and
ear-surface velocities of the order 0.3m s−1 [32]. The saltier and
armer Norwegian Atlantic Current (NwAC) is located further
69
west. Outside Lofoten the core is typically 30 km wide. It reaches
down to about 600 m, and has a maximum outside the shelf
break with surface velocities of the order 0.3m s−1 [33]. From
our results, we realize that it is the NCC, with its location over the
shallow part of the shelf, which mostly may affect the Lagrangian
wave-induced drift due to diurnal CSWs. In our earlier example
with B = 60 km, b = 3.2 · 10−5 m−1, l0 = 4.3 · 10−5 m−1,
and k = 4 · 10−5 m−1, we find that the phase speed is c =

ω/k = 1.8m s−1. In this case we obtain for the group velocity
from [20] that cg = 0.4m s−1. For negative group velocity, with
k = 7·10−5 m−1, and l0 = 4.5·10−5 m−1, we find c = 1m s−1, and
cg = −0.26m s−1. We thus see that little (if any) wave energy
will be located south of Lofoten in this case.

6. Discussion and concluding remarks

Numerical modelling of the tidal motion in the Lofoten–
Vesterålen region [21,22] reveals a distinct amplification of the
currents for the tidal diurnal K1 component. By analogy with
the generation of CSWs due to tidal flow in the Bass strait [7–
9] we suggest that the strong Moskstraumen is instrumental in
generating diurnal CSWs along the narrow continental shelf out-
side Lofoten; see also [22]. This is supported by results from the
dispersion relation, showing that CSWs with diurnal frequencies
are possible in a small wave number range centred around zero
group velocity.

At the inner part of the shelf west of Norway, there are a
multitude of small islands and narrow fjords. We here attempt
to model the effect on the CSWs when the coastal boundary is
permeable, through the application of a Robin condition. This is a
novel approach that leads to spatial damping of the CSWs in the
inviscid region over the sloping shelf. Nonlinearly, this damping
makes it possible to determine the radiation stress components
that force the Lagrangian depth averaged mean current along the
shelf.

As an alternative to the Robin condition, it is possible to
model the coastal archipelago as an idealized macroscopic porous
medium governed by Darcy’s law [34], and study the wave-
induced exchange of fluid between the shelf and the porous
inner layer. Now continuity of normal flow and pressure (here
surface elevation) must be assumed at the common permeable
boundary. A similar nonlinear problem of surface waves over a
porous bottom layer has been studied in [15] and in [35]. With
a porous inner shelf, the damping rate becomes a function of
the macroscopic permeability and the eddy viscosity. However,
this modelling complicates the algebra considerably. We will
therefore not pursue this idea here.

The present analysis assumes a barotropic ocean, whereas
the Lofoten region in reality is stratified. Huthnance [36] has
considered the effect of stratification on trapped shelf waves in
terms of the Burger number; see also [37]. However, idealized
numerical model runs in [38] and [39] have revealed that the
effect of stratification on CSWs are small along the Norwegian
shelf. This indicates that the Burger number is small, as pointed
out in [6].

The most interesting result of the nonlinear analysis of the
present paper is that the Lagrangian mean current is independent
of the value of the damping coefficient, however small, as long as
it is nonzero. This is a clear parallel to the singular behaviour of
the wave-drift problem in a direct Lagrangian description. In this
formulation, the limit of solutions as a small viscosity ν → 0 is
different from solutions obtained with ν = 0; see [40]. Since the
Stokes drift represents the inviscid mean wave momentum, it is
the Eulerian mean current that is independent of the magnitude
of the damping in this problem. This is special, since the Eule-
rian mean current normally increases when the effect of friction
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bottom friction or bulk friction) increases. In digression, it could
e mentioned that for the case where the damping is caused by
he interaction with an inner porous shelf instead of the Robin
ondition, as mentioned above, the result that the Lagrangian
ean drift is independent of the damping coefficient becomes the
ame.
From the present calculations we note that by considering only

he wave-induced Stokes drift, as often done, one would assess
hat particles, like cod egg and larvae, would drift northward over
he entire shelf, and with a smaller speed than they actually have.
his shows the importance of calculating the Lagrangian mean
rift (Stokes plus Euler) when assessing wave-induced transports
n the ocean. Concerning the dimensional magnitude of the La-
rangian drift, we note from Moe et al. [22] that the observed
urface amplitude of the K1 component in this area lies in the
ange 5–10 cm (their Table 2). If we take

⏐⏐η̃K1 ⏐⏐ = 7 cm as a typical
alue, and calculate the stream function amplitude from (3), we
ind that the Lagrangian drift velocity scale (41) then becomes

= 1.4 cm s−1. From Fig. 7 we thus infer that the dimensional
0 f

70
agrangian drift velocity over the shallow part of the shelf due to
he diurnal CSW is comparable in magnitude to the NCC.

Finally, it should be emphasized that the drift results for CSWs
ith a permeable coastal boundary is not valid only for diurnal
aves as shown here, but applies in general to longer waves
enerated by moving weather systems over the continental shelf.
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