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Abstract
In this manuscript we focus on the question: what is the correct notion of Stokes–Biot
stability? Stokes–Biot stable discretizations have been introduced, independently by
several authors, as a means of discretizing Biot’s equations of poroelasticity; such
schemes retain their stability and convergence properties, with respect to appropri-
ately defined norms, in the context of a vanishing storage coefficient and a vanishing
hydraulic conductivity. The basic premise of a Stokes–Biot stable discretization is:
one part Stokes stability and one part mixed Darcy stability. In this manuscript we
remark on the observation that the latter condition can be generalized to a wider class
of discrete spaces. In particular: a parameter-uniform inf-sup condition for a mixed
Darcy sub-problem is not strictly necessary to retain the practical advantages currently
enjoyed by the class of Stokes–Biot stable Euler–Galerkin discretization schemes.
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1 Introduction

In this note, we consider a three-field formulation of the time-dependent Biot equations
describing flow through an isotropic, porous and linearly elastic medium, reading as:
find the elastic displacement u, the Darcy flux z and the (negative) fluid pressure p
such that

− div σ(u) − α∇ p = f , (1.1a)
1

κ
z − ∇ p = g, (1.1b)

α div ∂t u + div z − c0 ∂t p = s, (1.1c)

for a given body force f , source s, and given g (typically g = 0) over a domain
Ω ⊂ R

d (d = 1, 2, 3). The expression σ(u) denotes the isotropic elastic stress
tensor, σ(u) = με(u)+λtrε(u), where tr is the matrix trace. The material parameters
are the elastic Lamé parameters μ and λ, the Biot-Willis coefficient α, the storage
coefficient c0 ≥ 0 and the hydraulic conductivity κ = K/μ f > 0, in which K is
the material permeability, and μ f is the fluid viscosity. Moreover, ε denotes the (row-
wise) symmetric gradient, div is the divergence, ∇ is the gradient, and ∂t denotes the
(continuous) time-derivative.

The three field formulation (1.1a–1.1c) combines one scalar, time-dependent par-
tial differential equation and two, stationary, vector partial differential equations. This
combination of time-dependent and time-independent equations can lead to non-trivial
issues when considering discretizations of the time derivative; as a result: several
splitting scheme approaches have been proposed [7,11,18,21,32]. In this manuscript
we will focus on a monolithic approach, namely a straightforward backward Euler
scheme, where all unknowns are solved for simultaneously. In the case of monolithic
time discretization schemes: robustness with respect to material parameters in spatial
discretizations of (1.1) is a central concern and has been the topic of several recent
investigations; c.f. e.g. [17,19,20,30]. A notable difficulty, both practically and theo-
retically, is that the parameter λ may be very large, while κ may be very small. The
former corresponds to the (nearly) incompressible regime, while the latter corresponds
to the (nearly) impermeable regime. Special care is required in the formulation and
analysis of discretizations of (1.1) to retain stability and convergence within these
parameter ranges.

Thus far, authors have analyzed mixed discretizations of (1.1) in the nearly-
incompressible, and nearly-impermeable parameter regimes separately. For instance,
a mixed discretization based on a total-pressure formulation [21–24,28] has been
well-studied and addresses the case of λ → ∞. In the context of vanishingly small
hydraulic conductivity, the concept of a Stokes–Biot stable discretization has emerged
[17,22,27,30] as a guide for the design of discrete schemes that retain their convergence
properties as κ → 0.

Remark 1.1 It is worth noting that the term Stokes–Biot stability refers, in the contem-
porary literature, to a particular type of dual inf-sup condition. It does not allude to an
interface problem; that is, one should not confuse this termwith that of a ‘Stokes-Darcy
problem’, which refers to coupled Stokes and Darcy flow at an interface.
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1.1 An intuition for the Stokes–Biot stability condition

To motivate an intuitive view on the current notion of Stokes–Biot stability, we begin
by considering a three-field variational formulation of a related system of (time-
independent) equations: find u ∈ U , z ∈ W , and p ∈ Q such that

(σ (u), ε(v)) + (div v, p) = ( f , v) ∀ v ∈ U , (1.2a)

τκ−1 (z, w) + τ (divw, p) = τ (g, w) ∀w ∈ W , (1.2b)

(div u, q) + (τ div z, q) − (c0 p, q) = (τ s + div ū − c0 p̄, q) , ∀ q ∈ Q, (1.2c)

for given f , g, s, ū, p̄ and with (·, ·) denoting the standard L2-inner product over
the domain Ω . The continuous formulation (1.2) is representative of the equations
resulting from an implicit Euler time discretization of (1.1) with time step τ > 0 and
a prescribed set of homogeneous boundary conditions. To continue, set τ = 1; in this
case we refer to (1.2) as (a mixed variational formulation of) a steady equation of Biot
type; that is, the left-hand side is free of any time derivatives. The system (1.2) forms a
generalized saddle-point system which can be informally related [27] to a stand-alone
Stokes-like, and stand-alone mixed-Darcy system. For the former, multiply (1.2b) by
κ , take κ = c0 = 0 and assume s = div ū = 0. If (u, z, p) solves (1.2) under these
conditions, then z = 0 almost everywhere and and (1.2) reduces to: find u ∈ U and
q ∈ Q such that:

(νε(u), ε(v)) + (div v, p) = ( f , v) , (1.3a)

(div u, q) = (div ū, q) = 0, (1.3b)

for all v ∈ U and q ∈ Q, with ν = 2μ. On the other hand, if c0 = 0 and the solution
(u, z, p) to (1.2) satisfies div u = 0 then (z, p) solve the mixed Darcy problem: find
z ∈ W and p ∈ Q such that

(
κ−1z, w

)
+ (divw, p) = (g, w) , (1.4a)

(div z, q) = (s̃, q) , (1.4b)

for allw ∈ W and q ∈ Q for given g, s̃. These observations hint at a close relationship
between the Stokes equations, Darcy equations and the (steady) Biot-like system (1.2).
With this background: the Stokes–Biot stability concept [17,22,27,30] introduces two
conditions for finite element discretizations Uh × Wh × Qh of (1.1) or (1.2):

(i) the displacement-pressure pairingUh ×Qh is a stable pair, in the sense of Babuška-
Brezzi [6]), for the incompressible Stokes equations (1.3),

(ii) theflux-pressure pairingWh×Qh is a stable pair for themixedDarcyproblem (1.4).

1.2 The Darcy assumption of Stokes–Biot stability

Stokes–Biot stable discrete schemes should retain their convergence properties even
when κ → 0. Indeed, a-priori error estimates, in appropriate parameter-dependent
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Table 1 Relative approximation errors for the displacement ‖ũ −uh‖1/‖ũ‖1 (top three rows in each table),
pressure ‖ p̃ − ph‖/‖ p̃‖ (middle three rows) and flux ‖z̃ − zh‖div/‖z̃‖div (bottom three rows) for varying
κ on a series of uniform meshes Th with mesh size h

κ h

1/8 1/16 1/32 1/64 1/128 Rate

(a) Pd
2 × RT0 × DG0

100 1.64 × 10−1 4.45 × 10−2 1.13 × 10−2 2.84 × 10−3 7.11 × 10−4 2.0

10−4 1.64 × 10−1 4.45 × 10−2 1.13 × 10−2 2.84 × 10−3 7.11 × 10−4 2.0

10−8 1.64 × 10−1 4.45 × 10−2 1.13 × 10−2 2.84 × 10−3 7.11 × 10−4 2.0

100 4.00 × 10−1 1.03 × 10−1 5.05 × 10−2 2.53 × 10−2 1.26 × 10−2 1.0

10−4 2.08 × 102 1.62 × 101 1.13 7.61 × 10−2 1.34 × 10−2 2.5

10−8 2.50 × 102 2.41 × 101 2.52 2.81 × 10−1 3.51 × 10−2 3.0

100 1.30 1.76 × 10−1 6.51 × 10−2 3.18 × 10−2 1.59 × 10−2 1.0

10−4 3.06 × 103 6.76 × 102 1.19 × 102 1.65 × 101 2.11 3.0

10−8 4.51 × 103 2.27 × 103 1.31 × 103 7.09 × 102 3.61 × 102 1.0

(b) Pd
2 × Pd

1 × DG0

100 1.64 × 10−1 4.45 × 10−2 1.13 × 10−2 2.84 × 10−3 7.12 × 10−4 2.0

10−4 1.64 × 10−1 4.45 × 10−2 1.13 × 10−2 2.84 × 10−3 7.11 × 10−4 2.0

10−8 1.64 × 10−1 4.45 × 10−2 1.13 × 10−2 2.84 × 10−3 7.11 × 10−4 2.0

100 1.51 × 102 1.95 × 101 5.50 2.65 1.34 1.0

10−4 2.44 × 102 2.33 × 101 2.42 2.75 × 10−1 3.52 × 10−2 3.0

10−8 2.50 × 102 2.41 × 101 2.52 2.82 × 10−1 3.56 × 10−2 3.5

100 1.12 1.71 × 10−1 7.28 × 10−2 3.62 × 10−2 1.81 × 10−2 1.0

10−4 4.56 × 102 8.98 × 101 1.25 × 101 1.31 1.17 × 10−1 3.5

10−8 4.87 × 102 1.24 × 102 2.85 × 101 6.59 1.57 2.1

The last column rate denotes the order of convergence using for the last two values in each row
The exact solutions ũ, p̃, z̃, defined in Sect. 6, were represented by continuous piecewise cubic interpolants
in the error computations
Similar results were obtained for κ = 10−2, 10−6, 10−10 (data not shown)
c0 = 0. (A): Uh × Wh × Qh = Pd

2 (Th) × RT0(Th) × DG0(Th). (B): Uh × Wh × Qh = Pd
2 (Th) ×

Pd
1 (Th) × DG0(Th)

norms, have been advanced for both non-conforming [17,20,22] and conforming [30]
discretizations of (1.1) or (1.2) satisfying the Stokes–Biot conditions (i) and (ii). Con-
sider a numerical test with two closely-related choices of discrete spaces; the finite
element pairings Pd

2 × RT0 × DG0 (product space of continuous piecewise quadratic
vector fields, lowest order Raviart-Thomas elements and piecewise constants) and
Pd
1 × RT0 × DG0. The former pairing satisfies conditions (i) and (ii) above (for given

κ > 0), and is observed to converge even for κ 
 1, see e.g. [30] or Table 1a. The latter
pairing, which violates condition (i), can easily fail to converge when κ is sufficiently
small (c.f. [30, Table 2.1] or [27, Section 6]). This numerical observation demon-
strates that condition (i), Stokes stability, is indeed an integral player in discretizations
of (1.1) that retain their convergence behaviour as κ → 0.
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The importance of the Stokes stability condition is not surprising from a theoretical
perspective. In the early Stokes–Biot literature, condition (i) plays a formative role [30]
in showing that Euler–Galerkin discretizations of (1.1) remain inf-sup stable as κ → 0.
Conversely, the Darcy stability condition (ii) is used to construct a projection that
facilitates an a-priori analysis; the condition is not used in the stability argument. This
raises the question: is condition (ii) necessary to guarantee convergence asκ → 0?This
question is important; the Darcy stability condition can easily fail to hold uniformly
in κ 
 1, thereby placing the previous analytic projection technique on questionable
grounds. This observation was implicitly noted by other authors; c.f. for instance
[17, Rmk. 5]. More precisely, the continuous mixed Darcy problem (1.4) does not
satisfy the Babuska-Brezzi conditions [6] with bounds independent of 0 < κ 
 1
in the standard H(div) × L2 norm. To compensate, permeability-weighted flux and
pressure norms, such as e.g. κ−1/2H(div) × κ1/2L2, have been suggested as viable
alternatives [17]. However, resorting to a permeability-weighted pressure space is not
entirely satisfactory; the relation between (1.2) and the Stokes Eq. (1.3), resulting from
κ → 0, points at p ∈ L2 rather than p ∈ κ1/2L2.

Moreover, numerical experiments demonstrate convergence of the pressure in the
L2-norm even for diminishing κ , see e.g. Table 1a for the pairing Pd

2 × RT0 × DG0.
Conversely, consider the pairing Pd

2 × Pd
1 × DG0 which violates the Darcy condition

(ii), for any κ > 0, and thus does not satisfy the Stokes–Biot stability conditions.
However, numerical experiments with this pairing, see Table 1b, show the hallmark
of Stokes–Biot stable schemes. That is, they appear stable, with the displacement and
pressure errors converging at comparable rates as for Pd

2 × RT0 × DG0, for small
κ; this behaviour even holds when c0 = 0. These observations call into question the
precise role of the Darcy stability assumption in conforming mixed finite element
discretizations of (1.1) or (1.2).

1.3 Stokes–Biot stability revisited

In this manuscript, we advance a theoretical point. Namely, that a full Darcy inf-sup
assumption is not necessary and can be relaxed; at least in the case of conformal Euler–
Galerkin discretizations of (1.1) or (1.2). Instead, we will see is that the following two
assumptions are key:

(I) the displacement-pressure pairing Uh × Qh is a stable pair for the incompressible
Stokes Eq. (1.3); and that

(II) the inclusion div Wh ⊆ Qh holds.

We return to, and formalize, these minimal Stokes–Biot stability conditions in Sect. 3.
In practice, the class of minimally Stokes–Biot stable discretizations are a superset
of Stokes–Biot stable discretizations; one could then naturally consider dropping the
distinction and, instead, viewing Stokes–Biot stability from this alternative point of
view. We will show that the relaxed conditions produce schemes that retain their
stability and convergence properties, in appropriate norms, as κ → 0; motivated by
the literature in applied porous-media modeling, we also note that this holds true for
applications where 0 ≤ c0 < 1 is chosen independently of other parameters.
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Our primary purpose in this manuscript is theoretical in nature. After introducing
the relaxed conditions, we comment on the inf-sup stability and advance an a-priori
analysis that does not employ a Galerkin projection technique; thus avoiding either an
implicit dependence on κ−1 in any projection estimates or the problematic question
of uniform inf-sup Darcy stability as κ → 0. Unlike some previous endeavors of
convergence estimates, we will conduct our estimates in the full norm used [17,30]
for the inf-sup stability. In particular, we introduce the norms in which Euler–Galerkin
schemes, satisfying the relaxed conditions, are well posed and we show that the corre-
sponding a priori error convergence rates: hold in the limit as κ → 0; and coincidewith
canonically expected rates for well known mixed three-field finite element paradigms
(e.g. first order for discretizations using linear or Raviart–Thomas type flux approxi-
mations, etc). Our objective, in clarifying these nuanced issues, is to establish a more
consistent theory of Stokes–Biot stable schemes and to demonstrate an alternative,
but standard, approach for their convergence analysis; such a view may also lead to
downstream advances in the design of more efficient numerical schemes. The remain-
der of this manuscript is organized as follows: Sect. 2 describes basic spaces and
notation that will be used throughout; Sect. 3 overviews the current view of Stokes–
Biot stability [17,22,27,30]; Sect. 4 introduces a slight relaxation on the Stokes–Biot
stable conditions and recalls a well-posedness argument for Euler–Galerkin discrete
schemes; Sect. 5 is aimed at a priori estimates for discretizations satisfying the relaxed
conditions; finally, Sect. 6 is a numerical example demonstrating the retention of con-
vergence behaviour as κ → 0.

Remark 1.2 In this manuscript, we are concerned with discretizations that retain their
stability and convergence as κ → 0. The case of λ → ∞ has been investigated
separately [21–24,28] by introducing a total pressure, p̂ = λ∇ · u − p, to achieve
robustnesswith respect toλwhen κ ≈ 1 is assumed. This view is similar toHerrmann’s
method [16], where a ‘solid pressure’ term ps = λ∇·u, for elasticity systems in primal
form with μ 
 λ. One may wonder if these methods can be brought together in a
conformal setting. This has not yet been investigated in the literature, and this is
not the question we investigate in this manuscript; our current focus is to further the
understanding of Stokes–Biot stable discretizations.

2 Notation and preliminaries

2.1 Sobolev spaces and norms

Let Ω ⊂ R
d for d = 1, 2, 3 be an open and bounded domain with piecewise C2

boundary [26,31,35]. We will consider discretizations of Ω by simplicial complexes
of order d. All triangulations, Th of Ω , will be assumed to be shape regular with the
maximal element diameter, also referred to as the mesh resolution or mesh size, of Th

denoted by h.
We let L2(Ω;Rd), H(div,Ω) and H1(Ω;Rd) denote the standard Sobolev spaces

of square-integrable fields overΩ , fields with square-integrable divergence, and fields
with square-integrable gradient, respectively, and define the associated standard norms

123



Stokes–Biot stability revisited

‖ f ‖2 = ( f , f ) ,

‖ f ‖21 = ( f , f )1 = ( f , f ) + (∇ f ,∇ f ) ,

‖ f ‖2div = ( f , f )div = ( f , f ) + (div f , div f ) .

with (·, ·)Ω denoting the standard L2(Ω)-inner product. We will frequently drop the
arguments Ω and R

d from the notation when the meaning is clear from the context.
The notation H1

Γ (Ω) represents those functions in H1 with zero trace on Γ ⊆ ∂Ω .
Similarly, HΓ (div,Ω) denotes fields in H(div,Ω) with zero (normal) trace on Γ ⊆
∂Ω in the appropriate sense [4].We also define the standard space of square-integrable
functions with zero average:

L2
0(Ω) =

{
p ∈ L2(Ω) |

∫

Ω

p dx = 0

}
.

We will also use parameter-weighted norms. For a Banach space X and real
parameter α > 0, the space αX signifies X equipped with the α-weighted norm
‖ f ‖αX = α‖ f ‖X . Finally, for a coercive and continuous bilinear forma : V ×V → R,
we will also write

‖v‖2a = a(v, v).

2.2 Intersections and sums of Hilbert spaces

Let X ⊂ Z and Y ⊂ Z be two Hilbert spaces with a common ambient Hilbert space
Z . The intersection space, denoted X ∩ Y , is a Hilbert space with norm

‖x‖2X∩Y = ‖x‖2X + ‖x‖2Y .

For instance, to illustrate our notation, the norm on the intersection space κ−1/2L2 ∩
H(div) is given by

‖v‖2
κ−1/2L2∩H(div) = ‖v‖2

κ−1/2L2 + ‖v‖2H(div) = κ−1‖v‖2L2 + ‖v‖2H(div).

The sum space X + Y is the set {z = x + y | x ∈ X , y ∈ Y } equipped with the
norm

‖z‖2X+Y = inf
z=x+y

x∈X ,y∈Y

‖x‖2X + ‖y‖2Y ,

and is also a Hilbert space. See e.g. [3, Ch. 2] for a further discussion of sum and
intersection spaces.
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2.3 Operators

For a given time step size τ , times tm−1 and tm and fields um ≈ u(tm) and um−1 ≈
u(tm−1), we will make use of a discrete derivative notation

∂τ um = um − um−1

τ
. (2.1)

2.4 Finite element spaces

Now, suppose that Ω ⊂ R
d is a polygonal and let Ck(Ω) denote the space of k-

continuously differentiable functions defined on Ω . Let D ⊆ Ω and let Pk(D) ⊂
C∞(D) denote the set of polynomials of total degree k defined on D. Let Th be a
simplicial triangulation of Ω and let T ∈ Th be any simplex; we denote the restriction
of a function f to T ∈ Th by fT . The notation for the Lagrange elements of order k
used here is then

Pk(Th) =
{

f ∈ C0(Ω) | fT ∈ Pk(T ), ∀ T ∈ Th

}
. (2.2)

The notation Pd
k (Th) will be used to represent the d-dimensional (vector) Lagrange

spaces inRd . The discontinuous Galerkin spaces of order k relax the overall continuity
requirement of the Lagrange finite element spaces; they are defined by

DGk(Th) =
{

f ∈ L2(Ω) | fT ∈ Pk(T ) ∀ T ∈ Th

}
. (2.3)

A comprehensive discussion on Lagrange and discontinuous Galerkin elements and
their interpolation properties can be found in e.g. [8] and [29] respectively.Wewill also
make use of the Brezzi-Douglas-Marini and Raviart–Thomas finite element spaces [4,
Sec. 2.3]. Throughout the rest of the manuscript we use the notation Pk , Pd

k , DGk ,
B DMk and RTk in reference to the spaces defined above; that is, we drop the additional
mesh domain specification.

2.5 Boundary and initial conditions

General boundary conditions for (1.1) start by considering two distinct, non-
overlapping partitions of the d −1 dimensional boundary ∂Ω . The first, corresponding
to the displacement, is ∂Ω = Γc ∪ Γt and the second, corresponding to the pressure,
is denoted ∂Ω = Γp ∪ Γ f ; the non-overlapping condition means Γc ∩ Γt = ∅ and
Γp ∩Γ f = ∅. The general form of the typical boundary conditions are then expressed
as

u = 0, on Γc, and z · n = 0, on Γ f ,

p = 0, on Γp, and σ̂ (u, p) · n = 0 on Γt ,
(2.4)

where σ̂ (u, p) = σ(u) + p Id and Id is the d × d identity matrix. We will consider
a simplification of the boundary conditions, above. The simplification that we will
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consider is that which was studied in the defining work on Stokes–Biot stable dis-
cretizations [17,19,26,30]. These conditions take Γ f = Γc and Γp = Γt with the
d − 1 dimensional Lebesgue measure |Γc| > 0. Thus we have

u = 0, on Γc, and z · n = 0, on Γc,

p = 0, on Γt , and σ(u) · n = 0 on Γt ,
(2.5)

Let η(x, t) denote the fluid content with equation

η(x, t) = c0 p(x, t) + div u(x, t).

We follow [31] and remark: that under appropriate regularity assumptions on the
sources and initial data, (i.e. source data in Cα(0, T ; (Ω)) where α is the Biot-Willis
coefficient, boundary data inCα(0, T ; L2(∂Ω)), initial fluid contentη(x, 0) ∈ L2(Ω),
etc), then there exists a unique solution to (1.1) satisfying the boundary conditions
[31,35].

Remark 2.1 A full discussion on regularity details for the source, initial and boundary
data can be found in [35, Theorem 1], and [31, Sect. 3 and 4]. We also note that
the boundary conditions (2.5) reflect a restriction that may not be practical for many
applications. These boundary conditions coincide with those initially considered in the
Stokes–Biot stability literature (e.g. [30]) and allow the key ideas behind the Stokes–
Biot (respectively,minimal Stokes–Biot) conditions, discussed in Sect. 3 (respectively,
Sect. 4), to be discussed simply. A discussion of more general conditions can be found
in Sect. 7, and in e.g. [17].

2.6 Material parameters

To facilitate the analysis here, we will assume that the material parameters of (1.1a)-
(1.1c), i.e. μ, λ, α, κ , and c0, are constant in space and time. For simplicity and
without loss of generality we set α = 1. This view can either be interpreted literally
or as having divided (1.1a–1.1c) through by α to obtain rescaled material parameters.
Moreover, one need not look far [12,13,17,25,27,33,34] to find applications where
κ is small, and the storage coefficient c0 varies over a wide range of values in the
presence of only modest choices of λ. For instance, the literature contains examples
of low hydraulic conductivities where both λ and c0 are approximately unity [17];
in various soft-tissues, λ ≈ 102 and c0 ≈ 10−5 have been used [12,13], in addition
to λ ≈ 101 or λ ≈ 103 with c0 ≈ 10−10 [25,33], and even c0 = 0 [27,34]. This
wide variation in c0, while λ remains modest, can be due to several reasons: an ad-hoc
modeling assumption; to simplify numerical methods when storage coefficients are
near the limits of computing precision; or due to the fact that, especially in biological
applications, measurements for certain parameters may be unavailable and values are
often estimated, chosen, or substituted from those, of similar biological regime, for
which reasonable parameter estimates are available.

This manuscript is only concerned with Stokes–Biot stable discretizations; these
discretizations are designed to retain their stability and convergence properties in
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the presence of diminished hydraulic conductivity. Given the wide variety of storage
coefficients which appear, in the applied literature, in the presence of values for λ ∈
[101, 103] we take the view here that c0 and λ are independent parameters; this is not
to assert that the linear poroelasticity theory does not imply that λ → ∞ as c0 → 0.
Rather, we do this to make a secondary, strictly-numerical observation: that Stokes–
Biot stable schemes, and the relaxation we propose herein, also retain their stability
and convergence properties as κ → 0 for every fixed choice of 0 ≤ c0 < 1. We will
therefore assume that 0 < κ ≤ 1 and 0 ≤ c0 < 1 are fixed, but otherwise arbitrary,
constants.

Remark 2.2 The bilinear forms defined in Sect. 3 are parameter-dependent. Thus, the
arguments advanced in this manuscript may potentially be extended to parameters that
vary in space or time, provided they satisfy suitable regularity requirements to justify
the requiste manipulations. As parameter, or data, regularity is not the focus on the
current work, we do not take up this issue herein; we belay the topic and consider
constant (i.e. constant μ, λ and arbitrary but fixed 0 < κ ≤ 1, and 0 ≤ c0 ≤ 1)
parameters.

3 The Stokes–Biot stability conditions for conforming Euler–Galerkin
schemes

Combining the nature of (1.1) with the boundary conditions (2.5), we define the spaces

U = H1
Γc

(Ω), W = HΓc (div,Ω), Q = L2(Ω). (3.1)

We consider the following variational formulation of (1.1) over the time interval (0, T ]:
for a.e. t ∈ (0, T ], find the displacement u, flux z and pressure p such that u(t) ∈ U ,
z(t) ∈ Z and p(t) ∈ Q satisfy

a(u, v) + b(v, p) = ( f , v) v ∈ V , (3.2a)

c(z, w) + b(w, p) = (g, w) w ∈ W , (3.2b)

b(∂t u, q) + b(z, q) − d(∂t p, q) = (s, q) q ∈ Q. (3.2c)

The bilinear forms in (3.2) are given by:

a(u, v) = (σ (u), ε(v)) , b(u, q) = (div u, q) ,

c(z, w) =
(
κ−1z, w

)
, d(p, q) = (c0 p, q) .

(3.3)

As noted in [30]: the existence and uniqueness of a solution (u, z, p) to (3.2), with
continuous dependence on f , g and s, has been established by previous authors [26,
31,35].

Remark 3.1 If Dirichlet conditions are imposed for the displacement on the entire
boundary and thus the pressure is only determined up to a constant (i.e. if Γc = ∂Ω)
we instead let Q = L2

0.
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3.1 An Euler–Galerkin discrete scheme

Following [30] we consider Euler–Galerkin discretizations; i.e., conforming finite
element spaces in space and an implicit Euler in time, of (3.2). Let 0 = t0 < t1 <

· · · < tN = T be a uniform partition of the time interval [0, T ]. The constant time
step is then τ = τm = tm − tm−1. For the function f (t, x), evaluation at tm is denoted
by f m = f (tm, x), and similarly for g and s. We define conforming discrete spaces

Uh ⊂ U , Wh ⊂ W , Qh ⊂ Q. (3.4)

The Euler–Galerkin discrete scheme of Biot’s equations then reads as follows: for
each time iterate m ∈ {1, 2, . . . , N }, given f m , gm , sm , div um−1

h , and, iff c0 > 0,
pm−1

h , we seek (um
h , zm

h , pm
h ) ∈ Uh × Wh × Qh such that

a(um
h , v) + b(v, pm

h ) = (
f m, v

)
, (3.5a)

τc(zm
h , w) + τb(w, pm

h ) = τ
(
gm, w

)
, (3.5b)

b(∂τ um
h , q) + b(zm

h , q) − d(∂τ pm
h , q) = (

sm, q
)
, (3.5c)

for all v ∈ Uh , w ∈ Wh and q ∈ Qh , and where we have made use of the discrete
derivative notation (2.1).

3.2 The Stokes–Biot stability conditions

The Stokes–Biot stability conditions were introduced independently, in slightly dif-
ferent contexts, by several authors [17,22,27,30] and guide the selection of discrete
spaces, Uh × Wh × Qh , for (3.5). We recall a succinct statement of the (conform-
ing) Stokes–Biot stability conditions, used in analogous forms by all original authors
[17,22,30], here for posterity:

Definition 3.1 (c.f. [30, Defn. 3.1]) The discrete spaces Uh ⊂ U , Wh ⊂ W and
Qh ⊂ Q are called a Stokes–Biot stable discretization if and only if the following
conditions are satisfied:

(i) The bilinear form a, as defined by (3.3), is bounded and coercive on Uh ;
(ii) The pairing (Uh, Qh) is Stokes stable;
(iii) The pairing (Wh, Qh) is Darcy (Poisson) stable.

We remark that [17,22]were not conforming.More precisely, the Stokes andDarcy sta-
bility assumptions of Definition 3.1 entail that the relevant discrete spaces are stable in
the (discrete) Babuška-Brezzi sense [4,6] for the discrete Stokes and Darcy problems,
respectively. We will now examine the Darcy stability condition more closely.

3.3 The Darcy stability condition

The discrete Darcy problem reads as: find (zh, ph) ∈ Wh × Qh such that (1.4) holds
for all w ∈ Wh and q ∈ Qh . Assume that W ⊆ W and Qh ⊂ Q are equipped
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with norms ‖ · ‖W and ‖ · ‖Q , respectively. The space Wh × Qh is Darcy stable
in the (discrete) Babuška-Brezzi sense if the discrete Babuška-Brezzi conditions are
satisfied, in particular, if there exists constants α > 0 and β > 0, independent of h,
such that

c(w,w) ≥ α‖w‖2W ∀w ∈ ker b = {w ∈ Wh | b(w, q) = 0 ∀ q ∈ Qh}, (3.6)

inf
q∈Qh

sup
w∈Wh

b(w, q)

‖w‖W ‖q‖Q
≥ β > 0, (3.7)

with b and c as defined by (3.3). It is also assumed that b and c are continuous over
W × Q and W ×W with respect to the relevant norms; i.e. there exist constantsCb > 0
and Cc > 0, independent of h, such that

b(v, q) ≤ Cb‖v‖W ‖q‖Q, c(v,w) ≤ Cc‖v‖W ‖w‖W , (3.8)

for all v,w ∈ W , q ∈ Q.
The assumption of discrete Darcy stability, and thus the existence of solutions to

the discrete Darcy problem, has been used to define Galerkin projectors for use in the
a-priori analysis of the Biot Eq. (3.5) (c.f. for instance [30, Sect. 4.2]). Given z(t) ∈ W
and p(t) ∈ Q solving the continuous Biot Eq. (3.2), these projectors ΠWh z(t) and
ΠQh p(t) solve the discrete Darcy problem (1.4) for all w ∈ Wh , q ∈ Qh with right-
hand sides given by (g, w) = c(z(t), w) + b(w, p(t)) and (s, q) = b(z(t), q). For an
a-priori analysis based on such aGalerkin-projection approach to be optimal, including
in the limit as κ → 0, the continuity constantsCb, Cc and the Babuška-Brezzi stability
constants α, β must be independent of 0 < κ ≤ 1.

Attaining κ-independent continuity and stability constants is non-trivial for the
Darcy problem, and the norms that are selected for W and Q play a vital role. For
instance, the standard pairing H(div) × L2 with the natural norms is not appropriate
as e.g. c is not continuous with respect to the H(div) norm: the continuity bound Cc

depends on κ . However, the following pairings for W × Q are all meaningful for (1.4)
or its dual L2 × H1 formulation:

(A)
(
κ−1/2L2 ∩ H(div)

) × (
L2 + κ1/2H1

)
(B) κ−1/2H(div) × κ1/2L2

(C) κ−1/2L2 × κ1/2H1

In particular, the inf-sup condition (3.7) holds with inf-sup constant β independent
of κ for each of these pairings. We remark that ‖p‖L2+κ1/2H1 ≤ ‖p‖ and ‖p‖κ1/2L2

≤ ‖p‖ for κ ≤ 1. The κ-independent inf-sup condition for (A) was recently shown
in [2], the inf-sup condition for (B) follows directly by a scaling of the flux by κ−1/2

and the pressure by κ1/2. Finally, the inf-sup condition of (C) follows directly from
Poincare’s inequality with a similar scaling as in (B). The boundedness of b(z, p) can
be established for each of the pairings above. The pairing of (C) corresponds to the case
of the L2 × H1 formulation of the mixed Darcy problem, i.e. b(z, p) = (z,∇ p) with
z ∈ W = L2 and p ∈ Q = H1, but boundedness is proved in the same manner as for
(B). In the case of (B): applying Cauchy-Schwarz and the weighted norm definitions
immediately gives
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|b(z, p)| ≤ ‖ div z‖‖p‖ ≤ ‖z‖H(div)‖p‖ =
(
κ−1/2‖z‖H(div)

) (
κ1/2‖p‖

)
.

The case of (A) is complicated by the definition of the sum norm on the pressure
space Q, and a one-line argument is not possible without additional context; see [2]
for details.

Options (A) and (B) above fit naturally with the variational formulation of (3.5)
and spaces (3.1). In the following, we suggest that a natural norm for the Darcy flux is

|||z|||2 = τ

κ
(z, z) + τ 2 (div z, div z) , (3.9)

which is equivalent to the norm of the flux in (A) above for the relevant range of
κ when τ > 0. However, both options (A) and (B) have disadvantages. For (B), the
pressure norm (on Q) becomes progressivelyweaker as κ nears 0while the norm of the
flux divergence (on W ) is unnecessarily large compared with e.g. (3.9). The primary
drawback to using (A) is that the pressure norm is implicitly defined. This fact means
that an a-priori analysis based on the method of projections is more complex to carry
out in practice; it is not clear that standard analytic techniques, e.g. in [17,19,22,30]
among others, could be used directly when the norm of L2 +κ1/2H1 is chosen for the
pressure space.

Wewill argue instead that an a-priori analysis of (3.5) based on the use of a Galerkin
projection of the form (1.4) is not necessary; thus alleviating the need for an explicit
uniform-in-κ Darcy stability condition on (Wh, Qh). Neither (3.7) nor the saddle-point
stability of (1.4) in general play a role in the well-posedness of (3.5). Condition (iii) of
Definition 3.1 will thus be replaced by a less restrictive condition. An important con-
sequence of relaxing the uniform-in-κ Darcy stability hypothesis is that the standard
L2-norm on Q can, and will, be used.

4 Minimal Stokes–Biot stability

In this section we state the definition of minimal Stokes–Biot stability and recall
a previous inf-sup condition in the spirit of the Banach-Nec̆as-Babus̆ka theorem. In
particular, the minimal Stokes–Biot stability conditions (c.f. Definition 4.1) relinquish
the Darcy stability assumption in favor of a containment condition. In practice, this
containment condition is satisfied for discrete flux-pressure pairings that are Darcy
stable, though other discrete spaces satisfy this condition which are not stable pairings
for the mixed Darcy problem. Throughout this section we assume thatU , W and Q are
defined by (3.1). The norm on U is taken to be the usual H1(Ω)-norm ‖ · ‖1, the norm
on Q is the standard L2-norm ‖ · ‖, while the norm |||·||| on W is the weighted norm
defined by (3.9). The norm (3.9) was first introduced in [19, Sect. 3.1]. The bilinear
forms a, b, c, d are as defined by (3.3).
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4.1 Minimal Stokes–Biot conditions

We now introduce our set of minimal Stokes–Biot stability conditions. For clarity and
completeness (rather than e.g. brevity), we include the precise stability conditions in
the definition here. In essence, between Definitions 3.1 and 4.1, only condition (i i i)
changes.

Definition 4.1 Afamily of conforming discrete spaces {Uh×Wh×Qh}h withUh ⊂ U ,
Wh ⊂ W and Qh ⊂ Q is called minimally Stokes–Biot stable if and only if

(i) The bilinear form a is continuous and coercive on Uh × Uh ; i.e. there exists
constants Ca > 0 and γa > 0 independent of h such that

a(u, u) ≥ γa‖u‖21, a(u, v) ≤ Ca‖u‖1‖v‖1, ∀ u, v ∈ Uh . (4.1)

(ii) The pairings {Uh × Qh}h are Stokes stable in the discrete Babuška-Brezzi sense [5,
6]; i.e. in particular there exists an inf-sup constant βS > 0 independent of h such
that

inf
q∈Qh

sup
v∈Uh

b(v, q)

‖v‖1‖q‖ ≥ βS > 0. (4.2)

(iii) div Wh ⊆ Qh for each h.

The classical flux-pressure pairings, e.g. RTk × DGk or B DMk+1 × DGk for
k = 0, 1, 2, . . ., satisfying Definition 3.1(iii) also satisfy the conditions of min-
imal Stokes–Biot stability; in particular Definition 4.1(iii). However, the minimal
Stokes–Biot condition also includes discretizations which are not encompassed by
Definition 3.1. For instance: flux-pressure pairings where the flux is taken from the
space of continuous Lagrange polynomials can satisfy Definition 4.1 while not satis-
fyingDefinition 3.1. An illustration of this can be found in the family of discretizations
where the displacement-pressure pairing are of Scott-Vogelius type; these either have
the form Pd

k × RTm × DGk−1 or Pd
k × Pd

m × DGk−1 where k ≥ 4 and 0 ≤ m ≤ k −1.
The flux-pressure pairings RTm × DGk−1, for m < k − 1, and Pd

m × DGk−1, for
m ≤ k − 1, are not Darcy stable but do satisfy the minimal Stokes–Biot stability
containment condition of Definition 4.1(iii).

A more pragmatic example is the discretization Pd
2 × RT0 × DG0. This discretiza-

tion is both Stokes–Biot stable and minimally Stokes–Biot stable; of note is that
Pd
2 × Pd

1 × DG0 is not Stokes–Biot stable but is minimally Stokes–Biot stable. The
Pd
2 × RT0 × DG0 discretization is a prototype for the minimal-dof displacement

enrichment of a Pd
1 × RT0 × DG0 approach studied in [30]. The comparison between

Pd
2 × RT0 × DG0 and Pd

2 × Pd
1 × DG0 serves as a motivation for Definition 4.1,

and will be studied in Sect. 6. A further discussion of spaces that satisfy the minimal
Stokes–Biot stability condition is given in Sect. 7.
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4.2 An inf-sup condition for minimal Stokes–Biot stable Euler–Galerkin schemes

The variational problem (3.5) can be shown to satisfy a requirement of the Banach-
Nec̆as-Babus̆ka theorem with respect to the weighted norm (3.9) and Definition 4.1.
In fact, this result was proved in [19].

Proposition 4.1 (Theorem 1, [19]) Let ‖(uh, wh, qh)‖U W Q be defined by

‖(uh, wh, qh)‖U W Q =
(
‖uh‖21 + |||wh |||2 + ‖qh‖2

)1/2

where |||wh ||| is defined by (3.9). Define a composite bilinear form, on Uh × Wh × Qh

and corresponding to (3.5), by the formula

B(uh, zh, ph; vh, rh, qh) = a(uh, vh) + b(vh, ph) + τ c(zh, rh)

+ τ b(rh, ph) + b(uh, qh) + τ b(zh, qh) − d(ph, qh)

Suppose Uh ×Wh × Qh satisfy the assumptions of Definition 4.1. ThenB is continuous
and there exists a constant γ > 0, independent of κ and c0, such that

sup
(vh ,rh ,qh)∈Uh×Wh×Qh

B(uh, zh, ph; vh, rh, qh)

‖(vh, rh, qh)‖U W Q
≥ γ ‖(uh, zh, ph)‖U W Q

Proof The proof follows from the arguments in [19, Theorem 1]. ��
Remark 4.1 Work by previous authors [17,19] shows that the assumptions of Defini-
tion 4.1 were nascent in the literature. The proof [19] of Proposition 4.1 is independent
of 0 ≤ c0, and does not invoke Darcy stability, but does, in fact, use condition (iii) of
Definition 4.1. In fact, another version of Proposition 4.1 was also proved, indepen-
dently, in [17, Theorem 3.2, Case I]; the proof, once more, is independent of c0 and
does not assume that the divergence maps the flux space surjectively onto the pressure
space (i.e. Darcy stability). A nice mention of the case U = H1

0 and Q = L2
0 can

also be found therein. The arguments of [17, Theorem 3.2, Case I] follow similarly to
those of [19, Theorem 2].

Corollary 4.1 Assume that the assumptions of Definition 4.1 hold; then (3.5) is well
posed.

Proof The Banach-Nec̆as-Babus̆ka theorem [8, Theorem 2.6], applied to (3.5),
requires that two conditions are satisfied. The first condition is that of Proposition 4.1,
which has been proved, independently, by several authors. The second condition,
which remains to be verified, is that if an element (vh, rh, qh) ∈ Uh × Wh × Qh is
such that

B(uh, zh, ph; vh, rh, qh) = 0, ∀ (uh, zh, ph) ∈ Uh × Wh × Qh,

then vh = rh = qh = 0 must follow. To show that this condition also holds true, fix
(vh, rh, qh) ∈ Uh × Wh × Qh and suppose that the above implication holds; we need
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to show that, in this case, it must be that vh = rh = qh = 0. Towards this end we
consider two cases: the first case is if c0 > 0, and the second case is if c0 = 0. For the
first case, select uh = vh , zh = rh and ph = −qh , along with (3.9), the hypothesis
above and (3.3), to get

B(vh, rh,−qh; vh, rh, qh) = a(vh, vh) + τ

κ
‖rh‖2 + c0‖qh‖2 = 0.

Coercivity (c.f. (4.1)) gives γa‖vh‖21 ≤ a(vh, vh) and vh = rh = qh = 0 follows.
For the second case, assume that c0 = 0. The Stokes stability assumption (Defini-
tion 4.1(ii)) implies that (e.g. [5, p. 136]) there exists yh ∈ Uh such that

(div yh, qh) = ‖qh‖2, (4.3)

βS‖yh‖1 ≤ ‖qh‖, (4.4)

where βS is the Stokes inf-sup constant of (4.2). Let δ ≥ 0 be a yet-undetermined,
but fixed, constant and choose uh = vh + δyh , zh = rh , and ph = −qh . With these
choices, and (3.3), we have

B(vh + δyh, rh,−qh; vh, rh, qh) = a(vh, vh) + δa(yh, vh) + τ

κ
‖rh‖2 + δ‖qh‖2 = 0.

The coercivity and continuity assumptions (c.f. (4.1)), together with Cauchy’s inequal-
ity with epsilon, (4.4) and gathering of like terms gives

(γa − δCaε) ‖vh‖21 + τ

κ
‖rh‖2 + δ

(
1 − Ca

4β2
Sε

)
‖qh‖2 ≤ 0. (4.5)

We can now select the appropriate constants δ and ε, as e.g.

ε = 2
Ca

4β2
S

> 0, δ = γaβ2
S

C2
a

> 0, (4.6)

from which it follows that

γa‖vh‖21 + τ

κ
‖rh‖2 + 1

2

γaβ2
S

C2
a

‖qm
h ‖2 ≤ 0. (4.7)

and thus vh = rh = qh = 0. Thus, the second condition of the Banach-Nec̆as-Babus̆ka
theorem [8, Theorem 2.6] holds, irregardless of c0, and the result follows. ��

5 A priori error estimates for minimally Stokes–Biot stable schemes

In this section, we derive a-priori error estimates for the Euler–Galerkin discrete Biot
equations (3.5) using the assumptions of Definition 4.1. The final result is summarized
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in Proposition 5.2 of Sect. 5.4. We will assume the point of view of minimal Stokes–
Biot stability as defined by Definition 4.1 and that Uh contains the continuous nodal
Lagrange elements Pr for some r ≥ 1. We begin by establishing basic assumptions
on the spaces Uh, Wh and Qh , and define projection operators in Sect. 5.1.

5.1 Projections and approximability

As in the previous section, let U , W , Q be given by (3.1) with norms ‖ · ‖1, |||·|||
cf. (3.9), and ‖ · ‖, respectively. Assume that the discrete spaces Uh × Wh × Qh

satisfy the assumptions of Definition 4.1. We denote the (continuous) solutions to
(3.2) at time tm by (um, zm, pm) for m = 1, 2, . . . , N while (um

h , zm
h , pm

h ) represent
the solutions of the discrete problem (3.5). For use in the subsequent error analysis, we
make basic assumptions on the spacesUh, Wh and Qh , and define projection operators
ΠUh : U → Uh , ΠWh : W → Wh and ΠQh : Q → Qh as follows.

Qh : Define ΠQh to be the standard L2-projection into Qh . Then

‖q − ΠQh q‖ � inf
qh∈Qh

‖q − qh‖,

for all q ∈ Q. If Qh contains piecewise polynomials of order k = kQ ≥ 0, then
in particular

‖q − ΠQh q‖ � hkQ+1‖q‖kQ+1, ∀w ∈ Hk . (5.1)

Wh : Assume that Wh contains (at least) piecewise polynomial (vector) fields of order
k = kW ≥ 0. We assume the existence of a generic discrete interpolant ΠWh :
W → Wh satisfying either

‖w − ΠWh w‖ � hkW +1‖w‖kW +1 and ‖ div(w − ΠWh w)‖
� hkW +1‖ divw‖kW +1, (5.2)

for w ∈ HkW +2, or

‖w − ΠWh w‖ � hkW +1‖w‖kW +1 and ‖w − ΠWh w‖1 � hkW ‖w‖kW +1. (5.3)

forw ∈ Hk+1(Ω). The estimates (5.2) are characteristic of aRaviart-Thomas type,
RTk (k = 0, 1, 2, . . .), interpolant whereas (5.3) could correspond to a continuous
Lagrange interpolant of order k ≥ 1 [8].

Uh : Following [30], we define ΠUh : U → Uh as a modified elliptic projection satis-
fying for u ∈ U :

a(ΠUh u, v) = a(u, v) + b(v, q − ΠQh q) ∀ v ∈ Uh, (5.4)

where q ∈ Q is given and will, in practice, be selected as the exact pressure
solution to (3.2) at given times.
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Assume thatUh contains (at least) continuous piecewise polynomial (vector) fields
of order kU ≥ 1. There then exists an interpolant, I kU : U → Uh , such that

‖u − I kU u‖1 � hkU ‖u‖kU +1

for all u ∈ HkU +1, c.f. e.g [8]. Then for u ∈ U we have

‖u − ΠUh u‖1 ≤ ‖u − I kU u‖1 + ‖I kU u − ΠUh u‖1 � hkU ‖u‖kU +1

+‖I kU u − ΠUh u‖1.

Using assumption (i) of Definition 4.1 and (5.4) with v = ΠUh u − I kU u imply
that

γa‖ΠUh u − I kU u‖21 ≤ a(ΠUh u − I kU u,ΠUh u − I kU u)

= a(u − I kU u,ΠUh u − I kU u)

+ b(ΠUh u − I kU u, q − ΠQh q)

≤ ‖ΠUh u − I kU u‖1
(

Ca‖u − I kU u‖1 + ‖q − ΠQh q‖
)

.

Combining the above with assumption (5.1) gives

‖u − ΠUh u‖1 � hkU ‖v‖kU +1 + hkQ+1‖q‖kQ+1, (5.5)

where q ∈ Q is the fixed function defining the elliptic projection (5.4).

5.2 Interpolation notation and identities

Following standard notation [17,22,30], the error at time tm > 0 can be decomposed
into interpolation errors ρ and approximation errors e:

um − um
h = (

um − ΠUh um) − (
um

h − ΠUh um) = ρm
u − em

u

zm − zm
h = (

zm − ΠWh zm) − (
zm

h − ΠWh zm) = ρm
z − em

z

pm − pm
h = (

pm − ΠQh pm) − (
pm

h − ΠQh pm) = ρm
p − em

p .

(5.6)

The interpolation errors satisfy the following identities. Since div Wh ⊆ Qh and by
the definition of the L2-projection ΠQh , we have that

b(w, ρm
p ) = (

divw, pm − ΠQh pm) = 0 ∀w ∈ Wh . (5.7)

Similarly, by the definition of ΠQh ,

d(∂τ ρ
m
p , q) = c0

(
∂τ ρ

m
p , q

)
= 0 ∀ q ∈ Qh, (5.8)
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where we recall the discrete derivative notation (2.1). Finally, (5.4) directly gives

a(ρm
u , v) + b(v, ρm

p ) = 0, ∀ v ∈ Uh . (5.9)

Taking the difference between the continuous Eq. (3.2) and discrete scheme (3.5),
after multiplying (3.2b) by τ , combined with the cancellations (5.7)–(5.9), yield the
following error equations at tm : (em

u , em
z , em

p ) satisfies

a(em
u , v) + b(v, em

p ) = 0 ∀ vh ∈ Uh, (5.10a)

τc(em
z , w) + τb(w, em

p ) = τc(ρm
z , w), ∀w ∈ Wh, (5.10b)

b(∂τ em
u , q) + b(em

z , q) − d(∂τ em
p , q) = (

Rm, q
) ∀ q ∈ Qh, (5.10c)

where

Rm = div(∂t u
m − ∂τ um) + div(∂τ ρ

m
u ) + div ρm

z + c0(∂t pm − ∂τ pm), (5.11)

by way of the general identity

∂t u
m − ∂τ um

h = ∂t u
m − ∂τ um + ∂τ ρ

m
u − ∂τ em

u , (5.12)

and similarly for p.

5.3 Discrete approximation error estimates

In this section we estimate the discrete errors described by (5.10) in their respective
norms; that is, ‖em

u ‖1,
∣∣∣∣∣∣em

z

∣∣∣∣∣∣ and ‖em
p ‖. In contrast to e.g. [30], we do not make use

of the restrictive uniform-in-κ Darcy stability assumption. In turn, the error equations
require a more technical analysis and we have adapted related methods originally used
to study κ fixed [22] and vanishing (c0) storage coefficient. Despite the more technical
approach, the resulting estimates presented in Proposition 5.2 is directly comparable
to related results in the literature; c.f. [17, Lem. 3], [22, Thm. 4.1] and [30, Thm 4.6].
We conclude that the concept of minimal Stokes–Biot stability provides analogous
error estimates for a more general set of conforming discrete spaces than the original
Stokes–Biot stability concept.

During the course of the analysis will make use of the following useful inequality

Lemma 5.1 [22, Lemma 3.2] Suppose that A, B, C > 0 and D ≥ 0 satisfy

A2 + B2 ≤ C A + D.

Then either A + B ≤ 4C or A + B ≤ 2
√

D holds.

Proposition 5.1 Suppose that Uh × Wh × Qh is minimally Stokes–Biot stable (by
satisfying the assumptions of Definition 4.1). Then, the discrete approximation errors
(em

u , em
z , em

p ) described by (5.10) satisfy the inequality:
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‖em
u ‖1 +‖em

p ‖ + ∣∣∣∣∣∣em
z

∣∣∣∣∣∣ � ‖e0u‖1 + ‖e0p‖d + τ 1/2‖e0z ‖c

+
(∫ T

0
‖ρz‖2c ds

)1/2

+ τ

∫ T

0
‖ρ∂t z‖2c ds + CT

τ , (5.13)

with inequality constant depending on Ca, γ −1
a and where

Cm
τ ≡

∫ tm

0
‖ div ρz‖ + ‖ρ∂t u‖1 + τ (c0‖∂t t p‖ + ‖∂t t u‖1) ds.

Proof In an analogous fashion as for Proposition 4.1, multiplying (5.10c) by τ , select-
ing v = em

u − em−1
u , w = em

z , and q = −em
p in (5.10) and summing gives

a(em
u − em−1

u , em
u ) + τc(em

z , em
z ) + d(em

p − em−1
p , em

p ) = τc(ρm
z , em

z ) − τ
(

Rm, em
p

)
.

(5.14)
For any (continuous) symmetric bilinear form a with induced norm ‖ · ‖a we have

the inequality [9]
1

2

(
‖χ‖2a − ‖χ − ξ‖2a

)
≤ a(ξ, χ). (5.15)

Using the above, and the symmetry of both a(·, ·) and d(·, ·), it follows that the left-
hand side of (5.14) is bounded below by

1

2
‖em

u ‖2a − 1

2
‖em−1

u ‖2a + τ‖em
z ‖2c + 1

2
‖em

p ‖2d − 1

2
‖em−1

p ‖2d . (5.16)

On the other hand, Cauchy-Schwarz and Young’s inequality give

|τc(ρm
z , em

z )| ≤ τ

2
‖ρm

z ‖2c + τ

2
‖em

z ‖2c . (5.17)

From the Stokes stability assumption (4.2) and (5.10a) we have the estimate

βS‖em
p ‖ ≤ sup

v∈Uh

b(v, em
p )

‖v‖1 = sup
v∈Uh

−a(em
u , v)

‖v‖1 ≤ Ca‖em
u ‖1. (5.18)

Then, Cauchy-Schwarz, (5.18) and the coercivity of a gives

τ |
(

Rm, em
p

)
| ≤ Caβ−1

S γ
−1/2
a τ‖Rm‖‖em

u ‖a . (5.19)

Combining (5.16–5.19) yields

‖em
u ‖2a − ‖em−1

u ‖2a + τ‖em
z ‖2c + ‖em

p ‖2d − ‖em−1
p ‖2d � τ

(
‖ρm

z ‖2c + ‖Rm‖‖em
u ‖a

)
.

(5.20)
with inequality constant depending on Caβ−1

S γ
−1/2
a .
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Estimate of ‖em
u ‖a : Following a technique from [22], let J be the integer index where

‖em
u ‖a (for m = 1, . . . , N ) obtains its maximal value. Summing (5.20) from m = 1

to m = J , using the maximality assumption, and re-arranging terms yields

‖eJ
u ‖2a + τ

J∑
m=1

‖em
z ‖2c +‖eJ

p‖2d � ‖e0u‖2a +‖e0p‖2c +
J∑

m=1

τ‖ρm
z ‖2c +

J∑
m=1

τ‖Rm‖‖eJ
u ‖a .

(5.21)
We can apply Lemma 5.1–5.21 by taking A = ‖eJ

u ‖a , B = ‖eJ
p‖d and dropping the

additional left-hand side term; then we choose

C =
J∑

m=1

τ‖Rm‖, D = ‖e0u‖2a + ‖e0p‖2c +
J∑

m=1

τ‖ρm
z ‖2c,

and, provided appropriate temporal regularity of the exact solution, have

J∑
m=1

τ‖ρm
z ‖2c �

∫ t J

0
‖ρz‖2c ds.

Lemma 5.1, with the above and the triangle inequality, implies

‖eJ
u ‖a + ‖eJ

p‖d � ‖e0u‖a + ‖e0p‖d +
J∑

m=1

τ‖Rm‖ +
(∫ t J

0
‖ρz‖2c

)1/2

. (5.22)

Bound of τ‖Rm‖:We now develop a bound for the terms τ‖Rm‖; c.f. (5.11). From the
fundamental theorem of calculus and integration by parts we have the general result

∂t f m − ∂τ f m = 1

τ

∫ tm

tm−1
(s − tm−1)∂t t f (s) ds

for any m = 1, . . . , N , assuming sufficient temporal regularity of the field f . We
therefore, again under the assumption of sufficient spatial and temporal regularity,
have the inequalities

c0‖∂t pm − ∂τ pm‖ ≤
∫ tm

tm−1
c0‖∂t t p‖ ds (5.23)

‖ div (
∂t u

m − ∂τ um) ‖ ≤
∫ tm

tm−1
‖∂t t u‖1 ds, (5.24)

which control the first and fourth terms of ‖Rm‖.
For the second term of Rm we have ‖ div ∂τ ρ

m
u ‖ ≤ ‖∂τρ

m
u ‖1. Rearranging the terms

of ∂τρ
m
u , applying the fundamental theorem of calculus and using the commutation of

the time derivative with the elliptic projection (5.4) yields
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‖∂τ ρ
m
u ‖1 = ‖um − um−1

τ
− ΠUh um − ΠUh um−1

τ
‖1 ≤ 1

τ

∫ t j

t j−1
‖ρ∂t u‖1 ds. (5.25)

For the third term of Rm we have, again up to sufficient temporal regularity of the
exact solution, that

J∑
m=1

τ‖ div ρm
z ‖ �

∫ t J

0
‖ div ρz‖ ds. (5.26)

Summarizing, (5.23–5.26) thus yield

J∑
m=1

τ‖Rm‖ �
∫ t J

0
‖ div ρz‖ + ‖ρ∂t u‖1 + τ (c0‖∂t t p‖ + ‖∂t t u‖1) ds ≡ C J

τ .

(5.27)
And so, the estimate (5.22) becomes

‖eJ
u ‖a + ‖eJ

p‖d � ‖e0u‖a + ‖e0p‖d +
(∫ t J

0
‖ρz‖2c ds

)1/2

+ C J
τ (5.28)

Clearly, by Definition 4.1(i), this also gives a bound for ‖em
u ‖1 (depending on γ −1

a )
for m = 1, . . . , N .

Estimate of ‖em
p ‖: The norm ‖eJ

p‖d in e.g. (5.28) vanishes in the limit as c0 → 0.
An alternative bound for ‖em

p ‖ can be derived from the Stokes stability assumption,
Definition 4.1(ii). In particular, using (5.18) and (5.28) it follows that for each 1 ≤
m ≤ N :

‖em
p ‖ � ‖em

u ‖1 � ‖eJ
u ‖a, (5.29)

with inequality constant Caβ−1
S γ

−1/2
a and where J is the index where ‖eJ

u ‖1 is max-
imal. Thus ‖em

p ‖ can be bounded by the right hand side of (5.28), independently of
c0.

Estimate of τ‖em
z ‖2c : In order to estimate the flux error in the norm defined by (3.9),

i.e.
∣∣∣∣∣∣em

z

∣∣∣∣∣∣, it will be advantageous to consider the constituents separately; e.g. τ‖em
z ‖2c

and τ 2‖ div em
z ‖2.

We begin by considering the first component and again argue based on maximality.
Take the difference of the error equation (5.10a) at time levels m, m − 1 and dividing
by τ to get

a(∂τ em
u , v) + b(v, ∂τ em

p ) = 0 for v ∈ Uh . (5.30)

Similarly taking the difference of (5.10b) at time levels m and m − 1, and divide by
τ 2 to get

c(∂τ em
z , w) + b(w, ∂τ em

p ) = c(∂τ ρ
m
z , w) for w ∈ Wh .

Choose v = ∂τ em
u ,w = em

z in the above as well as q = −∂τ em
p in (5.10c); summing

these three equations, using Cauchy-Schwarz on the right-hand side, and coercivity

123



Stokes–Biot stability revisited

on the left-hand side gives

γa‖∂τ em
u ‖21 + ‖∂τ em

p ‖2d + c(∂τ em
z , em

z ) ≤ ‖∂τ ρ
m
z ‖c‖em

z ‖c + ‖Rm‖‖∂τ em
p ‖.

From Definition 4.1(ii) and (5.30) we have that ‖∂τ em
p ‖ ≤ Caβ−1

S ‖∂τ em
u ‖1 by the

analogue of (5.18). Using this on the right-most term of the above, alongside Cauchy’s
inequality with epsilon and choosing epsilon appropriately, gives

‖∂τ em
u ‖21 + ‖∂τ em

p ‖2d + c(∂τ em
z , em

z ) � ‖∂τ ρ
m
z ‖c‖em

z ‖c + ‖Rm‖2,

with inequality constant depending on CaβSγ −1
a . Dropping the positive displacement

and pressure left-hand side terms, multiplying both sides by τ , and using the symmetry
of c together with the inequality (5.15) give

‖em
z ‖2c − ‖em−1

z ‖2c � τ‖∂τ ρ
m
z ‖c‖em

z ‖c + τ‖Rm‖2.

Let M be the index where ‖em
z ‖2c achieves its maximum for 1 ≤ m ≤ N . Summing

the above from m = 1 to m = M , using the maximality of ‖eM
z ‖c, multiplying both

sides by τ and re-arranging yields

τ‖eM
z ‖2c � τ‖e0z ‖2c + τ

(
M∑

m=1

τ‖∂τ ρ
m
z ‖c

)
‖eM

z ‖c +
M∑

m=1

(
τ‖Rm‖)2 . (5.31)

By the fundamental theorem of calculus, we have

τ
(‖∂τ ρ

m
z ‖c

) = ‖ρm
z − ρm−1

z ‖c ≤
∫ tm

tm−1
‖ρ∂t z‖c ds.

Applying Hölder’s inequality on the right-most term, above, gives

∫ tm

tm−1
‖ρ∂t z‖c ≤

(∫ tm

tm−1
1 dt

)1/2 (∫ tm

tm−1
‖ρ∂t z‖2c

)1/2

so that

τ
(‖∂τ ρ

m
z ‖c

) ≤ τ 1/2

(∫ tm

tm−1
‖ρ∂t z‖2c

)1/2

. (5.32)

Inserting (5.32) and (5.27) into (5.31), using Young’s inequality on the second term
on the right-hand side and rearranging yields

τ‖eM
z ‖2c � τ‖e0z ‖2c + τ

(
τ

M∑
m=1

‖∂τ ρ
m
z ‖c

)2

+
M∑

m=1

(
τ‖Rm‖)2 ,

� τ‖e0z ‖2c + τ 2
∫ tM

0
‖ρ∂t z‖2c ds +

(
C M

τ

)2
(5.33)
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Estimate of τ 2‖ div em
z ‖:

Now we estimate the second, and final, term in the flux norm (3.9). Let K denote
the index where ‖ div eK

z ‖ is maximal. Using Definition 4.1(iii), and selecting q =
τ div eK

z in the error equation (5.10c) for m = K yields

(
div(eK

u − eK−1
u ), div eK

z

)
+ τ

(
div eK

z , div eK
z

)
−

(
c0(e

K
p − eK−1

p ), div eK
z

)

= τ
(

RK , div eK
z

)
.

Thus, re-arranging terms, using Cauchy-Schwarz and the triangle inequalities, and
dividing by ‖ div eK

z ‖ gives

τ‖ div eK
z ‖ � ‖eK

u ‖1 + ‖eK−1
u ‖1 + c0‖eK

p ‖ + c0‖eK−1
p ‖ + τ‖RK ‖

� ‖eJ
u ‖1 + τ‖RK ‖,

where the last inequality follows from the majorization of the terms eK
u , eK

p , eK−1
u ,

eK−1
p by the maximum eJ

u = max
j=1,2,...,N

e j
u and inequality (5.29). Noting that

(
‖eJ

u ‖1 + τ‖RK ‖
)2

� ‖eJ
u ‖21 + τ 2‖RK ‖2 � ‖eJ

u ‖21 +
K∑

m=1

τ 2‖Rm‖2,

and employing (5.28), (5.27) and taking I = max {J , K } then gives

τ 2‖ div eK
z ‖2 � ‖e0u‖21 + ‖e0p‖2d +

∫ tI

0
‖ρz‖2c ds +

(
C I

τ

)2
. (5.34)

Finally, to establish (5.13), combine the definition of the weighted flux norm (3.9),
(5.28), (5.29) (5.33), and (5.34) and use the fact that the integral from 0 to T majorizes
all of the time-integral right-hand sides of the summed expressions. ��

5.4 Convergence estimates

To specialize the general results of Proposition 5.1 we will first suppose the exact solu-
tions to (3.2a)- suitable regularity assumptions. Moreover, we assume the interpolants,
discussed in 5.1, satisfy approximation inequalities of a certain order. Towards that
end letUh ×Wh × Qh satisfy the assumptions of Definition 4.1. For a reflexive Banach
space X , a time interval (a, b) ⊆ R and a measurable f : (a, b) → X we define the
canonical space-time norm [10]

‖ f ‖L p(a,b;X) =
(∫ b

a
‖ f (s)‖X ds

)1/p

. (5.35)
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As in the case of spatial derivatives, the usual Sobolev notation f ∈ Hr (a, b; X)

means that f ∈ L2(a, b; X) and that ∂t f , ∂2t f , . . ., ∂r
t f are also in L2(a, b; X). In

the sections that follow we will sometimes use the abbreviations ‖ f ‖L2X or ‖ f ‖Hr X

to signify (5.35).

Proposition 5.2 Suppose the assumptions of Proposition 5.1 hold. Let k ≥ 0 be the
greatest integer such that the orthogonal projection, ΠQh : Q → Qh, satisfies (5.1).
Suppose r ≥ 1 is the maximal integer such that Pr , the space of continuous Lagrange
polynomials of order r , is contained in Uh; suppose an interpolation, from W to Wh,
satisfying either (5.2) or (5.3) exists and let s > 0 be the maximal integer satisfying
the respective inequality. Suppose that the exact solutions to (3.2a)-(3.2c) satisfy the
regularity assumptions

u(t) ∈ L∞((0, T ]; Hr+1 ∩ U )∂t u ∈ L1((0, T ]; Hr+1 ∩ U ) ∂t t u ∈ L1((0, T ]; H1))

z(t) ∈ L∞((0, T ]; Hs+1 ∩ W ) ∩ L∞((0, T ]; Hs+1
κ−1 ∩ W ) ∂t z ∈ L2((0, T ]; Hs+1

κ−1 ∩ W )

p(t) ∈ L∞((0, T ]; Hk+1 ∩ Q) ∂t t p ∈ L1((0, T ]; L1),

and that the initial iterates, (u0
h, z0h, p0h), satisfy the estimates

‖u(0) − u0
h‖1 + τ 1/2‖z(0) − z0h‖c + ‖p(0) − p0h‖d

� hr‖u(0)‖Hr+1 + τ 1/2hs+1‖z(0)‖κ−1Hs+1 + hk+1‖p(0)‖Hk+1 , (5.36)

consistent with the projections of sect. 5.1. Then for c = min{k, r , s} we have

‖um − um
h ‖1 + ∣∣∣∣∣∣zm − zm

h

∣∣∣∣∣∣ + ‖pm − pm
h ‖ � hc M1 + τ M2 (5.37)

where M1 and M2 are given by

M1 = hr−c (‖∂t u‖L1Hr+1 + ‖u‖L∞ Hr+1
) + hs−c (‖z‖L1Hs+1

+ (h + τ 1/2)‖z‖L∞ Hs+1
κ−1

)
+ hk−c‖p‖L∞ Hk+1

M2 = c0‖∂t t p‖L1L1 + ‖∂t t u‖L1H1 + hs+1‖∂t z‖L2Hs+1
κ−1

+ hs‖z‖L∞ Hs+1

Proof First, note that since ΠQh satisfies (5.1) and since Pr ⊂ Uh then, according to
the argument directly preceding (5.5), the inequality (5.5) holds. Using the triangle
inequality,

‖e0u‖1 + τ 1/2‖e0z ‖c + ‖e0p‖d ≤ ‖u(0) − u0
h‖1 + τ 1/2‖z(0) − z0h‖c

+ ‖p(0) − p0h‖d + ‖ρ0
u‖1 + ‖ρ0

z ‖c + ‖ρ0
p‖d ,

along with (5.36) and the projection estimates of sect. 5.1, applied to the last three
terms above, gives

‖e0u‖1 + τ 1/2‖e0z ‖c + ‖e0p‖d � hr‖u(0)‖Hr+1 + τ 1/2hs+1‖z(0)‖κ−1Hs+1

+hk+1‖p(0)‖Hk+1 . (5.38)
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Then (5.37) follows from the triangle inequality, with respect to the error decomposi-
tions (5.6), along with: the discrete error estimates (5.13); discrete initial iterate error
estimates (5.38); and interpolation estimates (5.1–5.4). ��
Remark 5.1 Further assumptions on the discrete spaces, beyond the minimal Stokes–
Biot stability of Defn. 4.1, can lead to slightly different versions of Proposition 5.2.
For instance, if (Wh, Qh) are such that the usual Raviart-Thomas type projection
commutation relation

(
div z − divΠWh z, qh = 0

)
, for all qh ∈ Qh,

holds for each z ∈ W then (div ρz, qh) = 0 so that, for instance, the contribution
‖z‖L1Hs+1 vanishes from M1; this termarises from‖ div ρz‖ in (5.13). This observation
is used in [30] where Wh = RT0 is fixed.

6 Numerical experiments

Turning to numerical evaluation of our theoretical findings, we investigate the stability
and numerical convergence properties, for 0 < κ 
 1 and 0 ≤ c0 ≤ 1, of two mixed
finite element pairings:

(i) Uh × Wh × Qh = P2
2 × RT0 × DG0, and

(ii) Uh × Wh × Qh = P2
2 × P2

1 × DG0

The first discretization is a canonical choice from the original view of conforming
Stokes–Biot [19,30] stability whereas the second choice is only minimally Stokes–
Biot stable. We define a manufactured, smooth exact solution set over the unit square
Ω = [0, 1] × [0, 1], with coordinates x = (x1, x2) ∈ Ω , given by

u(t, x) =
(

t sin(πx1) sin(πx2)
2t sin(3πx1) sin(4πx2)

)
,

p(t, x) = (t + 1)

(
((x1 − 1)x1(x2 − 1)x2)

2 − 1

900

)
.

for t ∈ (0, T ), T = 1.0. These solutions satisfy the homogeneous boundary conditions
u|∂Ω = 0 and z|∂Ω ·n = 0 where n is the outward boundary normal to the unit square.
By construction p(t, ·) ∈ L2

0(Ω) for each t . For each discretization we consider
three parameter scenarios: vanishing storage (c0 = 0), fixed storage (c0 = 1) and
diminishing hydraulic conductivity (κ → 0), and fixed hydraulic conductivity (κ =
1.0) and vanishing storage (c0 → 0). For simplicity, we here consider unit Lamé
parameters: μ = λ = 1.0. We let the time step size Δt = T = 1.0 as the test case
is linear in time. For solving (3.2) numerically, we used the FEniCS finite element
software suite [1]. The zero average-value condition on the pressure is enforced via a
single real Lagrange multiplier. Linear systems were solved using MUMPS.

In Sects. 6.1 and 6.2 we examine the numerical errors for a fixed, minimally
Stokes–Biot stable discretization on a series of uniform meshes, Th , with mesh size

123



Stokes–Biot stability revisited

h. Each of the error tables in Sects. 6.1 and 6.2 follow the same general format. In
general, the relative displacement errors ‖ũ(T ) − uh(T )‖1/‖ũ(T )‖1 are reported in
the first set of table rows; the relative pressure errors ‖ p̃(T )− ph(T )‖/‖ p̃(T )‖ appear
in the second set of table rows; and the relative flux errors |||z̃(T ) − zh(T )|||/|||z̃(T )|||
appear in the final set of table rows. The last column of each table (‘Rate’) denotes the
order of convergence using for the last two values in each row. For each investigation,
either c0 or κ varies while the other is fixed; the result of the variable parameter is
reported for the values 10−r for r = 0, 4, 8 and 12 but intermediate results identical to
the previous case are suppressed. For instance, if κ = 100, κ = 10−4, and κ = 10−8

all yield the same errors for a given quantity, then only the errors for κ = 100 and
κ = 10−12 are reported in the corresponding row. In many instances, the displacement
errors correspond directly to those of a previous case; in this event, we refer to the
appropriate table.

6.1 Convergence of a Stokes–Biot stable pairing

We first consider the convergence properties for the pairing Uh × Wh × Qh =
P2
2 (Th) × RT0(Th) × DG0(Th). This discretization satisfies the minimal Stokes–

Biot stability conditions and also the Darcy stability condition when κ is uniformly
bounded below. We note, however, that the Darcy stability condition fails to hold [2]
uniformly as κ tends to zero but that Definition 4.1(iii) does indeed hold regardless of
κ . As discussed in the previous section, we report on the relative approximation errors
for the displacement, pressure, and flux for a series of uniform meshes Th with mesh
size h. The exact solutions ũ, p̃, z̃ were represented by continuous piecewise cubic
interpolants in the error computations.

6.1.1 Vanishing storage c0 = 0, varying conductivity 0 < � ≤ 1

(see: Table 2) We observe that the displacement error converges at the expected and
optimal rate (2) for κ ranging from 1 down to 10−12. Overall, the displacement errors
remain essentially unchanged as c0 and κ vary. (We therefore do not report or discuss
these further here.) The behaviour for the flux and pressure errors is less regular. The
flux and pressure approximation errors increase as κ decreases, but seem to stabilize
i.e. not increase substantially further from κ = 10−4 to 10−8 and to 10−12. Moreover,
for each κ , the pressure and flux errors decrease with decreasing mesh size. Indeed,
for h = 1/128, the pressure errors are of similar magnitude for the range of hydraulic
conductivities (κ) tested. For a comparison to aminimallyStokes–Biot stable analogue,
see Sect. 6.2.1 and Table 5.

6.1.2 Fixed storage c0 = 1, varying conductivity 0 < � ≤ 1

(see: Table 3) For this case, we again observe that the flux and pressure approximation
errors increase as κ decrease, but seem to stabilize and not increase substantially
further from κ = 10−4 to 10−8 and 10−12. Again, for each κ , the pressure and flux
errors decrease with decreasing mesh size and for h = 1/128, the pressure errors are
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Table 2 Vanishing storage coefficient c0 = 0, varying conductivity 0 < κ ≤ 1 for the (minimally) Stokes–
Biot stable pairing P2

2 (Th) × RT0(Th) × DG0(Th)

κ h

1/8 1/16 1/32 1/64 1/128 Rate

Displacement

100 1.64 × 10−1 4.45 × 10−2 1.13 × 10−2 2.84 × 10−3 7.11 × 10−4 2.0

10−12 1.64 × 10−1 4.45 × 10−2 1.13 × 10−2 2.84 × 10−3 7.11 × 10−4 2.0

Pressure

100 2.63 × 10−1 1.02 × 10−1 5.05 × 10−2 2.53 × 10−2 1.26 × 10−2 1.0

10−4 1.04 × 102 8.12 5.69 × 10−1 4.39 × 10−2 1.28 × 10−2 1.8

10−8 1.25 × 102 1.21 × 101 1.26 1.42 × 10−1 2.07 × 10−2 2.8

10−12 1.25 × 102 1.21 × 101 1.26 1.43 × 10−1 2.09 × 10−2 2.8

Flux

100 6.88 × 10−1 1.41 × 10−1 6.39 × 10−2 3.18 × 10−2 1.59 × 10−2 1.0

10−4 3.62 × 102 4.38 × 101 5.35 6.46 × 10−1 8.05 × 10−2 3.0

10−8 4.72 × 102 9.91 × 101 2.67 × 101 7.01 1.76 2.0

10−12 4.72 × 102 9.91 × 101 2.67 × 101 7.04 1.79 2.0

Relative approximation erros for the time-dependent test case given in Sect. 6. Listed are the relative
displacement (top), relative flux (middle) and relative pressure (bottom) errors for varying κ on a series
of uniform meshes Th with mesh size h. The displacement errors for κ = 10−4, 10−8 were identical to
the data presented (κ = 1, κ = 10−12) and are suppressed. The last column ‘Rate’ denotes the order of
convergence using for the last two values in each row. Compare with Table 5

nearly identical for the range of hydraulic conductivites (κ) tested. For comparison,
see Sect. 6.2.2 and Table 6.

6.1.3 Fixed conductivity � = 1, varying storage 0 ≤ c0 ≤ 1

(see: Table 4) For this case, we observe nearly uniform behaviour as c0 decreases. The
pressure and flux errors are similar for the range of storage coefficients (c0) considered,
and converge at the optimal and expected rate (1). For comparison, see Sect. 6.2.3 and
Table 7

6.2 Convergence of aminimally Stokes–Biot stable pairing

We now turn to consider the convergence properties for the pairing Uh × Wh × Qh =
P2
2 (Th) × P2

1 (Th) × DG0(Th) and again report on the relative approximation errors
for the displacement, pressure and flux. This pairing does not satisfy a Darcy stability
condition, for any value of κ , as advanced in the original Stokes–Biot stability crite-
ria; it does satisfy the minimally Stokes–Biot criterion of Definition 4.1. Numerical
results for this minimally Stokes–Biot stable discretization, for the three paradigms
considered in Sect. 6.1, are presented in 6.2.1– 6.2.3 alongside specific comparisons
to the standard Stokes–Biot stable case.
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Table 3 Fixed storage coefficient c0 = 1, varying conductivity 0 < κ ≤ 1 for the (minimally) Stokes–Biot
stable pairing P2

2 (Th) × RT0(Th) × DG0(Th)

Displacement, c.f. Table 2

κ h

1/8 1/16 1/32 1/64 1/128 Rate

Pressure

100 2.61 × 10−1 1.02 × 10−1 5.05 × 10−2 2.53 × 10−2 1.26 × 10−2 1.0

10−4 2.41 × 101 1.95 1.43 × 10−1 2.64 × 10−2 1.26 × 10−2 1.1

10−8 2.56 × 101 2.43 2.80 × 10−1 4.17 × 10−2 1.33 × 10−2 1.7

10−12 2.56 × 101 2.43 2.80 × 10−1 4.17 × 10−2 1.33 × 10−2 1.7

Flux

100 6.86 × 10−1 1.41 × 10−1 6.39 × 10−2 3.18 × 10−2 1.59 × 10−2 1.0

10−4 1.03 × 102 1.98 × 101 3.91 5.90 × 10−1 7.87 × 10−2 2.9

10−8 1.07 × 102 2.35 × 101 6.56 1.75 4.46 × 10−1 2.0

10−12 1.07 × 102 2.35 × 101 6.56 1.75 4.47 × 10−1 2.0

The format follows that of Table 2 and the relative displacement errors are identical
Compare with Table 6

Table 4 Fixed hydraulic conductivity κ = 1, varying storage 0 < c0 ≤ 1 for the (minimally) Stokes–Biot
stable pairing P2

2 (Th) × RT0(Th) × DG0(Th)

c0 h

1/8 1/16 1/32 1/64 1/128 Rate

Displacement, c.f. Table 2

Pressure

100 2.61 × 10−1 1.02 × 10−1 5.05 × 10−2 2.53 × 10−2 1.26 × 10−2 1.0

10−12 2.45 × 10−1 1.01 × 10−1 5.05 × 10−2 2.53 × 10−2 1.26 × 10−2 1.0

Flux

100 6.86 × 10−1 1.41 × 10−1 6.39 × 10−2 3.18 × 10−2 1.59 × 10−2 1.0

10−12 6.88 × 10−1 1.41 × 10−1 6.39 × 10−2 3.18 × 10−2 1.59 × 10−2 1.0

The format follows that of Table 2 and the relative displacement errors are identical. Compare with Table 7

The results of this comparison supply computational evidence that Defini-
tion 3.1(iii) can be replaced by Definition 4.1(iii) while retaining the convergence
properties first observed in [17,30]. Since the Darcy stability of Definition 3.1(iii) is
not satisfied [2] uniformly in κ , our observations strongly suggest that the minimal
Stokes–Biot stability assumptions, specifically Definition 4.1(iii), are in fact, the key
component for discretizations that retain their convergence properties as κ tends to
zero.
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6.2.1 Vanishing storage c0 = 0, varying conductivity 0 < � ≤ 1

(see: Table 5) Comparing Table 5 with Table 2, we observe that the performance
of the two element pairings is almost surprisingly similar. Again, the displacement
converges at the optimal and expected rate (2), the pressure and flux errors increase
with decreasing κ , but stabilize, and converge with decreasing mesh size. We further
observe that the relative errors for the flux for this element pairing is smaller than
for the P2

2 × RT0 × DG0 case (bottom rows). For a comparison to a discretization
satisfying Darcy stability (though not uniformly in κ) see Sect. 6.1.1 and Table 2.

6.2.2 Fixed storage c0 = 1, varying conductivity 0 < � ≤ 1

(see: Table 6) Comparing Table 6 with Table 3, we again observe highly comparable
performance. The observations made for the P2

2 × RT0 × DG0 case thus also apply
for P2

2 × P2
1 × DG0. For comparison, see Sect. 6.1.2 and Table 3.

6.2.3 Fixed conductivity � = 1, varying storage 0 ≤ c0 ≤ 1

(see: Table 7) For this case, we observe similar convergence rates as e.g. in Table 4).
The pressure error increases very moderately with decreasing c0 (it doubles as c0 is
reduced by 12 orders of magnitude), but both the pressure and flux converges at the
optimal and expected rate (1). For comparison, see Sect. 6.1.3 and Table 4.

7 Conclusion

The important concept of Stokes–Biot stability, introduced independently by [19,22,
27,30], has proven a practical key to the selection of conforming Euler–Galerkin dis-
cretizations of Biot’s Eq. (1.1) that retain their convergence properties as the hydraulic
conductivity (0 < κ) becomes arbitrarily small. The novel contributions of this
manuscript are primarily theoretical in nature; we have shown that the Stokes–Biot
stability perspective can be, formally, relaxed and we have introduced the notion of
a minimally Stokes–Biot stable Euler–Galerkin discretization. The stability of mini-
mally Stokes–Biot stable schemes is independent of both c0 and κ (c.f. Sect. 4.2, [19,
Theorem 1] and [17, Theorem 3.2, Case I]), and we have presented a convergence
analysis in this context.

In particular, we differ from previous authors [30] by carrying out our convergence
analysis without the use of a Galerkin projection based on the Darcy problem. In doing
so, we are able to depart from both the Darcy stability assumption, in general, and
any questions regarding the appropriate norms for uniform-in-κ Darcy stability. In
fact, an analysis based on a uniform-in-κ Darcy stability assumption should take into
account a pressure-space norm exhibiting one of the forms discussed in Section 3.3;
namely L2 + κ1/2H1, κ1/2L2 or κ1/2H1. Each of these pressure norms have related
difficulties over the usual pressure L2 norm used here. First, it is not entirely clear
to the authors that the L2 + κ1/2H1 norm can be treated with the otherwise-standard
arguments presented here and in related [17,19,22,30] work. Second, the κ1/2L2 and
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Table 5 Vanishing storage coefficient c0 = 0, varying conductivity 0 < κ ≤ 1 for the minimally Stokes–
Biot stable pairing P2

2 (Th) × P2
1 (Th) × DG0(Th)

κ h

1/8 1/16 1/32 1/64 1/128 Rate

Displacement

100 1.64 × 10−1 4.45 × 10−2 1.13 × 10−2 2.84 × 10−3 7.14 × 10−4 2.0

10−12 1.64 × 10−1 4.45 × 10−2 1.13 × 10−2 2.84 × 10−3 7.11 × 10−4 2.0

Pressure

100 7.83 × 101 1.35 × 101 5.30 2.64 1.34 1.0

10−4 1.22 × 102 1.16 × 101 1.21 1.39 × 10−1 2.07 × 10−2 2.7

10−8 1.25 × 102 1.21 × 101 1.26 1.43 × 10−1 2.09 × 10−2 2.8

10−12 1.25 × 102 1.21 × 101 1.26 1.43 × 10−1 2.09 × 10−2 2.8

Flux

100 6.11 × 10−1 1.51 × 10−1 7.23 × 10−2 3.62 × 10−2 1.81 × 10−2 1.0

10−4 1.39 × 102 1.52 × 101 1.54 1.27 × 10−1 9.42 × 10−3 3.7

10−8 1.45 × 102 1.76 × 101 2.14 2.43 × 10−1 2.87 × 10−2 3.1

10−12 1.45 × 102 1.76 × 101 2.14 2.43 × 10−1 2.87 × 10−2 3.1

Listed are the relative displacement (top), relative flux (middle) and relative pressure (bottom) errors for
varying κ on a series of uniform meshes Th with mesh size h
The displacement errors for κ = 10−4, 10−8 were identical to the data presented (κ = 1, κ = 10−12) and
are suppressed
The last column ‘Rate’ denotes the order of convergence using for the last two values in each row. Compare
with Table 2

Table 6 Fixed storage coefficient c0 = 1, varying conductivity 0 < κ ≤ 1 for the minimally Stokes–Biot
stable pairing P2

1 (Th) × DG0(Th)

Displacement, c.f. Table 5
κ h

1/8 1/16 1/32 1/64 1/128 Rate

Pressure

100 1.55 × 101 3.15 1.33 6.67 × 10−1 3.36 × 10−1 1.0

10−4 2.54 × 101 2.41 2.78 × 10−1 4.16 × 10−2 1.33 × 10−2 1.6

10−8 2.56 × 101 2.43 2.80 × 10−1 4.17 × 10−2 1.33 × 10−2 1.7

10−12 2.56 × 101 2.43 2.80 × 10−1 4.17 × 10−2 1.33 × 10−2 1.7

Flux

100 5.97 × 10−1 1.49 × 10−1 7.21 × 10−2 3.61 × 10−2 1.81 × 10−2 1.0

10−4 3.14 × 101 3.42 3.69 × 10−1 3.40 × 10−2 3.26 × 10−3 3.4

10−8 3.16 × 101 3.49 3.90 × 10−1 3.98 × 10−2 4.33 × 10−3 3.2

10−12 3.16 × 101 3.49 3.90 × 10−1 3.98 × 10−2 4.33 × 10−3 3.2

The format follows that of Table 5 and the relative displacement errors are identical. Compare with Table 3
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Table 7 Fixed hydraulic conductivity κ = 1, varying storage 0 < c0 ≤ 1 for the minimally Stokes–Biot
stable pairing P2

2 (Th) × P2
1 (Th) × DG0(Th)

Displacement, c.f. Table 5
c0 h

1/8 1/16 1/32 1/64 1/128 Rate

Pressure

100 1.55 × 101 3.15 1.33 6.67 × 10−1 3.36 × 10−1 1.0

10−12 7.83 × 101 1.35 × 101 5.30 2.64 1.34 1.0

Flux

100 5.97 × 10−1 1.49 × 10−1 7.21 × 10−2 3.61 × 10−2 1.81 × 10−2 1.0

10−12 6.11 × 10−1 1.51 × 10−1 7.23 × 10−2 3.62 × 10−2 1.81 × 10−2 1.0

Compare with Table 4

κ1/2H1 weightings both degenerate as κ becomes small and must be balanced by
an appropriate displacement norm so that Stokes stability (Definition 3.1(i), (ii) and
Definition 4.1(i), (ii)) holds uniformly in κ as well. Conversely, our arguments bring
together many standard techniques and makes definitevely clear, by abdicating Darcy
stability, that one need not consider any κ-weighted norms for the pressure space in
order to ensure stability and approximation asκ diminishes.Moreover, the convergence
analysis presented here is the first instance, of which we are aware, of an analysis
carried out in the context of the full norm used to prove the Banach-Nec̆as-Babus̆ka
stability (c.f. Sect. 4.2) of the Euler–Galerkin discretization (3.5). Thus, as neither the
current convergence analysis, nor the previously-established BNB stability result, rely
on a Darcy stability assumption, Proposition 5.2 solidifies, and generalizes, previous
convergence estimates [30]. The concept of minimal Stokes–Biot stability therefore
broadens the original view of Stokes–Biot stability to include alternative spaces that
may not be Darcy stable; even for a fixed choice of κ .

Further observations and practical considerations

The primary contribution of the current work is theoretical in nature; we have, in
practice, removed the Darcy restriction for Stokes–Biot stability and demonstrated
an alternative convergence analysis in this context. Nevertheless, practical ques-
tions regarding the suitability of both Stokes–Biot and minimally Stokes–Biot stable
approaches, solving (3.2), can be asked. In particular, we now briefly discuss: the
drawbacks of Stokes–Biot and minimally Stokes–Biot stable discretizations; what
computational advantages, if any, are granted by the minimal Stokes–Biot perspec-
tive; and alternatives to the boundary conditions (2.5).

Both Stokes–Biot and minimally Stokes–Biot stables are not without their draw-
backs. The requirements of both definition 3.1 and definition 4.1 are general; however,
in practice, both approaches typicallymake use of discontinuous pressures. This theme
is present in the literature for both conformal and non-conformal discretizations. In
practice, the need of a discontinuous pressure space imposes restrictions on the choice
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of elements. In this manuscript we have used Pd
2 × RT0 × DG0 and Pd

2 × Pd
1 × DG0

discretizations to illustrate a simple comparison (c.f. Sect. 6) via numerical experi-
ments in 2D. In two dimensions, as we discussed in Sect. 4, one could also consider
pairings of Scott-Vogelius type, i.e. Pd

k × RTm × DGk−1 or Pd
k × Pd

m × DGk−1 where
k ≥ 4. In the context of minimally Stokes–Biot stable triples, we have that the flux
space degree can be chosen as 0 < m ≤ k −1 in both cases; from the original Stokes–
Biot point of view, one would require m = k − 1 for the case or Raviart-Thomas
elements and polynomial fluxes would not be admissible at all. In 3D, one could also
consider extensions of the Scott-Vogelius elements [15], the enriched cubic displace-
ment element and piecewise constant pressures introduced by Guzmán and Neilan
[14], the bubble-enriched continuous linear displacement element and piecewise con-
stant pressures as in [30], or the related bubble-enriched continuous quadratic elements
with discontinuous linear pressures [8]; these spaces could be considered alongside
fluxes of Raviart-Thomas, Brezzi-Douglas-Marini, and Lagrange type. One may also
consider quadrilateral meshes by using the Stokes pairing [8] given by Q2

2 × DG1

along with, for instance, RTm (m = 0 or 1), B DMk or Pd
k (k = 1 or 2) fluxes.

It is practical to note that minimally Stokes–Biot stable discretizations do not nec-
essarily confer a computational advantage over those with Darcy stable (for fixed
κ) flux-pressuring pairings when equal-order fluxes are selected. That is to say, for
instance, that the RTk fluxes will have fewer DOFs than the alternative Pd

k fluxes
discussed in this manuscript. However, minimal Stokes–Biot stability makes it clear
that one can lower the order of the flux space without adversely impacting the stability
and convergence of the method. One could interpret this as a form of ‘computational
advantage’ of minimal Stokes–Biot. Overall, however, this is not the important point
of minimal Stokes–Biot stability. The important points are that: Darcy stability is not
necessary; typical ‘Darcy stable pairings’ satisfy theminimal Stokes–Biot criteria; and
that approximation in both contexts yield strikingly similar results. Indeed, numerical
experiments (Sect. 6) show similar errors both with (Table 2–Table 4) and without
(Table 5–Table 7) a Darcy stability assumption; even as κ becomes very small. More-
over, we would not expect an improvement in results if the norms of the flux and
pressure were altered to provide for uniform-in-κ Darcy stability condition (c.f. (A)
and (B) of Sect. 3.3)); this is due to the fact that approximation of the pressure in the
L2 + κ1/2H1 norm is similar to that of the L2 norm while approximation in the other
option, κ1/2L2, degrades as κ becomes small. Thus, the tenets of minimal Stokes–Biot
stability (Definition 4.1) provide an approximation of the pressure in the most sensible
norm; that is, the L2 norm is a fortuitous choice for convergence analysis, assures the
proper context for Stokes stability, and does not degrade as κ becomes small. Our con-
clusion is that one can think, instead, in terms of Definition 4.1 (iii) when designing,
or analyzing, approaches for Biot when κ → 0. This important point could certainly
impact the design, or choice, of discretizations that do in fact confer a computational
advantage of those where Darcy stability is a requirement.

Finally, we close with a brief revisitation of the boundary conditions discussed in
Sect. 2.5. Extending (2.5) to inhomogeneous data is not a concern; essential boundary
conditions conditions can be lifted by selecting a particular solution and natural bound-
ary conditions yield right-hand side terms that vanish in the error Eq. (5.10), and do not
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alter the stability arguments (Sect. 4). However, it is valid to note that the assumption
that Γ f = Γc and Γt = Γp, in (2.4), may not be practical for problems of interest. The
conditions (2.5) were considered in the original Stokes–Biot, or motivating, literature
[19,30] which lead to their adoption here. The advantage of the boundary conditions
(2.5) is that they provide for an overall discussion that scopes naturally between the
case where Γc �= ∂Ω and Γc = ∂Ω provided that |Γc| > 0 is assumed. In particular,
as mentioned in Remark 3.1, if Γc = ∂Ω then conditions (2.5) imply Γt = ∅, the
variational forms (3.2) and (3.5) are unchanged, and all results discussed hold when
Q = L2

0(Ω) is selected, instead, in (3.1).
It is reasonable to ask what other boundary condition configurations can be consid-

ered, and under what conditions. First, we note that the requirement that Γc ∩ Γt = ∅
and Γ f ∩Γp = ∅ arise from the early work in well posedness for Biot [31]. Moreover,
the requirement that the positive measure of the clamped displacement boundary is
non-zero, i.e. that |Γc| > 0, provides the coercive property a(u, u) ≥ γa‖u‖21 needed
by bothDefinition 3.1 (Stokes–Biot stability) andDefinition 4.1 (minimal Stokes–Biot
stability); this is therefore a strict requirement of the proposed method. However, if
both |Γc| > 0 and |Γt | > 0 then, as noted in [18] and used in [22], the conditions
(2.5) can be relaxed to those of (2.4). In this case, the requirements of both Defini-
tion 3.1 and Definition 4.1 can be satisfied with Q = L2(Ω) in (3.1). In this case,
the variational formulations (3.2) and (3.5) are, again, unaltered and the results of the
manuscript follow analagously. It is true, as discussed above, that restrictive boundary
conditions, i.e. such as (2.5), are needed when Γc = ∂Ω in order to ensure the tenets
of both Definition 3.1 and Definition 4.1; this is not an additional imposition of mini-
mal Stokes–Biot stability (Definition 4.1) but rather of the Stokes–Biot perspective in
general.
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