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A B S T R A C T   

As cost reductions have made photovoltaics (PV) a favorable choice also in colder climates, the number of PV 
plants in regions with snowfalls is increasing rapidly. Snow coverage on the PV modules will lead to significant 
power losses, which must be estimated and accounted for in order to achieve accurate energy yield assessment 
and production forecasts. Additionally, detection and separation of snow loss from other system losses is 
necessary to establish robust operation and maintenance (O&M) routines and performance evaluations. 

Snow loss models have been suggested in the literature, but developing general models is challenging, and 
validation of the models are lacking. Characterization and detection of snow events in PV data has not been 
widely discussed. 

In this paper, we identify the signatures in PV data caused by different types of snow cover, evaluate and 
improve snow loss modeling, and develop snow detection. The analysis is based on five years of data from a 
commercial PV system in Norway. In an evaluation of four snow loss models, the Marion model yields the best 
results. We find that system design and snow depth influence the natural snow clearing, and by expanding the 
Marion model to take this into account, the error in the modeled absolute loss for the tested system is reduced 
from 23% to 3%. Based on the improved modeling and the identified data signatures we detect 97% of the snow 
losses in the dataset. Endogenous snow detection constitutes a cost-effective improvement to current monitoring 
systems.   

1. Introduction 

Due to a substantial decline in the price of photovoltaic (PV) in
stallations in recent years, large scale PV plants are increasingly com
mon in cold climates with wintertime snowfalls (Burnham et al., 2020; 
Hashemi et al., 2020; IEA, 2020; Jäger-Waldau, 2020). This develop
ment necessitates robust methods for analyzing PV yield and perfor
mance, as well as flexible monitoring and forecasting solutions in snowy 
conditions. Thus, accurate snow loss modeling and snow detection are 
required. 

Snow losses are expected to vary significantly with climate, system 
configuration and from year to year. At its maximum, it might give 
monthly losses up to 100% in the winter season and annual losses above 
30% (Pawluk et al., 2019). Consequently, it is an important parameter to 
consider in simulation and yield assessment of future PV systems in lo
cations with snowfalls, as well as in production forecasts and 

performance and loss analysis of historical PV data. Snow losses will also 
introduce significant challenges in monitoring, giving signatures in the 
production data which resemble failures. A full snow cover gives an 
electrical response similar to an inverter breakdown. A partial snow 
cover leading to partial shading can give electrical losses (Schill et al., 
2015) similar to serious PV module failures (Tsanakas et al., 2016). 
When using empirical or machine learning based methods for PV 
modeling, snow events in the training data will perturb the correlations 
between irradiance, temperature and production. These perturbations 
can increase the uncertainty of the models (Øgaard et al., 2020). 

Recent research has demonstrated that uncertainty in yield estima
tions (Bosman and Darling, 2018; Marion et al., 2013; Ryberg and 
Freeman, 2017; Townsend and Powers, 2011) and forecasting (Lorenz 
et al., 2011) can be reduced if snow loss models are included. Despite 
this, snow loss models are often not implemented in PV simulation 
software. The System Advisor Model (SAM) has implemented the model 
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suggested by Marion et al. (Marion et al., 2013; Ryberg and Freeman, 
2017), but in other software, snow is either not considered (PVGIS, 
2020) or estimated by constant soiling values (PVsyst, 2020; Solargis, 
2016), typically not related to the climatic conditions. 

In PV monitoring, if at all considered, detection of snow is a more 
common approach than snow loss modeling. In the literature, snow 
detection methods based on dedicated or external sensors like weight 
sensors, web cameras and satellite data have been proposed (Aarseth 
et al., 2018; Andrews et al., 2013; Wirth et al., 2010). Ambient tem
perature (Lorenz et al., 2007) and module temperature (Øgaard et al., 
2018) have been suggested as measurements that can be used to identify 
snow-related losses in PV monitoring and failure diagnosis. Except for 
this, identifying and characterizing the effects of snow in PV monitoring 
data, a prerequisite to separate snow losses from failures and a method 
to cost effectively detect snow, is not widely discussed. 

Accurate snow loss modeling and robust snow detection are chal
lenging, because the parameters influencing the snow cover and 
resulting PV system loss are manifold. The influential parameters range 
from weather conditions (irradiance, temperature, wind, etc.), to 
installation and technology specific configurations (tilt, module tech
nology, ground/roof mounted, etc.) and type of snow. This is chal
lenging for both physical and empirical models due to the amount of 
required input data. Existing snow loss models, use weather data and 
technical system configuration to either estimate (i) snow coverage or 
(ii) the losses directly (Pawluk et al., 2019). Most of the suggested 
methods are based on empirical approaches, including both simple 
linear relationships (Pawluk et al., 2019) and machine learning (Bashir 
et al., 2020; Hashemi et al., 2020). Validation of the models on other PV 
systems is typically lacking (Ryberg and Freeman, 2017). While the 
uncertainty for monthly and annual losses often are low compared to the 
size of the loss, the uncertainty on daily and higher time resolutions is 
high (Andrews and Pearce, 2012; Marion et al., 2013). 

In particular, it is the process of natural snow clearing that is difficult 
to model. The main mechanisms of natural snow clearing are melting 
and sliding, both effects typically connected to ambient temperatures 
larger than 0 ℃ (Pawluk et al., 2019), but sliding at − 10 ◦C has also been 
observed (Becker et al., 2006). Friction and adhesion between the snow 
and the solar panels are parameters that contribute to the complexity of 
natural snow clearing, as both are expected to vary with type of snow 
(Andrews et al., 2013; Pawluk et al., 2019). While wet snow has lower 
friction, it is also more likely to freeze to the module (Andenæs et al., 
2018; Ross, 1995). Natural snow clearing is thus dependent on how 
temperature evolves with time. Additionally, system configurations like 
tilt and elements obstructing the path of snow sliding (e.g. the module 
frame (Riley et al., 2019), or little empty space below the modules giving 
ground/roof interference (Heidari et al., 2015)) will impact natural 
snow clearing. Technical system aspects might also impact the heat 
transfer to the system and thus the snow melting. Increased melting can 
e.g. be caused by absorbed reflected irradiance on the rear side for a 
ground mounted bifacial system (Burnham et al., 2019), or by poor roof 
insulation for a roof mounted system. 

Because different types of modules have different shading response, 
snow losses and the signatures in the electrical data will also depend on 
type of modules (thin film or crystalline silicon, full or half cells, mon
ofacial or bifacial), and for the most typical crystalline silicon (c-Si) 
module with three bypass diodes: whether the modules are installed in 
portrait or landscape orientation. When the snow slides down the tilted 
module, it typically shades the lower part, as shown in Fig. 1. This gives 
shading orthogonal to the substring current for modules installed in 
portrait orientation, and parallel to the substring current for modules 
installed in landscape. In the first case, all the substrings in the modules 
are impacted, in the second case, the shaded area can be bypassed by the 
bypass diodes. This can lead to significantly higher snow-related losses 
for modules installed in portrait orientation than modules installed in 
landscape orientation under similar partial snow covers (Andenæs et al., 
2018; Andrews et al., 2013; van Noord et al., 2017). On the other hand, 

natural snow clearing has been observed to happen faster for modules in 
portrait orientation than for modules in landscape orientation (Burnham 
et al., 2020). One of the suggested explanations is that the frame im
pedes sliding more for modules in landscape. Additionally, if the mod
ules are irradiated but generate no or low current (compared to the 
irradiance level), they are expected to be warmer because the energy is 
not converted to electricity (Teubner et al., 2019). Because modules in 
portrait will generate less current under partial snow cover, they will 
become warmer than modules in landscape, aiding the melting process. 

The aim of this work is to (i) characterize the effect of snow in PV 
monitoring data, (ii) to assess and improve on existing PV snow loss 
models, and (iii) to develop snow detection methods for PV monitoring 
data. The main focus is on monofacial c-Si technology. To characterize 
the impact of different types of snow covers on the measured variables of 
a PV system, we have analyzed data from two PV systems in Norway 
with regular snow cover in the winter. The identified signatures in PV 
monitoring data caused by snow, are assessed by using simulations of 
shaded modules and transmittance measurements. The PV monitoring 
data is further used for evaluation and improvement of snow loss 
models, and both the improved snow loss models and the signatures are 
used in development of snow detection. 

2. Methodology 

2.1. PV monitoring data 

The PV monitoring data utilized in this study is primarily from a 
commercial 185 kWp roof top PV system. The data from the commercial 
system is complemented by detailed studies and experimental data ob
tained from a 4 kWp ground mounted test system at the Institute for 
Energy Technology research facility. The commercial PV system is 
installed on a flat roof, the lowest part of the modules nearly touching 
the rooftop. The multicrystalline silicon PV modules are oriented East- 
West with a tilt of 10◦, and installed in landscape orientation. This 
system configuration is typical for many of the larger PV systems in the 
Nordic countries. A tilt angle of 10◦ is not optimal for high latitude lo
cations with respect to maximum production, but is typically used in 
installations on flat roof systems also at high latitudes to maximize roof 
coverage and to, in combination with the East-West orientation, achieve 
a more even production distribution through the year and the day. The 
test system has South-oriented crystalline silicon modules with a tilt of 
28◦ installed in portrait orientation (FME Susoltech, 2020). The array 
height is two modules for the test system, and one module for the 
commercial system. Both systems are located approximately 60◦ North 
and 11◦ East. 

For both systems, 5 years of data are collected. For the commercial 

Fig. 1. Illustration of portrait and landscape module orientation and how a 
partial snow cover typically shades the tilted modules when it is sliding off the 
modules. A module installed in portrait is shaded orthogonal to the module 
substring current, and a module installed in landscape is shaded in parallel with 
the module substring current. 
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system, current, voltage and power data are collected from the inverters, 
and temperature and irradiance data are collected from the monitoring 
system of the installation. The data is logged at 5 min interval, and the 
DC inverter data are measured at maximum power point tracker level 
(MPPT). Three strings of 24 modules are connected in parallel to one 
MPPT. In the test system, the electrical data is measured at module level 
by power optimizers, and the recording interval of the data logging is 15 
min. The effective in plane irradiance incident on the PV modules, i.e. 
the irradiance the modules can utilize (Stein and Farnung, 2017), is in 
both cases measured with a crystalline silicon reference cell in the plane 
of the PV modules. The measurement uncertainty of the irradiance is ±5 
W/m2 ± 2.5% of reading. The module temperature is measured by a 
sensor attached to the rear side of the modules. Wind and humidity data 
was collected from nearby weather stations (Norsk Klimaservicesenter, 
2020). To identify time periods with snow on the reference cells, the 
reference cell irradiance measurements are compared to measurements 
from irradiance sensors at the systems that are observed to be less 
effected by snow: a heated horizontal pyranometer at the commercial 
system, and a vertical pyranometer at the test system. To reduce the 
effect of snow-covered irradiance sensors on the analysis, the mea
surements from the heated horizontal pyranometer are used as a 
replacement of the in plane irradiance at the commercial system for days 
where the daily irradiation measured by the pyranometer irradiation is 
more than twice the daily reference cell irradiation. 

At the test system, the transmittance of the snow cover on the 
modules was measured for different snow cover thicknesses, by 
measuring the irradiance on the front and rear side of a full size module 
glass with the same tilt as the PV modules, using a spectroradiometer 
(Spectral Evolution, PSR-1100F). The measurements were conducted 
over 7 days with different snow and irradiance conditions. Observations 
of the snow coverage on the modules were collected at the same time by 
sample images. Daily estimated snow data for the two locations, based 
on interpolated observational data are collected from seNorge.no (NVE, 
2019). 

2.2. Identification of snow signatures in PV monitoring data 

2.2.1. Observed snow signatures 
To study the signatures of snow in PV monitoring data, deviations 

compared to snow free production for electrical DC data (power, 
voltage, current) and module temperature in time periods after snow 
falls are evaluated. The evaluation is performed for both modules 
installed in landscape and portrait orientation. 

The expected power, voltage and current for snow free conditions is 
modeled by a single diode model. Module datasheet values and PySAM 
(NREL, 2020) are used to estimate the diode ideality factor, light 
generated current, dark reverse saturation current, shunt resistance and 
series resistance at reference conditions, and the parameter for adjusting 
the short circuit current temperature coefficient, as described by Dobos 
(2012). These parameters together with the measured effective irradi
ance and cell temperature are used as inputs to the CEC model (Dobos, 
2012), which estimates the photocurrent, saturation current, shunt 
resistance and thermal cell voltage. The expected electrical output for 
each module is estimated by solving the single diode equation based on 
the parameters estimated with the CEC model, as implemented in pvlib 
python (Holmgren et al., 2018). The constant system losses are esti
mated by comparing the modeled power to the measured power under 
snow free conditions. Based on this, some differences were observed in 
the angular response between the reference cell and the module strings, 
giving seasonal variation in the system losses. To compensate for this, 
the additional reflection loss of the modules, was modeled with the 
ASHRAE IAM model (Holmgren et al., 2018; Souka and Safwat, 1966) 
with an IAM adjustment parameter of 0.03. The expected PV module 
temperature is modeled by the cell temperature model from the Sandia 
Array Performance Model (SAPM) (Holmgren et al., 2018; King et al., 
2004), where the module temperature is estimated based on global 

irradiance, ambient temperature, and wind speed. 
Uncertainty in PV modeling is typically higher at lower irradiance 

and high angles of incidence, as it is challenging to capture all loss ef
fects under these conditions. This can give a small absolute, but high 
relative, overestimation of the expected power and current in the 
wintertime, and thus overestimation of the snow losses in these pa
rameters. Snow on the irradiance sensor can on the other hand lead to 
underestimation of both absolute and relative losses. On a monthly basis 
for the periods without snow, the mean absolute error in the daily 
modeled energy generation for the commercial system is up to 0.1 kWh/ 
kWp in the summer months and down to 0.02 kWh/kWp in the winter 
months. For both systems, the mean absolute percentage error in daily 
modeled energy is 2% for most months, but in the darkest winter months 
when the energy generation can be <1 kWh/kWp per day, small de
viations in the model can give high relative errors, up to 20%. When the 
expected energy generation is aggregated for longer time periods, the 
days with highest production and lowest uncertainty will dominate and 
reduce the relative uncertainty. 

2.2.2. Simulated electrical snow signatures 
The expected electrical signatures in PV module data for different 

snow covers are modeled using circuit simulations in MATLAB Simulink. 
A system with the same configuration as the commercial system 
described in Section 2.1 is modeled, with 60 cell modules having 3 
bypass diodes each. A variable voltage source is used to trace the full IV 
curve of the modeled system. Solar cell blocks in Simulink are modeled 
by solving the single diode equation, and piecewise linear diodes are 
utilized as bypass diodes. The Simulink solar cell single diode parame
ters are fitted so that 60 cells in series match the IV characteristics of the 
commercial system. The simulations are performed for a case where the 
cell temperature is 25 ◦C and the irradiance is 450 W/m2. Snow covers 
are simulated as a reduction in irradiance for the covered part of the 
modules, and the resulting power, current and voltage from the simu
lated IV trace are used to calculate electrical losses for different shading 
situations. The loss is calculated by comparing the yield of the snow- 
covered system with an unshaded, identical system. The covers are 
varied in size and transmittance, and the partial covers are modeled both 
for portrait and landscape module orientation, i.e. orthogonal and par
allel to the substring current, respectively. The simulations are not 
validated through field data because we have no accurate measures of 
snow covers. This means we have no estimates of the performance of the 
simulation at low light conditions and what error is introduced by using 
the same cell temperature for all simulations, thereby not including the 
temperature differences caused by snow cover. The efficiency of the 
inverter at low irradiances, the MPPT voltage range of the inverter, and 
how the MPPT handles partial shading will also influence the loss in 
electrical parameters. We do, however, still believe that the simulations 
capture the general behavior at these conditions and help us understand 
how different snow covers impact electrical PV measurements. 

2.3. Snow loss model evaluation 

The calculated snow power loss, i.e. the deviation between the 
measured power and the modeled power (Section 2.2.1), is used to 
validate snow loss models. The data from the commercial system is used 
in the evaluation, as it has multiple identical arrays and is thus expected 
to give an insight into eventual loss variations for similar configurations. 
The tested models are the models suggested by Andrews and Pearce 
(2012), Powers et al. (2010), Townsend and Powers (2011), and Marion 
et al. (2013) as implemented in pvlib python (Holmgren et al., 2018; 
Ryberg and Freeman, 2017). The three first models aim to estimate the 
snow losses based on empirical correlations with different environ
mental parameters. Andrews and Pearce estimate daily losses based on a 
correlation between snow losses and irradiance, temperature, and the 
change in snow depth for the two last days. Powers et al. use a corre
lation between annual snow losses, snow depth and module tilt. 

M.B. Øgaard et al.                                                                                                                                                                                                                              



Solar Energy 223 (2021) 238–247

241

Townsend and Powers estimate monthly losses using a correlation be
tween snow losses and humidity, temperature, irradiance, snow fall, and 
a ground interference parameter. The Marion model initially estimates 
the snow cover, and subsequently calculates the snow loss based on the 
snow cover estimate. The model assumes that when the snow starts to 
melt, it is cleared by sliding off the modules. Snowfall data are used to 
identify the presence of snow, and irradiance and module temperature 
are used to identify conditions where snow slides off the modules. Snow 
sliding is assumed to happen when: 

Tamb > GPOA/m, (1)  

where Tamb is the ambient temperature, GPOA is the in plane irradiance 
and m is an empirically defined value of − 80 W/(m2 ◦C). How much the 
snow will slide, measured in fractions of the total row height, is deter
mined by the tilt of the modules and an empirical sliding coefficient (sc): 

Snow slide amount = sc*sin(tilt) (2) 

For roof mounted systems sc was found to be 0.20 (Holmgren et al., 
2018; Marion et al., 2013). The snow loss is subsequently estimated from 
the calculated snow coverage and the number of parallel connected 
strings (including module substrings) along the row height, taking into 
account whether the modules are installed in portrait or landscape 
orientation (Holmgren et al., 2018). If a module substring is partially 
covered by snow, the capacity is assumed to be zero (Gilman et al., 
2018). All snowfalls greater than 0 cm are included in the snow loss 
modeling. 

3. Results and discussion 

The impact of full and different levels of partial snow cover on the PV 
monitoring data is presented in Section 3.1.1. The results are assessed 
using simulations of shaded strings (Section 3.1.2) and transmittance 
measurements (Section 3.1.3). The signatures in the monitoring data 

caused by snow are summarized in Section 3.1.4. Evaluation and 
improvement of snow loss modeling is presented in Section 3.2. Based 
on the improved model and the snow signatures, a method for snow 
detection is proposed in Section 3.3. 

3.1. Snow signatures 

3.1.1. Observed snow signatures in PV monitoring data 
Fig. 2 shows the daily losses in voltage, current and power for a time 

period with snow melting where the modules gradually are going from 
fully snow covered, through different levels of partial cover, to snow 
free. The event is in March/April, in a period with high irradiance, 
giving low relative uncertainty in the modeled expected value. The 
boxplot shows the variation in the measurements. In the beginning of 
the period, when the snow cover is assumed to be full and opaque, the 
losses in all electrical parameters are 100%. When the snow cover starts 
to melt, the first development is an increase in voltage. For some of the 
modules in the test system, voltage gain is registered. As the snow 
continues to melt, a stepwise reduction in voltage losses is observed, 
while the losses in current and power are gradually reduced. The vari
ation in losses between different modules/inverters is large for partial 
snow cover, reflected in a large spread in the measured loss. For the test 
system (portrait orientation), where the loss is measured at module level 
and not aggregated for larger subarrays as for the commercial system, 
particularly large variations in both current and voltage are seen. 

The module temperature is also significantly influenced by snow 
cover. Fig. 3 shows how the measured module temperatures in the test 
system develop compared to the ambient temperature and the modeled 
module temperature during the same melting period as in Fig. 2. The 
module temperature is quite stable at full snow cover with less pro
nounced diurnal variations than the ambient temperature. As the snow 
cover melts, the measured module temperatures are more impacted by 
irradiance and ambient temperature, and there are large variations be
tween different module temperature sensors, due to the local variations 

Fig. 2. The measured daily snow losses in voltage, current and power for the two different module orientations in a period where the modules go from fully covered, 
through different levels of partial cover, to snow free. The boxplot shows the variation in loss between different inverters/modules. The boxes extend from the first to 
the third quartile values of the data, with a line on the median. The whiskers extend to the maximum or minimum value within 1.5 times the interquartile range, and 
outliers are not included. 
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in snow cover. The observed signatures illustrated in Figs. 2 and 3 are 
representative for the time periods after snow falls for the whole dataset. 
The electrical signatures for the days where exact snow coverage is 
measured through imaging, also support these observations. 

3.1.2. Simulated electrical snow signatures 
Fig. 4 shows the simulated losses in current, voltage and power as a 

function of snow coverage for modules installed in landscape and 
portrait orientation. The transmittance of the snow cover is 0 (opaque). 
As a function of snow coverage, the loss in current follows a simple 
relationship: If at least one cell in all module substrings is covered, the 
loss is 100%, and if there is at least one snow-free module substring, the 
loss is zero. The voltage loss is dependent on the snow free area (as seen 
for modules in portrait orientation with shading orthogonal to the 
substring current), but also on activation of bypass diodes (as seen for 
the modules in landscape orientation with shading in parallel with the 
substring current). As discussed in Section 2.2.2, we can expect addi
tional electrical losses in the measured data, depending on the inverter 
and MPPT efficiency at low irradiance, low voltage and partial shading. 
While the trend in the simulated voltage losses looks similar to what is 
seen for the measured data in Fig. 2, the losses in current recovers more 
gradually in Fig. 2 than what is seen in Fig. 4. 

Snow covers with increasing transmittance could explain the gradual 
recovery of the current and power losses seen in Fig. 2. Fig. 5 shows the 
simulated electrical losses for fully covered modules as a function of 
snow transmittance. While the current loss is linearly dependent on the 
transmittance, the losses in voltage are almost recovered as soon as the 
cells are irradiated. 

Fig. 6 gives an example of the combined impact of snow trans
mittance and coverage, showing how the electrical losses vary with 
snow transmittance when half of the module is covered. For modules in 

portrait orientation, the current is still linearly dependent on the 
transmittance, but in voltage a gain is observed because 50% of the cells 
are fully irradiated. For the modules in landscape orientation, it is seen 
that at low transmittance, the shaded module substrings are bypassed 
giving zero loss in current and 66% loss in voltage. When the trans
mittance increases and the current loss in the snow-covered module 
substrings are reduced, the bypass diodes are no longer active resulting 
in loss in current and zero voltage loss. 

While the simulations might explain the trends seen in Fig. 2, they do 
not explain the variation in losses between different system units. This 
can, however, be explained by nonuniformity of the snow cover on the 
system. It is observed that during the process where the snow clears of 
the modules, there can be variation in both snow coverage and thick
ness. The total losses are therefore also influenced by the distribution of 
shading and the configuration of series and parallel connections in the 
system, as this will affect the maximum power points of the different 
subarrays. 

The impact of both the snow coverage and transmittance on the 
losses, illustrated in Figs. 4–6, together with the potential nonuniformity 
of these parameters, explain the trends and the large variations in 
measured electrical losses during melting shown in Fig. 2. This shows 
that the assumption of an opaque snow cover in all situations, as is often 
done in snow loss modeling, is a simplification. 

3.1.3. Snow transmittance measurements 
To investigate if the transmittance of the snow cover can be high 

enough to explain the field data observations shown in Fig. 2 as sug
gested in Section 3.1.2, the transmittance of the snow cover at different 
thicknesses was measured at the test site. As shown in Fig. 7 and dis
cussed in (Andenæs et al., 2018; Perovich, 2007; Skomedal, 2017), at 
snow depths less than about 2 cm, transmittance of more than 10% 

Fig. 3. Development of the modeled module temperature (Tmodule, modeled), the measured ambient temperature (Tambient, measured), and the range of the measured 
module temperatures (Tmod, measured 1-5), in a snow melting period for the modules installed in portrait orientation. 

Fig. 4. Simulated losses in voltage, current and power at irradiance of 450 W/m2 for varying snow coverage with zero transmittance, shown for modules installed in 
both portrait and landscape orientation. 
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might occur. The optical properties of snow is depending on type of 
snow (Andenæs et al., 2018), so some variations will be expected, but 
combined with high irradiance, generation of voltage and current is 
possible at thin snow covers. This is also observed in the electrical 
measurements of the modules. In situations where the measured snow 
cover transmittance and irradiance are high, normal voltage values and 
high current losses are measured. Typically, this is seen in the voltage 
losses, which for days with snow cover can be very high in the morning 
and afternoon, and down to zero in the middle of the day when the 
irradiance is high. 

3.1.4. Snow signature overview 
To summarize the results discussed in Sections 3.1.1–3.1.3, an 

overview of the impact of different types of snow cover on measured 
system variables and the overall PV plant behavior, is given in Table 1. 

A full opaque snow cover leads to 100% loss in all the electrical 
parameters. This could be interpreted as an inverter breakdown. To 
separate the two cases, development in additional parameters such as 
snow depth and module temperature should be utilized. 

When the snow cover is semitransparent and/or partial the situation 
is more complex, a wider range of outcomes are possible, and larger 

Fig. 5. Simulated losses in voltage, current and power at irradiance of 450 W/m2 for a full snow cover with varying transmittance.  

Fig. 6. Simulated losses in voltage, current and power at irradiance of 450 W/m2 for 50% snow cover with varying transmittance, shown for modules installed in 
both portrait and landscape orientations. 

Fig. 7. Measured transmittance of the snow cover on a full size test module 
glass as a function of snow depth. 

Table 1 
Overview of different PV parameters for a c-Si monofacial system, and how they are affected by different types of snow covers (full or partial, opaque or semi
transparent) for modules in portrait and landscape orientation.   

Full, opaque Full, semitransparent Partial, opaque Partial, semitransparent    

Portrait Landscape Portrait Landscape 

Module temperature << Normal operating temperature Typically < Normal operating temperature 
DC current 0 Low* 0 Normal Low Low-normal* 
DC voltage 0 Normal Low Low-medium* High Low-normal* 
Power 0 Low* 0 Low-medium* Low Low-medium* 
PV plant No production All inverters have low/0* power Many or all of the inverters have low power. There may be large variations in power, current, 

voltage, and module temperatures.  

* Depending on snow coverage and/or transmittance. 
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variation within the PV plant is seen. The response in current, voltage 
and module temperature will depend on both transmittance, size and 
nonuniformity of the snow coverage, and also on module orientation for 
crystalline silicon modules. The voltage will be recovered as soon as the 
cells in the modules are irradiated, either because of clearing of the snow 
cover or increased transmittance. The maximum current in each module 
substring will be limited by the least irradiated cell. If partial snow 
covers lead to variations in irradiance for different module substrings, 
the bypass diodes in the modules can activate. Because of this, voltage 
losses during snow covers are characteristic for systems where the 
modules are installed in landscape orientation, and the typical snow 
shading is in parallel to the module substrings. No loss in voltage would 
require snow covers with both high uniformity and high transmittance, 
which is possible, but not very common. How many bypass diodes that 
are active depends on the transmittance and uniformity of the snow 
cover. For module substrings with snow covers with high transmittance, 
active bypass diodes and voltage losses can lead to larger power losses 
than when the diodes are not active, as illustrated in Fig. 6. If one shaded 
module substring is not bypassed, this gives a loss in current in addition 
to the voltage loss, as observed for the commercial system in Fig. 2. 

3.2. Snow loss model evaluation 

The snow loss models described in Section 2.3 were evaluated for the 
commercial system (landscape orientation). The loss was measured for 
all the inverters in the system to capture eventual variations in snow 
losses for identical system configurations. Due to its small size and se
vere system shading for some parts of the winter, the test system was not 
found suitable for model evaluation. 

3.2.1. Evaluation of empirical snow loss models 
The models built on empirical correlations between ambient condi

tions and losses, failed to estimate snow losses satisfactorily, particularly 
when there were differences in ambient conditions between the tested 
dataset and the dataset the model was based on. For the model suggested 
by Andrews and Pearce (2012), the R2 of the relationship between the 
power loss and the suggested explanatory parameters was 0.24, showing 
a low correlation. The snow data in this model is limited to snow fall 
data from the two previous days. For the dataset in this study, however, 
snow covers can in some cases last longer than a month. For the simple 
model for yearly relative losses suggested by Powers et al. (2010), the 
modeled losses were 2.3–5% compared to measured losses of 
2.2–11.2%. For most years, the difference between measured and 
modeled losses was below 1 percentage point, but for the year with 
largest losses, the difference was 6.2 percentage points. Different 
ambient conditions might also here be influential: in Truckee, Califor
nia, where the model is developed, the difference in total irradiation 
from summer to winter is lower than for the data in this study because of 
the difference in latitude. For the Norwegian location, the irradiance 
changes a lot through the year, and the time of the snow cover also in
fluences the total losses, as snow cover in the middle of the winter will 
have less impact on the annual losses than a springtime snow cover. The 
second model developed by Townsend and Powers (2011), had a mean 
absolute error in the estimation of relative monthly snow losses of 23%. 

3.2.2. The Marion snow loss model 
The empirical models can be used to give rough estimates of the 

losses, but for models based on a few datasets, it appears to be difficult to 
capture all aspects of snow covers and resulting PV losses and develop 
accurate and transferable models. Modeling different aspects of snow 
covers and losses separately and aim for modeling of absolute losses, like 
in the Marion model, was shown to be a more robust and flexible 
approach, yielding more accurate loss estimations. The threshold 
defined in Eq. (1). to identify sliding events caused by snow melting, 
correlated well with melting events found in the snow data. Most 
melting events, and all large melting events, could be predicted by the 

conditions defined in Eq. (1). The default sliding coefficient in pvlib 
(0.20), estimated for roof mounted systems, was however observed to be 
too high. This coefficient is expected to depend on different system and 
module designs, because technical aspects can either promote or 
obstruct snow sliding (Burnham et al., 2020). Frameless modules (Riley 
et al., 2019), empty space below modules (Heidari et al., 2015), and 
heating on the rear side of the module (Ross, 1995) (e.g. from reflected 
irradiance – in particular for bifacial modules (Burnham et al., 2019), or 
the building if roof mounted) will promote sliding, for instance. In the 
studied case, where the modules are installed on a flat, well-insulated 
roof, and there is no empty space where sliding snow can accumulate 
below the modules, high roof interference and a low sliding coefficient is 
expected (Heidari et al., 2015). Generally, when the snow depth is 
increasing, the empty space below the modules will decrease, giving 
increased ground/roof interference. In this case, because the modules 
are not elevated, how much the snow can slide down the module surface 
will also decrease with increasing snow depth. The top of the modules is 
approximately 30 cm above the rooftop. With snow depths above 30 cm, 
the system will be fully submerged in snow and there will be no sliding. 
Snow depths above 30 cm are rare for the tested system, as shown in 
Fig. 10, but the observed snow depths do often lead to situations where 
the system is partly submerged in snow, reducing the possibility for 
snow sliding. Melting is therefore most likely an important snow 
clearing mechanism in the tested system, a process that typically is 
slower than sliding for thick snow layers. Fig. 8 shows for different sc 
values, for periods with snow depth > 3 cm, how measured snow loss 
correlate with modeled snow cover, and the correlation between 
measured and modeled daily snow loss. Fig. 8 a) shows how a larger 
fraction of the timestamps with measured snow loss correlate with 
timestamps with modeled snow cover, both for high and lower measured 
snow loss, when using a lower sliding coefficient. As shown in Fig. 8 b), 
reducing the sliding coefficient gives a better fit between measured and 
modeled daily losses. Here, because the Marion model assumes zero 
production from partly covered module substrings and a uniform snow 
cover, the modeled loss is stepwise, and the only possible outcomes are 
0, 33%, 66% or 100% loss. As shown in Fig. 2, the measured power loss 
has a wider range of outcomes. Some of the variations in the measured 
losses, can also be caused by the high relative errors in the modeled daily 
expected power for parts of the winter periods. 

The data show that for thin snow covers, however, snow clearing 
happened significantly faster. There is more room for snow to slide down 
the module surface, and thin snow covers are also more likely to melt 
directly on the module, a process that for thin snow covers is faster than 
sliding (Andrews et al., 2013; Pawluk et al., 2019). Additionally, as thin 
snow covers have higher transmittance, heating of the module that can 
aid the melting is expected (Pawluk et al., 2019). As shown in Fig. 9, 
when the measured snow depth is low, the sliding coefficient that most 
consistently models 100 or 66% loss in periods with high losses, and 0 or 
33% in periods with low losses, is 0.4, which is higher than what was 
seen in Fig. 8. For the test system it is also observed that the sliding 
coefficient seems to be influenced by the snow conditions. In Fig. 9, it is 
also seen that the modeled losses for thin snow covers shows a poorer fit 
with measured loss compared to thicker snow covers. Thin snow covers 
have also previously been shown to introduce noise in loss modeling 
(Andrews and Pearce, 2012). In addition to the challenge of exact esti
mation of snow coverage, snow transmittance is, as previously dis
cussed, playing a role for thin snow covers and might challenge the loss 
estimation. 

As shown in Fig. 10, reducing the sliding coefficient to 0.06 
compared to the default sliding coefficient in pvlib of 0.20, gave a better 
fit between measured and modeled losses for most years. The exception 
is 2017, a year with very low snow depths. Also shown in Fig. 10, 
introducing separate sliding coefficients (or more general: snow clearing 
coefficients) for snow depths above and below 3 cm yields an even better 
fit with the total measured losses. With the default sc the total modeled 
absolute snow loss for the five years of data was underestimated by 23%, 
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with the reduced sc (0.06) the losses were overestimated by 11%, and 
with the snow depth dependent sc the model overestimated by 3%, 
yielding a significant improvement to the model. Relative to the mean 
yearly energy generation in the analysis period, the differences in 
measured and modeled losses when using the model with snow depth 
dependent sc, was between − 0.8 and 0.3 percentage points. 

It would still be expected that snow loss modeling is still not exact on 
high time resolutions even with improved sliding coefficients, both due 
to challenges with estimating the snow coverage, the transmittance and 
non-uniformity of the snow coverage, and the difficulty of accurately 
quantifying the effect the snow has on the PV production. It can, how
ever, be used to assess the probability of snow cover on the modules and 
give reasonable snow loss estimates for yield estimations which are 
typically aggregated to lower time resolutions. 

3.3. Snow detection 

The observed snow signatures in the data and the improved snow 
model are promising starting points for building snow detection algo
rithms for monitoring purposes, failure diagnosis and performance loss 
analysis. While snow loss modeling has too low accuracy on high time 

resolutions to directly model losses in monitoring, the improved snow 
cover model suggested in Section 3.2 can be used to indicate the pos
sibility of snow-covered modules, as shown in Fig. 8 a). For the tested 
commercial system, the loss in voltage is the signature that in most cases 
is connected to snow loss, as discussed in Section 3.1.4. Fig. 11 shows, 
for different power loss intervals, how large share of the data that would 
be labeled as snow, given a snow detection criterion of: 1) voltage loss 
between 10% and 100%, 2) modeled snow cover larger than 0, 3) either 
criterion 1 or 2. The data has 5-minute resolution and is taken from 

Fig. 8. For periods with snow depths > 3 cm and with four different sliding coefficients used in snow cover/loss modeling, a) the fraction of data for different power 
loss intervals with modeled snow cover > 0 (due to the uncertainty in the modeling of the expected power, 10% is set as the lower limit of significant snow loss), and 
b) the variation in daily measured loss at the different modeled loss values (four possible outcomes: 0, 33, 66 and 100%). The boxes extend from the first to the third 
quartile values of the data, with a line on the median. The whiskers extend to the maximum or minimum value within 1.5 times the interquartile range, and outliers 
are not included. 

Fig. 9. For periods with snow depths < 3 cm and with four different sliding 
coefficients used in snow cover/loss modeling, the variation in daily measured 
loss at the different modeled loss values (four possible outcomes: 0, 33, 66 and 
100%). The boxes extend from the first to the third quartile values of the data, 
with a line on the median. The whiskers extend to the maximum or minimum 
value within 1.5 times the interquartile range and outliers are not included. 

Fig. 10. Measured (plant median) and modeled yearly absolute and relative 
snow losses. The relative losses are calculated based on the mean yearly ex
pected energy generation in the analysis period. The error bar shows the range 
of the measured losses in the PV plant. The snow losses are modeled in pvlib 
with default sliding coefficient (0.20), reduced sliding coefficient (0.06) and a 
snow depth dependent coefficient: 0.4 for snow depth < 3 cm, and 0.06 for 
snow depths > 3 cm. The corresponding snow depth measurements are 
also shown. 

M.B. Øgaard et al.                                                                                                                                                                                                                              



Solar Energy 223 (2021) 238–247

246

periods with irradiance above 50 W/m2 and snow on the ground. For the 
third criterion, 97% of the snow losses above 10% is labeled as snow. 
The detection rate is higher at high snow loss. At full snow covers giving 
100% loss, the detection rate is 100%. In periods with a measured power 
loss smaller than 10%, i.e. no significant snow loss, 38% of the data 
points are labeled as snow, which we interpret as false positives. These 
false positives are mostly related to the uncertainty in the snow loss 
modeling for thin snow covers and during melting, causing the model to 
indicate snow cover in periods where the snow has been cleared. A 
consequence of false positives in snow detection could be that actual 
system faults are falsely labeled as snow losses. Snow loss modeling is 
consequently best used to indicate the probability of snow cover. 

To improve snow detection, more of the snow signatures described in 
Section 3.1 could be included. The module temperature measurements 
and the duration and evolution of the snow signatures could e.g. be 
taken into account. Snow losses, especially during snow melting, can 
change significantly from day to day and within a day, in a different way 
than typical system faults. The results suggest that due to the high rate of 
the data with losses that correctly are identified as snow, the snow 
detection method will improve fault detection and diagnosis as well as 
loss analysis, and that further improvements could be achieved by 
including more of the identified snow signatures and by using snow loss 
modeling to indicate probability of snow cover. 

4. Conclusions 

In this paper we describe the effect of different types of snow cover 
on PV energy generation, and snow related signatures in PV monitoring 
data are identified. In addition to snow coverage and system configu
ration, transmittance and nonuniformity of the snow cover influence the 
total snow losses, increasing the complexity in snow loss modeling. 
Existing snow loss models are evaluated. Three of the models are purely 
empirical, and power loss is directly estimated based on system and 
weather data. In the Marion model empirical correlations are used to 
model different effects causing natural snow clearing, and snow 
coverage and the resulting loss are modeled separately. We find that the 
purely empirical models are less general and flexible than the Marion 
model. 

For the evaluated system with low tilt modules on a flat roof, the 
natural snow clearing rate is observed to be much faster for thin snow 
covers (<~2–3 cm) than for thicker snow covers. This difference in the 
snow clearing process between thin and thick snow covers is assumed to 
be especially large for the evaluated system. This is because there is little 

available space where the snow can slide away, leading to slow snow 
clearing for thick snow covers. The evaluated system design is, despite 
this, very common in the Nordic countries because it gives increased 
roof coverage and more even energy generation throughout the year. By 
including the effect of snow depth dependent snow clearing in the 
Marion model, we achieve reduced uncertainty in the modeled snow 
losses, allowing more accurate energy yield assessment for new PV 
systems. We also find that the identified snow data signatures and the 
improved Marion snow model can be used to detect and separate snow 
losses from other phenomena that affects PV production, such as faults. 
This is important for the development of PV in cold climate areas that 
are prone to snow. 

We discuss how different system designs can promote or obstruct 
snow clearing, and we find that for the tested system the snow clearing 
rate is lower than for the systems the snow sliding/clearing coefficients 
in the Marion model is based on. Future work should therefore include 
further validation of the snow clearing coefficients for different system 
designs. Additionally, as snow is a complex weather phenomenon, 
validation of the improved model and the snow detection for larger 
datasets and different environments is necessary. The aspect of the 
evolution of the snow data signatures with time should also be further 
investigated to improve snow detection. 
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