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Chapter 1
Introduction

In this chapter, we motivate the problems considered in this thesis. I have made
a best effort to keep the chapter brief and accessible to readers without extensive
background knowledge, but this has required some details to be elided. It is my
hope that the reader will be capable of filling them in on their own as required.

We start out by recalling how the finite element method can reduce the
problem of approximating the solution to a linear partial differential equation
to that of solving a system of linear equations. Next, we explain why the
resulting systems of linear equations can be difficult to solve despite being
finite dimensional. We therefore introduce the idea of preconditioning as a
way of making the system of linear equations tractable. We then recall the
framework of operator preconditioning, which connects the problem of obtaining
a preconditioner for the system of linear equations with the problem of finding
the “correct” function spaces for the continuous PDE.

Having established the framework in which we will be working, we recall
the celebrated criteria of Babuska and Brezzi for stability of weak problems in
We use this in to prove which shows
that using Lagrange multipliers to enforce boundary conditions yields a stable
problem if and only if enforcing boundary conditions strongly yields a stable
problem. This way of enforcing boundary conditions requires the introduction
of trace operators, which can only be properly done using fractional Sobolev
spaces. These are therefore introduced in

We are then in a position to introduce the idea of multiphysics problems in
which are of immense interest in applications and the main subject of
this thesis. A natural way of modeling multiphysics problems is as compositions
of multiple “single physics” subproblems coupled via Lagrange multipliers, which
will be seen to result in a saddle point problem. We state and prove simple
criteria which can be used to prove such problems well-posed under appropriate
conditions. Finally, in[Section 1.6] we discuss methods suitable for solving coupled
multiphysics problems.

1.1 Preliminaries

We will use L?(Q2) to denote the Sobolev (and Hilbert) space of functions for
which the L®-norm || f||7 g := [, f* is finite. Similarly, we define the space
H'(Q) with the norm || f[|31 o) = 720y + IV flIZ2(q, and H (div,Q) by
!|f||%1(divﬁm = HfH%Q(Q) +|V- fH%z(Q). For a Hilbert space U, we let U* d.enote
its dual space, defined as the vector space of all continuous linear functionals
f:U — R, and define on it the operator norm | f||y+ := sup, ¢y Ifu(—ﬁl)] By the
Riesz representation theorem, U and U™ are isometric, and we let Ral U —=U*

1



1. Introduction

denote the map u — (u, —)y. We emphasize that this isomorphism is “weakly
non-canonical” in the sense that it depends on the inner product of U.

As the choice of inner product will be central to several arguments, we will
always write inner products as (u, v)y, indicating the space with a subscript . For
u e Uve U wewill let (v,u)y — v(u) denote the duality pairing U* x U — R
evaluating a linear functional at a point in its domain, as distinguished from
the inner product (ui,us)y, where uy,us € U. In cases where it is clear from
context, we will omit the subscript from the duality pairing.

1.2 Preconditioning for the finite element method

1.2.1 A brief overview of the finite element method

The finite element method is perhaps the most widely used technique for numeri-
cally solving partial differential equations. In this section, we outline very briefly
how and why it works, and what challenges it leaves unsolved for practitioners.
For concreteness’ sake, suppose 2 is a given bounded domain, V' some given
space of functions on €2 and we want to find u € V so that

— Au(z) = f(x) for all z € Q (1.1)

Here, the unknown w and the known right hand side f are both functions
Q) — R, and the equation is assumed to hold on all points of €. Accordingly,
is called the strong form of the PDE. The first step in applying
the finite element method is to rewrite the problem in weak form by multiplying
by an arbitrary test function v and integrating over ). Doing this, we see that
any solution u of the strong form must also have the property that

/ —vAu = / fv for all test functions v € V (1.2)
Q Q

For reasons which will later become clear, we integrate by parts and rewrite as

/ VuVov = / v% —|—/ fuv for all test functions v € V (1.3)
Q oo On Q

What makes this form useful for applications is that we no longer require
the u to be as smooth for this to be well-defined, and it now suffices that
u,v € HY(Q). We will use it to obtain a system of linear equations whose
solution yields an approximation of the exact solution. To do this, we choose
some triangulation €2, C €2, and replace the space V' by the finite-dimensional
subspace V}, of piecewise linear functionsEl with break points only at the edges of
the triangulations, as shown in

Such a function is clearly determined by its values at the vertices of the
triangles, and we see that a basis for V}, consists of the functions ¢; which are 1

1 We could also choose different spaces V},. For example, we could use piecewise quadratic
functions. The choice of exactly what functions we are considering on each triangle is our
choice of finite element.

2



Preconditioning for the finite element method

at vertex i and 0 at all other vertices. To obtain the requisite system of linear
equations, then, denote the (unknown) values of the (approximate) solution wy,
at the vertices vq,...,vny by u1,...,uny. Then we have that

Up =UrPy + ... +UNON

Substituting this into [Equation (1.3)] we see that by choosing v = ¢; for

i=1,..., N, weobtain N different equations involving the unknowns u;. Because
¢;, [ are known functions, all other quantities involved can be computed, and by
linearity, the resulting system is linear, and can be written in the form Au =f
where now A € RV*N and u,f € RY. Now, if we can solve this system for u,
we have that up = u1¢1 + ... + unydy is an approximate solution of the original
problem, completing the reduction of the (approximate) original problem to a
linear system of equations.

1.2.2 The computational cost of the finite element method

We have so far not shown that the approximation wuy, for which we derived a
linear system in the preceding section, is in fact close to the true solution w. It
might be expected that it is closer the more triangles we use, and that in the
limit N — oo, up — u. In this case, this is true, and the error ||u — up|| g1 () is
of order O(h), where h is the length scale of the triangles involved. For now, we
will take this for granted, and return to the question of what happens when we
replace a continuous problem by a discrete one later.

Suppose, then, that we are using the finite element method to solve a PDE.
We have an error threshold of €, and per the reasoning above, we must therefore
choose the triangles to be of size O(e). If Q is a 2D domain as in the figure,
this means that we require the number of vertices N to be O(e~2). From this,
we see that the size of the systems we want to solve grows quadratically in the
inverse of the approximation error we want. This means that the systems quickly
become very large, so the computational cost of application of the finite element
method quickly comes to depend on the algorithm chosen to solve the resulting
linear system.

Figure 1.1: A domain 2 on the left, a discretization €2, in the middle, and a
piecewise linear function u;, on the right.
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Before proceeding, we observe that although the matrix A described above
is nominally a N x N matrix, most of its entries will be zero. The reason for
this is that if two vertices ¢ and j are far away from each other, we see from
that A; ; will be zero, as only vertices which share some triangle
“interact”. Assuming that the number of triangles each vertex is in is roughly
constant, this means that the number of nonzero elements Z of our matrix will
be O(N).

Methods for the solution of the general linear problem Ax = b can, broadly
speaking, be divided into direct methods and iterative methods. Direct methods
solve the system in “one shot”. The traditional pen-and-paper method of
Gaussian elimination taught in schools is an example of a direct method, as are
techniques based on factorizing A like the LU composition. The performance
of such methods is outside the scope of this thesis, but commonly the sparse
problem matrices used for the finite element method on 3D domains result in
O(N?) time complexity and superlinear memory complexity . See, however,
for specifics on the algorithm used in and 7 for discussions
of recent advances.

Iterative methods operate by starting with some initial guess xg, and repeat-
edly computing better guesses x,41 until a sufficiently good guess is obtained.
An exampleEl is the Richardson iteration, where

Xnt1 = Xn +7 (b — Ax,,) (1.4)

for an appropriate real number r chosen to ensure the sequence converges to
the true solution. We see from that the computational cost of a
single iteration is dominated by the cost of computiting Ax. As A is sparse, this
can be seen to be O(N), meaning that the total cost becomes O(TN), where T'
is the required number of iterations to reach an acceptable error.

1.2.2.1 Convergence properties of the Richardson iteration

In order to determine the total computational cost of our method, we are
therefore forced to consider how rapidly the sequence x,, converges. Suppose x
is the exact solution, so that Ax = b. Then

Xpt1 —X=%Xp, —x+7r(b—Ax,)=T-rA)(x, — x)

From this, we see that the error e,, := x,—x = (I-rA)™e;. Thus the convergence
properties of the Richardson iteration depend on the matrix M, := I — rA,
and it can be shown that the convergence rate will be ||\.||, where A, is the
eigenvalue of M, of largest magnitude. Hence we must choose r so that |\, < 1
to ensure the method converges, and preferably so that it is as small as possible.

Supposing that A is symmetric and positive definite, it has real eigenvalues
A1 < ... < Ay, and we see that the eigenvalues of M, are 1—rA; > ... > 1—rAy.

2The choice of the Richardson iteration here is for ease of exposition, not because it is the
most commonly used iterative method.
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Hence the convergence rate is optimaﬂ if

2

l—rhM=—-1-rAy)=>r=—"—"—,
rA1 ( TAN) =T e

in which case the convergence rate is

2

1 TAl = 1 1 + /{(A)

where we have introduced the condition number k(A) := ’}\—JI’ This means that

if the condition number is large, the convergence rate will be just barely below

1, and thus very slow. Hence while if the condition number is close to 1, the
convergence rate will be close to 0 and thus very fast.

We are now in a position to estimate what happens to the required number

of Richardson iterations as N increases. As we have established that €, =

@) ((1 — 1++VA)) ), using the approximation In(1 + z) ~ z on = = 1++(A) we

see that )
—4n
w=0(er (i)

Recalling that A depends on N, we see that the number of iterations T'
required to reach some acceptable error threshold will have the same growth
rate as k(A) as N increases. In particular, if kK(A) is bounded, so is the required
number of iterations.

1.2.2.2 Condition numbers of finite element matrices

As the final step of our estimate, it remains to estimate x(A). For the matrix A
defined earlier as the coeffient matrix of discretized by piecewise
linear elements into N triangles, the condition number will have growth rate
O(N). We shall not prove this formally, but give a heuristic argument as to why
it is true: note that the solutions of the continuous eigenproblem —Au = A\u
on the real plane are A\, = n? +m? u, , = sin(nz +my). As sin(nz + my)
has oscillations with a length scale O (1/max{n, m}), not all of these will be
representable in our discretized space where the triangles have sides of size

h=0 (ﬁ) We would therefore expect the largest eigenvalue of our discretized

operator A to be O (75) = O (N), and the smallest eigenvalue to be constant,
yielding the expected condition number.

This means that the required number of iterations is T' = O(k(A)) = O(N).
Thus the total cost of using Richardson iteration to solve our system is O(T'N) =
O(N?). As we require N = O(¢~2) to obtain an H! error of O(¢), this means
that our algorithm has a total running time of O(e~*), and that halving the error
will require 16 times as much computation. This quickly becomes prohibitive -
assuming for ease of comparison that one computational step is a nanosecond, a

3The condition is saying that the eigenvalues of M, are clustered about 0 in such a way
that the largest and smallest are equidistant to 0.
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reasonable error tolerance of ¢ = 10™* means that e~# steps is required, which is
more than 100 days. On the other hand, if we had been able to keep T' constant,
we would be looking at (a constant times) €2 instead, which is about a second.
In three dimensions, we would have N = O(¢~?) instead, making the difference
even more pronounced.

We remark that although the exact convergence rate obtained here is only
valid for the Richardson iteration for a symmetric positive definite matrix in
particular, techniques obtaining convergence criteria on iterative methods by
looking at the spectrum of eigenvalues of the operator can be extended to more
general cases, and overall the conclusion that iterative methods converge faster
when k(A) is close to 1 holdsEl However, a more general tool for deriving bounds
on iteration counts of iterative methods is the field of values or numerical range

of an operator A : V — V* defined as the range of éﬁi)f/)

It evidently contains the eigenvalues of R‘_/IA7 meaning it contains the spectrum,
and per the Toeplitz-Haussdorff theorem (see e.g. ) it is also convex, and
hence contains the convex hull of the (complex) spectrum. We refer the reader to

for details of the properties of the field of values, and to for examples
of how it can be used to analyze preconditioners for PDEs.

over nonzero x € V.

1.2.3 Operator preconditioning of finite element matrices

We are thus led to pose the following question: Could we replace the system
Ax = Db by the preconditioned system PAx = Pb for some nonsingular matrix
P so that PA has a smaller condition number than A? Evidently the solution
is the same, but if we could choose the preconditioner P so that PA has a
bounded condition number, per the reasoning of we would have
an O(N) algorithm as opposed to an O(N?) one. An obvious choice here is,
of course, P = A~!. This makes x(PA) = 1, which would be good. However,
because actually computing P in this case means inverting A, it is useless for
our purposes, as using it would be equivalent to just solving our original system.
For P to be a suitable preconditioner, then, we therefore also require that Px
be efficiently computable, as we need to compute it at every iteration of our
iterative method.

As we have established that a good preconditioner P is one for which the
eigenvalues of PA are bounded above and below, a good preconditioner must be
spectrally equivalent to A~'. It is, then, perhaps not surprising that one way to
obtain good preconditioners is through the framework of operator preconditioning,
on which we shall spend the remainder of this section. Our exposition will follow
that of [71] and closely, and the interested reader is referred there for a more
thorough treatment.

4In the case of a symmetric (resp. symmetric positive definite) matrix, using the MINRES
(resp. CQG) iterative methods instead will yield faster convergence. Letting k := k(A), we

r+1 VE+1
conclusion that a bounded condition number implies a bounded number of iterations thus
remains valid also for MINRES and CG.

N N
then obtain convergence bounds of 2 (“—71) 2 (resp. 2 (\/Efl) ) instead, see e.g. . The
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Preconditioning for the finite element method

We start out by examining the apparent contradictio between the fact
that the discrete problem we ended up with had a poor condition number, and
the fact that the continuous problem we started with, —Au = f, enjoys several
guarantees of well-posedness. We state without proof the following theorem, and
later return to ways in which such theorems can be established:

Theorem 1.2.1 (Well-posedness of the Poisson problem). Let a(u,v) = [, Vu -
Vo, and L(v) = fQ fuv. Then the problem of finding u € H}(Q) so that

a(u,v) = L(v) for any v € H(Q)

is well-posed in the sense that for any f, there exists a unique solution u € H}(Q),
and there exists a constant C' depending only on Q for which we have the bound

ull ) < Cllflla-1 )

Denoting by A : H}(Q) — (H3(2))" the map sending any u € H(Q) to
the linear functional v — a(u, v), we observe that this theorem implies that the
operator norm of ||A~!|| is bounded. As an alternative characterization of the
condition number which extends to the continuous case is as || A||[|A~}|, the
apparent contradiction is that this theorem implies that the continuous condition
number is bounded, while in the discrete case, we saw that this was not so.

One resolution might be that replacing the space V = H}() by some
discrete subspace V}, (as we did by considering only piecewise linear functions)
takes away the well-posedness properties, but in this case, this is incorrect - the
above theorem remains valid when V' is replaced by V;, with the constant C'
independent of the discretization scale h.

The resolution to the apparent contradiction is that the operator norm || Al

[l Av][y=
. . . H’UHV o .

for V. In the continuous case, in which we have a bounded condition number,

the norm chosen is the H! norm, and we are treating A as a map V — V*. In
order for the definitions of x(A) in terms of eigenvalues and in terms of operator
norms to be equivalent, the norms used for the operator norm must in fact be
the standard Euclidean ¢? norm, and indeed, if we compute the constant C of
the above theorem in this norm, it will be seen to depend on h, and we will end
up with the same dependence of the condition number on h.

An instructive way of thinking about what is going on is that by defining
the condition number in terms of the eigenvalues A for which Ax = Ax, we are
comparing a vector Ax in the codomain of A with a vector Ax in the domain of
A. Hence we are making an implicit identification between the domain V' and
the codomain V*, which in this case lead us to an implicit choice of the £? norm.

If we want to choose other norms, we must make this identification explicit.
Suppose we have some norm || - ||y in mind, and let R be the matrix for which
|ull = uTRu. Here, R can be thought of as a map V — V*, with inverse
being the Riesz map of the space V', and if we define the condition number of A

of our map V' — V*, defined as sup,cy depends on the norm we choose

50f course, as will become clear, there is no literal contradiction here.
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not in terms of the standard eigenvalue problem Ax = A\x, but the generalized
eigenvalue problem Ax = ARXx, there is no implicit identification being made on
our behalf, as we are comparing two vectors in V*. This results in a definition
of the condition number which is, in fact, equivalent to the one involving the
operator norm of A : V' — V* and its inverse.

Looking at the generalized eigenvalue problem Ax = ARx, this can be recast
as a standard eigenvalue problem R~'Ax = \x, meaning that the V-condition
number of A is in fact equal to the “regular” condition number of R™'A. From
our discussion of preconditioners, we see that this is precisely equivalent to R~!
being a good preconditioner for A.

Summarizing, we have argued that the problem of finding a good precon-
ditioner R~! for the (continuous) problem is solved by finding a space V on
which the problem Au = f is well-posed in the sense of and
choosing R~! to be the matrix of the Riesz map of V. Additionally, we need
some effective procedure for computing R~!x for any vector x, and we require
the stability estimate to remain valid with a constant independent of A when
we replace V by our discretization V},. Neither of these two caveats are mere
technicalities, but the beauty of this connection is that it relates the search for a
good preconditioner for the discrete problem to the choice of “stable” spaces for
the continuous problem.

Here, we use “choice” because the operators corresponding to the weak forms
some PDEs may be viewed as stable isomorphisms V' — V* for several different
spaces V. All such V can then be used to obtain an operator preconditioner, but
evidently some may be easier to implement or compute than others. We also
remark that although the focus of this thesis is preconditioners for matrices arising
from PDE problems, other matrices also exist. For a survey of preconditioning
techniques for a “general matrix”, i.e. methods not making any assumption
about the problem giving rise to the matrix as we do here, see .

Solution times on 2D domain Solution times on 3D domain

102 { —e— MUMPS —e— MUMPS
- G - G
—e— Preconditioned CG 101 { —e— Preconditioned CG

10! 4

Seconds
Seconds

107! 5

107 10* 10% 108 102 10? 10% 10° 108
Degrees of freedom Degrees of freedom

Figure 1.2: Comparison of solution times for solving a Poisson problem with N
degrees of freedom for different solution methods.

Example 1.2.2 (Comparison of solution methods for the Poisson problem). In
this example, we perform a simple comparison of direct and iterative methods

8



Stability of weak problems

for the solution of the Poisson problem

—Au=f in Q,
uw=0 on 0f)

with  being the unit square and f(z,y) = (2% + 2y? + 1) sin(z + 3?). Using the
FEniCS software suite 7 we discretize this by a M x M uniform grid and
P1 elements, and compare three solvers: a direct (MUMPS) solver, a conjugate
gradient (CG) method with no preconditioner, and a CG solver preconditioned
by an AMG preconditioner, with the iterative solvers having a fixed convergence
criterion of a relative or absolute error decrease of 1071°. The CPU time required
for successively larger grid sizes is shown in

From the plot, we see that the unpreconditioned iterative method seem to
have complexity O(N?), while the preconditioned iterative method is O(N).
The direct method appears to have performance close to O(N). On the right, a
similar experiment is shown for a 3D domain. Here, the iterative methods can
be seen to have similar performance, but the direct method appears closer to
O(N?). In both cases, memory requirements for the direct method became the
limiting factor prohibiting a more extensive comparison.

1.3 Stability of weak problems

Having established a rough equivalence between a good preconditioner and a
choice of a norm in which the weak problem is stable, it is only natural to turn to
the question of when a particular weak problem is stable. We shall also see that
the tools for answering this question will let us address the issue elided earlier
of when a problem which is stable on the full, “continuous” space V' becomes
unstable on a discrete subspace V, C V.

We shall occasionally use the terms stable or well-posed. By a stable or
well-posed problem, we mean a weak form a(u,v) : U x V' — R problem such that
for any L € V*, there exists a unique solution u € U so that a(u,v) = L(v) for all
v € V, and so that for some constant C' we have the estimate ||z||y < C||L||v~.

Before proceeding, we briefly comment on the importance of distinguishing
between U and U*. Per the Riesz representation theorem, the two are isomorphic
(indeed, isometric) via the map u € U and (u,—)y € U*, but care must be
taken to not confuse the two. As we argued in the previous section, doing so is,
implicitly, identifying the two according to the Riesz map defined by some inner
product, which may not be the one we want to use. We will therefore strive
to be precise and explicit about which Riesz maps we are using, at the cost of
being somewhat verbose.

1.3.1 General stability results

Suppose, then, that we have some linear operator A between Hilbert spaces
acting on U, and we are interested in finding an inverse. This corresponds to, for

9
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any f in its codomain, finding an w in U for which Au = f. Letting V denote
the dual of its codomain, A : U — V* induces a bilinear form a : U x V — R
defined by a(u,v) := (Au,v), and f a linear functional L(v) : V' — R defined
by L(v) = (f,v). By the Riesz representation theorem, the problem of finding
u € U so that Au = b is then equivalent to the problem of finding u € U so that
a(u,v) = L(v) for allv € V.

The following theorem is a very minor rephrasing of the seminal result of :

Theorem 1.3.1. Let U,V be two Hilbert spaces, and a(u,v) : U xV — R a
continuous bilinear form, with the constant B so that ||a(u,v)| < B|lullv||v]v.
Suppose there exists a constant o > 0 so that b satisfies the following inf-sup
conditions:
. a(u,v)
inf sup TaloTolv

v =@
uelU veV v

a(u,v)

——— > (v
lollvillulv =

e inf sup

veV uelU

Then for any f € V*, there exists a unique uw € U so that for any v € V,
a(u,v) = (f,v) for allv € V. Moreover, we have the estimate

1 1
— « < < — *
ﬂ”fHV > ||“||U = a”fHV

Conversely, suppose that a is a bilinear form so that for any f € V*, the weak
problem a(u,v) = (f,v) has a unique solution u satisfying the above estimate.
Then a is continuous with boundedness constant B, and the above two inf-sup
conditions are satisfied.

Remark 1.3.2. Observe that when U = V and a is symmetric, the two inf-sup
conditions are obviously equivalent. However, in the general case, the values
of the two inf-sups above need not be equal. For a simple counterexample,
let U :=V x V, and define a((wy,ws),v) by (w3 — wa,v)y. Then the second
condition holds with o = 1, while choosing © = (w,w) shows that the first
condition does not hold for any o > 0. In this case, the weak problem can always
be solved, with solutions v = (Ry (f) + w,w) for any w € V, but the solution is
not unique.

However, in the case that the weak problem is uniquely solvable with the
given bound (which is implied by the two conditions holding with possibly
different a, ap > 0), the values of the two inf-sups can be shown to be equal.
To see this, define A : U — V* by (Au,v) = a(u,v). Then solvability implies
that there exists an inverse map A~!: V* — U. Hence
(w,v) N 7 e 1

inf {Au, v) inf f
inf sup ———— = inf sup——————— = in =
wevvev lullullvllv  wevewvev [A7 w|ullvlly  wev [[A7Iw|  [|A7L]]

Next, consider the adjoint (4*)~! = (A71)*. Per the same argument as above,
the value of the other inf-sup condition is m, and as adjoints have the
same operator norm, we are done.

10
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Note that there is no conflict between this and the case considered above
where we have solvability but not uniqueness, as in this case we do not have a
two-sided inverse A~!, only a right inverse E. The above argument still shows
that the first inf-sup condition holds with constant at least m, but when we
take the adjoint, E* is a left inverse to A*, not a right inverse.

The above result is a generalization of the following, where V = U:

Theorem 1.3.3 (Lax-Milgram). Let a : U x U — R be a bilinear form satisfying
the following two conditions:

o a(u,v) < Bllull||v]| (a is bounded)
o a(u,u) > allul|? (a is coercive)

Then for any f € U*, there exists a unique u € U for which a(u,v) = (f,v) for
any v € U, and we have

1 1
“Nfllo < < 2| fllo-
5||f||U < llully < —l1fllv

Note, however, that due to the stronger hypotheses assumed in Lax-Milgram,
the converse is not true, with saddle point problems being a counterexample
we shall return to later. In the special case where a is symmetric, there is a
particularly straightforward proof of the above: by the two conditions, we can
define a new inner product on V by (u,v), := a(u,v), giving us a new Hilbert
space structure V, on V. Then the existence of a solution is simply the Riesz

representation theorem. In the general case, the following very nice proof is
adapted from [71]:

Proof. Let A : U — U* be the linear operator u — a(u, —), and Ry : U* — U
be the Riesz map. The idea of the proof is to consider the mapping T, :
u — u — cR(Au — f), which is seen to be exactly the Richardson iteration
preconditioned by a Riesz map considered earlier. The hypotheses then let us
show that this is a contraction for some ¢ > 0 and show that Banach’s fixed
point theorem applies to guarantee the existence of a fixed point, which will
then necessarily be a solution to the problem.

We emphasize that the Riesz map is crucial to the argument, as without
it, the residual and the unknown will live in different spaces, and 7, cannot be
defined. Writing w := u; — ua, we see that for ¢ > 0,

1 Teur = Teus||fy = [Jwlf?; + ¢*|| Ry Awl| — 2¢(w, Ry Aw)y < (1—2ca+c?B)||wllf
where the last inequality uses |Ry Aw||y = |[Aw|v+ < B||w||v and
—2¢(w, Ry Aw)y = —2¢(w, Aw) = —2ca(w, w) < —2cal|w|*
As a, f > 0, the constant is minimized by ¢ = § for which we get ||T¢ <

(1 — g—j) < 1, s0 T, is a contraction. Hence by the Banach fixed point theorem

and the fact that U is a Hilbert space, it has a unique fixed point, so we are
done. |

11
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Next, we apply the same idea to give a (to our knowledge novel) proof

of In this case, attempting to define the map 7T, from the
Richardson iteration for the problem Ry Au = Ry f will not work, as u € U, but

Ry (Au — f) € V. However, by applying the adjoint A* and preconditioning by
Ry, we get back to U again and the method works.

U*TV

In effect, this corresponds to (ignoring Riesz maps for legibility) solving the
normal equations A*Au = A* f instead of Au = f. The inf-sup conditions will
be seen to ensure that these are equivalent.

Proof. Let f € V* be arbitrary. As before, let A : U — V* be the operator so that
a(u,v) = (Au,v)y, and A* : V — U* its adjoint, meaning a(u,v) = (u, A*v)y.
Define A’ : V* — U by A’ = RyA*Ry. As Ry, Ry are isometries, ||A’|| = ||A*.

Finding a solution to the weak problem is then equivalent to finding an f for
which Au = f. Observe that the boundedness condition implies ||A], [|A*]] < 3,
and that the inf-sup conditions imply that ||Au||v+ > «allullu, [|[A*v||v > af|v]|v-.
In particular, A* is injective, so A’ is too. For ¢ € R, define T, : U — U by

Tou=u—c(A"Au— A'f)
Defining w := w1 — uo, we see that if ¢ > 0,
Tt — Teaia [ = leol326(A' Aw, w)y + 2| A Awl?, < [wlf (1 - 2ea® + 25%)
Here, we used that

(AIA’LU,U})U = (RUA*R\/A’IU,A’LU)U = <A*RVAw,w>U == <RvA’LU, Aw>v*

= (Aw, Aw)y+ = [|[Aw][T- > o®|Jw]7.

The constant is minimized by choosing ¢ = g—i, for which we get

4
(@]
nnw%svﬂ%@—ﬁg.

This constant is evidently less than one, so T, is a contraction. Per the Banach
fixed point theorem, it must therefore have a unique fixed point ug, for which
A’ Aug = A'f, meaning that A’(Aug — f) = 0. As A’ is injective, this means
that Aug = f, showing the existence of a solution. The bounds on the solution
follows from the fact that «|lul|ly < ||Au|v+ < Bllully, so we are done.

The converse implication is straightforward, with the inf-sup conditions
established by the argumentation just before [Theorem 1.3.3] and the boundedness
following from the fact that for any u, defining f = Au we have that u is the
unique solution of Au = f, per assumption satisfying %”fHV < o |
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We emphasize that in the course of the proof, both inf-sup conditions were
used, with the one where the supremum is over V' used to establish that T, is
a contraction, and the one where the supremum is over U is used to establish
injectivity of A*.

Finally, we present the celebrated stability result of Brezzi for (symmetric)

B*
B 0)
which can be written in the weak form as, ((u, p), (v, q)) = a(u,v)+b(v, ¢)+b(u, p)
for some bilinear forms a : U xU - R, 0: U x Q — R

Theorem 1.3.4 (Brezzi, [29]). Let U, Q be Hilbert spaces, and a(u,v),b(v,q) be
bilinear forms, and a is symmetric. Define the bilinear form

saddle point problems, i.e. problems whose operator takes the form

aSP ((uap)a (Ua Q)) = a(u, ’U) + b(U, Q) + b(uap)

and let B : U — Q* be the operator so that b(u,p) = (Bu,p). Let K = ker B.
Suppose a,b satisfy the following:

e au,v) < Ballullooll for all u,v € U

o b(u,p) < Pollullulplq for el p,uelU

o inf supa(u,v) > a,
ueK veK

o inf sup 2P > o
lullullplle =
pEQ uelU

Then there exists a constant C' depending only on Bg, By, q,ap S0 that the
problem of finding (u,p) so that asp((u,p), (v,q)) = ((f,9), (v,q)) is uniquely
solvable for all (v,q) € V x Q, with the solution (u,p) satisfying ||(u,p)|lvxq <
ClICf Plvexaq--

Remark 1.3.5. Something very similar to a converse to the above theorem is also
true: if the problem with a,, is uniquely solvable with a bound é, then both
inf-sup conditions hold with «; = a. The reason this is not quite a converse
because the constant C' above need not be é For an explicit bound on this

constant, see [113].
Interestingly, although can be used to characterize stable

discretizations for a saddle point problems, the resulting characterization is not
sufficient to ensure stability of the associated eigenvalue problem, and additional
conditions may be required, as established in .

1.3.2 Restricting stability results to a discrete subspace

As observed in e.g. , Lax-Milgram “plays nice” with conforming discretizations
U, C U in the following sense: given a bilinear form b, let A : U — U* be the
operator u — b(u,—). From k(A) = ||A||[|A~!]|, we see that if b satisfies the
hypotheses of Lax-Milgram, we have x(A) < g Now, if our discretized operator

13
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bp : Up x Uy, — R is simple restrictiorﬂ of b to Uy, both the properties in the
hypothesis of Lax-Milgram remains true over Uy, meaning that x(Ap) < (A).
Hence, in a certain sense, discretizing a problem to which Lax-Milgram applies
will never make it harder.

However, the hypotheses of are not inheritable by discrete sub-

spaces. While the coercivity and boundedness constants of can be
characterized by expressions of the form inf,cy f(u) or sup, ,err 9(u,v), the inf-
sup conditions in the hypotheses of [Theorem 1.3.1] take the form inf sup h(u,v).
uclU veV

Hence (when U, C U, V), C V), although irl}f < ierlf and sup > sup, there is no
h U Un

corresponding inequality relating inf sup and inf sup.
U v Un Vi
This means that for a general well-posed continuous problem, we cannot say

from alone whether discretizing by a conforming discretization
will make it easier or harder, and it may (and empirically does) depend on

the form of the problem and the discretization. Because is an
equivalence, this shows that we cannot find “one discretization to rule them all”,
but are inevitably forced to consider the problem when discretizing to ensure we
do not ruin well-posedness properties.

Even in the case where we have chosen a good discretization so that the
discrete problem is actually well-posed, however, it is not obvious that its solution
must be close to the continuous solution. Fortunately, up to a constant relating
to the well-posedness of the problem, the continuous and the discrete solutions
are as close as they could be. This is guaranteed by Céa’s lemma when the weak
form is coercive, but we give here a slightly more general result from [113].

Theorem 1.3.6. Suppose U, C U, V;, C V' are discrete spaces so that the weak
problem given by a : U x V. — R is well-posed both in the discrete and the
continuous case, in the sense that there exists a constant a; so that for any
fi € V¥, there exists a unique u; € U; so that Au; = f;, with ||u;||y, < fil
both for V; = U, Uy,.

Then, for any f, if we let u € U be the solution of the continuous problem
and uy, € Uy, be the solution of the discrete problem (where f is simply restricted
to Vi, ), we have

L .
(673 Ui

lall .

uU—u <-— inf ||lu—w

Ju=unly < 0 inf flu = vallo
To prove this, we require the fact that if P is linear, idempotent (P? = P),

with P neither being zero nor the identity (i.e., when P is a nontrivial projection),

we have ||I — P|| = || P]|. A discussion of this identity with several proofs is found

in [102].

Proof (From ) Let P: U — Uy be the map u — uy, i.e. sending any u to
the uy such that a(up,vy) = a(u,vy) for all v, € V3. Evidently, it is linear and

SObserve that this is not the case if, for example, a mesh-dependent stabilization term is
added to the problem, as is the case for SUPG methods for the convection-diffusion problem.
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Stability of weak problems

idempotentﬂ First, observe that w —uy, = (I — P)u = (I — P)(u — vy, for any vy,.
Hence, [|u—unll = [[(I = P)(u—wvn)llu |SH||—7—PHUHU—UhHU = [IP[llw = vnllu-

We therefore only need to prove [|P|| < %, which follows from
1 1 ol
[Pully = [lunllv < —fllv; < —fllo < —lullv
Qp Qp ap

1.3.3 Parameter-independent stability and weighted spaces

Observe that if a, 3 are the constants of [Theorem 1.3.1} we have k(A) =
A[[JA=H] < g Recalling the discussion of |Section 1.2) we see that we may
efficiently invert an operator satisfying the hypotheses of [Theorem 1.3.1] using
the Riesz map. The number of iterations required is roughly speaking linear in
the condition number, meaning that we also require that § is not too big and «
is not too small.

Suppose we are solving a problem which involves some material parameter p,
which may appear in the problem operator A. The constants «;, 5 above can then
turn out to depend on pu, meaning the condition number does too. It can, then,
happen that the condition number becomes large for some values of 1, meaning
that our iterative method for solving it will be inefficient for those values of .
Although the problem is stable in the sense that the hypotheses of
are satisfied, this situation is clearly unsatisfactory. If we avoid it, meaning that
we can choose our space so that the constants «, 8 are independent of u, we
shall say that the resulting preconditioner is parameter robust to variations in pu.

A natural way to obtain a parameter robust preconditioner is simply to
incorporate the parameter into the definition of the problem space. In the
framework of operator preconditioning, the preconditioner will depend on the
problem space, meaning that it can incorporate the dependence on the problem
parameters.

For a Hilbert space V, and a positive number ¢, we define the weighted space
¢V to be the space consisting of the elements of V', with norm ||ul.y = ¢|ju||yv.
Evidently, the norm of ¢V is equivalent to the norm of V', but the equivalence
constants will involve ¢, making it a natural way to “factor out” dependencies
on problem parameters.

Additionally, for Hilbert spaces U,V contained in some common ambient
space, we also define the space U NV and U + V with norms

lullZew = Ilullz + flul?, [l = wel |2, + lluzll,-
u:u’1+u2

Then (¢V)" = 1V* and (UNV)" = U* + V*. With these definitions, it is

(&
often possible to define spaces in which the material parameters do not appear

in the stability constants, as the example in the next section will show.

If U =V and a(-,+) can be thought of as an inner product, P is just projection from
U — Uy, in the a-inner product, but the result also holds in the general case.
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1. Introduction

We remark that the consideration of very large or very small parameters is
not purely of theoretical interest. In applications such as biomechanics, problems
coupling behavior at differing length scales can involve parameters spanning
many orders of magnitude. As shown in coupled problems involving
the dm-scale macro-circulation to the pm-scale microcirculation can involve
parameter variation of order 10'° arising from the large difference in length
scales of the coupled problems. In order to solve such problems, preconditioners
which are robust across a large span of the parameter space are therefore of
paramount practical importance. Parameter dependence can also become a
practical necessity for problem formulations involving e.g. discretization or
stabilization parameters. See for some examples of such cases arising from
virtual element method formulations.

1.3.4 Example: Stability of the primal and mixed Poisson
problem

To make this concrete, we will apply our stability results to the primal and the
mixed form of the Poisson problem —uAp = f on a compact, smooth domain €.
For simplicity, we suppose we have the homogeneous Dirichlet condition p = 0 on
all of the boundary, which corresponds to considering the space H}(2) instead
of H*(£2). For readability, we omit 2 from our notation where appropriate.

Write a,(p,q) = fQ uVp-Vq, L(q) = [, fq. Then the weak form of our
problem is to find p € H () so that a,(p,q) = L(q) for all ¢ € H}(2). From
the similarity of the weak form to the H! inner product, it seems plausible that
the problem will be stable in the H'-norm. We will show that it is stable on the
space /uH?.

Indeed, recalling the Poincaré inequality ||ul|?. < C||Vul|32, where C' is a
constant depending only on the domain, we see that

ap(p,p) = plIVpllze = IVPl2 502 = Dlpll s
where D = $min{1, £} only depends on 2. This establishes coercivity with
constant a = D. From the Cauchy-Schwarz-inequality, we have

ap(p,q) < pllplleellglle < plipllallallar = pll e lall ymar

establishing boundedness with constant § = 1. Hence the Lax-Milgram theorem
shows that the problem is stable on \/ﬁHl(Q), and letting A be the operator
associated to a,, we have r(A4) < g = %, which depends only on the domain.
Thus, using the Riesz map of \/uH I as a preconditioner, we get an efficient
iterative method.

We remark that if we had instead used the space H', ignoring x, o and 3
would both include a factor u, meaning that our bound on k(A) remains the
same even with the unweighted space. To see that this is not always so, consider
instead the mixed version of the problem, obtained by writing u = —Vp. This
takes the form pV -u = f with the additional constraint that u = Vp, with the
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Stability of weak problems

weak formulation given by
am((u,p), (v, q)) = / pa-v 4+ pV v+ gV -u, L((v,q)) = / fa.
Q Q

This is a symmetric saddle-point problem to which can be

applieﬂ We will show that a,, satisfies the hypotheses of the criterion on
the space \/fH (div) x ﬁLZ, showing that the problems are well-posed in the
corresponding norms. As will be clear from the proof, this choice of spaces and
weighting can be motivated by looking at what operators should be bounded,
and choosing the spaces of their arguments so that they are.

Write a(u,v) = [, pu-v, b(u,p) = [,pV -u. First, we see that by the
Cauchy-Schwarz inequality,

a(u,v) = (u,v) mrz < [[ul| mrellvllyaze < lullyzar@nlIvVILEe @y

Hence a is bounded with constant 5, = 1. Similarly,

b<u7p) = (V . uap)L2 S ||V : u”L2 ||pHL2
= IV ullymeellpl o 22 < lallymm @ 1Pl 2 22

showing that b is bounded with constant 8, = 1. Next, we show that a is
coercive on the kernel of b. If u is in the kernel of b, then V - u = 0, hence
||uHH(diV) = ||ul|2. Therefore

a(u,w) = [[ull? e = Il s ai),

so a is coercive with o, = 1.

Finally, we need to establish the inf-sup condition, which in some sense is
the hard part - while the other conditions followed naturally from our choice of
space, the inf-sup condition does not. To do this, we need a right inverse to the
divergence operator.

Lemma 1.3.7. Suppose ) is a smooth, 2D compact domain. For any p € L*(2),
there exists a u € H (div, ) so that V -u = p, and ||u| g(4iw,0) < C|p|lL2(0) for
some constant C' depending only on ).

Such a u can e.g. be obtained by solving the Poisson problem —A¢ = p,
and setting u = —V¢. Provided we have a bound ||@||z1(q) < C||p||L2(q), this
then yields that [ul| g(giv,0) < (14 C)|[pllz2(q). We remark that the existence
of a right inverse is complicated slightly in the case where we have Neumann
conditions on p instead of Dirichlet conditions, as they then translate to Dirichlet
conditions on u. In this case, we must modify the solution u defined above to
ensure it is in HE (). Another source of complication is when the boundary is
not smooth. For a thorough treatment of these difficulties and a proof, see e.g.

[g).

80bserve that irrespective of our choice of space, [Theorem 1.3.3|does not apply to am -

because am ((0,p), (0,p)) = 0, for all p, am will never be coercive.
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1. Introduction

The above lemma lets us define a linear map E : L?(Q) — H (div,Q)
sending any ¢ € L%() to the function u defined by the above lemma. This is,
essentially, all we need to prove the inf-sup condition. To properly handle the
parameter weighting and to demonstrate a general approach we shall use later,

we complete the proof in a slightly cumbersome way. Given any ¢ € ﬁLQ(Q),

— pp-1 -1 . 172 200)) : :

let u, := ERﬁqu’ where RﬁL2 c ol () — /uL?*(Q) is the inverse Riesz

map. As the Riesz map is an isometry, we have that ||R%1quu\/ﬁL2 = HqHﬁLz.

Thus ||[ER™'q|| juraiv) < C’HR%Lz(IH\/ﬁLz = C||q||ﬁLz. Further, note from

the definition of the Riesz map that (V -ug,¢)2 = (Rileq, q) = [lqll .-
" L2 Iz

Hence, we establish the inf-sup condition with constant ap = %
(v - u, Q)LZ (v - Uqg, q)L2 ||q||%2

1
sup > = > —llqll L2
u HUHH(div) ”uqHH(div) g ||z (aiv) C

From the lemma, C' is here some constant depending only on Q. As (., By, (g
were all 1, we see that all our constants are independent of . Hence the bound
on the condition number of the problem operator, being expressible in terms of
the constants, must also be independent of u, so we are done. As we have shown
that the problem is well-posed on the space V' x Q := \/uH (div) x L2 the

Vi
appropriate operator preconditioner is

(I, q>>_1

To emphasize the role of the norms in our argument, let A : V — V*
where V = \/ﬁHé be the problem operator for the primal Poisson problem
mapping p — @, (p, —). Then Ap = —Vp. In the above, we proved that A has a
continuous inverse as a map V' — V* by proving that it is bounded and coercive.
The choice of space V is core to this property and to our argument. To see this,
note that the operator —V, understood as a (partial) map L? — L2, will in
general be unbounded, as its spectrum is unbounded. This does not contradict
what we have showed, as H! is a stronger norm on the domain of A than L2,
and (H')* is a weaker norm on the codomain than L? meaning that A can be
unbounded as an operator A : L2 — L? despite being bounded as an operator
H'! — (H')*. This distinction highlights the importance of being clear about
the domain and codomain of the operators we are working with.

1.4 Enforcing boundary conditions with trace operators

Suppose we want to enforce the boundary condition © = f on (some subset
of) 99 for a general PDE written in the form Au = f. A common way to do
this is to choose an arbitrary function F' on 2 which equals f on 02, introduce
the new unknown wug := u — F, and instead solve the problem Aug+ AF with
the condition ug = 0 on ). This homogeneous Dirichlet condition can then be
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Enforcing boundary conditions with trace operators

enforced by encoding it into the function space used, as the set of functions
satisfying it form a vector space, unlike in the inhomogeneous space. Accordingly,
we can define, say, the space H{(Q) of the functions in H'(Q) which are 0 on
the boundary. In the discrete case, this is often easy, as restriction to this space
simply corresponds to dropping the degrees of freedom on the boundary.

Although the above is very practical from an implementational point of view,
we shall later be interested in a way of imposing boundary conditions which
is easier to couple with other problems. This becomes important when, for
example, we want to use knowledge that a problem is well-posed on its own
to prove well-posedness of the coupled problem, where the normal boundary
conditions are replaced by coupling conditions to another problem. Accordingly,
we will in this section develop tools for enforcing the constraint u = f on 0f2
directly in the formulation of the weak problem, meaning they do not need to be
encoded in the function space of u. Another method which also avoids needing
to modify the function space of u is the widely-used Nitsche’s method, which
accomplishes this through the introduction of a mesh-dependent term in the
variational form. As we will not use Nitsche’s method in this thesis, we refer the
reader to e.g. for an introduction of the method and an overview of some of
its many applications.

A proper description of the trace operators we will need requires defining the
fractional Sobolev space H%®(99) of one half times differentiable(!) functions.
Because this is somewhat technical, we will first motivate trace operators by
explaining how we plan to use them. Let us suppose we can define a bounded,
surjective operator T : H}(Q) — X which restricts u to its boundary value u|q.
(We will later explain why this is not obvious.)

Suppose also that some weak problem a(u,v) = (f,v) is well-posed for u,v €
H} (). Consider now the saddle point problem ar ((u, ), (v, 1)) = (f,v)+{g, i),
where

ar ((u’ )‘)7 (U’M» = a(u’v) + <TU’M> + <)‘>TU>'

Here the function space has been enlarged from H{(Q2) to H'(2), and an
additional unknown A has been added. In the case where a is symmetric, the
problem of finding u so that a(u,v) = (f,v) for all v € H}(Q) is equivalent to
minimizing J(u) := (Au,u) — (f,u) over u € H}(Q), and the problem defined
by ar can be seen as minimizing the same functional over all of H!(f2), with
the constraint 7w = 0 enforced by the Lagrange multiplier A.

In this respect, we may think of the problems as being the same, differing
mainly in whether we we want to enforce the constraint Tu strongly or weakly.
The following lemma justifies this, and is a straightforward application of Brezzi
theory. For ease of notation we do it in full generality.

Lemma 1.4.1. Suppose T : U — X* is a surjective, bounded operator with

kernel K, and that A : U — U* is a bounded linear operator which restricts to

Ap : K — K*. Define the block operator Ar := ? T ) Ux X - U* x X*.

Then Ar has a bounded inverse if and only if Ay does.
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1. Introduction

Proof. Define a(u,v) := (Au,v)y and ar ((u, N), (v, p)) := a(u,v) + (Tu, p) x +
(Tw,\)x. By [Theorem 1.3.4] A admits a bounded inverse if and only if a

satisfies two inf-sup conditions on K x K and T satisfies the inf-sup condition
inf sup HGA > «. Because T is surjective and bounded, it admits a

bounded right inverse E, meaning that setting u = ER)_(1 W we get

T TERY 2 1
inf sup LMoy (TERx o) e lellx

> in - > =
nexuev [ullullullx = wex |ER pllollullx — wex [E[Mul%  [1E]

Hence T satisfies the requisite inf-sup condition with constant m

that A7 admits a right inverse if and only if a satisfies the two inf-sup conditions

on K, which by happens if and only if Ay admits a bounded

inverse, so we are done. |

This means

This lemma acts as a guarantee that we are free to enforce a boundary
condition of © = 0 on the boundary as we like - if the problem is well-posed when
we enforce it strongly by only considering test functions u € H}(Q) = ker T, it
will also be well-posed if we enforce them with the Lagrange multiplier A\. This
is not much of a surprise, but means that when we couple multiphysics problems
together by use of problems where the boundary condition is enforced with a
multiplier, we cannot end up losing well-posedness.

1.4.1 Trace operators and fractional Sobolev spaces

It is easy to miss that the condition u = f on 0f) is not necessarily well-
defined in the context of weak problems whose solutions lie in Sobolev spaces.
Indeed, the element of such spaces are not “normal” functions f : Q2 — R, but
“generalized” functions, or rather equivalence classes of normal functions defined
by an appropriate norm. For example, L?(£2) consists of all functions on £ whose
L2-norm is finite, where functions with zero L? norm are identified. (Otherwise,
the resulting norm would only be a seminorm.). As | f[|7. = [, f?, we see that
modifying f at a single point (or, indeed, at a set of measure zero) will not
change the norm, and accordingly, evaluation at 92 cannot be well-defined for a
general u € L*(Q).

Because the H! norm would be changed by modification at a set of measure
zero, it seems plausible that requiring more regularity will let us restrict our
functions to a set of measure zero, and indeed we shall later see that H' functions
are regular enough that a trace operator can be defined, yielding the following
theorem:

Theorem 1.4.2 (Trace theorem p. 1.5.1]). For a domain Q@ with Lipschitz
continuous boundary, there exists a surjective, bounded operator T : H'(Q) —
HO5(082) which is simple restriction on the subspace of smooth functions. Ac-
cordingly, there exists a bounded right inverse E.
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Enforcing boundary conditions with trace operators

Evidently, a proper formulation of the above requires a precise definition
of the fractional Sobolev space H5(9Q). Before doing so in the next section,
however, we remark that a common “introductory” version of the trace theorem
given in e.g. has L?(99)) as the target space, sidestepping the need for
introducing fractional Sobolev spaces. While conceptually simpler, this will not
be suitable for our purposes. The reason for this is that although T remains
continuous (as we are weakening the norm), it is no longer surjective, as we are
enlarging the space. Accordingly, T will no longer have a right inverse, and the
proof of will not go through. In order to use our desired approach to
model multiphysics problems, we require a space which accurately characterizes
the image of H' under the trace operator, making fractional Sobolev spaces a
necessity if we want our multiphysics problems to be well-posed.

We remark that although the condition that Q has a smooth boundary is
necessary, similar results hold in cases where this condition is relaxed. See, for
example, Section 1.5.2] for a similar result in the case of a plane polygon,
which is not smooth at the corners.

1.4.1.1 H? via Fourier series

The space H® for 0 < s < 1 can be defined in multiple ways, and the interested
reader is referred to for a general overview, and to for an in-depth
treatment of the two definitions we give in this section. In this section, we
shall motivate a definition in terms of the Fourier transform, sacrificing some
generality in the interest of intuition.

To begin with, recall the definition of the Fourier transform of an absolutely
square-integrable function f(z) : R — C as f(£) = = [0 f(z)e "¢ dx By
integration by parts and integrability, it then follows that f’(&) =icf (), or
more generally that f(")(€) = (i€)"f(¢). This means that up to a constant,
differentiation in the real domain becomes multiplication by the Fourier variable
in the Fourier domain. This suggests that we may perform “half a differentiation’
by multiplying by (zf)% in the Fourier domain.

)

2
L2s

s

af
dx

If we intuitively want a H® norm to be of the form || f||3;. = || f||%. +]|
similarly to the H' norm, this suggests that we define a norm H*® by

1£11%+ :[ (L+[EP)IF©)F A& = 11172 + 11€)° f 7

Although we here assumed that f was a function of one variable, a similar
definition may be carried through in the Sobolev space setting when f is a
distribution on R™. See Section 3.1, Proposition 3.3] or Section 4.1] for
a rigorous treatment.

1.4.1.2 H? via eigenvalues of the Laplacian

In this section, we shall motivate a second definition for fractional Sobolev
spaces made by considering eigenvalues of the Laplacian. We refer the reader to
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Lemma 4.11] for a result establishing equivalenceﬂ between this definition
and the one given in the previous section. First, observe that for any u €
H'(Q), (u,—)r2 is a linear functional on Hg (). Accordingly, we can define a
linear operatoﬂ S HY(Q) — HH(Q) so that (Su,v)g = (u,v) 2, where now
(a,b)gr = (Va,Vb)pez. ChooseEl an orthonormal basis of H! of eigenvectors
e1,...of S with corresponding positive eigenvalues A1, .. .. Now, for an s € [—1, 1]
and any u € H', write u = >, cieq, and define

[ PP
7

Evidently, for s = 0 we get the norm on L?, and for s = 1 we get the norm
on H}. Accordingly, we may think of the space defined by the norm resulting
from numbers 0 < s < 1 as being more restrictive than L2, but not quite as
restrictive as H}. We remark that one advantage of this definition is that it is
reasonably straightforward to implement, as it is defined in terms of eigenvalues
of the operators we are interested in for operator preconditioning.

1.5 Multiphysics problems

In this section, we introduce the idea of a multiphysics problem, which is a
problem involving multiple kinds of physics. We give the coupled Darcy-Stokes
problem as example. Having done so, we move on to describe a general approach
to a formulation of the coupled multiphysics problem, and give results proving
its stability conditional on stability of the subproblems. We conclude with a
review of other possible solution approaches to multiphysics problems.

1.5.1 The Darcy and Stokes problems

For simplicity, we consider an incompressible fluid which is therefore of constant
density. Suppose we want to model fluid transport in soil or some other porous
solid. This can be done by the Darcy equations, which assert that the amount of
fluid moving through a patch of soil is proportional to the pressure difference
across it. Writing u for the (vectorial) fluid velocity at a point and p for the
pressure, they read as follows:

Hu—Vp:O (1.5)
K

V-u=0 (1.6)

9We emphasize that this should be understood as equivalence of norms, not equality of
norms, which we in general do not have. See Example 4.15] for an example demonstrating
this.

10Heuristically, from the identity (—Au,v) 2 = (Vu, Vv) 2 + boundary term, we see that
S can be thought of as being similar to (—A)~!. Note, however, that the identity is only valid
for sufficiently smooth functions.

1 Such a basis exists because S is self-adjoint and compact, and hence diagonalizable.
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Here, the first equation enforces conservation of momentum and decribes the
relationship between pressure differentials and the resulting water movement,
while the second equation enforces conservation of mass. The material parameters
involved are the wviscosity p of the fluid, which describes how thick it is, and the
permeability x of the soil, which can be thought of as measuring how much of
an obstacle it presents to the fluid. Plastic is very impermeable, which is why
we can make buckets out of it, while paper is more permeable. We see that the
thinner the fluid and the more permeable the solid, the easier it is for fluid to
move through the soil.

Consider now how the fluid will move if we remove it from the porous medium
and place it in a bucket. In the bucket, there is no soil the fluid has to move
through, and we might imagine that this would be described by letting x — oc.
However, Darcy’s law is no longer valid in this regime, as it would make no sense
for the fluid to reach an infinite velocity if lightly tapped. Under this regime,
the celebrated Navier-Stokes equations govern the motion of the fluid:

)
pa—ltl = —p(u-V)u— Vp+ pAu (1.7)
V-u=0 (1.8)

Again, the first equation enforces conservation of momentum, and the second
equation enforces conservation of mass. Provided the fluid velocity is not too
greatEl we may disregard the inertial term and be left with the Stokes equations,
which are linear:

—pAu—-Vp=20 (1.9)
Vou=0 (1.10)

A way to think about the differing regimes is that in both regimes, the
fluid resists being moved. In the the porous flow regime governed by the Darcy
equation, the primary component of this resistance is the fact that in order to
move, the fluid needs to go through the medium, which is fixed, so when the
fluid is pushed by a force, the medium pushes back. Under the free flow regime,
there is no medium, and the viscosity of the fluid itself becomes more significant.

We remark that both problems are incomplete as they stand, in the sense
that they do not determine a unique solution and hence are not well posed. To
obtain uniqueness, we must supplement the equations by appropriate boundary
conditions.

We also remark that the Darcy problem is essentially just a vectorial version

of the mixed Poisson problem discussed in Accordingly, the
appropriate function space for the Darcy problem in the sense of operator

preconditioners is (u,p) € /EH (div, ) x \/%[P(Q), meaning the operator

12More precisely, that the Reynolds number is not too high.
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preconditioner becomes

If one tries to apply [Theorem 1.3.4]in the same manner as we did in [Section 1.3.4]

it will be seen that the appropriate function space for the Stokes problem is
(u,p) € \/ﬁHl(Q) X ﬁLQ(Q). Hence, the appropriate operator preconditioner

(—i(A)_l ufl)

1S
1.5.2 Brinkman problem

The Brinkman problem is, effectively, an interpolation problem between the
Stokes and Darcy problems.

—vAu+ %usp:O (1.11)
V-u=0 (1.12)

Here, v is the effective viscosity, u is the dynamic viscosity, and K is the
permeability. Writing this in block form, we see that it looks like

(e )6 =)

where a = v,b = £ can, perhaps, be thought of as weighting the Stokes and
Darcy operators - for b = 0 we get a Stokes problem, and for a = 0 we get a
Darcy problem. The Brinkman problem models flow which is neither entirely
free nor entirely porous. It can also be used as an alternative multiphysics
model to the coupled Darcy-Stokes problem we shall define in the next section
by having these material parameters vary in the domain. For example, we can
let @ = 1,b =0 in the Stokes region, and a = 0,b = 1 in the Darcy region, or
to avoid a discontinuity have a, b vary smoothly, although the latter comes at
the cost of somewhat obscuring exactly what kind of physics we are prescribing
near the interface. However, finding a suitable finite element which is robust in
all parameters becomes harder, as we effectively require it to work both for the
Darcy and the Stokes subproblems. Examples of such elements are given in

85).

1.5.3 The coupled Darcy-Stokes problem

Although the problems described in the previous section model porous and free
flow well individually, examples abound of physical systems in which the water
transport is neither entirely porous nor entirely free. For example, in a porous
rock with open cracks, the movement of water in the cracks will be characterized
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by the Stokes problem, and in the rock, it will be characterized by the Darcy
problem. Hence, in order to model the cracked rock, we need to solve the coupled
problem consisting of both the Darcy and the Stokes problem alongside coupling
conditions describing the interaction between the two.

Denoting the domain modeled by the Darcy problem by €2,, the domain
modeled by the Stokes domain by €2y and their common interface by I', the
coupled problem reads as follows:

1 .
i Vpp, =0 in Q,, (1.13a)
Vou, =0 in Q,, (1.13D)
—pnAuy —Vpr =0 in Qy, (1.13¢)
Voup=0 in Q, (1.13d)
u,-npr —uy-nr =0 on I, (1.13e)

811f
,ua—nr ‘nr+pr=pp on I, (1.13f)
0

—ua—zljiﬂ'—Duf-‘r:O on I (1.13g)

Observe here that [Equations (1.13a)|to|(1.13d)|are just the Darcy and Stokes
problems on their respective domains. [Equations (1.13e)| to |[(1.13g)| are the
coupling conditions, with [Equation (1.13e)|enforcing conservation of mass and
|[Equation (1.13f)|enforcing balance of stress. As a third interface condition is
required to have a well-posed problem, we also include [Equation (1.13g)| the
Beaver-Joseph-Saffman condition. It was originally based on experimental data,
though has since been theoretically justified as a transition condition between
porous and free flow regimes. See for a theoretical justification and a review
of its history.

We also remark that, again, the resulting system must be completed by
boundary conditions on the rest of the boundary. However, observe that on the
interface, we do not enforce a boundary condition, reflecting the fact that we
do not prescribe, but want to model, what happens there. A priori, it is not
obvious that resulting system is well-posed, and we shall treat the question of
whether it is in

1.5.4 Coupling multiphysics problems with Lagrange multipliers

In this section, we develop an abstract formulation of the coupled multiphysics
problem and give a stability result for it in The reader is
encouraged to keep in mind the Stokes and Darcy problems coupled via the
normal trace as a motivating example. Suppose we have two individual problems
(¢ = 1,2) described by the operators A; : U; — U; acting on function spaces U,
each problem modeling a kind of physical behavior, and that we want to pose the
coupled problem jointly modeling the two kinds of physical behavior. Suppose
also that we have operators T; : U; — X so that the coupling conditions of
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interest between the two problems take the form Tiu; + Tous = 0, read as an
equality in (X7 N X3)". Recalling that we may enforce the condition Tju; = g;
weakly by solving the problem

(Ai Ti*) (u1> = (fl) on U; x X;
T; Di gi

we see that the condition Tiu; + Thus = 0 may be enforced by solving

Ay 7\ (w bil
A2 TQ* (%) = f2 on U1 X U2 X (Xl N XQ) (114)
T T D 0

A natural question to ask, then, is what hypotheses are required on the
subproblems A; for the coupled problem to be stable in the sense of
Evidently, we must have stability of each subproblem, but as will be seen in the
following example, this is insufficient.

Example 1.5.1. To see this, choose any two vector spaces M, N, and let U =
M x N with projection operators 7y, wn. Let now A : U — U* be defined by
(Au,v) = (mpru, mpv) v, and B 1 U — N* be defined by (Bu,n) = (mnyu,n)n.
Then by Brezzi theory the problem

(5 ") ()= G) e

is trivially stable. However, if we couple together two copies of this problem in

the manner of [Equation (1.14)) we get the problem

A B* U7 fl
A B* us | = fo] onU xU x N,
B B n g

which is not well posed. Indeed, the coupling condition now only imply that
TNu1 + Tnue = 0, meaning that we may add (resp. subtract) any n € N to uy
(resp. ug). Because A; = m); cannot see the effect of this at all, the problem
operator cannot in general be injective, and the solution is only determined
in the case where fi, fo € U" agree on N, and even then the solution is only
determined up to a constant in V.

In this case, we see that the information added by the projections was essential
to the solvability of the problem, as can be seen by considering the problem
A;u; = f;. Although it is solvable if considered as a problem in M™* alone, it is
not solvable on all of U*.

Although the above example is quite artificial, consider also the following
similar-looking, yet more natural example:

Example 1.5.2. Suppose that Q is a disk, split into two parts 21,5 along a
diameter I'. Suppose we were to write up the Poisson problem on (; as an
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operator A; with right hand side f;. Then, letting T be the trace to I', it seems
plausible that the problem of finding a pair uq,us so that A;u; = f; for i = 1,2
and Tyu; = Tyug should be similar (if, as we shall see, not equivalent) to just
solving the Poisson problem on the full domain, which we have every reason to
think should be well posed.

In this case, we do not have the same problem. For normal definitions of
Aj;, the constraint T;u; = g; is not, in fact, required to solve the problem, and
can be substituted by e.g. a Neumann condition on I' instead. Accordingly, the
problem A;u; = f; is well-posed not only on the kernel of T;, but on all of U;,
meaning that we do not run into the issue described above, and the coupled
problem will be well-posed.

We remark also that the splitting procedure described above will not, in
general, actually result in something equivalent to the “whole” Poisson problem.
To see this, observe that in the “split” formulation, we may choose f1, fo so that
the solution wu1,us and test functions, although H' on either subdomain, need
not glue together to a function in H(Q; U Qy).

Note also that in the case where we only have Neumann conditions on the
boundary of €2, the coupled problem will only be solvable up to a constant, while
each subproblem will be fully solvable, seeing as we there have the condition
Tiu; = gi-

The above two examples show that coupling subproblems may break the
inf-sup properties of the diagonal block of the resulting coupled saddle-point
problem. However, the following lemma, proven in Paper 3 for the case of a
saddle-point problem, shows that the coupled problem satisfies all the other

assumptions of [Theorem 1.3.4]

A, TF
T;

U x X} admit bounded inverses Pfl. and satisfy the strengthene inf-sup
condition infyey, sup, ey, (Aiui, vi) > ag,infyey, supyey, (Aiui, vi) > ag,. Then
the map

Theorem 1.5.3. Suppose that each of the operators P; : ( (U x X —

A, Ty
AQ TQ* ZU1XU2><(X1 ﬂXQ)%UfXU;X(Xl ﬂXz)*
T 1T

has a bounded inverse, with constant depending only on ||P;||, || P; ||, .

Proof. By [Theorem 1.3.4] it suffices to show the diagonal block (Al A >
2

satisfies both inf-sup conditions. From the assumption that we have strengthened

I3Note that this condition is stronger than the assumptions of [Theorem 1.3.4] which only
assumes this condition for u,v in kerT;. The condition may be interpreted as A; being
invertible as an operator U; — U/, while invertibility of P; only requires it to be invertible on
ker T;.
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inf-sup conditions, these hold with constant min c;. It therefore remains to prove
1

the inf-sup condition

. (Thur, w) + (Touz, w)
inf  sup
X1NXo Uy xU2 ||wHX1ﬁX2 H(ulv u2)||U1><U2

w 0

Given any w € X7 N X, let uﬁﬂ = Pi_1 e where R; Xy — X[ s
Al Ry w :

the inverse Riesz map. Then by construction Tju; = R;(lw Because P[l is

bounded, we have that [[uf’|lv, < [P ||Rx wllx; = |27 | [w]x,-

Hence, we have that

sup (Tlulv w) + (T2u27 w) (Tluilva ’LU) + (T2u7207 'LU)
U x U |0llxynx, [[(uns u2) o <o, — lwllxynxs, [[(ws us)[lu, xu,
(Rx,w,w) + (Rx! w,w)

B Hw”XlﬂXg||(U?7U5))||U1><U2
wll%, + [[w]%,

Hw||X1r1X2||(u7iuvuéu)||U1><U2

e,
Hw||X1f7X2||(u1lu7u12u)”U1><U2

_ ||’UJ||X1mX2
(', ud)lvy v,

Now, because

)y, = B, + 1, < max [P (1R s + IRl )

= max [ P72 (ol + ol ) = max | P72l ox,

where we used that the Riesz map is an isometry, we have established the inf-sup
condition with constant m. Finally, stability of P; implies boundedness

of all the blocks by meaning that A;,T;, T} are bounded with
constants dependent only on [|P;][,||P;||. Hence we have established all the
A Ty

hypotheses of [Theorem 1.3.4) meaning that As T3 | has a bounded
T T,

inverse as desired. u

We remark that the above theorem may be applied also when U; are discrete
spaces. In this case, an advantage of the formulation is that it does not require
any consistency conditions between the discretization chosen for Uy, Us. Using
a term we will define in this makes the formulation suitable for a
monolithic non-unified method for solving the multiphysics problem.
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Example 1.5.4. We describe here how [Theorem 1.5.3] may be used to prove
stability of the coupled Darcy-Stokes problem, conditional on stability of their

subproblems and Dirichlet conditions being applied on some part of each sub-
problem boundary. Because a more thorough analysis is given in
we shall not explicitly describe the function spaces or norms the problems are
well-posed in.

We recall first the weak formulation of the Darcy and Stokes problems. If
written in block form, they will look as follows:

(& )G =) e (58 )G = (2)

Suppose we want to couple them with the interface condition uy-nr = u, -nr
on IE Recalling the normal trace operator T}, this condition is just T, uy—T,u,.
If we enforce these boundary conditions with the Lagrange multiplier A, the
Darcy and Stokes problems are equivalent to the following Darcy and Stokes
subproblems with Lagrange multiplier:

—& =V (T.)" u, f; —uAN =V (T,)* uy g1
V- Pp | = fQ and V- pf =1 92
T, A /3 Ty A g3
Writing

_n _ _
A1=<VI.( V>’ A2=<S.A V>’ h=-T,=1,

we seelEl that these problems are in a form to which [Theorem 1.5.3|applies. What

it shows is that the coupled problem

— 5 -V (T,)* u, fi
—pA =V (=T)* | |ur g1

V- DPp | = P
V- Py g2

T, —T, A h

is well-posed provided we have the strengthened inf-sup condition, and the
assumption that that the original subproblems were well-posed. The strengthened
inf-sup condition follows from the fact that the diagonal blocks % (u,,v,),
w(Vuy, Vvy) are coercive on all of ker V-, not merely on ker V NkerT,. In the

14Note that strictly speaking, the resulting system lacks a boundary condition for the Stokes
problem. For ease of exposition, we shall ignore it, effectively setting agjs = 0. Even though
this is nonphysical, including the condition does not substantially change the analysis, and the
reader is referred to Paper 3 for details.

15Here, we have abused notation slightly - strictly speaking, T} # T%, as their domains and
codomains are different.
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case of the Darcy problem, this is trivial, while in the case of the Stokes problem
we require our hypothesis of there being a nonempty Dirichlet domain, so that

the Poincare inequality can be applied. Note, by that this is
equivalent to the multiplier-less subproblems being well-posed.

1.6 Solution techniques for the coupled multiphysics
problem

In this section, we briefly sketch some approaches for solving a coupled problem
with unknowns w1, us coupled with some condition Tiu; = Tous. Heuristically,
when assessing strengths of the methods, we shall take for granted that we
understand the subproblems well, and that we have good methods for solving
them. Broadly speaking, such methods can be divided into monolithic approaches,
where the whole coupled problem is solved “all at once”, and separated or domain
decomposition methods, where the coupled problem is in some way decomposed
into subproblems. The subproblems involved in the decomposition are commonly
modified variants of the original subproblems the coupled problem were built
out of.

The main challenge involved in a monolithic approach is that an element
which work wells well for one subproblem is not guaranteed to work for the other
subproblem. As an example, for the coupled Darcy-Stokes problem, the P2-P1
element is stable for the Stokes problem, but not for the Darcy problem. Indeed,
many elements are stable for the Darcy problem precisely because they emulate
properties of H (div). As discussed in this is the natural choice of
space for the Darcy problem, but not for the Stokes problem.

Accordingly, if we want to use the same element across the entire domain in a
so-called unified approach, care must be taken to choose one which works well for
both subproblems. Although by design this will then result in a stable problem,
the use of novel elements means existing solvers cannot always be reused. Often a
custom element must be desigend for the particular coupling under consideration,
with e.g. doing so for the Darcy-Stokes problem. In the case of the
Darcy-Stokes problem, elements which are stable for the Brinkman problem can
also be used for a unified approach, with developing suitable elements.
develops a hybrid DG (HDG) method including unknowns also on the mesh
facets for the Brinkman problem robust in the material parameters.

An alternative to developing a custom element for the coupling being studied
is to use a standard element. As this will then be unstable, one needs to include
stabilization terms to have a well-posed problem. Provided one ensures these do
not artificially affect the solution, this can be a good way to obtain a well-posed
problem, with utilizing stabilized methods to solve the Darcy-Stokes
problem. [8] develops a stabilized formulation for the Darcy-Stokes problem that
they prove to be stable for all conforming elements, while gives a stable
hybrid DG (HDG) formulation with stabilization terms on the Stokes facets. For
other multiphysics problems, uses a P1-P1 element with interior penalty
stabilization to solve a fluid-structure interaction in modeling of the aortic valve.
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Alternatively, a non-unified monolithic approach may be used. In such
approaches, the problem is still solved monolithically, but differing discretizations
are used in the differing domains. This frees us from designing new elements, and
properly handling of the coupling at the interface becomes the main challenge,
with a result proving something analogous to generally being
required. A common technique for enforcing coupling conditions applicable to
many different kind of couplings is the use of Lagrange multipliers, with ,
being influential examples of how this can be done for the coupled Darcy-Stokes
problem, with developing a parameter-robust GMRES preconditioner. See
also [7] for a scheme for solving the Navier-Stokes-Darcy problem, and [1] for a
method solving a fluid-structure interaction problem coupling the Stokes and
the Biot problems via a Lagrange multiplier.

A formulation of the Stokes-Biot problem without an interface multiplier
is studied in [10], with both monolithic and domain decomposition solvers
considered. In [32], a domain decomposition technique is developed for the
Stokes-Biot problem, and investigated both as a solver in its own right and as a
preconditioner for a monolithic formulation, and shown numerically to be robust
in the problem parameters. The solver is then applied to physiological modeling
in [31]. In [109], Lagrange multipliers are used to enforce coupling conditions in
a problem from contact mechanics, and an AMG preconditioner for the resulting
problem is studied, with special aggregation operators defined to ensure the
multipliers are aggregated in a way consistent with the displacement variables.
considers an essentially arbitrary abstract monolithically coupled problem,
and defines a general AMG block preconditioner for it, showing experimentally
that it performs well over several widely different problems.

A technique deserving of mention in the context of monolithic approaches is
the introduction of auxiliary unknowns to obtain a “better-conditioned” formu-
lation, which can be illustrated in the context of the Biot and multiple-network
poroelastic (MPET) problemﬂ in poroelasticity. The weak form of the Biot
problem can be posed in a 2-field formulation, where only the fluid pressure and
the solid displacement are used as unknowns. However, in , this formulation
is found to be less parameter robust than a 3-field formulation in which an
additionaﬂ unknown called the total pressure representing a weighted sum of

16The Biot problem models porous fluid flow in a porous medium and its elastic deformation,
with the two phenomena coupled together. An example physical situation it describes is
squeezing the water out of a water-filled sponge, where deformation of the porous solid affects
the flow of fluid in it. The MPET problem can be viewed as a generalized version of the Biot
problem, where the solid can now contain multiple fluid networks. It can be used to build
macro-scale models of complex systems like brain tissue, where fluid networks like arterial
blood, venous blood, CSF and so forth can be modeled as separate fluid networks, each of
which can exchange water with each other and interact with the elastic deformation of the
brain tissue in which they are embedded.

17The fact that the introduction of an auxilliary unknown should make the system easier to
solve, and not harder, seeing as we are adding more degrees of freedom, might surprise the
reader. A digression, but hopefully also an illuminating analogy for how this can happen, is
our treatment of the abstract multiphysics problems in There, we also found
that the introduction of an auxilliary unknown A could “mediate” the interaction of two other
unknowns wuj,u2 coupling together in a challenging way by replacing the u; <> ug interaction
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the fluid pressure and the “solid pressure”, i.e. the divergence of the displacement.
Using this formulation, a robust solver and preconditioner is developed for the
Biot problem, and is shown to be viable in parameter regimes closer to the
incompressible limit than the 2-field formulation.

A similar technique is used in , where the introduction of an additional
unknown defined in a similar manner as in the above, and the resulting for-
mulation is shown to be parameter robust in a way the original formulation is
not. An alternative 3-field formulation for the Biot problem where the Darcy
velocity is introduced as a third unknown is used in to develop an operator
preconditioner with the displacement, fluid pressure and fluid velocity living in,
respectively, (parameter-weighted) H' N H (div), L? N H (div) and L? norms,
with the same authors extending their approach to the MPET problem in . In
, a 4-field formulation utilizing both of these unknowns is developed, yielding
a particularly simple set of stable spaces, with the displacement, fluid pressure,
fluid velocity and total pressure living in H', L2 H (div), L? respectively. The
introduction of additional unknowns to obtain a more pleasant formulation is
in no way limited to problems in poroelasticity. For instance, the Darcy-Stokes
formulation used in Paper 3 of this thesis can be viewed as a modification of the
one considered in Paper 4 to sidestep the difficulties therein. Other examples
abound in the literature, with including the curl of the flow to obtain a
formulation for the Brinkman problem which yields a block diagonal operator
preconditioner, and analyzing a formulation of the Darcy-Stokes problem
where the Stokes (psuedo-)stress is introduced as an auxiliary unknown in order
to obtain a stable discretization.

Subdomain decomposition is an iterative method in which we start with an
initial guess for the coupled solution, which is successively refined by alternatingly
solving the first and second subproblems in isolation. At each step, the condition
coupling the subproblem we are solving to the other subproblem is replaced
by a boundary condition derived from the current guess for the solution to
other subproblem. The resulting procedure yields an iterative method which
in the limit must satisfy the coupling condition. For an example application
of this method to the Darcy-Stokes problem with proof that the resulting
method converges, see , who compares it to an alternative scheme where
each iteration involves only computation at the interface, or see for an
example where the Navier-Stokes and Darcy problem are coupled together with
a Lagrange multiplier. considers a domain decomposition method for the
Darcy-Stokes problem where a stabilized formulation is used to obtain parameter
robustness, and gives some biological applications. Other authors using domain
decomposition techniques to solve the Darcy-(Navier-)Stokes system are [37]
. uses analogous techniques to different ends, developing a parallel
algorithm for solving the coupled Stokes-Darcy problem by partitioning the full
domain into numerous “fictious” subdomains used for computation, and then

with the two interactions uj <> A, uz <> A. This decomposition also, in principle, permits the

use of to show stability of the coupled problem, with the total pressure playing
the role of the Lagrange multiplier, although we emphasize that this is not the approach taken

in [78.
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using domain decomposition to solve the resulting problem iteratively in parallel
and doing extensive experiments to assess its conditioning.

The clear advantage of this method, as identified by , is that often, very
little modification is required to the subproblem solvers, greatly simplifying
the implementation and permitting reuse of good subproblem solver code. In
this way, a good preconditioner for the subproblems can be reused for the
coupled problem. However, in return, we are required to solve each subproblem
multiple times, which increases the computational cost. An analysis of the
convergence properties of the iterative method must also be performed, which
can be challenging and require tuning auxilaiary parameters. However, this
difficulty can be overcome to obtain modified systems where the number of
required subproblem solves is guaranteed to remain constant, as in .

We also mention the somewhat similar two-grid method introduced in [112],
and applied in for the coupled Darcy-Navier-Stokes problem, where the
coupled problem is solved on a coarse grid to obtain a coarse global solution,
which is then refined by solving two decoupled problems, yielding an algorithm
for the coupled problem which is shown not to lose order of approximation. See
also for other applications of this method to the coupled Darcy-Stokes
problem.

1.6.1 Unfitted mesh methods

It has long been recognized that several important classes of coupled problems
pose challenges for mesh generation. According to a 2003 survey @, “Mesh
generation is delicate in many situations, for instance, when the domain has
complicated geometry; when the mesh changes with time, as in crack propagation,
and remeshing is required at each timestep; when a Lagrangian formulation is
employed, especially with nonlinear PDEs.”. Another class of problems where
mesh generation becomes a challenge are fluid-structure interaction problems.
Indeed, accurately modeling the time-varying domain is frequently a primary
motivation for studying these problems in the first place, precluding standard
approaches which do not face this challenge head-on. Several methods for facing
this challenge directly by considering a more general, flexible or time-varying
notion of spatial discretization have been extensively studied, and it is our aim
to give an overview of some of the larger directions.

The immersed boundary method has roots dating back to , where it was
developed for a finite difference method, and handles fluid-structure interaction
problems by modeling the fluid in a “background” Eulerian framework, meshing
the fluid domain without any special accounting of the solid domain. The solid
boundary is tracked via Eulerian variables on a fixed mesh. The fluid and solid
problems are generally solved separately, and the fact that a fixed mesh is used
dispenses with the need for time-varying conforming meshes for the two domains.
As the coupling between the structure and the fluid is included directly in the
flow equation, an accurate treatment of the interaction force term is a central
challenge for the analysis of immersed boundary methods, with developing
and rigorously analysiing a finite element method.
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The immersed finite element or immersed domain method, analysed in e.g.
, includes a mesh of the entire solid domain. This is still tracked on the
fluid mesh by Lagrangian variables, but the modeling of the interior of the solid
enables more sophisticated modeling of its elasticity. A later generalization
where the interfacial forces used as boundary conditions for the solid problem are
evaluated implicitly is given in . We refer the reader to for reviews
of recent advanced in immersed boundary and immersed domain methods, to
for a review focusing particularly on such methods as they pertain to fluid-
structure interaction problems, and to [4] for an example application investigating
time-splitting schemes for fluid-structure interaction problems.

Because the solid mesh does not conform to the fluid mesh, it will intersect
the fluid mesh partially, cutting across mesh elements. As they then have very
small contributions to the system matrix, the resulting problem can be poorly
conditioned, as discussed in . This makes the use of iterative methods
expensive, and several authors (e.g. , , ) have opted to use direct
solvers. In order to make iterative methods feasible, some form of stabilization
or penalty term must be incorporated, or a preconditioner must be developed.

Virtual element methods (VEM) and hybrid higher-order (HHO) methods
all involve the generalization of the finite element method to irregular mesh
elements. Frequently, the polygons/polyhedra can be almost arbitrary, with
a number of vertices varying along the mesh. Though different, both VEM
and HHO methods carry out this generalization in analogous ways . In
VEM, the local function spaces on each cell are only implicitly defined, and the
contributions of a degree of freedom d to the system matrix is a function (d),
where 7 need not be easily invertible. Accordingly, the resulting element can be
thought of as only existing “virtually”.

In HHO methods, the problem is posed in terms of degrees of freedom living
on mesh cells and facets. On each cell, local reconstruction operators are defined
which map facet degrees of freedom to a local high-order function in the cell,
and the variational problem can then be posed in a local high order space. See
[13] or for reviews of the virtual element method, and for a review of
HHO methods.

VEM and HHO methods are of particular interest in applications with
complex geometries, where the added flexibility in what elements can be used
for meshing is important, and the computational overhead of a more complex
method can be a price worth paying for not having to deal with an ill-conditioned
tetrahedral mesh.

However, care must still be taken to ensure the resulting discrete problem
is well-posed. Poor choices of reconstruction operators in HHO methods can
result in an ill-posed problem. develops a robust discretisation for the
Brinkman problem by defining the reconstruction operators as a sum of Stokes
reconstruction operators, which create functions similar to the regular Lagrangian
basis functions stable for the Stokes problem, and Darcy reconstruction operators,
which create functions similar to the Raviart—Thomas—Nédélec finite element
stable for the Darcy problem. Analogously, defines families of H (div) and
H(curl) conforming elements for the Virtual Element Method by generalizing
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the classical BDM, Nédélec and RT elements.

VEM and HHO methods also have appealing benefits for multigrid precon-
ditioners and adaptive solvers, because the ability to handle irregular elements
means mesh coarsening can be carried out by agglomeration, or simply taking
the union of adjacent cells. The fact that the resulting mesh conforms perfectly
to the original mesh simplifies construction of the restriction and extension
operators used for multigrid, which is used to develop an agglomerative multigrid
preconditioner in for elliptic problems, and in for the Stokes and Navier-
Stokes problems. Though one gets better accuracy by reassembling the fine grid
problem on the coarse grid, the latter paper also tries simply restricting the fine
grid problem to the coarse grid for an approximation which trades some accuracy
for computational cost. In , the same simplicity of coarsening the mesh is
used to define an adaptive solver for a discontinuous Galerkin discretization
of the Poisson problem, and proves the resulting scheme stable. See for
a review and an axiomatization of adaptive finite element methods in general,
and for the development of a technique for computing adaptive error indica-
tors over clusters of eigenvalues, and results establishing that this yields better
performance than just computing it over a single eigenvalue.

Given the significant interest in unfitted mesh methods, it is perhaps no
surprise that there is also significant interest in developing preconditioners for
them. Some of the techniques are applicable to multiple unfitted mesh methods.
proves (under fairly general assumptions) that the inf-sup constant for the
divergence operator, viewed as a map H' — L2, depends continuously on the
domain and the degree or number of elements of the discrete function spaces.
In , this is applied to show an inf-sup property for a wider class of unfitted
Stokes elements. develops domain decomposition preconditioners for the
Stokes problem and the mixed formulation of the linear elasticity suitable for
nonconforming mesh methods.

The literature on unfitted mesh methods and their preconditioning is exten-
sive, with numerous approaches not explicitly discussed above. In the context of
multiphysics problems, mortar methods are of particular relevance, providing
a way to couple subproblems together on a common interface via Lagrange
multipliers, without requiring the interface meshes to match. See for a
description, for a comparison to the Nitsche method, and
for some example applications. We refer to for a review of the finite cell
method, to for discussions of precondition of the extended (XFEM) and
generalized finite element methods, and to for an application of XFEM
to heart valve modeling developing a block preconditioner for the resulting FSI
problem. @ discusses conditioning issues arising from cut cells in unfitted
mesh methods in general, as well as an aggregated finite element method for
elliptic problems in general and the Stokes problem in particular.

1.6.2 Dimensionality reduction techniques

Dimensionality reduction techniques have seen particular use in modeling of the
cardiovascular system, and involve simplifying a 3D model of e.g. a blood vessel
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to a 1D model, where only axial flow in the vessel is assumed to be relevant.
Dimensionality can even be reduced further to a 0D (lumped parameter) model,
where blood flow through the vessel is assumed to be simply proportional to the
pressure difference across it. Such models are particularly simple to implement,
and due to the significantly reduced computational cost, can often be written
entirely in high-level languages like Python . The low computational cost of
the models also makes it feasible to model large networks of vessels, or even the
entire cardiovascular system (, ) by coupling together lower-dimensional
models. See for a recent review, and for a systematic review of numerical
methods for 1D models.

Of note is that 0D models result in models analogous to simple electric
circuits consisting of resistors, inductors and capaticors. In this analogy, the
fluid flow through a vessel is the current through a circuit, and the pressure
difference across the vessel is the potential difference across the circuit. Despite
its simplicity, this analogy and model extends to several types of fluid behavior.
The fluid viscosity is modeled by a resistor, the inertia of the fluid is modeled
by an inductor, and the interaction between the fluid and the elastic vessel wall
is modeled by a capacitor. Interaction between the blood vessel and elastic
surrounding tissue may also be incorporated in 0D models through an additional
capacitor representing the elasticity of the surrounding tissue.

A related class of models are ones which couple models of reduced dimen-
sionality to a standard 3D finite element model, such as is done in this thesis’
Paper II. Such an approach is appealing because it permits incorporating the
effects of larger parts of the cardiovascular system into the model, while still
spending as much of our “complexity budget” on a particular region of interest as
possible. A challenge in the development of such models is, evidently, handling
this nonstandard coupling properly, with several of the same challenges as in this
thesis’ Papers II, IIT and IV. See , for reviews of the 3D-1D coupling in
hemodynamics in particular, and for a survey of some applications. For
an investigation of fractional Sobolev preconditioners for trace coupled 3D-1D
systems, see , and for 2D — 1D coupled saddle point problems.

Examples of finite element models of coupled problems where one problem
has been approximated by a lower dimensional domain abound also outside
hemodynamics. numerically investigates a block diagonal preconditioner for
a model of the coupling between a poroelastic medium containing a fluid-filled
fracture by coupling together the Biot and the Brinkman problems, where the
fracture is modeled as a codimension 1 domain. Porous flow in a domain with
cracks of differing dimensionalities is considered in .
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Chapter 2
Summary of papers

2.1

In this paper, we apply a computational model to assess the plausibility of mi-
croscale intervascular convective flow in the brain, and estimate the permeability
of brain tissue. This work was motivated by the recent interest in the glymphatic
system, a proposed mechanism of cerebral waste clearance thought to involve a
convective flow between cerebral blood vessels illustrated in

Para-arterial

CSFinflux —— 4

vascular |

endfeet @ efflux

Figure 2.1: Illustration of the proposed mechanism of waste clearance from
. Given a pressure gradient between the high-pressure arteries/arterioles and
the low-pressure veins/venules, one would observe the efflux of water marked
"Convective flow’ in the figure. The magnitude of the water flux would be pro-
portional to the pressure difference, and to the permeability of the extravascular
space.

We construct a mesh of the extracellular space using a reconstruction of an
~ (4pm)? portion of rat neuropil generated from electron microscopy data in
[2]. As waste products are constrained to the extracellular space, we simulate
viscous flow in the extracellular space (ECS), and determine necessary pressure
gradients to explain the rates of waste clearance seen experimentally. As these
are very large, we conclude that convective transport through the glymphatic
pathway is unlikely to be the main cause of cerebral waste clearance. In order
to ensure the effects of some parameters involved in the ECS reconstruction do
not significantly impact our conclusions, we repeat the experiment for different
reconstruction parameter choices and obtain substantially similar results.

Mathematically, our computational model consists of the Stokes equations for
viscous flow. Due to the large mesh size required to capture the complex geometry
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Figure 2.2: Partial visualization of the extracellcular flow field from for
two different ECS reconstruction. In each reconstruction, two cross-sections of
the ECS are visible, showing its tortuous structure.

of the extracellular space, we opted to use the unstable P1 — P1 elements with a
stabilization term instead of the more standard stable P2 — P1 element, as this
would have come at a higher computational cost. As our mathematical methods
are relatively standard, the primary interest of this paper is in the significance
of its results for physiology. Viewed in connection with however, it
nevertheless serves as a good illustration of the immense variation in parameter-
and length scales relevant for biomechanical modeling.

2.2

In this paper, we investigate numerical methods for the solution of a coupled
3d-1d diffusion problem using fenics; 3], and apply them to model diffusion
of a bloodborne MRI tracer. This is to some extent related to the problem
considered in the previous paper, which modeled convective solute transport
only in a microscale part of the interstitium. In this paper, the interstitium is
“homogenized”, in that the intricate geometry of the ECS shown in is
reduced to homogenous space, its effects on fluid flow instead incorporated in
the model through a material parameter. As this frees us from needing a quite
so detailed mesh, we are able to model a length scale of millimeters instead of
microns, meaning the interstitial space can be coupled to the vasculature, which
we include as a highly detailed 1D mesh.

The coupling between the 3D and the 1D diffusion problem is accomplished
by the use of an averaging operator m between the 3D and 1D spaces, yielding
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Figure 2.3: Example results shown on a (left) clip and (right) on a slice of the 3D
domain. In the left, the 1D mesh of the cerebral vasculature is visible, showing
the high level of detail we are able to use in our model of the 1D domain. In
the right, the 'halos’ of increased concentration immediately around the vessels
occur because tracer enters the 3D domain via the 1D domain.

the following problem:

I —kDqAq 0 kpIT* P3p f
0 I— kDFAF kﬁ] P1D = g (21)
k1L kBI —k. A h

Here, 7 is an averaging operator mapping the 3D space to the 1D space,
studied further in . Deciding the appropriate Sobolev spaces to use so that
this trace operator bounded and right invertible is theoretically nontrivial,
complicating our use of the framework of operator preconditioning to find an
appropriate preconditioner for the coupled problem. The choice of space is
therefore investigated numerically by assessing the preconditioner arising from
various choices of spaces. As the resulting solution method is quite fast, and the
addition of the multiplier inexpensive, the resulting method seems likely to be
faster than a standard domain decomposition method.

Seeing as the model is capable of efficiently estimating solute transport from
the blood vessels to the interstital space, it is particularly suitable for applications.
Possible future work in this area might therefore involve applying the model to
study phenomena where local variations in the vasculature are of interest. One
examples of such a phenomena is the effect of local plaque buildup (reducing
local blood throughput in the vasculature) on oxygen delivery in that region.
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Another direction for future work involves extending the model to incorporate
convection, as it currently does not properly include convection.

2.3

In this paper, we study the general form of a multiphysics problem consisting of
two coupled “single-physics” problems, where the coupling is enforced using a
Lagrange multiplier. We show theoretically that under the assumption that the
problems are individually well-posed in a slightly stronger sense than usual, so
is the coupled problem, with no modification of either problem required beyond
modifying the norm of the multiplier space. This result also extends to the
discrete corollary that if both discrete systems are individually stable, so is the
coupled system, given in its abstract form below.

U1 Ai Bi* Tl* U1 f1 ‘/1*
(%) A2 Bg* TQ* (5 fg ‘/2*
Al m | =1 B | =| a1 | € Q1%
D2 B, D2 92 Q2%
A T 15 A h A %1 +Axo
(2.2)

From our results, we derive preconditioners in the operator preconditioning
framework for the coupled Darcy-Stokes and Stokes-linear elasticity problems,
which are proven to be stable and robust in the material parameters under
the assumption that the Stokes, Darcy and linear elasticity problems with
Lagrange multiplier are individually well-posed on their respective domains. All
assumptions and results are justified by numerical experiments, demonstrating
the suitability of our approach for applications. Needing this assumption is, to
some extent, a drawback, but in return we are able to prove a quite general result,
as our proof applies whenever the assumption holds. The sting of having to
make the assumption is also somewhat lessened by the fact that the subproblems
we consider have previously been studied in the literature, see e.g. , meaning
the required assumptions have in fact been proven in several cases.

The effects of the intersections of the interface with the Dirichlet domain of
the subproblems is thoroughly investigated, and is found to affect which norm
we have to use for the multiplier space in a manner related to the work of .
Additionally, we demonstrate that failing to use parameter weighted norms at
the interface makes the natural operator preconditioner quite poorly-conditioned,
showing that the methods we develop are necessary.

A clear direction for future work is to more clearly establish what is required
for the subproblem stability assumptions to hold. Here, we briefly comment on a
sense in which the presence of Lagrange multipliers do not cause any additional
difficulties. By we know that provided the interfacial trace map
used in the problem formulation has a bounded right inverse, the subproblem
where the interface condition is enforced with a Lagrange multiplier is well-posed
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Figure 2.4: Iteratién count left and spectral conditioh number (right) for
the Darcy-Stokes problem Wlth homogeneous Dirichlet boundary conditions
preconditioned by Riesz map preconditioner developed in[Paper I} Each subplot
plots the (logarithm of) the discretization parameter against the iteration count /
spectral condition number for the indicated fixed value of the material parameters
K, u so that the system size grows from left to right, with the Beaver-Joseph-
Saffman parameter apjg indicated by the line marker. The resulting plot is
somewhat busy, but clearly demonstrates the stability of the preconditioner with
respect to discretization and three different material parameters.

%

if and only if the subproblem where the interface condition is enforced strongly
is well-posed.

Applying this to the Darcy subproblem of Assumption for example,
and keeping with its notation, we get that the problem of finding (uy, pp, A) €
W such that a((up,pp, ), (Vp, gp, w)) = L((vp, gp, w)) for all (v,,qp,w) € W
is well-posed if and only if the problem of finding (u,,p,) € Wy such that
ao((up, pp)s (Vp, ap)) = Lo((Vp, qp)) for all (v, g,) € Wy is well-posed, where the
equivalence is contingent on the map 7, : V — A* being bounded, surjective
(and linear), meaning it has a bounded right inverse. Here,

aO((“paPp) (Vp: @p 1(up>vp) + (@, V- vp) +(V-u,,9),

) =
Lo((vp, ap)) =(£,vp) + (9, 4p)
a((up, pp, A)s (Vs @p, w)) =ao((Wps pp), (Vp, ) + (Tnttp, w)r + (A, Tnvp)r,
L((vp: @p,w)) =Lo((vp, ¢p)) + (b, w)r

W=VxQxA Wy =VyxQxA, and V = \/—%H07D(div,ﬁp), Vo =

1

F=Hopur (div,2,) Q = VKL?*(9Q,), and A = VK HZ)(T'). (Observe that Vg
is simply the kernel of T,,.)

Hence, we see that provided the interfacial trace map we have used to define
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our subproblem is continuous and surjectiveﬂ we may replace Assumptionm
by an equivalent assumption of stability of a Darcy problem without Lagrange
multiplier, and instead a Dirichlet condition also on T'.

We remark that the above reasoning can also be applied to any conforming
discretization V' x Q" x A" € V x@Q x A, showing that if the discretization is such
that VA x Q" is a stable discretization of the Darcy problem without Lagrange
multiplier, then V* x Q" x A" is a stable discretization of the Darcy problem
with Lagrange multiplier, provided the restriction of T}, to a map V” x A" is
surjective and bounded. This gives a method by which we can obtain a stable
discretization for the subproblems with Lagrange multiplier studied in
given stable discretizations of their versions without Lagrange multiplier.

2.4

In this paper, we use the methods of to study the coupled Darcy-Stokes
system with the Darcy problem in primal form, e.g. without a separate variable
for the fluid velocity. This means the Darcy pressure must now be coupled
directly to the Stokes velocity, as opposed the case of where the Darcy
pressure and Stokes velocity were both coupled to the Darcy velocity.

The advantage of this formulation is that the resulting system has smaller
dimension than the one with the Darcy problem in mixed form, making it of
relevance for applications where compuational cost is a concern, especially if the
Darcy domain is significantly larger than the Stokes domain. However, our use
of the primal formulation means we lose the mass conservation enjoyed by the
mixed formulation. Additionally, because the normal derivative trace operator
used to couple the problems cannot be defined on all of the H' space we use for
the Darcy pressure, putting the resulting formulation on a firm mathematical
foundation is nontrivial.

We assume and partially motivate the existence of an alternative coupling
operator for coupling the problems, and prove well-posedness of the continuous
problem under this assumption using the methods of Using the
operator preconditioning framework, we then obtain a robust preconditioner.
The robustness of our preconditioner and our assumption of the existence of
a coupling operator is supported by numerical experiments. In particular,
we support the claim made that our results extend to the discrete case by
experimentally showing that each choice of stable subproblem elements results
in a stable discretization of the coupled problem.

INote that this is nontrivial. Indeed, as discussed in [Section 1.4.1] for insufficiently regular
00, T, the trace operators we use are not guaranteed to exist.
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Abstract

The brain lacks lymph vessels and must rely on other mechanisms for
clearance of waste products, including amyloid S that may form patho-
logical aggregates if not effectively cleared. It has been proposed that
flow of interstitial fluid through the brain’s interstitial space provides a
mechanism for waste clearance. Here we compute the permeability and
simulate pressure-mediated bulk flow through 3D electron microscope
(EM) reconstructions of interstitial space. The space was divided into
sheets (i.e., space between two parallel membranes) and tunnels (where
three or more membranes meet). Simulation results indicate that even
for larger extracellular volume fractions than what is reported for sleep
and for geometries with a high tunnel volume fraction, the permeability
was too low to allow for any substantial bulk flow at physiological hy-
drostatic pressure gradients. For two different geometries with the same
extracellular volume fraction the geometry with the most tunnel volume
had 36% higher permeability, but the bulk flow was still insignificant.
These simulation results suggest that even large molecule solutes would be
more easily cleared from the brain interstitium by diffusion than by bulk
flow. Thus, diffusion within the interstitial space combined with advection
along vessels is likely to substitute for the lymphatic drainage system in
other organs.

Transport of nutrients and waste within the brain’s parenchyma is paramount
to healthy brain function.

Although lymphatic vessels occur within the meninges @ , they are absent
from the brain’s parenchyma. This raises the question of how waste products are
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I. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion
rather than bulk flow

cleared from the brain . There is an urgent need to resolve this

question, given the fact that several neurological disorders are associated with
accumulation of toxic debris and molecules in the brain interstitium . Most
notably, insufficient clearance may contribute to the development of Alzheimer’s
disease and multiple sclerosis 21].

Recently the “glymphatic” hypothesis was launched. This hypothesis
holds that the brain is endowed with a waste clearance system driven by bulk flow
of interstitial fluid through the interstitium, from para-arterial to paravenous
spaces, facilitated by astrocytic aquaporin-4 (AQP4). Further, it was proposed
that cerebral arterial pulsation and respiration drive paravascular fluid
movement and cerebrospinal (CSF)-interstitial fluid (ISF) exchange. Here, bulk
flow is defined as the movement of fluid down the pressure gradient, advection
is the transport of a substance by bulk flow, and convection is transport by a
combination of advection and diffusion.

There is strong evidence for paravascular advection , although
the details of influx and efflux pathways and the underlying driving forces are
debated @ . There are, however, controversies regarding the relative
importance of advective versus diffusive transport within the interstitial space
, and the idea that a hydrostatic pressure gradient can cause an
advective flow within the interstitium has been questioned .

The recent generation of 3D reconstructions of brain neuropil together with
representative extracellular space volume estimates have now finally opened for
realistic simulations of solute transport in brain. Though the convoluted and
very fine structure of the interstitial space makes such simulations challenging,
we were able to simulate the flow and estimate the permeability for EM recon-
structions from Kinney et al. by meshing the interstitial space into almost
100 million tetrahedrons and describing the relevant physics in each tetrahedron
by differential equations.

By simulating bulk flow in two versions of the EM reconstruction we find
that the permeability is too low to allow for any substantial bulk flow for
realistic hydrostatic pressure gradients. The results imply that diffusion prevails.
Besides advancing understanding of waste clearance in brain, our results also
elucidate how drugs distribute within brain neuropil after having permeated the
blood-brain barrier.

.1 Results

We used publicly available reconstructions to simulate bulk flow through
the interstitial space. The reconstructions were based on electron microscopy
of serial sections of rat CA1 hippocampal neuropil. To correct for the volume
changes known to occur during tissue preparation and embedding, Kinney et
al. adjusted the interstitial volume fraction from 8% in the original EM
reconstruction to more physiologically realistic volume fractions of about 20 %

[32).
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Figure I.1: Model systems and microscopic structure of the extracellular volume.
(A) Schematic illustration of the EM reconstruction. Tunnels in cyan, sheets in
red. (B) Sub-micrometer partition of the EM reconstruction showing typical sizes
of the 84 million tetrahedrons used in the simulation. (C') EM reconstruction
from Kinney et al. |[18] with a small tunnel volume fraction and (D) with a larger
tunnel volume fraction. Both C' and D have extracellular volume fractions of
about 20% (20.1% and 20.7%, respectively). (E) Schematic illustration showing
the cylinder model of the paravascular space and solutes (filled circles) in the
surrounding interstitial space. (F) Schematic illustration showing the pial surface
model.
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Kinney et al. grouped the interstitial volume into tunnels or sheets.
Sheets are the volumes between two adjacent membranes, typically 10 nm to
40 nm wide, tunnels are the wider, interconnected structures found at the junction
of three or more cells, about 40 nm to 80 nm wide. In Fig.[[.T]4 tunnels are colored
in cyan, sheets in red. Kinney et al. used different volume scaling procedures,
some adding volume mainly to the tunnels, some adding volume to the sheets.
We simulated interstitial bulk flow and computed the permeabilities from two
different realizations of the EM reconstruction, both having approximately the
same total interstitial volume fraction, but with different relative tunnel volume
fractions. We also simulated bulk flow and permeability for smaller subvolumes
with interstitial volume fractions up to 32.1 %.

Example sections from the two realizations are shown in Fig. [} C and
D, where C has the smallest relative tunnel fraction (33 %), D has the largest
(63 %). As described in Methods, the two tissue realizations were divided into 84
million and 25 million tetrahedrons, respectively, the smallest tetrahedrons with
sides less than 1nm, see Fig. [.I]B. The flow and permeability were estimated by
solving the Stokes equations in the FEniCS simulator for a pressure gradient
of 1mmHg/mm applied between opposite sides of the tissue cube, assuming
nonelastic and impermeable obstacles. The pressure gradient of 1 mmHg/mm
is considered as an absolute upper estimate of the assumed pressure gradient
within brain tissue (see Discussion), and the flow velocities and Péclet numbers
shown here should therefore be considered as upper estimates. Note that there
is a linear relationship between pressure gradient and flow velocity, implying
that a pressure gradient different from the 1 mmHg/mm used here will change
the velocities with the same factor. In contrast, the estimated permeabilities
will be preserved.

Based on the estimated permeabilities from the EM reconstructions we
created two simplified model systems to compare the effect of solute clearance
by diffusion versus advection. In Fig. E and F, schematic illustrations of the
two models are shown. Fig. [[T|E illustrates clearance towards the paravascular
space, Fig. [[TJF illustrates clearance towards the pial surface. Three solutes
with different diffusion constants were studied, the smallest corresponding to
the effective diffusion coefficient of potassium ions (D* = 77 x 1077 cm?/s
[12]), the medium sized corresponding to 3 kDa Texas Red Dextran (D* =
5.3 x 1077 cm?/s [32]), while the largest had a diffusion constant corresponding
to 70 kDa Dextran (D* = 0.84 x 10~7 cm?/s [32]).

1.1.1  Flow and permeability in reconstructed neuropil

The intrinsic hydrodynamic permeability, &, is defined by Darcy’s law, ¢ = —ﬁVp,
which states that there is a proportionality between the flux, ¢ (discharge per
unit area, with units of length per time), and the pressure gradient, Vp, with
w1 denoting the viscosity. For the geometry with the smallest tunnel fraction
(Fig. C’) we estimated the permeability to be 10.9nm?, 10.3nm? and 11.0 nm?
(mean 10.7nm?) along the three orthogonal axes perpendicular to the sides of
the rectangular tissue cuboid. For the geometry with a larger tunnel fraction
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(Fig. ) the permeability was estimated to be 16.6 nm?, 14.4nm? and 13.1 nm?
(mean 14.7nm?) along the three orthogonal axes. Thus, the anisotropy was
maximum 6 % for the geometry with a low tunnel fraction and maximum 26 %
for the geometry with a high tunnel fraction.

The geometry with a high tunnel fraction had a 36 % higher mean permeability
than the geometry with a lower tunnel fraction , even though the extracellular
volume fraction was approximately the same. In Fig. the maximal velocities
in A—C are substantially lower than the maximal velocities in panels D—F, where
the former corresponds to the geometry with a low tunnel fraction and the
latter corresponds to the geometry with a higher tunnel fraction. Further, the
cross-sections show that the velocities are highest within the centers of the
larger tunnels (Fig. A and D). For all plots we have assumed a pressure
gradient of 1 mmHg/mm. This assumption should be considered as an upper
estimate (see Discussion). The average extracellular velocities are 8.95nm/s and
12.2nm/s, corresponding to permeabilities of 10.7 nm? and 14.7 nm?, respectively.
Note, however, that our convergence tests (see Methods) revealed that the
permeabilities and velocities may have been underestimated with as much as
30%. Thus, an upper estimate of the permeabilities would be 14 nm? and 19nm?,
and corresponding mean velocities of 12nm/s and 16 nm/s, respectively.

For both geometries it takes several hundred minutes before 50 % of the fluid
has traveled more than 100 um (Fig. C and F). For comparison, Xie et
al. show that 3 kDa Texas Red Dextran typically penetrated 100 pm in about
20 minutes in sleeping and in anesthetized mice, a much shorter time interval
than what could have been achieved for advection based tracer penetration from
the cortical surface. However, Xie et al. show that a substantial part of the
tracer (administered intrathecally) first travels along vessels before it starts
penetrating laterally into the interstitial space. Although this could explain
the short time scale for tracer penetration seen in Xie et al., Figs. [L3HL5 show
that interstitial diffusion predominates over interstitial advection, also when the
tracer originates from paravascular spaces. We find that diffusion is compatible
with the time scale seen in the tracer experiments in Xie et al. (Fig. , and
the estimated permeabilities were too low to allow for any significant advection.
Even when we simulated flow and permeabilities for subvolumes with a much
larger extracellular volume fraction than would be realistic for any physiological
situation, we still estimated permeabilities incompatible with tracer velocites
from Xie et al. (subvolumes with extracellular volume fractions of 27.9 % and
32.1% gave permeabilites of 33 nm? and 70 nm?, respectively). Table[[.1]shows
that our estimated permeabilites are about two orders of magnitudes lower than
what is typically found in the literature.

.1.2 Advection versus diffusion

Using the above estimated permeabilities we found that the bulk flow velocities
are low also when we assume an arterial source and a venous sink. In this
model the vessels are assumed to be surrounded by a medium with homogeneous
permeability and an extracellular volume fraction of 20 %. Fig. shows that
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Table I.1: Comparison of permeabilities from the literature

A viscosity of 0.8 mPas was assumed when the permeability was converted from
Permeability (nm?) Reference

10 to 20 this study, geometry from [18]
1280 , estimated from [24]

hydraulic conductance. 2480 “ es't1mated from @
1360 , estimated from [28)]
720
4000
1600

except for the volume just outside the vessels, where the pressure gradient is
steepest, the flow velocities would typically be less than 10 nm/s for our assumed
pressure differences of 1 mmHg/mm, even for the permeability value from the
geometry with the higher permeability.

The typical time scale for diffusion is much smaller than the time scale
for advection and comparable to typical time scales seen in tracer recordings
(Fig. [L.4). Fig. shows clearance of an interstitial solute, i.e., we assume the
concentration to be higher inside the parenchyma than at the pial surface or
within the paravascular spaces. For concentration gradients in the opposite
direction, as after intrathecal tracer infusion, the y-axes would be symmetrically
inverted.

In Fig.[[4] A and B, we show the concentration profile of different substances
at three time instances after we decrease the concentration by Ac at the boundary,
which is either the paravascular space (A4), or the pial surface (B). The light
substance (green) with an effective diffusion constant corresponding to ions
such as potassium, shows a prominent decay already after 5 seconds (broken
line), even at distances as far as 100 um from the vessel (4) or the cortical
surface (B). For larger solutes diffusion takes much longer time. The red lines
correspond to effective diffusion constants for 3 kDa Texas Red Dextran and the
blue lines correspond to 70 kDa Dextran. However, even for 70 kDa Dextran the
concentration is seen to be substantially reduced at a time scale of minutes, both
around vessels (A4) and as a function of distance from the cortical surface (B).

Diffusion is seen to reduce the concentration at a distance 100 ym from a
vessel (Fig. [4)C) and 100 um from the cortical surface (Fig. [.4)D) substantially
within an hour, even for the very heavy 70kDa Dextran. Note that here we
have only assumed efflux from one vessel. If more vessels were assumed, the
concentrations would have been decreased substantially in Fig.[[.4 A and C.

A more direct way to compare advection to diffusion is to compare the size
of the advection term to the size of the diffusion term in the diffusion-convection
equation by use of the the Péclet number (Pe), Pe = Lv/D*. This number is
plotted for a series of solutes of different sizes in Fig.[[5] L is the typical size
of the system, here taken to be the average distance between the surfaces of
an arteriole-venule pair (238 um), v = 12.2nm/s is the advection velocity, here
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taken to be the average velocity for the geometry with the highest permeability,
and D* is the effective diffusion constant of the different solutes in brain tissue.
For Pe <« 1 diffusion predominates, and in Fig. we see that even for the most
heavy solutes, such as 70 kDa Dextran and ovalbumin, the Péclet number is
substantially lower than one for the assumed pressure gradient of 1 mmHg/mm.
Hence, diffusion predominates over advection, even for large molecules. For
illustrational purposes we have added a pressure gradient of 2mmHg/mm in
Fig. Even for this pressure gradient most solutes have Péclet numbers well
below one, although 70 kDa Dextran is seen to be approaching one (0.69).

.2 Discussion

Surprisingly little is known about the mechanisms that govern the movement
of molecules between brain cells. As the brain interstitial space is particularly
narrow and tortuous, the complexity of this space has so far defied any attempts
to realistically simulate solute movement within it. New opportunities for
such simulations arose with the recent generation of 3D representations that
faithfully describe the interstitial space . Here we take advantage of these
representations—and of recent development in computer hardware, processing
power and software tools—to show that interstitial permeability is much lower and
solute movement is much more constrained than previously assumed. Movement
occurs by diffusion rather than being driven by bulk flow. This conclusion
holds even in simulations with an abnormally high extracellular volume fraction
(32.1%).

The existence of a bulk flow of interstitial fluid has been debated for decades.
Sykova and Nicholson concluded that such flow is restricted to the paravascu-
lar spaces rather than taking place throughout the ECS. However, on introducing
the glymphatic concept Nedergaard and coworkers expressed the view that waste
products are cleared by bulk flow through the interstitium. The present data
compel us to revise the concept of the glymphatic system . The key idea
embedded in the term “glymphatic” is that waste is cleared from the brain by a
glia-dependent mechanism, analogous to the lymphatic system in other organs
26]. The critical experiment in support of this concept showed that amyloid
£ and other compounds were cleared less efficiently in AQP4-deficient mice than
in wild-type . AQP4 is strongly expressed in glia, more specifically in the
astrocytic endfeet that surround brain vessels . In terms of involvement of
glia in waste removal the glymphatic concept is not challenged by our results.
However, according to the glymphatic concept as originally described, para-
arterial and paravenous spaces connect through convective flow in the neuropil.
Our findings strongly suggest that this is untenable and that diffusion prevails
in the interstitial space.

The present findings have pronounced implications for future research. The
idea of there being an advection in the interstitial space directed attention to
mechanisms underlying the control of extracellular volume and hydrostatic pres-
sure gradients within brain tissue. On the other hand, if diffusion predominates—
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as the present data suggest—future research efforts should aim at understanding
how concentration gradients are established and maintained. Attention should
then be directed to transport processes at the brain-blood interface, and to the
nature and scale of advection along brain vessels. Paravascular advection is
required to effectively maintain the concentration gradients that are prerequisites
for diffusion through neuropil. AQP4 could facilitate paravascular advection,
which in turn could explain why appropriate clearance may depend on the
presence of this water channel.

The major premise for our conclusion is that the permeability of the interstitial
space is so low that it effectively precludes advection through brain neuropil
at realistic pressure gradients. The question is why our permeability estimates
differ by order of magnitudes from those of previous studies. The other high
permeabilities reported in Table are either based on simultaneous fluid
infusion and pressure recordings , or simulated by the use
of simplified geometries . Combined infusion and pressure recordings may
lead to overestimated permeabilities due to tissue displacement and because
fluid is escaping along high-permeability paths such as the paravascular spaces.
Simulations are, on the other hand, critically dependent on the right dimensions
of the interstitial space. For a given extracellular volume fraction the dimension of
the extracellular space is a function of the obstacle size. The 3D reconstructions
used in our simulations indicate a mean obstacle size of far less than 1 pm, and
we end up with a relatively low permeability. By comparison, Jin et al.
assume an extracellular volume fraction similar to what is used here (20 %),
but their simulations are based on artificially created 2D obstacles with a much
larger mean obstacle size of 5 um, and they arrive at a much larger permeability.
However, even with such a large obstacle size they end up with a conclusion that
is in line with ours: diffusion predominates when it comes to solute movement
through the extracellular space. The same conclusion is also reached by Asgari
et al. , using a simplified model. We show that this conclusion holds in a
realistic 3D model and even for very large molecules such as ovalbumin.

As stated above, our simulation precludes advection through brain neuropil at
realistic pressure gradients. What are realistic pressure gradients in this context?
Through a cardiac cycle the peak-to-peak intracranial pressure amounts to less
than 10 mmHg. However, the pulsatility is almost synchronous throughout the
brain, and the minute differences seen in simultaneous recordings of intracranial
pressures give rise to much smaller pressure gradients than the 1 mmHg/mm
assumed here . Pressure gradients within the brain and/or CSF is typically
reported to be less than 0.01 mmHg/mm . Thus, our assumption that these
gradients are 1 mmHg/mm should be seen as an upper estimate. Unfortunately,
technologies are not available for direct measurements of pressure gradients
between neighboring brain vessels, i.e, those gradients that drive advection, if
any, through brain neuropil.

We conclude that diffusion through interstitial space combined with paravas-
cular advection substitutes for the lymphatic drainage system in other organs.
This has profound implications for our understanding of how waste products are
cleared from brain and of how drugs, nutrients and signal molecules permeate
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brain neuropil.

1.3 Methods

1.3.1 Finite element simulations

ISF is assumed to be incompressible Newtonian fluid, and the flow is modeled by
the Stokes equations: pV2?v+Vp = 0 and V-v = 0. Here v is velocity vector and
p the pressure within ISF. The viscosity p of the ISF is assumed to be 0.8 mPas.
As we use linear elements for both velocity and pressure, a stabilization term
0.2 h%V?p is added to the second equation [14], with A denoting the element size.
To drive flow, a pressure gradient of 1 mmHg/mm is applied in one direction.
This is enforced as a Neumann boundary condition, i.e., constant pressure at
the inflow and outflow surfaces. On the remaining exterior boundary we used
a symmetry assumption (v-n; = 0, where n, is the unit normal vector for
the outer surface), and at the interior cell surface boundaries we use the no-slip
condition, v = 0.

The resulting PDE system is solved in FEniCS . Post processing of the
data, including computation of total flux and visualization, was carried out using
Paraview .

The meshes on which the computations are performed are generated using
the CGAL backend of FEniCS’ mesh generation submodule mshr. For the largest
simulation the mesh consisted of 84 million tetrahedrons and more than 1000
CPU hours was needed to simulate the flow (279 minutes on 224 Intel E5-2670
processors).

A highly detailed mesh is required to adequately resolve the intricate geometry
of the interstitial space. In order to test whether the mesh is sufficiently fine,
the ideal test would be to refine it once, repeat all computations and check that
the results do not significantly change. However, because the number of mesh
elements is already very large, this is not computationally feasible.

Instead we used a less strict test. For both geometries we performed the
simulation on a smaller volume measuring 0.52 ym x 0.52 pym x 0.45 ym. For
the default simulation we found the baseline permeability for these subvolumes
by applying a mesh size similar to what was used in the full simulations. We
then refined the mesh by increasing the number of tetrahedrons 7 times. After
three refinements (resulting in a total of 343 times as many volume elements
as the original mesh) we reached the upper limit for what was computational
feasible. For the reduced geometry with a high tunnel fraction (Fig. ) the
extracellular volume fraction was 32.1 % and refinements gave the following
permeability series for the subvolume, listed from the default value to the most
refined value: 54.26nm?, 61.91 nm?, 65.59nm? and 67.74nm?. For the reduced
geometry with a low tunnel fraction (Fig. [L1C') the extracellular volume fraction
was 27.9 % and the corresponding series was 25.22 nm?, 29.49 nm?, 31.24 nm? and
32.14nm?. These trends predict that the series should converge for about 70 nm?
and 33 nm?, respectively. This is seen by fitting each series to a permeability
model k = koo — a/(x — b), where Ky is the asymptotic permeability for small
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mesh sizes, and x is the reciprocal of the mesh size. As the volumes of the
tetrahedrons are reduced by 7 times for each refinement, the typical mesh size
is correspondingly reduced by 7'/3 ~ 1.9 times. Thus, z = xT; = 77/3 denotes
the z-values fitted for j = 0,1, 2, 3, with corresponding permeabilities x; at the
y-axes. Ko, a and b are parameters fitted in the model. A non-linear least square
fit gives the asymptotic permeabilities 69.8 nm? and 33.0 nm?, corresponding to a
28.7% and a 30.8% increase from the baseline permeabilities, respectively. When
the mesh size becomes infinitesimally small we therefore expect the permeabilities
to increase by about 30 % also for the full geometries.

1.3.2 Interstitial flow from arteriole to venule

The interstitial flow velocities for the arteriole-venule geometry plotted in Fig.
were found analytically, see Supplemental Material.

1.3.3 Diffusion from the cortical surface

If we assume the cortical surface to be perfectly planar and the lateral concen-
tration to be constant, the one dimensional diffusion equation describes the
system. A constant concentration ¢(z,t) = ¢p at time ¢ < 0 followed by an abrupt
decrease in concentration at the boundary (cortical surface), ¢(z = 0,¢ > 0) = 0,
has the solution ¢(z,t) = cperf(z/v4D*t), where erf(z) is the standard error
function, z is distance from the cortical surface and D* is the effective diffusion
coefficient.

1.3.4 Diffusion from the paravascular space

The diffusion equation was solved in polar coordinates with a commercial software
package (MATLAB 8.6, R2015b, The MathWorks Inc., Natick, MA, 2015). The
outer surface of the paravascular space was assumed to have the shape of an
infinitely long cylinder with an outer radius a, and the solute was allowed to
diffuse throughout the interstitial space defined by a < r < R. Similarly to the
planar diffusion, a constant concentration ¢(r,t) = ¢p was assumed at time ¢ < 0
followed by an abrupt decrease in concentration at the boundary (paravascular
space), ¢(r = a,t > 0) = 0. The concentration was kept constant at the distal
boundary ¢(r = R,t > 0) = ¢g, where R is much larger than the distances
plotted in Fig.[.4] (R > 0.2 mm).
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Figure 1.2: Bulk flow velocity through the EM reconstruction from Kinney et al.
[18]. A pressure gradient of 1 mmHg/mm is applied in the vertical (z) direction.
(A) The geometry with a low tunnel volume fraction. The cross sections are
at depth z = 1.5 um and z = 3.5 um. For clarity only streamlines originating
from a small circle with radius 0.1 um at z = 0 are shown. (B) Distribution of
the z-component of flow velocities through different cross-sectional extracellular
areas of the geometry in A, with the corresponding depth of the plane expressed
in the legend. All traces are normalized to the mean extracellular cross sectional
area. The mean distribution is shown in black. (C') The percentage of water
which has reached 100 um as a function of time (see inset), assuming each
streamline to be straight, along the z-axis and with a constant velocity given by
the velocity distribution in B. (D-F) Same as A-C for the EM reconstruction
with a higher tunnel volume fraction, but approximately the same extracellular
volume fraction.
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Figure 1.3: Color plot showing velocity for the bulk flow from arteriole (red, filled
circle) to venule (blue, filled circle) for the highest permeability, x = 14.69 nm?,
assumed viscosity u = 0.8mPas and extracellular volume fraction of 20 %.
Diameter is 30 um for both arteriole and venule, their center to center distance
is 280 pum . The line plots in red/pink and black/gray correspond to
the absolute value of the velocity profiles along the red (z-axis) and black (y-
axis) lines in the color plot, and the two colors correspond to the two different
permeabilities derived from the geometries with high tunnel volume fraction and
low tunnel fraction. The pressure difference between the two vessels surfaces
facing each other is 1 mmHg/mm. Lower left inset illustrates the cylindrical
geometry of the vessels.
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Figure 1.4: Diffusion from neuropil towards (A and C) a cylindric vessel (see
inset in C') and (B and D) the cortical surface (see inset in D). At time ¢t = 0
the solute is assumed to be evenly spread throughout the interstitial space, and
the cortical surface/cylinder is assumed to have zero concentration of the solute.
The different colors correspond to effective diffusion coefficients for potassium
ions (green), 3kDa Texas Red Dextran (red) and 70kDa dextran (blue). (A)
Concentration profile around a vessel for three time instances. (B) Concentration
profile below the cortical surface for three time instances. (C) Concentration of
the three solutes as a function of time at a distance 100 ym from the cylinder
center. (D) Concentration of the three solutes as a function of time 100 pm
below the cortical surface.
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Abstract

We study perfusion by a multiscale model coupling diffusion in the tissue
and diffusion along the one-dimensional segments representing the vascula-
ture. We propose a block-diagonal preconditioner for the model equations
and demonstrate its robustness by numerical experiments. We compare
our model to a macroscale model by [P. Tofts, Modelling in DCE MRI,
2012].

II.1 Introduction

The micro-circulation is altered in diseases such as cancer and Alzheimer’s
disease, as demonstrated with modern perfusion MRI. In cancer, the so-called
enhanced permeability and retention (EPR) effect describes the fact that the
smaller vessels in a tumor are leaky, highly permeable vessels that enable the
tumor cells to grow quicker than normal cells.

In Alzheimer’s disease (AD), the opposite is alleged to happen. According
to , hypoperfusion is a precursor to AD, and the cause of the pathological
cell-level changes occuring in AD. This could also explain why various kinds of
heart disease are risk factors for AD, as changes in the blood pressure would
affect the perfusion of the brain.

The vasculature (e.g. idealized as a system of pipes) and the surrounding
tissue are clearly three-dimensional. However, the fact that in many applications
the radii of the vessels are negligible compared to their lengths, permits reducing
their governing equations to models prescribed on (one dimensional) curves
where the physical radius R enters as a parameter. In this paper, we consider a
coupled 3d-1d system

% = DqoAqu + drfA in Q,
% = DrAri — B in T, (IT.1)
A= B(Ilgu — 1) in T
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Here, dr is the Dirac measure on I'; u, @4 are the concentrations in the tissue
domain € and the one-dimensional vasculature representation I'; and Dgq, Dr are
conductivities on the respective domains. The last equation is then a generalized
Starling’s law; relating @ and the value IIpu of u averaged over the idealized
cylindrical vessel surface centered around Iﬂ The equation thus represents a
coupling between the domains.

Variants of the system have been used to study coupling between tissue
and vasculature flow in numerous applications. In (7], a steady state limit of the
system is used to numerically investigate oxygen supply of the skeletal muscles.
Finite differences were used for the discretization. Using the method of Green’s
functions, , and |3 studied oxygen transport in the brain and tumors.

Transport of oxygen inside the brain was also investigated by using the
finite volume method (FVM) and [6] using the finite element method (FEM) for
the 3d diffusion problem and FVM elsewhere. In these studies the 1d problem
was transient. More recently, coupled models discretized entirely by FEM were
applied to study cancer therapies, see e.g. and references therein. The
mathematical foundations of these works are rooted in the seminal contributions
of , where well-posedness of the following problem is analyzed

—AQU + (fL — HRU)(sr = f(SF in 1.2
—Art— (a—Igu) =g inT. (IL.2)

The presence of the measure term in requires the use of non-standard
spaces in the analysis. In , the variational formulation of the problem is proven
to be well-posed using weighted Sobolev spaces. In particular, the solution u is
sought in H!(Q), a > 0 while the test functions v for the first equation in
are taken from H! (). With this choice, the right-hand side (fdr,v) as well
as the trace operator v — v|r are well defined, while the reduced regularity of u
is sufficient to for the average IIzu to make sense. As shown in , use of FEM
for the formulation in weighted spaces yields optimal rates if the computational
mesh is gradually refined towards I' (graded meshes).

Another approach to the analysis of has recently been suggested in the
numerical study . Building on the analysis of ﬂgﬂ for the elliptic problem with a
0 dimensional Dirac right-hand side, the wellposedness of the problem was shown
with trial spaces W1P(Q), p = 3 — % and test spaces Wh4(Q), p~t + ¢t =1,
and quasi-optimal error estimates for FEM shown in the norms which excluded
a fixed neighborhood of T" of radius R.

In studying AD or EPR, the physical parameters may vary across several
orders of magnitude while small or large time steps can be desirable depending
on the time scales of interest. The solution algorithm for the employed model

L' Let z € T and Cr(z) be a circular crossection of the vessel surface with a plane
{y ER3, (y—x) - %(z) = 0} defined by the tangent vector of I' at z. The surface avarage
ITIru of u is then defined by

(Tgu)(z) = [Cr ()]~} /c L
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equations is thus required to be robust with respect to these parameters as
well independent of the discretization. For (the transient version of) the
construction of such algorithms is complicated by the non-standard spaces on
the domain €.

A potential remedy for the problem can be introduction of a Lagrange
multiplier which enforces the coupling between the domains with the goal of
confining the non-standard spaces to the smaller domain I'. This idea has been
used by to analyze robust preconditioners for 2d-1d coupled problems based
on operators in fractional Sobolev spaces, in particular, (—Ar)~, while numerical
experiments reported in suggest that for suitable exponents (—Ar)® defines
a preconditioner for the Schur complement of a 3d-1d coupled system with a
trace constrainf?l We note that in both cases off-the-shelf methods were used as
preconditioners for the operators on 2.

The system includes an additional variable A for the coupling constraint,
cf. . We therefore aim to apply the techiques of , to construct a
mesh-independent preconditioner for the problem, while the ideas of operator
preconditioning are used to ensure robustness with respect to the physical
parameters and the time-stepping.

The rest of the paper is organized as follows. Section identifies the
structure of the preconditioner. In we discuss discretization of the pro-
posed operator and report numerical experiments which demonstrate the robust
properties. In the system is used to model tissue perfusion using a
realistic geometry of the rat cortex. Conclusions are finally summarized in

.2 Preconditioner for the coupled problem

In the following we let  be a bounded domain in R?, d = 2 or 3 and I" be
a subdomain of € of dimension 1. By Lo(D) we denote the space of square-
integrable functions over D and H'(D) is the space of functions with first order
derivatives in L?(D).

Discretizing (II.1)) in time by backward-Euler discretization the problem to
be solved at each temporal level is of the form

Au = f
with
I — kDqgAgq 0 ESITE,
A= 0 I —kDrAr kBI (I1.3)
kBIIR kBI —k.

and k being the time step size. Note that in order to obtain a symmetric problem
the operator A uses the adjoint II}; of the averaging operator 1l instead of the
trace, cf. (LL.1)). The choice results in modeling error of order O(R).

2 Note that in ([1.2) and ([I.1) the constraint/coupling is defined in terms of a surface
averaging operator Ilg.
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To motivate the structure of the preconditioner let us consider a 3 x 3 matrix

1+oq 0 B1
A= 0 1+ [6) ﬁg
B B2 =

where a1, as, 01, B2, and « are assumed to be positive. It can then be shown
that with

(1+ay)! 0 0
B= 0 (1+ag)™t 0
0 0 (V+BE+83)" + (v + B /ar + B3 /az) "t

the condition number of BA is bounded independent of the parameters. With
this in mind we propose that A can be preconditioned by a block-diagonal
operator

(I — kDQAQ)_l 0 0
B= 0 (I — k‘DFAF)_l 0 R (114)
0 0 S
where
S=8"+55" (IL.5)
and

S1 =1 + (kB)*IRIl}, + (kB)*I,

Sy = ’}/I + (kﬂ)ZHR(—kDQAQ)ilnE + (k,@)2(—]€DFAF)71. <II6)

The operator B could be rigorously derived within operator preconditioning
as a Riesz map preconditioner for A viewed as an isomorphism from V' (€2) x
V() x Q(T') to its dual space. In [11] the framework was applied to a system of
two elliptic problems coupled by a 2d-1d constraint. For extension of the
analysis to parabolic problems would be required. In robust preconditioners
for time-dependent Stokes problem were analyzed as operators between sums of
(parameter) weighted Sobolev spaces. Similarly, the structure of suggests
that Q = Q1+ Q> with Q1, Q2 being suitable interpolation spaces. However, here
we shall not justify Q1 and @2 (and the preconditioner B) theoretically. Instead,
@1, Q2 are characterized and robustness of B is demonstrated by numerical
experiments.

1.3 Discrete preconditioner

Considering ([I.4)), both (I — kDqAg)~" and (I — kDrAr)~! can be realized
with off-the-shelf multilevel algorithms and the crucial question is thus how to
construct S efficiently. Note that assembling S7 and in particular Se might
be too costly or even prohibitive, cf. (—=Agq)~! in S,. However, following
the preconditioner can be realized if operators spectrally equivalent to
IIgr(—Aq) I} and IIgIT}; are known and if the inverse (action) of the resulting
approximations to S7 and Sy is inexpensive to compute.
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(0,0,0)

Figure I1.1: Geometries used in preconditioning numerical experiments. The
domain is Q = [0, l]d while in order to prevent symmetries I' (pictured in red)
always features a branching point. Triangulation of I' is made up of edges of the
cells that triangulate €.

1.3.1 Auxiliary operators

If Q € R? and IIp is understood as the trace operator, the mapping properties
of trace as a bounded surjective operator H' () — H*(I') can be used to show
that ITg(—Agq) I} is spectrally equivalent with (—Ar)*. At the same time
HRIly, = I (—A)SIT; requires characterizing the space of traces of functions
in L2(Q). We shall demonstrate by a numerical experiment that a spectrally
equivalent operator is here provided by an operator h~11}.

Let Qp, T, be triangulations of Q and I" such that I'j, consists of a subset of
edges of the elements 2y, cf. Figure Further let V}, @, be finite element
spaces of continuous linear Lagrange elements on {2, and I'j, respectively. Finally
we consider the eigenvalue problem: Find A € R, u € Vj, p € @, such that

/uv+/pHRv=/\/uv Yv € Vp,
Q r Q

(I1.7)
/qHRuzz\/h_lpq Vg € Qp.
r r

Table shows the spectral condition number k£ = max |A|/ min |A| of the linear
systems (II.7)). For all the considered resolutions h the value of k is bounded.
As the mapping properties of IIgIl}; and IIgr(—Agq) 'II}; in case 2 C R? are
not trivially obtained from the continuous analysis, we again resort to finding
the suitable approximations by numerical experiments. Similar to the two
dimensional case, the first operator with IIp having the constant radius R = 0.02
is found to be spectrally equivalent with h=11},. Following , an approximation
to IIg(—Agq) I} is searched for as a suitable power s < 0 of (—Ar + I1). More
precisely, we look for the exponent yielding the most h-stable condition number
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QCR? QCR3
1/h 1/h
32 64 128 256 512 1024 4 8 16 32 64 128
IL.7) | 436 4.33 435 436 436 435 || 426 5.22 558 4.44 485 4.85
1.9 8.80 884 884 886 883 8.87 11.04 825 7.44 9.02 10.30 11.25

Table II.1: Spectral condition numbers of the eigenvalue problems related to

approximations of HgIl;(eq (IL7)) and IIr(—Aq)IT,(eq (IL8). In the two-
dimensional case uses s = f% in agreement with the mapping properties
of the continuous trace operator. Results for s = —0.55 are reported in the three
dimensional case. On the finest triangulation dim V3, ~ 108 and dim Q;, ~ 103

when d = 2 and dim Qy, ~ 102 for d = 3.

of the eigenvalue problem: Find A € R, u € Vj, p € Qp, such that

/Vu~Vv+/pHRv:)\/Vqu+uv Vv € Vp,
@ r @ (IL.8)

/ qllgu = )\/p(—AF +1Ir)°q Vg € Qp.
r r

In the powers are computed using the spectral decomposition of the
operator —Ar + Ir.

We shall not present here the results for the entire optimization problem
and only report on the optimum which is found to be s = —0.55. For this value
Table shows the history of the condition numbers of system using
again R = 0.02. There is a slight growth by a constant increment on the finer
meshes, however, the final condition number is comparable with that obtained
on the coarsest mesh. We note that we have not investigated the behaviour of
the exponent on different curves or with variable radius. This subject is left for
future works.

1.3.2 Discrete preconditioner for the coupled problem

Applying the proposed preconditioner of the coupled 3d-1d problem
requires evaluating the inverse of operators S; and Sy in . The former is
readily computed since, due to the suggested equivalence of II1zII} and h=1I,
the matrix representation of S; is essentialy a rescaled mass matrix. For Sy we
show that if (—Ar + Ir)*® is computed from the spectral decomposition then the
inverse S5 ' can be computed in a closed form.

Let A, M be the n x n matrix representations of Galerkin approximations
of —Ar + It and I in the space Q) C H(T'). Following the matrix
representation of (—Arp + Ip)3 is Hy = MUA®(MU)’ where the matrices U, A
solve the generalized eigenvalue problem AU = MUA such that U'MU = I.
Using Hy it is easily established that the matrix representation of Sy is

vHo + (kB)*(kDo) ' H_y + (kB)*(kDr)~"H ;.
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As H;! = UA*U’ the inverse of the Sy matrix is given by

U (A° + (kB) (kDo) A~} + (k8)2(D)'AT) U (1L9)

Using the spectral decomposition, the cost of setting up the preconditioner
S is determined by the cost of solving the generalized eigenvalue problem for U
and A. This practically limits the construction to systems where dim @Qj, ~ 103.
However, for the problems considered further, this limitation does not present
an issue. In particular, the preconditioner can be setup on the discretization
of vasculature of the cortex tissue used in §IT.4] which contains approximately
twenty thousand vertices.

With a discrete approximation of S we can finally address the question of B
being a robust preconditioner for . Motivated by we do not vary all
the paramaters, and instead, set v = 1 in 4. Morever, the conductivity on 2 is
taken as unity and only variable D > 1 is considered mimicking the expected
faster propagation along the one-dimensional domain. Finally, the time step k
and the coupling constant 3 shall take values between 10~* and 1078,

For a fixed choice of parameters Dr, 3, k, the preconditioned problem
BAx = Bf is considered on geometries from Figure and discretized with
continuous linear Lagrange elements. The resulting linear system is then solved
with the MinRes method where the iterations are stopped once the preconditioned
residual norm is less than 107!° in magnitude.

The observed iteration counts are reported in Table [I.2] For both 2d-1d
and 3d-1d coupled problems the iterations can be seen to be bounded in the
discretization parameter. Moreover the preconditioner performs almost uniformly
in the considered ranges of Dr and [ while there is a clear boundedness in k as
well. We note that these conclusions are not significantly altered if the ranges
for k and [ are extended to 1.

Having demonstrated the numerical stability of our model, we next test it on
the same problem as , namely a bloodborne tracer perfusing and later being
cleared from tissue. While considers this problem on a macroscopic scale,
we model it on the micro-scale, where individual blood vessels can be resolved
as part of our 1d domain.

.4 Perfusion experiment

In , a 0.7mm X 0.7mm x 0.7mm piece of mouse brain microvasculature was
imaged using two-photon microscopy. To obtain a realistic geometry for our
model, we used this data to generate a 3d mesh of the extravascular space in
which vessel segments corresponded to 1d mesh edges. The radius of the blood
vessels is used as the radius R in the definition of the averaging operator Ilg,
and ranged between 1 and 15 micron.

To model a small region of tissue being perfused by a bloodborne tracer, we
use initial conditions of u, % = 0, and a boundary condition of & = 1 %"1 on the
part of the boundary corresponding to inlet vessels. To model clearance, the
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2d-1d 3d-1d

Dr Jé] k 1/h 1/h
32 64 128 256 512 1024 4 8 16 32 64 128
100°% [ 11 10 10 ] 7 7 8 13 12 11 11 10
1078 110% 15 13 12 10 8 8 10 14 16 16 15 13
1074 || 16 11 12 13 13 14 12 16 18 16 13 14
10°° [[ 11 10 10 ] 7 7 8 13 12 11 11 10
10° | 107 | 1079 || 15 13 12 10 8 8 10 14 16 16 15 13
107415 11 12 13 13 14 12 16 18 16 13 14
10°° [[ 11 10 10 ] 7 7 8 13 12 11 11 10
1071 10%| 15 13 12 10 8 8 10 14 16 16 15 13
107% |16 11 12 13 13 14 12 16 18 16 13 14
10°° [[ 11 10 10 9 7 7 8 13 12 11 11 10
1078 110%| 15 13 12 10 8 8 10 14 16 16 15 13
1074 |15 11 12 13 13 13 11 16 18 13 13 14
10°° [[ 11 10 10 9 7 7 8 13 12 11 11 10
102 1107 | 1079 || 15 13 12 10 8 8 10 14 16 16 15 13
107415 11 12 13 13 13 11 16 18 13 13 14
10°° [ 11 10 10 9 7 7 8 13 12 11 11 10
1071 10°%| 15 13 12 10 8 8 10 14 16 16 15 13
1074 |15 11 12 13 13 13 12 16 18 13 13 14
10% 11 10 10 ] 7 7 8 13 12 11 11 10
1078 110%| 15 13 12 10 8 8 10 14 16 16 15 13
10°* |15 11 12 13 12 10 11 16 18 13 13 14
10% ] 11 10 10 ] 7 7 8 13 12 11 11 10
10 1107 | 107% || 15 13 12 10 8 8 10 14 16 16 15 13
10°* |15 11 12 13 12 10 11 16 18 13 13 14
10% 11 10 10 ] 7 7 8 13 12 11 11 10
107107815 13 12 10 8 8 10 14 16 16 15 13
10°* |15 11 12 13 12 10 11 16 18 13 13 14
10% 11 10 10 ] 7 7 8 13 12 11 11 10
1078 10%| 15 13 12 10 8 8 10 14 16 16 15 13
107* || 14 10 10 9 8 5 11 15 18 13 11 11
10°° [[11 10 10 ] 7 7 8 12 12 11 11 10
10 1107 | 1079 || 15 13 12 10 8 8 10 14 16 16 15 13
107* || 14 10 10 9 8 5 11 15 18 13 10 11
10°° [[11 10 10 ] 7 7 8 12 12 11 11 10
107 107% |15 13 12 10 8 8 10 14 16 16 15 13
107* || 14 10 10 9 8 5 11 16 18 13 10 11

Table I1.2: Number of iterations of MinRes method on (II.3) using (.4 as
preconditioner with S approximated using (I1.9). (Left) 2d-1d coupled problem

and (right) 3d-1d coupled problem from Figure are considered.
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Figure I1.2: Example results shown on a (left) clip of the 3d domain and (right)
on a slice. Notice the 'halos’ of increased concentration immediately around the
vessels.

inlet boundary condition was swapped from @ = 1 to @ = 0 after a third of the
simulation time had passed.

As parameters, we use Dr = 6.926 x 107 um?/s, Do = 1.87 x 10? ym?/s
and S = 50 pm/s. We used k = 1s after verifying that reducing it did not
significantly affect our results. In this experiment, it was unneccessary to use
the preconditioner described in §II.3] since the problem size was small enough to
allow for use of a direct solver.

Tofts assumes a relation

80:‘. Ktrans
—=—C, - C, I1.10
e s (11.10)
between the pixel tissue concentration C; and the pixel vessel concentration C,
for some constant Ki,..ns. Here, v is the vascular volume fraction, which in our
geometry is about 0.76%. Our geometry is of a size comparable to a single pixel
in , so Cy and C,, correspond to the normalized averages

fr R4

_ Jou _
Ct =+— and CU—W

ol

We computed Kipans by solving for u, @ using our model, and then computing
Cy, Cy as given above, and defining Ki,.,s such that equation (II.10) holds at
each time point. This makes Kians a function of time, with units seconds .
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Figure 11.3: Behavior of Kians on short and long time scales.

I.4.1 Discussion of perfusion experiment

Our value for Kiyans is not entirely constant. There is a small variation in
time, as perfusion seems to be somewhat faster when the extravascular space is
completely empty of the tracer. As it starts getting saturated, perfusion slows
down somewhat. This translates into Ki,ans decreasing by about 20% over a

period of about 5 minutes, from 0.0028 min~! to 0.0023 min—!.

In , Kirans Was estimated in healthy and cancerous human brain tissue
from MRI scans. In healthy tissue, they estimate Ki;ans to be between 0.003
min~! and 0.005 min~?!, that is, slightly higher than our results. There are
several possible explanations for this difference. One might be that in our model,
vascular transport is modeled as exceptionally fast diffusion for convenience,
whereas in reality it occurs by convection. However, in both cases 1d transport is
very fast compared to the 3d transport and the 1d-3d exchange. Further, K ans
is defined in terms of the 1d-3d exchange alone, so non-extreme variations in the
1d transport seem unlikely to be relevant.

Another possibility might be that the data of are taken from human
brain tissue, while our vasculature is taken from a mouse brain tissue, likely from
a different region of the brain. A third reason might be our diffusion constants
not exactly matching the tracer used by .

In further work, it would be interesting to incorporate convective transport
into the model and see if better agreement with the experimental data is observed.
A suitable starting point here is [1], who derive a convection-diffusion type system
(equations (3a), (3b)) by assuming that the blood flow § in a segment is laminar
and follows Poiseuille’s law

j = R*CVp.
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—Dr = 6.926 - 107 & —Dq = 1.87- 10! £ —B=5-100s2
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Figure I1.4: Plots of variation in C; when different parameters are varied.

1.4.2 Parameter sensitivity analysis

We carried out a rudimentary parameter sensitivity analysis by varying the three
parameters Dr, Dq, 3 by a factor 10 and seeing how that affected the tissue
concentration C;. Specifically, we started from a baseline of
Dr = 6.926- 108 %9”2, Dq = 1.87-10? #, B =5-10's7?, and for each parameter,
increased or decreased it by a factor 10.

The results are shown in Figure[[.4 They indicate that C; depends more
strongly on 8 and Dr than on Dgq for the set of parameters considered here.

II.5 Conclusions

A coupled 3d-1d system with an additional unknown enforcing the coupling
between the domains was used as a model of tissue perfusion. For the system
we proposed a robust preconditioner and demonstrated its properties through
numerical experiments. Further, we have shown that the model can be applied
to a physiological problem with reasonable results.
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Abstract

The coupled Darcy-Stokes problem is widely used for modeling fluid
transport in physical systems consisting of a porous part and a free part.
In this work we consider preconditioners for monolitic solution algorithms
of the coupled Darcy-Stokes problem, where the Darcy problem is in primal
form. We employ the operator preconditioning framework and utilize a
fractional solver at the interface between the problems to obtain order
optimal schemes that are robust with respect to the material parameters,
i.e. the permeability, viscosity and Beavers-Joseph-Saffman condition.
Our approach is similar to that of , but since the Darcy problem is in
primal form, expressing mass conservation at the interface involves the
normal derivative, which introduces some mathematical challenges. These
challenges will be specifically addressed in this paper, in particular we
will employ fractional Laplacians at the interface. Numerical experiments
illustrating the performance are provided. The preconditioner is posed in
non-standard Sobolev spaces which may be perceived as an obstacle for
its use in applications. However, we detail the implementational aspects
and show that the preconditioner is quite feasible to realize in practice.

IV.1 Introduction

Let = Qr U, where €2 is the domain of the viscous flow, §2,, is the domain of
the porous media and I' their common interface. Further let the domain bound-
aries be decomposed as 0Qy = I'U0Q p U0y x and 082, = T'UON, p U, N,
where subscripts D, N signify respectively that Dirichlet and Neumann boundary
conditions are prescribed on the part of the boundary. The boundary of I', i.e., the
intersection of I and 9 is denoted by OI'. An illustration is given in Figure [[V.1]
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IV. Robust preconditioning for coupled Stokes-Darcy problems with the Darcy
problem in primal form

The Stokes problem reads: | an N aQP,N |
| |
| |

Auy — Vpr =1frin Qy, v.1
phuy — Vpy =1ty in Qg (IV.1), QO i3 Q !
V~uf:01n Qf, (IVQ): :
1 OS2 0, p
while the Darcy problem in primal form £b p.D |

reads: L 1
Figure IV.1: Schematic domain of Darcy-

—KAp, =g in Q,. (IV.3) Stokes problem. Dirichlet conditions
shown in dashed line, and interface in
red.

Here, uy, ps are the unknown velocity and pressure for the Stokes problem —
in ¢, p, is the unknown pressure of the Darcy problem in §2,.
The material parameters are the fluid viscosity p and the permeability K. Here
we shall consider the problem with the Dirichlet boundary conditions

uy = u?c on 08¢ p, Pp :pg on 082y p
and Neumann conditions
(uVuy —psl) -ng=hon 0Q¢ N, Vp,-n, =h, on 0Q, N,

where ny, n, are the outer unit normals of the respective subdomains. In
particular we assume that [9€; p| > 0 and |0Q; x| > 0 for i = p, f. Moreover,
the coupled problem must be equipped with interface conditions expressing the
continuity of stress as well as mass balance. We postpone their description until
we describe the weak formulation of the problem.

The discretization of the coupled Darcy-Stokes problem with the Darcy
problem in a mixed form is challenging since the Darcy and Stokes problems,
respectively, call for different schemes. For example, typical finite element
methods for the Darcy problem, like the Raviart-Thomas or Brezzi-Douglas-
Marini elements, are not stable for Stokes problem as the discretization of the
flux specifically targets the properties of H(div) rather than H' which is natural
for Stokes discretizations. For this reason, a wide range of methods have been
proposed over the last decade that address this particular challenge. For example,
new elements robust for both the Darcy and Stokes problem have been proposed
in [35]. Alternatively, stabilization or modifications of standard
methods may be used as in . In this work we will consider
the coupled problem with the Darcy equation in a primal form and a Lagrange
multiplier to couple the Stokes and Darcy problems. Standard elements in both
the Darcy and the Stokes domain can then be used, but a main problem with
such schemes is the stability of the discretization at the interface.

The well-posedness of the Darcy-Stokes problem coupled together through the
use of a Lagrange multiplier is well-known when the Darcy problem is in mixed
form 7 where both the continuous setting and various discretizations
were proposed. Other solution and discretization algorithms for the coupled
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problem are presented in e.g. , see for an overview. For the mixed
formulation we have, in our previous work , developed monolithic solvers that
are robust with respect to all material parameters by utilizing fractional solvers
on the interface. Here, we continue with the same type of approach, but address
the difficulty of the Darcy problem in primal form, where the main concern from
a mathematical point of view is the normal gradient at the interface. However,
as the interface is of lower dimension, the number of degrees of freedom at the
interface is typically small compared to the overall problem and preconditioning
blocks at the interface based on fractional Laplacians are hence feasible to realise
without sacrificing performance. Furthermore, multilevel solvers are available for
fractional Laplacians if the interface requires more degrees of freedom than
can be solved for by direct methods. We remark that the problem to be studied
further is symmetric and includes an explicit variable, the Lagrange multiplier,
on I'. In this respect it differs from the more common primal formulation, which
leads to a non-symmetric system to be solved for uy, ps and p,. Well-posedness
of the latter problem was established in with efficient solvers proposed and
analyzed e.g. in .

An outline of the paper is as follows: Section describes the notation,
introduces the symmetric primal Darcy-Stokes problem and illustrates the diffi-
culties in its preconditioning. The main challenge for the solver construction,
i.e. the proper posing of the coupling operator, is addressed in Section [[V.3]
Parameter robust preconditioners are then established in Section [[V.4]

IV.2 Preliminaries

Let Q be a bounded Lipschitz domain in R™, n = 2 or 3, and denote its boundary
by 9. We denote by L?(f2) the Lebesgue space of square integrable functions,
with the norm ||uH2L2(Q) = [q |ul? dz, and by H'(£2) the Sobolev space of functions
with first derivative in L?(Q) with norm [[ul|% ) = [|ull72(q) + | Vul|72 (o). Note
that the spaces are both Hilbert spaces, with the standard inner products. These
spaces are defined in the same way when u is a vector field, in which case we will
write u in boldface. We also define the subspace H}(2) to be the completion in
| |1 () of C§°(£2), the space of smooth functions on €2 whose restriction to
0 is zero.

For a Lipschitz domain  with I' C 02, we can define a trace operator T by
Tu = u|r for smooth u. This can be extended to a bounded, surjective and right-
invertible operator H'(Q2) — H*(T') (cf. e.g. [9]), where the space H*(I") will
be defined later. Given a subset 9Qp of 09, we let H&’ 20, (£2), or for readability
just Hj 5(€2), be the subspace of H'(2) for which the restriction to dQp is zero,
where the restriction is defined in terms of the trace operator. Typically, 9Qp
will be the subset of 92 on which Dirichlet conditions are prescribed. We also
define the semi-norm L2(T") on H'(Q) to be the L?(T") norm of the tangential
component of u at I'. In 2D, this is just |[u|r - 7|/ 2(r) where 7 is a tangent unit
vector, while in 3D it is more conveniently written as [[ulr — (u|r - n)nl| 2.
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For any inner product space X, we let (+,-)x denote its inner product. When
X = L*(Q), we will omit the subscript if there is no cause for confusion. We
write the space of continuous linear operators from X to Y as £(X,Y), or just as
L(X)if Y = X. For any two Sobolev spaces X,Y both contained in a common
ambient space, we define the intersection and sum spaces X NY and X +Y in
terms of the norms

lullfkny = lulX +lully  and  Julkiy = nf % + llyll5-
rzeX,ycyY

For any ¢ > 0, we define the scaled space cX to be just X as a set, but with
the inner product (u,v)x = ¢(u,v)x. Its norm is trivially equivalent to | - || x,
but because the equivalence constant depends on ¢, the distinction between the
two norms becomes important when we need to establish the independence of
bounds with respect to problem parameters.

We define the fractional space H*(T') following [26]. Let S € L(H'(I)) be
the operator such that (Su,v)g: = (S(I — A)u,v) = (u,v)r2 for all v € H(T).
We can then find a basis of H(T") of orthonormal eigenfunctions e; of S with
eigenvalues \; > 0. Writing w = ), ¢;e; in this basis, we define the norm
||u||?{3(r) = >"c2\;® for any s € [—1,1]. Further, let the space H*(T") be the
completion of C°°(I") with respect to || - || g+ (). We also define the space Hgy(I')
in the same manner, except that we then apply Dirichlet boundary conditions
by choosing S in £ (H}(I)). Furthermore, H,(I') is the completion of C§°(T')
rather than C*°(T").

For the sake of completeness we review here the construction of a matrix
realization of fractional operators given in . To this end let V;, ¢ HY(T),
n = dim V},, be a finite dimensional finite element subspace with basis functions
¢iyi=1,...,nand A, M € R"*" be the symmetric positive definite (stiffness
and mass) matrices such that

Aij = (V9;, Vi) and My = (95, di).

In case V;, ¢ HY(T) and piecewise constant (P0) discretization is used we let

A= {4 (651 [0,

veN

where N is a set of all the facets of the finite element mesh. Further the
(facet) average and jump operators are defined as {{u}}, = 5 (ulx+ + ulx-),
[u]l, = u|x+ — u|g- with K+ and K~ the two cells sharing facet v. When v
is an exterior facet, we define [u], = {{u}}, = u|x, where K is the unique cell
with v as facet.

It follows that the generalized eigenvalue problem (A +M)U = MUA has only
positive eigenvalues and a complete set of eigenvectors that form the basis of R™
so that the powers of S = UA(MU)T are well defined. For s € [—1,1] we then
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set H(s) = MS?. Letting u be the vector of degrees of freedom of u;, € V3, i.e.
up, = D¢ (u);¢;, we finally have

lunll s =

When u is a vector function, we define the normal trace Th,u = u|r - n
using the trace operator T' component-wise. As such Ty, is a continuous map
H'Y(Q) — Hz(I'). Moreover, we let T, be the tangential trace operator. We
remark that in 2D and 3D the operator maps to scalar, respectively vector
fields. The normal derivative, dhu = Vu - n|p, is more challenging to define
properly in this context. Let us therefore briefly sketch an approach, which at
least in the authors’ opinion at first glance seems like a natural starting point.
However, as we will show, the approach does not yield robust preconditioners
in our context. First, notice that if we impose additional regularity on v and
require that Au € L? then 0, is well defined. In detail, let w € H'/?(9%2) and
E: HY2(0Q) — H'(Q) be a (harmonic) extension operator. Then dpu clearly
lies in H~/2(99) because

[“)nu~wds:/Au~Ewdx+/V-(EW)-Vudx§oo.
a0 Q Q

This extra regularity assumption is, however, hard to express in the operator
preconditioning framework. In particular, to the author’s knowledge, there are
no standard finite elements that would enable us to exploit the extra regularity.
A possible approach could be NURBS or O discretizations developed for
fourth order problems. However, the latter often show poor performance for
second order problems .

Alternatively, we may attempt to define 0, as a composition of the first
order derivative operator, V, with the 1/2 order normal trace operator Tj,. The
composition d, could then be expected to be a 3/2 operator 9, : H*(Q) —
H~12(98). From an operator preconditioning point of view, this would be
feasible to realize, as we will see below. However, as we will demonstrate,
robustness will not be obtained if we realize 0, as a 3/2 operator. In fact,
robustness is only obtained if 9y, is a first order operator, 9, : H*(Q) — L2(09).
We remark here that while the operator in a continuous setting is 0, : H*(Q) —
L?(09), in the discrete setting we will include a scaling parameter, i.e. the mesh
size, because we use the finite element method. To see that this is reasonable,
notice that for finite elements, the mass matrix, as representation of the identity,
is differently scaled in different dimensions. In Example we detail the
scaling in a simplified example.

In order to demonstrate why posing the 9, operator properly is required, let
us now formulate the coupled Darcy-Stokes problem, where the Darcy problem is
in a primal form. As a starting point, let the Lagrangian of the coupled problem
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be,

! 1
L(ug,ps,pp, A) = / B} (1(Vuy)® —ff -uy) do +/ iD(uf -7)2ds

1
+/ ;K ((Vpp)? —gpp) dz+ | V-usppda
Qp Qy

+ /(Tnuf — KOnpp)Ads.
r

Note that the sign of p; has been changed from (IV.1). Here, the Lagrange
multiplier A in [.(Tquy — Kdnp,)Ads is used to ensure mass conservation, while

the extra term [, %D(uf -7)%ds, where D = aBysy/ %, corresponds to the
Beavers-Joseph-Saffman condition [31].

The corresponding weak formulation is obtained by the first order optimality

conditions of the Lagrangian, that is; (?TLf =0, 687[;« =0, gTL =0, and g—ﬁ =0.
P

A variational formulation hence reads: Find (uy,p,,ps, A) such that

a((ag,pp)s (Vi 4p) +0((vi,40), (7 A) = F((Vi,a0) (Vi ap),

b((us, pp); (a5, w)) = g((gr,w))  Y(gp,w), (IV.4)

where the bilinear forms a, b are defined as

a((uy,pp)s (Ve qp)) = 1n(Vug, Vvy)a, + D(ug -7, vy 7)r + K(Vpp, Vgp)a,,

b((uf,pp),(Qf71U)) = (v'ufaqf)Qf +(Tnuf7w)F_K(anppvw)F- ( )

V.5

We shall refer to ([V.4]) as the (primal) Darcy-Stokes problem. Note that the
resulting formulation is symmetric.

While appropriate function spaces are readily available for u¢, p,, py and their
corresponding test functions, it is less clear what the appropriate requirements
are for w and A. This will be addressed below.

Example 1V.2.1 (Preconditioner for coupled Darcy-Stokes problem assuming
On: H' — H_l/g). Let us assume that 9y, is a 3/2 operator so that Kdnp, €
#H’l/z for p, € VEKH 1,(€,). Next, observe that since

uy € /uHj p(Qf) NVDLA(T) then Tyu; € JuHY2. Per assumption the
coupling term Thuy — K0np, belongs to \/ﬁHl/2 + \/%H_lm so that the dual

variable w € ﬁH 120/ KH'2. In turn, we consider the following weak formu-
lation: Find uy,p,,ps, A € JiH{ () NVDL2(T),VKH] 5(5,), ﬁB(Qf),

\%HH*UQ N+ KHY? such that

a((ug,pp)s (Vi 4p)) +0((vy4p)s (7, A) = F((vi4p)) V(05 0p),

b((us, pp), (a7, w)) = g((gr,w))  V(gf,w). (IV.6)
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The coefficient matrix associated with (IV.4)) reads

N vy
_ _ /
A= - KA Ko, (IV.7)
Th — KO,

Assuming that the proposed spaces indeed lead to well-posed operator A,
the operator preconditioning framework yields as a preconditioner the Riesz

mapping

—uA+ DT!T;
-KA

1T
m

LI+A) P+ K (I+4)?

(IV.8)
In order to test the preconditioner, we solve problem on Q= [0,2] x [0,1],
where Qy = [0,1] x [0,1] and ©, = [1,2] x [0,1] and the Dirichlet boundary

domains are Qs p = {(z,y) € 0Qy,x =0} and 0Q, p = {(z,y) € 0Q,,x =2}
, cf. The mesh is a uniform triangular mesh, consisting of 4N?2
equally sized isosceles triangles. To discretize 7 we use lowest order (P2-
P1) Taylor-Hood elements for the Stokes velocity and pressure, while piecewise
quadratic elements (P2) were used for the Darcy pressure and piecewise constant
elements (P0) for the Lagrange multiplier. Discretization is carried out in the
FEniCS library , with coupling maps between the interface and domains and
the fractional Laplacians being implemented by the extension FEniCSy .

Approximation of the preconditioner is constructed by using single
sweep of V-cycle of algebraic multigrid BoomerAMG from the Hypre library
for all the blocks except for the interface block, which is inverted exactly.
Starting from a random initial vector, we count the number of iterations required
to solve the preconditioned linear system using the MINRES solver from the
PETSc library [4] with convergence criterion based on relative tolerance of 10~%
and absolute tolerance of 1071°. Additionally, the condition numbers of B~1.A
are computed using an iterative solver from the SLEPc library . In the
condition number computations the operator B is computed exactly, that is, all
the blocks are inverted by LU. We remark that this solver setup is used also in
the subsequent examples.

The results of the experiment are plotted in Figure [[V:2] By the failure of
the iteration counts to stabilize, we see that using i I+ A)fl/z +K(I+ A)1/2
as multiplier space does not lead to a robust preconditioner over the whole
parameter range. Note, however, that in the regime where p is significantly
smaller than K (i.e. the lower left region of the plots in Figure , iteration
counts and condition numbers appear to be stable as the mesh is refined. In
this regime, the norm of the multiplier space is dominated by the part from
ﬁH —1/2 which is determined by posing of the trace operator. This suggests
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Figure IV.2: Mesh refinement vs. iteration counts (left) and condition numbers
(right) for Example All subplots share x- and y-axes. For fixed u, K
the z-axis range in the iterations subplot extends from (mesh size) h = 272 to
h = 2710, In the condition number plots the range is from h = 272 to h = 278,
In all cases, apjs = 1.

that the choice of vVKH'Y? i.e. wrong posing of the dy, operator, is responsible
for the lack of boundedness.

IV.3 Approximating the trace normal gradient operator

A crucial step in the analysis of the Darcy-Stokes problem will be the mapping
properties of the operator d,. As a computationally practical choice of space for
the Darcy pressure is VK H', we immediately run into the problem discussed in
the preliminaries because 9, cannot be defined on all of H'. This necessitates
either an assumption of extra regularity or an alternative approach.

Motivated by the observation in , that in a discrete finite element setting
the trace operator is stable as a map L?(Q2) — L?(05)), we propose an alternative
approach to construct the preconditioners. We start off by outlining the construc-
tion of an operator Oy . : H'(Q,) — L*(T') which will be an approximation to Oy
Suppose I is a sufficiently regular subset of €, and that I' is of co-dimension 1
in ©,. The e-thick envelope I'. = {y € Q,, dist(y,I") < €} is a higher-dimensional
approximation of I'. For any v € H'(Q,),

1
f/ v¢dm—>/TvT¢ds as € — 0, (IV.9)
r. r

€
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where ¢ is a test function in H'(€2,).

Note that although the integral over I' is not well-defined for a general
v € L*(Q,), the integral over T, is. Provided T' is sufficiently regular and e
sufficiently small, we assume that there exists a vector field nr, on I'. which
approximates the normal vector nr of I' at I'. Using nr,_, we further assume that
we can define a bounded extension E, : L*(T') — L*(T.) along nr, for which
Jrwds ~ ¢ [ Ecawdz for any w € L*(T). Provided nr, and E, can be defined,

then for any u € H*(Q,) we can define 9, cu by

1
/8n7€u-wds:f/ Vu-nr Eowdzx
r € Jr.

for any w € L*(T), thus defining the required map dn . : H'(Q,) — L*(T¢)
approximating 0,. We assume that the resulting operator dy ¢ is both surjective
and bounded, with [|On cullp2ry < Cllul|g1(q,), and that Oy . has a bounded
right inverse.

We emphasize that Oy ¢ is just an analytical tool constructed for the analysis
in the continuous setting and that e is not related to the mesh size h. In fact,
we can choose € far smaller than the mesh size and for any practical purposes
in computations we assume that 0,  will be practically identical to dn. We
summarize the assumption as follows:

Assumption IV.3.1. Given a sufficiently reqular T' C 08y, One : H'(Q,) —
L3(T') is a bounded surjection which approzimates Oy on the subspace of H' on
which Oy can be defined. Further, On. has a bounded right inverse.

Although characterizing the conditions under which [[V-3:1] holds is beyond
the scope of this paper, we motivate the existence of the required constructions
E., n. in a few simple examples below.

Example IV.3.1. Let I' be the y—axis, and €2, be the positive half-plane. The
construction of E., nr, is then given by np, = nr = (—1,0) and for w(y) € C*(T")
we let (E.w)(z,y) = w(y). This continuously extends to all of L*(T"). Clearly
On.ct — Opu as € — 0 for u € C1. Given any w(y) € C°T), define u by
u(z,y) = —zw(y). Then the map w — u continuously extends to a right inverse
of On,c, as by linearity On cu = Opu = w.

Next, suppose €, is the unit disk, and I' its boundary. By parametrizing I
with e.g. polar coordinates, this case can be effectively translated to the above.
nr, is now the unit radial vector i,, and for any w(f) € C1(T"), (E.w)(r,0) =
w(f). Again, this definition of E, extends to all of L?(T"). Because %fr Vu -

27 1 1
nr Eowdr = {w(ﬁ) g 194 rdr df and %lf f(r)ydr — f(1) as € — 0, we
again have O cu — Opu as € — 0 for u € C'. Analogously to the previous case,
a right inverse can be defined by sending any w(#) € C°(T') to u(r,0) = rw(6).

Before considering the Darcy-Stokes problem, we justify Assumption [[V.3.1]
First we consider a simplified example in order to illustrate how the scaling
of mass matrices in different dimensions affects preconditioners constructed
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via the application of trace operators. Then, in Example [[V.3.3] we construct
preconditioners for a Poisson problem with a Jy-constraint which is to be
enforced by a Lagrange multiplier, cf. the Babuska problem [2] involving the
trace operator.

Example IV.3.2 (Trace constrained L? projection). Let { be a bounded domain
with I' C 9Q and V = H'(£2). We then consider the problem

min/ u? dz — 2/ fudx  subject to /(Tu —g)pds =0. (IV.10)
ueV Q Q r

Letting p denote the Lagrange multiplier associated with the boundary constraint,
the extrema u € V, p € Q = L?*(T") of the Lagrangian of ([V.10] satisfy the
variational problem: Find v € V and p € @ such that

/uvdx+/pTvds=/fvdx Yv eV,
Q r Q

/undSZ/qus Vg € Q.
r r

The operator of the preconditioned continuous problem then reads

BA:(I s>_1 (; T’), (IV.12)

where S is to be constructed such that the condition number of the discrete
problems is bounded in the discretization parameter h. Here we shall consider
three constructions. We remark that when using the finite element realization of
the identity operator, we mean the mass matrix and denoted it by I. The mass
matrix has eigenvalues such that both the smallest and the largest eigenvalues
scale as h? on uniform mesh. First we consider S = I, with eigenvalues ~ h
because I' is a 1D manifold. Then, following , we let S = h™'1, i.e., a matrix
with eigenvalues ~ 1. Finally, the choice of S = (—=A + I)~/2 is included to
show that the relevant trace space in is not (by viewing the trace as an
order 1/2 operator) H'/? so that dual variable would reside in H~1/2.

We remark that the first two operators are in practical computations assem-
bled as weighted mass matrices where the weights for the respective operators
are 1 and inverse cell volume. Recalling the matrix representation of the
fractional operator is H(1/2).

To compare the three preconditioners, we let 2 be a unit square, I' =
{(z,y) € 9, x = 0}. Further, the domain shall be discretized uniformly into 4N?
isosceles triangles with size h = 1/N, see Figure Such disretization shall
be in the following referred to as uniformly structured (us). Considering finite
element discretization by P2-P1 elements Table lists spectral condition
numbers of . It can be seen that only the S = h~'I preconditioner leads
to results independent of h.

The growth of the condition number in Table [[V.3.1]due to the preconditioner
with —1/2 power indeed confirms that H 1/2 is not appropriate in our setting.

(IV.11)
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Alternatively, an attempt to establish the trace space could be based on viewing
the trace as an 1/2 operator. Starting from L? a formal calculation then leads to
the space H~/2 and H'/? as the multipler space. While we do not include here
the results for S = (—A + I)'/? we remark that the condition number behaves
practically identically to S = I.

h b (—A+ I)—l 2 p-1g I P2-P1 P2-PO
52 872 5108 163 (us) (uu) (nu) (us) (uu) (nu)
2-3 | 12.11 17.84 463 1| 463 4.63 4.10 | 4.63 463 3.08
24 | 16.91 95.15 463 2 163 3-36 igz 363 3'27 33‘;’
2-5 | 23.70 189.9 463 3| 463 420 428 | 463 420 43
9-6 | 3331 3799 463 4| 463 4.29 431 | 463 432 4.34
o—T 46'90 758'0 4'63 5 | 4.63 445 450 | 4.63 4.43 445
9—8 66'12 151'5 4'63 6 | 4.63 4.25 4.28 | 4.63 4.32  4.37
- ' 7| 463 425 436 | 4.63 4.28  4.39

Table IV.3.1: Condition numbers

of (IV.12) with different precondi-ap10 1v 3.2 Condition numbers
tioners and discretization by P2-P1 ¢ [IV.12) with preconditioner us-

elements on (us) mesh from Fig- ing S = h~'I. Boundedness with
ure IV.3l Boundedness is obtained qigorent types of triangulations, cf.
W.lt.h the Schur complement precon- Figure and discretizations can
ditioner h™'1. be observed.

In order to verify that the properties of the h~'I preconditioner are not
due to the uniformly structured (us) mesh, we also consider refinements of
two additional discretizations of € shown in Figure [[V.3] which we refer to as
uniform unstructured (uu) and non-uniform unstructured (nu) respectively. In
the uniform unstructured mesh, the vertices of the mesh are no longer on a
uniform square grid, but the mesh elements are still close to uniform in size. In
the non-uniform unstructured mesh, the vertices are not on a square grid, and
the mesh elements close to I' are finer than the ones further away.

Using these triangulations, problem shall be discretizated by P2-P1
elements as well P2-P0 elements to provide more evidence for the precondi-
tioner construction. Indeed, Table [[V:3.2] shows that the condition numbers of
are bounded irrespective of the underlying mesh and the finite element
discretization considered.

Example 1V.3.3 (Babuska problem with Neumann boundary conditions). Let
Q be a bounded domain with the boundary partitioned into non-overlapping
subdomains 0 = 9Qp U0y UT such that [0Qp| > 0 and |T'| > 0. We will
consider both the case that 9Qp N T = () and later the case that 0Qx NT = 0.
Let V = Hj 5, (€2) and consider the problem

min/ |Vul? de — 2/ fudx  subject to /(8nu —g)pds=0. (IV.13)
o o r

ueV

With p the Lagrange multiplier associated with Oy-constraint ([V.13]) leads to a
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variational problem: Find u € V and p € Q = L?(I") such that

/ Vu~Vvdx+/p3nv ds = / fudx Yo eV, (IV.14)
Q T Q

/q@nuds = / gqds Vq € Q. (IV.15)
r r

The preconditioned continuous problem then reads

BA = (‘A S>_l (5? 8"/) : (IV.16)

Following the preliminaries where 9, was regarded as a 3/2 operator we let
S = (—=A + I)'/2. Alternatively, S = h~'I is set following the Assumption
V3] Finally S = I is considered. Matrix realization of the S operators shall
be identical to Example [V.3.2] We shall also use the tessellations described in
Example as well as identical eigenvalue solvers.

To compare the three preconditioners we let €2 be a unit square and I' =
{(z,y) € 02, = 0} (marked in red in Figure and we consider first the
(Neumann) case where 0Qn = {(z,y) € 0Q,y =0 or y = 1}, i.e. where the
multiplier domain intersects the part of boundary with Neumann boundary
conditions. On 9€2p, we have the Dirichlet boundary condition v = g, and on
09 n homogeneous Neumann condition Vu - n = 0 is assumed.

Using the uniform meshes (marked as (us) in Figure[[V.3)) and P2-P1 elements,
Table 'IV.3.3| shows the spectral condition numbers of (IV.16)). As in Example

|IV.3.2I only S = h~'I preconditioner (based on Assumption [IV.3.1)) leads to
results independent of h.

h (—A+1)1/2 I h=1I
2—2 11.99 6.70 4.88
23 14.55 9.27  4.88
2—4 18.47 12.89  4.88
25 24.44 18.01  4.88
26 33.25 25.26  4.88
27 45.96 35.52  4.88
2-8 64.10 50.02  4.88

Figure IV.3: Parent meshes for uniform re-
finement. From left to right: uniform struc-
tured(us), uniform unstructured(uu), non-
uniform unstructured(nu). Non-uniform mesh
has finer (by factor 3) mesh size close to T'.

Table IV.3.3: Condition numbers
of (IV.16) discretized by P2-P1 el-

ements on uniform refinements of
(us) mesh in Figure [[V.3] Bound-
ednes in discretization is obtained
only with § = h~'1.

Table shows that the performance of h~'I in remains robust if

different tessellations and finite element discretizations are used.
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! P2-P1 P2-P0O ; P2-P1 P2-PO

(us)  (uu) (nu) [ (us) (uu) (nu) | (us) (uu) (nu) | (us) (uu) (nu)
1 4.88 4.77 6.64 | 3.49 3.49 3.06 1 5.34 5.25 6.67 | 3.48 3.45 3.04
2 4.88 5.98 6.56 3.49 3.04 3.37 2 5.34 6.25 6.67 3.49 2.99 3.37
3 | 4.88 5.78 5.67 | 3.49 3.24 3.36 3 | 5.34 594 5.84 3.49 3.24 3.36
4 | 4.88 6.31 6.67 | 3.49 3.40 3.40 4 | 5.34 6.52 6.93 3.49  3.40 3.40
5 | 488 5.25 5.68 3.49 3.44 3.48 5 | 5.34 5.56 6.07 | 3.49 3.44 3.48
6 | 4.88 5.71 5.89 | 3.49 341 3.44 6 | 5.34 591 6.17 | 3.49 3.41 3.44
7 | 488 6.14 6.61 3.49 3.35 3.47 7 | 5.34  6.40 6.85 3.49 3.35 3.47

Table IV.3.4: Condition numbers of using S = h~'I preconditioner
discretized on uniform refinements of parent meshes in Figure [[V.3] using two
element types. Refinement level is indicated by I. (Left) T' intersects 0Qy.
(Right) T intersects 0Qp.

In the context of multiscale problems, compatibility of boundary conditions
of the multiplier space and the boundary conditions prescribed on the domain
intesecting I' is known to present an issue, cf. e.g. . Here, we address this
problem by considering with [OnQ| = 0, i.e. we let T" intersect only
the Dirichlet boundary. We remark that until this point only intersection with
Neumann boundary was considered.

In Table the Dirichlet problem is considered with an unmodified h~'I
preconditioner. In particular, with P2-P1 discretization we impose no boundary
conditions on the multiplier space. Using this construction the condition numbers
can be seen to remain bounded on all the meshes and with both finite element
discretizations.

We remark that the h=1I preconditioner is equally unaffected by the Dirichlet
boundary conditions on 9Qp = 92\ T in the trace-constrained L? projection
problem with V = H(%,aQD (2), cf. Example This is in contrast
to the H! problems considered in [19], where the appropriate preconditioner
was Hyy or H™* depending on whether the interface intersected the Dirichlet
boundary or not. Let us note that in the continuous setting boundary values
have measure zero and this may then be perceived as support for our assumption
that the L? space is the correct one in our discrete setting. Of course, the
counterargument in the continuous setting is that then the trace cannot be
defined. However, in the discrete setting, this can be done.

Without including the simulation results we comment here that the condition
numbers of the Dirichlet problem are practically identical to those presented in
Tables [[V.3.1] and [V-3.2] In addition, with the two preconditioners S = I and
S = (—=A + I)"/? on the unstructured meshes a growth of condition numbers
with h is observed similar to Table [V.3.3]

We remark that the stability of the preconditioner h='I in Example [IV.3.3
provides numerical evidence for well-posedness of ([V.14), i.e. the Darcy sub-
problem in the coupled Darcy-Stokes system (IV.4)).
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IV.4 Robust Preconditioners for the Darcy—Stokes system

In Example we showed that the efficiency of the preconditioner for
the primal Darcy—Stokes problem varied substantially with the material
parameters even though the Stokes block and the Darcy block were precondi-
tioned with appropriate preconditioners, and argued that the reason was a poor
preconditioner at the interface. In this section we demonstrate that robustness
with respect to mesh resolution and variations in material parameters can be ob-
tained by posing the Lagrange multiplier in properly weighted fractional spaces,
namely the intersection space Xr = v K L*(I') N ﬁH‘l/Q(F). No modifications
of the velocity or pressure space norms will be required. Our analysis is closely
related to , and based on Assumption along with an assumption of
stability for the Stokes problem. We remark that although Assumption is
motivated by the discrete problem, our analysis is carried out in a continuous
setting.

Let 0Q; = 0%, p U0, y UT for ¢ = f,p such that 0Qy p NT = (. We shall
prove well-posedness of the coupled Darcy-Stokes problem with spaces

Vi = Vil p() N VDLAD), Qs = = I3(9),

1 IV.17)
Qp = VKH; (), Xr = VKL*(T) 0 ﬁH*/?(r).

Note that in case I' intersects only the Dirichlet boundary 0€Q¢ p the space
H~1/2 needs to be modified to reflect HééQ as the appropriate trace space of V.
We refer to for a thorough discussion of the subject.

As a prerequisite for the coupled problem to be well-posed, we require that
each subproblem is well-posed. For the Stokes subproblem the property has
been demonstrated by numerical experiments in . Here we state the result
without proof.

Assumption IV.4.1. Let Qf be such that 0y = 0y p U0y n UT, |02 p| > 0
and 9y, p NT = 0. We define Vs = \/uHg () N VDL2(T) x ﬁB(Qf) X

ﬁH‘l/Q(F) and the forms

as((uy,pp, A), (Vi qp,w)) =u(Vuy, Vvy) + D(ug - 7,vy - T)r + (pf, V- vy)
+ (V- uy,qp) + (Taug, wr + (A, Tavy)r,
LS((Vfaqfvw)) :(fvvf) + (gv(If) + (hD,w)Fa
where f € ﬁH‘l(QJc),g € VuL*(Qy),hp € JuH*(T) are arbitrary. Then we
assume that the Stokes problem: Find (uy,qr, ) € Vs such that
as((ug,pg,A), (Ve qr,w)) = Ls((vy,qp,w)) V(vy,qp,w) € Vs

satisfies the Brezzi conditions and hence has a unique solution (uy,ps, \) € Vg
and with constant C' depending only on Q¢, 0Q¢ p and I', we have

N

2 2 2
Iur.pr Mive < € (112 4oy + 19020y + 1001 sy
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Corresponding well-posedness of the Darcy problem with d,-constraint was
demonstrated numerically for K = 1 in Example [[V.3.3] Here, we analyze the
general case.

Lemma IV.4.1. Suppose Q,, T are such that Assumptz’on holds and
090, p| > 0. Then for any f € — i L(Qy,), h € =L*T), the problem of

—
finding (py, \) € VKH{ 1 (€,) X \FLQ( ) so that

K(Vpy, V‘Jp)Qp + K (X, Oneqp)r = (f, q)  Vgp € \/EH(%,D(Qp)v

K (On.cpp,w)r = (h,w)r vw € VELA (D) (IV.18)

has a unique solution satisfying

Nl=

2 2
Pl vzesy @ < C (IR oy + £ sma)
where C is a constant depending only on €y,.

Pmof Let V= \ﬁH& »(Q,), @ = VKL?*(T'). We consider the left-hand side

of as an operator

<g BI) VxQ oV xQ, (IV.19)

where (App, ¢p) = K(Vpy, Vgp)a, and (Bpy, w) = K(On,cpp, w)r-

The statement of the theorem follows from the Brezzi theory @] once the
Brezzi conditions are verified. That is, we must show that A, B are bounded, A is
coercive on ker B and that the inf-sup condition inf,cq sup, ey (Bv, q) > S|v|l|¢||
holds for some constant g > 0.

Here the boundedness of A and the coercivity on V' are evident. For the
latter we recall that |0€, p| > 0 is assumed and invoke the Poincare inequality.
Assumption [[V.31] is needed to show the properties of B. Because

K()‘van,e%) < Kll)‘llfﬂ F)Han eC]pH LQ(F) < Han E”H)‘H\/»L"’ F)HQPH\/»Hl(Qp)7

we have boundedness with constant ||On ¢||. For the inf-sup condition, we recall
the bounded right inverse £ of On . Letting p; = E()), we have K (A, On,cp)) =

A ey 2 B g ) < IBIIA 7y S0 that

. 2
sup K (A, On spp) K(X,0n Epp) _ H)‘H\/ﬁm(r)
ppeVKH] |, ||pp||\ﬁH1 ||pp||fH1 () ||p;<)H\/KHéyD(QP)
= TEM gy BT VRED
This proves all the Brezzi conditions. |
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Having discussed well-posedness of the Stokes and Darcy subproblems our
main result concerning the coupled Darcy-Stokes problem is given in
Theorem We remark that given two well-posed subproblems the coupled
system could be analyzed with the framework of . Here we provide a
standalone proof.

Theorem IV.4.2. Let Qf,Q, be as defined in Assumption[IV.3.1] and Assumption
[[VZ.1 Further let

V) = VEHL () N VDIA(T), Q; = ;ﬁﬁ(ﬂf),

Qp = VK H; p(), Xr = VKL*(T') N \/1EH_1/2(I‘).

Then the operator A in (LV.7)) is an isomorphism mapping W to its dual space
W' such that | Al zow,wry < C and |A7 | zowr wy < &, where C' s independent
of u, K, and D.

Proof of Theorem[IV.Z.3 We aim to apply Brezzi theory [6] to the Darcy-Stokes

operator ([V.7) in the abstract form (IV.19)). To this end let V =V} x @, and
Q = Q¢ x Xr where for brevity X = ﬁH‘l/Q(F), X, = VKL*(') and we let
the operators A, B be defined in terms of bilinear forms from ([V.5)) as

(A(ug,pp), (v qp)) = p(Vuy, Vvyp)a, + D(uy - 7,vy - T)r + K(Vpy, Vap)a,,
(B(ufapp)v (qf7 ’LU)) = (v : ufa Qf)F + (Tnufa w)F - K(an,sppa w)F-

We proceed to verify the Brezzi conditions. Note that by assumption
|08, p| > 0, i = p, f so that by Poincare inequality on both subdomains A is
coercive. For boundedness of A observe that u(Vuy, Vvy)+D(us-7,vy - 7T)p <
lug|lv; |Ivyllv, by Cauchy Schwarz inequality. Moreover, following Lemma
we have K (Vp,, V) < [|ppll,llapllq,- Combining the two bounds and applying
the Cauchy-Schwarz inequality,

(A(ag,pp)s (v ap)) < llugllve vl Hlipplle, laplle, < 1uspp)livIve ap)liv-

To show boundedness of B we recall that ||V - ufHQ’f =V usll mreop) <

Cllugllv,, where C' depends on dimensionality of Q. Further, by the trace
inequality [|Touy|l = ”TnufH\/ﬁH%(r) < || Tulllluglv;, and by Assumption

V.31 [[KOneppllx; = [1KOneppll r2ry = 0neppllyzrzmy < [0nellipplia,-
Hence, per definition of dual norms,

(Vouggp)e + (Tnug, w)r < IV -ugllgllaglle, + [ Tauslx lwllx,
< max(L, C)l[ugllv, (larlle, + I Tallllwllx,)

and

K (On,epp, w)r < [[KOn,eppll x; [wllx, < 110n.clllpplle, w]x,-
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Combining the two estimates we show boundedness of B

(B(ug,pp), (qf,w)) < 2max(L, C, | Tal[, [|On,c|

D pp)llollas, w)lie-
Finally, we turn to the inf-sup condition. Let Ré},R}i,R}i be the inverse

Riesz maps of their respective spaces, so that Ryu = (u,-)y € V'. Let (g, w) €
Q¢ x X be arbitrary. We first define two extensions by using the two subproblems.
Recalling the notation of Assumption [[V.4.1] let (u;,p;, Ax) be the solution of

as((u},pp, A°), (Vi qpw')) = (Ré;qf,q’f) + (R;(;w,w’)p for all (v}, ¢}, w') € Vs.
Per assumption, there is a constant C'y so that we have the bound
1 1
- - 2 2 2 \?
Il < €5 (1RG as1P ey + IRRE 01 i) = Cr (larly, + ol )

(IV.20)
where the right equality follows from the fact that \/,ELQ Q) = fo, VIHA(T) =

X} and that the Riesz map is an isometry. Similarly, let p;, A3 be the solution of
K(Vpy,Vay)a, + K(A3, 0nedy)r + K(On,pp, w')r = (Rylw,w')p
for all(g), w') € VKHg 5(9,) x VKL*(T).
By [Lemma [V.4.1] we then have the bound
Iplle, < Coll Bx,wll L rary = Collwlx, (Iv.21)
for a constant Cp. Observe now that by our definitions of u}, pj,
(V-u}, qp)r + (Tauf, w)r — K(On,epy, w)r
=(Rg,as4s)r + (Rx,w,w)r — (Rx,w,w)r
=lasla, + lwlk, + lwlk, = llagl® + [wll-

Using (IV.20), (IV.21)

2
Izl = (I3, + pp)ii3,)
1 1

2 2
< C (lasly, + ol +lwl, )" = ¢ (lasl, +lwl%)

where C' = max(Cy,C,). Putting this together, we can prove the inf-sup
condition:

(V-ug,qf)r + (Taug, w)r — K(On,epp, w)r

sup

(ug.pp)€V [ (ar,pp)llv
(V : u;7 (If>F + (Tﬂujﬁ w)F - K(an,ep;7 w)F
B | (ut, pp)llv
1 lagl ol

= Sl wllo

Ql

1
2
laglly, + lwlli
f
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Hence, the inf-sup condition holds with 8 = é By Brezzi theory, |Theorern IV.4.2|
follows, and the problem is well-posed. As in the argument of [19], we note that
due to our use of parameter weighted spaces, all constants are in fact independent
of the problem parameters, and the operator preconditioner is therefore robust
to parameter variations.

Using operator preconditioning and Theorem a suitable preconditioner
for the primal Darcy-Stokes problem ([V.4]) is a Riesz map with respect to the
inner product of W in ([V.17)), that is, the operator
—puA + DTIT, o

KA
B= 1 . (IV.22)

—p(I+ A K

We remark that all of the components of the preconditioner can be realized
in an efficient, order optimal manner with multilevel schemes. In particular, the
only non-standard component here is the multilevel scheme for the fractional
operator which, however, has been established in [3].

Example 1V.4.3 (Robust Darcy-Stokes preconditioning). We consider the setup
from Example[[V:2.] i.e., a P2-P1-P2-P0 discretization, while using the operator
(IV.22) as preconditioner. As before, the leading blocks of the preconditioner are
realized using single algebraic multigrid V-cycle. The multiplier block is then
assembled using the eigenvalue decomposition and its inverse is computed by a
direct solver.

The obtained iteration and condition numbers are plotted in Figure [[V.4]
It can be seen that both quantities are bounded in mesh size N as well as the
physical parameters p, x and apjs.

Example 1V.4.4 (Alternative choices of function spaces for the coupled problem).
As demonstrated in the Darcy subproblem also appears to be
stable when discretized by P2-P1 elements. According to the reasoning given in
, we would therefore expect our preconditioner for the coupled problem to
remain robust if we instead use a P1 element for the multiplier. Additionally,
because the P2-P0 element is known to be stable for the Stokes problem, we
would also expect that our preconditioner would remain robust if the P2-P0
element was used to discretize the Stokes subproblem instead.

Altogether, this suggests three new discretizations for the coupled problem:
VixQrxQpx X =P2-P0-P2-P0, P2-P0-P2-P1, or P2-P1-P2-P1. We repeat the
experiment performed in [Example TV.4.3]for all three discretizations. The results
for agyg = 1 are shown in It can be seen that the preconditioner
appears robust both in the mesh size and in the physical parameters for all three
choices of discretizations. We remark that experiments were also carried out with
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MINRES iterations Condition number
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Figure TV.4: Mesh refinement vs. iteration counts (left) and condition numbers
(right) for Example [[V.4.3] using the preconditioner (IV.22). All subplots share
x- and y-axes. For fixed p, K the z-axis range in the iterations subplot extends
from h =272 to h = 27 '1. In conditioning plots the range is from h = 272 to
h = 278, The value of apjg is indicated by the line marker. Triangular markers
on top of each other look like squares.

apys = 1072 and 102. The results were substantially similar to [Example 1V.4.3|

and for legibility are therefore not shown.

Remark IV.4.5. Below we consider the validity of Assumption [V.31] in a
continuous and discrete setting. Clearly, in a continuous setting it is easy to find
a function that violates the assumption. Consider the case where ¢ < h while €
and I are both unit sized. Further, let u € H'(£2,) be a function which is zero
in Q\I'c and has a gradient of 1 in T'.. Recalling our definition of the operator
On,e - H'(Q,) — L3(T,) by

1
/8n,€u-wd<9: 7/ Vu-nr Eowdz,
r € Jr.

we see that Onu € L*(T) is the unit constant function whereas [jull; &~ /€.

On,e L. .
Hence ||On,e|| > W ~ ﬁ, which is very large for small e. Clearly, this
H(Qp

function violates Assumption

The above construction of a function that violates the assumption is however
clearly not relevant in our discrete setting as these functions are below the
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MINRES iterations Condition number
+ P2POP2P) v P2POP2P1 <« P2P1P2P1 + P2POP2P0 v P2POP2P1 <« P2P1P2P1

106 103 1 109 108 »

Figure TV.5: Mesh refinement vs. iteration counts (left) and condition numbers
(right) for alternative discretizations. The line marker indicates the discretization
used. All subplots share xz- and y-axes and have agjs = 1. For fixed p, K the
x-axis range in the iterations subplot extends from h = 272 to h = 2719, In
conditioning plots the range is from h =272 to h = 278,

resolution of our finite element mesh. Indeed, in our numerical experiments, we
use discrete subspaces of H'(£2,), so that any function whose gradient is nonzero
on I' also has nonzero gradient at distance h from I'. This means that if € is
chosen smaller than h, functions like u above which are zero immediately outside
of I'c are not admissible.

For a relevant finite element function uy, constructed as above, i.e., such
that wuy, is zero everywhere except having a gradient of 1 on the finite elements

an.ﬁ .
with facets on I', assuming that € < h, we have ncunllizee o 1 1 deed this
lunllet ) Vh

estimate corresponds to the scaling shown in the Examples [[V.3.2] and [V.3.3]
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