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Abstract
According to the structured theory of propositions, if two sentences express the same
proposition, then they have the same syntactic structure, with corresponding syntac-
tic constituents expressing the same entities. A number of philosophers have recently
focused attention on a powerful argument against this theory, based on a result by
Bertrand Russell, which shows that the theory of structured propositions is incon-
sistent in higher order-logic. This paper explores a response to this argument, which
involves restricting the scope of the claim that propositions are structured, so that it
does not hold for all propositions whatsoever, but only for those which are expressible
using closed sentences of a given formal language. We call this restricted principle
CLOSED STRUCTURE, and show that it is consistent in classical higher-order logic.
As a schematic principle, the strength of CLOSED STRUCTURE is dependent on the
chosen language. For its consistency to be philosophically significant, it also needs
to be consistent in every extension of the language which the theorist of structured
propositions is apt to accept. But, we go on to show, CLOSED STRUCTURE is in
fact inconsistent in a very natural extension of the standard language of higher-order
logic, which adds resources for plural talk of propositions. We conclude that this par-
ticular strategy of restricting the scope of the claim that propositions are structured is
not a compelling response to the argument based on Russell’s result, though we note
that for some applications, for instance to propositional attitudes, a restricted thesis
in the vicinity may hold some promise.
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1 Introduction

According to the structured theory of propositions, if two sentences express the same
proposition, then they have the same syntactic structure, with corresponding syntactic
constituents expressing the same entities. A consequence of this view is that if the
propositions expressed by simple predications Fa and Gb are identical, then the
denotation of F is identical to that of G and the denotation of a is identical to that of
b. Views along these lines go back to Russell [35]; more recent endorsements can be
found in Kaplan [20], Salmon [36], Soames [37] and King [22, 23].

A number of philosophers, including Dorr [10] and Goodman [14], have recently
focused attention on a powerful argument against this theory. Given that the the-
ory concerns identity among propositions and properties, it is natural to formalize it
using higher-order logic. In the language of higher-order logic, quantification over
propositions is regimented as quantification binding variables occupying the syn-
tactic position of sentences, and similarly for properties or relations and predicates.
Using higher-order logic, we can formalize some of the commitments of the struc-
tured proposition view. We do so below using a principle we call STRUCTURE, which
includes among its instances sentences of the following form:

∀X∀Y∀x∀y(Xx = Yy → X = Y ∧ x = y)

A result by Russell [35, Appendix B] shows that the instances of this schema in
which x and y occupy the syntactic position of sentences are inconsistent; a fortiori,
STRUCTURE is inconsistent as well. (This result was rediscovered by Myhill [29],
which is why it is sometimes named after Russell and Myhill.) So, it has been argued,
the theory of structured propositions must be rejected.

How might a proponent of structured propositions respond? Broadly speaking,
there are two strategies they might adopt, separately or in tandem. First, they might
reject aspects of the formal framework of higher-order logic, whether on the grounds
that the syntax of standard higher-order languages is somehow problematic, or on
the grounds that standard principles of such logics are not valid. Second, they might
formulate and endorse a theory which gives voice to the idea that propositions are
in some sense structured, without however implying the problematic instances of
STRUCTURE. An example of the former strategy is a predicativist response, which
weakens the logical principles of quantification so as to restrict higher-order compre-
hension principles to predicative instances. In such instances, the defining condition
of an entity of some type involves no bound variables of that type or higher, or free
variables of higher type. Walsh [39] shows that STRUCTURE is consistent in such a
system. In this paper we will explore a response of the second type, which retains the
standard logical principles of higher-order quantification, but replaces STRUCTURE

with a weaker principle we call CLOSED STRUCTURE.
One way of motivating this weaker principle is via the role structured propo-

sitions play in the philosophy of language, where they are taken to serve as the
meanings of sentences of natural languages like English. But complete sentences
of English do not have free variables (setting aside demonstratives and anaphora
for the moment; we return to them in Section 5.1). Faced with the inconsistency of
STRUCTURE, a philosopher of language might thus claim that all that matters for
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their theorizing is that complete sentences of languages like English which do not
have free variables, express structured propositions. Formally, they might thus pro-
pose to replace the universally quantified formulas of STRUCTURE by their instances
formed using closed terms. The resulting schematic principle of CLOSED STRUC-
TURE thus includes among its instances sentences (formulas without free variables)
of the following form:

ξε = ζη → ξ = ζ ∧ ε = η

Whereas STRUCTURE imposes conditions on all propositions, CLOSED STRUCTURE

imposes conditions only on propositions that are expressible by closed formulas.
Can this move from STRUCTURE to CLOSED STRUCTURE help the proponent of

structured propositions? A first question about the approach is whether the restriction
in CLOSED STRUCTURE is sufficiently restrictive, i.e. whether this principle, unlike
STRUCTURE, is in fact consistent in standard classical higher-order logic. The first
main result of this paper shows that it is: no inconsistency can be derived from the
instances of CLOSED STRUCTURE in this language.

From a formal perspective, this result sheds light on an interesting aspect of the
Russell-Myhill theorem itself. The standard proof of the Russell-Myhill theorem does
not explicitly specify counterexamples to STRUCTURE: for example, for a certain
argument a, the proof specifies a property F for which it can be proven that there
exists a property X �= F such that Xa = Fa. This shows that a counterexample to
STRUCTURE must exist, but it doesn’t explicitly specify one, since it doesn’t explic-
itly specify X. Our result shows that this aspect of the proof of the Russell-Myhill
theorem is in fact essential: all failures of STRUCTURE which can be established in
our background logic involve free variables.

This first result seems to be good news for theorists of structured propositions,
opening up a potentially interesting avenue of response to the argument against struc-
tured propositions based on the Russell-Myhill theorem. But our second main result
reveals stark limitations on the extent of the good news. CLOSED STRUCTURE is a
schematic principle, so its strength depends on the expressive power of the language
in which it is stated. It is only philosophically interesting that CLOSED STRUCTURE

is consistent in the basic higher-order language if it is also consistent in every exten-
sion of the language which the theorist of structured propositions is apt to accept. But
our second main result shows that CLOSED STRUCTURE is in fact inconsistent in a
very natural extension of the standard language of higher-order logic.

This extension adds a way of speaking plurally about propositions. Boolos [4]
argued that we can not just quantify singularly over things, such as sets, but also
plurally, using phrases such as ‘there are some sets such that . . . ’. His observations
have motivated what we can think of as an extension of first-order logic in which such
plural quantification over individuals can be regimented. We adapt these ideas to our
type-theoretic setting, and introduce an extension in which we can quantify plurally
over propositions and form closed plural terms. Such resources are novel, but they
can be motivated as a natural combination of the ideas of higher-order languages and
plural quantification.

We show that once the plural resources are added, there are instances of CLOSED

STRUCTURE which are inconsistent. The proof of this result makes use of a tight
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connection between the Russell-Myhill theorem and Cantor’s theorem. In fact,
Russell’s proof of his result is completely parallel to the standard proof of Cantor’s
theorem. The latter shows that for every function f from a powerset P(A) to the
set A, there are distinct sets X, Y ∈ P(A) such that f (X) = f (Y ). Boolos [5]
and Kanamori [17] describe proofs of Cantor’s theorem which show how such
sets can be defined explicitly, for any given function f . Kanamori [17] derives the
result as a corollary of a lemma for the proof of Zermelo’s well-ordering theorem,
which Bell [3] had adapted to the study of type-reducing correspondences between
second- and first-order entities. These proofs effectively adapt the so-called paradox
of Burali-Forti [6]. We show how the proof of Cantor’s theorem by Boolos and
Kanamori can be adapted to the Russell-Myhill theorem, which gives us a proof
of the inconsistency of CLOSED STRUCTURE. Our result relies on plural talk of
propositions, as it crucially depends on the extensionality of such plurals, i.e., a
principle which roughly states that if every proposition is one of these proposi-
tions just in case it is one of those propositions, then these propositions are those
propositions.

We argue that if one has already accepted the basic higher-order language used
here, one should accept its extension by our plural resources as well. Because of this,
we conclude that CLOSED STRUCTURE must be given up. In spite of our positive
first result, this second result shows that the response to the Russell-Myhill theorem
which restricts STRUCTURE to CLOSED STRUCTURE is unsuccessful.

The main focus of this paper is on responses to the Russell-Myhill theorem which
uphold classical logic and endorse CLOSED STRUCTURE as a weakening of STRUC-
TURE. But at the end of the paper we turn briefly to the implications of our discussion
for one style of non-classical theory, which rejects the classical principle that if a = b

then any sentence ϕ is equivalent to the sentence which results from substituting a for
b in ϕ. One important application of the theory of propositions is to theorizing about
propositional attitudes as well as propositional attitude reports. But arguably iden-
tity does not license substitution within the context of attitude reports. For instance,
although Hesperus is Phosphorus, it is arguably not true that necessarily anyone who
believes Hesperus is Hesperus believes that Hesperus is Phosphorus. So if we want
to develop a systematic theory of identity which covers propositional attitudes we
may reject the idea that coreferring names can be everywhere intersubstituted. And,
if we reject this idea for names, it is natural to reject it for sentences as well, to hold
that two expressions which denote identical propositions may fail to be intersubsti-
tutable inside the scope of an operator corresponding to an attitude verb. For some
philosophers these considerations might suggest that it is not identity, but some finer-
grained notion of ‘cognitive equivalence’ which is of most interest for the study of
propositional attitudes, and, therefore, to the study of propositions in application to
these attitudes.

To the extent that STRUCTURE was motivated in the first place by reflection on
propositions as the objects of attitudes, philosophers who hold that identity does not
license intersubstitution within attitude reports may be interested not in STRUCTURE

and CLOSED STRUCTURE, which govern the identity relation, but variants of these
principles which govern cognitive equivalence instead. If two expressions express
cognitively equivalent entities, then they are intersubstitutable in every context, and
it follows from this that the relevant variant of STRUCTURE will still be inconsis-
tent by the Russell-Myhill theorem. But such a theorist may endorse the relevant
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variant of CLOSED STRUCTURE, which can still be shown to be consistent. And, cru-
cially, they should not be concerned about our result concerning plural propositional
quantification. For that result relies on the claim that, when two plural terms express
coextensive and hence identical pluralities, they are everywhere intersubstitutable.
Someone who already rejects the claim that terms for identical entities are inter-
substitutable will naturally reject the claim that terms for identical plural terms are
intersubstitutable, and rejecting this assumption of the theorem is sufficient to escape
a version of our second result. So, while our results show that CLOSED STRUCTURE

is untenable, they leave open whether a variant of CLOSED STRUCTURE, which
concerns cognitive equivalence rather than identity, is tenable.

The plan of the paper is as follows. Section 2 introduces the background formalism
of standard higher-order logic. Section 3 proves the consistency of CLOSED STRUC-
TURE in this setting, alongside a couple of strengthenings of this result. Section 4
presents the extension of the logic by plural propositional quantification, and proves
the inconsistency of CLOSED STRUCTURE in this setting. Section 5 provides more
extended conceptual discussion: we present motivations for restricting STRUCTURE

to CLOSED STRUCTURE (5.1), defend the intelligibility of plural propositional quan-
tification (5.2), and finally consider in detail the considerations about attitude reports
just described (5.3). The reader primarily interested in conceptual issues related to
our results may wish to skip to Section 5, turning back to previous sections as neces-
sary for relevant definitions and statements. Section 6 concludes, and two appendices
include some technical lemmas appealed to in the presentation of the main results.

2 Background

2.1 Pure Relational Type Theory

This section introduces the basic logical framework, which will be a form of type
theory. Type theories codify different grammatical categories as types. For example,
many type theories include a type for individual terms, a type for sentences, and types
for various predicates, such as the type of predicates which take individual terms as
arguments.

There are two common forms of type theories, a functional and a relational one.
Here, we adopt a simple relational typed language, following Gallin [13, ch. 3] who
presented a simplified version of the type theory used by Montague [27]. Since we
focus on propositions, we don’t essentially need a type of individual terms. Every-
thing below would still go through with such an addition, but for simplicity, we leave
it out. This allows us to work with a very simple type theory, which is defined by a
single recursive rule, according to which every finite sequence of types 〈t1, . . . , tn〉 is
a type, the type of relational expressions which take n expressions, of types t1, . . . , tn,
respectively, as arguments.

Definition 2.1 Let the set T of types be the smallest set such that 〈t1, . . . , tn〉 ∈ T

whenever t1, . . . , tn ∈ T .
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This requires some unpacking: Note that n may be 0; thus 〈〉 is a type. This is
the type of relational expressions which take no arguments, which we can consider
to be formulas. From this first type, we can recursively generate higher types. For
example, 〈〈〉〉 is the type of predicates which take formulas as arguments, i.e., of unary
sentential operators. Analogously, 〈〈〉, 〈〉〉 is the type of binary sentential operators,
and 〈〈〈〉〉〉 is the type of expressions taking a single sentential operator as an argument.

Let a (T -indexed) family of sets be a function X mapping every t ∈ T to a set
Xt . To define the formal language, we fix families of sets V and C, which specify
the variables and constants of each type, respectively. We assume that all sets Vt are
countably infinite, and that any two sets in these families are disjoint. Further, we
assume that the following constants are included, which we call logical:

→ ∈ C〈〈〉,〈〉〉
∀t ∈ C〈〈t〉〉 for all t ∈ T

The remaining constants will be called non-logical. → is intended to be interpreted
as the material conditional. ∀t is intended to be interpreted as the relevant form of
universal quantification. Note that ∀t is not a variable-binder; rather, ∀t combines
with a predicate F of type 〈t〉 to form a sentence ∀tF . The customary uses of quan-
tifiers as variable-binders will be recaptured by introducing a way of constructing a
relation term (λx.ϕ) from any variable x and formula ϕ, expressing the property of
being an x such that ϕ. With this, ∀(λx.ϕ) states that every x is such that ϕ.

In general, we will allow λ to bind any finite non-empty non-repeating sequence
of variables, thus producing complex expressions of all types apart from 〈〉. The only
other syntactic constructions in the formal language are the use of variables and con-
stants as expressions of the relevant type, and the application of relational expressions
to suitably typed arguments to produce formulas.

Definition 2.2 Let L be the family of sets defined inductively as follows, where any
ε ∈ Lt is called an expression of type t , and expressions of type 〈〉 are also called
formulas:

ATOMIC: Any variable or constant of type t is an expression of type t .
APPLICATION: (ηε1 . . . εn) is a formula,

if n > 0, ε1, . . . , εn are expressions of types t1, . . . , tn, respectively, and η is an
expression of type 〈t1, . . . , tn〉.

ABSTRACTION: (λx1 . . . xn.ϕ) is an expression of type 〈t1, . . . , tn〉,
if n > 0, ϕ is a formula and x1, . . . , xn are pairwise distinct variables of types

t1, . . . , tn, respectively.

We adopt a number of conventions to simplify notation. First, recall that we have
not specified what the elements of Vt , i.e., the variables, are. Any terms such as ‘x’
are thus meta-variables – variables in the language of logical English in which this
article is written, possibly ranging over object-language variables. Similarly, ‘→’ is
treated as a meta-language expression denoting an object language expression. By
convention, a term such as ‘Fa’ denotes the result of concatenating F and a.
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We conventionally restrict the range of meta-variables via the kind of letter used.
Meta-variables ranging over object-language variables will generally be taken from
the Roman alphabet. Restrictions to specific types will sometimes be notated by spec-
ifying the type in the upper index of the first occurrence, for example, writing ‘X〈〈〉〉’
for a meta-variable ranging over variables of type 〈〈〉〉. Furthermore, ‘p’, ‘q’, ‘r’, ‘s’
customarily range over variables of type 〈〉, also called propositional variables, and
uppercase Roman letters customarily range over variables of higher types. Greek let-
ters will generally be used to range over any expressions (of a given type), whether
simple or complex, or sets thereof. In particular, ‘ϕ’, ‘ψ’, ‘χ’ customarily range over
formulas, whereas ‘
’, ‘�’ customarily range over sets of formulas. ‘ε’ and ‘η’ will
often be used to range over expressions of arbitrary type. Meta-variables standing
for specific object-language expressions will be taken from the Roman alphabet, but
notated using a sans-serif font, such as ‘F’.

Next, we indicate sequences by adding a bar on top of the relevant expression.
E.g., ‘t̄’ usually indicates a sequence 〈t1, . . . , tn〉 of types, for some n < ω. ‘∀x̄’
abbreviates ‘∀x1 . . .∀xn’. We omit parentheses when this does not lead to ambiguity.
→ will be written in infix notation; e.g., we use ‘p → q’ to denote →pq. Likewise,
an expression such as ∀xtϕ stands for ∀t λxt .ϕ. Similar conventions will be used for
the following abbreviations:

⊥ := ∀p p ¬ := λp.p → ⊥

 := ¬⊥ ∨ := λpq.¬p → q

∧ := λpq.¬(p → ¬q) ↔ := λpq.(p → q) ∧ (q → p)

∃t := λX〈t〉.¬∀yt¬Xy =t := λxtyt .∀Z〈t〉(Zx ↔ Zy)

�t̄ := λXt̄Y t̄ .∀z̄t̄ (Xz̄ → Y z̄) ≡t̄ := λXt̄Y t̄ .X � Y ∧ Y � X

Further, we indicate negations of applications of binary sentential operators by
overlaying the operator, written infix, with a slash. E.g., p �=q abbreviates ¬(p=q).

Despite the use of common logical symbols as abbreviations, it should not be
assumed that these stand for the relevant logical notions. It should not be assumed, for
example, that ¬ expresses negation. Doing so would be to make assumptions about
the relationship between logical connectives which should be treated as controversial
in the present context. Instead, we will only rely on the truth-functional adequacy of
the abbreviations. For example, if C〈〈〉〉 includes a constant n for negation, we only
assume the truth of:

∀p(¬p ↔ np)

We don’t assume the stronger claim that the relevant propositions are identical:

∀p(¬p = np)

The reason why we do not simply treat ¬, ∨ etc. as constants is that this would render
some of the constructions below tediously complicated. No difficulties would arise
from doing so, however.

We define as usual the notion of a free (occurrence of) a variable, and the notion
of an expression being free for a variable in an expression. If expressions η̄ are free
for variables x̄ in ε, we write ε[η̄/x̄] for the result of simultaneously replacing every
free occurrence of xi in ε by ηi , and ε(η̄) for ε[η̄/x̄], given contextually salient free
variables x̄.
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Definition 2.3 Let � be the proof system in L with the following axiom schemas
and rules:

TAUT: tautologies MP: ϕ, ϕ → ψ/ψ

UI: ∀xϕ → ϕ[ε/x] UG: ϕ → ψ/ϕ → ∀xψ (x not free in ϕ)
eβ1 : (λx̄.ϕ)x̄ → ϕ eβ2 : ϕ → (λx̄.ϕ)x̄

We write � ϕ for ϕ being derivable in �.

Here, a formula is considered a tautology just in case it is built up from
propositional variables using → and the defined connectives ⊥, ¬, 
, ∨, ∧, ↔, cor-
responding to a theorem of classical propositional logic. TAUT and MP can thus be
seen as contributing the principles of classical propositional logic, and analogously,
UI and UG can be seen as contributing the principles of elementary quantification
theory without identity. eβ1 and eβ2 codify the natural idea that some things stand
in the relation of being so-and-so just in case they are so-and-so. Note that using
the other axiomatic principles, we can derive from eβ1 and eβ2 any instance of the
schema (λx̄.ϕ)ε̄ ↔ ϕ[ε̄/x̄].

From these six principles, we can derive all the principles of elementary quan-
tification theory with identity (the principles of first-order logic, extended to higher-
order quantifiers), including the reflexivity of = and Leibniz’s Law. Additionally, we
can derive an extensional comprehension principle which states for any formula that
there is a relation which relates some things just in case they satisfy the formula:

� ε = ε

� ε = η → (ϕ(ε) → ϕ(η))

� ∃X∀ȳ(Xȳ ↔ ϕ) (X not free in ϕ)

Of course, we cannot derive the claim that co-extensiveness entails identity, i.e., that
if ε ≡ η, then ε = η. These observations can be established along familiar lines, so
we omit the details. When presenting evidence for claims about derivability in the
following, we give indications as to how the proof would proceed, relying on any
standard inferences in elementary quantification theory with identity.

Because we don’t treat ∀ as a variable-binder, there is one highly plausible quan-
tificational principle which does not correspond to any principle of first-order logic.
This is the schema ∀t ε ↔ ∀xtεx. Whether it is added to the present axiom system
is immaterial for all of the following, as the schema is valid on the relevant models,
but not required for the relevant deductions. We have therefore omitted the axiom
schema for simplicity, but it could be added without changing any of the results.

As noted above, there is an intended interpretation for → and ∀t , on which →, for
example, is interpreted as the material conditional. More generally, we assume that
any interpretation of non-logical constants induces a corresponding intended inter-
pretation of all expressions. We further assume that on any such interpretation, every
sentence which is derivable in � is true.

Define the universal closure of a formula ϕ, written ∀(ϕ), as ∀x̄ϕ, where x̄ are the
free variables in ϕ (ordered according to some fixed well-ordering of the variables).
We say that 
 entails �, written 
 � �, if for every δ ∈ �, there are γ1, . . . , γn ∈ 


such that � ∀(γ1) ∧ · · · ∧ ∀(γn) → ∀(δ). In such a context, we write 
, � for 
 ∪ �,
and use the name of a schematic principle for the set of its instances. 
 is inconsistent
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if 
 � ⊥, and consistent otherwise. Note that according to these conventions, p is
inconsistent, since ∀(p) is ∀p p, i.e., ⊥. The reason for defining � in this way is that
it simplifies the statement of schematic principles, allowing us to consider them as
implicitly universally generalized.

2.2 Structure

According to the structured view of propositions, if Fa = Gb then F = G and
a = b. This should hold not just for specific examples F, G, a, b, but in general.
Furthermore, such a principle should hold not only for unary applications of a specific
type, but for applications of any type t̄ . Thus we arrive at the following principle,
which is schematic in the type, in the sense that X, Y may be of any type 〈t1, . . . , tn〉
(with n > 0), and x̄, ȳ accordingly of types t1, . . . , tn, and where i is any number
1 ≤ i ≤ n:

STRUCTURE: ∀X∀Y∀x̄∀ȳ(Xx̄ = Y ȳ → X = Y ∧ xi = yi)

STRUCTURE is inconsistent, as the Russell-Myhill theorem shows.

Theorem 2.4 (Russell [35, Appendix B], Myhill [29]) For any formula χ with a free
variable of type 〈〈〉〉, there is an expression ε〈〈〉〉 such that

� ∃X〈〈〉〉((χ(X) = χ(ε)) ∧ X �≡ ε).

Proof Define an expression R of type 〈〈〉〉 as follows:
R := λp.¬∀X((χ(X) = p) → Xp)

Assume for contradiction that ¬Rχ(R). Then ∀X((χ(X) = χ(R)) → Xχ(R)). So
as χ(R) = χ(R), it follows that Rχ(R), contradicting the assumption. Thus Rχ(R),
whence there is an X such that χ(X) = χ(R) and ¬Xχ(R). Since Rχ(R), χ(R)

witnesses X �≡ R. We conclude ∃X((χ(X) = χ(R)) ∧ X �≡ R).

Corollary 2.5 STRUCTURE is inconsistent in �.

Proof Letting χ be X⊥, Theorem 2.4 constructs an expression ε for which:

� ∃X((X⊥ = ε⊥) ∧ X �≡ ε).

Since X �= ε follows from X �≡ ε, this contradicts the instance of STRUCTURE for
type 〈〈〉〉.

The argument against STRUCTURE does not give any concrete example of a failure
of STRUCTURE. For example, in the proof of Corollary 2.5, X has not been specified
explicitly, and there is no obvious way of doing so. Thus, although we know that
failures of STRUCTURE exist among simple predications of type 〈〈〉〉, we have not
explicitly specified any concrete examples of this.

This raises the question whether any concrete examples of a failure of STRUC-
TURE can be specified. If not, one might hope that in the course of any applied
philosophical enterprise, e.g., in the philosophy of language, we will never encounter
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such counterexamples to STRUCTURE. We might thus wonder whether the results of
instantiating the universal quantifiers in STRUCTURE using closed expressions are
consistent:

CLOSED STRUCTURE: ξ ε̄ = ζ η̄ → ξ = ζ∧εi = ηi (where ξ, ζ, ε̄, η̄ are closed)

In the next section, we show that the instances of CLOSED STRUCTURE in L are in
fact consistent.

3 Consistency

To show the consistency of CLOSED STRUCTURE, we construct models for it. Sim-
ple intensional models for � start from a set of worlds W , and recursively define
domains for different types, by letting the domain of a type t̄ be the set of functions
from sequences of elements of domains of types t1, . . . , tn to P(W), the powerset of
W . The idea behind such models is that relations can be modeled using a function
mapping any suitable arguments to the set of worlds in which they are related by the
relation. Note that the case of the general definition of domains for n = 0 yields
that elements of the domain of type 〈〉, i.e., propositions, are functions from the set
of sequences of length zero, i.e., {〈〉}, to P(W). Such functions stand in a natural
one-to-one correspondence with sets of worlds.

These simple models clearly can’t be used to show the consistency of CLOSED

STRUCTURE, since they individuate propositions in a rather coarse-grained manner.
But we can adapt them, by adjoining syntactic components, letting elements of the
domains be pairs of coarse-grained “logical” contents and fine-grained “syntactic”
contents. In the case of type 〈〉, this takes the straightforward form of letting ele-
ments of the domain of type 〈〉 be pairs whose first element is a function from {〈〉}
to a powerset P(W) and whose second element is a formula. For higher types, the
modification of lower-level domains has to be taken into account recursively, so that
elements of the domain of type t̄ are pairs whose first element is a function from
sequences of elements of domains of types t1, . . . , tn to P(W), and whose second
element is an expression of the relevant type.

Such models suffice to show that CLOSED STRUCTURE is consistent. But as we
will see, they do so by enforcing a level of fineness of grain which even adherents
of CLOSED STRUCTURE might find excessive. For example, these models require
sentences which differ only in relabeling bound variables to express distinct proposi-
tions. We therefore generalize the construction, and allow for syntactic components
to be, instead of individual expressions, equivalence classes of expressions under
some suitable equivalence relation on terms.

Before defining these specific models more rigorously, it is worth noting that the
consistency of CLOSED STRUCTURE can already be derived relatively easily from
a result of Muskens [28, Lemma 6.1, p. 108]. However, this proof method does
not obviously extend to some of the strengthened consistency result we will estab-
lish below. Furthermore, the models we will use provide a more intuitive picture of
how propositions might be individuated in a way which is consistent with CLOSED

STRUCTURE. The idea of constructing models by pairing coarse-grained contents
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with more fine-grained (syntactic) contents has also proven fruitful in other contexts;
see, e.g., Dorr [10, Appendix].

3.1 Models

The equivalence relation on terms just mentioned must respect types, and satisfy
three coherence constraints. The first of these prevents distinct variables from being
related. The second and third require, recursively, that any complex expressions
are equivalent if they have the same structure and corresponding components are
equivalent. We call such (type-indexed) equivalence relations coarsenings:

Definition 3.1 Let a coarsening be a function mapping every t ∈ T to an equivalence
relation ∼t on Lt such that:

(1) For any variables of type t , if x ∼t y then x = y.
(2) If ε1 ∼t1 η1, . . . , εn ∼tn ηn and ξ ∼t̄ ζ , then ξ ε̄ ∼〈〉 ζ η̄.
(3) If ϕ ∼〈〉 ψ , then λx̄.ϕ ∼t̄ λx̄.ψ .

We usually omit the index of ∼t , and write [ε]∼ for the equivalence class of ε

under ∼, i.e., {η : η ∼ ε}, and Lt/∼ for the set of equivalence classes under ∼,
i.e., {[ε]∼ : ε ∈ Lt }. Given the constraints on a coarsening, we can lift the syntactic
operations of application and λ-abstraction to equivalence classes, which we notate
as follows:

[ε]∼ + [η1]∼ + · · · + [ηn]∼ := [εη1 . . . ηn]∼
λx̄ + [ϕ]∼ := [λx̄.ϕ]∼
Relative to a coarsening, domains can be defined as outlined, writing YX for the

set of functions from X to Y , X ×Y for the set of pairs 〈x, y〉 with x ∈ X and y ∈ Y ,
and �1≤i≤nXi for the set of sequences 〈x1, . . . , xn〉 with x1 ∈ X1, . . . , xn ∈ Xn.

Definition 3.2 For any set W and coarsening ∼, define a set Dt̄ , for every type
t̄ = 〈t1, . . . , tn〉, as follows:

Dt̄ := P(W)�1≤i≤nDti × Lt̄/∼

In addition to providing a set of worlds and a coarsening, a model will have to
specify how constants are to be interpreted, and which propositions are true. The
interpretation of constants is specified using a function mapping any constant to its
logical content; the syntactic content is determined by the constant itself. The true
propositions are determined by specifying a designated actual world.

Definition 3.3 A closed structure model (CSM) is a structure 〈W, ∼, I,@〉, such that
W is a set, ∼ is a coarsening, I is a function mapping every non-logical constant c

of type t̄ to a function I (c) : �1≤i≤nDti → P(W), and @ ∈ W . For such a model,
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an assignment function is a function mapping every variable of a type t to an element
of Dt .

We can now define how CSMs interpret expressions of the language, by defin-
ing a function �·�· which maps every expression ε to an element �ε�a of the relevant
domain, relative to an assignment function a. The interpretation of a variable is deter-
mined, as usual, by the assignment function. The interpretation of a constant contains,
as its syntactic component, the equivalence class of the constant. The logical compo-
nent is specified by the interpretation function in the case of non-logical constants;
in the case of logical constants, this is given by the usual set-theoretic operations,
suitably lifted.

Some notational conventions are useful to specify these lifts. First, we specify
functions using ‘�→’, writing ‘x �→ f (x)’ for the function mapping any relevant x to
f (x). Effectively, ‘�→’ performs the function of λ-abstraction in the meta-language.
Second, we have to strip off the syntactic content of elements of the domain for type
〈〉, since these are not elements of P(W) itself, but pairs 〈x, y〉. We notate this by
using π1 and π2 for the projection functions, where π1(〈x, y〉) = x and π2(〈x, y〉) =
y. For brevity, we also write �ε�a

i for πi(�ε�
a) (with i being 1 or 2). Further, note

that if 〈x, y〉 is an element of the domain of type 〈〉, then x is not a set of worlds, but
a function from {〈〉} to sets of worlds. However, such functions naturally correspond
one-to-one to sets of worlds; we thus treat them as indistinguishable, abusing notation
somewhat for brevity. Similarly, we don’t distinguish between x and the singleton
sequence 〈x〉.

For the interpretation of predications, we obtain the logical content by applying the
logical content of the predicate to the arguments. We obtain the syntactic content by
concatenating the syntactic contents of the predicate and arguments; the constraints
on the coarsening guarantee that this is well defined. Finally, the logical content of
a λ-abstract is the function on the relevant domains mapping every sequence to the
logical content of the complement clause, on the assignment function interpreting the
bound variables using the relevant sequence. To notate this, we write a[ō/x̄] for the
function which differs from a only in mapping any xi among x̄ to oi . The syntactic
content of a λ-abstract binding variables x̄ is obtained by prefixing the syntactic
content of the complement clause with λx̄. However, here, we need to factor out
the interpretation of the bound variables x̄ by the assignment function. We do so by
interpreting the complement clause relative to an assignment function which enforces
the syntactic content of any of these variables to be just the equivalence class of this
variable. To notate this, we write a[x̄] for the function which differs from a only in
mapping any xi among x̄ to 〈π1(a(xi)), [xi]∼〉.

Truth can be defined as containing the designated actual world @, and validity can
be defined as truth under every assignment function.

Definition 3.4 Given a CSM M = 〈W, ∼, I,@〉, define �·�· to be the function map-
ping every expression ε of type t and assignment function a to �ε�a ∈ Dt such
that:

�x�a = a(x), for every variable x
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�c�a = 〈I (c), [c]∼〉, for every non-logical constant c
�→�a = 〈〈d, e〉 �→ W\π1(d) ∪ π1(e), [→]∼〉
�∀t�

a = 〈d �→ ⋂
e∈Dt

π1(d)(e), [∀t ]∼〉
�εη1 . . . ηn�

a = 〈�ε�a
1(〈�η1�a, . . . , �ηn�

a〉), �ε�a
2 + �η1�

a
2 + · · · + �ηn�

a
2〉

�λx̄ϕ�a = 〈ō �→ �ϕ�
a[ō/x̄]
1 , λx̄ + �ϕ�a[x̄]

2 〉

A formula ϕ is true relative toM and an assignment function a, writtenM, a � ϕ, if
@∈ �ϕ�a

1. ϕ is valid inM ifM, a � ϕ for every assignment function a.

As usual, given soundness of � with respect to CSMs, i.e., the fact that every theo-
rem of � is valid in every CSM, we can establish the consistency of some formulas by
constructing a CSM in which they are valid: ifM validates some formulas, then it val-
idates their universal closures; thus by soundness,M witnesses that ⊥ is not entailed
by the universal closures of the formulas, as required for consistency. And soundness
of � with respect to CSMs can be established along the usual lines; the details can be
found in Appendix A.1, with soundness stated in Lemma A.5.

It is worth noting that the definition of CSMs could be varied in various ways,
without affecting their usefulness for our consistency proofs. For example, we could
generalize them by replacing P(W) by a complete Boolean algebra and @ by an
ultrafilter of this algebra; cf. Gallin [13, ch. 4]. We could also make them more
restrictive by requiring W to be a singleton {@}, which corresponds to using a two-
element Boolean algebra. We opt for possible worlds models here since they illustrate
the flexibility of the construction without requiring any appeals to abstract algebraic
concepts.

3.2 Closed Structure

We now show that there are CSMs which validate CLOSED STRUCTURE. Thus,
assuming the truth of ξ ε̄ = ζ η̄ in a CSM, we aim to show the truth of ξ = ζ and
εi = ηi . We first show that ξ ε̄ ∼ ζ η̄, by establishing that the syntactic content of
any closed term is its equivalence class under ∼. That is, we show that in CSMs,
�ε�2 = [ε]∼ for every closed term ε; the proof, by induction on the complexity of ε,
can be found in Appendix A.2, under Lemma A.6. From ξ ε̄ ∼ ζ η̄, we aim to con-
clude that ξ ∼ ζ and εi ∼ ηi ; we therefore restrict attention to coarsenings supporting
this inference, which we call structural. From ξ ∼ ζ and εi ∼ ηi , we aim to conclude
the truth of ξ = ζ and εi = ηi , so we restrict ourselves to certain CSMs guaranteeing
this, which we call safe. This line of argument shows that CLOSED STRUCTURE is
valid on any safe CSM based on a structural coarsening. The consistency of CLOSED

STRUCTURE can now be established by producing a safe CSM based on a structural
coarsening. And this is easily done, as identity – the trivial coarsening relating every
term just to itself – is structural and such that any CSM based on it is safe.

Definition 3.5 A coarsening ∼ is structural if, in general,

if ξ ε̄ ∼ ζ η̄, then ξ ∼ ζ and εi ∼ ηi .
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A CSM is safe if �ε�a = �η�a whenever ε ∼ η. A coarsening is safe if every CSM

based on it is safe.

Proposition 3.6 Any safe CSM based on a structural coarsening validates CLOSED

STRUCTURE.

Proof Let M be safe and based on a structural coarsening ∼. Assume M, a � ξ ε̄ =
ζ η̄, for closed ξ, ζ, ε̄, η̄. Then �ξ ε̄�2 = �ζ η̄�2, so with Lemma A.6, [ξ ε̄]∼ = [ζ η̄]∼,
i.e., ξ ε̄ ∼ ζ η̄. Since∼ is structural, ξ ∼ ζ and εi ∼ ηi . And asM is safe, �ξ�a = �ζ �a

and �εi�
a = �ηi�

a . ThusM, a � ξ = ζ ∧ εi = ηi , as required.

Theorem 3.7 CLOSED STRUCTURE is consistent in �.
Proof Identity is trivially a safe and structural coarsening. So by Proposition 3.6,
any CSM based on identity validates CLOSED STRUCTURE. Consistency follows with
Proposition A.5.

3.3 First Strengthening

Initially, we characterized structured views of propositions as requiring that for sen-
tences to express the same proposition, they must, first, have the same syntactic
structure and, second, be such that corresponding terms express the same entities. So
far, we have targeted the second of these informal requirements: In L, every sentence
is either syntactically simple, or an application of the form ξ ε̄. CLOSED STRUCTURE

states that in the case of sentences ξ ε̄ and ζ η̄ which are of the same structure in
the sense of being applications of the same type, if the propositions expressed are
the same then the components are the same. However, this does not address the first
informal aspect of structured views of propositions, that sentences expressing the
same propositions have to have the same structure. It is therefore worth verifying that
CSMs also model this aspect, at least for closed terms. That is, we would minimally
like to verify that for closed terms, ξ ε̄ = ϕ can only be true if ϕ is an application ζ η̄

with ζ the same type as ξ .
Using the models used in the proof of Theorem 3.7, this is easily done: Choosing

identity as the coarsening, ξ ε̄ = ϕ can only be true if �ξ ε̄�2 = �ϕ�2, which by
Lemma A.6, entails ξ ε̄ ∼ ϕ, i.e., ξ ε̄ = ϕ. More generally, we can show that for any
safe CSM based on a coarsening ∼, an equation ε = η involving two closed terms is
true just in case ε ∼ η. This is captured by the following two principles:

DISTINCTNESS∼: ε �= η (where ε, η closed and ε �∼ η)
IDENTITY∼: ε = η (where ε, η closed and ε ∼ η)

Proposition 3.8 For every coarsening ∼, every instance of DISTINCTNESS∼ and
IDENTITY∼ is valid in any safe CSM based on ∼.

Proof For DISTINCTNESS∼, consider any CSM based on ∼ and closed expressions
ε �∼ η. Then [ε]∼ �= [η]∼, so by Lemma A.6, �ε� �= �η�, whence ε �= η is valid.
IDENTITY∼ is immediate by safety.
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Since the models we have constructed so far are based on ∼ being iden-
tity, they show that CLOSED STRUCTURE is consistent with DISTINCTNESS= and
IDENTITY=. These principles capture the view that closed terms are co-denoting if
and only if they are the same. This corresponds to a very fine-grained notion of
structure, where the structure of an expression is identified with the expression itself.
This may in fact be considered too fine-grained, since it means that sentences differ-
ing only in alphabetic variation of bound variables will have distinct structure, and
so will express distinct propositions. For example, the models we have constructed
so far validate the extreme principle that ∀p p �= ∀q q. This raises the question
whether CLOSED STRUCTURE is consistent with versions of DISTINCTNESS∼ and
IDENTITY∼ which count alphabetic variation in bound variables as preserving struc-
ture, and so require ∀p p = ∀q q to be true, rather than false. For the remainder of
this section, we explore some such more coarse-grained views.

The idea that expressions which differ merely in alphabetic variation of bound
variables express the same entity is one of the three main principles of identification
in standard systems governing λ, usually labeled with the Greek letter α. The second
is labeled with β, and strengthens our principles eβ1 and eβ2 from a material equiv-
alence to an identity. The third is labeled with η, and states that for any higher type, a
term ε expresses the same as the result of applying it to variables x̄ not free in ε and
then abstracting them away again using λ. In the present setting, we can formulate
three corresponding principles in the form of schematic identities:

α : (λx̄.ϕ) = (λȳ.ϕ[ȳ/x̄])
β : (λx̄.ϕ)x̄ = ϕ

η : (λx̄.εx̄) = ε (x̄ not free in ε)

These common principles give rise to a natural question: Which of them are con-
sistent with CLOSED STRUCTURE? We will show that while β is incompatible with
CLOSED STRUCTURE, both α and η are jointly satisfiable with CLOSED STRUC-
TURE. The first of these follows by a well-known line of argument, a version of which
can be found in Dorr [10, p. 58]:

Proposition 3.9 CLOSED STRUCTURE and β are jointly inconsistent in �.
Proof By β, (λp.p)⊥ = ⊥ = (λp.⊥)⊥. So with CLOSED STRUCTURE, (λp.p) =
(λp.⊥), whence (λp.p)
 = (λp.⊥)
. So with β again, 
 = ⊥, from which 
 ↔ ⊥
and so ⊥ is derivable.

We now construct CSMs of α, η and CLOSED STRUCTURE. We first use α and
η to define a coarsening ∼α,η. To do so, we show more generally how any set of
equations T naturally gives rise to a corresponding coarsening ∼T , namely the coars-
ening which relates terms if they can be obtained from each other by successive
replacements of sub-terms corresponding to equations in T .

Definition 3.10 For any consistent set of equations T , let:

ε ∼iT η iff for some χ = κ ∈ T and term ϑ , ϑ(χ) = ε and ϑ(κ) = η.
ε ∼sT η iff ε ∼iT η or η ∼iT ε.
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ε ∼T η iff there are expressions χ̄ such that ε = χ1 ∼sT · · · ∼sT χn = η.

We can show that in this way, α, η give rise to a coarsening∼α,η which is structural
and safe. This is shown in Appendix A.2 by Lemmas A.9–A.11. These results ensure,
by previous results, that any CSM based on ∼α,η validates CLOSED STRUCTURE.
Moreover, the safety of ∼α,η ensures that α and η are validated, since ∼α,η will relate
any pair of terms corresponding to an instance of α or η.

Theorem 3.11 CLOSED STRUCTURE, α and η are jointly consistent in �.

Proof By Lemmas A.9–A.11, ∼α,η is a safe and structural coarsening, so by Propo-
sition 3.6, any CSM based on ∼α,η validates CLOSED STRUCTURE. Likewise, since
∼α,η is safe, it follows that any such model validates α and η. Consistency follows
with Proposition A.5.

Another very restrictive aspect of the models constructed so far concerns the iden-
tification of constants. Let c and d be distinct non-logical constants of the same type.
Since c �∼α,η d , it follows with Proposition 3.8 that CSMs based on identity or ∼α,η

validate c �= d . But plausibly, some constants may co-denote, so it is instructive to
verify that CLOSED STRUCTURE is consistent with identifications of the form c = d .
This is easily done: Consider any set E of equations of the form c = d , with c, d

constants. It is easily seen that ∼E is a structural coarsening such that a CSM based
on it is safe if I (c) = I (d) whenever c = d ∈ E. Such models evidently exist. By
Proposition 3.6, they validate CLOSED STRUCTURE, and by safety, they validate all
equations of E.

The models constructed here might also be of interest for other theories of interme-
diate fineness of grain of propositions. For example, consider a view which endorses
α, β and η. As noted, this is inconsistent with CLOSED STRUCTURE. But one
might still want to endorse as fine-grained an individuation of propositions as pos-
sible, given these constraints. That is, one might want to endorse IDENTITY∼α,β,η

and DISTINCTNESS∼α,β,η . Analogous to Lemma A.11, we can show that ∼α,β,η is
safe, and with this, the joint consistency of IDENTITY∼α,β,η and DISTINCTNESS∼α,β,η

follows from Proposition 3.8.

3.4 Second Strengthening

CLOSED STRUCTURE captures, for closed terms, the idea that if sentences with
the same structure express the same propositions then corresponding components
are co-denoting. However, it does so in a rather shallow way: all it captures of the
structure of a complex sentence, which must be an application, is what the predi-
cate is, and what the arguments are – it does not capture the syntactic structure of
these components themselves. To illustrate this, consider an equation of the form
(λx.Rxx)a = (λx.Sxx)a. According to CLOSED STRUCTURE, we can infer from
this that (λx.Rxx) = (λx.Sxx). But there is no obvious way of inferring that R = S.
However, on a natural construal of the idea of structured propositions, this would be



Closed Structure

required as well. We will now show how CLOSED STRUCTURE can be strengthened
to capture this idea, and prove that this is consistent as well.

The identity (λx.Rxx)a = (λx.Sxx)a is of the form ξ(ε) = ξ(η), with ξ being
(λx.Yxx)a, and ε and η being R and S, respectively. A couple of generalizations
suggest themselves naturally. First, admitting multiple parameters, we might state
that for any closed formulas, if ξ [ε̄/x̄] = ξ [η̄/x̄] and all x̄ have free occurrences
in ξ , then εi = ηi . Second, it seems plausible to hold that an intermediate step
may be inserted in the first motivating example: if (λx.Rxx)a = (λx.Sxx)a, then
(λx.Rxx) = (λx.Sxx), which in turn is only true if R = S. Thus a naturally general
formulation applies to all non-vacuous substitutions of the form ξ [ε̄/x̄] = ξ [η̄/x̄],
whatever type ξ may be. Finally, it turns out that for consistency, we need not require
ξ [ε̄/x̄] and ξ [η̄/x̄] to be closed; it suffices to require that the parameters ε̄ and η̄ are
closed. This leads us to the following strengthened form of CLOSED STRUCTURE:

STRONG CLOSED STRUCTURE: ξ [ε̄/x̄] = ξ [η̄/x̄] → εi = ηi (ε̄, η̄ closed, all x̄
free in ξ )

The instances of CLOSED STRUCTURE can be obtained from the special cases in
which ξ is of the form Xȳ. The requirement of all x̄ to have free occurrences in ξ

is needed to ensure that STRONG CLOSED STRUCTURE is not trivially inconsistent.
Without this restriction, various obvious inconsistencies, such as ⊥ = ⊥ → p = q,
would count as instances.

We build models of this strengthened principle by imposing additional constraints
on coarsenings. What is needed is that different replacements of the same variables in
one term only produce equivalent outcomes if the replacements are equivalent. Call
this being strongly structural:

Definition 3.12 A coarsening ∼ is strongly structural if, in general,

if ξ [ε̄/x̄] ∼ ξ [η̄/x̄] and all x̄ are free in ξ , then εi ∼ ηi .

Using a variation on the proof of Proposition 3.6, we can show that any safe CSM

based on a strongly structural coarsening validates STRONG CLOSED STRUCTURE;
the details can be found in Appendix A.2 under Proposition A.12. With this, we can
show STRONG CLOSED STRUCTURE to be consistent:

Theorem 3.13 STRONG CLOSED STRUCTURE is consistent in �.
Proof Using Proposition A.12, we can reason as for Theorem 3.7; thus, it suffices to
show that identity is strongly structural. This can be established by a straightforward
induction on the complexity of ξ .

We leave open whether this strengthening may be combined with that of the previ-
ous section, i.e., whether STRONG CLOSED STRUCTURE is consistent with α and η.
We conjecture that the answer is positive, and that this can be established by the proof
method used here. It would suffice to show that ∼α,η is strongly structural, but doing
so is not completely straightforward. For example, a natural attempt at a proof would
employ an induction on the complexity of terms which requires that if abstractions
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λx̄.ϕ and λx̄.ψ are equivalent then ϕ and ψ are equivalent. But this is not the case
in general, as λx.(λx.Rxx)x ∼α,η λx.Rxx, but (λx.Rxx)x �∼α,η Rxx. Due to com-
plications like this, proving that ∼α,η is strongly structural requires a more detailed
analysis of this coarsening than we will provide here.

4 Inconsistency

The consistency of CLOSED STRUCTURE (with modest principles of identification,
like α and η) may give proponents of structured propositions hope that any failures
of STRUCTURE may be restricted to cases which will in an important sense never be
encountered. We now show that these hopes are in vain, as CLOSED STRUCTURE is
inconsistent in a modest extension of the type theory we have used until now, namely
the one which adds a way of talking plurally about propositions.

4.1 Plural Propositional Quantification

Plural quantification roughly captures what is expressed by English phrases such as
‘Some things are such that . . . ’, which may be followed by statements which attribute
something to the relevant things collectively, rather than individually. Claims of this
form need not say anything about sets, classes, groups, mereological sums, or any
similar entities, so they are not naturally captured by singular quantification over
such entities. A more direct way of regimenting such quantification extends first-
order logic by adding plural variables. Following Burgess and Rosen [8], these are
often written as doubled first-order variables xx, yy, zz, . . . . Such variables may be
bound by quantifiers ∃ and ∀, and used in statements such as x ≺ yy, which states
that x is one of the yy.

Here, we will make use of such plural quantification over propositions. In order
to fit this into our type system, we add a new type into our type hierarchy, written
[〈〉], the type of plural propositional terms. Keeping the recursive rules of generating
types, this gives rise to further new types, such as the type 〈[〈〉]〉 of unary predicates
applying to plural propositional terms.

Definition 4.1 Let the set T ′ of types be the smallest set such that [〈〉] ∈ T ′, and
〈t1, . . . , tn〉 ∈ T ′ whenever t1, . . . , tn ∈ T ′.

As in the case of L, we construct a language L′ of expressions of each type based
on a choice V of variables of each type and a choice C of constants of each type.
Again, C is assumed to contain logical constants → and ∀t for each type t (now
of T ′). Additionally, we now assume that a logical constant ≺ of type 〈〈〉, [〈〉]〉 is
included. Using infix notation for ≺, we can use p ≺ qq to state that p is one of, or
among, qq. Finally, we add an analog of λ for plural terms: πp.ϕ will be used to stand
for the propositions (plurally) which satisfy ϕ. An analogous operator for forming
plural terms in the standard setting of plural extensions of first-order logic can be
found in Oliver and Smiley [30, ch. 8]; see also Whitehead and Russell [40, p. 30]
for a plural reading of their notation for classes. We adapt earlier conventions on



Closed Structure

formulas, doubling the relevant letters; for example, we let doubled lowercase Greek
letters like ϕϕ range over plural propositional terms.

Definition 4.2 Define the family of sets L′, based on V ′ and C′, inductively using
ATOMIC, APPLICATION, ABSTRACTION for the types of T ′ and:

PLURAL PROPOSITIONAL ABSTRACTION: If p is a propositional variable and ϕ

is a formula, then (πp.ϕ) is an expression of type [〈〉].

It is worth noting that we can think of the present plural extension as a fragment of
a more comprehensive type theory, according to which any types t1, . . . , tn give rise
to two types: the type 〈t1, . . . , tn〉 of an n-ary relational expression taking as argu-
ments n expressions of types t1, . . . , tn, respectively, and the type [t1, . . . , tn] of an
n-ary (generalized) plural term ηη which can be used in formulas like ε1 . . . εn ≺ ηη,
where ε1, . . . , εn are of types t1, . . . , tn, respectively. Closely related type theories
are discussed by Myhill [29] and Fine [11]. Since such a rich extension of the type
theory will likely be considered more controversial than just adding plural propo-
sitional resources, we restrict ourselves to the latter. Conversely, one may think of
plural propositional quantifiers as quantifiers ranging over properties of propositions
restricted by a distinguished condition, chosen so as to validate the axiomatic prin-
ciples given below. However, we consider the best motivation for the existence of
such a condition to proceed via plural propositional quantification, so we will simply
consider plural propositional quantification as sui generis.

We continue to use the earlier abbreviating conventions, and extend them to the
new types whenever this is defined. This includes ∃[〈〉] and =[〈〉], but not �[〈〉] and
≡[〈〉], since plural propositional terms cannot be applied to any arguments. Instead,
we can naturally define the latter as follows:

ϕϕ �[〈〉] ψψ := ∀p(p ≺ ϕϕ → p ≺ ψψ)

ϕϕ ≡[〈〉] ψψ := ϕϕ � ψψ ∧ ψψ � ϕϕ

Here, the definition of ‘�’ is intended to be read such that p is the first proposi-
tional variable (according to some fixed ordering) not free in ϕϕ or ψψ . We extend
notation about negation, e.g., writing �≺ for a negated application of ≺, and introduce
shortening notation for quantifiers as familiar from set theory; e.g., ‘∀p ≺ qq(. . . )’
abbreviates ‘∀p(p ≺ qq → . . . )’ and so on.

� is extended by instances of the quantificational principles for the new types,
and an analog of the principles governing λ for π . Finally, we add a principle of
extensionality, according to which pluralities are individuated extensionally: if ϕϕ

and ψψ have the same propositions among them, then they are the same:

Definition 4.3 Let �′ be the proof system in L′ with the principles of � (which may
be instantiated using expressions of any types in T ′), and

eβ1′ : p ≺ (πp.ϕ) → ϕ eβ2′ : ϕ → p ≺ (πp.ϕ)

EXT: ϕϕ ≡ ψψ → ϕϕ = ψψ

EXT is the crucial axiomatic principle in which plural propositional terms differ
from the resources of L′. We will therefore record any appeals to it in deductive
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arguments explicitly. EXT is standardly included in axiomatizations of plural quan-
tification; see Burgess [7, p. 197] and Linnebo [26]. The axiom is clearly motivated
on a common way of thinking about pluralities, according to which they are nothing
over and above the things they comprise; see Roberts [34]. Going beyond extension-
ality, it is sometimes even said that for pluralities to be coextensive is for them to
be identical; see Williamson [42, p. 700] and Oliver and Smiley [30, p. 109]. This
motivates a strengthening of EXT where the conditional is replaced by identity, but
no such stronger principle will be required here. Finally, the notion of plural propo-
sitional quantification is introduced here in analogy with certain uses of English
phrases, but not necessarily by requiring it to match English usage precisely. (We
discuss this point in more detail in Section 5.2 below.) As part of our introduction of
these new formal quantifiers, we may well simply stipulate their meaning in such a
way that EXT comes out true.

As above, we can derive the principles of elementary quantification theory from
the principles of �′, including the following plural comprehension principle:

�′ ∃pp∀q(q ≺ pp ↔ ϕ) (pp not free in ϕ)

Note that this includes the case in which ϕ is a contradiction; thus according to �′,
there are pp among which there is no proposition. We call this the empty plurality.
This inclusion may be at odds with some uses of English phrases which motivate
the introduction of plurals, since such uses seem to carry existential import: it seems
that if some propositions jointly satisfy a certain condition, then there is at least one
proposition among them. Yet, the inclusion of the empty plurality is unproblematic
in the present context, for two reasons. First, following Burgess and Rosen [8] and
Burgess [7], we may stipulate that plural quantification captures what is expressed
by phrases like ‘there are zero or more . . . ’, which explicitly rule out such existential
import. Second, as noted already in connection with EXT, we make no claim that
plural propositional quantifiers correspond directly to any expressions of English.

�′ is easily seen to be consistent: As noted at the beginning of Section 3, simple
models for � can be constructed by starting from a set of worlds W , and using as
the domain of any type t̄ the set of functions from sequences of elements of domains
of types t1, . . . , tn to P(W). Such models are straightforwardly extended to interpret
L′, in a way which guarantees that the theorems of �′ are validated: In brief, let the
domain of type [〈〉] be the powerset of the domain of type 〈〉; ≺ is interpreted as the
function mapping any arguments to W or ∅, depending on whether the first argument
is a member of the second; and πp.ϕ is interpreted as the set of propositions which
satisfy ϕ.

4.2 Closed Structure and Plurals

In L′, there are additional instances of the schematic principle CLOSED STRUCTURE

involving plural propositional terms, such as the following:

⊥ ≺ (πp.ϕ) = ⊥ ≺ (πp.ψ) → (πp.ϕ) = (πp.ψ)

where no variable other than p is free in ϕ or ψ . Further, �′ extends � in a non-
trivial way, by adding EXT. This raises the question whether the schema CLOSED
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STRUCTURE is consistent in �′ as well. We show that this is not the case, by estab-
lishing the following result:

Theorem 4.4 For every formula χ with a free plural propositional variable, there
are closed plural terms ϕϕ and ψψ such that

�′ χ(ϕϕ) = χ(ψψ) ∧ ϕϕ �≡ ψψ .

The remainder of this section establishes this result, along the lines of Burali-
Forti’s so-called paradox. Sketching the idea behind the proof, consider, for a given
formula χ with a free variable pp, the sequence of propositions defined recursively
by letting every element be χ(pp), where pp is the plurality of propositions preced-
ing it in the sequence. The first element of this sequence is χ(πp.⊥) (since nothing
precedes it); the second is χ(πp.p = χ(πp.⊥)); and so on. We first show how to
capture this sequence in L′ using an expression M of type 〈〈〉, 〈〉〉. We then consider
the proposition ∞, defined as χ(ϕϕ), where ϕϕ is the field of M (the propositions
ordered by M). It turns out that ∞ must be an element of the sequence M as well;
indeed, it must be the final element. But this means that ∞ is identical to χ(ψψ),
where ψψ are the propositions among ϕϕ excluding ∞ itself, since otherwise, ∞
would not be an element of the sequence M. Therefore, ϕϕ and ψψ are the required
plural terms, as χ(ϕϕ) = ∞ = χ(ψψ) while ϕϕ �≡ ψψ .

To make this idea precise, we first introduce the required order-theoretic notions
in L′. We use R and S as variables of type 〈〈〉, 〈〉〉, and � for an arbitrary expression
of the same type. Let the field of a binary propositional relation be the propositions
it relates – one way or the other – to some proposition:

ff(�) := πp.∃q(�pq ∨ �qp)

Let a binary propositional relation be a well-order if it is reflexive, anti-symmetric,
transitive, and well-founded (on the propositions in its field):

W := λR.
∀p ≺ ff(R)(Rpp) ∧ (reflexive)
∀p∀q∀r(Rpq ∧ Rqr → Rpr) ∧ (transitive)
∀p∀q(Rpq ∧ Rqp → p = q) ∧ (antisymmetric)
∀qq � ff(R)(∃p(p ≺ qq) → ∃p ≺ qq∀q ≺ qq(Rpq)) (well-founded)

Note that if R is a well-order, then it is total:

∀p ≺ ff(R)∀q ≺ ff(R)(Rpq ∨ Rqp).

Next, we define the restriction of a well-order � to the strict predecessors of ϕ:

�|ϕ := λpq.�pq ∧ �qϕ ∧ q �= ϕ

Since we have no extensionality principle for relations, relations may behave in unex-
pected ways, compared to the familiar extensional treatment of relations in set theory.
We therefore spell deductive proofs out in somewhat fine detail.

With these general notions on the table, pick a formula χ with a free plural propo-
sitional variable. The remaining development in this section will be relative to this
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choice of χ , but we don’t record this relativity explicitly, to simplify notation. We aim
to define the sequence M as sketched above, and prove that it is a well-order. This can
be done by first identifying the initial sub-sequences of the intended sequence M, and
then defining M as their union. These sub-sequences can be identified as the well-
orders R which satisfy the condition that every proposition in the field of R is the
result of applying χ to its strict predecessors in R. We call them chains. In symbols,
this can be defined as follows:

C := λR.WR ∧ ∀p ≺ ff(R)(p = χ(ff(R|p)))

With this, we can define M as relating p to q just in case p is related to q by some
chain, and ∞ as the result of applying condition χ to the field of M:

M := λpq.∃R(CR ∧ Rpq)

∞ := χ(ff(M))

We now need to establish two claims: First, that M is a chain, and second, that ∞
is in the field of M. The proofs are relegated to Appendix B. The first is established in
Lemma B.2, using the fact that chains are totally ordered by the relation of being an
initial sub-chain of one another, which we show in Lemma B.1. The second is estab-
lished in Lemma B.3, by noting that if ∞ were not in the field of M, then appending
∞ to the end of M would produce a chain M+ containing ∞, whence ∞ would be
in the field of M after all. With these lemmas, we can prove the main result of this
section:

Proof of Theorem 4.4 For any formula χ with a free plural propositional variable,
we have defined closed plural terms ff(M) and ff(M|∞). We show that these witness
the claim, by establishing:

(a) �′ χ(ff(M)) = χ(ff(M|∞))

(b) �′ ff(M) �≡ ff(M|∞)

For (a), note that by Lemmas B.2 and B.3, M is a chain and ∞ ≺ ff(M). Thus
∞ = χ(ff(M)|∞). So by definition of ∞, χ(ff(M)) = ∞ = χ(ff(M)|∞).

For (b), ∞ ≺ ff(M) by Lemma B.3, but ∞ ⊀ ff(M|∞) by construction of M|∞.
Thus ∞ witnesses ff(M) �≡ ff(M|∞).

Theorem 4.4 immediately entails:

Corollary 4.5 CLOSED STRUCTURE is inconsistent in �′.

Furthermore, Theorem 4.4 can be strengthened in two non-trivial ways, by noting
that the witnessing plural parameters may be chosen to be fields of well-orders, one
of which includes the other. All that needs to be shown is that M|∞ is a well-order,
which is routine to derive from the fact that M is a well-order. Thus, we obtain:

Corollary 4.6 For every formula χ with a free plural propositional variable, there
are closed terms � and �′ such that

�′ W� ∧ W�′ ∧ ff(�) � ff(�′) ∧ χ(ff(�)) = χ(ff(�′)) ∧ ff(�) �≡ ff(�′)
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This concludes the main technical discussion in this paper. Two aspects are worth
highlighting, before we move on to discuss their philosophical significance. First, the
inconsistency of CLOSED STRUCTURE in �′ entails the inconsistency of STRONG

CLOSED STRUCTURE in �′. But the inconsistency of the latter is in fact already
an immediate consequence of EXT: according to STRONG CLOSED STRUCTURE,
(πp.⊥ ∧ 
) �= (πp.⊥ ∧ ⊥), which contradicts EXT.

Second, we could have used a functional type theory instead of a relational
one. However, since in the present dialectical context, we cannot assume α, β and
η, we cannot – as is often possible when these identities are endorsed; see Dorr
[10, Appendix] – treat functional and relational type theories as mere syntactic vari-
ants. And some subtleties arise in the functional setting, since quantification over
binary relations plays an important role in the results of this section. Functional type
theory only provides quantification over relations by simulating relations as higher-
order functions, via a process known as Currying or Schönfinkeling, according to
which a binary relation R is treated as a function mapping a first argument x to a
function mapping a second argument y to (Rx)y. Above, we relied on a version of
eβ1/2 according to which (λxy.ϕ)εη ↔ ϕ[ε/x, η/y]. The corresponding equiva-
lence in a functional setting may be written as (λx.(λy.ϕ))εη ↔ ϕ[ε/x, η/y]. This
does not obviously follow from the most straightforward way of capturing the idea
of material β equivalence in a functional setting, which is the schematic principle
(λx.ϕ)ε ↔ ϕ[ε/x]. These issues can be sidestepped if one can avail oneself of a
way of pairing propositions, i.e., a formula ρ with two free propositional variables
such that ρ(ϕ, ψ) = ρ(ϕ′, ψ ′) ↔ (ϕ = ϕ′ ∧ ψ = ψ ′). In this case, quantification
over binary relations among propositions can be simulated using quantification over
properties of propositions. And on some views of structured propositions, such pair-
ing contexts may be easy to come by, as even the binary Boolean connectives may
provide examples. But if one retreats from STRUCTURE to CLOSED STRUCTURE,
one might equally restrict the recoverability of conjuncts from conjunctions to closed
sentences. All of these complications simply do not arise in the relational setting, and
since we see no reason to consider relational languages more problematic than the
functional ones, we have opted for a relational formulation.

5 Discussion

The results established here show that retreating from STRUCTURE to CLOSED

STRUCTURE (both defined in Section 2.2) holds some initial promise: CLOSED

STRUCTURE, unlike STRUCTURE, is consistent in the basic higher-order logic �
(introduced in Section 2.1). The prospects of such a retreat are, however, limited,
as this consistency result is not preserved under the addition of plural proposi-
tional resources: CLOSED STRUCTURE is inconsistent in the logic �′ (defined in
Section 4.1). In this section, we discuss the wider ramifications of these findings.

One immediate observation which can be made from these results concerns the
source of the inconsistency of structured proposition views. The Russell-Myhill argu-
ment is naturally given a cardinality-theoretic gloss: it can be seen as using the fact
that there are more properties of propositions than propositions to conclude that
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there cannot be a distinct proposition for every property of propositions, which is
inconsistent with STRUCTURE. The inconsistency of CLOSED STRUCTURE cannot
be given such a cardinality-theoretic gloss: CLOSED STRUCTURE is entailed by the
claim that distinct closed sentences express distinct propositions; in a countable lan-
guage, it therefore does not require there to be more than countably infinitely many
propositions.

In the remainder of this section, we consider how one could motivate CLOSED

STRUCTURE without also being committed to STRUCTURE, scrutinize the plural
propositional resources used here, and discuss some related principles motivated by
considerations concerning propositional attitudes.

5.1 Restricted Structure

What does it take to endorse CLOSED STRUCTURE but not STRUCTURE? To answer
this question, it is important to note that the viability of CLOSED STRUCTURE

depends on the language under consideration. The main results of this paper already
illustrate this, as CLOSED STRUCTURE is consistent without, but inconsistent with,
plural propositional quantifiers and the π operator. But even when we restrict our-
selves to the simple relational language L without such plural resources, the choice
of language matters. This is because L is parametric with respect to a choice of
non-logical constants.

The inconsistency of STRUCTURE shows that even in L, CLOSED STRUCTURE is
only viable on certain restrictions on the interpretation of non-logical constants. This
follows from the Russell-Myhill theorem (Theorem 2.4 above): As we have seen,
there is some X such that X⊥ = R⊥, even though X �= R. So, in a language with a
constant C such that C = X, C⊥ = R⊥, but C �= R. Since R is closed, this contra-
dicts an instance of CLOSED STRUCTURE. So, even when we consider only instances
of CLOSED STRUCTURE in L, we must restrict ourselves to certain well-behaved
languages. This poses the question how one might motivate instances of CLOSED

STRUCTURE in such a language without motivating the problematic instances as well.
We start with this issue, setting aside for the moment the inconsistency of CLOSED

STRUCTURE in �′.
One option is to postulate a distinction between logical and non-logical entities,

and to endorse CLOSED STRUCTURE for languages in which all constants express
logical entities. Call this logical structuralism. On this view, a logical constant like
→ would express a logical entity, but likewise, a non-logical constant N might be
used to stand for a logical entity such as negation. Furthermore, expressing a logical
entity would plausibly be held to be closed under APPLICATION and ABSTRAC-
TION, so that every closed expression of L would express a logical entity. Endorsing
CLOSED STRUCTURE for any such language would be a way of giving voice to the
idea that reality is not completely structured, but contains a purely logical core which
is structured – a core of logical entities which are structured just like a language.

Logical structuralism has the advantage of starting from an intuitive conception of
logicality (however vague) which serves to single out a non-trivial class of interpreted
languages in which CLOSED STRUCTURE may be endorsed. However, this view is
a very substantial retreat from STRUCTURE: according to logical structuralism, we
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can presumably not even conclude that the proposition that the moon is red is distinct
from the proposition that the moon is blue, even though this case, like many similar
ones, poses no danger of leading to inconsistency. It is therefore interesting to explore
the possibility of alternatives, which trade the intuitiveness of the logical/non-logical
distinction for a much more inclusive class of interpreted languages.

As a starting point, a natural view would endorse CLOSED STRUCTURE for any
choice of constants corresponding to a word of any extant spoken language. To avoid
arbitrariness, the view should further endorse CLOSED STRUCTURE for any exten-
sion of such a language we might introduce. One might wonder if this wouldn’t
immediately lead to problems: why couldn’t we simply introduce a new constant C

for a witness to the existence of an X such that X⊥ = R⊥ and X �= R? But note that
although on a suitably abstract conception of languages, there clearly are languages
with such a constant, it is a substantial claim that we can introduce and speak such
a language. It may be that successfully introducing such a constant C requires not
only the existence of an X satisfying the relevant condition, but also a unique way of
singling it out, since otherwise, the meaning of the new constant would not be unam-
biguously determined. The view would thus depend on there not being any way of
uniquely singling out such an X.

This suggests that all failures of STRUCTURE may in some sense be inaccessi-
ble or ineffable, so we may call this idea effable structuralism. This formulation of
the view also takes care of a worry we raised earlier about CLOSED STRUCTURE:
In formal semantics, demonstratives and anaphora are often formalized using free
variables, which are interpreted relative to a contextually determined assignment
function. Motivating structured propositions via their role in the philosophy of lan-
guage, it might thus seem that this requires the full strength of STRUCTURE. But
demonstratives and anaphora can only be used to denote entities which can be made
contextually salient, and there is no reason to think that this includes everything.
Rather, if there are ineffable entities, then they should not be available as refer-
ents of demonstratives or anaphora. English sentences containing demonstratives or
anaphora can thus be argued to motivate nothing stronger than effable structuralism.

The idea of effable structuralism can be illustrated using the idea of dark matter
in physics. All of the matter which we can see is ordinary matter. However, from
gravitational effects, we can infer that there must be another form of matter – dark
matter. Corresponding to the matter we can see are all of the individuals, proposi-
tions, properties and relations which we can name and think of. According to effable
structuralism, any instance of CLOSED STRUCTURE with constants for such ordinary
entities is true. Corresponding to the indirect evidence for the existence of dark mat-
ter is the Russell-Myhill theorem, which entails that there are some counterexamples
to STRUCTURE. Indeed, the analogy even extends to cardinality considerations: Dark
matter is thought to make up most of the matter in the universe; correspondingly,
there are set-theoretic reasons to think that violations to STRUCTURE are pervasive
rather than being isolated cases (see Uzquiano [38, p. 339]).

The way we have sketched the idea of effable structuralism suggests that we can
formulate the view more precisely using a metaphysical distinction using a (type-
indexed) term for being effable. This, however, renders the view self-defeating: once
we have a term for being effable, we can run the Russell-Myhill theorem with all
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quantifiers restricted to effable entities, and so produce an argument for the existence
of an effable counterexample to STRUCTURE. It is worth spelling this out in detail.
So assume that for every type t , there is a closed term Et of type 〈t〉 expressing the
property of being effable. Et might be a constant, or it might be a complex term.
According to the envisaged position, every closed term expresses something effable:

CLOSED-EFFABLE: Eε (ε closed)

From this, we can derive the existence of effable counterexamples to STRUCTURE.

Proposition 5.1 For any formula χ with a single free variable of type 〈〈〉〉, there is a
closed expression ε〈〈〉〉 such that

CLOSED-EFFABLE � Eε ∧ ∃X〈〈〉〉(EX ∧ (χ(X) = χ(ε)) ∧ X �≡ ε).

Proof Define an expression R of type 〈〈〉〉 as follows:
R := λp.¬∀X((EX ∧ χ(X) = p) → Xp)

Assume for contradiction that ¬Rχ(R). Then ∀X((EX∧χ(X) = χ(R)) → Xχ(R)).
Since χ has only a single free variable, R is closed, whence with CLOSED-EFFABLE,
ER. So as χ(R) = χ(R), it follows that Rχ(R), contradicting the assumption.
Thus Rχ(R), whence there is an X such that EX, χ(X) = χ(R) and ¬Xχ(R).
Since Rχ(R), χ(R) witnesses X �≡ R. We conclude ER ∧ ∃X(EX ∧ (χ(X) = χ(R))

∧X �≡ R).

This argument shows that whatever ‘effable’ means, it is incoherent to assume
both that STRUCTURE holds for all effable entities and that every closed expression
of the language expresses something effable. But those were the two core compo-
nents of effable structuralism as sketched above. So, although our sketch of effable
structuralism may initially have sounded compelling, it is not clear that there even is
a coherent view to be entertained. Note that these challenges to articulating effable
structuralism do not apply here with equal force to logical structuralism: restricting
quantifiers in the Russell-Myhill theorem to logical entities only provides us with a
logical counterexample to STRUCTURE if logicality is logical, but it is coherent – and
perhaps even well-motivated – for a proponent of logical structuralism to deny this.

Instead of trying to articulate a view of effable structuralism using the notion of
effability, one can of course simply endorse all instances of CLOSED STRUCTURE

for a given language. But this provides no motivation for the instances of CLOSED

STRUCTURE. It also does not provide any way of articulating the idea that CLOSED

STRUCTURE holds for any language we are in a position to speak.
This second limitation can to some extent be overcome. At least, this can be done

on the plausible but not uncontroversial assumption that to be able to introduce a new
constant for some entity, it is necessary and sufficient to be able to single the entity
out uniquely. What exactly it takes to single something out is a difficult matter, but
arguably, if there is a formula ϕ with a single free variable x of some type t which
is uniquely satisfied, then the unique satisfier can be singled out with the help of this
formula. In such a case, we say that the unique satisfier is defined by ϕ. In symbols:
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ϕ � x := ∀yt (ϕ(y) ↔ y = x)

The informal sketch of effable structuralism thus motivates not just CLOSED

STRUCTURE, i.e., STRUCTURE restricted to what is expressed by closed terms, but
STRUCTURE restricted to what is definable. This can be captured by the following
schema:

DEFINABLE STRUCTURE: ∀x̄ȳ(ϕ0 � X ∧ ψ0 � Y ∧ ϕ1 � x1 ∧ · · · ∧ ϕn � xn ∧ ψ1 �
y1 ∧ · · · ∧ ψn � yn → (Xx̄ = Y ȳ → X = Y ∧ xi = yi))

DEFINABLE STRUCTURE immediately entails CLOSED STRUCTURE, since any-
thing expressed by a closed term ε is defined by the formula x = ε. But DEFINABLE

STRUCTURE is not entailed by CLOSED STRUCTURE, since we can show that DEFIN-
ABLE STRUCTURE is invalid in some of the models of CLOSED STRUCTURE defined
above. The relevant models are those in which we have a term� expressing the prop-
erty of being a proposition with trivial logical content, i.e., whose first coordinate
is W , the set of all worlds. Such an operator, and similar ones expressing identity
of logical content or entailment among logical contents, which could be used inter-
changeably, do not just arise as an artifact of the model theory, but are natural notions
for advocates of structured propositions to want to appeal to. For instance, they might
wish to have a way of expressing coarse logical equivalences among finely indi-
viduated propositions, of the kind that holds between, say, a proposition p and its
self-conjunction p ∧ p. But once we have �, we can define the unique operator X

which maps every proposition 〈l, s〉 to 〈W, Is〉, where I is λp.p. Then X
 = I
,
even though X �= I .

Proposition 5.2 DEFINABLE STRUCTURE is invalid in any CSM such that there is a
closed term � of type 〈〈〉〉 for which:

���1(〈l, s〉) =
{

W if l = W

∅ otherwise

Proof Letting I := λp.p, and X a variable of type 〈〈〉〉, define:
ϕ := ∀p�Xp ∧ X
 = I


Any 〈L, S〉 satisfies ∀p�Xp iff L is the constant function o �→ W , and 〈L, S〉
satisfies X
 = I
 iff LW = W and S is I . Thus ϕ is uniquely satisfied by 〈o �→
W, I 〉. Letting X stand for this element, X
 = I
 by definition. And X �= I since
X⊥ while ¬I⊥. So DEFINABLE STRUCTURE is not valid.

One way of seeing that this includes some safe CSMs based on a structural coarsen-
ing is to note that in a CSM with a one-element set of worlds, I satisfies the condition
on �. Thus we obtain:

Corollary 5.3 CLOSED STRUCTURE does not entail DEFINABLE STRUCTURE in �.
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Indeed, we have not been able to rule out that for every CSM, there is some closed
term � satisfying the condition. More generally, we have not been able to deter-
mine whether DEFINABLE STRUCTURE is consistent. As we noted in the beginning,
CLOSED STRUCTURE is arguably only plausible as a general schema when it is
endorsed for all languages we might come to speak. The same line of thought extends
to DEFINABLE STRUCTURE as well, so the consistency of this principle is crucial.
We therefore consider this the most important question left open by our discussion:

Open Question 5.4 Is DEFINABLE STRUCTURE consistent in �?

5.2 Plural Propositional Quantifiers

The views sketched in the previous section motivate ways of endorsing instances of
CLOSED STRUCTURE without endorsing the full strength of STRUCTURE. But they
motivate not only the instances of CLOSED STRUCTURE in a language L without
plural resources, but also instances of the corresponding richer language L′ which
includes such resources. Since some instances of CLOSED STRUCTURE in this richer
language are inconsistent, this poses a problem for these views. To illustrate this more
concretely, consider a formula χ with a free plural propositional variable pp which
involves no non-logical constants. For example, χ may be ⊥ ≺ pp. We have shown
that there are plural terms ϕϕ and ψψ such that �′ χ(ϕϕ) = χ(ψψ) ∧ ϕϕ �= ψψ .
These terms are constructed from χ without invoking any non-logical constants, so
if χ contains no non-logical constants, then ϕϕ and ψψ also don’t contain any non-
logical constants. Thus, in L′, there are purely logical counterexamples to CLOSED

STRUCTURE. These examples contradict logical structuralism, and a fortiori the
stronger effable structuralism.

The only reasonable option we see for defending such restricted structure views
against the inconsistency of purely logical instances of CLOSED STRUCTURE in L′
is to deny the coherence of plural propositional quantification. After all, the only
alternative is to reject some of the logical principles of �′, which we take to be an
unpromising avenue: we consider the principles of � to be far more plausible than
CLOSED STRUCTURE, and the additional principles of �′ to be constitutive of the
notion of plural propositional quantification. This raises the question whether one
could motivate denying the coherence of plural propositional quantification. The
answer to this depends arguably on one’s general understanding of how we should
conceive of the higher-order languages used here. We are sympathetic to a view
along the lines suggested by Prior [33] and Williamson [41]. According to Prior and
Williamson, we generally become competent speakers (or rather, writers) of higher-
order languages by the same kinds of methods we use to become competent speakers
of natural languages. Furthermore, what sentences of higher-order languages mean is
not generally determined by a translation into any natural language. This is of course
not to say that the facts in virtue of which higher-order languages are meaningful are
completely inscrutable. A number of metasemantic factors can easily be identified
which constrain the meanings of such languages. In the case of L, the following seem
to us especially important:
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First, there are general logical postulates which constrain the meanings of logical
connectives. For example, the axiomatic principles UI and UG of � highly constrain
the meanings of universal quantifiers. These principles can therefore partly be seen as
definitional. Standard model theories serve to show that these constraints are jointly
satisfiable, and so contribute to an overall argument for the good standing of the ide-
ology. This first constraint should not be misunderstood as an inferentialist theory of
meaning of logical connectives. Most importantly, we have not committed ourselves
to claiming that such logical principles pin down the meanings of these connectives
uniquely.

Second, natural languages like English contain phrases which are in many ways
similar to the relevant logical connectives. For example, the meaning of the English
conditional construction ‘if . . . then . . . ’ may serve to narrow down the meaning of
→. Similarly, the meaning of phrases like ‘every proposition’ may serve to narrow
down the meaning of ∀〈〉. Again, such constraints are not meant to give the full story.
For example, → and ‘if . . . then . . . ’ may come apart in meaning in crucial respects.
Maybe ‘if . . . then . . . ’ is ambiguous, allowing for a material conditional reading and
other readings. On a very simple model of the metasemantics of →, the axiomatic
principles involving → may serve to weed out the unwanted meanings of ‘if . . .
then . . . ’, and thus the two first constraints would work in tandem to single out a
unique meaning for →. Analogously, English phrases like ‘every proposition’ may
be highly ambiguous, but axiomatic principles like UI and UG may go some way
towards disambiguating them.

Third, the meanings of higher-order expressions may to some extent be identified
by a kind of triangulation: In English, there are singular terms, predicates which may
be applied to such terms, and quantifiers binding variables in the position of these
terms. The meanings of higher-order quantifiers may be constrained by stating that
the meaning of a quantifier binding variables in the position of predicates stands to
predicates as quantifiers binding variables in the position of singular terms stands to
singular terms.

Together, such matters provide significant grounds for the metasemantics of
higher-order languages. It is of course still a substantial claim that higher-order ideol-
ogy is in good standing. As in science, when introducing terms like ‘phlogiston’ and
‘electron’ for entities which are not directly observable, the success of the relevant
terminological introduction must at least partly be judged on the basis of the success
of theorizing in such terms. Thus, whether the recent use of higher-order languages in
metaphysics is successful must at least partly be judged on whether such metaphys-
ical theorizing gives rise to successful theories. And as in the sciences, the success
of such theories will have to be judged on general criteria of theory choice such as
simplicity, strength, and fit with the phenomena. There is of course much to be filled
out in this sketch of an account of higher-order languages, but the present basics will
suffice to evaluate the additional resources of plural propositional quantification.

The case for the plural propositional resources of L′ is in fact very similar to that
of the more standard higher-order resources of L. First, our axiomatic principles of
quantification apply to plural propositional quantifiers just as they apply to ordinary
higher-order quantifiers. In fact, this constraint is substantially stronger in the case of
plural quantifiers, since we also impose the extensionality axiom EXT. And as before,
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the satisfiability of these constraints can be established model-theoretically. Second,
natural languages contain something akin to plural quantification, using phrases such
as ‘some things’. Just as ‘some proposition’ may be a rough guide to the meaning
of ∀p, ‘some propositions’ may be a rough guide to the meaning of ∀pp. And such
plural propositional talk in English is highly natural: for example, when considering
matters of modality, it is natural to speak of some propositions being individually
possible but jointly impossible. Third, the meanings of plural propositional quanti-
fiers may also be constrained by a form of triangulation, now with respect to the
previously established languages of higher-order logic and a plural extension of first-
order logic: Using x for a singular individual variable and xx as a plural individual
variable, the meaning of ∀pp may be constrained by positing that it stands to ∀p as
∀xx stands to ∀x. That is, plural propositional quantification is what stands to propo-
sitional quantification as plural individual quantification stands to singular individual
quantification.

Insofar as we have reason to think that standard higher-order languages are in
good standing – and we think that we do – we have equally good reason to think
that the extension by plural propositional resources is in good standing as well. Of
course, there are differences in detail between the two accounts, and these differ-
ences may account for a difference in the meaningfulness of the relevant connectives.
Furthermore, it may simply be that in the first case, the introduction of new logical
ideology is successful whereas it is unsuccessful in the second case. After all, there
is a substantial external component to metasemantics: however well-constrained the
introduction of new ideology is, whether it is successful depends on whether real-
ity provides the required structure for it to latch onto. Again, the success of such
introductions must ultimately be judged on whether the relevant ideology leads to
successful theorizing. Given the novelty of plural propositional quantification, any
assessment we can undertake here will have to be highly preliminary. But from what
we can see so far, the case is promising: given the failure of STRUCTURE, the motiva-
tions for CLOSED STRUCTURE are limited. In our estimation, they do not outweigh
the intuitive appeal of plural propositional quantification.

In this defense of plural propositional resources, we have focused on plural propo-
sitional quantifiers. But the intelligibility of the plural operator π can be motivated
similarly, by analogy to the standard variable-binder λ of higher-order logic. The
use of π is in one sense crucial, since without it, there are no closed plural terms,
and so no instances of CLOSED STRUCTURE with plural parameters. Our argument
against CLOSED STRUCTURE therefore depends on π . However, recall from the pre-
vious section that many of the motivations for CLOSED STRUCTURE extend as well
to DEFINABLE STRUCTURE. And in the presence of plural propositional quantifiers,
the proof of the inconsistency of CLOSED STRUCTURE using π is straightforwardly
adapted to a proof of the inconsistency of DEFINABLE STRUCTURE which does not
rely on π . Without π , plural comprehension must be added as an axiom, as it can no
longer be derived. One can then replace the closed plural terms ff(M) and ff(M|∞) in
the relevant instance of CLOSED STRUCTURE by plural variables which are bound
by universal quantifiers restricted to the unique pluralities which are coextensive with
the defining conditions of ff(M) and ff(M|∞), respectively.
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Finally, it is worth noting that plural propositional resources give rise to a range of
interesting further questions. For example, one may wonder whether we can perform
a speech act of plural assertion using plural terms. Just as we can use the sentence
∀p(p = ¬¬p) to assert a certain (coarse-grained) view about the individuation of
propositions, can we use the term πp.p = ¬¬p to assert the instances of this uni-
versal claim? What, if anything, would be the difference between these speech acts?
We think that these are great questions, but not ones which need to be answered for
present purposes.

5.3 Attitudes

One of the reasons some might initially be attracted to STRUCTURE relates to atti-
tude reports in English. Here is how one might reason: It is plausible that for any
two sentences s and s′ of English, if s and s′ have different syntactic structure, or
corresponding syntactic constituents which denote distinct entities, then �it is pos-
sible that someone believes s but does not believe s′� will be true, i.e. s and s′ are
not invariably intersubstitutable in the context of belief reports. Contraposing, if s

and s′ are intersubstituable in the context of attitude reports then they have the same
syntactic form, and each of the corresponding constituents denote identical entities.
Identity licenses intersubstitution, so if �s = s′� is true then s and s′ have the same
syntactic form, and each of the corresponding constituents denote identical entities.
STRUCTURE generalizes this idea in the setting of higher-order logic.

So one might reason, but in fact, this argument does little to motivate STRUCTURE.
This is because the argument relies on the intersubstitutibility of identicals, which
can be stated as the following schema in our higher-order languages:

SUBSTITUTION: ε = η → (ϕ(ε) → ϕ(η))

This principle is controversial in the context of attitude reports, for reasons related to
familiar Frege cases deriving from [12]: it is natural to think that although Hesperus
is Phosphorus, the Greeks knew that Hesperus was visible in the evening, but did
not know that Phosphorus was visible in the evening. Theories of attitude reports are
usefully divided into two camps, depending on whether, in a language enriched by
constants which intuitively stand for attitude verbs, they reject SUBSTITUTION on
the basis of such examples. Let us consider the two options in turn.

First, consider those who take Frege cases to show that SUBSTITUTION fails in
the presence of attitude contexts (as argued by Goodman and Lederman [16], this
includes Fregeans, though see Pickel and Rabern [31]). On this view, the above argu-
ment cannot be used to motivate STRUCTURE, since it uses SUBSTITUTION as a
premise, and SUBSTITUTION fails. It’s worth noting that in the language used above,
the connective = is defined, and SUBSTITUTION is derivable from principles gov-
erning the primitive connectives. Those who want to reject SUBSTITUTION might
therefore prefer to reject the claim that =, as defined above, is even coextensive with
identity. For the purposes of this section, we will therefore consider = as a primitive
identity connective.

Consider now those who hold that Frege cases do not show that SUBSTITUTION

fails in the presence of attitude contexts. This includes Millians as the position is
traditionally understood (although Bacon and Russell [2, section 2] dispute this con-
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sensus; cf. Goodman and Lederman [15] for discussion). On this view, there must
be some way of accounting for our intuitive judgements concerning Frege cases.
Depending on the details of this story, it may well be possible to use it also to account
for the intuitions which motivated STRUCTURE, i.e., the intuitions according to which
s and s′ are not intersubstitutable in the context of attitude reports if they have dif-
ferent syntactic forms or corresponding constituents which denote distinct entities,
without actually endorsing STRUCTURE.

Thus, whatever one’s position on SUBSTITUTION, attitude ascriptions do not on
their ownmotivate STRUCTURE. For those who reject SUBSTITUTION, there is never-
theless an interesting principle in the vicinity of STRUCTURE. For they might want to
theorize using a notion of cognitive equivalence, which is finer-grained than identity.
(Sometimes the label “cognitive equivalence” is used for a relation among linguistic
expressions, but we will be using it as a relation among worldly entities.) Notating
this ≈, they might then want to endorse the following principle:

SUBSTITUTION≈: ε ≈ η → (ϕ(ε) → ϕ(η))

Indeed, they might consider SUBSTITUTION≈ to be definitional of ≈. Some will
dispute whether this notion of cognitive equivalence makes sense for types other than
t ; we won’t argue for this idea here, but note that at type t , it can plausibly be defined
along the lines of ‘λpq. necessarily a person believes p if and only if the person
believes q’.

The argument sketched at the beginning of this section may not convincingly moti-
vate STRUCTURE. But for those who replace SUBSTITUTION with SUBSTITUTION≈,
an obvious variant of the argument makes a convincing case for a corresponding
variant of STRUCTURE which replaces identity with cognitive equivalence:

STRUCTURE≈: ∀X∀Y∀x̄∀ȳ(Xx̄ ≈ Y ȳ → X ≈ Y ∧ xi ≈ yi)

Using the quantificational principles of �, this is inconsistent as well, by a corre-
sponding variant of the Russell-Myhill theorem. This is not necessarily a problem: In
the context of attitude reports, in response to the so-called problems of “quantifying
in”, some authors have rejected UI (e.g. Bacon and Russell [2], Lederman [24]) and
many have denied eβ1/2 (this is probably the best understanding of Kaplan [18], cf.
Kaplan [19]; see Yalcin [43], Lederman [25]). We think those who reject UI or eβ1/2
and who are also attracted to STRUCTURE≈ will most naturally seek to respond to the
Russell-Myhill theorem using their weaker quantificational logic or weaker princi-
ples governing abstraction. But some have suggested that both UI and eβ1/2 should
be upheld even when dealing with attitude reports, and such “classical opacitists” will
hold that STRUCTURE≈ is inconsistent; cf. Caie et al. [9]. On this view, the following
variant of CLOSED STRUCTURE provides an interesting fallback position:

CLOSED STRUCTURE≈: ξ ε̄ ≈ ζ η̄ → ξ ≈ ζ ∧ εi ≈ ηi (where ξ, ζ, ε̄, η̄ are closed)

In fact, one might argue that CLOSED STRUCTURE≈ was all that was ever moti-
vated by cases of attitude ascriptions, for reasons similar to those which motivated
effable structuralism: There may be ineffable entities to which no person can stand
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in substantial cognitive relations, so that they would not be differentiable in terms
of attitude ascriptions. But arguably, every entity expressed by a closed term of a
spoken language is accessible in the relevant sense, so that at least STRUCTURE≈
restricted to what is expressed by closed terms is motivated – and that is just what
is captured by CLOSED STRUCTURE≈. Given the inconsistency of STRUCTURE≈,
one might therefore consider CLOSED STRUCTURE≈ an independently motivated
fallback position.

Admittedly, one might worry about cases of attitude ascriptions with free variables
in the complement clause which are bound by a quantifier; these cases may well
motivate something stronger than CLOSED STRUCTURE≈. It would be worth explor-
ing appropriate strengthenings, but here, we want only to note that whatever principle
is motivated, it need not be as strong as STRUCTURE≈. CLOSED STRUCTURE≈ is
a natural starting point for someone interested in exploring this style of view, and
an examination of its consistency will provide insight into what strengthenings can
consistently be endorsed.

The results established above show that CLOSED STRUCTURE≈ is consistent in �,
since we may – for the purposes of an abstract consistency proof – interpret ≈ and
= alike. The question for the classical opacitist endorsing CLOSED STRUCTURE≈
is now whether the inconsistency of CLOSED STRUCTURE in �′ poses a problem.
Just as the Russell-Myhill theorem can be transposed to show the inconsistency of
STRUCTURE≈, the argument of Section 4 can be transposed to produce an argu-
ment for the inconsistency of CLOSED STRUCTURE≈. But this argument will rely on
a principle corresponding to EXT (the extensionality of plural terms), according to
which coextensiveness suffices not only for identity but also cognitive equivalence.
And this is an assumption the classical opacitist will have antecedent reasons to
reject, similar to their reasons for rejecting of SUBSTITUTION. So the inconsistency
results in this paper do not give the classical opacitist reason to abandon CLOSED

STRUCTURE≈.
Principles of structured propositions restricted to closed instances thus have some-

thing to offer in the context of attitude ascriptions. In closing, we want to pose a
question about whether they might offer even more than we’ve suggested so far, ask-
ing whether a restriction to closed instances can help with a different limitative result
on propositions. The theorem is due to Prior [32], and related to a model-theoretic
observation by Kaplan [21]; see Bacon et al. [1] for discussion. To sketch it, let Q

be a sentential operator expressing the attitude of being entertained (by a certain
agent at a certain time). Prima facie, it would seem that one could uniquely entertain
the thought that everything one entertains is false. A fortiori, it should be possible
to entertain this thought, and nothing of a different truth value. That is, letting r
abbreviate ∀q(Qq → ¬q), the following would seem to be possible:

P : Qr ∧ ∀p(Qp → (p ↔ r))

But this, as Prior shows, is inconsistent. Formally, we can treatQ as a variable of type
〈〈〉〉; then � ¬P. So surprisingly, if one entertains r, then one also entertains some p

which differs in truth-value from r. But as in the case of the Russell-Myhill result,
the proof of Prior’s theorem does not explicitly specify any example of such a p.
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This raises the question whether it is consistent to suppose that among propositions
expressed by closed sentences, only propositions with the same truth value as r are
being entertained. Generalizing from r, one might thus ask whether for every closed
formula ϕ, the following set is consistent in �:

{Qϕ} ∪ {Qψ → (ψ ↔ ϕ) : ψ closed}

And, if all such sets are consistent in �, then given the results established here, it is
natural to follow up and ask whether they are also consistent in �′. We leave this line
of inquiry for another occasion.

6 Conclusion

The Russell-Myhill theorem shows the inconsistency of the view that propositions
are structured, as captured by the principle STRUCTURE in relational type theory.
Yet, intriguingly, it provides us with no concrete examples of the failure of propo-
sitions to be structured. Here, we have explored views which claim, in some form
or another, that the failures of propositions to be structured can be contained, allow-
ing propositions to be structured whenever it matters. Centrally, we have shown that
such views show some initial promise, by proving the consistency of the principle
of CLOSED STRUCTURE, which restricts STRUCTURE to closed sentences. Some
consistency questions on strengthenings of this principle were answered as well,
and others were left open, most importantly Question 5.4, which asks whether the
principle of DEFINABLE STRUCTURE is consistent.

While interesting from a formal perspective, these open questions are in a sense
superseded by our results on an extension of the relational type theory by plural
propositional resources. First, we have shown that in such an extended language,
CLOSED STRUCTURE is inconsistent. This result uses plural propositional quanti-
fiers and the π operator to provide an explicit, and purely logical, counterexample to
propositions being structured. Thus, even the most restrictive view considered here,
logical structuralism, which restricts the claim that propositions are structured to
propositions specified using purely logical vocabulary, is untenable. Second, we have
shown that there are no compelling reasons to think that the resources of standard
relational type theory are meaningful but plural propositional resources are not.

In the end, we therefore conclude that CLOSED STRUCTURE must be rejected
alongside STRUCTURE. Despite some initial promise, even the restricted views of
structured propositions considered here run into problems. Our conclusions are,
however, not completely negative: Due to the opacity of attitude reports, so-called
classical opacitists may want to endorse, instead of CLOSED STRUCTURE, a variant
principle we call CLOSED STRUCTURE≈, which replaces identity with a relation ≈
of cognitive equivalence. In the setting without plural propositional resources, the
consistency of this principle follows from the consistency of CLOSED STRUCTURE.
And in the setting with plural propositional resources, the inconsistency of CLOSED

STRUCTURE does not entail the inconsistency of CLOSED STRUCTURE≈, due to the
opacity of ≈.
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Appendix A: Consistency

A.1 Soundness

To show soundness, we require two standard lemmas, showing that the interpretation
of free variables is well-behaved.

Lemma A.1 In any CSM, if a and b agree on the free variables in ε, then �ε�a =
�ε�b.

Proof If ε is a variable x, then a(x) = b(x), whence �x�a = �x�b. If ε is a constant c,
then �c�a = �c�b by construction. The remaining cases follow routinely by induction
hypothesis.

This means that the assignment function is inert in the interpretation of any closed
term ε. Consequently, we will omit it, and write simply �ε�.

Lemma A.2 In any CSM, �η[ε̄/x̄]�a = �η�a[�ε1�a/x1,...,�εn�a/xn].

Proof By induction on the structure of η.

ATOMIC: If η is x, then �x[ε/x]�a = �ε�a = �x�a[�ε�a/x]. The case of constants is
immediate by Lemma A.1.

APPLICATION: Routine by induction hypothesis.
ABSTRACTION: Let η be λȳ.ϕ. Since every εi is free for xi , �λȳ.ϕ[ε̄/x̄]�a =

�λȳ.(ϕ[ε̄/x̄])�a . This is:

〈ō �→ �ϕ[ε̄/x̄]�a[ō/ȳ]
1 , λȳ + �ϕ[ε̄/x̄]�a[ȳ]

2 〉
By induction hypothesis and the fact that x̄ and ȳ are disjoint, this is:

〈ō �→ �ϕ�
a[�ε1�a/x1,...,�εn�a/xn][ō/ȳ]
1 , λȳ + �ϕ�

a[�ε1�a/x1,...,�εn�a/xn][ȳ]
2 〉

which is �λȳ.ϕ�a[�ε1�a/x1,...,�εn�a/xn], as required.

Further, we note that the classical truth-conditions hold for primitive logical
resources.

Lemma A.3 For every CSM M and assignment function a:

(1) M, a � (λx̄.ϕ)ε̄ iff M, a[�ε1�a/x1, . . . , �εn�
a/xn] � ϕ

(2) M, a � ϕ → ψ iffM, a � ϕ only if M, a � ψ

(3) M, a � ∀xtϕ iff M, a[o/x] � ϕ for all o ∈ Dt

Proof (1) M, a � (λx̄.ϕ)ε̄

iff @ ∈ �λx̄.ϕ�a
1(〈�ε1�a, . . . , �εn�

a〉)
iff @ ∈ �ϕ�

a[�ε1�a/x1,...,�εn�a/xn]
1
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iff M, a[�ε1�a/x1, . . . , �εn�
a/xn] � ϕ.

(2) and (3) are routine.

Similar conditions hold for the defined logical connectives; we note three repre-
sentative cases.

Lemma A.4 For every CSM M and assignment function a:

(1) M, a � ⊥
(2) M, a � ¬ϕ iff M, a � ϕ

(3) M, a � ε = η iff �ε�a = �η�a

Proof Routine, using Lemma A.3.

We can now establish soundness:

Proposition A.5 If � ϕ then ϕ is valid in every CSM.

Proof By a routine induction on the length of proofs, using the previous lemmas.

A.2 Coarsenings

Given a coarsening ∼, fix a type-indexed choice function γt on Lt/∼t . That is, for
each type t , let γt : Lt/∼t → Lt such that γt (X) ∈ X, for all X ∈ Lt/∼t . Assume
further that for each variable x, γ ([x]∼) = x; there exist such functions since being
a coarsening guarantees that x = y whenever x ∼ y. As usual, we omit the type
indices. γ maps every equivalence class of terms under ∼ to a designated represen-
tative. With this, we can define the result of replacing, in a given expression ε, any
free variable x by the designated representative of the syntactic component of a(x).
We notate this as follows:

ε[a] := ε[γ (π2(a(x1)))/x1, . . . , γ (π2(a(xn)))/xn] (x̄ the free variables in ε)

Lemma A.6 In any CSM, �ε�a
2 = [ε[a]]∼.

Proof By induction on the complexity of ε.

ATOMIC: If ε is a variable x, then �x�a
2 = π2(a(x)) = [γ (π2(a(x)))]∼ = [x[a]]∼.

If ε is a constant c, then �c�a
2 = [c]∼ = [c[a]]∼.

APPLICATION: If ε is an application ξ η̄, then �ξ η̄�a
2 = �ξ�a

2 + �η1�
a
2 + · · ·+ �ηn�

a
2.

By IH, this is [ξ [a]]∼ + [η1[a]]∼ + · · · + [ηn[a]]∼ = [ξ η̄[a]]∼.
ABSTRACTION: If ε is an abstraction λȳ.ϕ, then �λȳ.ϕ�a

2 = λȳ + �ϕ�
a[ȳ]
2 . By IH,

this is λȳ + [ϕ[a[ȳ]]]∼. Let x̄ be the free variables of λȳ.ϕ. Then [ϕ[a[ȳ]]]∼ may
be specified as follows:

[ϕ[γ (π2(a(xi)))/x1, . . . , γ (π2(a[ȳ](yi)))/y1, . . . ]∼
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Note that π2(a[ȳ](yi)) = [yi]∼, so γ (π2(a[ȳ](yi))) = yi . Thus the replacements
on ȳ are vacuous; so λȳ + [ϕ[a[ȳ]]]∼ = λȳ + [ϕ[γ (π2(a(xi)))/x1, . . . ]∼ =
[(λȳ.ϕ)[a]]∼.

Note that in the case of closed terms ε, the assignment function can be omitted, in
which case we obtain �ε�2 = [ε]∼.

Lemma A.7 For any consistent set of equations T :

(1) If ξ ∼sT ζ then ξ ε̄ ∼sT ζ ε̄.
(2) If εi ∼sT ηi then ξε1 . . . εi . . . εn ∼sT ξε1 . . . ηi . . . εn.
(3) If ϕ ∼sT ψ then λx̄.ϕ ∼sT λx̄.ψ .

Proof (1) Assume ξ ∼sT ζ is witnessed by expressions ϑ , χ and κ such that ξ =
ϑ(χ) and ζ = ϑ(κ). Without loss of generality, the designated free variable of ϑ may
be assumed not to occur in ε̄. Then ξ ε̄ = ϑε̄(χ) and ζ ε̄ = ϑε̄(κ), whence ξ ε̄ ∼sT ζ ε̄.

The cases of (2) and (3) are analogous, where in the case of (3), we assume the
designated free variable of ϑ not to be among x̄.

Lemma A.8 For any consistent set of equations T , ∼T is a coarsening.

Proof It is immediate by construction that ∼t is an equivalence relation. We check
the three defining conditions.

For (1), we consider any distinct variables x �= y, and show that x �∼T y. Assume
x ∼T y for contradiction. Then T � x = y: In general, if ε = η ∈ T , then
T � ϑ(ε) = ϑ(η). So if ξ ∼iT ζ , then T � ξ = ζ . By the reflexivity, symmetry and
transitivity of = in �, it follows also that if ξ ∼T ζ , then T � ξ = ζ . So, as claimed,
it follows from x ∼T y that T � x = y, whence T � ∀x∀y(x = y) by the definition
of entailment. But � ¬∀x∀y(x = y): for type 〈〉, this is witnessed by � ⊥ �= 
;
for any other type, it is witnessed by � (λx̄.⊥) �= (λx̄.
). Thus T is inconsistent, in
contradiction to the assumption. So x �∼T y.

For (2), assume ε1 ∼T η1, . . . , εn ∼T ηn and ξ ∼T ζ . Then there are ϑ̄, ¯̄χ such
that

ξ = ϑ1 ∼sT · · · ∼sT ϑm = ζ , and
εi = χ1

i ∼sT · · · ∼sT χ
li
i = η for all i < n.

Then by Lemma A.7 (1 & 2),

ξε1 . . . εn = ϑ1χ1
1 . . . χ1

n ∼sT . . . ∼sT ϑmχ1
1 . . . χ1

n

. . . ∼sT ϑmχ
l1
1 . . . χ1

n

. . .

. . . ∼sT ϑmχ
l1
1 . . . χ ln

n = ζη1 . . . ηn

So ξ ε̄ ∼T ζ η̄, as required.
For (3), assume ϕ ∼T ψ . Then there are χ̄ such that

ϕ = χ1 ∼sT · · · ∼sT χn = ψ .
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Then by Lemma A.7 (3),

λx̄.ϕ = λx̄.χ1 ∼sT · · · ∼sT λx̄.χn = λx̄.ψ .

So λx̄.ϕ ∼T λx̄.ψ , as required.

Lemma A.9 ∼α,η is a coarsening.

Proof Standard models show that α, η is consistent. The claim therefore follows by
Lemma A.8.

Lemma A.10 ∼α,η is structural.

Proof We show that if ξ ε̄ ∼α,η ζ χ̄ , then ξ ∼α,η ζ and εi ∼α,η χi by induction on the
length of the witnessing sequence. The case of a sequence of length 1 is immediate.
So assume ξ ε̄ ∼α,η ζ χ̄ is witnessed by a sequence of length n + 1, with the nth
element being ϑ . Then ϑ ∼sα,η ζ χ̄ . Since no instance of α or η is an identity flanked
by an application on either side, ϑ must be an application νμ̄, with ν ∼sα,η ζ or
ν = ζ , and μi ∼sα,η χi or μi = χi . Thus ν ∼α,η ζ and μi ∼α,η χi . Further, by IH,
ξ ∼α,η ν and εi ∼α,η μi . The claim follows by transitivity of ∼α,η.

Lemma A.11 ∼α,η is safe.

Proof We first show that for every instance χ = κ of α and η, �χ�a = �κ�a ,
considering the two coordinates separately.

To show �χ�a
1 = �κ�a

1, we distinguish two cases. Consider first any instance of

α: �λȳ.ϕ[ȳ/x̄]�a
1 = ō �→ �ϕ[ȳ/x̄]�a[ō/ȳ]

1 ; by Lemma A.2, this is ō �→ �ϕ�
a[ō/ȳ][ō/x̄]
1 ,

which by Lemma A.1 is ō �→ �ϕ�
a[ō/x̄]
1 = �λx̄.ϕ�a

1. Consider now an instance of η:

�λx̄.εx̄�a
1 = ō �→ �εx̄�

a[ō/x̄]
1 , which by Lemma A.1 is ō �→ �ε�a

1(ō) = �ε�a
1.

We now show �χ�a
2 = �κ�a

2. Since χ = κ is an instance of α or η, χ[a] = κ[a] is
an instance of α or η as well. Thus χ[a] ∼α,η κ[a], whence [χ[a]]∼α,η = [κ[a]]∼α,η .
By Lemma A.6, it follows that �χ�a

2 = �κ�a
2.

So, for every instance χ = κ of α and η, �χ�a = �κ�a . Therefore �ϑ�a[�χ�a/x] =
�ϑ�a[�κ�a/x], whence with Lemma A.2, �ϑ(χ)�a = �ϑ(κ)�a . It follows that if ξ ∼iα,η

ζ , then �ξ�a = �ζ �a . Using the fact that identity is reflexive, symmetric and transitive,
it follows by induction also that if ξ ∼α,η ζ , then �ξ�a = �ζ �a .

Proposition A.12 Any safe CSM based on a strongly structural coarsening validates
STRONG CLOSED STRUCTURE.

Proof Let M be safe and based on a strongly structural coarsening ∼. Assume
M, a � ξ [ε̄/x̄] = ξ [η̄/x̄], for closed ε̄, η̄, with all x̄ free in ξ . Then �ξ [ε̄/x̄]�a

2 =
�ξ [η̄/x̄]�a

2, so with Lemma A.6, [ξ [ε̄/x̄][a]]∼ = [ξ [η̄/x̄][a]]∼. Let ȳ be the free vari-
ables distinct from those in x̄. Let z̄ be variables of the same types as x̄, which do not
occur in γ (π2(a(yi))), for any i ≤ n. Then ξ [ε̄/x̄][a] is

ξ [z̄/x̄][ε̄/z̄][γ (π2(a(y1)))/y1, . . . , γ (π2(a(yn)))/yn]
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By the choice of z̄, this is ξ ′[ε̄/z̄], where ξ ′ is

ξ [z̄/x̄][γ (π2(a(y1)))/y1, . . . , γ (π2(a(yn)))/yn]
Analogously, ξ(η̄)[a] is ξ ′[η̄/z̄]. So ξ ′[ε̄/z̄] ∼ ξ ′[η̄/z̄]. Since ∼ is strongly struc-
tural, it follows that εi ∼ ηi . And as M is safe, it follows that �εi�

a = �ηi�
a , as

required.

Appendix B: Inconsistency

We use ‘� ’ for the relation of being an initial sub-chain:

� := λRS.R � S ∧ ∀p∀q(Spq → (q ≺ ff(R) → p ≺ ff(R)))

We start by showing that � totally orders chains:

Lemma A.13 �′ CR ∧ CS → R � S ∨ S � R.

Proof Assume CR and CS, i.e., that R and S are chains. Let qq be such that

qq = πp.p ≺ ff(R) ∧ p ≺ ff(S) ∧ R|p ≡ S|p.
We first show that qq is downward closed along R and S, in the following sense:

(↓) If Rpq or Spq, then q ≺ qq only if p ≺ qq.

Without loss of generality, consider any p, q such that Rpq and q ≺ qq. The claim
is immediate if p = q, so assume p �= q. Since q ≺ qq, R|q ≡ S|q . So as R|qpp,
also S|qpp, whence Spq. Note that this means that our assumptions are symmetric
with respect to R and S. We establish the three conjuncts required for p ≺ qq:

(i & ii) Since Rpq, p ≺ ff(R). By symmetry, p ≺ ff(S).
(iii) We show that R|p � S|p. So assume R|prs. Then Rrs, Rsp and s �= p. By

transitivity and antisymmetry of R, Rsq and s �= q. Thus R|qrs and R|qsp, and so
S|qrs and S|qsp. Therefore Srs and Srq. Since r �= q, it follows that S|prs. Thus
R|p � S|p, and by symmetry, S|p � R|p as well. So R|p ≡ S|p, as required.

Thus p ≺ qq, which establishes (↓).
Next, we show the following claim:

(∗) ff(R) � qq or ff(S) � qq.

Assume for contradiction that (∗) fails to hold. Then ff(R) �� qq, whence πp.p ≺
ff(R) ∧ p ⊀ qq is non-empty. So as R is well-founded, there is an R-minimal p ≺
ff(R) not among qq. Symmetrically, there is an S-minimal q ≺ ff(R) not among qq.

We show that ff(R|p) ≡ qq: Consider first any r ≺ ff(R|p). Then Rrp and r �= p,
so by the minimality of p, it follows that r ≺ qq. Conversely, consider any r ≺ qq.
Since p ⊀ qq, r �= p. And by (↓), Rpr fails to hold. But as both p and r are among
ff(R), Rrp follows with the totality of R. Thus r ≺ ff(R|p).

By symmetry, ff(S|q) ≡ qq as well, and so
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ff(R|p) ≡ ff(S|q).

Using EXT, we conclude:

χ(ff(R|p)) = χ(ff(S|q)).

Since p ≺ ff(R), q ≺ ff(S), and R and S are chains, we have:

p = χ(ff(R|p)) = χ(ff(S|q)) = q.

We show that R|p ≡ S|q follows as a consequence. Without loss of generality,
assume for contradiction that there are r, s such that R|prs and not S|qrs. Then Rrs,
Rsp and s �= p. So r, s ≺ ff(Rp) ≡ ff(Sq). Thus Srq and Ssq. Since not S|qrs

was assumed it follows that not Srs. By the totality of S, this means that Ssr . So
with transitivity and antisymmetry of S, we obtain Ssq and thus s = q. But this
contradicts that p = q and s �= p. Thus, R|p ≡ S|q .

Therefore p (which is q) is such that p ≺ ff(R), p ≺ ff(S), and R|p ≡ S|p; there-
fore p ≺ qq. But this contradicts the choice of p as not among qq. This establishes
(∗), i.e., that ff(R) � qq or ff(S) � qq.

Assuming ff(R) � qq, we show that R � S. To show R � S, assume Rpq. Then
q ≺ qq, so q ≺ ff(S). Therefore, if p = q, then Spq. This leaves only the case of
p �= q to be considered. In this case, R|qpp. And since q ≺ qq, R|q ≡ S|q ; thus
S|qpp. So Spq, as required. Thus, R � S. So, to show R � S, assume Spq and
q ≺ ff(R). Then q ≺ qq, so by (↓), p ≺ qq, whence p ≺ ff(R), as required. Thus if
ff(R) � qq, then R � S.

By symmetry, if ff(S) � qq, then S � R. Since we have established (∗), i.e., that
ff(R) � qq or ff(S) � qq, it follows as claimed that R � S or S � R.

With this, we can show that M is itself a chain.

Lemma A.14 �′ CM.

Proof We first verify WM, i.e., that M is a well-order, by checking the four defining
conditions.

Reflexivity: Immediate by reflexivity of chains.
Transitivity: If Mpq and Mqr , then Rpq and Sqr for chains R and S. By

Lemma B.1, R � S or S � R. Thus, by the transitivity of chains, Rpr or Spr ,
whence Mpr .

Antisymmetry: Analogous to the case of transitivity, if Mpq and Mqp, then by
Lemma B.1, there is a chain Q such that Qpq and Qqp, whence with the
antisymmetry of chains, p = q.

Well-foundedness: Consider any pp � ff(M) such that there is some p ≺ pp. By
definition of M, p ≺ ff(R) for some chain R. Let qq be such that

qq = πq.q ≺ pp ∧ q ≺ ff(R)

p ≺ qq, so qq is non-empty. Therefore, by the well-foundedness of R, there is
an R-minimal q ≺ qq. We show that q is M-minimal among pp. So consider any
r ≺ pp. If r ≺ ff(R), then Rqr by the R-minimality of q, so Mqr . Otherwise, i.e.,
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if r ⊀ ff(R), there is a chain S such that r ≺ ff(S). Then S �� R, so by Lemma B.1,
R � S. Assume for contradiction that Mqr is not the case. Then Sqr also fails
to be the case, whence by the totality of S, Srq. But q ≺ ff(R), so with R � S,
r ≺ ff(R), contradicting the assumption otherwise. Thus Mqr , establishing that
the M-minimality of q. Therefore M is well-founded.

Finally, we show that if p ≺ ff(M), then p = χ(ff(M|p)). If p ≺ ff(M), then p ≺ ff(R)

for some chain R. Then p = χ(ff(R|p)). We establish the following:

M|p ≡ R|p
R|p � M|p is immediate from the fact that R is a chain. So assume M|pqr . Then
Mqr , Mrp and r �= p. By Lemma B.1, R � M, since if M � R then M ≡ R.
Thus q, r ≺ ff(R). We know that Mpr cannot hold, whence Rpr cannot hold either.
By totality of R, Rrp follows. It remains to establish Rqr: If q = r , this follows
by reflexivity, so assume otherwise. Then Mrq fails, whence Rrq fails as well; by
totality, Rqr follows. Thus R|pqr follows. This establishes M|p ≡ R|p.

If follows that ff(M|p) ≡ ff(R|p), and so with EXT that p = χ(ff(R|p)) =
χ(ff(M|p)) as required.

We can now show that ∞ is among the field of M.

Lemma A.15 �′ ∞ ≺ ff(M)

Proof Assume for contradiction that ∞ ⊀ ff(M). Define:

M+ := λpq.Mpq ∨ (p ≺ ff(M) ∧ q = ∞) ∨ (p = ∞ ∧ q = ∞)

We show that M+ is a chain. First, we establish that it is a well-order:

Reflexivity: Immediate by construction.
Transitivity: Assume M+pq and M+qr . If r = ∞, then M+pr , so assume other-

wise, i.e., r �= ∞. Then Mqr , and as ∞ ⊀ ff(M), q �= ∞ as well. Then Mpq, so
Mpr by transitivity of M.

Antisymmetry: Assume M+pq and M+qp. Since ∞ ⊀ ff(M), p = ∞ iff q =
∞. So assume neither p nor q is ∞. Then Mpq and Mqp, whence p = q by
antisymmetry of M.

Well-foundedness: Consider any non-empty pp � ff(M+). If there is no p ≺ pp

such that p ≺ ff(M), then p ≺ pp iff p = ∞. Then trivially, ∞ is M+-minimal
among pp. So assume otherwise, i.e., that there is some p ≺ pp such that p ≺
ff(M). Let qq such that:

qq = πq.q ≺ pp ∧ q ≺ ff(M)

Since p ≺ qq, qq is non-empty, so it follows from the well-foundedness of M
that there is a q ≺ qq which is M-minimal among qq. We show that q is M+-
minimal among pp. So consider any r ≺ pp. If r ≺ M, then r ≺ qq, so Mqr by
M-minimality of q, whence M+qr . Otherwise, r = ∞, in which case, M+qr as
well. Thus q is M+-minimal among pp as required.
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Finally, we show that for all p ≺ ff(M+), p = χ(ff(M+|p)). We distinguish two cases:
Case 1: p ≺ ff(M). Then as M is a chain, p = χ(ff(M|p)). We show that ff(M|p) ≡

ff(M+|p). M � M+, so ff(M|p) � ff(M+|p). Conversely, consider any q ≺ ff(M+|p).
Then M+qp and q �= p, and as p ≺ ff(M) and ∞ ⊀ ffM), Mqp. So q ≺ ff(M|p).
Therefore, as claimed, ff(M|p) ≡ ff(M+|p). By EXT, p = χ(ff(M|p)) = χ(ff(M+|p)),
as required.

Case 2: p ⊀ ff(M); then p = ∞. For any p, p ≺ ff(M) iff M+p∞ and p �=
∞, which is the case iff p ≺ ff(M+|∞). Thus ff(M) ≡ ff(M+|∞). By EXT, ∞ =
χ(ff(M)) = χ(ff(M+|∞)), as required.

By construction, M+∞∞. We have just shown M+ to be a chain, so it witnesses
M∞∞. Thus ∞ ≺ ff(M), contradicting our assumption to the contrary.
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