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ABSTRACT

Recent events across many regions around the world have shown that short-term droughts (i.e., daily or

weekly) with sudden occurrence can lead to huge losses to a wide array of environmental and societal sectors.

However, the most commonly used drought indices can only identify drought at the monthly scale. Here, we

introduced a daily scale drought index, that is, the standardized antecedent precipitation evapotranspiration

index (SAPEI) that utilizes precipitation and potential evapotranspiration and also considers the effect of

early water balance on dry/wet conditions on the current day. The robustness of SAPEI is first assessed

through comparison with two typical monthly indices [Palmer drought severity index (PDSI) and standard-

ized precipitation evapotranspiration index (SPEI)] and soil moisture, and then applied to tracking short-term

droughts during 1961–2015 for the Pearl River basin in south China. It is demonstrated that SAPEI performs

as well as SPEI/self-calibrating PDSI at the monthly scale but outperforms SPEI at the weekly scale.

Moreover, SAPEI is capable of revealing daily drought conditions, fairly consistent with soil moisture

changes. Results also show that many of the historical short-term droughts over the Pearl River basin have

multiple peaks in terms of severity, affected area, and intensity. The daily scale SAPEI provides an effective

way of exploring drought initiation, development, and decay, which could be conducive for decision-makers

and stakeholders to make early and timely warnings.

1. Introduction

Drought is thought of as one of the most complex

environmental disasters, with devastating impact on ag-

riculture, economy, water resources, and ecosystems

(Maneta et al. 2009; Rhee et al. 2010; Doughty et al. 2015;

Yu et al. 2019). At the backdrop of global warming,

droughts are becoming more frequent with increasing

severe consequences (Cook et al. 2014; Dai 2013). As

such, much effort has been made to reveal drought

characteristics and in turn help disaster mitigation.

For characterizing droughts, many indices are pro-

posed, for examples, the standardized precipitation in-

dex (SPI) (McKee et al. 1993), the Palmer drought

severity index (PDSI) (Palmer 1965), and the stan-

dardized precipitation evapotranspiration index (SPEI)

(Vicente-Serrano et al. 2010a). These indices are proved

robust for drought characterization, among which SPI

has wide range of application due to its simple calcula-

tion and the accessible input data, that is, precipitation

Supplemental information related to this paper is available at

the Journals Online website: https://doi.org/10.1175/JHM-D-19-

0298.s1.

Corresponding author: Xushu Wu, xshwu@scut.edu.cn

MAY 2020 L I E T AL . 891

DOI: 10.1175/JHM-D-19-0298.1

� 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Brought to you by UNIVERSITETET I OSLO | Unauthenticated | Downloaded 05/10/21 07:54 AM UTC

https://doi.org/10.1175/JHM-D-19-0298.s1
https://doi.org/10.1175/JHM-D-19-0298.s1
mailto:xshwu@scut.edu.cn
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


(Mishra and Singh 2010; Portela et al. 2015). However, its

utilization across semiarid and arid regions is often limited

because it only considers precipitation regardless of other

climatic factors, for example, temperature and evapo-

transpiration affecting drought occurrence and develop-

ment. To overcome the drawback of SPI, Vicente-Serrano

et al. (2010a) proposed SPEI. Compared to SPI, this index

is more flexible and reliable for drought analysis and

monitoring in the context of global warming, since it si-

multaneously considers the effects of both precipitation

and temperature (Vicente-Serrano et al. 2010a,b; Chen and

Sun 2015). The PDSI is a landmark in the development of

drought indices, which involves a range of factors such as

precipitation, temperature, evapotranspiration, and soil

moisture (Heim 2002). However, the index suffers from

several deficiencies, for example, fixed temporal scale, poor

performance on the frozen and snow surface, and limitation

in spatial comparability (Andreadis et al. 2005; Vicente-

Serrano et al. 2010a). Soon after, the self-calibrating PDSI

(scPDSI) was developed to overcome many of these

problems (Wells et al. 2004). It is spatially comparable and

reports extremewet anddry events at frequencies expected

for rare conditions. Yet the temporal time scale of scPDSI

is still relatively fixed ranging from 9 to 12 months, and the

values are influenced by the conditions up to 4 years in the

past (Guttman 1998). Except for these, drought indices

based on remote sensing data, such as the normalized dif-

ference vegetation index, anomaly vegetation index, and

vegetation condition index, are developed (Rhee and Im

2017; Jiao et al. 2019), which provide new tools for drought

monitoring and analyses. Although the above drought in-

dices have their own applications, they are inevitably sub-

jected to some main shortcomings including the fixed

temporal scale that have limited their widening use.

Traditionally, drought is usually thought of as a long-

lasting and slow-acting climate phenomenon caused by a

lack of precipitation and change of other factors over a

period of months or years (Mishra and Singh 2010).

However, drought is driven by multiple factors, for ex-

ample, precipitation deficit, high temperature, low hu-

midity, strong winds, and sunny skies (Otkin et al. 2013,

2014; Wu et al. 2017a). Such hydrometeorological

anomalies can appear within a short period that do not

formulate long-lasting droughts, but rather, short-term

droughts lasting a few weeks or even days (Mo and

Lettenmaier 2015, 2016; Ford et al. 2015; Otkin et al.

2015, 2016, 2018). Severe drought can suddenly occur

in a region within a short period when extreme weather

anomalies persist over the same region (Otkin et al.

2013). Under climate change, short-term droughts are

expected to increase causing substantial damage to

economic society and the environment (Quiring and

Papakryiakou 2003). For example, a significant precipitation

deficit alongwith extremehigh temperature and long-lasting

sunshine has caused severe droughts during May and early

June in 2012 across the central United States (Mo and

Lettenmaier 2015). It resulted in widespread agricultural

crop failure and drastically cut down livestock population

with an economic loss up to tens of billions of dollars (Mo

and Lettenmaier 2015, 2016). To make early and timely

warning for such short-term droughts, decision-makers and

stakeholders need detailed drought information such as the

start time and the tendency in the coming days rather than

thedrought average state for a longer period (Luet al. 2014).

Correspondingly, it is more appropriate to employ daily or

weekly scale drought indices in short-term drought moni-

toring (Hao et al. 2017). Nevertheless, none of the afore-

mentioned indices readily allows for identifying short-term

droughts because of their relatively large temporal scales

(monthly or longer); what they can tell is the overall drought

situation of the period (Panu and Sharma 2002; Mishra and

Singh 2010; Zhang et al. 2017). More importantly, when

applied to submonthly drought characterization, the

existing indices probably neglect the precipitation in

the days before the period that cannot reflect real

drought situation (Hoerling et al. 2014; Kam et al. 2014;

PaiMazumder and Done 2016). Recently, Lu (2009)

proposed the weighted average of precipitation (WAP), a

daily scale index for day-to-daymonitoring of droughtwith

the aim to determine the timing and strength of short-term

drought. However, the formulation of WAP only requires

the precipitation variable, leaving out other important

drought-related factors (e.g., evapotranspiration) that

might have limitations in drought measures for wet re-

gions (Lu et al. 2014).

There is an urgent need to propose new drought indices

capable of monitoring submonthly droughts, as the most

commonly used indices at present have employedmonthly

or longer time scales failing to monitor the events effec-

tively. In this work, we formulated a new daily-scale index

for tracking short-term droughts, that is, the standardized

antecedent precipitation evapotranspiration index (SAPEI),

by simultaneously considering two major drought-related

variables, that is, precipitation and potential evapotranspi-

ration (PET). SAPEI also considers the effect of early water

balance on dry/wet conditions on the current day. We hope

to enrich indices for timely and effective short-term drought

measures geared toward providing detailed information

such as the initiation, development, decay, and tendency of

droughts for decision-makers and stakeholders to make

early and timely warnings.

2. Sourced data and processing

Daily meteorological data covering 1961–2017 are

collected from 839 observational stations across China
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(Fig. 1), which include precipitation, maximum air tem-

perature, mean air temperature, minimum air tempera-

ture, relative humidity, 2-m wind speed, and sunshine

duration. All of these meteorological data with strict

quality controls are from the China Meteorological

Administration (http://cdc.nmic.cn/home.do) and the

Resources and Environmental Science Data Center,

Chinese Academy of Sciences (http://www.resdc.cn/

Default.aspx). To calculate SAPEI at the grid scale,

we used the kriging method to interpolate observa-

tional station data into 0.58 3 0.58 gridded data. To

evaluate the performance of SAPEI, we used two other

commonly used drought indices, SPEI and scPDSI, and

the monitoring abilities of the three indices are com-

pared. Two typical drought events that respectively

occurred in 2009/10 and 2011 were used in the com-

parison. The reports of the events can be found on the

websites http://61.178.78.36:5008/category/ghxxdt and

http://61.178.78.36:5008/category/ghxxdt, where drought

evolutions and impacts are presented that are useful for

the verification of SAPEI. SPEI is computed from the

same meteorological data described above, while the

scPDSI series is obtained from the Climatic Research

Unit of University of East Anglia (Osborn et al. 2017),

given that the calculation of scPDSI is much more

complicated and time consuming than SPEI. In addi-

tion, the 0.258 daily root zone (0–100 cm) soil moisture

dataset obtained from the Community Land Model

(CLM) of the Global Land Data Assimilation System

(GLDAS) was also used to evaluate the rationality of

SAPEI. The dataset from 1961 to 2014 was downloaded

from the Goddard Earth Sciences Data and Information

Services Center (Rodell et al. 2004; Li et al. 2018). To

match the spatial scale, the GLDAS soil moisture dataset

was resampled to 0.58 by using bilinear interpolation. The
GLDAS CLM soil moisture dataset is found capable of

capturing the dry andwet conditions inChina (Zhang et al.

2008; Chen et al. 2013; Bi et al. 2016; Feng et al. 2016).

We also applied SAPEI for short-term drought

tracking over the Pearl River basin (Fig. 1). This basin is

the second largest drainage basin in China controlled

by a humid climate, where short-term droughts aremore

likely to occur than the long-term ones (Wu et al. 2018;

Gao et al. 2019). To verify the drought events identified

by SAPEI, we sought to extract drought events through

soil moisture given that droughts are usually accompa-

nied by low soil water content, and compared the events

distinguished by SAPEI and the soil moisture data.

However, regional in situ soil moisture data are not

available for such a large basin from 1961 to 2017; as

an alternative, the soil moisture data were calculated

from a well-known hydrological model, that is, the

Variable Infiltration Capacity (VIC) model that in-

cludes three soil layers (Lohmann et al. 1998; Miguez-

Macho et al. 2008; Niu et al. 2015; Yan et al. 2015). Since

the development of the VICmodel (Liang et al. 1994), it

has been widely used to simulate soil moisture and

streamflow, and these studies have demonstrated that

the outputs of soil moisture from VIC are reliable and

reasonable (Liang et al. 1996; Nijssen et al. 2001; Hamlet

et al. 2007; Ford and Quiring 2013; Xia et al. 2014).

Moreover, the VIC model has been successfully applied

in the Pearl River basin for soil moisture and stream-

flow simulations (Niu et al. 2015; Niu and Chen 2016).

FIG. 1. Distribution of the 839 meteorological stations across mainland China used in the study.
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Compared with observed data, the soil moisture data

from the VIC model are somewhat imperfect, but the

soil moisture calculated from the model is capable of

capturing the variation of dry and wet conditions over

the basin (Niu et al. 2015; Niu and Chen 2016; Wang

et al. 2018). Therefore, a comparison between SAPEI

and VIC-based soil moisture is acceptable, and we used

VIC-based together with GLDAS soil moisture to in-

directly verify drought events distinguished by SAPEI,

and the VIC-based PET was used to calculate the

SAPEI in the Pearl River basin.

The VIC model is verified through comparison be-

tween the simulated stream flows and the observations.

Following the previous literatures (Zhou et al. 2016;

Mizukami et al. 2019), the metrics of Nash–Sutcliffe effi-

ciency (NSE), relative error (bias), and determination co-

efficient (R2) for evaluation of the accuracy of the model

were used. A significant coincidence rate with p , 0.05 is

detected in both the calibration and validation periods,

demonstrating that the VIC model is adaptable and ra-

tional.More details on the calibration and validation of the

VIC model can be found in the study of Li et al. (2020a).

3. Methodology

a. Rationale of SAPEI

SAPEI requires precipitation and PET as the inputs; it

is simple to calculate and uses the daily accumulative

differences between precipitation and PET representing

a simplified climatic water balance (Thornthwaite 1948).

The calculation procedure is described below.

The first step is to estimate PET. Accurate calculation

of PET is rather difficult due to the requirement of nu-

merous climate variables including surface temperature,

air humidity, radiation and so on (Allen et al. 1998;

Vicente-Serrano et al. 2010a). There are several prevail-

ing methods to estimate PET, for example, the Penman–

Monteith method (Allen et al. 1998) and Thornthwaite

equation (Thornthwaite 1948). The Thornthwaite equa-

tion only involves the mean daily temperature and lati-

tude without consideration of changes in solar and

infrared radiation, humidity, or wind speed (Trenberth

et al. 2014). Additionally, it cannot reveal spatio-

temporal evolution of evapotranspiration well

(Chen et al. 2005). Compared to the Thornthwaite

equation, the Penman–Monteith method is more

physically based which considers energy availability,

humidity, and wind speed. Therefore, we used the

Penman–Monteith method to estimate PET. Details of

the Penman–Monteith method can be found in Allen

et al. (1998).

Afterward, the daily difference between precipitation

and PET is calculated to reveal water surplus or deficit

(precipitation minus PET). To reflect dry and wet con-

ditions of the day, the antecedent water surplus or deficit

D is calculated through the following equations:

FIG. 2. Percentages of daily time series of D that cannot be fitted by the six probability distributions using the

Kolmogorov–Smirnov test.
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D5 �
N

n50

an(p2PET)
n
, (1)

aN 5 c , (2)

where N is the number of previous days, a is the decay

constant, and c is the contribution fraction of the last day

precipitation. In the current study, a5 0.98 and c5 13%

resulting in N 5 100 (see section 4a).

A probability distribution is used to fit the D series.

Several probability distributions, including the general

extreme value, log-logistic, lognormal, Pearson III,

generalized Pareto, and normal distributions, have

been broadly used to standardize hydrometeorological

variables (Stagge et al. 2015; Wu et al. 2016). These

distributions are considered reliable tools to calculate

comparable drought indices (Vicente-Serrano et al. 2018).

Given that different probability distributions may cause

distinct differences in drought indices (Stagge et al. 2015),

to select the most suitable distribution, we calculated six

different SAPEI datasets, each of which is based on one

of the above probability distributions. The probabsility

weighted moments are used for parameterizations of the

distributions. The cumulative probability ofD is obtained

when daily D series is fitted to a probability distribution.

The classical approximation of Abramowitz and Stegun

(1965) is finally used to obtain SAPEI, similar to the

calculation procedure of SPEI. In some cases, it is im-

possible to get SAPEI according to some of the six dis-

tributions because the parameters are not necessarily

suitable. To assess the performance and robustness of the

six probability distributions, the Kolmogorov–Smirnov

test is applied to calculating the percentages of daily D

series that cannot be fitted by these distributions (0.05

significance level), and the distributions with high rejec-

tion percentages are not considered. For the remaining

distributions, the Shapiro–Wilk test is employed to test if

each SAPEI dataset is normally distributed. The benefit

of the Shapiro–Wilk test is that it is independent of the

candidate distribution and has well-reviewed and sensi-

tive critical values (Stagge et al. 2015; Vicente-Serrano

et al. 2018). A rejection rate with p , 0.05 is applied to

distinguishing the normally distributed SAPEI (Vicente-

Serrano et al. 2018).

FIG. 3. Percentages of normally distributed daily SAPEI series calculated using the four probability distributions.

FIG. 4. Relationships between SAPEIs obtained from (a) the general extreme value (GEV) and the log-logistic (LOL), (b) the Pearson III

(PE3) and LOL, and (c) lognormal (LON) and LOL computed from the 522 stations across China.
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We used theD series calculated from 522 observational

stations across China (Fig. 1), given that the temporal

coverage of all climate variables recorded exceeds 99.7%,

and these stations are almost evenly distributed in different

China’s climatic zones. The missing data are interpolated

using the arithmetic average of the neighboring days.

Figure 2 shows the percentages of the daily series that

cannot be fitted by the six probability distributions. It is

indicated that the generalized Pareto and normal distri-

butions do not fit SAPEI well and hence are not consid-

ered. Among the remaining four distributions, the general

extreme value and lognormal distributions show better

performances. Figure 3 further illustrates the percentages

of the normally distributed daily SAPEI for the four re-

maining distributions. The general extreme value, log-

logistic, and lognormal distributions have better perfor-

mances compared with the Pearson III distribution in

terms of the rejection percentage, and the log-logistic dis-

tribution has lowest percentage indicating the best per-

formance. The Pearson III distribution has relatively high

rejection percentage during January–March. Note that the

main limitation of the Shapiro–Wilk test is that the most

relevant values for a drought index are in the tail of a

distribution (Vicente-Serrano andBeguería 2016; Vicente-

Serrano et al. 2018). To select the best distribution, the

SAPEIs obtained by the four remaining distributions from

the 522 stations are compared in Fig. 4. The SAPEI cal-

culated from the general extreme value, Pearson III, and

lognormal distributions havemore high values in both tails

than those obtained from the log-logistic distribution, and

this is particularly true for the lognormal distribution,

suggesting that the log-logistic distribution is more

suitable for SAPEI.Moreover, previous researches have

demonstrated that the log-logistic distribution is suitable

for standardizing drought indices, for example, SPEI

(Vicente-Serrano et al. 2010a,b, 2018). Therefore, we

chose the log-logistic distribution to compute SAPEI.

Accordingly, Table 1 categorizes five grades of SAPEI

representing from normal to extreme droughts.

b. Short-term drought identification and
characteristics

In previous studies on monthly drought indices,

methods that are used to identify drought events include

the threshold level method, run theory, and empiri-

cal orthogonal functions (Xu et al. 2015). However,

the common drawback of these methods is the destruc-

tion or discard of much spatiotemporal drought informa-

tion because they descend drought event dimensions.

Consequently, these methods fail to capture real drought

structures in space–time dimensions (Xu et al. 2015; Lloyd-

Hughes 2012). To effectively identify drought events, the

three-dimensional clustering algorithm has been pro-

posed to fulfill the complete spatiotemporal represen-

tation of drought (Lloyd-Hughes 2012). Here we used

this method to identify short-term droughts based on

SAPEI, and the details are stated below.

Step 1: Drought patch identification is conducted in

each time step (daily scale) during the growing

season (April–September), as rapid development

of climate anomalies outside the growing season

has less impact on society and the environment

(Christian et al. 2019). The first gridwith SAPEI,21

is defined as the starting point and the adjacent grids

under drought conditions are also picked out and

merged into the current drought patch. The adjacent

grid searching process is repeated until no adjacent

grids are under drought conditions. The first drought

patch in the current time step is achieved and the small

and discontinuous patches are omitted.

Step 2: A threshold of drought affected area is deter-

mined to filter out drought patches with relatively

small affected areas, considering that the durations

of such drought patches could be long due to tenuous

spatial connectivity (Sheffield et al. 2009). It is sug-

gested that the appropriate threshold comes out to

be 1.6% of the region of interest (Xu et al. 2015).

Hence, we followed the suggestion and picked out

each drought patch whose affected area accounts for

no less than 1.6% of the study region.

Step 3: The overlap area between twodrought patches is

calculated for two consecutive days. To eliminate

ambiguous drought events, a threshold of overlapping

area of 1.6% of the study region is specified (Herrera-

Estrada et al. 2017), and the two drought patches

belong to a same event if their overlapping area is

larger than this threshold, otherwise are considered as

two independent events.

Step 4: Given that hydrometeorological factors anom-

alies generally persist for several weeks (Otkin et al.

2016, 2018), the drought events lasting for 2–4weeks

only are selected, and drought events are charac-

terized by the following variables.

1) Drought event duration (DED), referred to as the

time interval between the start and ending times of

the drought event.

TABLE 1. Drought categories of SAPEI.

SAPEI Drought category Probability (%)

.20.50 Normal 69

(21.00, 20.50] Mild drought 15

(21.50, 21.00] Moderate drought 10

(22.00, 21.50] Severe drought 5

#22.00 Extreme drought 1
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2) Drought event severity (DES), formulated as

DES
n
5�

i
�
j
�
k

s(i, j, k), (3)

s(i, j,k)5 SAPEI(i, j, k)3 area(i, j, k)3 1 day,

(4)

where DESn is the severity of the nth drought event

(km2 day), i and j indicate the grid location, and k

is the drought event duration (i.e., DED). Also,

s(i, j, k) is the daily drought severity of a grid during

the nth drought event; area(i, j, k) is the area of the

grid cell (i, j).

3) Drought event intensity (DEI), defined as drought

severity divided by drought duration and area.

4) Drought event area (DEA), defined as the total area

affected by a drought event which is the projected

area on the surface of latitude–longitude.

In addition, we calculated the daily severity (DS),

intensity (DI), and area (DA) during a drought

event to further capture drought characteristics.

DI is defined as the average SAPEI of all grids

at each time step during a drought event, while

DA is the total area of these grids; DS is defined

as the cumulated SAPEI value and drought af-

fected area.

FIG. 5. Boxplots of the correlations between

multiscale SPEI/scPDSI/soil moisture and SAPEI

with the parameter a varying from 0.80 to 0.98.
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4. Results and discussion

a. Evaluation of SAPEI

The parameter a indicates the difference between

precipitation and PET for both the current and previous

days contributing to dry and wet conditions of the cur-

rent day, whose value generally ranges from 0.80 to 0.98

(Heggen 2001). Therefore, SAPEI is calculated with

a varying from 0.8 to 0.98 in the current study. More

specifically, the monthly means of SAPEI are obtained

FIG. 6. Spatial patterns of correlations betweenmonthlymean SAPEI and (a) 1-month SPEI,

(b) 3-month SPEI, (c) 6-month SPEI, (d) 9-month SPEI, (e) 12-month SPEI, (f) scPDSI, and

(g) between daily SAPEI and soil moisture anomalies. The monthly mean SAPEI is computed

by averaging the daily values in each month.
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based on the range of a, and are compared with two

well-known drought indices, that is, SPEI and scPDSI.

Figure 5 shows the correlation coefficients between

SPEI/scPDSI/soil moisture and SAPEI for all grids from

1961 to 2017. Obviously, when a gets larger, the corre-

lations increase gradually, indicating SAPEI with larger

a is closer to 3–12-month SPEI, scPDSI, and soil mois-

ture. When a 5 0.98, the correlation coefficients be-

tween SPEI at the 3- and 6-month scales and SAPEI are

larger than 0.6 (p , 0.01) for all grids, and the correla-

tion coefficient between scPDSI/soil moisture and

SAPEI in amajority of grids is larger than 0.4 (p, 0.01).

More importantly, SAPEI tends to show smaller fluc-

tuations with the increase of a. Generally, a is deter-

mined empirically, given that it is difficult to select the

most suitable value according to daily dryness (Lu 2009;

Lu et al. 2014). In light of these we chose a 5 0.98 in

the study.

When a new index is proposed, rigorous testing is

required with respect to its rationality and applicability

before it is applied in drought monitoring (Stagge et al.

2015). Figure 6 shows the spatial distributions of the

correlations between monthly means of SAPEI and

SPEI/scPDSI during 1961–2017 across China. The 3-, 6-,

9-, and 12-month SPEIs all show strong agreements with

SAPEI, and the agreement between 3-and 6-month

SPEI and SAPEI is the strongest for China as a whole.

In the entire China, SAPEI and SPEI at the time scales

of 3 and 6 months generally correlate closely, with cor-

relation coefficients higher than 0.6 (p, 0.01) and most

of places even higher than 0.8 for 6-month SPEI. By

comparison, the correlation between 1- and 9-month

SPEI and SAPEI is relatively low in west China. SAPEI

and scPDSI are also correlated with correlation coeffi-

cients higher than 0.4 (p, 0.01) for a majority of China,

although the correlation in some part of west China is

relatively lower. For SAPEI and soil moisture, a good

correlation (p, 0.01) between SAPEI and soil moisture

is detected in most of China, while the relatively weak

correlation is found in most parts of west China.

Further, two typical historical severe droughts that

occurred in China are taken as case studies to evaluate

the performance of SAPEI. One is a well-known large-

scale drought event striking almost the entire country

with serious consequences in the year 2011 (Li et al.

2020b) and the other is a regional drought event but with

FIG. 7. Monthly evolutions of the 2011 drought event across China using SAPEI, SPEI, scPDSI, and soil moisture anomalies. Themonthly

SAPEI and soil moisture anomalies were computed by averaging the daily values in each month.
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huge adverse impacts on society and the environment

spanning the second half of 2009 and the first half of 2010

(Wang et al. 2015). According to the Meteorological

Disaster Yearbook, the 2011 drought originated from

north China at the beginning of the year, while in the

spring and summer it spread toward south China where

severe lack of rainfall occurred that year making the

drought reaches the 50-yr return level. Afterward, the

drought propagated into southwest China in the au-

tumn. It forced 4.2 million people and 3.2 million live-

stock to face drinking water shortages and caused

3.7 million hectares of crop failure. Moreover, the pro-

longed drought led to more than 1300 dried-up lakes in

the Yangtze River basin. In comparison, the 2009/10

drought initiated in the fall of 2009 and lasted until the

June of 2010, resulting in more than 16 million people

and 11 million livestock suffering from severe water

shortages and a direct economic loss of approximately

2.7 billion dollars (Long et al. 2014; Wang et al. 2015).

As illustrated above, among the multiscale SPEIs, the

3-month SPEI shows strongest relationship with SAPEI.

Concurrently, SPEI at the 3-month scale is much more

commonly used than at other time scales in the research

community (Vicente-Serrano et al. 2010a,b; Chen and

Sun 2015). Therefore, the performances of SAPEI

are compared with those of 3-month SPEI hereafter.

Figure 7 displays the monthly changes in the 2011

drought monitored by the SAPEI, 3-month SPEI, soil

FIG. 8. Monthly evolutions of the 2009/10 drought event across southwest China monitored by SAPEI, scPDSI, 3-month SPEI, and soil

moisture anomalies. The monthly SAPEI and soil moisture anomalies were computed by averaging the daily values in each month.

FIG. 9. Monthly SAPEI, SPEI, scPDSI, and soil moisture series during the 2009/10 drought

event over southwest China. These series are spatially averaged merged series. The monthly

SAPEI and soil moisture anomalies were computed through averaging the daily values in

each month.
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moisture, and scPDSI. The drought pattern monitored

by SAPEI generally shows a favorable similarity with

those by 3-month SPEI, scPDSI, and soil moisture,

suggesting that SAPEI is capable of capturing drought

evolution. More specifically, the drought began in north

China in January, while in March it propagated south-

ward to the mid and lower reaches of the Yangtze River

with increasing intensity. In April, however, it became

much more serious, and extended from the Yangtze

River basin to the entire South China. In August, the

drought moved westward and reached the edge of

southwestern China. Severe drought persisted in the

region during September and October, but it gradually

faded away in November and December. Overall, the

monthly changes in the major drought affected area

across China based on SAPEI are consistent with the

news reports. In addition, we found that the results

monitored by the new drought index are in accord with

the findings of Lu et al. (2014) and Liu et al. (2017). For

the 2009/10 drought event, as Fig. 8 shows, SAPEI also

shows favorable agreement with the 3-month SPEI,

scPDSI, and soil moisture; the drought affected areas

especially those controlled by extreme drought condi-

tions monitored by SAPEI, scPDSI, 3-month SPEI, and

soil moisture are similar, and the changes in drought

intensity are basically synchronized. More specifically,

the drought initiated in September 2009, and reached

the peak in December in terms of intensity and af-

fected area. It was somewhat alleviated in January and

February of 2010 but became enhanced again and

reached another peak in the next two months. In May,

the drought started to diminish and disappeared in the

early summer. With all of this in mind, it can be con-

cluded that SAPEI is reliable and robust for capturing

drought events.

Subsequently, we revealed how well SAPEI can mon-

itor daily scale droughts and selected the aforementioned

2009/10 drought event in southwest China as the case.

We first presented the monthly temporal variations of

SAPEI, SPEI, scPDSI, and soil moisture anomalies

(Fig. 9), and as expected these series show similar

changes. But when looking into the weekly changes, it is

FIG. 10. Weekly SAPEI, SPEI, and soil moisture anomalies during the 2009/10 drought event

over southwest China. These series are spatially averagedmerged series. The weekly SAPEI and

soil moisture anomalies were computed through averaging the daily values in each week.

FIG. 11. Daily SAPEI and soil moisture series during the 2009/10 drought event over the

southwest China. The two series are spatially averaged merged series.
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found that the weekly SPEI shows large fluctuations,

dividing this prolonged and severe drought into several

short-term droughts (Fig. 10). The weekly SPEI maps

indicate that drought did not even occur in southwest

China in some weeks during this period (Fig. S1 in the

online supplemental material), which is totally different

from the actual situation. In contrast, weekly SAPEI and

soil moisture are generally consistent and both of them

can well capture drought conditions. All these demon-

strate that SAPEI has the advantage over SPEI in terms

of weekly drought monitoring. Moreover, the temporal

changes in daily SAPEI and soil moisture, as illustrated

in Fig. 11, indicate that daily SAEPI during this period is

generally consistent with soil moisture, and both infer

that drought started in September 2009, and became

rather severe during February and March in 2010; after

that period, the drought gradually alleviated. Figure 12

maps the spatial development of the drought event at

the daily scale, which divides the entire drought period

into 10 stages reflecting the initiation, maintenance, and

FIG. 12. Daily evolutions of the 2009/10 drought event over the southwest China monitored by SAPEI.
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relief of the event. In the first stage, that is, during

1 September and 7 October 2009, the drought started to

appear in the region. Drought then spread throughout

the southern part of southwest China and dry conditions

became worse in the following stage (from 8 October to

3 November). In the third stage during 4–13 November,

drought extended to almost the whole region, and se-

vere drought conditions lasted from 14 November to

17 December with relatively high intensity. Afterward,

drought was alleviated in the northern part of the region

from 18 to 28 December. However, it intensified again

from 29 December to 5 January 2010, overwhelming

almost the whole region. In the following two stages

(during 6 January and 25 February), there was a ten-

dency toward alleviating drought conditions. Yet the

drought developed again and extreme drought condi-

tions were seen in the central part of the region from

26 February to 18 May. From 19 May onward, the

drought diminished over time in most parts of southwest

China by the end of June. These monitored daily scale

changes in the 2009/10 drought are fairly in accord with

the news reports.

The above demonstrates that SAPEI not only can

monitor monthly characteristics of droughts, but also

has the potential to track droughts at the daily and

weekly scales which SPEI can barely do (Fig. S1).

Though the raw data, including precipitation and po-

tential evapotranspiration, and standardized method of

SAPEI are similar with those of SPEI, the rationale of

the index is different from SPEI. The calculation of

SAPEI is based on a daily scale and it considers the

water surplus or deficit of the day and the earlier days

through the decay constant, whereas SPEI only con-

siders water surplus or deficit in the period regardless of

the conditions the days before. For a 7-day period, for

example, if there is no precipitation during the period, it

may be regarded as a drought period according to SPEI;

however, if there is a heavy precipitation right before the

period, the 7-day period probably remains wet and is

unlikely to experience droughts. Therefore, SPEI might

be inappropriate to monitor droughts with submonthly

scale. Such a drawback of SPEI indeed has been pointed

out in previous studies (Lu et al. 2014).

Also note that there are some existing extreme

weather indicators such as maximum consecutive 5-day

precipitation (RX5day) and maximum number of con-

secutive days with rainfall rate , 1mm (CDD) that are

useful and simple for monitoring short-term dry/wet

conditions (Zhong et al. 2019). However, these indicators

may not be robust to quantitatively determine drought

conditions because the evolution and severity of drought

does not solely rely on precipitation (Otkin et al. 2013,

2014; Ford and Labosier 2017). More importantly, these

extreme weather indicators do not allow for comparison

of drought severity through space and time due to their

fixed spatial scale (e.g., regional average). For example,

there are two regions with the same CDD for a specific

period, with one before that period experiencing heavy

rainfall and the other having relative light rainfall. Since

CDD does not consider precipitation before that period,

it is difficult to compare the drought severities over these

two regions. In this regard, SAPEI can fill the gap of the

extremeweather indicators and provides amore effective

way for assessing drought severity.

b. Application

Short-term droughts are generally driven by extreme

weather anomalies such as high temperatures, low hu-

midity, and strong winds within a short period that

cause a significant increase in atmospheric demand, and

these anomalies could work together leading to soil

moisture decline (Otkin et al. 2018). Previous studies

state that short-term droughts occur more frequently in

southern regions than in other parts of China (Wang

et al. 2016). South China is a humid region where

evapotranspiration is mainly controlled by energy supply

because soil moisture is usually sufficient. The evapora-

tion demand could increase significantly during a short

period when strong, transient meteorological changes

occur, which creates a favorable condition for short-term

droughts. Due to sufficient soil moisture, vegetation over

south China is usually rich and plants tend to suck much

water from soil when extreme weather anomalies occur,

causing evapotranspiration increase and soil moisture

decline and the resultant short-term droughts. Therefore,

FIG. 13. Correlations between the drought severities of SAPEI

and soil moisture simulated by VIC and obtained from GLDAS

CLM for the Pearl River basin.
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short-term droughts are likely to occur in humid re-

gions with dense vegetation (Wang et al. 2016; Otkin

et al. 2018).

Here, we chose the Pearl River basin located in humid

south China with rich vegetation as a case study (Wu

et al. 2017b). We characterized historical short-term

droughts within the basin using the new drought index.

More precisely, the short-term droughts across the basin

during the growing season (April–September) from

1961 to 2015 are identified based on SAPEI and the

three-dimensional clustering algorithm, after which the

drought duration, severity, intensity, and affected area

are monitored. Given that short-term drought generally

persists for several weeks (Otkin et al. 2016, 2018), only

the events lasting for 2–4 weeks are considered.

The historical short-term droughts in the basin are not

recorded or reported in detail, and direct verification

of the events is impossible. Instead, VIC-based and

GLDAS soil moisture are used for validation since soil

moisture is sensitive to drought conditions. The stan-

dardized anomalies of soil moisture during 1961–2015

are obtained at each grid for comparison. Using the

three-dimensional clustering algorithm and the SAPEI

time series, the short-term droughts are discerned and

the drought severities are computed accordingly. The

corresponding drought events are also extracted based

on the time series of the standardized anomalies of soil

moisture; each cluster of the standardized anomalies of

soil moisture has the same spatiotemporal dimension

with the drought event identified by SAPEI to ensure

they have the same duration and affected area. And the

corresponding drought severities based on the clusters

of the standardized anomalies of soil moisture are cal-

culated. Figure 13 compares the drought severities re-

vealed by SAPEI and soil moisture (VIC-based and

GLDAS). The severity of the standardized anomalies of

VIC-based soil moisture in the top soil layer and that of

SAPEI are significantly correlated with the coefficient

correlation square up to 0.80 (p , 0.01), while rela-

tively low correlations are detected for the standardized

anomalies of soil moisture in the second and third soil

layers, indicating that soil moisture in the top layer is

more sensitive to short-term drought events. In addition,

the severity of SAPEI is well correlated with GLDAS

soil moisture (p , 0.01).

A total of 21 drought events lasting for 2–4 weeks are

identified across the basin over the period of record.

Only the droughts having affected areas accounting for

at least 10% of the study region are considered and their

characteristics (DED, DEI, DES, and DEA) are shown

in Table 2. Note that each of the top five drought events

has affected more than 25% of the basin. The most se-

vere event persisted for 22 days from 6 to 27 August

1964, with affected area up to 25 3 104 km2 accounting

for approximately half of the basin. Events with the

same duration could have quite different affected areas

and severities, for example, the third and fifteenth

drought events. By extension, similar severity may not

be necessarily followed by similar duration or affected

area. Generally, events having longer durations have

TABLE 2. Short-term drought events during 1961–2015 in the Pearl River basin. DEA_P is referred to as the percentage between the

affected and total areas of the basin.

Rank Period DED (day) DEI DES (3105 km2 day) DEA (3104 km2) DEA_P (%)

1 6–27 Aug 1964 22 0.87 47.81 25.00 55.1

2 11–29 Sep 1980 19 0.93 26.28 14.88 32.8

3 1–17 Aug 2007 17 0.72 25.67 21.03 46.4

4 14 May–10 Jun 2008 28 0.83 25.13 10.86 23.9

5 3–19 Aug 1983 17 0.95 21.16 13.07 28.8

6 14–29 Aug 1982 16 0.7 20.29 18.22 40.2

7 21 Aug–15 Sep 2009 26 0.55 15.67 10.87 24.0

8 13 Jul–6 Aug 1982 25 1.05 13.02 4.95 10.9

9 9 Jun–23 Jun 1999 15 1.29 11.50 5.95 13.1

10 26 Aug–14 Sep 1969 20 0.44 10.82 12.27 27.0

11 29 May–16 Jun 1986 19 0.57 9.36 8.67 19.1

12 4–21 Apr 1967 18 0.61 9.13 8.38 18.5

13 24 May–12 Jun 2013 20 0.53 8.66 8.17 18.0

14 26 Aug–14 Sep 1978 20 0.53 8.49 8.01 17.7

15 23 Jul–8 Aug 1961 17 0.43 8.30 11.39 25.1

16 12 Jun–7 Jul 2000 26 0.63 7.94 4.88 10.8

17 16 Jun–1 Jul 2014 16 0.95 7.52 4.96 10.9

18 10–28 Aug 1979 19 0.77 7.27 4.99 11.0

19 18 Jul–3 Aug 1996 17 0.27 6.64 14.29 31.5

20 5–20 Jun 1993 16 0.59 5.84 6.15 13.6

21 15–29 Jun 1962 15 0.74 5.62 5.07 11.2
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higher severity and larger affected areas. An exception

is that the sixth drought event only lasted about 2 weeks

but affected more than 40% of the basin with relatively

high severity. Figure 14 illustrates the temporal changes

in drought characteristics for both the whole lifetime

(DES,DEA, andDEI) and each time step (DS,DA, and

DI). Obviously, although drought events did not last

long, some of them have multiple peaks for the severity,

affected area, and intensity. Such multipeak features are

adverse for drought warning and forecasting because

forecasters maymistake temporary decreases in drought

severity and affected areas as actual drought relief.

To explore how severe historical droughts evolved at

the daily scale, the spatiotemporal evolutions of the top

two drought events (Table 2) are picked out for detailed

analysis, as depicted in Fig. 15. The most severe drought

nearly affected the whole central region of the basin. An

obvious north to south track path was found for these

events. This drought appeared in the mid-northern part

of the basin on 6 August 1964. It gradually extended to

most of the central part when the drought condition in

the mid-northern part became more serious in the fol-

lowing several days, and the drought centers gradually

moved south. After then, it faded out and approxi-

mately disappeared in the central south of the basin on

27 August. The second severe drought event started in

the central part of the basin on 11 September 1980,

gradually moved north, and wandered in central region

for several days. Finally, the drought finally shrank in

the middle north part and ended on 29 September 1980.

The most severe region was found in the eastern central

region of the basin.

5. Conclusions

Drought is a multiscalar phenomenon that can last

from a few weeks to years. Correspondingly, a drought

index should be able to monitor drought at different

time scales in order to reflect different types of droughts.

The most commonly used indices employ the yearly or

monthly time scale; for short-term droughts, however,

there are few indices capable of capturing them. In this

study, we developed a new daily scale drought index

termed as SAPEI that consider both precipitation and

evapotranspiration. Our results reveal that the monthly

changes in droughts revealed by SAPEI, SPEI, scPDSI,

and soil moisture are fairly consistent. However, the

weekly changes monitored by SAPEI and SPEI are

FIG. 14. Evolutions of drought events across the Pearl River

basin during 1961–2015. The number on the x axis represents the

rank of the event as listed in Table 2.

FIG. 15. Spatial changing patterns of the most and second-most

severe short-term drought events in the Pearl River basin. (a) The

most severe drought event. (b) The second-most severe drought

event. The black line indicates the drought evolution track, the

black dots indicate the daily drought centers, and the red arrows

indicate the terminal point.
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quite different and the latter one fails to capture drought

evolution. At daily scale, the drought conditions based

on SAPEI is in accord with soil moisture change dem-

onstrating the capability of SAPEI for tracking short-

term droughts. For the short-term droughts over the

Pearl River basin during 1961–2015, many of them have

multiple peaks in terms of severity, affected area, and

intensity, and some are characterized by high intensity,

large affected area, and rapid evolution. The proposed

index is potentially an effective way for diagnosing the

drought initiation, development, and decay situation,

which could be conducive for decision-makers and

stakeholders to make early and timely warnings of

drought disasters.
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