
The Journal of Systems & Software 177 (2021) 110968

S
U

t
v
i
i
p
M
v
t
s
t

t
t
v
b
l
c

(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Identifying architectural technical debt, principal, and interest in
microservices: Amultiple-case study✩

aulo S. de Toledo ∗, Antonio Martini, Dag I.K. Sjøberg
niversity of Oslo, Oslo, Norway

a r t i c l e i n f o

Article history:
Received 24 August 2020
Received in revised form 8 March 2021
Accepted 30 March 2021
Available online 9 April 2021

Keywords:
Cost of software
Cross-company study
Software quality
Software maintainability
Qualitative analysis

a b s t r a c t

Background: Using a microservices architecture is a popular strategy for software organizations to
deliver value to their customers fast and continuously. However, scientific knowledge on how to
manage architectural debt in microservices is scarce.
Objectives: In the context of microservices applications, this paper aims to identify architectural
technical debts (ATDs), their costs, and their most common solutions.
Method: We conducted an exploratory multiple case study by conducting 25 interviews with practi-
tioners working with microservices in seven large companies.
Results: We found 16 ATD issues, their negative impact (interest), and common solutions to repay
each debt together with the related costs (principal). Two examples of critical ATD issues found were
the use of shared databases that, if not properly planned, leads to potential breaks on services every
time the database schema changes and bad API designs, which leads to coupling among teams. We
identified ATDs occurring in different domains and stages of development and created a map of the
relationships among those debts.
Conclusion: The findings may guide organizations in developing microservices systems that better
manage and avoid architectural debts.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Microservice architecture is a relatively new architectural style
hat is becoming increasingly popular in the industry. A microser-
ice is a small component that can be developed and deployed
ndependently, is easy to scale, and has a single responsibil-
ty (Dragoni et al., 2017). Such characteristics make microservices
articularly convenient for continuous delivery (Thönes, 2015).
icroservices are built around business capabilities and pro-
ide an architectural style capable of organizing cross-functional
eams around services (Dragoni et al., 2017). Microservices are
upposed to support companies to deliver value to their cus-
omers in a fast and continuous fashion.

Despite their advantages, microservices are still an emerging
echnology. There are still drawbacks of using such an archi-
ectural style, such as data inconsistency among various ser-
ices (Furda et al., 2018). As a simple example, suppose an online
ookstore has three services: one for managing the book cata-
og, another to manage orders, and a third for deliveries to the
ustomers. Each of those services has its own database. When

✩ Editor: Gabriele Bavota.
∗ Corresponding author.

E-mail addresses: saulos@ifi.uio.no (S.S. de Toledo), antonima@ifi.uio.no
A. Martini), dagsj@ifi.uio.no (D.I.K. Sjøberg).
ttps://doi.org/10.1016/j.jss.2021.110968
164-1212/© 2021 The Authors. Published by Elsevier Inc. This is an open access art
a client finishes an order, the book must be removed from the
stock by the book service, and the delivery must be triggered.
When the orders database is updated, the product remains in an
inconsistent state until the other services finish updating their
databases. Meanwhile, the client and the store own the book
since it is still available in the stock and orders databases, and
there is a chance the company will sell more books than it has,
causing problems for the company.

Companies are still learning how to properly migrate from
old monolithic software to systems that use microservices. There
are still several challenges in implementing microservices from
scratch to make them easy to maintain and evolve (Bogner et al.,
2019b), which leads to a situation in which practitioners make
architectural sub-optimal decisions that lead to a benefit in the
short term, but increase the overall costs in the long run, i.e., a sit-
uation described by a metaphor known as Architectural Technical
Debt (ATD) (Verdecchia et al., 2018).

Di Francesco et al. (2017, 2019) state that fundamental prin-
ciples, claimed benefits, and quality (including maintainability)
of microservices still must be proven by research and envisioned
further qualitative studies with practitioners. Studies on manag-
ing ATD in microservices, which directly affects software main-
tainability, would be part of such a request.

There is a body of gray literature and books that concern mi-

croservices, migrations, and related practices. Still, such literature

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jss.2021.110968
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.110968&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:saulos@ifi.uio.no
mailto:antonima@ifi.uio.no
mailto:dagsj@ifi.uio.no
https://doi.org/10.1016/j.jss.2021.110968
http://creativecommons.org/licenses/by/4.0/


S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

d
p
a

c
b
f

m
f
a
m

2

t

2

t
d
r
m
q
b
c
c
l
u
t
d
o
d
i
i
w
s
c

o

t
C
s
i
t
n
f
l
t
v
l
s
(
l
S
r
p
o
a
c
t
t
a

n
S
t
v
a
a
m
p
S
e

m
m
v

2

c
2
b
t
s
s
e

Fig. 1. Monolithic and microservice architectures.

oes not focus specifically on ATD. In particular, it does not ex-
lore the diversity of challenges regarding ATD and microservices
cross companies.
As a contribution to meeting the needs described above, we

onducted a multiple-case study in seven international Europe-
ased companies to investigate ATD in microservices through the
ollowing research questions:

• RQ1: What are the most critical ATD issues in microser-
vices?

• RQ2: What are the negative impacts of such ATD issues?
• RQ3:What are possible solutions to repay or avoid such ATD

issues?

For each of the identified ATDs, we outlined how to deter-
ine interest and principal, which is needed to develop metrics

or quantifying the costs of the ATDs. Our contributions may
lso support practitioners’ decision-making in projects involving
icroservices.

. Background

This section describes the concepts of microservices and archi-
ectural technical debt.

.1. Microservices

Lewis and Fowler (2014) provide the most accepted defini-
ion of the microservices architectural style: ‘‘an approach to
eveloping a single application as a suite of small services, each
unning in its own process and communicating with lightweight
echanisms, often an HTTP resource API’’. Microservices are fre-
uently described as an alternative to monolithic applications,
uilt and deployed as a single unit (see Fig. 1), since well-known
ompanies, such as Amazon and Netflix, have been using mi-
roservices to overcome difficulties with their previous mono-
ithic architectures (Lewis and Fowler, 2014). Applications that
se microservices are easier to scale, have shorter cycles for
esting, build and release, and are less frequently affected by
owntime than monolithic applications (Fowler, 2015). These and
ther characteristics make microservice applications particularly
esirable for continuous delivery. In fact, new features can be
ndependently and continuously tested and delivered by updat-
ng specific microservices without changing the whole product,
hich drastically reduces lead time. Still, there are challenges,
uch as the risk of increased data inconsistency and operational
omplexity (Fowler, 2015).
Microservice architecture may also be described as one way

f implementing Service Oriented Architecture (SOA), although
 r

2

Fig. 2. Microservices synchronous communication.

here are different views on this claim (Zimmermann, 2017).
ertainly, SOA describes a set of applications that cannot be con-
idered microservices. For example, many SOA applications are
mplemented using an Enterprise Service Bus (ESB), an infrastruc-
ure that mediates requests among services, intercepts commu-
ications, and provides transformation capabilities, among other
unctions (Niblett and Graham, 2005). ESBs can be a single mono-
ithic artifact that can be deployed together with the services at
he same place (Montesi and Weber, 2016). In contrast, microser-
ices employ what is called a dump pipe or a communication
ayer without business logic. Other characteristics can also de-
cribe SOA but not microservice architectures. Rademacher et al.
2017) provide a list of such characteristics including the fol-
owing: (i) there is no guidance about the service granularity in
OA, while a microservice architecture suggests that each service
epresents one capability only; (ii) SOA may support transport
rotocol transformation, while microservices usually apply REST
ver HTTP or a protocol supported by a message bus; (iii) there
re several service types in SOA (e.g., business, enterprise, appli-
ation), while there are only two types of microservices—that is,
hey are functional (representing business capabilities) or infras-
ructure (providing technical capabilities like authentication and
uthorization) services.
Despite such differences, there are several concepts and tech-

iques in the area of microservices that were borrowed from
OA, such as the approaches for communication detailed in Sec-
ion 2.1.1; the concepts of scalability, service discovery, and ser-
ice registry detailed in Section 2.1.2; and the concepts of service
vailability and responsiveness detailed in Section 2.1.3. There
re some adaptations of those concepts and techniques in a
icroservice architecture, such as a limited set of communication
rotocols. Other concepts such as Service Mesh, explained in
ection 2.1.4, emerged to support microservice architectures (Li
t al., 2019).
In summary, while there is an overlap, there are certainly

any differences in techniques and concepts between SOA and
icroservice architecture. In this paper, we focus on microser-
ices.

.1.1. Microservices communication
In a microservice architecture, clients and services may

ommunicate directly with each other synchronously (Newman,
017) (Fig. 2) or through an API gateway (Montesi and We-
er, 2016) (Fig. 3). They can also communicate asynchronously
hrough a message bus (Newman, 2017), which holds the mes-
age in a queue until one or more services consume(s) it, as
hown in Fig. 4. Such communication may also be mixed: for
xample, by using a synchronous request with an asynchronous

esponse.



S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

2

t
a
I
o
r
a
E
b
d
m
t
a
i
t
c
t
b
s
s

2

m
t
n
s
W
d

Fig. 3. The API gateway.

Fig. 4. Microservices asynchronous communication.

.1.2. Scalability and service discovery
In the microservices context, scalability is the service’s ability

o cope and perform under high demand. A scalable microservice
dapts itself to the needs of its consumers (Márquez et al., 2018).
t is possible to scale those services by running multiple instances
f them; each instance of the same service should be able to
eplace any other so that if one fails or already has high traffic,
nother working instance may be used in its place (see service
in Fig. 5). An available instance of the service may be found
y a service discovery mechanism in such situations. The service
iscovery (i.e., the act of finding a running instance of a service)
ay be performed by consulting a service registry (i.e., a service

hat stores information about other services and their available
nd unavailable instances; for example, service E instances 01–03
n Fig. 5) (Montesi and Weber, 2016). One way of performing
he service discovery is exemplified in Fig. 5. The API gateway
an query the registry to find a running instance of service E
hat the client requires. The service discovery method exemplified
efore is called server-side discovery, as opposed to the client-
ide discovery, in which the client is responsible for querying the
ervice registry (Montesi and Weber, 2016).

.1.3. Service availability and responsiveness
In the setting where one service (consumer) requests infor-

ation from a remote service (producer), service availability is
he producer’s ability to accept the request in a timely man-
er (Richards, 2016). Inversely, service responsiveness is the con-
umer’s ability to receive a timely response (Richards, 2016).
hen a consumer makes a request to a producer, the consumer
oes not know whether they will receive a response. Since they
3

Fig. 5. Service discovery, registry and services instances.

Fig. 6. The circuit breaker.

cannot wait indefinitely, it is common for the consumer to wait
a specific period of time (the timeout) until they give up and
consider the request as a failure. At this point, the consumer may
try the request again. When the producer has a very high load
or is entirely inaccessible, consumers may keep (i) repeatedly try
to connect until the producer is available or (ii) wait the whole
timeout period until they can take some other action (Montesi
and Weber, 2016). Both cases waste resources.

A better technique is to use circuit breakers. When services are
down or demonstrate high latency and are mostly unusable, a
circuit breaker takes the lead and immediately responds to the
consumer (Fig. 6). The consumer uses fewer resources waiting for
services that failed (i.e., they will not keep running and waiting
for an unavailable service that may never send a response). Such
a solution prevents network or service failure from cascading to
other services since some may depend on the consumer in our
example (Montesi and Weber, 2016).

2.1.4. Service mesh
Finally, service meshes have emerged with the populariza-

tion of microservice architectures. Service meshes are dedicated
infrastructure layers acting on the service-to-service communi-
cation, designed to make the services safe, reliable, and more
observable. They usually implement several of the mechanisms
introduced in previous sections, as well as others such as ser-
vice discovery mechanisms, load balancing, encryption, circuit
breaking, and service observability (Li et al., 2019). These mecha-
nisms are not strictly required when implementing microservices,
but they might be beneficial, especially when there are many

microservices.



S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

2

i

2

a
b
p
s
a
2
u
t

i

c
w
c
a
p
B
a
i
c
m

d
i
t
w
w

2

p
t

.2. Architectural technical debt

This section gives an overview of ATD, its management, and
ts relationship to related concepts.

.2.1. An overview of ATD
ATD is a type of technical debt (TD) consisting of suboptimal

rchitectural solutions, which deliver benefits in the short-term
ut increase overall costs in the long run. Identifying ATD is
articularly important since problems in the architecture may
low down new functionalities and raise the related costs. Several
uthors (Besker et al., 2017; Ernst et al., 2015; Kruchten et al.,
012) describe ATD as the most challenging type of TD to be
nveiled and managed due to the lack of research and practical
ool support.

The three main concepts of TD are the debt itself and its
nterest and principal (Avgeriou et al., 2016):

• Debt: A sub-optimal solution that has short-term benefits
but will generate future interest payment is called a debt.
For example, suppose a functionality is implemented using
different components. If the developers create the compo-
nents without carefully planning their interfaces in order to
develop them faster, the solution may end up with tightly
coupled components. Such a solution may be easy and fast
to develop, but the product’s maintenance may be costly.
Due to tightly coupled components, changes in one of the
components may cause consequential changes in other com-
ponents. When the product is updated, it may take a long
time to change and test all the components, slowing down
the delivery of new functionalities.

• Interest: The extra cost that must be paid because of a debt,
or the amount that will be saved if there is no such debt, is
called interest. In the previous example, the interest is the
cost of the additional effort needed to test and update all the
dependent components each time a component is changed.

• Principal: The cost of developing a solution that avoids
the debt, or the cost of refactoring a solution to avoid the
debt, is called the principal. In the previous example, the
principal is the cost of the effort (e.g., time and resources)
required to develop the involved components’ interfaces so
that they are not tightly coupled and can be changed and
tested independently from each other.

It can be profitable in some particular circumstances to ac-
umulate the debt (Besker et al., 2018b). In theory, deciding
hether to accumulate the debt is supported by a simple cal-
ulation: If the interest is less than the principal, it is better to
ccumulate the debt. If the interest is more significant than the
rincipal, the debt should be avoided (Schmid, 2013; Martini and
osch, 2016). However, it is not easy to know—or measure—the
ctual costs in practice regarding either the principal or the
nterest. It is still important for the involved stakeholders to be
onscious of a debt’s principal and interest. Practitioners need to
ake decisions on their ATD.
It is difficult to avoid the accumulation of some of the ATDs

uring the software’s life cycle (Martini et al., 2015). Thus, it is
mportant to know when these debts should be repaid and when
o avoid their accumulation. Areas like microservices still lack
ays of identifying and measuring ATD (de Toledo et al., 2019),
hich motivates this study.

.2.2. ATD management
Managing ATD is difficult (Besker et al., 2018a) but it is im-

ortant to repay the debt (Li et al., 2014). Li et al. (2014) describe

he ATD management process through the following activities:

4

• ATD identification: In this phase, the ATD items (including
their interest and principal) are detected and described.

• ATD measurement: In this phase, the debts’ costs and ben-
efits are analyzed and estimated.

• ATD prioritization: In this phase, the items are sorted by
some criteria (e.g., importance) to decide which ATD item
must be repaid first or if ATD should be repaid instead
of investing in other activities, such as developing new
features.

• ATD repayment: In this phase, architectural decisions are
made to repay the debt, even if partially.

• ATD monitoring: In this phase, ATD items are monitored
over time regarding their costs and benefits.

In this study, we start this process by identifying ATD in
microservices. We then indicate what should be measured and
contribute with information helpful for ATD prioritization and
monitoring. We also present solutions for ATD repayment.

2.2.3. ATD versus related concepts
Fig. 7 presents the relationship between ATD and other con-

cepts such as architectural patterns, anti-patterns, erosion, drift,
and smells. All these concepts have been associated with ATD.
A few others, such as defects and degraded system qualities,
are also discussed in the TD literature and are briefly discussed
in this section. Although various studies exist on these differ-
ent concepts, there is no comprehensive work clarifying their
relationships. Therefore, we report our interpretation of such
concepts based on the available literature.

The most up-to-date definition of TD, available in the Dagstuhl
seminar report 16162 (Avgeriou et al., 2016), states that ‘‘techni-
cal debt is a collection of design or implementation constructs
that are expedient in the short term, but set up a technical
context that can make future changes more costly or impossible.’’
When discussing architecture, we focus on design constructs.
Fig. 7 shows the relationship between what we call sub-optimal
design constructs and some well-known terms we discuss next.

Architectural smells are indicators of design problems; as such,
they may be symptoms of the presence of ATD (Martini et al.,
2018) (see Fig. 7). However, architectural smells might not point
to ATD in certain contexts. Martini et al. (2018) reported a situ-
ation in which a set of cyclic architectural dependencies, found
in a particular graphical user interface (GUI) component, was not
considered suboptimal. In that particular example, such a smell
was fairly common as a normal (good) pattern. The reported
smells do not represent ATD, as there is no interest and principal
in such cases.

Architectural patterns are general, reusable architectural solu-
tions (Marquez and Astudillo, 2018). When used correctly and
with other context-defined needs, such as an appropriate archi-
tecture design, they may be solutions to existing ATD. However,
many solutions are context-specific and should be discussed in
the context of the respective debts; for example, the design of
good APIs (see, for example, Mosqueira-Rey et al., 2018). An
architectural pattern may or may not be a proper solution to a
known issue in such contexts. Each solution has a cost, which in
turn represents the principal of the debt it is removing (Fig. 7).

Architectural anti-patterns are repeatable suboptimal design
constructs that violate design principles and increase the like-
lihood of having bugs and changes (Mo et al., 2019). An anti-
pattern might represent a debt if it generates interest, but there
might be cases in which the anti-pattern does not. Besides, the
suffered interest of ATD can consist of something else than bugs
or changes, for example, a loss of development speed or the
degradation of other software qualities (Martini et al., 2018). In

the example by Martini et al. (2018) that we reported when



S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

d
c
r
s
v
t
1
o
i

a
B
t

Fig. 7. ATD and the related concepts.
iscussing architectural smells above, an anti-pattern could be
ausing the cyclic dependencies disclosed, but no interest was
eported. In fact, the practitioners said the opposite: it was a
olution (a pattern). The research on anti-patterns in microser-
ices is still in its infancy; for example, there is no well-defined
axonomy (Bogner et al., 2019a). Bogner et al. (2019a) identified
4 studies on SOA patterns. Only one book and one paper focused
n microservices, although many of the SOA patterns presented
n the studies seem relevant to microservices.

Architectural erosion describes design changes in a system’s
rchitecture that violate the original architecture (Van Gurp and
osch, 2002). An example of architectural erosion is the addi-
ion of workarounds to bypass the decided architecture. Archi-
tectural drift describes the situation in which the rules implied
by the architecture are unclear, leading to divergences between
parts of the architecture and making it easier to have violations
(i.e., erosion) (Van Gurp and Bosch, 2002). Both terms represent
how the amount of suboptimal design constructs increases over
time, but they do not consider interest and principal, as in TD.
Also, they become worse over time, accumulating more debts.
The debt, however, remains the same. Still, its costs (interest
and principal) may vary depending on the context (e.g., a debt
leading to a data leak in a bank system is far worse than the
same debt in a newsletter system in which, only the email ad-
dresses are compromised). The notions of architectural erosion
and drift are discussed in the literature through different terms,
such as architectural degeneration, software or design erosion,
and architectural or design decay (De Silva and Balasubramaniam,
2012).

Defects are conditions in a software product that need to be
fixed because they cause the software’s malfunction or produce
unexpected results. As explained by Kruchten et al. (2012), de-
fects are visible for the customers and are, therefore, different
from any kind of TD, such as ATD. Defects, as well as degraded
system qualities and other issues perceived by customers, or even
internal issues such as reduced productivity, might be an effect
caused by the existence of some kind of TD. All these effects have

a cost—the interest of the debt which caused them (Fig. 7).

5

Other concepts apart from those we discussed may also be
used to perceive the gap between the suboptimal and optimal
constructs or solutions. For example, misused architectural pat-
terns (i.e., their use in a context they are not suitable for) may also
be responsible for such a gap. However, describing such a gap be-
tween optimal and suboptimal design is not enough to formulate
the problem as ATD, which is focused on the financial variables
related to its costs (principal and interest) and dependent on the
contexts.

3. Methodology

This study aims to identify the most common and critical ATD
issues, interests, and principals in products using microservice
architectures. We investigated which circumstances led to ATD
and identified solutions and insights related to its occurrence.
We conducted an exploratory multiple-case study, where each
analyzed product represents a case. The remainder of this section
presents the cases and how the data was collected and analyzed.
Fig. 8 outlines our methodology.

3.1. Case selection

We studied seven different software products in seven large
international companies. Two products were provided by differ-
ent sub-companies within the same multinational conglomerate.
All the products had a microservice architecture. Although in
some of the products, minor parts were previously developed us-
ing a monolith design or SOA approaches, the overall architecture
was considered a microservice architecture, and such parts were
in the process of being migrated.

The various application domains of the products gave us
diversity in investigated contexts, which helped to understand
whether the found problems and solutions were widespread
or domain-specific. Table 1 shows a summary of the studied
companies and products. For confidentiality reasons, we named
the companies A, B, C, D, E, F, and G, respectively. The application
domains of the microservices projects we investigated are as

follows:



S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

t

Fig. 8. Methodology overview.
Table 1
Companies context.
Context Company

A B C D E F G

Application domain Finance Cloud IoT Health Public services Transport Transport

Approx. number of
employees

>30000 >7000 >30000 >30000 >30000 320 >20000

Approx. number of
employees on IT

>2000 20000 1200 250 150

Approx. number of
employees in the case

2000 200 500 250 150 150

Approx. number of
unique microservices in
the case

1000 50 80 40 400 600 3000

Age of the product >10 years >2 years >2 years >1.5 years >10 years >4 years >10 years

Stage of development Migration Initial development Initial development Initial development Evolving Evolving Evolving
• Finance: The software was used to assist users with finan-
cial operations, money management, payments, insurance,
and investments.

• Cloud: The software provided a set of services to be used in
the Cloud by third-party consumers.

• IoT: A software in the Internet of Things domain that was
used to control, share information, and/or gather data from
devices connected to the internet.

• Health: The software was used to provide health services,
such as user profiles and medical information.

• Public services: The software was used to provide public
services, such as payslip management and taxes.

• Transport: The software was used to assist users of public
and private transport of both passengers and goods.

We also present the stage of each software project according
o the following classifications:

• Initial development: The software was developed using
microservices from the beginning.

• Migration: The software is migrating from an old solution,
such as a monolith or other service approach, to microser-
vices.

• Evolving: The system is consolidated as a microservice ap-

proach and is currently being maintained and evolved.

6

In this multiple-case study, a case is a given company’s specific
product. For simplicity reasons, cases are referred to by their
company’s name.

3.2. Data collection

We performed 25 interviews with 22 employees in different
roles, as detailed in Table 2. We selected the interviewees and
companies through convenience sampling (i.e., selecting from the
collaboration network we had access to). All the interviewees had
several years of experience in their roles. They all gave consent
for the interviews to be recorded and transcribed (Step 1 in
Fig. 8). We used the semi-structured interview guide presented
in Appendix. The interviews lasted between one and two hours.

The study started with Company A, where we could access
several employees. This helped us have a solid understanding
and a rich amount of details about the initial set of existing
ATDs. We then continued the study with additional companies
to investigate whether the results were general or differed across
contexts.

As we progressed with the interviews in different contexts,
new aspects emerged, such as additional ATD instances or further
details for specific instances. We updated the interview guide
along the course of interviews regarding Debts 8, 10.2, 11, and



S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

d
w
e
n

F
f
o

Fig. 9. Transforming quotations from practitioners into codes through open coding, and classifying them into categories. This is an example extracted from our
analysis, so the number of the debts emphasized in the figure are references to our results in Section 4. The rest of the analysis is done in the same way.
Table 2
Type and number of interviews and interviewees by company.
C. Num. Interviews Interviewees Interviewers Type of interview

A 11 3 product owners/managers 1st and 2nd authors (main interviews) Face-to-face
2 architects 1st author (returning interview)
5 developers

B 3 1 product leader 1st and 2nd authors (main interviews) Audioconference
1 architect 1st author (returning interview)

C 4 2 architects 1st and 2nd authors (first 2 interviews) Audioconference
1 software engineer 1st author (third and returning interviews)

D 3 1 product manager 1st and 2nd authors (first 2 interviews) Audioconference
2 architects 1st author (third interview)

E 2 2 architects 1st and 2nd authors Face-to-face

F 1 1 architect 1st and 2nd authors Face-to-face

G 1 1 software engineer 1st and 2nd authors Videoconference

TOTAL:

7 25 22
12 and added Questions 7, 9, 10, and 11 for the ensuing inter-
views. When all the cases were investigated, we returned to the
previous companies to interview additional subjects. If they were
not available, we asked for shorter complementary interviews
(20–30 min) with the subjects we had met before. We covered
newly discovered aspects in these interviews, as represented by
Step 3 in Fig. 8. For example, a later interviewee clearly dis-
tinguished between internal shared libraries (produced by the
team) and external dependencies (produced by external parties),
such as frameworks and open-source software. Since the previous
interviews did not clearly make this distinction, we returned
to previous interviewees to ask for additional clarifications and
details.

We also returned to previous interviewees to ask about newly
iscovered ATD items identified in later interviews. For example,
e asked all the interviewees whether they perceived the het-
rogeneity of approaches caused by the services’ implementation
eutrality nature as harmful.
During all the initial interviews, two researchers were present.

or four companies, where the distance did not allow us to have
ace-to-face interviews, we conducted the interviews using audio
r video conferencing tools, as detailed in Table 2.
7

We did not follow Steps 3 and 4 of our methodology (Fig. 8
going back to the interviewees for additional input) for Compa-
nies F and G. We did not find information missing from the other
contexts that required additional interviews.

The final interview guide is presented in Appendix.

3.3. Data analysis

Steps 2 and 4 in Fig. 8 show our data analysis, which was
mainly performed using open coding, an approach that is part of
grounded theory (Corbin and Strauss, 2015). Grounded theory is
a rich systematic methodology that involves several other steps
not followed in this study.

Open coding is usually the first step of coding in exploratory
studies and aims to produce a set of concepts that fit the data
(Corbin and Strauss, 2015). Fig. 9 presents a fragment of this
analysis step: selected quotations in the transcriptions or audio
recordings are flagged with a label (a code). Later, we found that,
despite different wording, some findings were related to a more
general topic coded at a higher level category, as in the example
in Fig. 9. This last step allowed us to identify related ATD issues.
Finally, we associated these codes to categories such as ‘‘ATD’’,
‘‘Interest’’, and ‘‘Principal’’ in a deductive manner.



S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

b
e
o
a
p
t
w
w
s
t

t
t

i
r
f
f
t

4

a
(

Fig. 10. Identifying the relationship among debt, interest and principal.

We performed the open coding phase by finding relationships
etween the codes in the categories above. Fig. 10 shows an
xample. The open coding provided us with three different codes:
ne for an instance of debt, another for an instance of interest,
nd the last for an instance of principal. After the open coding
hase, we found that the interest and the principal were, respec-
ively, the consequence and the solution for the debt (e.g., there
ere costs with multiple API versions (interest) because the APIs
ere poorly designed (debt), so they were grouped together). The
et of codes and their relationships were used in our report phase
hat synthesized our results (Step 5, Fig. 8).

We performed the qualitative analysis with NVivo,1 which
racks the links between codes created on top of the data and
o the original quotations to which they were grounded.

Finally, we performed member checking, in which study partic-
pants could review the findings (Runeson et al., 2012) to increase
eliability (Step 6 in Fig. 8). We sent out a summary of our
indings to at least one interviewee in each company and asked
or review and feedback. We updated our descriptions according
o the comments we received (Step 7 in Fig. 8).

. Results

Table 3 shows the companies’ most critical ATDs and how they
re distributed. For each company, an ‘‘X’’ in columns D (debt), I
interest), or P (principal) indicates, respectively, that the company
has accumulated the debt and has identified (or paid/is paying)
its interest and/or its principal. An empty cell in the table means
that the interviewees did not report the related debt, interest, or
principal for that company.

Table 4 shows the negative impact and the solutions for each
ATD according to each company. As our respondents could not
provide an actual numerical cost for the interest (i.e, the negative
impact cost) and the principal (i.e., the solution’s cost), we present
the closest possible qualitative description of these costs that
we could extract from our data. All the proposed solutions were
applied successfully by practitioners in their projects.

The remainder of this section describes the identified debts
and their interest and principals.

Debt 1: Insufficient metadata in the messages

An ATD is present when messages contain insufficient meta-
data. A data packet used in the communication through APIs, such
as REST, may be considered messages. However, all data packets
were sent through a message bus in our study. In such cases, the
metadata is typically used to track messages and add other useful
information at the cost of increasing overall message size.

This debt may be accumulated because developers want to
keep the message lighter for performance reasons (Company A)
or due to poor service planning (Company E).

1 https://www.qsrinternational.com/nvivo/home.
8

Fig. 11. A message carrying metadata that is updated every time it is consumed
and forwarded by a different service.

Fig. 12. In the absence of a tracking dependencies mechanism, it is impossible to
know that, if Service 7 is no longer necessary, Service 2 can also be deactivated,
but Service 4 cannot.

Debt 1.1: Insufficient message traceability
When messages contain insufficient metadata, developers

might find it difficult to track the messages’ source. Fig. 11 shows
services that deliver messages through a message bus. If no
traceability metadata is available, Service 2 consumes a message
from the message bus, but the service does not know which
service produced the message.

Interest. The primary issue is the impossibility of tracking
dependencies among services. One interviewee exemplified this
debt by saying that ‘‘there is a regulatory requirement to doc-
ument the traceability of data to the data source, and the lack
of metadata and a data dictionary make it difficult to fulfill this
requirement’’. Fig. 12 presents a set of services and their depen-
dencies. If Service 7 is no longer needed, Service 2 can also be
deactivated because no other services use it, but Service 4 cannot
be deactivated because it is used by Service 6. If it is impossible
to track dependencies, it is not safe to deactivate dependent
services, as in the examples mentioned above (Companies A
and E). The number of services in the product will grow, and
possible unused services such as Service 2 in Fig. 12 will remain
deployed and consume resources (Companies A and E). Besides,
it is impossible to track the messages’ sources when necessary.
This incurs costs related to, for example, data-tracing regulations
(Company A). In such a case, a financing company that, by law,
must track financial operations might find this impossible to do
because no available metadata indicates the sources.

Principal. Some interviewees described the primary solution
as adding service ownership metadata to the messages as the
(Companies A and E). Fig. 11 gives an example of hypothetical
metadata information attached to the messages. The metadata
allows Service 3 to know (i) the service from which the message
flow originated, (ii) the entire list of services that used that
information, and (iii) the last service that changed the message.
Company A went further and proposed defining such require-
ments with ‘‘the implementation of the canonical [data] model
design pattern’’ to ‘‘ensure compliance with data traceability’’.
A canonical data model is a design pattern in which there is
agreement on and standardization of data definitions in different
business systems (Hohpe and Woolf, 2012) to ensure that the
services contain the required information.

https://www.qsrinternational.com/nvivo/home


S.S.de
Toledo,A.M

artini
and

D
.I.K.Sjøberg

The
Journal

of
System

s
&

Softw
are

177
(2021)

110968

E Company F Company G

P D I P D I P

X
X

X X X X

X X X X X X

X X X

X X X X

X X X X X X

9

Table 3
Architectural technical Debt identified on each company.
ID Debt Company A Company B Company C Company D Company

D I P D I P D I P D I P D I

1. Insufficient metadata in the messages
1.1. Insufficient message traceability X X X X X
1.2. Poor dead letter queue growth

management
X X X X X

2. Microservice coupling X X X X X X X X X X

3. Lack of communication standards among
microservices

X X X

4. Inadequate use of APIs
4.1. Poor RESTful API design X X X X X X X X X
4.2. Use of complex API calls when messaging

is a simpler solution
X X X

5. Use of inadequate technologies to support
the microservices architecture

X X X X X X

6. Excessive diversity or heterogeneity in the
technologies chosen across the system

X X X X X

7. Manual per service handling of network
failures when target services are
unavailable

X X X X X

8. Unplanned data sharing and
synchronization among services

8.1. Sharing persistence or database schema X X X X X
8.2. Unplanned database synchronization X X X

9. Use of business logic in communication
among services

X X X

10. Reusing third-party implementations
10.1. Many services using different versions of

the same internal shared libraries
X X X X X X X X

10.2. External dependencies with various
licenses requiring approval

X X X

11. Overwhelming amount of unnecessary
settings in the services

X X X X X X X X X X X X

12. Excessive number of small products X X X X



S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

D

f
q
T
r
w

c
c
r
o

ebt 1.2: Poor dead letter queue growth management
A dead letter queue receives messages sent to a nonexistent or

ull queue and messages rejected for other reasons. A dead letter
ueue accumulates such messages to facilitate their inspection.
he lack of mechanisms to control the dead letter queue’s growth
epresents an ATD issue because the queue becomes ‘‘one place
ith lots of messages and no ownership’’.
Interest. Dead letter queues grow so quickly that inspecting

the messages becomes impossible, so the queue consumes more
and more resources. Cleaning up the queue without losing im-
portant information may be impossible due to the high number
of dead messages. Besides, it may be difficult to predict the causes
that lead such messages to be sent to the dead letter queue
instead of their original destinations (Companies A and E).

Principal. The primary solution is to remove the dead letter
queue, shifting responsibility for message deliveries to the ser-
vices (Company A). That would help solve any issues that cause
the queue to grow, such as services not caring about the accumu-
lation of messages. If that is impossible, Companies A and E agree
that there are still two possible solutions, as articulated by one
of our interviewees: ‘‘You should distribute this [the dead letter
queue] either by having ownership metadata on the message
or having distributed queues’’. Therefore, adding metadata that
identifies the messages’ sources would make it easy to handle
lost messages because it would be easier to track their creators.
Splitting single dead letter queues into smaller queues managed
by different teams helps ‘‘divide and conquer’’ the problem.

Debt 2: Microservice coupling

Microservices should be designed to be mostly independent
of each other and have well-defined boundaries and interfaces. A
lack of knowledge or negligence about good design practices may
lead a company to accumulate ATD related to tightly coupled mi-
croservices. One of our interviewees said, ‘‘How do you decouple
the dependencies is always something you need to work out’’. We
found this debt more often in the products that use APIs.

Interest. The accumulation of this debt creates too many
dependencies among teams, so delays from one team may affect
the other teams’ development plans by, for example, delaying
deliveries. Besides, someone with access to all involved teams
must handle the unnecessary coordination overhead. This was
exemplified by one case in which three teams were developing
‘‘three very tight microservices’’, and there was a ‘‘need to tightly
coordinate the work between them’’ (Companies A, B, C, E, and
F). Another cost incurred by this debt is the cascading effect of
spending time and effort updating and deploying many depen-
dent services due to changes made to one service (Companies A,
B, C, E, and F). If accumulating this debt is a common practice
in a company, the number of services easily increases. Various
services end up not being useful in diverse situations because
they are too solution-specific (Company A). Finally, the debt may
cause incidents into dependent services that are not updated as
required (Companies B, C, E, and F).

Principal. Designing services to be generic and independent
usually incurs a cost, which is the principal, as also mentioned
by Company A. Company E reduced the accumulation of the
aforementioned debt by ‘‘being API first’’, which requires teams
to consider what the service is instead of focusing on the code.
According to the interviewee who made the suggestion, ‘‘It is
more about orchestrating APIs’’, and ‘‘what’s behind an API is no
longer relevant’’. Company C considered using internal training
about developing good APIs to mitigate the problem. Company
F proposed setting aside some time slots during development to
continuously clean, refactor, and improve the APIs.
10
Debt 3: Lack of communication standards among microservices

When autonomous teams do not have proper guidelines or
standard models for creating APIs or message formats (depending
on how their services communicate with other services), the
company may accumulate a debt in which many APIs or message
formats emerge from the various teams because, as stated by an
interviewee from Company D, ‘‘each message producer of mes-
sages is left to define the format of the data themselves’’. While
this debt might not be a problem in small systems, especially
because microservices allow teams to decide their standards,
having many standards will incur additional costs and become
an issue. This is the ‘‘Tower of Babel problem’’ in our previous
work (de Toledo et al., 2019). We found evidence of this problem
in Company A’s use of messages.

Interest. Developers often exert unnecessary effort when
translating messages among distinct formats to allow different
services to communicate. According to our sources, this debt
leads to ‘‘data duplication, lack of consistency, and unwanted
complexity’’. The solution becomes overwhelmingly complex due
to too many API or message formats. Each time one service must
interact with another, the team that develops the first service
must learn a new message or API format to define the proper
translations (Company A).

Principal. According to Company A, ‘‘this problem is typically
solved in organizations by using the canonical [data] model de-
sign pattern’’. The implementation must be properly policed, or
this model may also become complex and costly.

Debt 4: Inadequate use of APIs

Poor API design (i.e., failing to properly plan the API interface,
error codes, etc.) may be the easiest way to have working code
initially, but this has negative effects. In some cases, APIs are used
in situations where other solutions, such as messaging, would be
preferable. Such situations constitute the debt of inadequate API
use. We present details below on each of those situations.

Debt 4.1: Poor RESTful API design
When using RESTful APIs, several conventions address their

readability and use. For example, the REST Uniform Interface
standardizes implementing create, retrieve, update, and delete op-
erations in a resource. HTTP also includes a list of status codes2
that should be used in the API’s responses. In our study, some
developers tried designing RESTful APIs without following the
proper conventions because they ‘‘were still focusing on the func-
tional part of the job’’, resulting in a poor design (Companies B,
C, and D). An example of this problem was using operations that
should have performed a resource update but instead retrieved a
collection of items (Companies B, C, and D).

Interest. Poor API design causes several issues: (i) the API
is difficult to use because its results may not follow expected
conventions (Companies C and D); (ii) APIs are not stable, as one
interviewee emphasized: ‘‘Should I make any changes, I need to
make a new revision of the API’’ (Companies C and D); (iii) the
API’s instability requires the creation of new API versions and
the need to maintain the old and deprecated versions (Company
B); (iv) such changes also make it difficult to maintain backward
compatibility in new versions of the API (Companies C and D); as
a final result, (v) intentional and unintentional breaking changes3
are common (Companies C and D).

2 https://tools.ietf.org/html/rfc2616#section-6.1.1.
3 A breaking change is a change in one part of a software (e.g., in a mi-

roservice’s API) that potentially causes incompatibility with other components,
ausing failure. Examples of breaking changes for an API are changes in the
esponse codes (e.g., 200 OK to 201 Created in HTTP) and renaming the location
f the resource (e.g., renaming /user to /users, so previous clients are not able

to find the related resource anymore).

https://tools.ietf.org/html/rfc2616##section-6.1.1


S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

T
C

able 4
atalog of architectural technical Debts, interest and principal.
ID Architectural Debt Consequences (Interest) Solutions (Principal)

1. Insufficient metadata in the messages
1.1. Insufficient message traceability A, E: impossibility to identify and deactivate

services that are not necessary anymore
A: impossibility to track the source of
messages, incurring costs with, for example,
data tracing regulations

A, E: add services ownership metadata to the
messages, allowing identification of their source
A: implementation of a Canonical Data Model that
ensure compliance

1.2. Poor dead letter queue growth
management

A, E: impossibility to identify the source of
messages and determine the causes of the
message loss in the dead letter queue

A: removal of the dead letter queue and to move
the responsibility of the message deliveries to the
endpoints
A, E: add metadata to identify the source of the
messages
A, E: splitting the dead letter queue into smaller
queues, managed by different teams

2. Microservice coupling A: increasing amount of unnecessary services
A, B, C, E, F: too many dependencies among
teams, creating coordination overhead;
cascading changes in service consumers when
producers are updated; eventual breaking on
services
B, C, E, F: eventual incidents in not updated
services

A: use some time to design generic and
independent services
C: internal training about API development
E: use of an API-first approach while designing
services
F: considering slot for continuous API
improvement during development

3. Lack of communication standards among
microservices

A: cost with translations among services;
overwhelming amount of message formats for
developers

A: ensure standardization with a Canonical Data
Model

4. Inadequate use of APIs
4.1. Poor RESTful API design C, D: APIs are not stable, with frequent

breaking changes, hard to use and frequently
not backwards compatible
B: instability demands the creation and
maintenance of multiple API versions

B, C: additional effort to stabilize the API and
avoid changes in the future
C: management of API versions; tracking of
internal and external consumers; definition of
clear deprecation strategy
D: definition of a standard for the APIs

4.2. Use of complex API calls when
messaging is a simpler solution

D: additional coupling among services; tests
are inherently complex

D: redesign of services using a messaging
approach

5. Use of inadequate technologies to
support the microservices architecture

A: big latency in the services communication;
need of a dedicated team to maintain the
third-party tool
C: impossibility to provide some functionalities

A, C: proper planning about the technology and
migration as soon as possible

6. Excessive diversity or heterogeneity in
the technologies chosen across the
system

A, E, F: some services cannot communicate
each other
E, F: developers cannot easily migrate to other
teams
A, F: resistance to change technologies later
G: developer velocity slows down, need to
maintain distinct tools and additional source
code repositories

A, F: limiting the set of technologies used by the
teams
G: use of language specific mono-repositories and
incentive their use for related projects: related
software written in the same programming
language are more likely to use the same tooling

7. Manual per service handling of network
failures when target services are
unavailable

B: extra cost on maintaining additional
complexity in the architecture

B, C: use of third-party products (e.g., circuit
breakers) that provide such mechanisms
B: use of a service mesh

8. Unplanned data sharing and
synchronization among services

8.1. Sharing persistence or database schema D, G: potential breaking on services
D: complex database schema and difficulty to
track services using the data

C, D: having separated databases for each service
C: creation of distinct database schemes for each
service inside the same database
G: wrapping of the database within a service,
preventing direct access

8.2. Unplanned database synchronization C: synchronization issues may be visible to
users

C: the solution is context dependent, depending
on the problem, a shared database might be
needed, or a more complex transaction
mechanism must be implemented

9. Use of business logic in communication
among services

A: unnecessary cost to maintain business logic
in the communication layer

A: moving such business logic to the services,
keeping the communication layer as thin as
possible

(continued on next page)
Principal. Our interviewees suggested that APIs be standard-

ized (Company D), versioned (Company C), and kept as stable

as possible so that changes in the services do not affect their

APIs (Companies B and C). Our interviewees also suggested using
11
an explicit deprecation strategy. In other words, after the dep-

recation announcement, a previously defined period of support

should not be extended (Company C). It is also useful to track

internal and external consumers. Hence, it is possible to contact



S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

T

c
l
n
u
A
a
c
a
i
c
h
t

(
e
D
t
v
o
e
a
s

‘
p
u

D
a

w
e
t
a
c
a

able 4 (continued).
ID Architectural Debt Consequences (Interest) Solutions (Principal)

10. Reusing third-party implementations
10.1. Many services using different versions of

the same internal shared libraries
A, E: costs to plan and update all related
services; several services may not be updated
and multiple versions of the library should be
maintained
A: cost of issues generated by refusal to adopt
by early adopters
D: cost to handle breaking changes
F: dependency between service and library
developer teams

A, D, E, F: reduction in the use of shared
libraries
D: replication of simple code, creation of
services to perform complex code
functionalities

10.2. External dependencies with various
licenses requiring approval

B: delays while waiting for approval of new
libraries

B: investing in a process to evaluate and
approve external dependencies as fast as
possible

11. Overwhelming amount of unnecessary
settings in the services

A, B, C, E, F: complex environment
D, G: unexpected issues after deploy

A, G: creation of repository for configuration
settings
A, F: reducing of the amount of configuration
settings on services
G: requirement of peer approval before
accepting changes on settings
C: creation of a configuration server to
automate deploy of configuration settings

12. Excessive number of small products B, E: governance on multiple projects instead
of one (if a monolith)

Our study reveals no solution to this problem
i
b
l
q
o
c
d
p
f

l
t
w
a

D
s

a
c
p
d
s
f
t
S
e

n
w
o
A

them directly and request migration to a new and more stable
version of the API (Company C).

Debt 4.2: Use of complex API calls when messaging is a simpler
solution

There are situations in which an asynchronous communi-
ation approach is particularly appropriate, such as executing
ong-running jobs. In other situations, such as when one service
eeds an immediate response from another after updating a
ser’s address, synchronous communication is a better choice.
REST call is synchronous, whereas the messaging approach is

synchronous. Using REST when messaging is more appropriate
onstitutes another architectural debt because there are costs
ssociated with using an improper solution. We found a specific
nstance of this problem in Company D, which described ‘‘rather
omplex service calls back and forth where messaging would
ave been a much better solution and allowed for much better
esting’’.

Interest. Instead of preparing services to respond to events
e.g., when a message arrives), API endpoints were created for
ach instance of communication among the services (Company
). Such a situation increases coupling among the services due
o ‘‘a relatively complex handshake between two different ser-
ices’’. In other words, all the involved services depend directly
n each other’s API endpoints instead of simply triggering an
vent (message). Besides, the services are harder to test due to the
forementioned complexity. Thus, the costs of maintaining such
ervices increase.
Principal. According to Company D, the primary solution is

‘moving completely, for these particular cases, to a message
assing’’ approach. The messages should be generic enough to be
sed by all the involved services without complex processing.

ebt 5: Use of inadequate technologies to support the microservices
rchitecture

Technology choices may positively or negatively affect soft-
are architecture. Technologies used in microservices are differ-
nt from those used in other architectural styles (for example,
hose ones used for service discovery and circuit breaking, as well
s others discussed in Section 2.1). There are certainly technologi-
al similarities with other SOA approaches, but however, there are
lso differences (e.g., ESBs should not be used in microservices, as
12
discussed in Section 2.1). For example, different cloud providers
support different sets of tools and technologies, such as operating
systems and storage software; some architectural choices simply
do not work with them or face limitations. One interviewee said,
‘‘The technological base that we built a platform upon was not
the best choice for what we wanted to offer’’. Therefore, selecting
an inadequate set of technologies, such as a Platform-as-a-Service
or Infrastructure-as-a-Service provider that does not support the
technology required for the software architecture incurs a debt.

Interest. This debt’s interest is context-dependent. In our find-
ngs, choosing the wrong technology as the message bus responsi-
le for transferring messages among services caused considerable
atency in such communication, with the consequent costs of re-
uiring a team to maintain the third-party tool instead of working
n other priorities (Company A). Company C could not provide
ertain new features because the previously selected platform
id not provide enough sufficiently managed services. The com-
any had to deal with the costs of implementing the required
unctionalities without the availability of proper technologies.

Principal. Companies A and C reported that the primary so-
ution should be planning the architecture before selecting the
echnologies because it is harder to change later on. Since that
as impossible, they migrated to more appropriate technologies
s soon as possible to prevent the interest from growing.

ebt 6: Excessive diversity or heterogeneity in the technologies cho-
en across the system

Selecting programming languages and related technologies
re architectural choices that must be made in any project. Mi-
roservices give developers the freedom to choose different tools,
rogramming languages, communication technologies, API stan-
ards, messaging technologies, and other technologies for each
ervice. Although this is an advantage because some languages,
rameworks, and technologies are more appropriate to specific
asks, such freedom can also lead to the interest described below.
uch freedom may lead to debt, causing the company to have an
xcessively diversified environment.
Interest. We found the following set of issues in four compa-

ies: (i) Services that use one technology cannot communicate
ith services that use another, such as cases with REST APIs on
ne side and messaging technologies on the other (Companies
, E, and F). When services that use distinct technologies must



S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

c
f
n
i
s
t
p
w
m
s

m
c
t
t
e
t

D
s

(
w
m
t
l
i
t
p
a
d

r
c
d
e
c
a

g
t
b
f
v
e
m
c
a
e

s

e
s
p
s
a
t
d
s
n
f
m
u
s

D

d
i
c
m
s
o

w
T
‘
b
a
c
u
o
a
f
s

ommunicate, a workaround must be developed. (ii) Individuals
rom one team cannot easily migrate to another because the
ecessary skills are quite different (Companies E and F). (iii) It
s difficult to change the technology choices later because the
ervices run for a long time and the teams become accustomed
o their own choices (Companies A and F). Finally, (iv) developer
erformance decreases when teams must maintain distinct tools
ith potentially divergent setups (e.g., languages or environ-
ents) and when there is a need to maintain additional tooling
ource code repositories (Company G).
Principal. The primary solution reported by the companies

was limiting the set of technologies available to the teams, es-
pecially those technologies used by multiple services and teams
(Companies A and F). When talking about limiting the set of
available technologies, one of the interviewed practitioners said,
‘‘I don’t want too much alignment on that, but we need to keep
the complexity under control and work to minimize the complex-
ity of all parts’’. Besides, using programming language-specific
monolithic repositories4 allows related software (e.g., different
icroservices for distinct payment methods such as cash and
redit cards) written in the same programming language to share
ools from the same repository. Such repositories encourage using
he same deployment tools, which may prevent a surge in differ-
nt setups and support the merging of services because they use
he same technologies (Company G).

ebt 7: Manual per service handling of network failures when target
ervices are unavailable

When distinct microservices communicate synchronously
Section 2.1.1), they usually contact each other through the net-
ork. Unfortunately, several issues can occur during such com-
unication. The communication channel may be overloaded, or

he target service may be unavailable for many reasons, such as a
ack of resources, crashes, or timeouts. One well-known approach
s to create a mechanism within the service to retry contacting
he target a fixed number of times. However, this approach has
roven to be a debt because ‘‘every single developer has to think
bout how to handle that case themselves’’, leading to the costs
escribed below.
Interest. Our interviewees mentioned that implementing the

etry mechanisms manually on each service increased the code’s
omplexity because developers must decide how the service han-
les the situation: ‘‘Should it retry, give up, or send a signal
rror? What should it do?’’ This approach increases the services
omplexity (and related maintenance cost) and increases the
rchitecture’s overall complexity (Company B).
Principal. The companies that reported this problem sug-

ested reducing the complexity by using third-party products
hat provide features with retry mechanisms, such as circuit
reakers (Section 2.1.3) (Companies B and C). One interviewee
rom Company B declared, ‘‘That is why we introduce the ser-
ice mesh: to simplify that [the complexity created by develop-
rs when they must think about handling the retries]’’. Service
eshes are introduced in Section 2.1.4 and usually contain cir-
uit breaking mechanisms. Still, they should be used carefully
nd only when needed because they may cause an overhead,
specially if the team does not have experience with them.

4 This is also known as monorepos; it is a single source code repository for
toring many projects.
13
Debt 8: Unplanned data sharing and synchronization among services

Microservices may have their own databases, but they can also
share or synchronize data with other services. In such situations,
the company may incur the debt of not planning data sharing
or synchronization among services, leading to various costs. This
debt could be interpreted as a way of causing coupling among
services (Debt 2). Still, we consider it another because fixing it
does not necessarily solve the coupling issue, nor do the fixes we
present for solving Debt 2 solve the databases’ issues.

Debt 8.1: Sharing persistence or database schema
Sharing the same persistent storage or database schema with

multiple microservices is a critical architectural debt that can
easily lead to high costs. For example, one company recognized
the following situation: ‘‘We still have a common database today
that is a technical debt that we are aware of, and we will have to
get rid of this common database’’.

Interest. A service may require changes in the database
schema or the data stored in the database. Such modifications
may potentially break other services that use the same schema:
‘‘You easily break other services by changing the structure with-
out even noticing it or noticing it too late’’ (Company D and G). If
using the same database schema for different services is common
in the company, an unknown number of services may use the
same database schema. Therefore, it is difficult for a development
team to know whether other services use the schema due to
the lack of tracking for such information. This increases the
odds of breaking other services (Company D). In such cases,
the database design is complex and contains information from
multiple services (Company D).

Principal. The ideal solution is to use separate databases for
ach service: ‘‘We are trying to split up that common database
o that each service is responsible for its own database’’ (Com-
anies C and D). It is also possible to wrap the database in a
ervice, exposing it through an API instead of requiring direct
ccess (Company G). Although the last solution does not solve
he database complexity problem (i.e., the database still contains
ata from multiple services, which is more complex than having
eparate databases), it does reduce direct database schema ma-
ipulation. If wrapping the databases in this way is impossible
or any reason (e.g., the services are business-critical and the
igration cannot be done at once), our interviewees suggested
sing different database schemas for each service to enable the
ervices to be changed independently (Company C).

ebt 8.2: Unplanned database synchronization
Microservices increase the likelihood of having distributed

atabases, but they may require synchronization. However, one
nterviewee said, ‘‘A big challenge is data consistency in use
ases involving multiple services and multiple databases, which
ust be somehow consistent or aligned to fulfill the use case
uccessfully’’. In such a situation, the company may incur the debt
f improperly planned synchronization.
Interest. The software composed of multiple microservices

ill remain inconsistent until all related databases are updated.
his can lead to bugs. An interviewee from Company C said,
‘There were cases in which we had features that required us to
asically align three databases to show the right information on
[user’s] dashboard’’. Because we cannot present the real use

ase due to confidentiality restrictions, we explain the problem
sing a fictitious example: an online bookstore has 10 copies
f a particular book. The store is developed using microservices
nd contains a microservice for purchases and a microservice
or managing its inventory. Two users purchase the same book
imultaneously, one for a single copy and the other for all 10



S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

c
o
b
l
m
e
b

b
d
p
t
s

D

m
u
e
t
T
u
m
a

s
c
l
n
n
s
m
h
(

opies. Both users pay for their orders simultaneously, but the
ne who is buying all 10 copies finishes first. When the user
uying a single copy finishes the payment, there are no books
eft because there is no mechanism to synchronize the inventory
anagement and purchase services in this example. Company C
ncountered a similar problem. The costs vary depending on the
usiness criticality of the affected product features.
Principal. Company C reported that distinct solutions could

e considered depending on feature criticality. In some cases, a
atabase must be shared by the services (see Debt 8.1), or a com-
lex transaction mechanism must be planned, but no approach
o implementing such a transaction was reported. We found no
imilar problems and solutions in other companies.

ebt 9: Use of business logic in communication among services

Microservices encourage the use of dumb pipes (i.e., simple
essage routers) for communication. The communication layer
sed by microservices should not include business logic. How-
ver, in projects like one developed by Company A, ‘‘the data
ransported changed within the communication channel itself’’.
he changes are made by the services communication channel
sing business logic. Using business logic in the services com-
unication layer constitutes an architectural debt because such
logic is not supposed to exist.
Interest. Maintaining additional business logic apart from the

ervices is costly, as any changes to the services may also require
hanges to the communication layer where the business logic is
ocated. Besides, ‘‘each time a new system is on-boarded, you
eed to set up the communication flow, requiring the commu-
ication channel team to provide the flow and possibly set up
ome business logic’’. In other words, an external team—the com-
unication channel maintainers—must understand details about
ow the related services work to implement the business logic
Company A).

Principal. Our interviewees suggested moving all business
logic to the services themselves, thus allowing the communica-
tion layer to act as a dumb pipe. The costs involved are related
to implementing such logic on each service: each team must
understand and implement the changes independently (Company
A).

Debt 10: Reusing third-party implementations

Reusing code can reduce resources while programming. In
software development, reuse may occur by developing libraries
used in various microservices. We call them shared libraries in
the context of microservices because various services usually
share them. On the other hand, reusable code—such as frame-
works, language extensions, and libraries—may also be developed
by external parties. We call codes from external parties exter-
nal dependencies. For a single microservice, shared libraries and
external dependencies can both be considered third-party im-
plementations. We found evidence that using such third-party
implementations may be an architectural debt and that the in-
terest differs depending on whether they are shared libraries or
external dependencies.

Debt 10.1: Many services using different versions of the same internal
shared libraries

Companies may develop their own libraries to reuse code.
Such libraries can act as black boxes for complex operations, and
other reasons exist for using such libraries. One company states,
‘‘You could use REST, but if you want to be efficient, you want a
native binding because it is faster’’. However, these libraries may
14
constitute architectural debt if many services use such libraries
and cause the interest described next.

Interest. Several negative impacts must be considered: (i)
New releases of the libraries may require updates on every ser-
vice using them. A roadmap must be established to handle such
changes (Companies A and E). (ii) Several versions of the libraries
must be maintained, because replacing old versions in all run-
ning services might be impossible for reasons like development
priorities: ‘‘Sometimes the clients are business-critical and, in
their roadmap, upgrading to a new version of a library it is
not the top priority’’ (Companies A and E). (iii) Early adopters
may refuse to implement new versions, especially if breaking
changes exist (Company A). (iv) If library use cases are frequently
unknown, breaks may occur due to unexpected situations. Such
breaks lead to fixes that may lead to breaking changes when
libraries are updated (Company D). (v) The service’s developers
using the library depend explicitly on the team that is developing
the library, so delays in releasing library versions with some
required functionality will likely affect the service’s developer
team (Company F).

Principal. All the companies that mentioned the problem
agree that they should avoid and discourage using shared libraries
as much as possible (Companies A, D, E, and F). Company D
suggested that a complex shared code should be transformed
into services and that more straightforward codes should be
duplicated by the different teams. Several practitioners suggested
considering exceptions only when no better alternative exists
‘‘to keep the amount of shared libraries as minimal as possible’’
(Companies A, D, E, and F).

Debt 10.2: External dependencies with various licenses requiring
approval

External dependencies are any libraries, frameworks, or sim-
ilar software developed by external parties. We found evidence
that their use might lead to architectural debt when the types
of licenses allowed to be used by the company are strictly lim-
ited. Many products depend on some externally developed soft-
ware; not accumulating this debt is almost impossible, but steep
interest can be avoided.

Interest. All third-party codes’ licensing limitations must be
documented: ‘‘We need to document whether they are exportable
in order to be able to perhaps include them in the main appli-
cation and send them to trial, or even in order to be able to
run them in a public cloud because that is also an export from
one country to another’’. Eventually, some dependencies must be
replaced due to non-compliance with regulations. Licenses may
limit business models (e.g., it may not be possible to sell the
product or service) and even prevent the software’s distribution
to some countries. Due to the high risk of regulation issues,
approving such dependencies may be time-consuming and cause
delays (Company B).

Principal. No current approach exists to handle this issue
other than investing in a process to evaluate and approve such
dependencies as fast as possible. Company B suggests that teams
not use external dependencies whose licenses were not approved
in advance to avoid this issue.

Debt 11: Overwhelming amount of unnecessary settings in the ser-
vices

Microservices can be reused and deployed in various settings
by tweaking parameters. One company explained the situation:
‘‘Microservices tend to expose some configuration settings that
can basically be overridden. So, you can set a default value, and
then whoever is using or deploying your microservice can over-
ride it at deployment time. When we add many microservices to-
gether and aggregate them into big settings trees, handling these



S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

k
a
a
m
t
c

t
a
i
p
c
w
n
v
t
(

t
v
e
p
i
m
t
d

D

c
m
s
o
w
d

w
m
m
B

inds of parameters becomes very overwhelming’’. For instance,
llowing parameters to be overridden in different environments
dds some control over resource usage. However, the company
ay incur debt caused by many unnecessary configuration set-

ings among the services, which leads to higher maintenance
osts.
Interest. Managing many parameters takes time and leads

o overhead while deploying products (Companies A, B, C, E,
nd F). Such debt also increases the likelihood of unexpected
ssues caused by wrong setting values: ‘‘It was a very frequent
roblem that deployments would go wrong because somebody
hanged something in deployment scripts, and it would take a
hile to figure out why it was going wrong’’. The greater the
umber of values, the greater the likelihood of mistakes. More
alue combinations will also need to be tested. Mistakes require
ime to fix, and more tests will require more development time
Companies D and G).

Principal. Some interviewees suggested creating a repository
o keep the configuration settings, usually managed by a control
ersion system (Companies A and G). Besides, peer approval for
very change in the settings repository before production helps
revent issues (Company G). Interviewees also suggested reduc-
ng the number of configurable settings on each service to the
inimum necessary (Companies A and F). A configuration server

o automatically apply changes from the settings repository to the
eployments also simplifies managing the settings (Company C).

ebt 12: excessive number of small products

By definition, a microservice is a small product with a single
apability and its own life cycle from development to deploy-
ent. It includes documentation and any governance required for
oftware products. For example, one company reported that ‘‘each
f the microservices effectively became a very small product, and
e have a full process for handling products’’. This may lead to
ebt via an excessive number of small products.
Interest. Each microservice must be governed separately—

hich requires overhead with dedicated management, develop-
ent, deployment, and maintenance. This does not exist with
onoliths because they require only one deployment (Companies
and E).
Principal. Our study reveals no solution to this problem. The

companies reported that they ‘‘haven’t really found a good way to
change our standard ways of working and documenting to handle
that yet’’, and ‘‘these kinds of aspects are a bit difficult when you
have very small units of software flowing all over the place’’.

5. Discussion

This section discusses our ATDs in different contexts, how they
relate overall, how to avoid them, and the limitations of our study.

5.1. Debts in different contexts

We discuss the various ATDs in relation to the company ap-
plication domain, the project stage, and other specific context
factors. We aim to help practitioners understand, adapt, and apply
our results to their specific contexts.

Difficulties with message traceability (Debt 1.1) affect financial
systems more than other product types. Poor management of
dead letter queues (Debt 1.2) was more common in companies
that migrated from older approaches. Problems with coupling
(Debt 2) affect most companies in this study; only Company G did
not report critical coupling issues among services, but we have
only one interviewee from this company.
15
The lack of communication standards among services (Debt
3) occurred more frequently in applications with many services;
smaller products seem to avoid this problem (Table 1 shows each
project’s number of microservices). However, this conclusion re-
quires more investigation because Companies F and G, which
have many services, did not report it as a problem.

The inadequate use of APIs (Debt 4) is a debt that requires
attention every time a new API is created or updated. Not all
the companies reported it, but it affected most companies using
APIs in our investigation (some other companies used primarily
messaging approaches or a balance between APIs and messag-
ing). Our interviewees did not discuss techniques to design good
APIs. We focused on reporting our findings from the interviews.
However, we believe that the API design plays an important role
in fixing this debt. See, for example, the work of Mosqueira-
Rey et al. (2018), in which they present a systematic approach
for developing usable APIs. There might be a relation between
this debt and Debt 3 (lack of communication standards among
microservices), although it is not apparent from our data. Inad-
equate technology use (Debt 5) is usually harder to fix because,
for example, changing an entire platform is hard. Many parts of
a project may depend on chosen technologies, so changing them
may require an entirely new project. Therefore, Debt 5 requires
more attention at the project’s beginning, when technologies are
being chosen.

One solution proposed for solving the overwhelming diversity
of technologies (Debt 6) is limiting the number of technologies
used. This might contradict the definition of microservices be-
cause they are supposed to be independently deployable units
that give practitioners the freedom to choose the technologies
to use. However, the diversity should be reasonably limited in
practice because it may lead to various problems, such as diffi-
culties migrating developers to other teams in a company and a
decrease in a team’s performance because of the need to main-
tain potentially divergent setups. Additionally, despite monolithic
repositories being suggested as a solution for some cases of this
debt, there is a risk that using them for many microservices
might lead to overloaded repositories. Therefore, a good practice
may be using monolithic repositories with smaller subsets of
microservices and only when such microservices share the same
technology stack.

Manually handling retries while trying to communicate a tem-
porarily unavailable service (Debt 7) may also require attention.
This debt was only found while using APIs because the messaging
technologies do not require direct access to another service—only
to the message bus.

Issues with shared data (Debt 8) were rare, but their effects
were some of the most dangerous ones (e.g., breaking other
services). They require attention, especially while designing new
services. Note that Debts 8.1 (Sharing persistence or database
schema) and 8.2 (Unplanned database synchronization) are highly
interconnected: Debt 8.2 might result from splitting a database,
for example, from solving Debt 8.1. On the other hand, sharing a
database among services, which is a solution proposed by some
of the interviewees for Debt 8.2, may incur Debt 8.1. The last case
can be avoided by using different database schemas.

Business logic in the communication layer (Debt 9) is dan-
gerous, especially for legacy systems, and companies developing
new products seem to be aware of this issue and are avoiding it
successfully.

Misusing shared libraries (Debt 10.1) may generate high costs.
Therefore, we argue that they should be used carefully and only
when needed. Our interviewees did not report the same issues for
shared libraries while discussing external dependencies, such as
frameworks. This study does not identify the reasons for differ-
ences among shared libraries and external dependencies. Issues



S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

w
i
s

v
t
a

m
I
p

a
4
i
w
a
e
p
s
s
g
d
s

t
N
w
t
p
t
n

5

a
t
i
b
c
i
e
a
t
h
o
s
a

b
m

d
d
h
d

(
r
c

2
p
t
t

ith external dependencies (Debt 10.2) seem to relate to licens-
ng and are restricted to companies with multiple deploys of the
ame software in various regions worldwide.
A common problem for every project using microservices in-

olves many configurable settings in microservices (Debt 11). All
he companies reported that the services’ deployment is complex
nd error-prone because of the number of settings to define.
The excessive number of products (Debt 12) is hard to avoid. It

ay relate to the services’ granularity or other unknown factors.
t might simply be a drawback of using microservices. Thus, this
roblem must be investigated further.
Many of the debts described here may be found in other

rchitectural styles. For example, poor RESTful API design (Debt
.1) may be found in monoliths. However, they may be different
n microservices because each service is a separate application,
hich adds to the costs. A monolith, for example, may expose
single API, whereas the same functionality might require the
xistence of multiple APIs in separate applications, with multiple
oints of failure instead of a single one. Also, microservices use
everal additional technologies not applied in other architectural
tyles. We introduced a general description of those technolo-
ies in Section 2.1. Many of those technologies were originally
eveloped or adapted to support SOA, but others were created
pecifically to support microservices, as discussed in Section 2.1.
Other approaches that have been proposed in gray litera-

ure can help manage ATD. For example, regarding Debt 8.1,
ewman (2019) suggests using database views and creating a
rapping service. Newman (2019) also discusses other patterns
hat we could not match with our findings, including migration
atterns, user interface composition, and database synchroniza-
ion. Although such patterns might have been used, they were
ot mentioned by our respondents.

.2. Common interests and principals among the debts

Understanding how debts are related is essential to better plan
nd analyze the consequences of refactoring. Fig. 13 illustrates
he debts, their interests and their principals. It shows which
nterests and principals are common among the debts. It was built
y grouping the interests described in Table 4 into higher-level
ategories. Then we connected all the debts to these high-level
nterest categories to show which debts generated similar inter-
sts. For example, the extra work for handling cascading changes
nd a higher number of unnecessary services from Debt 2 and
he overwhelming amount of message formats for developers to
andle from Debt 3 were both categorized into ‘‘development
verhead’’. Some interviewees explicitly stated some relation-
hips; the researchers inferred others through the cross-case
nalysis.
Finally, we repeated the same procedure for the principals,

ut we found only two principals shared between debts: the
etadata standardization and the design of generic services.
Development overhead is caused by nine out of the twelve

ebts we reported (or eleven of sixteen, considering the sub-
ebts). Thus, it is not possible to reduce such development over-
ead without investing in repaying many different debts. The
evelopers are the ones most affected by such overhead.
Potential breaks within the services are caused by four debts

Debts 2, 4, 8, and 10). Investing in paying those debts might
educe the probability of having to deal with instability and
ascading failures.
Dependencies among teams are caused by three debts (Debts

, 4, and 10). Such dependencies contribute to delays in the
roject as well as productivity loss because the developers on one
eam must wait for another team to start their work. Similarly,
eam velocity reduction is caused by three debts (Debts 4, 6, and
16
10). It may be advisable to pay extra attention to Debts 6 and 10
because they are responsible for many different interests.

Fig. 13 also shows other specific interests and principals that
are related to only one or two debts.

We expect a mapping like the one shown in Fig. 13 to help
practitioners to focus on the debts they want to manage according
to the most costly issues they perceive in their projects.

5.3. Microservices coupling

We have found evidence that four debts (or six, consider-
ing the sub-debts) were indirectly increasing the probability of
microservices coupling (Debt 2) and its consequences. Debt 3
(Lack of communication standards among microservices) leads to
an excessive number of APIs or message formats, increasing the
likelihood of having formats designed as coupled by default. As a
result, the involved services cannot communicate with ones other
than those originally developed for such interaction.

The main consequence of Debt 4 (Inadequate use of APIs)
is having a set of services whose boundaries are not well de-
fined, leading to the creation of functionalities in the wrong ser-
vices. Thus, some services that should work independently must
work together (i.e., they are coupled because some functionality
required by one of them is in another service).

Debt 8 (Unplanned data sharing and synchronization among
services) may cause an indirect coupling through the database.
Changes in the database triggered by some change or additional
functionality may eventually cause breaks in the other services.
The services that share the database depend on each other’s
database structure.

Finally, Debt 9 (Use of business logic in communication among
services) might lead to coupling because the logic is usually
coupled to the services it is designed for.

In our study, coupling seems to be a common issue to be
handled by microservices developers. It was mentioned several
times by developers not only as a debt itself as described in Debt
2 but also as an indirect consequence of other debts. Investing
in repaying the four debts (in addition to Debt 2) above might
reduce the probability of having coupling among services.

5.4. Approaches for avoiding ATDs in microservices

Some techniques described in the non-peer-reviewed liter-
ature may help handle some ATDs reported in our research.
Two techniques that may connect to two ATDs reported by the
companies in this work are Domain-Driven Design (DDD) (Evans,
2004; Garcia-Molina and Salem, 1987).

One of the most significant challenges of using microservices
relates to boundaries between them. The wrong boundaries may
increase coupling among microservices (Debt 2.1). DDD is a pow-
erful approach for defining microservices boundaries, but using
DDD off the shelf may be hard in practice. It deserves more
research, however.

To remove Debt 8.1, some of the studied companies chose
to separate databases. None of the interviewees shared details
about approaches they might have been using to avoid incon-
sistencies in the data. However, three approaches are: using
the eventual consistency model (optimistic replication) (Vogels,
2008), sagas (Garcia-Molina and Salem, 1987), and two-phase
commits (Reddy and Kitsuregawa, 1998).

Vogels (2008) explains that a system using an eventual consis-
tency model does not guarantee that subsequent accesses will re-
turn the last updated value right away, but eventually all accesses
to the data will return the last updated value. The delay in the
consistency is a trade-off versus high availability in distributed
systems.



S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

d
i
o
a
d

r
c
m
t
m
t
d
R
i

5

p
m
h
d
c
d
m

s

Fig. 13. Common interests and principals among the debts.
Garcia-Molina and Salem (1987) proposed sagas in 1987. To-
ay, the technique is adapted to microservices. Sagas involve
mplementing transactions among the services via a sequence
f local transactions in several services (a saga). If one trans-
ction fails, a set of compensating transactions may restore the
atabases’ previous state.
Two-phase commits are discussed in distributed database

esearch (e.g., Reddy and Kitsuregawa, 1998). This technique
onsists of preparing the commit (Phase 1) and storing it per-
anently (Phase 2) after an agreement from all involved par-

ies. Newman (2019) argues against the use of two-phase com-
its mainly because of the existence of a window of inconsis-

ency that might lead to problems. When the data must be in two
ifferent places, Newman (2019) suggests using sagas instead.
egarding solutions for ATD, both approaches require further
nvestigation.

.5. Microservice architecture maturity

Microservice architecture is still maturing. We notice that
ractitioners’ different understandings about what comprises a
icroservice lead to different practical decisions. On the other
and, SOA is a more mature concept supported by several stan-
ards, such as the family of WS-* standards for web services. Mi-
roservices are a way of implementing SOA, but there are no stan-
ards such as the WS-* to guide microservices’ implementation,
aking practitioners less supported with best practices.
Large companies tend to have heterogeneous and experienced

taff members with distinct backgrounds. Such a variation among
17
staff members may generate different opinions about solving
the same problems. Because emerging architecture’s definitions
and related technologies are still maturing, the different opinions
increase practitioners’ likelihood of struggling with ATD in such
environments. Consequently, knowing about frequent and costly
ATD in microservices is important.

5.6. Limitations

The sample size of respondents from companies is limited,
particularly from Companies F and G, with only one interviewee
each (see Table 2). This might create bias because we could
not triangulate the data via additional perspectives from other
participants from the same company (source triangulation).

Furthermore, the fewer people we interviewed in a company,
the fewer smells may have been found. Note that not finding a
particular debt does not mean the debt does not exist—only that
we were unable to find it.

Also, we selected our interviewees through convenience sam-
pling. Thus, the debts we found may not be representative of the
respective companies.

Returning to the interviewees multiple times may make them
biased during the process, either in favor of the study or in favor
of (or against) their system. Still, the number of return interviews
with the same interviewees was low, and we primarily asked
about problems other than those discussed before.

Questions 7, 9, 10, and 11 emerged during our interviews and
were directly related to the debts identified in the preceding
interviews, so they may introduce some bias to our results. We



S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

m
t
d
s
t
t
w
a

c
s
y
e
t
p
t
n
r
c
p
p

6

t
(
H
r
i
m

b
c
f
c
c
p
l

b
e
t
T
a
n
m
S
a
e
s

itigated this issue by asking those questions at the end of
he interview after asking open questions about their existing
ebt. By doing so, we avoided anchoring the subjects’ answers to
pecific debts. Also, interviewees may be uncomfortable stating
heir thoughts for several reasons and may not tell the whole
ruth. We mitigated the problem via source triangulation. In cases
ith only one person (Companies F and G), it was impossible to
chieve source triangulation.
The purpose of a multiple-case study is to investigate a set of

ases in depth, not to generalize findings statistically. Yin (2018)
tates, ‘‘rather than thinking about your case(s) as a sample,
ou should think of your case study as the opportunity to shed
mpirical light on some theoretical concepts or principles’’. Prac-
itioners may judge to what extent our findings apply to their
articular context based on similarities and differences between
heir company and the investigated companies. A survey does
ot provide a rich context-related insight but enables reporting
esults statistically. A natural step further in our research is to
onduct a survey where we collect opinions from more peo-
le and companies regarding the identified ATDs, interests, and
rincipals.

. Related work

We identified a set of ATDs in microservices that could hinder
he adoption of microservices. A deeper study about barriers
and drivers) for adopting microservices comes from Knoche and
asselbring (2019), who identify issues related to compliance,
egulations, and licenses as barriers. We identified that licens-
ng and regulations might become an ATD (and a barrier) for
icroservice architecture.
This article extends our previous work (de Toledo et al., 2019)

y investigating six additional companies. The current results
onfirm the found debts in our previous single case study apart
rom business logic in the communication among services. The
urrent study resulted in cross-company insights and, specifi-
ally, an update of our catalog of ATDs. Moreover, the originally-
roposed debts in de Toledo et al. (2019) were changed as fol-
ows:

• ‘‘Too many point-to-point connections among services’’ is
better explained as a coupling issue (Debt 2) and is also
related to Debt 3;

• ‘‘Business logic implemented in the communication layer’’ is
now described in Debt 9;

• ‘‘There is no approach to standardize the communication
model among services’’ is described in Debt 3;

• ‘‘Weak source code and knowledge management for differ-
ent services’’ is removed from our catalog because we found
that it is better classified as a distinct, non-architectural type
of debt;

• ‘‘Unnecessary presence of different middleware technolo-
gies in the communication among services’’ is merged into
Debt 6, which is a more general debt description.

Taibi and Lenarduzzi (2018) interviewed 72 developers and
uilt a catalog of bad smells on microservices. More recently, Taibi
t al. (2020) provided a taxonomy of architectural and organiza-
ional anti-patterns in microservices and their possible solutions.
here is a close relationship among ATDs, architectural smells,
nd architectural anti-patterns, but they are different concepts;
ot all bad smells and anti-patterns are ATD: a code duplication
ay be considered a bad smell, but not TD if there is no interest.
till, some of the ATDs we have identified can be considered
nti-patterns. However, describing them as ATDs enables us to
valuate them in terms of interest and principal. For example,
ome smells identified by Taibi and Lenarduzzi (2018) overlap
18
with ours: (i) shared persistence, which overlaps with Debt 8.1;
(ii) too many standards, which overlaps with Debt 6; (iii) shared
libraries, which overlaps with Debt 10.1; and (iv) Microservice
Greedy, which overlaps with Debt 12. However, no solution is
offered other than careful consideration of services to create.
They present the same problems and solutions we found in our
interviews, reinforcing the importance of these problems. No
other overlaps exist. Our study also presents more details about
the debt and its interest and principal.

Hasselbring and Steinacker (2017) argue that transforming in-
ternal libraries into open-source software may reduce issues with
shared libraries (i.e., it may solve Debt 10.1). Despite insufficient
evidence to confirm their suggestion, we believe more in-depth
studies could confirm or refute such findings.

Bogner et al. (2019b) performed a qualitative study with 10
companies via 17 interviews to explore evolvability assurance
processes for 14 microservice-based systems. Many of the issues
reported were related to ATD. Our work differs in the research fo-
cus: they investigated evolvability assurance processes and came
across ATD issues, but we systematically investigated the debt,
interest, and principal in microservices’ architecture. Their work
partially overlaps with the following ATDs we found in our study:
(i) technological heterogeneity, in which they discuss that their
participants are divided about the use of several different tech-
nologies in microservices, which relates to Debt 6; (ii) inter-
service dependencies and the ripple effect, which refers to Debt
2; (iii) breaking API changes, which is an interest of Debt 4.1; and
(iv) distributed code repositories, in which they argue that it may
complicate the access to the source-code and relates to Debt 6 as
well.

In summary, some related studies overlap with ours in a
limited way, but none is as extensive and comprehensive as ours
concerning ATD in microservices.

7. Conclusions and future work

During software development, it is vitally important to man-
age ATD to avoid extra costs in the long term. We provided a
cross-company analysis to create a catalog of ATDs in microser-
vices, their consequences (interest), and their solutions (princi-
pal). Moreover, we created a map of relationships among ATDs,
their interest and principal. Such a map may support practitioners
in identifying and avoiding ATDs and planning refactorings to
remove them.

Regarding RQ1, we found ATDs that included business logic
among services, shared databases, lack of data-traceability mech-
anisms, poorly designed APIs, and shared libraries. As for RQ2,
we observed that such debts caused substantial interest, such
as unexpected breaks due to changes in the database schema or
other dependencies, unnecessary API complexity, coupling among
services, and dependencies among teams. Finally, for RQ3, we
identified how companies handle such ATDs and the ATD costs.

Future work includes running a survey to increase our results’
generalizability and collect additional information on repayment
prioritization. Furthermore, based on the insights reported in this
article, we propose a new study that investigates metrics for
measuring debt, principal, and interest in microservice architec-
ture to quantify costs and benefits and support prioritization and
decision-making.



S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

T
I

w
W
t
t
S
t
r

D

c
t

A

t

A

R

A

B

B

able 5
nterview guide.
ID Question

1 Tell us about the organization and its divisions.

2 Describe the project, its duration, its size, its technologies, its goals and your role on it.

3 Talk more about the parts of the project that use microservices or another service-oriented architecture.

4 What challenges regarding the architecture have you faced recently? What were their causes and impacts? Did you manage to avoid any
of them? How?

5 Are you migrating from an old solution? What challenges did you face during the migration? What were the costs of the migration?
What were the costs of not migrating?

6 Did you have challenges regarding the communication among services? Did you have business logic outside the services in their
communication? How did you manage to handle it?

7 Did you use any standard for the APIs/message format? Did you have any issues due to your choice of using/not using such standards?
How did you manage to solve it?

8 How did you manage your source code and documentation?

9 Did you have any issues regarding third-party licenses? What were the costs and how did you manage to solve it?

10 Did you have any issues regarding shared libraries? What were the costs and how did you manage to solve it?

11 Did you have any issues regarding data storing? What were the costs and how did you manage to solve it?

12 Could you mention other situations with issues that (including why and how you managed to solve it):
• reduce development speed?
• cause more bugs?
• have a negative impact on other system qualities?
• impact many developers?
• will become worse in the future?

13 Do you have any additional issues we did not covered before?
B

B

B

C

D

D

D

D

E

E

F

CRediT authorship contribution statement

Saulo S. de Toledo: Conceptualization, Methodology, Soft-
are, Validation, Formal analysis, Investigation, Data curation,
riting - original draft, Writing - review & editing, Visualiza-

ion. Antonio Martini: Conceptualization, Methodology, Valida-
ion, Formal analysis, Investigation, Writing - review & editing,
upervision, Project administration. Dag I.K. Sjøberg: Concep-
ualization, Methodology, Validation, Formal analysis, Writing -
eview & editing, Supervision.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

We are grateful to all the interviewees of this study. We thank
he anonymous referees for their comments.

ppendix. Interview guide

The interview guide is presented in Table 5.

eferences

vgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C., 2016. Managing technical
debt in software engineering (dagstuhl seminar 16162). In: Avgeriou, P.,
Kruchten, P., Ozkaya, I., Seaman, C. (Eds.), Dagstuhl Rep. 6 (4), 110–
138. http://dx.doi.org/10.4230/DagRep.6.4.110, URL: http://drops.dagstuhl.de/
opus/volltexte/2016/6693.

esker, T., Martini, A., Bosch, J., 2017. The pricey bill of technical debt: When
and by whom will it be paid?. In: Proceedings - 2017 IEEE International
Conference on Software Maintenance and Evolution, ICSME 2017. IEEE, pp.
13–23. http://dx.doi.org/10.1109/ICSME.2017.42, URL: http://ieeexplore.ieee.
org/document/8094405/.

esker, T., Martini, A., Bosch, J., 2018a. Managing architectural technical debt: A
unified model and systematic literature review. J. Syst. Softw. 135, 1–16.
http://dx.doi.org/10.1016/j.jss.2017.09.025, URL: https://www.sciencedirect.
com/science/article/pii/S0164121217302121.
19
esker, T., Martini, A., Edirisooriya Lokuge, R., Blincoe, K., Bosch, J., 2018b.
Embracing technical debt, from a startup company perspective. In: 2018 IEEE
International Conference on Software Maintenance and Evolution (ICSME).
IEEE, pp. 415–425. http://dx.doi.org/10.1109/ICSME.2018.00051, URL: https:
//ieeexplore.ieee.org/document/8530048/.

ogner, J., Boceck, T., Popp, M., Tschechlov, D., Wagner, S., Zimmermann, A.,
2019a. Towards a collaborative repository for the documentation of service-
based antipatterns and bad smells. In: Proceedings - 2019 IEEE International
Conference on Software Architecture - Companion, ICSA-C 2019. Insti-
tute of Electrical and Electronics Engineers Inc., pp. 95–101. http://dx.doi.
org/10.1109/ICSA-C.2019.00025, URL: https://ieeexplore.ieee.org/document/
8712355.

ogner, J., Fritzsch, J., Wagner, S., Zimmermann, A., 2019b. Assuring the evolv-
ability of microservices: Insights into industry practices and challenges.
In: IEEE International Conference on Software Maintenance and Evolution
(ICSME). Cleveland, Ohio, USA, pp. 546–556. http://dx.doi.org/10.1109/ICSME.
2019.00089, URL: https://ieeexplore.ieee.org/document/8919247.

orbin, J.M., Strauss, A.L., 2015. Basics of qualitative research: techniques and
procedures for developing grounded theory, fourth ed. SAGE.

e Silva, L., Balasubramaniam, D., 2012. Controlling software architecture
erosion: A survey. J. Syst. Softw. 85 (1), 132–151. http://dx.doi.org/10.
1016/j.jss.2011.07.036, URL: https://www.sciencedirect.com/science/article/
pii/S0164121211002044.

i Francesco, P., Lago, P., Malavolta, I., 2019. Architecting with microservices: A
systematic mapping study. J. Syst. Softw. 150, 77–97. http://dx.doi.org/10.
1016/j.jss.2019.01.001, URL: https://www.sciencedirect.com/science/article/
pii/S0164121219300019.

i Francesco, P., Malavolta, I., Lago, P., 2017. Research on architecting microser-
vices: Trends, focus, and potential for industrial adoption. In: 2017 IEEE
International Conference on Software Architecture (ICSA). pp. 21–30. http://
dx.doi.org/10.1109/ICSA.2017.24, URL: https://ieeexplore.ieee.org/document/
7930195/.

ragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M., Montesi, F., Mustafin, R.,
Safina, L., 2017. Microservices: Yesterday, today, and tomorrow. In: Present
and Ulterior Software Engineering. Springer International Publishing, Cham,
pp. 195–216. http://dx.doi.org/10.1007/978-3-319-67425-4_12, (Chapter 12).

rnst, N.A., Bellomo, S., Ozkaya, I., Nord, R.L., Gorton, I., 2015. Measure it? Man-
age it? Ignore it? Software practitioners and technical debt. In: Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering -
ESEC/FSE 2015. ACM Press, New York, New York, USA, pp. 50–60. http://dx.
doi.org/10.1145/2786805.2786848, URL: http://dl.acm.org/citation.cfm?doid=
2786805.2786848.

vans, E., 2004. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, p. 529.

owler, M., 2015. Microservice trade-offs. URL: https://martinfowler.com/articles/

microservice-trade-offs.html.

http://dx.doi.org/10.4230/DagRep.6.4.110
http://drops.dagstuhl.de/opus/volltexte/2016/6693
http://drops.dagstuhl.de/opus/volltexte/2016/6693
http://drops.dagstuhl.de/opus/volltexte/2016/6693
http://dx.doi.org/10.1109/ICSME.2017.42
http://ieeexplore.ieee.org/document/8094405/
http://ieeexplore.ieee.org/document/8094405/
http://ieeexplore.ieee.org/document/8094405/
http://dx.doi.org/10.1016/j.jss.2017.09.025
https://www.sciencedirect.com/science/article/pii/S0164121217302121
https://www.sciencedirect.com/science/article/pii/S0164121217302121
https://www.sciencedirect.com/science/article/pii/S0164121217302121
http://dx.doi.org/10.1109/ICSME.2018.00051
https://ieeexplore.ieee.org/document/8530048/
https://ieeexplore.ieee.org/document/8530048/
https://ieeexplore.ieee.org/document/8530048/
http://dx.doi.org/10.1109/ICSA-C.2019.00025
http://dx.doi.org/10.1109/ICSA-C.2019.00025
http://dx.doi.org/10.1109/ICSA-C.2019.00025
https://ieeexplore.ieee.org/document/8712355
https://ieeexplore.ieee.org/document/8712355
https://ieeexplore.ieee.org/document/8712355
http://dx.doi.org/10.1109/ICSME.2019.00089
http://dx.doi.org/10.1109/ICSME.2019.00089
http://dx.doi.org/10.1109/ICSME.2019.00089
https://ieeexplore.ieee.org/document/8919247
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb7
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb7
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb7
http://dx.doi.org/10.1016/j.jss.2011.07.036
http://dx.doi.org/10.1016/j.jss.2011.07.036
http://dx.doi.org/10.1016/j.jss.2011.07.036
https://www.sciencedirect.com/science/article/pii/S0164121211002044
https://www.sciencedirect.com/science/article/pii/S0164121211002044
https://www.sciencedirect.com/science/article/pii/S0164121211002044
http://dx.doi.org/10.1016/j.jss.2019.01.001
http://dx.doi.org/10.1016/j.jss.2019.01.001
http://dx.doi.org/10.1016/j.jss.2019.01.001
https://www.sciencedirect.com/science/article/pii/S0164121219300019
https://www.sciencedirect.com/science/article/pii/S0164121219300019
https://www.sciencedirect.com/science/article/pii/S0164121219300019
http://dx.doi.org/10.1109/ICSA.2017.24
http://dx.doi.org/10.1109/ICSA.2017.24
http://dx.doi.org/10.1109/ICSA.2017.24
https://ieeexplore.ieee.org/document/7930195/
https://ieeexplore.ieee.org/document/7930195/
https://ieeexplore.ieee.org/document/7930195/
http://dx.doi.org/10.1007/978-3-319-67425-4_12
http://dx.doi.org/10.1145/2786805.2786848
http://dx.doi.org/10.1145/2786805.2786848
http://dx.doi.org/10.1145/2786805.2786848
http://dl.acm.org/citation.cfm?doid=2786805.2786848
http://dl.acm.org/citation.cfm?doid=2786805.2786848
http://dl.acm.org/citation.cfm?doid=2786805.2786848
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb13
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb13
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb13
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html


S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968

F

G

H

H

K

K

L

L

L

M

M

M

M

M

M

M

M

N

urda, A., Fidge, C., Zimmermann, O., Kelly, W., Barros, A., 2018. Migrating en-
terprise legacy source code to microservices: On multitenancy, statefulness,
and data consistency. IEEE Softw. 35 (3), 63–72. http://dx.doi.org/10.1109/
MS.2017.440134612, URL: https://ieeexplore.ieee.org/document/8186442.

arcia-Molina, H., Salem, K., 1987. Sagas. ACM SIGMOD Rec. 16 (3), 249–259.
http://dx.doi.org/10.1145/38714.38742, URL: https://dl.acm.org/doi/10.1145/
38714.38742.

asselbring, W., Steinacker, G., 2017. Microservice architectures for scalability,
agility and reliability in e-commerce. In: Proceedings - 2017 IEEE Interna-
tional Conference on Software Architecture Workshops, ICSAW 2017: Side
Track Proceedings. Institute of Electrical and Electronics Engineers Inc., pp.
243–246. http://dx.doi.org/10.1109/ICSAW.2017.11, URL: http://ieeexplore.
ieee.org/document/7958496.

ohpe, G., Woolf, B., 2012. Enterprise Integration Patterns: Designing, Building,
and Deploying Messaging Solutions, first ed. Addison-Wesley.

noche, H., Hasselbring, W., 2019. Drivers and barriers for microservice adoption
- a survey among professionals in Germany. Enterpr. Model. Inf. Syst. Archit.
(EMISAJ) 14, 1–35. http://dx.doi.org/10.18417/emisa.14.1, URL: https://www.
emisa-journal.org/emisa/article/view/164.

ruchten, P., Nord, R.L., Ozkaya, I., 2012. Technical debt: From metaphor to
theory and practice. IEEE Softw. 29 (6), 18–21. http://dx.doi.org/10.1109/MS.
2012.167, URL: https://ieeexplore.ieee.org/document/6336722.

ewis, J., Fowler, M., 2014. Microservices: a definition of this new architectural
term. URL: https://www.martinfowler.com/articles/microservices.html.

i, W., Lemieux, Y., Gao, J., Zhao, Z., Han, Y., 2019. Service mesh: Challenges,
state of the art, and future research opportunities. In: Proceedings - 13th
IEEE International Conference on Service-Oriented System Engineering, SOSE
2019, 10th International Workshop on Joint Cloud Computing, JCC 2019 and
2019 IEEE International Workshop on Cloud Computing in Robotic Systems,
CCRS 2019. Institute of Electrical and Electronics Engineers Inc., pp. 122–127.
http://dx.doi.org/10.1109/SOSE.2019.00026, URL: https://ieeexplore.ieee.org/
document/8705911.

i, Z., Liang, P., Avgeriou, P., 2014. Architectural debt management in value-
oriented architecting. In: Economics-Driven Software Architecture. pp. 183–
204. http://dx.doi.org/10.1016/B978-0-12-410464-8.00009-X, URL: https://
www.sciencedirect.com/science/article/pii/B978012410464800009X.

arquez, G., Astudillo, H., 2018. Actual use of architectural patterns in
microservices-based open source projects. In: Proceedings - Asia-Pacific
Software Engineering Conference, APSEC, Vol. 2018-Decem. IEEE Computer
Society, pp. 31–40. http://dx.doi.org/10.1109/APSEC.2018.00017, URL: https:
//ieeexplore.ieee.org/document/8719492.

árquez, G., Villegas, M.M., Astudillo, H., 2018. A pattern language for scalable
microservices-based systems. In: ACM International Conference Proceeding
Series. pp. 1–7. http://dx.doi.org/10.1145/3241403.3241429, URL: https://dl.
acm.org/doi/10.1145/3241403.3241429.

artini, A., Bosch, J., 2016. An empirically developed method to aid decisions
on architectural technical debt refactoring: Anacondebt. In: Proceedings of
the 38th International Conference on Software Engineering Companion -
ICSE ’16. ACM Press, New York, New York, USA, pp. 31–40. http://dx.doi.
org/10.1145/2889160.2889224, URL: https://dl.acm.org/doi/10.1145/2889160.
2889224.

artini, A., Bosch, J., Chaudron, M., 2015. Investigating architectural technical
debt accumulation and refactoring over time: A multiple-case study. In:
Information and Software Technology, Vol. 67. Elsevier, pp. 237–253. http://
dx.doi.org/10.1016/j.infsof.2015.07.005, URL: https://www.sciencedirect.com/
science/article/pii/S0950584915001287.

artini, A., Fontana, F.A., Biaggi, A., Roveda, R., 2018. Identifying and Pri-
oritizing Architectural Debt Through Architectural Smells: A Case Study
in a Large Software Company. In: Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), Madrid, Spain, pp. 320–335. http://dx.doi.org/
10.1007/978-3-030-00761-4_21, URL: https://link.springer.com/chapter/10.
1007/978-3-030-00761-4_21.

o, R., Cai, Y., Kazman, R., Xiao, L., Feng, Q., 2019. Architecture anti-patterns:
Automatically detectable violations of design principles. IEEE Trans. Softw.
Eng. 1. http://dx.doi.org/10.1109/tse.2019.2910856, URL: https://ieeexplore.
ieee.org/document/8691586.

ontesi, F., Weber, J., 2016. Circuit breakers, discovery, and API gateways in
microservices. CoRR abs/1609.0 arXiv:1609.05830v2 URL: http://arxiv.org/
abs/1609.05830v2.

osqueira-Rey, E., Alonso-Ríos, D., Moret-Bonillo, V., Fernández-Varela, I.,
Álvarez-Estévez, D., 2018. A systematic approach to API usability: Taxonomy-
derived criteria and a case study. Inf. Softw. Technol. 97, 46–63. http://
dx.doi.org/10.1016/j.infsof.2017.12.010, URL: https://www.sciencedirect.com/
science/article/pii/S0950584917302471.

ewman, S., 2017. Building Microservices: Designing Fine-Grained Systems, first

ed. O’Reilly Media, Inc..

20
Newman, S., 2019. Monolith to Microservices: Evolutionary Patterns to
Transform Your Monolith, first ed. O’Reilly Media, Inc., p. 221.

Niblett, P., Graham, S., 2005. Events and service-oriented architecture: The OASIS
web services notification specifications. IBM Syst. J. 44 (4), 869–886. http:
//dx.doi.org/10.1147/sj.444.0869, URL: https://ieeexplore.ieee.org/document/
5386704.

Rademacher, F., Sachweh, S., Zundorf, A., 2017. Differences between model-
driven development of service-oriented and microservice architecture. In:
Proceedings - 2017 IEEE International Conference on Software Architecture
Workshops, ICSAW 2017: Side Track Proceedings. Institute of Electrical and
Electronics Engineers Inc., pp. 38–45. http://dx.doi.org/10.1109/ICSAW.2017.
32, URL: https://ieeexplore.ieee.org/document/7958454.

Reddy, P.K., Kitsuregawa, M., 1998. Reducing the blocking in two-phase commit
protocol employing backup sites. In: Proceedings - 3rd IFCIS International
Conference on Cooperative Information Systems, CoopIS 1998, Vol. 1998-
Augus. Institute of Electrical and Electronics Engineers Inc., pp. 406–415.
http://dx.doi.org/10.1109/COOPIS.1998.706315, URL: https://ieeexplore.ieee.
org/document/706315.

Richards, M., 2016. In: Barber, N., Roumeliotis, R. (Eds.), Microservices vs.
Service-Oriented Architecture, first ed. O’Reilly Media, Inc., p. 45.

Runeson, P., Höst, M., Rainer, A., Regnell, B., 2012. Case Study Research in
Software Engineering: Guidelines and Examples, first ed. Wiley Publishing.

Schmid, K., 2013. A formal approach to technical debt decision making. In:
QoSA 2013 - Proceedings of the 9th International ACM Sigsoft Conference
on the Quality of Software Architectures. ACM Press, New York, New York,
USA, pp. 153–162. http://dx.doi.org/10.1145/2465478.2465492, URL: https:
//dl.acm.org/doi/10.1145/2465478.2465492.

Taibi, D., Lenarduzzi, V., 2018. On the definition of microservice bad smells.
IEEE Softw. 35 (3), 56–62. http://dx.doi.org/10.1109/MS.2018.2141031, URL:
https://ieeexplore.ieee.org/document/8354414.

Taibi, D., Lenarduzzi, V., Pahl, C., 2020. Microservices anti-patterns: A taxonomy.
In: Bucchiarone, A., Dragoni, N., Dustdar, S., Lago, P., Mazzara, M., Rivera, V.,
Sadovykh, A. (Eds.), Microservices: Science and Engineering. Springer In-
ternational Publishing, Cham, pp. 111–128. http://dx.doi.org/10.1007/978-3-
030-31646-4_5, URL: https://link.springer.com/chapter/10.1007/978-3-030-
31646-4_5.

Thönes, J., 2015. Microservices. IEEE Softw. 32 (1), 116. http://dx.doi.org/10.1109/
MS.2015.11, URL: https://ieeexplore.ieee.org/document/7030212.

de Toledo, S.S., Martini, A., Przybyszewska, A., Sjoberg, D.I., 2019. Architectural
technical debt in microservices: A case study in a large company. In:
2019 IEEE/ACM International Conference on Technical Debt (TechDebt). IEEE,
Montreal, Quebec - CA, pp. 78–87. http://dx.doi.org/10.1109/techdebt.2019.
00026, URL: https://ieeexplore.ieee.org/document/8786035/.

Van Gurp, J., Bosch, J., 2002. Design erosion: Problems and causes. J. Syst.
Softw. 61 (2), 105–119. http://dx.doi.org/10.1016/S0164-1212(01)00152-2,
URL: https://www.sciencedirect.com/science/article/pii/S0164121201001522.

Verdecchia, R., Malavolta, I., Lago, P., 2018. Architectural technical debt identifi-
cation: The research landscape. In: Proceedings - International Conference
on Software Engineering. pp. 11–20. http://dx.doi.org/10.1145/3194164.
3194176, URL: https://dl.acm.org/doi/10.1145/3194164.3194176.

Vogels, W., 2008. Eventually consistent. Queue 6 (6), 14–19. http://dx.doi.
org/10.1145/1466443.1466448, URL: https://dl.acm.org/doi/10.1145/1466443.
1466448.

Yin, R.K., 2018. Case Study Research and Applications: Design and Methods, sixth
ed. Sage Publications, Inc.

Zimmermann, O., 2017. Microservices tenets: Agile approach to service de-
velopment and deployment. Comput. Sci. - Res. Dev. 32 (3–4), 301–310.
http://dx.doi.org/10.1007/s00450-016-0337-0, URL: http://link.springer.com/
10.1007/s00450-016-0337-0.

Saulo Soares de Toledo is a Ph.D. candidate at the
University of Oslo, Oslo, Norway. His research interests
include technical debt, microservices, and service-
oriented architecture. de Toledo received his master’s
degree in computer science from the Federal University
of Campina Grande, Brazil.

http://dx.doi.org/10.1109/MS.2017.440134612
http://dx.doi.org/10.1109/MS.2017.440134612
http://dx.doi.org/10.1109/MS.2017.440134612
https://ieeexplore.ieee.org/document/8186442
http://dx.doi.org/10.1145/38714.38742
https://dl.acm.org/doi/10.1145/38714.38742
https://dl.acm.org/doi/10.1145/38714.38742
https://dl.acm.org/doi/10.1145/38714.38742
http://dx.doi.org/10.1109/ICSAW.2017.11
http://ieeexplore.ieee.org/document/7958496
http://ieeexplore.ieee.org/document/7958496
http://ieeexplore.ieee.org/document/7958496
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb18
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb18
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb18
http://dx.doi.org/10.18417/emisa.14.1
https://www.emisa-journal.org/emisa/article/view/164
https://www.emisa-journal.org/emisa/article/view/164
https://www.emisa-journal.org/emisa/article/view/164
http://dx.doi.org/10.1109/MS.2012.167
http://dx.doi.org/10.1109/MS.2012.167
http://dx.doi.org/10.1109/MS.2012.167
https://ieeexplore.ieee.org/document/6336722
https://www.martinfowler.com/articles/microservices.html
http://dx.doi.org/10.1109/SOSE.2019.00026
https://ieeexplore.ieee.org/document/8705911
https://ieeexplore.ieee.org/document/8705911
https://ieeexplore.ieee.org/document/8705911
http://dx.doi.org/10.1016/B978-0-12-410464-8.00009-X
https://www.sciencedirect.com/science/article/pii/B978012410464800009X
https://www.sciencedirect.com/science/article/pii/B978012410464800009X
https://www.sciencedirect.com/science/article/pii/B978012410464800009X
http://dx.doi.org/10.1109/APSEC.2018.00017
https://ieeexplore.ieee.org/document/8719492
https://ieeexplore.ieee.org/document/8719492
https://ieeexplore.ieee.org/document/8719492
http://dx.doi.org/10.1145/3241403.3241429
https://dl.acm.org/doi/10.1145/3241403.3241429
https://dl.acm.org/doi/10.1145/3241403.3241429
https://dl.acm.org/doi/10.1145/3241403.3241429
http://dx.doi.org/10.1145/2889160.2889224
http://dx.doi.org/10.1145/2889160.2889224
http://dx.doi.org/10.1145/2889160.2889224
https://dl.acm.org/doi/10.1145/2889160.2889224
https://dl.acm.org/doi/10.1145/2889160.2889224
https://dl.acm.org/doi/10.1145/2889160.2889224
http://dx.doi.org/10.1016/j.infsof.2015.07.005
http://dx.doi.org/10.1016/j.infsof.2015.07.005
http://dx.doi.org/10.1016/j.infsof.2015.07.005
https://www.sciencedirect.com/science/article/pii/S0950584915001287
https://www.sciencedirect.com/science/article/pii/S0950584915001287
https://www.sciencedirect.com/science/article/pii/S0950584915001287
http://dx.doi.org/10.1007/978-3-030-00761-4_21
http://dx.doi.org/10.1007/978-3-030-00761-4_21
http://dx.doi.org/10.1007/978-3-030-00761-4_21
https://link.springer.com/chapter/10.1007/978-3-030-00761-4_21
https://link.springer.com/chapter/10.1007/978-3-030-00761-4_21
https://link.springer.com/chapter/10.1007/978-3-030-00761-4_21
http://dx.doi.org/10.1109/tse.2019.2910856
https://ieeexplore.ieee.org/document/8691586
https://ieeexplore.ieee.org/document/8691586
https://ieeexplore.ieee.org/document/8691586
http://arxiv.org/abs/1609.05830v2
http://arxiv.org/abs/1609.05830v2
http://arxiv.org/abs/1609.05830v2
http://arxiv.org/abs/1609.05830v2
http://dx.doi.org/10.1016/j.infsof.2017.12.010
http://dx.doi.org/10.1016/j.infsof.2017.12.010
http://dx.doi.org/10.1016/j.infsof.2017.12.010
https://www.sciencedirect.com/science/article/pii/S0950584917302471
https://www.sciencedirect.com/science/article/pii/S0950584917302471
https://www.sciencedirect.com/science/article/pii/S0950584917302471
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb32
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb32
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb32
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb33
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb33
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb33
http://dx.doi.org/10.1147/sj.444.0869
http://dx.doi.org/10.1147/sj.444.0869
http://dx.doi.org/10.1147/sj.444.0869
https://ieeexplore.ieee.org/document/5386704
https://ieeexplore.ieee.org/document/5386704
https://ieeexplore.ieee.org/document/5386704
http://dx.doi.org/10.1109/ICSAW.2017.32
http://dx.doi.org/10.1109/ICSAW.2017.32
http://dx.doi.org/10.1109/ICSAW.2017.32
https://ieeexplore.ieee.org/document/7958454
http://dx.doi.org/10.1109/COOPIS.1998.706315
https://ieeexplore.ieee.org/document/706315
https://ieeexplore.ieee.org/document/706315
https://ieeexplore.ieee.org/document/706315
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb37
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb37
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb37
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb38
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb38
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb38
http://dx.doi.org/10.1145/2465478.2465492
https://dl.acm.org/doi/10.1145/2465478.2465492
https://dl.acm.org/doi/10.1145/2465478.2465492
https://dl.acm.org/doi/10.1145/2465478.2465492
http://dx.doi.org/10.1109/MS.2018.2141031
https://ieeexplore.ieee.org/document/8354414
http://dx.doi.org/10.1007/978-3-030-31646-4_5
http://dx.doi.org/10.1007/978-3-030-31646-4_5
http://dx.doi.org/10.1007/978-3-030-31646-4_5
https://link.springer.com/chapter/10.1007/978-3-030-31646-4_5
https://link.springer.com/chapter/10.1007/978-3-030-31646-4_5
https://link.springer.com/chapter/10.1007/978-3-030-31646-4_5
http://dx.doi.org/10.1109/MS.2015.11
http://dx.doi.org/10.1109/MS.2015.11
http://dx.doi.org/10.1109/MS.2015.11
https://ieeexplore.ieee.org/document/7030212
http://dx.doi.org/10.1109/techdebt.2019.00026
http://dx.doi.org/10.1109/techdebt.2019.00026
http://dx.doi.org/10.1109/techdebt.2019.00026
https://ieeexplore.ieee.org/document/8786035/
http://dx.doi.org/10.1016/S0164-1212(01)00152-2
https://www.sciencedirect.com/science/article/pii/S0164121201001522
http://dx.doi.org/10.1145/3194164.3194176
http://dx.doi.org/10.1145/3194164.3194176
http://dx.doi.org/10.1145/3194164.3194176
https://dl.acm.org/doi/10.1145/3194164.3194176
http://dx.doi.org/10.1145/1466443.1466448
http://dx.doi.org/10.1145/1466443.1466448
http://dx.doi.org/10.1145/1466443.1466448
https://dl.acm.org/doi/10.1145/1466443.1466448
https://dl.acm.org/doi/10.1145/1466443.1466448
https://dl.acm.org/doi/10.1145/1466443.1466448
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb47
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb47
http://refhub.elsevier.com/S0164-1212(21)00065-0/sb47
http://dx.doi.org/10.1007/s00450-016-0337-0
http://link.springer.com/10.1007/s00450-016-0337-0
http://link.springer.com/10.1007/s00450-016-0337-0
http://link.springer.com/10.1007/s00450-016-0337-0


S.S. de Toledo, A. Martini and D.I.K. Sjøberg The Journal of Systems & Software 177 (2021) 110968
Antonio Martini is an associate professor at the
University of Oslo, Oslo, Norway, and a part-time
researcher at the Chalmers University of Technology,
Gothenburg, Sweden. His research interests include
technical debt, software architecture, technical leader-
ship, and agile software development. Martini received
his Ph.D. in software engineering from Chalmers
University of Technology, Sweden.
21
Dag I.K. Sjøberg is a professor at the University of
Oslo. His research interests are the software lifecycle,
including agile and lean development processes, and
empirical research methods in software engineering.
Sjøberg received his Ph.D. in computing science from
the University of Glasgow, Scotland, UK.


	Identifying architectural technical debt, principal, and interest in microservices: A multiple-case study
	Introduction
	Background
	Microservices
	Microservices communication
	Scalability and service discovery
	Service availability and responsiveness
	Service mesh

	Architectural technical debt
	An overview of ATD
	ATD management
	ATD versus related concepts


	Methodology
	Case selection
	Data collection
	Data analysis

	Results
	Debt 1: Insufficient metadata in the messages
	Debt 1.1: Insufficient message traceability
	Debt 1.2: Poor dead letter queue growth management

	Debt 2: Microservice coupling
	Debt 3: Lack of communication standards among microservices
	Debt 4: Inadequate use of APIs
	Debt 4.1: Poor RESTful API design
	Debt 4.2: Use of complex API calls when messaging is a simpler solution

	Debt 5: Use of inadequate technologies to support the microservices architecture
	Debt 6: Excessive diversity or heterogeneity in the technologies chosen across the system
	Debt 7: Manual per service handling of network failures when target services are unavailable
	Debt 8: Unplanned data sharing and synchronization among services
	Debt 8.1: Sharing persistence or database schema
	Debt 8.2: Unplanned database synchronization

	Debt 9: Use of business logic in communication among services
	Debt 10: Reusing third-party implementations
	Debt 10.1: Many services using different versions of the same internal shared libraries
	Debt 10.2: External dependencies with various licenses requiring approval

	Debt 11: Overwhelming amount of unnecessary settings in the services
	Debt 12: Excessive number of small products

	Discussion
	Debts in different contexts
	Common interests and principals among the debts
	Microservices coupling
	Approaches for avoiding ATDs in microservices
	Microservice architecture maturity
	Limitations

	Related work
	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. Interview guide
	References


