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We introduce a rough perturbation of the Navier–Stokes system and jus-
tify its physical relevance from balance of momentum and conservation of
circulation in the inviscid limit. We present a framework for a well-posedness
analysis of the system. In particular, we define an intrinsic notion of strong
solution based on ideas from the rough path theory and study the system in
an equivalent vorticity formulation. In two space dimensions, we prove that
well-posedness and enstrophy balance holds. Moreover, we derive rough path
continuity of the equation, which yields a Wong–Zakai result for Brownian
driving paths, and show that for a large class of driving signals, the system
generates a continuous random dynamical system. In dimension three, the
noise is not enstrophy balanced, and we establish the existence of local in
time solutions.

1. Introduction.

1.1. General motivation. In this paper, we investigate well-posedness and stability of a
rough-path perturbation of the Navier–Stokes system. The deterministic Navier-Stokes equa-
tions are a system of nonlinear partial differential equations that govern the velocity field
u and pressure p of an incompressible homogeneous viscous fluid moving in some domain
D ⊆ Rd :

(1.1)
∂tu+ (u · ∇)u= −∇p+ ϑ�u, (t, x) ∈ (0, T )×D,

∇ · u= 0, u|t=0 = u0,

where ϑ is the kinematic viscosity, u0 is a given initial velocity and additional boundary
conditions are needed depending on the domain D. The system (1.1) can be derived from the
basic physical principles by assuming conservation of mass and momentum in integral form,
homogeneity, incompressibility (or conservation of kinetic energy) and viscous stress forces,
and using Reynold’s transport theorem. At least formally, the time-dependent vector field u
generates a time-homogeneous two-parameter flow ηs,t on D:

η̇s,t (x)= ut (ηs,t (x)), ηs,s(x)= x, s ≤ t, x ∈ D.

That is, a particle initially at a point x ∈ D at time s moves to the point ηs,t (x) ∈ D at time t
in such way that at each t ′ ∈ (s, t), the instantaneous velocity is given by ut ′(ηs,t ′(x)).

In practice, solutions of the Navier–Stokes system are numerically approximated. Due
to limited computational resources, there are usually subgrid scales that cannot be resolved
by a direct numerical simulation. The nonlinear term (u · ∇)u mixes the subgrid and grid
scales. As such, accurate forecasts of turbulent fluid regimes are only possible at the moment
if substantial computational resources are invested, which is not a luxury practitioners can
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afford in real-time applications where data is to be assimilated. Lewis Fry Richardson has
said: “Big whirls have little whirls that feed on their velocity, and little whirls have lesser
whirls and so on to viscosity.” Here, Richardson is describing the direct energy cascade in
3D turbulence, in which energy is transferred from larger eddies (modes) to smaller eddies
to the minimum scale at which the energy is dissipated by viscosity. In fluid dynamics and
turbulence modeling especially, the search for tractable models for subgrid-scale dynamics
that are closable, parameterizable, and preserve physical laws is ongoing (see, e.g., [26] for
one such example). While all parameterization schemes are designed to improve the quality
of forecasts, stochastic parameterization schemes have the additional advantage of providing
a natural mechanism to quantify uncertainty in prediction.

An important property of a parameterized dynamical system is the stability of the dynamics
with respect to the parameters. In order to define stability, one must specify a set of input
parameters and an output set (of the dynamical system), and endow the corresponding sets
with a topology. For a parameterized stochastic dynamical system, there are two main types of
stability, which we will briefly explain. Let S denote the output of a parameterized stochastic
dynamical system, which takes values in a space N and depends on time t ∈ R+, space
x ∈ M, a set of parameters �, and a sample space outcome ω ∈ � (where (�,F,P) is a
probability space). Probabilistic stability usually means continuity of the map

S :�→O ⊂ L0(�× R+ ×M;N ),
where O is a metric space contained in L0(� × R+ × M;N ), the space of measurable
random variables from � × R+ × M to N . Pathwise stability, on the other hand, means
continuity of the map

S :�×�→ Õ ⊂L0(R+ ×M;N ),
where � shall be endowed with certain topology.

To study stability in this sense, a solution map needs to be constructed for each ω; in
other words, S(ω) is the outcome of a deterministic dynamical system. If (�,F,P) is the
canonical probability space for a multi-dimensional Wiener process and the model contains a
stochastic integral, then, in general, there is no separable Banach space contained in the space
of continuous functions � that contains the trajectories of the Wiener process almost-surely
and for which the solution map S is pathwise stable. The key idea of rough paths is to consider
an enriched set � of rough paths (i.e., an appropriate feature set for the Brownian paths) that
contains additional information beyond the path itself, namely the iterated integrals of the
path ω, which one can construct by probabilistic methods. The map S is then factorized as
follows:

�×�
	×id

�����������

S
�� L0(R+ ×M;N ),

� ×�

S̃
�������������

where 	 is a measurable feature map which “lifts” the path to a rough path and S̃ is a con-
tinuous (Lipschitz in some cases) “path-by-path” solution map. The construction of S̃ allows
Brownian paths to be treated as a parameter belonging to the set of rough paths, which puts
the stochastic and deterministic parameterization schemes on equal footing as far as stability
is concerned.

As mentioned above, stochastic parameterization schemes offer a natural mechanism to
forecast uncertainty. That is, an ensemble of solutions can be generated. By constructing a
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path-by-path solution map S̃, any element of the enriched space � is an admissible driving
path. For example, non-Markovian processes such as fractional Brownian motion have rough
path lifts to �. Thus, a highly flexible stochastic modeling framework is permissible once the
pathwise solution map S̃ is constructed. Recent work on the statistics of 2D fluid turbulence
suggests that the subgrid (or fast scales) dynamics of fluids are non-Markovian and non-
Gaussian [14, 23]. In fact, even piecewise linearly interpolated data from observations could
serve as a driving path.

The system of rough partial differential equations we consider in this paper arise from
perturbing the advecting vector field in (1.1) by a time-dependent vector field that is rough
in time and smooth in space. More precisely, we re-write (1.1) in covariant form, and then
perturb the advecting vector field. The perturbation can be understood as a parameterization
of the subgrid dynamics of the fluid velocity field. Therefore, the well-posedness and sta-
bility results we establish clear the way for the development of a rich and robust modeling
framework for fluids.

1.2. Derivation of the equation. In this section we present a heuristic derivation of our
main equation and discuss its physical relevance. However, this is not essential for reading
and understanding our results in the remainder of the paper and, as such, may be skipped
during the first reading.

The Navier–Stokes system (1.1) is the differential form of the momentum balance prin-
ciple under the additional assumption that the fluid is homogeneous (constant density) and
incompressible. The momentum balance in integral-form and in standard coordinates reads

d

dt

∫
ηs,t (W)

uitρ dx =
∫
ηs,t (W)

ν�uit dx −
∫
ηs,t (W)

pni dA=
∫
ηs,t (W)

(
ν�uit − ∂xipt

)
dx,

for all nice regionsW ⊂ D, where we have written the coordinates to emphasize the fact that
the momentum balance principle, as stated, is coordinate dependent.

It is a worthwhile endeavor to derive an equation for the momentum balance that is invari-
ant under a change of the coordinate system (see, e.g., for [30] for motivation and [1] or [31]
for more details). The language of differential geometry provides the tools to do so, while
also providing a natural generalization of the fluid equations to a manifold M .

One usually considers the fluid velocity u in (1.1) as a vector field, which we write as
u= uj ∂

∂xj
. where (x,U) is a local coordinate system of M and ∂

∂xj
is the local basis of the

tangent bundle TM . Here and for the rest of the paper we use the convention of summation
over repeated indices. In the inviscid case ϑ = 0, that is, for Euler’s equations, the momentum
balance principle implies conservation of circulation by Reynold’s transport theorem:∮

ηs,t (C)
ut =

∮
C
u0

for any s, t and any contour C. The reader will notice the ambiguity of the above integrals—
the contour is a one-dimensional subset of M and as such one should really understand u
as a 1-form. One can obtain a 1-form from u on a Riemannian manifold (M,g) by setting
u� := gijuj dxj , where dxj is a local basis of the cotangent bundle T ∗M and gij is the metric
tensor in local coordinates. To simplify our discussion below, we assume the manifold is flat
gij = δij (globally) and boundaryless (e.g., the Torus). Thus, the contour integrals above can
be written as line integrals of the one-form u�:∮

ηs,t (C)
u
�
t =

∮
C
u
�
0.
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To obtain a coordinate-free expression for u�, we first consider the Navier–Stokes equation
in standard coordinates:

∂tu
i + uj ∂

∂xj
ui = − ∂

∂xi
p+ ϑ�ui, i ∈ {1, . . . , d}.

Adding uj ∂
∂xi
uj to both-sides of the equation, we get

∂tu
i + uj ∂

∂xj
ui + uj ∂

∂xi
uj = − ∂

∂xi
p̃+ ϑ�ui,

where p̃ = p− 1
2 |u|2. The reason for adding this term to both sides is that the last two terms

on the left-hand side of the equality can be identified with the Lie derivative of the one-form
u� along u:

£ut u
�
t = d

dτ
(ηt,τ )

∗u�t |τ=t = ujt ∂
∂xj

uit dx
i + ujt ∂

∂xi
u
j
t dx

i,

where the latter equality is a direct consequence of Cartan’s magic formula. Let d be the
exterior differential operator and δ the co-differential operator. The operator dδ+δ d is called
the Hodge–Laplacian, and is equal to the (Levi-Civita) connection Laplacian on flat space by
the Weitzenböck identity. In particular,

�u= (
(dδ+ δ d)u�

)� ⇔ �ui = (
(dδ + δ d)u�

)
i , i ∈ {1, . . . d},

where � denotes the inverse of the � operator. Putting it all together, the covariant form of the
Navier–Stokes equation is given by

(1.2) ∂tu
� + £uu

� = −dp̃+ ϑδ du�, δu� = 0,

where the divergence-free condition is written in terms of the codifferential. The term £uu�

is the nonlinear Lie-advection of the one-form u� by the vector-field u whose associated flow
generates the integral curves η. As an application of Reynold’s transport theorem, we find

d

dt

∮
ηs,t (C)

u
�
t =

∮
ηs,t (C)

(∂t + £ut )u
�
t =

∮
ηs,t (C)

(
dp̃+ ϑ(d + δ)2u�),

which, upon applying Stokes’ theorem, gives a convenient proof of circulation conservation
when ϑ = 0.

In practice, one must approximate solutions of (1.2), and hence effectively ignore the high
modes of the solution. That is, one can only compute solutions of

∂tu
L,� + £uLu

L,� = −dp̃+ ϑδ duL,�, δuL,� = 0,

where uL has only modes up to a certain order. A way of improving approximations on a
limited computational budget is to parameterize the high-modes uH of u by a vector field ũH

and compute

∂tu
L,� + £uL+ũH uL,� = −dp̃+ ϑδ duL,�, δuL,� = 0.

One possible choice of a parameterization of uH is given by ũH = σkḂkt , where σk :M →
Rd , k ∈ {1, . . . ,K}, are sufficiently regular divergence-free vector fields and Bk : R+ → R
are independent Brownian motions. The hope is that u is approximated by a stochastic ensem-
ble of solutions of uL. In fact, such an equation can be derived from the theory of stochastic
homogenization combined with a variational principle, and we refer the reader to [8, 9, 22]
for more details about the derivation and for verifiable proof that the parameterization is
flexible enough to capture the high-modes of u. Motivated by the practical success of this ap-
proach, we seek to develop a framework for more flexible parameterizations, where instead
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of Brownian motions Bk , one considers rough paths zk , and to develop pathwise stability of
the Brownian case, at least in dimension two.

Motivated by this problem, we perturb the advecting vector field u in £uu� in (1.2) by a
random vector field of the form σkż

k , where σk :M → Rd , k ∈ {1, . . . ,K}, are sufficiently
regular divergence-free vector fields and zk : R+ → R are driving paths, which shall eventu-
ally possess only a limited regularity. That is, we replace £uu� with £u+σkżku

� and consider

(1.3) ∂tu
� + £u+σkżku

� = ∂tu� + £uu
� + £σku

�żkt = −dp̃+ ϑδ du�.

The vector field u+ σkżk generates the two-parameter flow η̃ on M :

˙̃ηs,t (x)= ut (η̃s,t (x)) + σk(η̃s,t )żkt , η̃s,s(x)= x, s ≤ t, x ∈M.
We understand this on a formal level, since it is not clear how to construct the flow map η̃
due to the low regularity. Applying Reynold’s transport theorem, we find

d

dt

∮
η̃s,t (C)

u
�
t =

∮
ηs,t (C)

(∂t + £u+σkżk )u
�
t =

∮
ηs,t (C)

(
dp̃+ ϑ(d + δ)2u�),

which yields conservation of circulation in the inviscid case ϑ = 0 (see also, [10]).
Writing (1.3) in local coordinates, we obtain

(1.4) ∂tu
i + uj ∂

∂xj
ui +

[
σ
j
k

∂

∂xj
ui + uj ∂

∂xi
σ
j
k

]
żkt = − ∂

∂xi
p+ ϑ�ui,

where we note that we are again writing p (and not p̃) which explains that uj ∂
∂xi
uj does not

appear in the equation. This is the main equation we study in this paper. In particular, we
introduce a formulation of the equation well suited to make sense of the distributional terms
żk and to study well-posedness (see (3.1)).

However, for technical reasons related to the noise term żk , the nonlocal nature of the
pressure term (which translates to the divergence-free condition) makes it difficult to obtain
a priori estimates directly from this formulation. We elaborate on this issue a bit more in
Section 1.3.

One way to circumvent dealing with the pressure is to consider the 2-form ξ̃ = du�, called
the vorticity. Taking the exterior derivative in (1.3) and using that d commutes with the Lie
derivative, we get

∂t ξ̃ + £uξ̃ + £σk ξ̃ ż
k
t = ϑ dδξ̃ .

Let us consider the Hodge star of the vorticity, which we denote by ξ , and is equal to the
scalar ∗ξ̃ in dimension two and the vector field (∗ξ)� in dimension three, where ∗ is the
Hodge-star operator, which maps 2-forms to d− 2-forms. It follows that (see, e.g., pages 451
and 566 in [31] or Appendix A.6. of [4] which proves [��d−2,£v] = 0 and recall that we have
assumed flatness)

∂tξ + £uξ + £σk ξ ż
k
t = ϑ�ξ,

where £σk ξ = σk(ξ) in dimension two since ξ is a scalar and £σk ξ = [σk, ξ ] in dimension
three since ξ is a vector field, and we have slightly abused notation in writing the Laplacian on
the right-hand-side. In standard coordinates, ξ solves a scalar transport equation in dimension
two:

∂tξ + uj ∂
∂xj

ξ + σ jk
∂

∂xj
ξ żkt = ϑ�ξ,
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and ξ solves a perturbed version of the usual vorticity equation in dimension three:

(
∂tξ + [

u+ σk · zk, ξ ])i = ∂tξ i + uj ∂
∂xj

ξ i − ξj ∂
∂xj

ui +
[
σ
j
k

∂

∂xj
ξ i − ξj ∂

∂xj
σ ik

]
żkt

= ϑ�ξi, i ∈ {1,2,3}.
The reader will notice that the difference between d = 2 and d = 3 is the presence of the
formidable vorticity stretching terms ξj ∂

∂xj
ui and ξj ∂

∂xj
σ ik in d = 3, whose presence causes

difficulty from the analytic point of view, but interesting dynamics from the modeling point of
view. For convenience (and with a slight abuse of notation) we abbreviate the two equations
for ξ as

(1.5) ∂tξ + (u · ∇)ξ − 1d=3(ξ · ∇)u+ [
(σk · ∇)ξ − 1d=3(ξ · ∇)σk]żkt = ϑ�ξ,

and we note that there is no nonlocality, meaning no pressure term which would influence
the noise. In dimension two, by formally testing against ξ and using the fact that the σk are
divergence-free, we find

|ξt |2L2 + 2ϑ
∫ t

0
|∇ξr |2L2 dr = |ξ0|2L2,

which implies that enstrophy is balanced in dimension two.
Equation (1.5) is, of course, still nonlinear due to the presence of £u, so one needs to write

u in terms of ξ . This operation, which is the Biot–Savart operator and acts as an inverse of
d, can only be done up to additive constants since d is a derivative (that is, in the Hodge
decomposition, there is a Harmonic part). More precisely, on the Torus, one can see that the
missing constant is the spatial average of u, which by formally integrating (1.4) in space,
should satisfy

(1.6) ∂t

∫
Td
uit (x) dx +

∫
Td
u
j
t (x)

∂

∂xi
σ
j
k (x) dxż

k
t = 0

when we assume u and σk are divergence-free. Notice that there is no geometric ambiguity
in the above spatial integrals since we are considering the components of u.

Throughout our analysis, it is therefore necessary to preserve the information in (1.6) as
it allows us to recover the full velocity. In other words, we solve (1.5) and (1.6) as a system
of equations, which is better suited for deriving a priori estimates of (1.5), which from now
on will be referred to as enstrophy estimates. In addition, the system (1.5), (1.6) is shown to
be equivalent to (1.4) under the condition ∇ · u = 0. We note that there this issue does not
appear in the classical Navier–Stokes equations, that is, in the case zk = 0. Indeed, equation
(1.6) shows that the Navier–Stokes system conserves the spatial average so that one may
without loss of generality assume that

∫
M u

i
0(x) dx = 0.

1.3. Related literature and main contributions. The stochastic Navier–Stokes equation
has been well studied using Brownian motion as the driving noise. With no ambition at an
exhaustive list of references, let us mention [5, 6, 15, 28, 29]. Moreover, a similar multiplica-
tive noise as in the present paper has been studied in [10] and [7]. In the pathwise setting,
using regularity structures, the Navier–Stokes system with space-time white noise has been
studied in [33].

A problem similar to (1.4), namely,

(1.7)
∂tu+ (u · ∇)u+ (σk · ∇)użkt = −∇p+ ϑ�u,

∇ · u= 0, u|t=0 = u0,
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has been studied by the same authors in [21]. On the surface, the main difference between
(1.4) and (1.7) is that the noise in (1.7) is energy conservative for the velocity. However,
based on the discussion in Section 1.2, we see that, in general, the perturbation does not
conserve circulation in the inviscid case nor enstrophy balance in dimension two. In fact, (1.7)
is usually obtain by treating the solution of Navier-Stokes as a collection of scalar equations,
thus ignoring the geometry of the problem (i.e., the Lie derivative). Furthermore, there are
deep, highly technical and structural reasons why energy conservation for the velocity does
not yield satisfactory well-posedness results.

More precisely, as it will become clear in the derivation below in Section 3, applying the
Helmholtz projection to the equation entangles a nonlocality into the rough integral term. The
only available method1 to obtain uniqueness of weak solutions for rough PDEs in the vari-
ational setting is the method introduced in [2], based on commutator estimates à la DiPerna
and Lions [13]. However, this approach seems to fail under the presence of the Helmholtz
projection. Consequently, uniqueness in [21] could only be proved under very restrictive as-
sumptions on the vector fields σk , namely the ones for which the rough term commutes with
the Helmholtz projection, effectively restricting to constant vector fields.

Leaving this aside, there is also a structural problem with the equation containing the pro-
jection, even if one could use the techniques of [13]. Indeed, since the Helmholtz projection
is not continuous on L∞, the equation for uuT , which is needed for the energy estimates,
contains noise that cannot be made sense of in an appropriate Banach space as for instance
(L∞)∗ that is dictated by the deterministic part of the equation. To summarize, it is the un-
favorable interplay between the energy conservative noise and the deterministic part of the
equation reflected through the Helmholtz projection, which makes the problem not easily
accessible for a direct pathwise analysis.

In the present paper, we take a different path and develop a model in which the noise con-
serves circulation in the inviscid limit (which we do not address in this paper) and enstrophy
balance in dimension two. Note that the enstrophy corresponding to the L2-norm of the vor-
ticity is balanced in two space dimensions and conserved in case ϑ = 0 as in the deterministic
unforced setting. Enstrophy, however, is not balanced in three dimensions, which leads to a
significantly more involved analysis and only local in time solutions. Moreover, since the
vorticity formulation eliminates the pressure, the nonlocality of the equation for the vorticity
does not influence the noise-term. On the other hand, as discussed above, particular care has
to be taken in order to fully recover the velocity from the vorticity formulation on the Torus.
This subtlety seems to have been missed in the available literature.

Additionally, we establish pathwise continuity properties which easily enables the study
of Wong–Zakai results for the case of Brownian motion with Stratonovich integration in
dimension two. Furthermore, the generation of a continuous random dynamical system from
the unique solution follows for a large class of driving stochastic processes. This set up could
also be used for studying large deviations and support theorems.

Another contribution of this paper is that it develops the theory of unbounded rough drivers
as introduced in [2] and further developed in [12]—the unbounded rough driver theory is
a method to study PDEs perturbed by an unbounded operator-valued noise term. Still, an
abstract variational method in the spirit of [24] for these equations is not available. That
we had to tailor the method of unbounded rough drivers to the Navier–Stokes equation in a
nontrivial way is an indication why a general theory is not yet available. On the other hand,
exactly this fact of being able to tune the method demonstrates its flexibility and suggests

1An alternative method has been introduced in [20], but it is not clear whether it is applicable to systems or how
to encode the divergence-free condition.



ON A ROUGH PERTURBATION OF THE NAVIER–STOKES SYSTEM 743

that this mentality could be used for studying other equations, and possibly build towards a
general theory.

The paper is organized as follows. Section 2 is devoted to notation and definitions. The pre-
cise formulation of the problem, derivation of the vorticity formulation and the main results
are described in Section 3. Section 4 contains basic a priori estimates. Enstrophy balance,
uniqueness as well as the rough path stability and Wong–Zakai result in two space dimen-
sions is presented in Section 5, whereas Section 6 contains the proof of existence. Certain
auxiliary results are collected in the Appendix.

2. Preliminaries. In this section, we introduce the notation and collect the basic defini-
tions needed in the sequel.

2.1. Sobolev spaces and vector calculus. We begin by fixing the notation that we use
throughout the paper.

For a given d ∈ {2,3}, let Td = Rd/(2πZ)d be the d-dimensional flat torus and denote
by dx the unnormalized Lebesgue measure on Td . As usual, we blur the distinction between
periodic functions defined on the whole space and functions defined on the torus Td . We let
∂i denote the partial derivative ∂

∂xi
in the ith standard direction.

For a given m ∈ Z and d ′ ∈ N, we define the Sobolev spaces Wm,2(Td;Rd
′
) = (I −

�)−m
2 L2(Td;Rd

′
) and denote by | · |m the corresponding norm. We letWm,2 =Wm,2(Td;R)

and Wm,2 =Wm,2(Td;Rd). For a given m ∈ N and d ′ ∈ N, we denote by Wm,∞(Td;Rd
′
)

the Sobolev space of functions whose weak-derivatives up to and including order m are in
L∞(Td;Rd

′
). For m< 0, we define Wm,∞(Td;Rd

′
)= (W−m,∞(Td;Rd

′
))∗. We denote the

corresponding norms of Wm,∞(Td;Rd
′
) by | · |m,∞. Moreover, for m ≥ 0, we denote by

Wm,∞
div the functions in Wm,∞(Td;Rd) that are weakly-divergence free.
The Leray projection onto divergence-free vector fields is denoted by P and is defined by

Pu := Id−∇�−1(∇ ·u). We letQ= I−P be the orthogonal projection on to gradient vector
fields. We set Hm = PWm,2 and Hm⊥ =QWm,2 and recall that for all m ∈ Z (see Lemma 3.7
in [27]), Wm,2 = Hm ⊕ Hm⊥, where

Hm = {
f ∈ Wm,2 : ∇ · f = 0

}
and Hm⊥ = {

g ∈ Wm,2 : (f, g)= 0,∀f ∈ H−m}
.

We denote by Ḣm the subspace of functions in Hm that are mean-free f̄ := ∫
Td f (x) dx =

0. Similarly, we define Ẇm,2 and Ẇm,2. However, we often abuse notation and use Ḣm,2 for
scalar functions when it is clear from the context (see Remark 2.1).

Let σ : Td → Rd and c : Td → Rd×d be twice differentiable and assume that the deriva-
tives up to order two are bounded uniformly. Define the operators

Mφ = σ · ∇φ + cφ =
d∑
i=1

σ i∂iφ + cφ, M2φ = (σ · ∇ + c)2φ.

It follows that there is a constant N =N(|σ |2,∞, |c|2,∞) such that

(2.1)
|M|L(Wm+1,2,Wm,2) ≤N, m= 0,1,2,∣∣M2∣∣

L(Wm+2,2,Wm,2) ≤N, m= −1,0,1,

where L(V ,V ′) denotes the Banach space of bounded linear operators between two arbitrary
Banach spaces V and V ′. We note that there is also a constant N = N(|σ |2,∞, |c|2,∞) such
that

|M|L(Wm+1,∞,Wm,∞) ≤N, m= 0,1,2,
∣∣M2∣∣

L(Wm+2,2,Wm,∞) ≤N, m= 0,1.
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Because P ∈ L(Wm,2,Hm) and Q ∈ L(Wm,2,Hm⊥) for all m ∈ Z, both of which have opera-
tor norm bounded by 1, we have

(2.2)

∣∣PM1∣∣
L(Hm+1,Hm) ≤N, m= 0,1,2,∣∣PM2∣∣
L(Hm+2,Hm) ≤N, m= −1,0,1,∣∣QM1∣∣
L(Hm+1

⊥ ,Hm⊥)
≤N, m= 0,1,2,

∣∣QM2∣∣
L(Hm+2

⊥ ,Hm⊥)
≤N, m= −1,0,1.

For a given u : Td → Rd with d ∈ {2,3}, the exterior derivative coincides with the curl
operator and can be written in standard coordinates as

curlu= ∇ × u= (
∂2u

3 − ∂3u
2, ∂3u

1 − ∂1u
3, ∂1u

2 − ∂2u
1)

if d = 3,

curlu= ∇ × u= ∂1u
2 − ∂2u

1 if d = 2.

We also note that ∇ × P = ∇×.

REMARK 2.1. We could equivalently define ∇× only for d = 3 and then embed two-
dimensional vector fields into R3 by (u1, u2) �→ (u1, u2,0). This also justifies why we abuse
notation and write ∇ ×u ∈ Ḣm even in dimension two because ∇ ×u is divergence free when
a two-dimensional vector field is embedded as above.

We define the Biot–Savart operator (i.e., inverse of the curl) of a given mean-free function
f : T2 → R by

Kf = ∇⊥(−�)−1f,

where ∇⊥f := ∂2f i − ∂1f j. We define the Biot–Savart operator (i.e., inverse of the curl) of
a given mean-free function f : T3 → R by

Kf = ∇ × (−�)−1f.

It follows that for a given mean-free f :

∇ × (−�)−1Kf = (−�)−1f if d = 2,

K2f = (−�)−1f if ∇ · f = 0 and d = 3.

For all n ∈ N, we have

K ∈ L
(
Ḣn−1,2, Ḣn

)
, curl ∈ L

(
Wn,2, Ḣn−1)

,

and

(2.3) |∇Kf |n = |f |n.
Moreover, for all n ∈ N, curl◦K ∈ L(Ḣn−1,2, Ḣn−1) is the identity operator if d = 2 and
restricts to the identity operator on Ḣn−1 if d = 3, and K ◦ curl ∈ L(Wn,2, Ḣn) restricts to the
identity on Ḣn if d ∈ {2,3}.

In order to analyze the nonlinear term in (1.4), we employ the classical notation and
bounds. Owing to Lemma 2.1 in [32], the trilinear form

b(u, v,w)=
∫

Td

(
(u · ∇)v) ·wdx =

d∑
i,j=1

∫
Td
ui∂iv

jwj dx
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satisfies the continuity property

(2.4)
∣∣b(u, v,w)∣∣ �m1,m2,m3,d |u|m1 |v|m2+1|w|m3, m1 +m2 +m3 >

d

2
,m1,m2,m3 ≥ 0.

Moreover, for all u ∈ Hm1 and (v,w) ∈ Wm2+1,2 × Wm3,2 such that m1, m2, m3 satisfy (2.4),
we have

(2.5) b(u, v,w)= −b(u,w, v) and b(u, v, v)= 0.

For m1, m2, and m3 that satisfy (2.4), we obtain a bilinear mapping B : Wm1,2 × Wm2+1,2 →
W−m3,2 defined by (B(u, v),w)= b(u, v,w). We define BP = PB and BQ =QB and giv-
ing the continuous bilinear mappings

BP : Wm1,2 × Wm2+1,2 → H−m3, BQ : Wm1,2 × Wm2+1,2 → H−m3⊥ .

We set B(u)= B(u,u) and similarly for BP and BQ.

2.2. Rough paths. For an interval I , we use the notation �I := {(s, t) ∈ I 2 : s ≤ t} and
�
(2)
I := {(s, θ, t) ∈ I 3 : s ≤ θ ≤ t}. For simplicity, we let �T :=�[0,T ] and �(2)T =�(2)[0,T ] for

T > 0. Let E be a Banach space with norm | · |E . A function g :�I →E is said to have finite
p-variation for some p > 0 on I if

|g|p-var;I ;E := sup
(ti )∈P(I )

(∑
i

|gti ti+1 |pE
) 1
p

<∞,

where P(I ) is the set of all partitions of I . We denote by Cp-var
2 (I ;E) the set of all continuous

functions with finite p-variation on �I equipped with the seminorm | · |p-var;I ;E and by
Cp-var(I ;E) the set of all paths z : I →E such that δz ∈ Cp-var

2 (I ;E), where δzst := zt − zs .
In this section, we drop the dependence of norms on the space E when convenient.

A continuous mapping ω :�I → [0,∞) is called a control on I provided ω(s, s)= 0 and
it is superadditive, namely

ω(s, θ)+ω(θ, t)≤ ω(s, t), s ≤ θ ≤ t.
If for a given p > 0, g ∈ Cp-var

2 (I ;E), then it can be shown that the 2-index map ωg :�I →
[0,∞) defined by

ωg(s, t)= |g|pp-var;[s,t]
is a control (see, e.g., Proposition 5.8 in [17]). Moreover, it is straightforward to check that
one could equivalently define the semi-norm on Cp-var

2 (I ;E) by

(2.6)
|g|p-var;[s,t]

= inf
{
ω(s, t)

1
p : ω is a control s.t. |guv| ≤ ω(u, v)

1
p for all (u, v) ∈�[s,t]

}
.

We shall need the following local version of the p-variation spaces.

DEFINITION 2.2. Given an interval I = [a, b], a control � and real number L > 0, we
denote by Cp-var

2,�,L(I ;E) the space of continuous two-index maps g :�I →E for which there
exists a control ω such that for every (s, t) ∈ �I with �(s, t) ≤ L, it holds that |gst |E ≤
ω(s, t)

1
p . We define a semi-norm on this space by

|g|p-var,�,L;I

= inf
{
ω(a, b)

1
p : ω is a control s.t. |gst | ≤ ω(s, t)

1
p ,∀(s, t) ∈�I with �(s, t)≤ L}

.
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It follows that for �1 ≤�2 and L2 ≤ L1,

C
p-var
2,�1,L1

(I ;E)⊂ Cp−var
2,�2,L2

(I ;E).
Next, we present the definition of a rough path and the reader is referred to [16, 17, 25]

for a thorough exposition of the theory of rough paths. For a two-index map g :�I → R, we
define the second order increment operator

δgsθt = gst − gθt − gsθ , (s, θ, t) ∈�(2)I .
DEFINITION 2.3. Let K ∈ N and p ∈ [2,3). A continuous p-rough path is a pair

Z = (Z,Z) ∈ Cp-var
2

([0, T ];RK
) ×C

p
2 -var

2

([0, T ];RK×K)
that satisfies the Chen’s relation

δZsθt = 0, δZsθt = Zsθ ⊗Zθt ∀(s, θ, t) ∈�(2)I .
We will denote by ωZ the smallest control dominating both |Zst |p and |Zst |p2 . Given a smooth
path z, there is a canonical lift to a rough path (Z,Z), where

Zst = δzst , Zst :=
∫ t

s
δzsr ⊗ żr dr =

∫ t

s
δzsr ⊗ dzr,

for which Chen’s relation is readily checked. Above we have used the increment notation
δzst := zt − zs for a one-index map z. A continuous p-rough path Z = (Z,Z) is said to be
geometric if it can be obtained as the limit in the product topology Cp-var

2 ([0, T ];RK) ×
C
p
2 −var

2 ([0, T ];RK×K) of a sequence of rough paths {(Zn,Zn)}∞n=1 that are canonical lifts of
some smooth paths zn : [0, T ] → RK . We denote by Cp-var

g ([0, T ];RK) the set of geometric
p-rough paths and endow it with the product topology.

2.3. Unbounded rough drivers. In [11], A.M. Davie made the groundbreaking observa-
tion that rough differential equations can be interpreted as an equation in Taylor expansions.
The notion of solution is obtained by iterating a rough differential equation into itself and
using Taylor’s formula to re-expand nonlinearities in terms of the equation itself. The final
expression is an increment equation that allows for detailed analysis of the solution in terms
of the oscillations of the temporal noise.

Extending this to the framework of PDEs with unbounded perturbations, we are led to
iterating the vector fields acting on the solution. In this setting, the oscillations in time are
coupled with spatial derivatives. Thus, one needs appropriate function spaces in order to
capture the behavior of the involved quantities with respect to the spatial variable.

Consider a quadruple (En, | · |n)3n=0 of Banach spaces such that En+k is continuously em-
bedded into En for k,n ∈ {0,1,2,3} such that n+ k ≤ 3. We denote by E−n the topological
dual of En, and note that, in general, E−0 �= E0. When the norm is clear from the context,
we call (En)n a scale of spaces, and it is understood that n ∈ {−3,−2,−1,0,1,2,3}.

DEFINITION 2.4. Let p ∈ [2,3) and T > 0 be given. A continuous unbounded p-rough
driver with respect to the scale (En)n, is a pair A = (A1,A2) of 2-index maps such that there
exists a continuous control ωA on [0, T ] such that for every (s, t) ∈�T ,

(2.7)

∣∣A1
st

∣∣p
L(E−n,E−(n+1))

≤ ωA(s, t) for n ∈ {0,2},
∣∣A2
st

∣∣p2
L(E−n,E−(n+2))

≤ ωA(s, t) for n ∈ {0,1},
and Chen’s relation holds true,

(2.8) δA1
sθt = 0, δA2

sθt =A1
θtA

1
sθ ∀(s, θ, t) ∈�(2)T .
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We shall need a tool that allows us to compare the regularity of the different spaces in the
scale (En)n.

DEFINITION 2.5. A family of smoothing operators (J η)η∈(0,1] acting on (En)n is a fam-
ily of operators such that,

(2.9)
∣∣(I − J η)f ∣∣

n � ηk|f |n+k and
∣∣J ηf ∣∣

n+k � η−k|f |n,
for 0 ≤ k ≤ 2 and −2 ≤ n≤ 2 such that −3 ≤ n+ k ≤ 3.

In the scale (Hn)n, a family of self-adjoint smoothing operators can be constructed using
the frequency cut-off (see, e.g., [21]). In fact, in this case (2.9) is valid for all k,n ∈ Z. In the
case of the L∞-scale (Wn,∞)n, one may employ convolution with a nonnegative smoothing
kernel to obtain (2.9) for k ∈ {0,1,2}.

We include here the main a priori estimate from [12], Theorem 2.10. See, however,
Lemma 4.1 for a related result.

THEOREM 2.6. Assume

• (En)n is a scale of spaces for which there exists a family of smoothing operators;
• A = (A1,A2) is an unbounded p-rough driver on (En)n for p ∈ [2,3);
• μ : I →E−1 is of bounded 1-variation (i.e., |δμst |−1 ≤ ωμ(s, t) for some control ωμ);
• g : I →E−0 is a bounded path such that

(2.10) dgt = dμt + A(dt)gt

in the sense that

g
�
st := δgst − δμst −A1

stgs −A2
stgs

belongs to C
p
3 −var

2,ωA,L
(I ;E−3) for some L> 0.

Then there is a positive constant L̃= L̃(p) < L such that for all (s, t) ∈�I with ωA(s, t)≤
L̃, we have ∣∣g�st ∣∣−3 �p |g|L∞(I ;E−0)ωA(s, t)

3
p +ωμ(s, t)ωA(s, t)

1
p .

3. Formulation of the problem and the main results. As the first step of our analysis,
we derive a rough path formulation of (1.4) and (1.5), which will be satisfied by solutions
constructed in our main existence result below, Theorem 3.7. For notational convenience, we
change the sign of the vector fields σk , so that (1.4) becomes

(3.1)
∂tut + (ut · ∇)ut + ∇pt = ϑ�ut + [

(σk · ∇)ut + (∇σk)ut ]żkt ,
∇ · ut = 0, ut |t=0 = u0,

for a given initial condition u0 and divergence-free vector fields σk , k ∈ {1, . . . ,K}. The
unknowns in (3.1) the velocity field u : [0, T ] × Td → Rd and the pressure p : [0, T ] ×
Td → R. We note that the ith component of (∇σk)ut is given by ∂iσk · ut = ∂iσ jk ujt so that
componentwise (3.1) reads

∂tu
i
t + ujt ∂juit + ∂ipt = ϑ�uit +

[
σ
j
k ∂jut + ∂iσ jk ujt

]
żkt , i ∈ {1,2, . . . d},

where there is an implicit summation over the repeated indices j , k. We always consider
d ∈ {2,3}.
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We study the Navier–Stokes equation in the variational framework by decoupling the ve-
locity field and the pressure into two equations using the Leray projection P defined in Sec-
tion 2.1. Applying the solenoidal P : Wm,2 → Hm and gradient projection Q : Wm,2 → Hm⊥
separately to (3.1) yields

(3.2)
∂tut + P [

(ut · ∇)ut ] = ϑ�ut + P [
(σk · ∇)ut + (∇σk)ut ]żkt ,

∇pt +Q[
(ut · ∇)ut ] =Q[

(σk · ∇)ut + (∇σk)ut ]żkt ,
where we note that P�ut =�Put =�ut when ∇ · ut = 0. As usual, we study the equation
for u and later show that we can give meaning to the equation for ∇p, see Lemma 3.8 and
Remark 3.9. To this end, let us assume that zk is smooth and iterate the equation for u into
żkt -term twice to obtain

(3.3) δust +
∫ t

s
P

[
(ur · ∇)ur]dr =

∫ t

s
ϑ�ur dr + [

A1
st +A2

st

]
us + u�st ,

where we have defined

A1
stφ := P £̃σkφZ

k
st , A2

stφ := P £̃σkP £̃σlφZ
l,k
st , £̃σkφ := (σk · ∇)φ + (∇σk)φ,(3.4)

u
�
st :=

∫ t

s
P £̃σkδμsr dz

k
r +

∫ t

s
P £̃σk

∫ r

s
P £̃σl

(
δμsr1 + P

∫ r1

s
£̃σmur2 dz

m
r2

)
dzlr1 dz

k
r ,(3.5)

and

(3.6) μt =
∫ t

0

[
ϑ�ur − P(ur · ∇)ur]dr.

In the above, we have used suggestive notation for the operator £̃σk as a reminder that it
related to the Lie derivative. Since u is a vector field, the Lie-derivative of u by σk is given by
£σku := (σk · ∇)φ − (u · ∇)σk , which is not that same as £̃σku unless σk is constant in space.
However, the Lie derivative of the one-form u� = δijuj dxi by σk is given by

£σku
� = (

σ
j
k ∂ju

i + ∂iσ jk uj
)
dxi,

and hence £̃σku = (£σku
�)�, where we recall that � is the inverse of � as introdued in Sec-

tion 1.2
Since we are concerned with strong solutions, we expect u ∈ L∞

T H1 and μ ∈ C1-var([0, T ];
H0), and hence the remainder u� in (3.5) is expected to belong to Cζ -var

2 ([0, T ];H−2), for
some ζ < 1. Assume now that zk is not a smooth path, but we know how to make sense of Z.
Then, the only term that lacks a priori meaning in (3.3) is the term u�. However, from formal
power counting of the integrals in (3.5), we still expect this term to be a negligible remainder
provided σ ∈ (W3,∞

div )
K . Thus, equation (3.3) is to be understood in the sense that we define

the remainder term u� from the solution u. This will be made precise in Definition 3.1 below.
The pair A = (A1,A2) is an unbounded p-rough driver in the sense of Definition 2.4 on

the scale (Hn)n. Indeed, the existence of a control ωA such that (2.7) holds follows from (2.2)
and the fact that (Z,Z) is a p-rough path in the sense of Definition 2.3, which implies Chen’s
relation (2.8). We note that control ωA can be chosen to satisfy

ωA(s, t)�|σ |3,∞ ωZ(s, t) ∀(s, t) ∈�T .
In fact, owing to (2.2), we have more than what (2.7) strictly requires. We use these in the
proof of Lemma 4.1.

We will now give our first definition of a solution to (3.1).
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DEFINITION 3.1. We say that u is a strong solution of (3.1) up to time T ∗ if u :
[0, T ∗] → H1 is weakly continuous, u ∈ L2

T ∗H2 ∩L∞
T ∗H1 and u� :�T ∗ → H−2 defined by

(3.7) u
�
st (φ) := δust (φ)+

∫ t

s

[−ϑ(�ur,φ)+BP (ur)(φ)]dr − us([A1,∗
st +A2,∗

st

]
φ

)
,

for all φ ∈ H2 satisfies u� ∈ C
p
3 -var

2,ωZ,L
([0, T ∗];H−2) for some L> 0.

REMARK 3.2. By the regularity assumption on u, it follows that the dr-integral in (3.7)
is well defined.

REMARK 3.3. It is possible to formulate a rough version of (3.1) without projecting the
equation onto the scale of divergence-free spaces by keeping the pressure in the equation.
This formulation was discussed in [21] for the case of an energy conservative noise, but the
computations carry over mutatis mutandis to the current case giving an equivalent formulation
of (3.3) and (3.14) below.

REMARK 3.4. The expansion A1
stus+A2

stus+u�st should be thought of as the projection
of the rough path integral; that is,

A1
stus +A2

stus + u�st = P
∫ t

s

[
(σk · ∇)+ (∇σk)]ur dZkr .

Indeed, the expression A1
stus +A2

stus represents a local expansion of the rough path integral.
If u� is a remainder, then by the sewing lemma, [21], Lemma B.1, this uniquely defines a path
representing the rough integral.

3.1. Vorticity formulation. Applying the curl operator ∇ × · to (3.1), we obtain

(3.8) ∂tξ + (u · ∇)ξ − 1d=3(ξ · ∇)u= ϑ�ξ + [
(σk · ∇)ξ − 1d=3(ξ · ∇)σk]żkt .

Let us suppose that there exists a strong solution u of (3.1) on [0, T ] as defined by Defi-
nition 3.1. In order to find a rough version of the vorticity formulation, we apply the curl
operator ∇× to both sides of (3.3). Using properties of the curl operator and that ξ = ∇ × u
is a weakly continuous function ξ : [0, T ] → Ḣ0 with ξ ∈ L2

T Ḣ1 ∩ L∞
T Ḣ0, we find that

ξ� :�T → Ḣ−3 defined for all φ ∈ Ḣ3 and (s, t) ∈�T by

ξ
�
st (φ)= δξst (φ)+

∫ t

s

[
ϑ(∇ξr ,∇φ)+ (ur · ∇)ξr)(φ)− 1d=3

(
(ur · ∇)ξr)(φ)]dr

− ξs([A1,∗
st +A2,∗

st

]
φ

)
,

satisfies ξ� ∈ C
p
3 -var

2,ωZ,L
([0, T ]; Ḣ−3) for some L> 0, where A1 and A2 are defined by

(3.9) A1
stφ = ∇ ×A1

stφ = £σkφZ
k
st =

(
(σk · ∇)φ − 1d=3(φ · ∇)σk)Zkst

and

(3.10)

A2
stφ = ∇ ×A2

stφ = £σk£σlφZ
l,k
st

= (
(σk · ∇)(σl · ∇)φ − 1d=3(σk · ∇)((φ · ∇)σl)

− 1d=3
(
(σl · ∇)φ · ∇)

σk + 1d=3
((
(φ · ∇)σl) · ∇)

σk
)
Z
l,k
st .

Indeed, the equalities (3.9) and (3.10) follows from the fact that ∇ ×P = ∇× and ∇ × £̃σk =
£σk∇× on divergence-free vector fields, which can be checked by direct calculation or by
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appealing to the differential geometry (see page 451 in [31] or Appendix A.6. of [4]). We
note that in dimension two, ξ is a mean-free scalar and the equation preserves the mean,
which is zero. Moreover, in dimension three, ξ is a mean-free and divergence-free vector and
the equation preserves mean and divergence-freeness.

It is clear that A = (A1,A2) satisfies (2.7) for the scale (Ḣn)n with a control ωA by (2.1).
The control of ωA can be chosen so that

ωA(s, t)�|σ |3,∞ ωZ(s, t) ∀(s, t) ∈�T .
The inverse of the curl (i.e., the Biot–Savart operator K) can only recover the mean-free

part of a vector field. Thus, in order to be able to recover u from ξ , we need to control the
mean of u in terms of ξ . We denote by ū the spatial mean of u; that is, ū is the d-dimensional
vector with the mth component given by ūm := (u, em) where em is the mth basis vector of
Rd . Furthermore, let v = u− ū be the mean-free part. The remainder of the mean satisfies

ū
�,m
st := u�st (em)= (δust , em)−

([
A1
st +A2

st

]
us, em

)
= δūmst −

([
A1
st +A2

st

]
ūs, em

) − ([
A1
st +A2

st

]
vs, em

)
.

Because ūs is constant in space, we find that (Aist ūs, em)= 0. Moreover, using that all vector
fields under consideration are divergence free, we obtain(

A1
st vs, em

) = (
P

[
(σk · ∇)vs], em)

Zkst +
(
P

[
(∇σk)vs], em)

Zkst =
(
vls, ∂mσ

l
k

)
Zkst

and(
A2
st vs, em

) = (
P

(
(σk · ∇)P [σj · ∇vs]), em)

Z
j,k
st + (

P
(
(σk · ∇)P [

(∇σj )vs]), em)
Z
j,k
st

+ (
P

(
(∇σk)P [

(σj · ∇)vs])), em)Zj,kst + (
P

(
(∇σk)P [

(∇σj )vs])), em)Zj,kst
= (
P

(
(∇σk)P [

(σj · ∇)vs])), em)Zj,kst + (
P

(
(∇σk)P [

(∇σj )vs])), em)Zj,kst .
For the remaining terms, we write(

P
(
(∇σk)P [

(σj · ∇)vs]), em) = (
P

[
(σj · ∇)vs], ∂mσk)

= (
(σj · ∇)vs, ∂mσk) = −(

vls, ∂i
(
σ ij ∂mσ

l
k

))
and (

P
(
(∇σk)P [∇σjvs]), em) = (

P [∇σjvs], ∂mσk) = (∇σjvs, ∂mσk).
Consequently, we get that

ū
�
st = δūst −L1

st (vs)−L2
st (vs),

where the mth component of L1
st (vs) and L2

st (vs) is given by(
vls, ∂mσ

l
k

)
Zkst and

(
vls, ∂nσ

l
j ∂mσ

n
k − σnj ∂n∂mσ lk

)
Z
j,k
st ,

respectively. It follows that

(3.11)
∣∣L1
st (vs)

∣∣ �|σ |3,∞ |vs |0ωZ(s, t)
1
p and

∣∣L2
st (vs)

∣∣ �|σ |3,∞ |vs |0ωZ(s, t)
2
p .

DEFINITION 3.5. We say that a pair (ξ, ū) is a weak solution of (3.8) up to time T ∗ if
(ξ, ū) : [0, T ∗] → Ḣ0 × Rd is weakly continuous, ξ ∈ L2

T ∗Ḣ1 ∩L∞
T ∗Ḣ0, and ū� :�T ∗ → Rd

and ξ� :�T ∗ → Ḣ−3 defined by

(3.12)

ū
�
st := δūst −

[
L1
st +L2

st

]
(Kξs),

ξ
�
st (φ) := δξst (φ)+

∫ t

s

[
ϑ(∇ξr ,∇φ)+ ([

(Kξr + ūr ) · ∇]
ξr , φ

)
− 1d=3

([ξr · ∇]Kξr, φ)]
dr − ξs([A1,∗

st +A2,∗
st

]
φ

)
,
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for all φ ∈ Ḣ3 satisfy ξ� ∈ C
p
3 -var

2,ωZ,L
([0, T ∗]; Ḣ−3) and ū� ∈ C

p
3 -var

2,ωZ,L
([0, T ∗];Rd) for some

L> 0.

LEMMA 3.6. There is a one-to-one correspondence between the solutions defined in
Definitions 3.1 and 3.5.

PROOF. If u is a strong solution of (3.1), then by defining

ξ = ∇ × u, ξ� = ∇ × u�, ū� = (
u�(em)

)d
m=1,

we obtain a solution in the sense of Definition 3.5. For the reverse direction, define

v = Kξ, v� = Kξ�, u= ū+ v, u� = v� + ū�.
Because K is linear and commutes with derivatives, we have

δv =Kδξ, �v = K�ξ, (ū · ∇)v = K
[
(ū · ∇)ξ ].

By direct calculation we obtain

curl
(
P

[
(v · ∇)v]) = v · ∇ξ − 1d=3(∇v)ξ

and

curl
([
A1
st +A2

st

]
u− [

L1
st +L2

st

]
(v)

) = [
A1
st +A2

st

]
ξ,

where we emphasize that both arguments of the curl are divergence and mean-free. Thus,
using that K ◦ curl is the identity on the space of divergence and mean-free test functions, we
get

P
[
(v · ∇)v] = K

[
(v · ∇)ξ − 1d=3(∇v)ξ ],[

A1
st +A2

st

]
u− [

L1
st +L2

st

]
(v)= K

([
A1
st +A2

st

]
ξ
)
.

Applying K to the vorticity equation (3.12), we find that for all φ ∈ H3 and (s, t) ∈�T ,

v
�
st (φ) := δvst (φ)+

∫ t

s

[
ϑ(∇vr,∇φ)+BP (vr + ūr , vr)(φ)]dr

− us([A1,∗
st +A2,∗

st

]
φ

) + [
L1
st +L2

st

]
(vs)(φ).

Therefore, for all φ ∈ H3 and (s, t) ∈�T ,

u
�
st (φ)= δust (φ)+

∫ t

s

[
ϑ(∇ur,∇φ)+BP (ur, ur)(φ)]dr − us([A1,∗

st +A2,∗
st

]
φ

)
,

which completes the proof. �

3.2. Main results. Our main results concern existence and uniqueness of strong solu-
tions, stability with respect to the given data including the driving signal, and the existence
of a random dynamical system generated by the solution. Let us begin with the precise for-
mulation of the existence result.
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3.2.1. Existence and uniqueness.

THEOREM 3.7. Let d ∈ {2,3}. For a given u0 ∈ H1, Z ∈ Cp-var
g ([0, T ];RK), and σ ∈

(W3,∞
div )

K , there exists a time T ∗ depending only on p, ωZ , |σ |3,∞ and |u0|1, and a strong
solution up to time T ∗ of (3.1) satisfying the energy inequality

(3.13) sup
t∈[0,T ∗]

|ut |21 +
∫ T ∗

0

∣∣∇2ur
∣∣2
0 dr ≤ F (|u0|1)

,

for some continuous function F : R+ → R+. Moreover, u ∈Cp-var([0, T ∗];H0), and if d = 2,
the final time T ∗ can be taken to be T .

The proof of existence of a solution is a consequence of the stronger statement in The-
orem 6.1 presented in Section 6. The theorem is based on a suitable Galerkin approxima-
tion, combined with an approximation of the driving signal z by smooth paths. The fact that
u ∈Cp-var([0, T ∗];H0) follows from the a priori result in Lemma 4.3.

The next result shows how to construct the pressure from the velocity field. The proof of
this statement can be found in Section 4.

LEMMA 3.8. Working under the same assumptions as Theorem 3.7, if u is a strong
solution of (3.1) up to time T ∗, the pressure π can be recovered. More precisely, there exists
π ∈ Cp-var([0, T ∗];H−2

⊥ ) satisfying

(3.14) δπst +
∫ t

s
Q

[
(ur · ∇)ur)]dr = [

AQ,1st +AQ,2st

]
us + uQ,�st ,

where

AQ,1st φ :=Q[
(σk · ∇ + ∇σk)φ]

Zkst ,

AQ,2st φ :=Q[
(σk · ∇ + ∇σk)P [

(σl · ∇ + ∇σl)φ]]
Z
l,k
st ,

and uQ,� ∈ C
3
p
−var

2,�,L̃
([0, T ∗];H−2

⊥ ) for �(s, t)= t − s +ωZ(s, t) and some L̃ > 0.

REMARK 3.9. In the lemma above, as in Remark 3.4, we note that [AQ,1st +AQ,2st ]us +
u
Q,�
st is a rough integral Q

∫ t
s (σk · ∇ + ∇σk)ur dzkr . Thus, adding u and π and using that

P +Q= I gives that

δust + δπst =
∫ t

s

[
ϑ�ur − (ur · ∇)ur]dr +

∫ t

s
(σk · ∇ + ∇σk)ur dzkr .

We also remark that the pair (AQ,1,AQ,2) is, in general, not an unbounded rough driver on
the scale (Hn⊥)n, because it fails to satisfy Chen’s relation (2.8). Nevertheless, we have

(3.15) δAQ,2sθt = AQ,1θt A1
sθ for all (s, θ, t) ∈�(2)T ,

which is the correct Chen’s relation for the system of equations (3.3) and (3.14) needed to
recover the pressure from u (see the proof of Lemma 3.8).

In dimension two, we obtain classical enstrophy balance and uniqueness.
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THEOREM 3.10. In dimension two, for a given u0 ∈ H1 and Z ∈ Cp-var
g ([0, T ];RK) and

σ ∈ (W3,∞
div )

K , there is at most one strong solution to (3.1). Moreover, the velocity u belongs
to CTH1, the following enstrophy balance holds

(3.16) sup
t∈[0,T ]

|ξt |20 + 2ϑ
∫ T

0
|∇ξr |20 dr = |ξ0|20,

and the velocity satisfies the energy estimate (3.13) for any T ∗ ≤ T .

Theorem 3.10 will follow from Theorem 5.6 and Theorem 5.10 presented in Section 5.

REMARK 3.11. Except in the case when the σk , k ∈ {1, . . . ,K} are all constant in space,
there is no reason to believe that one could obtain energy equality for the velocity u, since
the multiplicative term (∇σk)użk will add or subtract energy to the system.

3.2.2. Stability. Owing to Theorem 3.7 and Theorem 3.10, in dimension two, there exists
a solution map � that maps every initial condition u0 ∈ H1, continuous geometric p-rough
path Z = (Z,Z), and family of divergence-free vector fields σ ∈ (W3,∞

div )
K , to a unique strong

solution u of (3.1). Let us denote by H1
w the space H1 equipped with its weak topology. The

following stability result is proved in Section 5.3.

COROLLARY 3.12. In dimension two, the solution map

� : H1 × (
W3,∞

div

)K × Cp-var
g

([0, T ];RK
) →L2

TH1 ∩CTH1
w ∩CTH0,

(u0, σ,Z) �→ u

is continuous.
In particular, the following Wong–Zakai result holds true. Let {Bn} be a piecewise linear

interpolation of a Brownian motion B , and for each n, denote by un the unique strong solution
of (3.1) with ż is replaced by Ḃn, existence of which is guaranteed by Theorem 3.10 and
Theorem 3.7. Then {un} converges almost surely to u in L2

TH1 ∩CTH1
w ∩CTH0 where u is

the strong probabilistic, pathwise unique solution of

dut + ∇ dpt = [
ϑ�ut − (ut · ∇)ut ]dt + [

(σk · ∇)+ (∇σk)]ut ◦ dBkt ,
∇ · ut = 0, ut |t=0 = u0 ∈ H1,

constructed in [29], Theorem 2.1, for the more general case of u0 ∈ H0, where dp = p̃ dt +
qk ◦ dBkt is the pressure semimartingale.

Moreover, the energy estimate (3.13) is satisfied for solutions corresponding to almost all
sample paths of the Brownian motion.

REMARK 3.13. By applying the curl operator to u, we also obtain continuity of the
mapping

� : H1 × (
W3,∞

div

)K × Cp-var
g

([0, T ];RK
) → L2

T L̇
2 ∩CT L̇2

w ∩CT Ẇ−1,2,

(u0, σ,Z) �→ ξ.
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3.2.3. Random dynamical system. Based on our well-posedness and stability result in
dimension two, under suitable assumptions on the driving rough path, we are able to construct
a continuous random dynamical system corresponding to the Navier–Stokes equations (3.1).

Let us first introduce the necessary definitions. Let (�,F) and (X,B) be measurable
spaces. A family θ = (θt )t≥0 of maps from � to itself is a measurable dynamical system
provided:

1. (t,ω) �→ θtω is measurable w.r.t. the σ -algebras B([0,∞))⊗F and (�,F),
2. θ0 = Id,
3. θs+t = θt ◦ θs for all s, t ≥ 0.

If P is a probability measure on (�,F) that is invariant under θ , that is, P ◦ θ−1
t = P for

all t ≥ 0, we call (�,F,P, θ) a measurable metric dynamical system. A measurable random
dynamical system on (X,B) is a measurable metric dynamical system (�,F,P, θ) together
with a measurable map ϕ : [0,∞) × � × X → X satisfying the cocycle property; that is,
ϕ0(ω)= IdX and

ϕs+t (ω)= ϕt(θsω) ◦ ϕs(ω)
for all s, t ∈ [0,∞) and ω ∈ �. If, in addition, X is a topological space and the map
ϕ(·,ω, ·) : [0,∞) × X → X is continuous for every ω ∈ �, then it is called a continuous
random dynamical system.

Under suitable assumptions on the coefficients, rough path driven differential equations
generate random dynamical systems provided the driving rough path is a rough path cocycle
[3]. To be more precise, if p ∈ [2,3) and (�,F,P, θ) is a measurable metric dynamical
system, then we say that

Z = (Z,Z) :�→ C
p−var
2,loc

([0,∞);RK
) ×Cp−var

2,loc

([0,∞);RK×K)
is a continuous p-rough path cocycle provided Z(ω)|[0,T ] is a continuous p-rough path for
every T > 0 and ω ∈� and the following cocycle property

Zs,s+t (ω)= Zt(θsω), Zs,s+t (ω)= Z0,t (θsω),

holds true for every s, t ≥ 0 and ω ∈�. Similarly, one may define a p-rough path cocycle for
any p ∈ [1,∞). It was shown in Section 2 in [3] that rough path lifts of various stochastic
processes define cocycles. These include Gaussian processes with stationary increments and
independent components under certain assumption on the covariance, satisfied, for instance,
by the fractional Brownian motion with Hurst parameter H > 1/4.

COROLLARY 3.14. If the driving rough path Z is a continuous p-rough path cocycle
for some p ∈ [2,3), then, in dimension two, the system (3.1) generates a continuous random
dynamical system on H1.

PROOF. Let ψ : [0,∞) × [0,∞) × � × H1 → H1 be the random flow generated by
(3.1); that is, ψ(t, s,ω,u0) is the unique solution to (3.1) starting at time s from the initial
condition u0, driven by Z(ω), and evaluated at the time t . Then it follows from our definition
of the solution and the cocycle property of Z that ψ(t + h, s + h,ω,u0)= ψ(t, s, θhω,u0).
Consequently, we define ϕ(t,ω,u0)=ψ(t,0,ω,u0) and using also the semiflow property of
ψ , which follows from uniqueness, we deduce that ϕ has the cocycle property. The continuity
with respect to time and the initial condition follows from (5.8). �
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4. A priori estimates. In this section, we derive a priori estimates of the remainder term
u� and |u|p-var;[0,T ];H0 . Although similar estimates have been derived in [21], there are subtle
differences in the present paper that motivate us to include the statements and proofs of these
estimates. Indeed, in [21], we were interested in weak solutions, and in the present paper,
we are concerned with strong solutions. So, at the surface, the a priori estimates involve one
extra derivative. However, in [21], we required a scale of fractional Sobolev spaces, and in
the present paper, we are able to avoid this due to proved estimates on the nonlinearity, which
stem from the fact that we are working with strong solutions.

Let u be a solution of (3.1) up to time T ∗ in the sense of Definition 3.1. We recall the
definition of μ in (3.6) which we restrict to the scale (Hn)n. It follows that for all (s, t) ∈�T ∗ ,

(4.1) δust = δμst +A1
stus +A2

stus + u�st ,
where the equality holds in H−2. Using (2.4) with m1,m3 = 1 and m2 = 0 we obtain
|BP (ur)|−1 � |ur |21, and hence for all (s, t) ∈�T ∗ ,

(4.2) |δμst |−1 �
(
1 + |u|L∞

T ∗H1
)2
(t − s).

The following intermediate remainder term will play an important role in the proof of the
priori estimates:

(4.3) u
�
st := δust −A1

stus = δμst +A2
stus + u�st .

The first expression for the intermediate remainder has low regularity in time, but is not very
irregular in space. On the other hand, the second expression has higher regularity in time than
the first expression, but is less regular in space. We derive a priori estimates on the remainder
u� using an interpolation argument with the help of the smoothing operators introduced in
Definition 2.5.

In this section, for brevity, we denote ‖ ·‖n,m = | · |L(Hn,Hm). The following result is similar
as in [21], Lemma 3.1, but with the added spatial regularity of the solution, which allows us
to circumvent the use of fractional Sobolev spaces as in [21].

LEMMA 4.1. Assume that u is a solution of (3.1) up to time T ∗. Then there is a positive
constant L̃= L̃(p, |σ |3,∞) < L such that for all (s, t) ∈�T ∗ with ωZ(s, t)≤ L̃,

(4.4)
ω�(s, t) :=

∣∣u�∣∣p3p
3 -var;[s,t];H−2

�p,|σ |3,∞ |u|
p
3
L∞
T ∗H1ωZ(s, t)+

(
1 + |u|L∞

T ∗H1
) 2p

3 (t − s)p3 ωZ(s, t) 1
3 .

PROOF. First, we apply δ to (3.7) and deduce that for all φ ∈ H2 and (s, θ, t) ∈�T ∗ ,

δu
�
sθt (φ)= δusθ

(
A2,∗
θt φ

) + u�sθ
(
A1,∗
θt φ

)
,

where u�sθ is defined in (4.3). Second, we decompose δu�sθt (φ) into a smooth (in space) and
nonsmooth part using the self-adjoint smoothing operator J η:

δu
�
sθt (φ)=

(
I − J η)δu�sθt (φ)+ J ηδu�sθt (φ),

where η ∈ (0,1] will be specified at the end of the proof. We will now use an interpolation
argument to estimate each term using the two different expressions (4.3), and then invoke the
sewing lemma.
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We use the self-adjointness of J η, the decomposition u�sθ = δusθ −A1
sθus , (2.2), and (2.9)

to estimate the smooth part:∣∣(I − J η)δu�sθt ∣∣−2 � |u|L∞
T ∗H1

(∥∥I − J η∥∥0,−1

∥∥A2∗
θt

∥∥
2,0 + ∥∥I − J η∥∥1,−1

∥∥A1,∗
θt

∥∥
2,1

+ ∥∥A1,∗
sθ

∥∥
0,−1

∥∥I − J η∥∥1,0

∥∥A1,∗
θt

∥∥
2,1

)
� |u|L∞

T ∗H1
(
ωZ(s, t)

2
p η+ωZ(s, t)

1
p η2)

.

In order to estimate the nonsmooth part, we use the decomposition u�sθ = δμsθ+A2
sθus+u�sθ :

J ηδu
�
sθt (φ)= δμsθ

(
J ηA2,∗

θt φ
) + us(A1,∗

sθ J
ηA2,∗

θt φ
) + us(A2,∗

sθ J
ηA2,∗

θt φ
) + u�sθ

(
J ηA2,∗

θt φ
)

+ δμsθ (J ηA1,∗
θt φ

) + us(A2,∗
sθ J

ηA1,∗
θt φ

) + u�sθ
(
J ηA1,∗

θt φ
)
.

For all (s, θ, t) ∈�(2)T ∗ such that ωZ(s, t)≤ L, we have∣∣J ηδu�sθt ∣∣−2 ≤ |δμsθ |−1
∥∥J η∥∥0,1

∥∥A2,∗
θt

∥∥
2,0 + |u|L∞

T ∗H1
∥∥A1,∗

sθ

∥∥
0,−1

∥∥J η∥∥0,0

∥∥A2,∗
θt

∥∥
2,0

+ |u|L∞
T ∗H1

∥∥A2,∗
sθ

∥∥
1,−1

∥∥J η∥∥0,1

∥∥A2,∗
θt

∥∥
2,0

+ω�(s, t)
3
p
∥∥J η∥∥0,2

∥∥A2,∗
θt

∥∥
2,0 + ‖δμsθ‖−1

∥∥J η∥∥1,1

∥∥A1,∗
θt

∥∥
2,1

+ |u|L∞
T ∗H1

∥∥A2,∗
sθ

∥∥
1,−1

∥∥J η∥∥1,1

∥∥A1,∗
θt

∥∥
2,1 +ω�(s, t)

3
p
∥∥J η∥∥1,2

∥∥A1,∗
θt

∥∥
2,1,

and hence using (2.2), (2.9) and (4.2), we find

∣∣J ηδu�sθt ∣∣−2 �
(
1 + |u|L∞

T ∗H1
)2
(t − s)ωZ(s, t)

2
p η−1

+ |u|L∞
T ∗H1ωZ(s, t)

3
p + |u|L∞

T ∗H1ωZ(s, t)
4
p η−1

+ω�(s, t)
3
p ωZ(s, t)

2
p η−2 + (

1 + |u|L∞
T ∗H1

)2
(t − s)ωZ(s, t)

1
p

+ |u|L∞
T ∗H1ωZ(s, t)

3
p +ω�(s, t)

3
p ωZ(s, t)

1
p η−1.

Setting η = ωZ(s, t)
1
p λ for some λ > 0 to be determined later and combining the above

estimates, we obtain
∣∣δu�sθt ∣∣−2 � |u|L∞

T ∗H1ωZ(s, t)
3
p
(
λ−1 + 1 + λ+ λ2)

+ (
1 + |u|L∞

T ∗H1
)2
(t − s)ωZ(s, t)

1
p
(
λ−1 + 1

) +ω�(s, t)
3
p
(
λ−1 + λ−2)

�
(|u|p3

L∞
T ∗H1ωZ(s, t)

(
λ−1 + 1 + λ+ λ2)p

3

+ (
1 + |u|L∞

T ∗H1
) 2p

3 (t − s)p3 ωZ(s, t) 1
3
(
λ−1 + 1

)p
3 +ω�(s, t)(λ−1 + λ−2)p

3
) 3
p .

Applying the sewing lemma [21], Corollary B.2, we get

∣∣u�st ∣∣p3−2 � |u|
p
3
L∞
T ∗H1ωZ(s, t)

(
λ−1 + 1 + λ+ λ2)p

3

+ (
1 + |u|L∞

T ∗H1
) 2p

3 (t − s)p3 ωZ(s, t) 1
3
(
λ−1 + 1

)p
3 +ω�(s, t)(λ−1 + λ−2)p

3 .
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Since ω�(s, t) = |u�|
p
3
p
3 −var;[s,t];H−2 is equal to the infimum over all controls satisfying

|u�st |−2 ≤ ω�(s, t)
3
p (see (2.6)), there is a constant C =C(p, |σ |3,∞) such that

ω�(s, t)≤ C(|u|p3
L∞
T ∗H1ωZ(s, t)

(
λ−1 + 1 + λ+ λ2)p

3

+ (
1 + |u|L∞

T ∗H1
) 2p

3 (t − s)p3 ωZ(s, t) 1
3
(
λ−1 + 1

)p
3 +ω�(s, t)(λ−1 + λ−2)p

3
)
.

Choosing λ such that C(λ−1 + λ−2)
p
3 ≤ 1

2 and L̃ such that η = ωZ(s, t)
1
p λ ≤ L̃λ ≤ 1, we

obtain (4.4). �

REMARK 4.2. It is worth noting that we use the decomposition

δu
�
sθt (φ)=

(
I − J η)δu�sθt (φ)+ J ηδu�sθt (φ)

and not

δu
�
sθt (φ)= δu�sθt

((
I − J η)φ) + δu�sθt

(
J ηφ

)
in the previous proof in order to avoid using an estimate

u
�
sθ

(
A2,∗
θt J

ηφ
) ≤ ω�(s, t)

3
p
∥∥A2,∗

θt

∥∥
5,3

∥∥J η∥∥2,5|φ|2,
which, in turn, would require us to impose more regularity on σ .

We will now prove an a priori estimate of the p-variation of the solution u.

LEMMA 4.3. Assume that u is a solution of (3.1) up to time T ∗. Then u ∈ Cp-var([0, T ∗];
H0) and there is a positive constant L̃= L̃(p, |σ |3,∞) < L such that for all (s, t) ∈�T ∗ with
(t − s)+ωZ(s, t)≤ L̃, it holds that

|u|p
p-var;[s,t];H0 �p,|σ |3,∞

(
1 + |u|L∞

T ∗H1
)2p(

(t − s)+ωZ(s, t)+ω�(s, t)).
PROOF. For all η ∈ (0,1], (s, t) ∈�T ∗ and φ ∈ H0, we have

δust (φ)= δust (J ηφ) + δust ((I − J η)φ)
.

By (2.9), we have∣∣δust ((I − J η)φ)∣∣ ≤ 2|u|L∞
T ∗H1

∥∥I − J η∥∥0,−1|φ|0 � η|u|L∞
T ∗H1 |φ|0.

In order to estimate the smooth part, we expand δust using (4.1) and then apply (2.2) and
(2.9) to get∣∣δust (J ηφ)∣∣ ≤ ∣∣δμst (J ηφ)∣∣ + ∣∣us(A1,∗

st J
ηφ

)∣∣ + ∣∣us(A2,∗
st J

ηφ
)∣∣ + ∣∣u�st (J ηφ)∣∣

�
((

1 + |u|L∞
T ∗H1

)2
(t − s)∥∥J η∥∥0,1 + |u|L∞

T ∗H1
∥∥A1,∗

st

∥∥
0,−1

∥∥J η∥∥0,0

+ |u|L∞
T ∗H1

∥∥A2,∗
st

∥∥
1,−1

∥∥J η∥∥0,1 +ω�(s, t)
3
p
∥∥J η∥∥0,2

)|φ|0
�

((
1 + |u|L∞

T ∗H1
)2
(t − s)η−1 + |u|L∞

T ∗H1ωZ(s, t)
1
p

+ |u|L∞
T ∗H1ωZ(s, t)

2
p η−1 +ω�(s, t)

3
p η−2)|φ|0,
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for all (s, t) ∈�T ∗ such that ωZ(s, t)≤ L. Setting η= (t − s) 1
p +ωZ(s, t)

1
p +ω�(s, t)

1
p < 1,

we obtain

|δust |0 �
(
1 + |u|L∞

T ∗H1
)2(
(t − s)+ωZ(s, t)+ω�(s, t)) 1

p .

It then follows from [21], Remark 2.3, that u ∈ Cp-var([0, T ];H0); that is, the local variation
spaces agree with the global variation spaces for one-index maps. �

The following lemma shows that the solution u is controlled by A1 so that we may con-
struct the rough integral Q

∫ ·
0(σk · ∇ + (∇σk))ur dzkr needed to recover the pressure.

LEMMA 4.4. Assume that u is a solution of (3.1) up to time T ∗. Then there is a positive
constant L̃= L̃(p, |σ |3,∞) < L such that for all (s, t) ∈�T ∗ with ωZ(s, t)≤ L̃, it holds that

ω�(s, t) :=
∣∣u�∣∣p2p

2 -var;[s,t];H−1 �p,|σ |3,∞
(
1 + |u|L∞

T ∗H1
)p(
(t − s)+ωZ(s, t)+ω�(s, t)),

where u� is defined by (4.3).

PROOF. For all η ∈ (0,1], (s, t) ∈�T ∗ and φ ∈ H1, we have

u
�
st (φ)= u�st

(
J ηφ

) + u�st
((
I − J η)φ)

.

As explained above, we employ the first formula of (4.3) to estimate the nonsmooth part and
the second one to estimate the smooth part. Making use of (2.2) and (2.9), we obtain∣∣u�st ((I − J η)φ)∣∣ ≤ ∣∣δust ((I − J η)φ)∣∣ + ∣∣us(A1,∗

st

(
I − J η)φ)∣∣

≤ |u|L∞
T ∗H1

(∥∥I − J η∥∥1,−1 + |u|L∞
T ∗H1

∥∥A1,∗
st

∥∥
0,−1

∥∥I − J η∥∥1,0

)|φ|1
� |u|L∞

T ∗H1
(
η2 + ηωZ(s, t)

1
p
)|φ|1

and ∣∣u�st (J ηφ)∣∣ ≤ ∣∣δμst (J ηφ)∣∣ + ∣∣us(A2,∗
st J

ηφ
)∣∣ + ∣∣u�st (J ηφ)∣∣

�
((

1 + |u|L∞
T ∗H1

)2
(t − s)∥∥J η∥∥1,1 + |u|L∞

T ∗H1
∥∥A2,∗

st

∥∥
1,−1

∣∣J η∣∣1,1
+ω�(s, t)

3
p
∥∥J η∥∥1,2

)|φ|1
�

((
1 + |u|L∞

T ∗H1
)2
(t − s)+ |u|L∞

T ∗H1ωZ(s, t)
2
p +ω�(s, t)

3
p η−1)|φ|1,

for all (s, t) ∈�T ∗ with ωZ(s, t)≤ L. Setting η= ωZ(s, t)
1
p +ω�(s, t)

1
p < 1, we get∣∣u�st ∣∣−1 �

(
1 + |u|L∞

T ∗H1
)2(
(t − s)p2 +ωZ(s, t)+ω�(s, t)) 2

p ,

which proves the claim. �

Finally, we have all in hand to show how to recover the pressure in the original equation
(4.1). The computation in the proof shows why (3.15) is the correct Chen’s relation for this
system.

PROOF OF LEMMA 3.8. We first show that we can construct the following rough integral
using the sewing lemma, [21], Lemma B.1:

It =Q
∫ t

0

[
σk · ∇ + (∇σk)]ur dzkr , I0 = 0.
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Let hst = AQ,1st us +AQ,2st us for (s, t) ∈�T ∗ . Owing to (2.2), we have

|hst |−1 ≤ ∥∥AQ,1,∗st

∥∥
0,−1|u|L∞

T ∗H1 + ∥∥AQ,2,∗st

∥∥
1,−1|u|L∞

T ∗H1 ≤ |u|L∞
T ∗H1ωZ(s, t)

1
p +ωZ(s, t)

2
p ,

which implies that h ∈ Cp-var
2 ([0, T ];H−1

⊥ ). Applying (3.15), we find δhsθt = −AQ,1θt u
�
sθ −

AQ,2θt δusθ . By virtue of Lemmas 4.3 and 4.4, there are controls ω and �(s, t) = (t − s)+
ωZ(s, t) and a positive constant L̃ < L such that for all (s, θ, t) ∈�(2)T ∗ with �(s, t)≤ L̃, we
have

|δhsθt |−2 ≤ ∥∥AQ,1,∗θt

∥∥
2,1

∣∣u�sθ ∣∣−1 + ∥∥AQ,2,∗θt

∥∥
2,0|δusθ |0

�
(
ωZ(s, t)

1
3ω�(s, t)

2
3 +ωZ(s, t) 2

3ωu(s, t)
1
3
) 3
p =: ω(s, t) 3

p .

Therefore, by [21], Lemma B.1 and Remark 2.3, there is a unique path I ∈ Cp-var([0, T ];
H−2

⊥ ) and a two-index map I � ∈ Cp-var
2,�,L̃

([0, T ];H−2
⊥ ) such that

δIst =AQ,1st us +AQ,2st us + I �st ,

and |I �st |−2 � ω(s, t)
3
p for all (s, t) ∈�T ∗ with�(s, t)≤ L̃. Defining πt := −∫ t

0 BQ(ur) dr+
It , yields (3.14) with uQ,� := I �. Applying (2.4), we find that π ∈ Cp−var([0, T ];H−2

⊥ ),
which completes the proof. �

When proving existence using a Galerkin approximation, we will use Definition 3.5 to
find estimates as indicated by Theorem 3.10, since ξ satisfies an enstrophy balance. However,
using the Biot–Savart operator only yields an estimate on the mean-free part of the velocity
v = u− ū. The next lemma shows how to bound the mean, ū, in terms of v.

LEMMA 4.5. Assume (ξ, ū) is a solution of (3.8) up to time T ∗. Then there is a positive
constant C =C(p, |σ |3,∞, T ∗,ωZ) such that

|ū|L∞
T ∗Rd ≤ C exp

{
C

(
1 + |v|L∞

T ∗H1
)p}(

1 + |ū0|).
PROOF. Making use of (3.12), the reverse triangle inequality, and (3.11), we find that for

all (s, t) ∈�T ∗ ,

δ
(|ū|)st ≤ ∣∣ū�st ∣∣ + ∣∣[L1

st +L2
st

]
(vs)

∣∣ �
∣∣ū�st ∣∣ + |v|L∞

T ∗H0
(
ωZ(s, t)

1
p +ωZ(s, t)

2
p
)
.

By Lemma 3.6, we have |ū�| ≤ |u�|−2. Inspecting the proof of Lemma 4.1, we deduce that
for all (s, t) ∈�T ∗ ωZ(s, t)≤ L̃,

∣∣u�st ∣∣−2 � |u|L∞([s,t];H1)ωZ(s, t)
3
p + |δμst |−1

t − s (t − s)ωZ(s, t)
1
p .

Writing u= ū+ v, by the bilinearity of BP and the fact that ∇u= ∇v, we obtain∣∣BP (u,u)∣∣−1 = ∣∣BP (u, v)∣∣−1 ≤ ∣∣BP (ū, v)∣∣−1 + ∣∣BP (v, v)∣∣−1 � |ū||v|1 + |v|21,
where the last inequality follows from setting m1 =m3 = 1 and m2 = 0 in (2.4). Thus,

|δμst |−1

t − s � |ū|L∞([s,t];Rd )|v|L∞
T ∗H1 + |v|2

L∞
T ∗H1,
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which is a more refined bound than (4.2) that is linear in |ū|L∞([s,t]). Combining the above
bounds, we get that there is a constant C = C(p, |σ |3,∞, L̃, T ∗) > 0 such that for all (s, t) ∈
�T ∗ with ωZ(s, t)≤ L̃,

δ
(|ū|)st � |ū|L∞([s,t];Rd )

(
ωZ(s, t)

2
p + |v|L∞

T ∗H1(t − s))ωZ(s, t) 1
p

+ (
1 + |v|L∞

T ∗H1
)2(
ωZ(s, t)

1
p +ωZ(s, t)

2
p +ωZ(s, t)

3
p + (t − s)ωZ(s, t)

1
p
)

≤ C(|ū|L∞([s,t];Rd )ωZ(s, t)
1
p + (

1 + |v|L∞
T ∗H1

)2
ωZ(s, t)

1
p
)
.

Applying Lemma A.2 with ω= C(1 + |v|L∞
T ∗H1)pωZ and φ = C(1 + |v|L∞

T ∗H1)2ω
1
p

Z , we find

|ū|L∞
T ∗Rd ≤ 2 exp

{
C

(
1 + |v|L∞

T ∗H1
)p
ωZ(0, T ∗)}(|ū0| +K(

1 + |v|L∞
T ∗H1

)2
ωZ(0, T ∗) 1

p
)
. �

5. Enstrophy balance and uniqueness in two spatial dimensions. This section is de-
voted to the proof of Theorem 3.10 and Corollary 3.12, which we split into three parts. First,
we establish the enstrophy balance (3.16) in Section 5.1. Second, we prove uniqueness in
Section 5.2. Third, we show stability in Section 5.3.

Throughout this section, we let d = 2. In particular, the vorticity ξ is scalar valued and
consequently the associated function spaces contain functions that are scalar valued. Since
the dimension will always be clear from the context, we do not alter the notation introduced
in Section 2.1.

5.1. Enstrophy balance. In the classical setting, to show (3.16), one would test (3.8)
by the solution ξ and use that u and σk are divergence-free. Since ξ� is not expected to
be better behaved than a spatial distribution, one cannot directly test the equation by the
solution itself. Instead, we employ a standard trick in PDE theory, namely, the doubling of
variables technique. Define the tensor ξ ⊗ ζ(x, y) := ξ(x)ζ(y), the symmetric tensor ξ ⊗̂ ζ =
1
2(ξ ⊗ ζ + ζ ⊗ ξ), and the scale of Sobolev spaces Wn,2

⊗ :=Wn,2(T2 × T2).
Variations of the following result have already been proved in [12, 18, 19, 21], so we omit

the proof.

PROPOSITION 5.1. The mapping ξ⊗2 : [0, T ] →W
0,2
⊗ satisfies the equation

(5.1) δξ⊗2
st =

∫ t

s
2[ϑξr ⊗̂�ξr − ξr ⊗̂ur∇ξr ]dr + (

�1
st + �2

st

)
ξ⊗2
s + ξ⊗2,�

st

in W−3,2
⊗ . Here, (�1,�2) is the unbounded rough driver on (Wn,2

⊗ )n defined by the second
quantization

�1 := 2A1 ⊗̂ I, �2 :=A2 ⊗̂ I +A1 ⊗A1,

and ξ⊗2,� ∈ C
p
3 -var

2,ωZ,L
([0, T ];W−3,2

⊗ ) for some L> 0.

The next step is to test ξ⊗2 against an approximation of δx=y so that we can justify the
testing of ξ against itself; that is, to justify the evaluation of ξ ⊗ ξ at the diagonal x = y.
As usual, in the framework of unbounded rough drivers, in order to obtain estimates, we
shall rewrite the approximation in the standard form (2.10) and use Theorem 2.6. The two
ingredients in Theorem 2.6—the scale of spaces and the corresponding family of smoothing
operators—will be constructed in this section.
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The approximation of δx=y we shall use will increase the support of the solution, which
could pose a problem when working, for instance, on a bounded domain other than T2. Here,
we recall that we are blurring the distinction between 2π -periodic functions defined on the
whole space and functions defined on the torus T2. However, for f ∈L1(T2), we have∫

B(0,1)+T2

∣∣f (x)∣∣dx ≤
∫

2T2

∣∣f (x)∣∣dx = 2
∫

T2

∣∣f (x)∣∣dx,
which means that the increase of the support of integration is always a continuous operation
on L1(T2).

Introduce the coordinates x+ := x+y
2 and x− := x−y

2 and denote by ∇± := ∇x ± ∇y . We
consider test functions that are periodic in the x+ direction and compactly supported in the
x− direction. More precisely, for n ∈ N, we define the Banach spaces

(5.2)
En∇ := {

	 ∈Wn,∞(
R2 × R2) :	(x + k2π,y + k2π)=	(x,y),

∀k ∈ Z2 and |x−| ≥ 1 ⇒	(x,y)= 0
}

equipped with the norm

|	|n,∇ := max
k+l≤n esssup

{∣∣∇k+∇ l−	(x+ + x−, x+ − x−)
∣∣ : x+ ∈ T2, x− ∈ R2}

.

We then define En∇ = (E−n
∇ ))∗ for n < 0. We also define the duality pairing between E−n

∇ and
En∇ by

〈	,�〉∇ =
∫

T2

∫
R2
	(x+ + x−, x+ − x−)�(x+ + x−, x+ − x−) dx− dx+,

with the obvious abuse of notation. Notice that the test functions in (5.2) are not periodic in
the original variables x, y separately, only in x+. In addition, due to the compact support of
the test functions in the x− variable, the domain of integration in the duality product above
can be written in the (x, y)-coordinates and is equal to

�= {
(x, y) : x+ ∈ T2, x− ∈ B(0,1)}.

Define the blow-up transformation for ε ∈ (0,1) by

Tε	(x, y)= ε−2	

(
x+ + x−

ε
, x+ − x−

ε

)
.

The dual of Tε with respect to 〈·, ·〉∇ is given by

T ∗
ε 	(x, y)=	(x+ + εx−, x+ − εx−)

and T −1
ε = ε2T ∗

ε .
We shall require the following uniform estimates.

LEMMA 5.2. For all f ∈ L2 and g,h ∈W 1,2,

(5.3)
∣∣T ∗
ε

(
f⊗2)∣∣−0,∇ � |f |2

L2(T2)
and

∣∣T ∗
ε (g⊗�h)∣∣−1,∇ � |g|1|h|1.

PROOF. By Hölder’s inequality, for all f ∈L2 we find

∣∣〈T ∗
ε f

⊗2,	
〉
∇

∣∣ =
∣∣∣∣
∫

R2

∫
T2
f (x+ + εx−)f (x+ − εx−)	(x+ + x−, x+ − x−) dx+ dx−

∣∣∣∣
≤ max
τ∈{−1,1}

∫
B(0,1)

∫
T2

∣∣f (x+ + τεx−)
∣∣2 dx+ sup

x+

∣∣	(x+ + x−, x+ − x−)
∣∣dx−.
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Thus, making the change of variables zτ = x+ + τεx− ∈ T2 ± εB(0,1)⊂ T2 + B(0,1) we
obtain

∣∣〈T ∗
ε f

⊗2,	
〉
∇

∣∣ ≤ ∣∣B(0,1)∣∣|	|0,∇
∫

T2+B(0,1)
∣∣f (x)∣∣2 dx � |	|0,∇|f |2

L2(T2)
,

which proves the first estimate in (5.3).
For all g,h ∈W 1,2, we have

g⊗�h= ∇y · (g⊗ ∇h)= (∇+ − ∇x) · (g⊗ ∇h)= ∇+ · (g⊗ ∇h)− ∇g⊗ ∇h.
A simple computation shows ∇+Tε = Tε∇+. Thus, using that the dual of ∇+ is −∇+, we
find 〈

T ∗
ε (g⊗�h),	〉

∇
= −〈

T ∗
ε (g⊗ ∇h),∇+	

〉
∇ − 〈

T ∗
ε (∇g⊗ ∇h),	〉

∇

= −
∫

R2

∫
T2
g(x+ + εx−)∇h(x+ − εx−)∇+	(x+ + x−, x+ − x−) dx+ dx−

−
∫

R2

∫
T2

∇g(x+ + εx−)∇h(x+ − εx−)	(x+ + x−, x+ − x−) dx+ dx−.

Following a similar derivation of the estimate 〈T ∗
ε f

⊗2,	〉∇ , we get∣∣〈T ∗
ε (g⊗�h),	〉

∇
∣∣ � |g|L2(T2+B(0,1))|∇h|L2(T2+B(0,1))|	|1,∇

+ |∇g|L2(T2+B(0,1))|∇h|L2(T2+B(0,1))|	|0,∇
� |g|1|h|1|	|1,∇ ,

which proves the second estimate in (5.3). �

In order to be able to apply Theorem 2.6, we need to construct a family of smoothing
operators on the scale (En∇)n. Recall that � ⊂ (2T2) × (2T2). We may therefore choose a
mollifier (in both variables) {ρη}η∈(0,1] such that supp(ρη)⊂ B(0, η)⊂� and for all 	 ∈ En∇
we have

J η	(x, y) :=
∫
�
	(x + x̃, y + ỹ)ρη(x̃, ỹ) dx̃ dỹ

=
∫
(2T2)×(2T2)

	(x + x̃, y + ỹ)ρη(x̃, ỹ) dx̃ dỹ.

It follows that J η acts as a smoothing operator on the scaleWn,∞((2T2)× (2T2)). We could
try to restrict to En∇ , but the problem is that our test function space is constructed such that
	(x,y) = 0 when |x−| ≥ 1, and convolution increases this support. However, the increase
cannot be too large because

suppx−
(
J η	

) ⊂ suppx−(	)+ supp(ρη)⊂ B(0,1)+B(0, η)⊂ B(0,1 + η),
where suppx− denotes the projection on the support on the x− direction. In other words, our
smoothing operator is not well defined as a mapping from En∇ into itself. We work around this
by introducing a function that decreases the support by η.

LEMMA 5.3. There exists a family of smoothing operators (J̄ η)η∈[0,1] on the scale (En∇)n.
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PROOF. Let θη : R → [0,1] be a smooth function such that

θη(ζ )=
{

1 if |ζ | ≤ 1 − 3η,

0 if |ζ | ≥ 1 − 2η

and |∇kθη|∞ � η−k for k ∈ {1,2}. Define �η(x, y)= θη(x−). In [12], Proposition 5.3, it was
shown that

(5.4)
∣∣(I −�η)	

∣∣
0,∇ � ηk|	|k,∇ , |�η	|k,∇ � |	|k,∇

for k ∈ {0,1,2}. Moreover, for every 	 ∈ En∇ , we have

suppx−
(
J η�η	

) ⊂ suppx−(�η	)+B(0, η)⊂ B(0,1 − η)+B(0, η)⊂ B(0,1),
so that J̄ η := J η�η is a well defined operator on En∇ . Similarly, we have suppx−((I −
J η)	) ⊂ suppx−(	) + supp(ρη) and suppx−(�η	) ⊂ B(0,1 − 2η) we have that (I −
J η)�η	 ∈ En∇ for every 	 ∈ En∇ .

It remains to show (2.9). The second estimate is obvious. The first follows from the equal-
ity (

I − J̄ η)	= (
I − J η)	+ J η(I −�η)	,

together with the estimates in (5.4). �

We are now ready to derive the equation for ξ2. To do this, we evaluate (5.1) in Tε	 for
any 	 ∈ E3∇ to get

(5.5) δξ
ε,2
st = 2

∫ t

s

[
ϑT ∗

ε (ξr ⊗̂�ξr)− T ∗
ε (ξr ⊗̂ur · ∇ξr)]dr + (

�
1,ε
st + �2,ε

st

)
ξε,2s + ξε,2,�st ,

where we have defined

ξε,2 := T ∗
ε ξ

⊗2, �
i,ε
st := T ∗

ε �
iT ∗,−1
ε , ξ ε,2,� := T ∗

ε ξ
⊗2,�.

Our goal now is to take the limit as ε→ 0. To this end, we shall derive uniform in ε bounds
on the unbounded rough driver (�1,ε,�2,ε) as well as the drift. Then we apply Theorem 2.6
to bound the remainder ξε,2,� in terms of the drift and the unbounded rough driver. Notice
that this is possible since the equation is satisfied on the scale En∇ and we have defined a
smoothing operator on this scale.

The first task is to show that the unbounded rough driver and the drift are uniformly
bounded in ε. For the proof that the unbounded rough driver is uniformly bounded in ε,
we refer to [12, 18] and [2] and state the desired result in Proposition 5.4 below. The uniform
bound on the drift will be formulated in Lemma 5.5 below.

PROPOSITION 5.4. Assume that σ ∈ (W3,∞)K and Z ∈ Cp-var
g ([0, T ];RK). Then

(�1,ε,�2,ε)ε is a bounded family of unbounded rough drivers on En∇ . Moreover, for
	(x,y)= ψ(2x−)φ(x+), where ψ is nonnegative, smooth, has compact support in (−1,1)
and

∫
Rψ = 1, and φ ∈W 3,∞, we have

lim
ε↓0

〈
ξε,2s ,�

i,ε,∗
st 	

〉
∇ = (

ξ2,A
i,∗
st φ

)
, i ∈ {1,2}.

We now show that the drift is uniformly bounded in ε. This allows us to take the limit as
ε→ 0 in the approximation of δx=y .
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LEMMA 5.5. There exists a control ω such that∣∣∣∣
∫ t

s

[
ϑT ∗

ε (ξr ⊗̂�ξr)− T ∗
ε (ξr ⊗̂ur · ∇ξr)]dr

∣∣∣∣−1,∇
≤ ω(s, t).

Moreover, for 	(x,y) = ψ(2x−)φ(x+) where ψ is nonnegative, smooth, has compact sup-
port in (−1,1) and

∫
R
ψ = 1, and φ ∈W 3,∞, we have

lim
ε↓0

∫ t

s

〈
ϑT ∗

ε (ξr ⊗̂�ξr)− T ∗
ε (ξr ⊗̂ur · ∇ξr),	〉

∇ dr

=
∫ t

s

(
ϑ

(
ξ2
r ,�φ

) − 2ϑ
(|∇ξr |2, φ) + (

ξ2
r ,∇ · (urφ)))dr.

PROOF. By Lemma 5.2, we have∣∣∣∣
∫ t

s

〈
T ∗
ε (ξr ⊗̂�ξr),	

〉
∇ dr

∣∣∣∣ �
∫ t

s
|∇ξr |2L2(T2+B(0,1)) dr|	|1,∇ �

∫ t

s
|∇ξr |20 dr|	|1,∇ ,

and
∫ t
s |∇ξr |20 dr may be regarded as a control. It follows that∣∣〈T ∗
ε (ξr ⊗̂ur · ∇ξr),	〉

∇
∣∣

≤ |	|0,∇
∫
B(0,1)

∫
T2

∣∣ξr(x+ + εx−)ur(x+ − εx−) · ∇ξr(x+ − εx−)
∣∣dx+ dx−

≤ |	|0,∇|ξr |L4(T2+B(0,1))|ur |L4(T2+B(0,1))|∇ξr |L2(T2+B(0,1)) � |	|0,∇|ξr |21|ur |1,
where we have used the two-dimensional version of Ladyzhenskaya’s inequality |φ|L4 � |φ|1
and the inequality |φ|Lp(T2+B(0,1)) � |φ|Lp(T2). Thus,∣∣∣∣

∫ t

s
T ∗
ε (ξr ⊗̂ur · ∇ξr) dr

∣∣∣∣−0,∇
�

∫ t

s
|ξr |21|ur |1 dr ≤ |u|L∞

T H1

∫ t

s
|ξr |21 dr,

and the right-hand-side may be regarded as a control. This shows the first part of the state-
ment.

The second part follows by noticing that for 	(x,y) = ψ(2x−)φ(x+) we have Tε	(x,
y)= ψε(2x−)φ(x+) where ψε converges to a Dirac-delta. In particular, standard arguments
show that

lim
ε↓0

〈ξr ⊗�ξr,ψεφ〉∇ = −(|∇ξr |20, φ) − (
(ξr · ∇)ξr ,∇φ)

and

lim
ε↓0

〈
ξr ⊗ (ur · ∇)ξr ,ψεφ〉

∇ = (
(ur · ∇)ξr , ξrφ)

,

for all r such that ξr ∈W 1,2. �

We are now ready to derive the equation for ξ2.

THEOREM 5.6. Assume that σ ∈ (W3,∞
div )

K and Z ∈ Cp-var
g ([0, T ];RK). Then ξ2 satisfies

for every φ ∈W 3,∞,

(5.6)
δξ2
st (φ)= −

∫ t

s

[
2ϑ

(|∇ξr |2, φ) − ϑ(
ξ2
r ,�φ

) − 2
(
ξ2
r ,∇ · (urφ))]dr

+ (
ξ2
s ,

[
A

1,∗
st +A2,∗

st

]
φ

) + ξ2,�
st (φ),

where ξ2,� ∈ C
p
3 -var

2,ωZ,L̃
([0, T ];W−3,∞) for some positive constant L̃ = L̃(p, |σ |3,∞) < L. In

particular, ξ ∈ CTH0 and the enstrophy balance (3.16) holds.
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PROOF. By Proposition 5.4, Lemma 5.5 and Theorem 2.6, there are controls ω2,� and

a positive constant L̃ = L̃(p, |σ |3,∞) < L independent of ε > 0 such that |ξε,2,�st |−3,∇ ≤
ω2,�(s, t)

3
p for all (s, t) ∈ �T with ωZ(s, t) ≤ L̃. Testing (5.5) against 	(x,y) =

ψ(2x−)φ(x+) as in Lemma 5.5 and letting ε → 0, we get (5.6). Indeed, in view of Propo-
sition 5.4 and Lemma 5.5 the drift and rough driver terms converge. For the remainder, we
observe that ξε,2,�s,t (	) converges to some ξ2,�

s,t (φ) because all of the other terms in (5.5) con-

verge. In addition, the limit ξ2,�
s,t satisfies for all φ ∈W 3,∞,

∣∣ξ2,�
s,t (φ)

∣∣ ≤ ω2,�(s, t)
3
p |φ|W 3,∞ .

Letting φ ≡ 1 in (5.6) we obtain

δ
(|ξ |20)

st + 2ϑ
∫ t

s
|∇ξr |20 dr = (

ξs,A
1,∗
st 1 +A2,∗

st 1
) + ξ2,�

st (1).

Because σk are divergence-free, we deduce that A1,∗1 =A2,∗1 = 0, which gives

δ
(|ξ |20)

st + 2ϑ
∫ t

s
|∇ξr |20 dr = ξ2,�

st (1).

Summing the above equality over any partition π = (ti)Ni=1 of [s, t] yields

ξ
2,�
st (1)= δ

(|ξ |20)
st + 2ϑ

∫ t

s
|∇ξr |20 dr = ∑

(ti )∈π

(
δ
(|ξ |20)

ti ti+1
+ 2ϑ

∫ ti+1

ti

|∇ξr |20 dr
)

= ∑
(ti )∈π

ξ
2,�
ti−1ti

(1)≤ ∑
ti∈π

ω2,�(ti−1, ti)
3
p ≤ ω2,�(s, t)max

i
ω2,�(ti−1, ti)

3
p
−1
.

The above right-hand-side converges to 0 as |π | → 0 so that ξ2,� ≡ 0, proving (3.16). More-
over, this proves the continuity of t �→ |ξt |20, which combined with the weak continuity t �→ ξt

in H−3 yields ξ ∈ CTH0. �

REMARK 5.7. The above shows the enstrophy balance stated in Theorem 3.10. The fact
that (3.13) is also satisfied can be proved by an application of the Biot–Savart operator and
Lemma 4.5.

REMARK 5.8 (Dimension three). In dimension three, we could apply the interpola-

tion inequality |φ|L4 � |φ|
1
4
L2 |∇φ|

3
4
L2 to prove the renormalizability of the drift of ξ⊗2 ∈

Wn,2(T3 × T3;R3×3), and hence develop an equation for ξξT . However, this would not lead
to either a global bound or energy equality because of the stretching terms. We refer the reader
to the proof of existence in Section 6, where this is done for the Galerkin approximation and
we do not need to double the variables.

5.2. Uniqueness. In this section, we prove that in dimension two, strong solutions of
(3.1) are unique. The key idea of the proof is to derive a formula for the square of the L2-norm
of the difference of the vorticity of two arbitrary solutions. Then we show that the mean of
the velocity depends continuously on the mean-free part of the velocity and the initial mean.
The formula for the square can be derived in an identical fashion to the enstrophy balance in
Section 5.1.

We start by showing that the mean of the velocity depends continuously on the mean-free
part of the velocity and the initial mean. To see this, let u(i), i ∈ {1,2}, be two strong solutions
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starting from the initial conditions u(i)0 ∈W 1,2, respectively. By Remark 5.7, because u(i) are
strong solutions, they satisfy the energy inequality

∣∣u(i)∣∣2L∞
T W

1,2 +
∫ T

0

∣∣∇2u(i)r
∣∣2
0 dr ≤ F (∣∣u(i)0

∣∣
1

)
,

for i ∈ {1,2} and a function F as in (3.13).
Formally, u := u(1) − u(2) solves

∂tu+ (
u(1) · ∇u(1) − u(2) · ∇u(2)) = ϑ�u+ [

(σk · ∇)u+ (∇σk)u]żk.
We understand this in the sense of Definition 3.1:

(5.7) δust = δμ�st +A1
stus +A2

stus + u�st ,
where for a given φ ∈W 1,2,

μ�t (φ) := −
∫ t

0

(
ϑ(∇ur,∇φ)+ (

u(1)r · ∇u(1)r − u(2)r · ∇u(2)r , φ
))
dr.

Here, u� := u(1),� − u(2),� ∈ C
p
3 -var

2,ωZ,L1∧L2
([0, T ∗];R2), where L1 and L2 are the constants

associated with the solutions u(1) and u(2).
Denote by v(i) the mean-free part of u(i), v = v(1)− v(2) and ū= ū(1)− ū(2). We begin by

deriving a bound for the mean ū.

LEMMA 5.9. If u= u(1) − u(2) satisfies (5.7) in the sense of Definition 3.1, then

sup
r≤t

|ūr | � |ū0| + sup
r≤t

|vr |1,

where the proportionality constant depends on p, |σ |3,∞, T , ωZ , |u(1)0 |1, and |u(2)0 |1.

PROOF. Using the decomposition

u(1) · ∇u(1) − u(2) · ∇u(2) = u(1) · ∇u+ ur · ∇u(2) = u(1) · ∇v+ u · ∇v(2),
we estimate the drift as follows:

|δμ�st |−1

t − s
� |v|L∞([s,t];H1) +

∣∣u(1)∣∣L∞([s,t];H1)|v|L∞([s,t];H1) + |u|L∞([s,t];W 1,2)

∣∣v(2)∣∣L∞([s,t];H1)

�
(
1 + ∣∣u(1)∣∣L∞([s,t];H1) +

∣∣u(2)∣∣L∞([s,t];H1)

)(|v|L∞([s,t];H1) + |ū|L∞([s,t];R2)

)
�

(
1 + F (∣∣u(1)0

∣∣
1

) + F (∣∣u(2)0

∣∣
1

))(|v|L∞([s,t];H1) + |ū|L∞([s,t];R2)

)
.

Following the proof of Lemma 4.1, we find that there is a positive constant L̃ = L̃(p,

|σ |3,∞) < L1 ∧L2 such that for all (s, t) ∈�T with ωZ(s, t)≤ L̃,

∣∣u�st ∣∣−1 � |u|L∞
T H1ωZ(s, t)

3
p + |δμ�st |−1

t − s (t − s)ωZ(s, t) 1
3 .

Noting that

δūst = u�st (e)+
[
L1
st +L2

st

]
(vs),

and applying the same reasoning as in the proof Lemma 4.5, we get

|δūst | ≤ C(
1 + F (∣∣u(1)0

∣∣
1

) + F (∣∣u(2)0

∣∣
1

))|ū|L∞([s,t];R2)ωZ(s, t)
1
p + φ(s, t),
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where we have defined

φ(s, t)= C(
1 + F (∣∣u(1)0

∣∣
1

) + F (∣∣u(2)0

∣∣
1

))|v|L∞([s,t];H1)ωZ(s, t)
1
p .

We then obtain the desired bound by applying Lemma A.2. �

Let ξ (i) = ∇ × u(i), i ∈ {1,2}. We now derive an estimate of |ξ (1) − ξ (2)|20.

THEOREM 5.10. There is a constant C > 0 such that for all t ∈ [0, T ],

(5.8)
sup
θ≤t

∣∣ξ (1)θ − ξ (2)θ
∣∣2
0 + 2ϑ

∫ t

0

∣∣∇(
ξ (1)r − ξ (2)r

)∣∣2
0 dr

≤ C(∣∣ξ (1)0 − ξ (2)0

∣∣2
0 + ∣∣ū(1)0 − ū(2)0

∣∣2)
exp

{
C

∣∣ξ (2)0

∣∣2
0

}
.

In particular, strong solutions of (3.1) are unique.

PROOF. Formally, ξ = ξ (1)θ − ξ (2)θ solves

∂tξ + u(1) · ∇ξ (1) − u(2) · ∇ξ (2) = ϑ�ξ + σk · ∇ξ żk.
In the same way as in Theorem 5.6, we derive

|ξt |20 + 2ϑ
∫ t

0
|∇ξr |20 dr +

∫ t

0

(
u(1)r · ∇ξ (1)r − u(2)r · ∇ξ (2)r , ξr

)
dr = |ξ0|20.

Because u is divergence free, we find (u(1)r · ∇ξr , ξr)= 0, so that(
u(1)r · ∇ξ (1)r − u(2)r · ∇ξ (2)r , ξr

) = (
u(1)r · ∇ξr , ξr) + (

ur · ∇ξ (2)r , ξr
) = −(

ur · ∇ξr , ξ (2)r
)
.

Applying Young’s inequality ab ≤ Cεa2 + εb2 and the interpolation inequality | · |L4 � | · |1
yields

|ξt |20 + 2ϑ
∫ t

0
|∇ξr |20 dr = |ξ0|20 +

∫ t

0

(
ur · ∇ξr , ξ (2)r

)
dr

≤ |ξ0|20 +
∫ t

0
|ur |L4

∣∣ξ (2)r ∣∣
L4 |∇ξr |0 dr

� |ξ0|20 +
∫ t

0
|ur |1

∣∣ξ (2)r ∣∣
1|∇ξr |0 dr

≤ |ξ0|20 +Cε
∫ t

0
|ur |21

∣∣ξ (2)r ∣∣2
1 dr + ε

∫ t

0
|∇ξr |20 dr.

For ε small enough depending only on ϑ , we get

|ξt |20 + ϑ
∫ t

0
|∇ξr |20 dr ≤ |ξ0|20 +Cε

∫ t

0
|ur |21

∣∣ξ (2)r ∣∣2
1 dr.

Using (2.3) and Lemma 5.9, we find

|ur |21 = |ūr + vr |20 + |∇vr |20 � |ū0|2 + sup
θ≤r

|vθ |21 � |ū0|2 + sup
θ≤r

|ξθ |20,

which gives

sup
θ≤t

|ξθ |20 + ϑ
∫ t

0
|∇ξr |20 dr ≤ C

(
|ξ0|20 + |ū0|2

∫ t

0

∣∣ξ (2)r ∣∣2
1 dr +

∫ t

0

∣∣ξ (2)r ∣∣2
1 sup
θ≤r

|ξθ |20 dr
)
.
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Gronwall’s inequality then implies

sup
θ≤t

|ξθ |20 + ϑ
∫ t

0
|∇ξr |20 dr ≤ C

(
|ξ0|20 + |ū0|2

∫ t

0

∣∣ξ (2)r ∣∣2
1 dr

)
exp

{
C

∫ t

0

∣∣ξ (2)r ∣∣2
1 dr

}

≤ C(|ξ0|20 + |ū0|2
∣∣ξ (2)0

∣∣2
0

)
exp

{
C

∣∣ξ (2)0

∣∣2
0

}
,

where we have used Theorem 5.6 for ξ (2) in the last inequality, and the constant C may vary
from line to line. This proves (5.8).

To see that this implies uniqueness of (3.2), assume u(1)0 = u
(2)
0 . From (5.8) we obtain

ξ (1) = ξ (2), and hence from Lemma 5.9, we find that u(1) = u(2). �

5.3. Stability. In this section, we prove Corollary 3.12. Because it is similar to the proof
of Theorem 6.1 (forthcoming), we only sketch the main steps here.

PROOF OF COROLLARY 3.12. Consider a sequence {(un0, σ n,Zn)}n ∈ H1 × (W3,∞
div )

K ×
Cp-var
g ([0, T ];RK) converging to some element (u0, σ,Z) in this space. By Theorem 3.10, we

have

sup
t∈[0,T ]

∣∣ξnt ∣∣2
0 + 2ϑ

∫ T

0

∣∣∇ξnr ∣∣2
0 dr = ∣∣ξn0 ∣∣2

0.

Moreover, by Lemma 4.5, we can deduce the boundedness of |ūn|. As in the proof of Theo-
rem 6.1, we deduce that {un} is bounded uniformly in L2

TH2 ∩L∞
T H1 ∩Cp−var([0, T ];H0),

and thus there exists a subsequence, {unk } converging strongly to some u in L2
TH1 ∩CTH0.

Moreover, by the assumptions on {σn,Zn}n, the corresponding unbounded rough drivers, de-
noted by (An,1,An,2), converge to (A1,A2) in the strong topology; that is, An,i converges
to Ai in the strong topology of L(Hk,Hk−i) for i ∈ {1,2}. Taking the limit as n→ ∞ then
gives that u satisfies (3.7). By uniqueness of solutions in dimension two, Theorem 3.10, we
get that the full sequence {un} must converge, thus showing continuity of the solution map.

Suppose now that B is a Brownian motion and let {Bn} denote a piecewise linear approx-
imation of B . It is well known that {(Bn,Bn)} converges P-a.s. in the rough path topology
to (B,B) where B

i,j
st := ∫ t

s B
i
sr ◦ dBjr is the Stratonovich integral. For a fixed φ ∈ H2, we

have as in [16], Corollary 5.2, that the rough path integral
∫ ·

0(ur, (∇σk)φ − ∇ · (σkφ))dBr
and the Stratonovich integral

∫ ·
0(ur, (∇σk)φ− ∇ · (σkφ)) ◦ dBr coincide on a set, �φ , of full

measure. Choosing a dense subset {φl}l∈N of H2 and letting �0 := ⋂
l∈N�φl we see that the

solutions must agree on �0. From the above continuity, we obtain the claimed Wong–Zakai
result. �

6. Existence. In this section, we prove existence of a strong solution as formulated in
Theorem 3.7. The proof relies on a Galerkin approximation together with a compactness
argument. First, we construct approximate solutions solving a Galerkin approximation of
(3.1). In view of the a priori estimates from Section 4, we deduce certain uniform bounds
leading to the desired compactness. The precise result is stated in Theorem 6.1 below. The
passage to the limit then follows by classical arguments for all the terms, except for the
remainder. Since all the other terms in the equation converge, we obtain the convergence of
the remainder as well, and the limit remains a remainder due to a uniform bound following
from Lemma 4.1.

For d ∈ {2,3}, let {hn}∞n=0 be the smooth eigenfunctions of the Stokes operator −P� on
Td with corresponding eigenvalues {λn}∞n=0 where λ0 = 0 (corresponding to h0 ≡ const) and
λn > 0 for n ∈ N. We choose the eigenfunctions {hn}∞n=0 such that they form an orthonormal
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basis of H0 and an orthogonal basis of H1. For a given n ∈ N, define ln = λ− 1
2

n ∇ × hn. It can
easily be verified that (∇⊥f,g) = −(f,∇ × g) in d = 2 and (∇ × f,g) = −(f,∇ × g) in
d = 3. Thus {ln}∞n=1 forms an orthonormal basis of Ḣ0 and we have

(6.1) (f,hn)∇ × hn = (∇ × f, ln)ln.
For a given N ∈ N, let HN = span({h0, h1, . . . , hN }) and LN = span({l1, . . . , lN }), and

define PN : H−1 → HN and LN : Ḣ−1 → L̇N by

PNv :=
N∑
n=0

(v, hn)hn, LNv :=
N∑
n=1

(v, ln)ln, v ∈ H−1.

It follows from (6.1) that

(6.2) ∇ × PNv = LN(∇ × v) ∀v ∈ H−1.

Since Z ∈ Cp-var
g ([0, T ];RK) is a geometric rough path, there is a sequence of RK -valued

smooth paths {zN }∞N=1 such that their canonical lifts ZN = (ZN,ZN) converge to Z in the
rough path topology. We assume that

(6.3)
∣∣ZNst ∣∣ � ωZ(s, t)

1
p ,

∣∣ZNst ∣∣ � ωZ(s, t)
2
p ∀(s, t) ∈�T .

Let us consider the following N th order Galerkin approximation of (3.1) in HN :

(6.4) ∂tu
N + PNBP (

uN
) = ϑPN�uN +

K∑
k=1

PNP
[
(σk · ∇)uN + (∇σk)uN ]

ż
N,k
t ,

with initial condition uN(0)= PNu0. This is a system of ODEs in HN with locally Lipschitz
coefficients, and consequently there exists a time TN > 0 and a unique solution uN of (6.4)
on the interval [0, TN).

Integrating (6.4) over the interval [s, t], we find

(6.5) δuNst =
∫ t

s

(
ϑPN�u

N
r − PNBP (

uNr
))
dr +AN,1st u

N
s +AN,2st u

N
s + uN,�st ,

where P̃N := PNP , and AN,ist and uN,�st are defined as in (3.4) and (3.5), respectively, with P
replaced by P̃N and Z replaced by ZN .

Owing to (2.2) and (6.3), we find that (AN,1,AN,2) is uniformly bounded in N as a family
of unbounded rough drivers on the scale (Hn)n. That is, there exists a control ωAN such that
(2.7) holds and for all (s, t) ∈�T ,

(6.6) ωAN (s, t)�|σ |3,∞ ωZ(s, t).

Estimating term-by-term and using (2.2), (2.4), and that uN is smooth in space, and zN is

smooth in time, we find that uN,� ∈ C
p
3 -var

2 ([0, TN);HN). Arguing as in Lemma 4.1, we get
that there is an L= L(p, |σ |3,∞) > 0 such that for all (s, t) ∈�TN with ωZ(s, t)≤ L,

(6.7)
ωN,�(s, t) :=

∣∣uN,�∣∣p3p
3 -var;[s,t];H−2

�p,|σ |3,∞
∣∣uN ∣∣p3

L∞
TN

H1ωZ(s, t)+
(
1 + ∣∣uN ∣∣

L∞
TN

H1

) 2p
3 (t − s)p3 ωZ(s, t) 1

3 .

In order to obtain uniform energy bounds on uN independent of N , we will obtain a uni-
form bound on the vorticity ξN := ∇ × uN and the mean ūN := ∫

Td u
N dx. Let

vN = uN − ūN = KξN .
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By an analogue of Lemma 4.5 applied to the Galerkin approximation and on the sub-interval
[0, t] ⊂ [0, TN), there is a positive constant C = C(p, |σ |3,∞, TN,ωZ) such that

(6.8) sup
0≤r≤t

∣∣ūNr ∣∣ ≤ C exp
{
C

(
1 + sup

0≤r≤t
∣∣vNr ∣∣

H1

)p}(
1 + |ū0|).

Using (2.3) and Poincare’s inequality, we find |vN |0 � |∇vN |0 = |ξN |0, and thus |vN |1 �
|ξN |0. Thus, if we obtain a uniform bound on |ξN |L∞

TN
H0 , then we can obtain a uniform

bound on |ūN |L∞
TN

Rd , which can then be used to derive a uniform bound on uN = vN + ūN .

We now proceed by obtaining uniform bounds on ξN .
Using properties of the curl operator in Section 2.1 and the relation (6.2), we get that ξN

satisfies

(6.9) ∂tξ
N + £N

uN
ξN = ϑLN�ξN + £Nσkξ

N ż
N,k
t ,

where

£vφ = (v · ∇)φ − 1d=3(φ · ∇)v, £Nv = LN£v.

Deriving uniform bounds in dimension two is the simplest due to the conservative nature
of the equation. However, this is no longer possible in dimension three because there is an
additional stretching term in the drift and a lower order term in the noise that forces us to use
a nonlinear version of the rough Gronwall’s inequality, Lemma A.4.

We begin with the dimension two case. Testing (6.9) by ξN and using (2.5), integration by
parts and the fact that ∇ · σk = 0, for all k ∈ {1, . . . ,K}, we obtain that for all t ∈ [0, TN),∣∣ξNt ∣∣2

0 + 2ϑ
∫ t

0

∣∣∇ξNs ∣∣2
0 ds = |LNξ0|20 − 2

∫ t

0

((
uNs · ∇)

ξNs , ξ
N
s

)
ds

+ 2
∫ t

0

(
(σk · ∇)ξNs , ξNs

)
dzN,ks

≤ |ξ0|20.
Owing to the Poincaré inequality and (2.3) we have |vN |0 � |ξN |0 and |∇2vN |0 = |∇ξN |0.

Thus,

(6.10)
∣∣vNt ∣∣2

1 + 2ϑ
∫ t

0

∣∣∇2uNs
∣∣2
0 ds � |∇u0|20 ∀t ∈ [0, TN).

We now turn our attention to dimension three. As mentioned above, it is not possible
to obtain an enstrophy bound independent of the noise approximation like we did in two-
dimensions because the noise is not conservative due to the presence of the stretching term
(ξN · ∇)σk . Integrating (6.9) over the interval [s, t], we obtain

δξNst = δγ Nst + [
A
N,1
st +AN,2st

]
ξNs + ξN,�st ,

where

γNt :=
∫ t

0

(
ϑLN�ξ

N
r − £N

uNr
ξNr

)
dr, A

N,1
st φ := £NσkφZ

N,k
st , A

N,2
st φ := £Nσk£

N
σl
φZ

l,k
st ,

ξ
N,�
st :=

∫ t

s
£Nσkδγ

N
sr dz

N,k
r +

∫ t

s

∫ r

s
£Nσk£

N
σl

[
δγ Nsr1 +

∫ r

s
£Nσmξ

N
r2
dzN,mr2

]
dzN,lr1

dzN,kr .

In order to distinguish from the notation used for the doubling of variables in Section 5, we
use ⊗ to denote the standard tensor product on R3. We proceed by deriving the equation for

 N = ξN ⊗ ξN = [
ξN,iξN,j

]
1≤i,j≤3.
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Defining the symmetric tensor a ⊗̂b := 1
2(a⊗b + b⊗a), we have δ Nst = 2ξNs ⊗̂ δξNst +

(δξNst )
⊗2, and hence

(6.11) δ Nst = δ!Nst +
[
�
N,1
st + �N,2st

]
 Ns + N,�st ,

where

!Nt := 2
∫ t

0
ξNr ⊗̂(

ϑLN�ξ
N
r − £N

uNr
ξNr

)
dr,

�
N,1
st  

N
s := (

2AN,1st ξ
N
s

) ⊗̂ ξNs , �
N,2
st  

N
s := (

2AN,2st ξ
N
s

) ⊗̂ ξNs + (
A
N,1
st ξ

N
s

) ⊗̂(
A
N,1
st ξ

N
s

)
,

 
N,�
st = 2ξNs ⊗̂ ξN,�st − 2

∫ t

s
δξNsr ⊗̂(

ϑLN�ξ
N
r − £uNr ξ

N
r

)
dr + (

δξNst
)⊗2

− (
A
N,1
st ξ

N
s

) ⊗̂(
A
N,1
st ξ

N
s

)
.

By virtue of (2.1) and (6.3), (�N,1,�N,2) is uniformly bounded in N as a family of un-
bounded rough drivers on the scale (Ẇn,∞(T3;R3×3))n. That is, there exists a control ω�N
such that (2.7) holds and for all (s, t) ∈�T ,

(6.12) ω�N (s, t)�|σ |3,∞ ωZ(s, t).

For ease of notation, let | · |∞ = | · |0,∞. To find a control for !N , we need to estimate

!Nst (	)= 2
∫ t

s
ξNr ⊗̂ϑLN�ξNr (	)dr − 2

∫ t

s
ξNr ⊗̂£N

uNr
ξNr (	)dr =: I + II.

Applying Young’s inequality, we find

I = −2ϑ
∫ t

s

∫
T3
∂lξ

N
r ⊗̂ ∂lξNr (	)dx dr − 2ϑ

∫ t

s

∫
T3
ξNr ⊗̂ ∂lξNr (∂l	)dx dr

≤ 2ϑ |	|1,∞
(∫ t

s

∣∣∇ξNr ∣∣2
0 dr +

∫ t

s
sup

0≤r ′≤r
∣∣ξNr ′ ∣∣2

0 dr

)
.

We split II into two quantities III and IV and then estimate them separately:

−II = 2
∫ t

s

∫
T3
ξNr ⊗̂[(

uNr · ∇)
ξNr

]
(	)dx dr + 2

∫ t

s

∫
T3
ξNr ⊗̂[(∇uNr )

ξNr
]
(	)dx dr

=: III + IV.

Using the interpolation inequality |f |L4 ≤ C3|f |
1
4
0 |∇f |

3
4
0 for d = 3, Hölder’s, Young’s and

Poincaré’s inequality, (6.8), and (2.3), we get

III � |	|∞
∫ t

s

∣∣ξNr ∣∣ 1
4
0

∣∣∇ξNr ∣∣ 3
4
0

∣∣uNr ∣∣ 1
4
0

∣∣∇uNr ∣∣ 3
4
0

∣∣∇ξNr ∣∣
0 dr

� |	|∞
∫ t

s

∣∣ξNr ∣∣
0

∣∣uNr ∣∣ 1
4
0

∣∣∇ξNr ∣∣7/4
0 dr

� |	|∞
(∫ t

s

∣∣uNr ∣∣2
0

∣∣ξNr ∣∣8
0 dr +

∫ t

s

∣∣∇ξNr ∣∣2
0 dr

)

� |	|∞
(∫ t

s

∣∣ūNr ∣∣2∣∣ξNr ∣∣8
0 dr +

∫ t

s

∣∣ξNr ∣∣10
0 dr +

∫ t

s

∣∣∇ξNr ∣∣2
0 dr

)

� |	|∞
(∫ t

s
w1

(
sup

0≤r ′≤r
∣∣ξNr ′ ∣∣

0

)
dr +

∫ t

s

∣∣∇ξNr ∣∣2
0 dr

)
,
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where

w1(y) := (
1 + |ū0|) exp

{
C(1 + y)p}

y8 + y10.

Similarly, we find

IV � |	|∞
∫ t

s

∫
T3

∣∣ξNr ∣∣ 1
2
0

∣∣∇ξNr ∣∣ 6
4
0

∣∣∇uNr ∣∣
0 dr dx � |	|∞

∫ t

s

∣∣ξNr ∣∣ 3
2
0

∣∣∇ξNr ∣∣ 6
4
0 dr

� |	|∞
(∫ t

s
sup

0≤r ′≤r
∣∣ξNr ′ ∣∣6

0 dr +
∫ t

s

∣∣∇ξNr ∣∣2
0 dr

)
.

Therefore, ∣∣!Nst ∣∣−1,∞ � ω!N (s, t) :=
∫ t

s

∣∣∇ξNr ∣∣2
0 dr +

∫ t

s
w2

(
sup

0≤r ′≤r
∣∣ξNr ′ ∣∣

0

)
dr,

where

w2(y) := (
1 + |ū0|) exp

{
C(1 + y)p}

y8 + y10 + y6 + y2.

By Theorem 2.6, there is a constant L=L(p, |σ |3,∞) > 0 such that for all (s, t) ∈�TN with
ωZ(s, t)≤ L, ∣∣ N,�st

∣∣−3,∞ � sup
s≤r≤t

∣∣ Nr ∣∣−0,∞ωZ(s, t)
3
p +ω!N (s, t)ωZ(s, t)

1
p

� sup
s≤r≤t

∣∣ξNr ∣∣2
0ωZ(s, t)

3
p +ωZ(s, t)

1
p

∫ t

s

∣∣∇ξNr ∣∣2
0 dr

+ωZ(s, t)
1
p

∫ t

s
w2

(
sup

0≤r ′≤r
∣∣ξNr ′ ∣∣

0

)
dr.

Testing (6.11) against the 3 × 3 identity matrix I3, we find

δ
(∣∣ξN ∣∣2

0

)
st = δ!Nst (I3)+ Ns

([
�
N,1,∗
st + �N,2,∗st

]
(I3)

) + N,�st (I3).

It follows from (6.12) that∣∣ Ns ([
�
N,1,∗
st + �N,2,∗st

]
(I3)

)∣∣ � sup
s≤r≤t

∣∣ξNr ∣∣2
0ωZ(s, t)

1
p .

Applying Hölder’s inequality, the interpolation inequality |f |L4 � C3|f |
1
4
0 |∇f |

3
4
0 for d = 3

and Young’s inequality ab ≤ Cεa4 + εb 4
3 for ε ∈ (0,1) to be determined later, we get

δ!Nst (I3)= −2ϑ
∫ t

s

∣∣∇ξNr ∣∣2
0 dr +

∫ t

s

∫
T3
ξN,ir ∂iu

N,j
r ξN,jr dx dr

≤ −2ϑ
∫ t

s

∣∣∇ξNr ∣∣2
0 dr +

∫ t

s

∣∣ξNr ∣∣2
L4

∣∣∇uNr ∣∣
0 dr

≤ −2ϑ
∫ t

s

∣∣∇ξNr ∣∣2
0 dr +C3

∫ t

s

∣∣ξNr ∣∣ 3
2
0

∣∣∇ξNr ∣∣ 3
2
0 dr

≤ −(2ϑ −C3ε)

∫ t

s

∣∣∇ξNr ∣∣2
0 dr +CεC3

∫ t

s
sup

0≤r ′≤r
∣∣ξNr ′ ∣∣6

0 dr.

Putting it all together, we arrive at

δ
(∣∣ξN ∣∣2

0

)
st ≤

[
CωZ(s, t)

1
p − (2ϑ −C3ε)

] ∫ t

s

∣∣∇ξNr ∣∣2
0 dr

+C
∫ t

s
w

(
sup

0≤r ′≤r
∣∣ξNr ′ ∣∣

0

)
dr +C sup

s≤r≤t
|ξr |20ωZ(s, t)

1
p ,
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where

w(y)= (
1 + |ū0|) exp

{
C(1 + y)p}

y8 + y10 + (1 +C3Cε)y
6 + y2.

If we let ε = ϑ
C3

, then for all (s, t) ∈ �TN such that CωZ(s, t)
1
p ≤ 2ϑ = ϑ + C3ε and

ωZ(s, t)≤ L, we get CωZ(s, t)
1
p − (2ϑ −C3ε)≤ −ϑ , which gives

δ
(∣∣ξN ∣∣2

0

)
st + ϑ

∫ t

s

∣∣∇ξNr ∣∣2
0 dr ≤ C

∫ t

s
w

(
sup

0≤r ′≤r
∣∣ξNr ′ ∣∣

0

)
dr + sup

s≤r≤t
|ξr |20CωZ(s, t)

1
p .

Applying Lemma A.4 on [0, TN), we obtain

sup
0≤r≤T ∗∧TN

∣∣ξNr ∣∣2
0 ≤W−1(

W
(
q
∣∣ξN0 ∣∣2

0

) + T ∗CKq
)
,

where T ∗ = T ∗(p,ωZ, |σ |3,∞, |u0|1) > 0 is such that

W
(
q
∣∣ξN0 ∣∣2

0

) + T ∗CKq ∈ Dom
(
W−1)

and W , q and K are specified in Lemma A.4. We emphasize that T ∗ can be chosen indepen-
dently ofN . It follows from Poincaré inequality and (2.3) that there is a continuous increasing
function F̃ : R+ → R+ such that

(6.13) sup
t∈[0,T ∗∧TN ]

∣∣vNt ∣∣2
1 + ϑ

∫ T ∗∧TN
0

∣∣∇2uNs
∣∣2
0 ds ≤ F̃ (|∇u0|0)

.

We now conclude with uniform bounds on uN for d ∈ {2,3}. In dimension two, by (6.8)
and (6.10), there is a continuous increasing function F : R+ → R+ such that

sup
t∈[0,TN ]

∣∣uNt ∣∣2
1 +

∫ TN

0

∣∣∇2uNr
∣∣2
0 dr ≤ F (|u0|1)

, d = 2,

and hence the solution uN can be extended to the interval [0, T ] in a standard way. In dimen-
sion three, by (6.8) and (6.13), there is a continuous increasing function F : R+ → R+ such
that

sup
t∈[0,T ∗∧TN ]

∣∣uNt ∣∣2
1 +

∫ T ∗∧TN
0

∣∣∇2uNr
∣∣2
0 dr ≤ F (|u0|1)

, d = 3,

and hence the solution uN can be extended to the interval [0, T ∗].
We are now ready to let N → ∞ in (6.5), which will complete the proof of Theorem 3.7.

The details are given in the following theorem. Throughout the rest of this section, let T ∗ = T
if d = 2 and T ∗ > 0 be the final time obtained by means of Lemma A.4 above if d = 3

THEOREM 6.1. There exists a subsequence of {uN } that converges weakly in L2
T ∗H2,

weak-* in L∞
T ∗H1, and strongly in L2

T ∗H1 ∩ CT ∗H0 to a solution of (3.7) that is weakly
continuous in H1.

PROOF. We have shown above that

(6.14) sup
t∈[0,T ∗]

∣∣uNt ∣∣2
1 +

∫ T ∗

0

∣∣∇2uNr
∣∣2
0 dr ≤ F (|u0|1)

,

for a continuous increasing function F : R+ → R+. Thus, {uN } remains in a bounded set
in L2

T ∗H2 ∩ L∞
T ∗H1. The Banach–Alaoglu theorem yields a subsequence, which we relabel
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as {uN }, that converges weakly in L2
T ∗H2 and weak-* in L∞

T ∗H1. Moreover, by (6.7), for all
(s, t) ∈�TN with ωZ(s, t)≤ L,

(6.15) ωN,�(s, t)�p,|σ |3,∞ F̃
(|u0|1)(

ωZ(s, t)+ (t − s)p3 ωZ(s, t) 1
3
)
,

for some continuous increasing function F̃ : R+ → R+.
We will obtain a further subsequence that converges strongly in L2

T ∗H1 ∩ CT ∗H0 by ap-
plying a rough version of the Aubin–Lions compactness lemma. We refer the reader to [21],
Lemma A.2, and note that we actually use the lemma shifted up by one. By (6.6), (6.14) and
Lemma 4.3, there is a positive constant L̃= L̃(p, |σ |3,∞) < L such that for all (s, t) ∈�T ∗
with (t − s)+ωZ(s, t)≤ L̃, it holds that∣∣δuNst ∣∣0 �p,|σ |3,∞ F̃

(|u0|1)(
(t − s)+ωZ(s, t)+ (t − s)p3 ωZ(s, t) 1

3
) 1
p ,

for some continuous increasing function F̃ : R+ → R+. It then follows from the aforemen-
tioned Aubin–Lions compactness result that there is a subsequence of {uN }, which we con-
tinue to denote by {uN }, converging strongly to an element u in CT ∗H0 ∩ L2

T ∗H1. Further-
more, owing to Lemma [21], Lemma A.3 (shifted one space up), we know that u is continuous
with values in H1

w (i.e., H1 equipped with the weak topology).
Our goal now is to pass to the limit as N → ∞ of (6.5) tested against some φ ∈ H2. Using

the definition of AN,1st and A1
st , we find

(6.16)

∣∣AN,1st φ −A1
stφ

∣∣
0

≤ ∣∣PNP [
(σk · ∇)φ]

Z
N,k
st − P [

(σk · ∇)φ]
Zkst

∣∣
0

+ ∣∣PNP [
(∇σk)φ]

Z
N,k
st − P [

(∇σk)φ]
Zkst

∣∣
0

≤ ∣∣PNP [
(σk · ∇)φ]∣∣

0

∣∣ZN,kst −Zkst
∣∣ + ∣∣PNP [

(∇σk)φ]∣∣
0

∣∣ZN,kst −Zkst
∣∣

+ ∣∣(I − PN)P [
(σk · ∇)φ]∣∣

0

∣∣Zkst ∣∣ + ∣∣(I − PN)P [
(∇σk)φ]∣∣

0

∣∣Zkst ∣∣.
From (2.2), we obtain∣∣PNP (σk · ∇)φ∣∣

0

∣∣ZN,kst −Zkst
∣∣ �N0 |φ|1

∣∣ZNst −Zst
∣∣,∣∣PNP (∇σk)φ∣∣

0

∣∣ZN,kst −Zkst
∣∣ �N0 |φ|0

∣∣ZNst −Zst
∣∣,

which both converge to 0 as N → ∞. Making use of (2.2) again, the last two terms of (6.16)
tend to 0 as N → ∞ because PN converges to the identity I in the strong topology on
L(H0,H0). Thus, for all φ ∈ H2, limN→∞ |AN,1st φ−A1

stφ|0 = 0. In a similar way, we deduce
that limN→∞ |AN,2st φ −A2

stφ|0 = 0 for all φ ∈ H2. Therefore,∣∣(uNs ,AN,i,∗st φ
) − (

us,AP,i,∗st φ
)∣∣ ≤N0

∣∣(uNs − us,AN,i,∗st φ
) − (

us,
(
AP,i,∗st −AN,i,∗st

)
φ

)∣∣
�N0

∣∣uNs − us
∣∣
0|φ|2 + |us |0

∣∣(AP,i,∗st −AN,i,∗st

)
φ

∣∣
0 → 0

as N → ∞. Finally, using the strong convergence in L2
T ∗H1 of {uN } and (2.4) and the con-

vergence of PN to the identity, we find∣∣∣∣
∫ t

s

[
BP (ur)(φ)− PNBP (

uNr
)
(φ)

]
dr

∣∣∣∣
≤

∫ t

s

∣∣BP (
ur − uNr , ur

)
(φ)

∣∣dr +
∫ t

s

∣∣BP (
uNr , ur − uNr

)
(φ)

∣∣dr
+

∫ t

s

∣∣BP (
uNr

)(
(I − PN)φ)∣∣dr → 0

as N → ∞.
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Since all of the terms in equation (6.5) converge when applied to φ ∈ H2, the remainder
u
N,�
st (φ) converges to some limit u�st (φ). By virtue of (6.15), we obtain that the limit u� ∈
C
p
3 -var

2,ωZ,L
([0, T ∗];H−2) for some positive constant L = L(p, |σ |3,∞) > 0, which proves that

u is a strong solution to (3.1). �

APPENDIX: ROUGH GRONWALL LEMMA

In this section, we formulate two Gronwall inequalities involving controls. The first one
is a slight generalization of the Gronwall inequalities proved in [12] and [18], and can be
proved by the same reasoning. The second inequality is a corollary of the first inequality and
the classical Bihari–LaSalle inequality.

LEMMA A.2. Assume that G : [0, T ] → R+ is such that there exists constants L > 0
and κ > 0, and a control ω such that for every (s, t) ∈�T with ω(s, t)≤ L,

δGst ≤ ω(s, t) 1
κ sup

0≤r≤t
Gt + φ(s, t),

where φ : �T → R+ is such that φ(s, t) ≤ φ(0, T ). Then there exists a constant K > 0
depending only on ω such that

sup
0≤t≤T

Gt ≤ 2 exp
{
ω(0, T )

Lα

}(
G0 +Kφ(0, T )),

where α := 1 ∨L−1(2e2)−κ .

REMARK A.3. The only difference between this version and the version in [12] is that
we do not require φ to be a control, or even superadditive, as in [18].

LEMMA A.4. Assume that w : R+ → R+ is a nondecreasing continuous function with
w > 0 on (0,∞). Moreover, assume that G : [0, T ] → R+ is such that there exists constants
L> 0 and κ > 0, and a control ω such that for every (s, t) ∈�T with ω(s, t)≤ L, we have

δGst ≤ C
∫ t

s
w

(
sup

0≤r ′≤r
Gr ′

)
dr +ω(s, t) 1

κ sup
0≤r≤t

Gr .

Then there exists a constant K > 0 depending only on ω such that

sup
0≤t≤T ∗

Gt ≤W−1(
W(qG0)+ T ∗CKq

)
,

where

q := 2 exp
{
ω(0, T )

Lα

}
, α := 1 ∨L−1(

2e2)−κ
,

W is chosen such that W ′(x)= (w(x))−1, and T ∗ > 0 is such that

W(qG0)+ T ∗CKq ∈ Dom
(
W−1)

.

PROOF. Define φ(s, t)=C ∫ t
s w(sup0≤r ′≤r Gr ′) dr . By Lemma A.2 we obtain

sup
0≤r≤t

Gr ≤ qG0 + qCK
∫ t

0
w

(
sup

0≤r ′≤r
Gr ′

)
dr ≤ qG0 + qCK

∫ t

0
w

(
sup

0≤r ′≤r
Gr ′

)
dr,

and the result now follows from the classical Bihari–LaSalle inequality. �
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