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Experimental and numerical evidence have shown that non-uniform bathymetry may alter significantly the statistical

properties of surface elevation in irregular wave fields. The probability of ’rogue’ waves is increased near the edge of

the upslope as long-crested irregular waves propagate into shallower water. The present paper studies the statistics of

wave kinematics in long-crested irregular waves propagating over a shoal with a Monte-Carlo approach. High Order

Spectral Method is employed as wave propagation model and Variational Boussinesq Model is employed to calculate

wave kinematics. The statistics of horizontal fluid velocity can be different from statistics in surface elevation as the

waves propagate over uneven bathymetry. We notice strongly non-Gaussian statistics when the depth changes abruptly

in sufficiently shallow water. We find an increase of kurtosis in the horizontal velocity around the downslope area.

Furthermore, the effects of the bottom slope with different incoming waves are discussed in terms of kurtosis and

skewness. Finally, we investigate the evolution of kurtosis and skewness of the horizontal velocity over a sloping

bottom in a deeper regime. The vertical variation of these statistical quantities is also presented.

Key words: surface waves, wave kinematics, wave statis-

tics

I. INTRODUCTION

Ship and offshore structures are exposed to ocean waves

where ship motions and wave-induced loads are directly con-

nected with water particle velocities1,2. In a finite depth

regime, wave kinematics affect the sediment transport at the

seabed and may cause scour around a structure such as a pile3.

Therefore, statistical analysis with accurate wave kinematics

description is demanded in marine design.

The linear theory for water waves with small amplitude

over a uniform depth is known as Airy theory. Random sea

states with Gaussian statistics can be described as a linear su-

perposition of monochromatic linear waves. This theory is ex-

tensively applied in marine engineering for the statistical anal-

ysis of random seas4. In reality, ocean waves are nonlinear and

do not follow Gaussian statistics. Second-order theory was

developed as a remedy to the linear Airy solution5,6. Other

nonlinear effects provoked by bottom variation and higher-

order effects such as modulational instability may contribute

to deviation from Gaussian statistics.

Deep water waves may have modulational instability under

some circumstances, e.g. narrow banded spectrum and suffi-

ciently high amplitude. For flat bottom and deep water waves

with the presence of modulational instability, the excess kur-

tosis of surface elevation was found to be positive in Janssen

and Onorato 7 . In contrast, negative excess kurtosis occurred

in shallow water with the absence of modulational instability.

Without modulational instability, Ochi 8 showed that Gaus-

sian random waves in deep water can transform to non-

a)Corresponding author, e-mail : karstent@math.uio.no

Gaussian random waves as they propagate from deep to shal-

low water. The deviation from Gaussian statistics is more

pronounced in shallow water and this shallow water effect is

mainly due to second-order effects.

Field experiments reported by Bitner 9 and Cherneva

et al. 10 suggested that non-uniform bathymetry may alter the

statistical properties of surface elevation from Gaussian statis-

tics. In the last decades, there has been a surge of interest in

experimental and numerical studies to investigate statistical

properties of irregular wave fields with bottom variation.

Trulsen, Zeng, and Gramstad 11 reported laboratory experi-

ments of long-crested irregular waves propagating over a slop-

ing bottom. They found that there can be a local maximum in

the skewness and the kurtosis of surface elevation near the

edge of the shallower side of the slope. Other laboratory ex-

periments by Ma, Dong, and Ma 12 , Kashima, Hirayama, and

Mori 13 , Bolles, Speer, and Moore 14 and Zhang et al. 15 sup-

port this finding.

In shallow water regime, Sergeeva, Pelinovsky, and Tal-

ipova 16 utilized Korteweg-de Vries model to show that the

skewness and kurtosis of wave elevation increase when the

depth decreases. Majda, Moore, and Qi 17 developed a sta-

tistical model based on truncated KdV-equation and also

confirmed the experimental results in Bolles, Speer, and

Moore 14 . Motivated by the statistical model of Majda,

Moore, and Qi 17 , Moore et al. 18 conducted new experimental

measurements and compared with the truncated KdV model in

shallow water with abrupt depth changes.

In intermediate depth, Gramstad et al. 19 used a Boussinesq

model with improved linear dispersion to confirm the exper-

imental results in Trulsen, Zeng, and Gramstad 11 . Further-

more, it was discovered that for a milder slope, there is no lo-

cal maximum of statistical quantities in the surface elevation.

This finding is supported by Zheng et al. 20 with a bound-

ary element method. Another numerical model based on a

spectral conforming mapping method was used by Viotti and

Dias 21 for a stronger depth transition. Strongly non-Gaussian

statistics were observed in a region localized around the depth
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Statistical properties of wave kinematics in long-crested irregular waves propagating over non-uniform bathymetry 2

transition. This transition region connects two different statis-

tical equilibria.

In deep water regime, Zeng and Trulsen 22 used a nonlinear

Schrödinger model for variable depth and did not find any lo-

cal maximum of skewness and kurtosis in deep water. Instead,

the kurtosis decreases toward the shallower domain to achieve

a new statistical equilibrium. So far no laboratory experiments

have been performed in this depth regime.

A graphical presentation of the different depth regimes can

be found in Figure 1 of Trulsen et al. 23 .

For short-crested waves, Ducrozet and Gouin 24 with the aid

of High Order Spectral Method for variable depth found that

the enhancement of rogue wave occurence due to a sloping

bottom is reduced for a directional wave field. According to

the authors knowledge, this is the only numerical simulation

that considers the directionality of a random wave field prop-

agating over non-uniform bathymetry for statistical purposes

and no laboratory experiments have been done for this case.

All of the experimental and numerical results mentioned

above focus on extreme wave statistics enhancement in sur-

face elevation due to wave propagation from deeper to a shal-

lower depth. In Gramstad et al. 19 , the enhancement of rogue

wave occurrence is absent in the case that waves propagating

from shallower to deeper water but they did not investigate

the statistics of velocity field. It was previously shown that

the horizontal velocity also deviates from Gaussian statistics

(Tung 25 , Cieslikiewicz and Gudmestad 26 ) and the deviation

can be even stronger in shallower water as pointed out in Song

and Wu 27 and Alberello et al. 28 . The recent experimental re-

sults of long-crested irregular waves over a shoal reported by

Trulsen et al. 23 showed an increase of kurtosis in the hori-

zontal velocity which is different from the surface elevation.

The local maximum of kurtosis of surface elevation occurred

near the edge of the slope on the shallower side as expected,

meanwhile the local maximum of kurtosis of the horizontal

velocity was found over the downward slope on the lee side.

This new discovery implies that the rogue waves in surface

elevation and horizontal velocity can occur at different loca-

tions. This result is relevant for design of offshore structures

in regions of shallow and intermediate water depth.

As a continuation of previous works, the present paper em-

ploys a numerical model to investigate the statistical proper-

ties of horizontal velocity over non-uniform depth. We con-

firm the experimental result in Trulsen et al. 23 and analyze

further the effects of different incoming waves and bottom

slope. We also extend the evolution of skewness and kurto-

sis in a deeper regime as discussed in Zeng and Trulsen 22 by

including the statistical properties of horizontal velocity.

The organization of the rest of the paper is as follows. In

Section II, we describe briefly the numerical models for wave

evolution and wave kinematics calculation. The setup for nu-

merical simulations is given in Section III. The numerical

results are shown and discussed in Section IV. Finally, the

conclusions are given in Section V.

II. NUMERICAL METHOD

A. Wave evolution

A 2D fluid domain, periodic in horizontal direction with

length L and a Cartesian coordinate system is considered

as shown in Figure 1. Let z = η(x, t) denote the free sur-

face elevation with z = 0 being the still water level and z =
−h0+B(x) the bottom topography, where h0 is the mean wa-

ter depth and B(x) is the bottom variation. Hence, the con-

sidered fluid domain becomes : z ∈ [−h0 +B(x),η(x, t)] and

x ∈ [0,L).

FIG. 1: Description of fluid domain with surface elevation

η(x, t), mean water depth h0 and bottom variation B(x).

Assuming irrotational flow, the fluid velocity can be ex-

pressed by the velocity potential Φ, ~V = ∇Φ. The continuity

equation combined with the assumption of an incompressible

fluid then becomes the Laplace equation

∇ ·∇Φ = 0. (1)

As pointed out in Zakharov 29 , the dynamic equations for

inviscid irrotational nonlinear water waves can be written in

Hamiltonian structure with surface elevation η(x, t) and sur-

face potential φ = Φ(x,z = η , t) as canonical variables
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where g is the acceleration of gravity and W = ∂Φ
∂ z

∣

∣

∣

z=η
is the

vertical velocity at the surface. In order to solve the system

(2), the vertical velocity at the surface W needs to be evalu-

ated. An efficient pseudo spectral method to calculate the sur-

face vertical velocity W in terms of surface elevation η and

surface potential φ was initially introduced by Dommermuth

and Yue 30 and West et al. 31 for flat bottom, and has been

known as High Order Spectral Method (HOSM). The exten-

sion of HOSM to deal with small variation of bottom was in-

troduced in Liu and Yue 32 . Later, HOSM for varying bottom
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Statistical properties of wave kinematics in long-crested irregular waves propagating over non-uniform bathymetry 3

was improved by separating the order of nonlinearity for the

free surface and for the bottom (see Gouin, Ducrozet, and Fer-

rant 33,34 ). The dynamic equations in (2) can be solved numer-

ically using standard ordinary differential equations solver af-

ter applying pseudo spectral formulation. In the present work,

we use HOSM for varying bottom by Gouin, Ducrozet, and

Ferrant 33 as wave evolution model and a brief summary of

the method is presented in the following.

The velocity potential Φ(x,z, t) is expressed as a truncated

power series

Φ(x,z, t) =
M

∑
m=1

Φ(m)(x,z, t) (3)

where m denotes the nonlinear order of Φ(m) and M is the

nonlinear order of the method which can be freely chosen.

Then the surface potential and the surface vertical velocity are

expanded in a Taylor series around the still water level z = 0

Φ(x,z = η , t) = φ(x, t) =
M

∑
m=1

m−1

∑
n=0

ηn

n!

∂ nΦ(m−n)

∂ zn
(x,z = 0, t)

∂Φ

∂ z
(x,z = η , t) =W (x, t) =

M

∑
m=1

m−1

∑
n=0

ηn

n!

∂ n+1Φ(m−n)

∂ zn+1
(x,z = 0, t).

(4)

For varying bottom, the bottom boundary condition

∂Φ

∂x

∂B

∂x
−

∂Φ

∂ z
= 0 at z =−h0 +B(x) (5)

needs to be satisfied. In order to satisfy the bottom boundary

condition, the velocity potential Φ(m) is expressed as the sum

of two velocity potentials

Φ(m) = Φ
(m)
0 +Φ

(m)
B

Φ
(m)
0 (x,z, t) = ∑

j

A j(t)
cosh(k j(z+h0))

cosh(k jh0)
eik jx

Φ
(m)
B (x,z, t) = ∑

j

B j(t)
sinh(k jz)

cosh(k jh0)
eik jx

(6)

where k j = j 2π
L

and A j and B j are the modal amplitudes of

Φ
(m)
0 and Φ

(m)
B respectively. The velocity potential Φ

(m)
0 is a

solution of the problem for flat bottom with depth h0 since the

Neumann condition at z =−h0 is satisfied:

∂Φ0

∂ z
(x,z =−h0, t) = 0. (7)

The velocity potential Φ
(m)
B gives correction for bottom

boundary condition (5) and satisfies a Dirichlet condition at

z = 0:

ΦB(x,z = 0, t) = 0. (8)

With velocity potential in (6) and bottom boundary condition

in (5), the modal amplitudes A j and B j can be calculated as in

Gouin, Ducrozet, and Ferrant 33 by using Taylor expansion of

the bottom boundary condition around z = −h0 and truncate

the series to order MB. Once the modal amplitudes A j and B j

have been calculated, the surface velocity W can be calculated

from (4). The possibility of choosing different orders, M for

the free surface and MB for the bottom, gives more flexibility

to deal with cases that have different bottom variation and free

surface nonlinearity.

B. Water particle kinematics calculation

The numerical method for wave evolution as described in

Section II A provides the surface quantities such as surface

elevation η , surface potential φ and surface vertical velocity

W at every integration time step. For many applications, the

reconstruction of kinematics inside the fluid domain is neces-

sary. There are two methods in Bateman, Swan, and Taylor 35 ,

the so-called H operator and the H2 operator, to calculate the

interior water particle kinematics in Dirichlet to Neumann for-

mulation. Adaptation of these methods in HOSM formulation

is given by Ducrozet et al. 36 . However, these methods are

only valid for flat bottom. For varying bottom, we will use

the kinematics calculation by Variational Boussinesq Model

(VBM) as in Lawrence, Gramstad, and Trulsen 37 . Initially,

VBM was introduced by Klopman, van Groesen, and Dinge-

mans 38 for nonlinear wave propagation. Multiple works on

VBM have considered the accuracy in terms of wave prop-

agation for different cases including irregular waves propa-

gating over varying bottom (see Klopman, van Groesen, and

Dingemans 38 , Adytia and van Groesen 39 , Lawrence, Adytia,

and van Groesen 40 ). In Lawrence, Gramstad, and Trulsen 37 ,

the VBM is adapted to reconstruct the interior wave kinemat-

ics from information of surface elevation η and velocity po-

tential φ , and has been validated extensively against several

test cases. The VBM for kinematics calculation is discussed

briefly in the following.

In VBM, the velocity potential Φ(x,z, t) is approximated by

adding z-dependent functions

ΦV BM(x,z, t) = φ(x, t)+
P

∑
j=1

Fj(x,z, t)ψ j(x, t) (9)

where Fj are vertical shape functions that will be chosen in

advance, ψ j are amplitude functions that need to be deter-

mined to satisfy the Laplace equation and P is the number

of profiles. We require ΦV BM(x,z = η , t) = φ(x, t) and choose

Fj(x,z = η , t) = 0 for any j. For the vertical shape functions,

we choose the normalized hyperbolic cosine functions, called

Airy profiles in Adytia and van Groesen 39

Fj =
cosh [κ j(z+h)]

cosh [κ j(η +h)]
−1 (10)

where κ j are parameters that can be optimally chosen depend-

ing on the wave field. The parameter optimization is dis-

cussed extensively in Lakhturov, Adytia, and van Groesen 41

and Lawrence, Adytia, and van Groesen 40 .
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Statistical properties of wave kinematics in long-crested irregular waves propagating over non-uniform bathymetry 4

The VBM solves the Laplace equation ∇ · ∇Φ = 0 with

Dirichlet’s principle, i.e. the solution of Laplace equation is

obtained by minimizing the kinetic energy. The kinetic energy

of VBM is given by

KV BM =
1

2

∫ ∫ η

−h
|∇ΦV BM|2 dzdx. (11)

The kinetic energy minimization requires that the varia-

tional derivative of (11) with respect to ψ j is equal to zero,

δψ j
KV BM = 0, leading to a system of linear elliptic equations.

Then the amplitude functions ψ j are calculated by solving

these linear elliptic equations. Subsequently, the kinematics

in the fluid domain can be easily calculated from (9).

III. MODEL SETUP AND VALIDATION

We simulate long-crested irregular waves propagating over

varying bathymetry in a periodic computational domain x ∈
[0,L] by HOSM. The wave generator is embedded inside the

domain at x = x0 as described in Liam, Adytia, and van Groe-

sen 42 . At the left and right boundaries, damping zones with

length D are implemented39.

FIG. 2: Layout of computational domain.

The incoming wave field is generated by a superposition of

harmonic wave components. The time series for embedded

wave generation is given as

η(x = x0, t) =
N

∑
j=1

a j cos(ω jt +ϕ j) (12)

where ω j = j∆ω and the phases ϕ j are independent random

variables uniformly distributed on [0,2π). The amplitudes a j

are chosen deterministically based on a JONSWAP spectrum

in the form

S(ω) =
αg2

ω5
exp

[

−
5

4

(ωp

ω

)2
]

γ
exp

[

−
(ω−ωp)

2

2ω2
pσ2

]

(13)

where σ is 0.07 for ω ≤ ωp and 0.09 for ω > ωp. The peak

enhancement factor γ is set to 3.3 in all cases considered in

this paper. The values for ωp and α are calculated according

to peak period Tp and significant wave height Hs. The number

of discrete frequencies N describe the resolution of the wave

spectrum and several thousands discrete frequencies are cho-

sen to represent the spectrum in ω ∈ (0,10ωp).

The wave kinematics are calculated by VBM as a post-

processing after the HOSM simulation is finished. We repeat

this set of simulations in a Monte Carlo approach where the

incoming waves are generated from the same spectrum but

with different random phases. From each simulation, we cal-

culate the skewness and the kurtosis of surface elevation and

horizontal velocity from time series of length 200Tp. Note

that the time series are collected after the waves have fully

propagated through computational domain.

In the following we consider five sets of numerical simula-

tions for unidirectional waves propagating over non-uniform

bathymetry. First, in Section IV A, we conducted numerical

simulation with the same bathymetry used in the laboratory

experiment in Trulsen et al. 23 and the incoming wave field is

generated from a JONSWAP spectrum with significant wave

height Hs = 2.5 cm and peak period Tp = 1.1 s.

Then, in Section IV B, we study the effects of the signifi-

cant wave height and peak period, using the same bathymetry

as in Section IV A. Five different values for the significant

wave height are considered, Hs = 1.5,2,2.5,3 and 3.5 cm, all

with peak period Tp = 1.1 s. Five different peak periods are

considered, Tp = 0.9,1,1.1,1.2 and 1.3 s, all with significant

wave height Hs = 2.5 cm.

In Section IV C, we consider irregular waves propagat-

ing over a slope from deeper to shallower water. Here, we

fix the water depths h1 = 0.53 m and h2 = 0.11 m and the

incoming wave field with peak period Tp = 1.1 s and sig-

nificant wave height Hs = 2.5 cm. The lengths of upslope

is varied Lu = 1.6,5,10,15 and 25 m which correspond to

Lu = 0.89,2.78,5.56,8.34 and 13.9λp, respectively.

In Section IV D, we investigate irregular waves propagat-

ing over a shoal with different lengths of downslope. The

water depth and incoming wave field are the same as in Sec-

tion IV C. The length of the shallower part is 1.6 m. The

lengths of downslope Ld = 1.6,3,5,10,15 m correspond to

Ld = 0.89,1.67,2.78,5.56 and 8.34λp, respectively.

Finally in Section IV E, we investigate irregular waves

propagating over a slope in a much deeper regime than in Sec-

tion IV C. The incoming wave field has JONSWAP spectrum

with peak period Tp = 0.7 s and significant wave height Hs =
3.5 cm. The wave field propagates from non-dimensional

depth kph1 = 4.11 to kph2 = 1.75. The incoming wave field

needs some propagation distance in deep water to stabilize the

statistical quantities. Afterwards, it propagates through an up-

slope with length Lu = 3 m .

A. Convergence study

The convergence of HOSM for varying bathymetry has

been discussed extensively in Gouin, Ducrozet, and Fer-

rant 33,34 . Here, we give an example of convergence study for

irregular waves propagating over a shoal with the same setup

as in Section IV A. We set the nonlinear order of the method

to M = 3, and we vary the order at the bottom Mb. We use

Mb = 15 as reference solution. Figure 3 shows the time series

of surface elevation at three different locations. The first one

is located on the upslope, the second one is located on top of
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Statistical properties of wave kinematics in long-crested irregular waves propagating over non-uniform bathymetry 5

the shoal and the last one is located on the downslope. Table

I gives the root mean square error (RMSE) of surface eleva-

tion for different orders Mb relative to the reference solution,

calculated over time series of length 200Tp. We conclude that

HOSM with variable depth is converging and the results ob-

tained with Mb = 10 give excellent convergence with RMSE

less than or equal to 0.05%.

90 91 92 93 94 95 96 97 98 99 100

t[s]

-10

-5

0

5

[m
]

10
-3

90 91 92 93 94 95 96 97 98 99 100

t[s]

-0.01

0

0.01

[m
]

90 91 92 93 94 95 96 97 98 99 100

t[s]

-0.01

0

0.01

[m
]

FIG. 3: Time series of surface elevation of HOSM with

Mb = 7 (black, dashed dotted), Mb = 10 (red, dashed),

Mb = 15 (blue, solid) at three different locations: on upslope

(top), on top of the shoal (middle), on downslope (bottom).

TABLE I: Root mean square error of surface elevation with

different nonlinear order at bottom Mb relative to Mb = 15 as

reference solution.

Mb
RMSE

Upslope Top of the shoal Downslope

5 0.0037 0.0038 0.0043

6 0.0025 0.0021 0.0020

7 0.0017 0.0018 0.0022

8 0.0011 0.0009 0.0008

9 0.0007 0.0008 0.0009

10 0.0005 0.0004 0.0003

11 0.0003 0.0003 0.0004

12 0.0002 0.0002 0.0002

The convergence analysis of the ensemble averaged statis-

tical quantities with respect to the number of random runs has

also been conducted. As an example, Figure 4 presents the

convergence of kurtosis and skewness with respect to number

of runs for the experimental case in Section IV A. We found

that 100 realizations is sufficient to obtain accurate estimates

of the statistical quantities.

B. Mass flux in numerical simulation

There is a mass flux in the direction of wave propagation

due to the difference in fluid particle velocity at crests and

troughs, this effect is known as Stokes drift. The Stokes drift

velocity can be defined as the difference between the average

Lagrangian velocity and Eulerian velocity. An analytical so-

lution was derived by Stokes 43 . For a harmonic wave in deep

water, the Stokes drift velocity is approximately

ūS ≈ ωka2e2kz. (14)

In laboratory experiment, the Stokes drift will be reflected

back opposite of the wave propagation direction at the end of

the wave tank, we refer this as return current. When the shoal

is present, there is wave reflection from the shoal itself back

to the wave generator. The reflected wave will be reflected

back towards the shoal by wave generator. The return cur-

rent will also propagate back over the shoal towards the wave

generator. It is not clear how the mass flux will be vertically

distributed due to the reflection mentioned above.

In this subsection, we want to check the mass flux in the

numerical simulation when the waves reach the end of com-

putational domain through the damping zones.

We consider a linear harmonic wave propagating over flat

bottom with amplitude 1 cm, period 1 s and water depth 1

m. The wave is generated at x = 40 m in computational do-

main x ∈ [0,80] m. The length of damping zones is 20 m.

Figure 5 shows the snapshot of surface elevation at t = 40 s,

average mass flux, and the normalized flux velocity. We show

that the mass flux is due to Stokes drift and the return current

is absent in our numerical simulation. This also implies that

there is no reflection from the end of computational domain.

It should be noted that the existence of return current in lab-

oratory experiment may modify the wave dynamics such that

the higher-order statistics are affected.

IV. RESULTS

In this section, we present numerical results from the model

setup described in Section III. In all cases, we evaluate the

skewness and the kurtosis of the surface elevation and also

of the horizontal velocity at different z-levels. The edges of

the slopes are indicated by vertical dashed lines in the figures.

Table II shows the summary of our numerical cases.

A. Comparison with laboratory experiment

We present results from comparison with experiments car-

ried out at University of Oslo, reported by Trulsen et al. 23 .

In the experiment, the horizontal velocity measurements were

made at z =−0.048 m. In our numerical simulation, the hori-

zontal velocity are calculated at three different z-levels: −0.04

m, −0.06 m and −0.08 m.

Figure 6 shows the kurtosis and the skewness of surface el-

evation and horizontal velocity from experiments at one depth
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FIG. 4: Typical convergence of the ensemble-averaged kurtosis and skewness of surface elevation and horizontal velocity on

top of the shoal with respect to the number of runs.

TABLE II: Summary of numerical simulations. All

parameters are in SI units.

Hs Tp x1 x2 x3 x4 h1 h2 kph1 kph2

Experiment 0.025 1.1 30 31.6 33.2 34.8 0.53 0.11 1.85 0.64

Hs

0.015

1.1 30 31.6 33.2 34.8 0.53 0.11 1.85 0.64

0.02

0.025

0.03

0.035

Tp 0.025

0.9

30 31.6 33.2 34.8 0.53 0.11

2.66 0.81

1 2.19 0.72

1.1 1.85 0.64

1.2 1.61 0.59

1.3 1.42 0.54

Upslope 0.025 1.1 30

31.6

100 110 0.53 0.11 1.85 0.64

35

40

45

55

Downslope 0.025 1.1 30 31.6 33.2

34.8

0.53 0.11 1.85 0.64

36.2

38.2

43.2

48.2

Deep water 0.035 0.7 60 63 100 110 0.5 0.2 4.11 1.75

and numerical simulations at various depths. Figure 7 shows

the vertical variations of kurtosis and skewness of horizon-

tal velocity from the numerical simulations. It is clearly ob-

served that the local maximum of kurtosis and skewness of

surface elevation on top of the shoal are reproduced in the nu-

merical simulations. The skewness of the horizontal velocity

has similar behaviour as the skewness of the surface elevation,

while the kurtosis of horizontal velocity has its local maxi-

mum around the downslope region. The maximum kurtosis

of horizontal velocity is smaller than the maximum kurtosis of

surface elevation. All of these behaviours are well captured by

the numerical simulations. The numerical simulations show

that the kurtosis of horizontal velocity has a great variation in

vertical direction just after the upslope when the kurtosis of

surface elevation has local maximum. The horizontal veloc-

ity closer to still water level gives higher magnitude locally

in both kurtosis and skewness. There is a deviation between

experimental and numerical result in terms of the magnitude

of the statistical quantities. Note that the statistics of experi-

mental result are calculated by time averaging, meanwhile the

numerical results are calculated by ensemble averaging. Ad-

ditionally, the experimental results may be affected by wave

reflection and return currents, which are not present in the nu-

merical simulations as showed in Section III B. Overall, the

experimental and numerical results show a good qualitative

agreement.

B. The effects of significant wave height and peak period

We consider various incoming waves with different signifi-

cant wave heights and peak periods propagating over the same

bathymetry as in Section IV A.

Figures 8 and 9 show the kurtosis and skewness of surface

elevation and horizontal velocity for different significant wave

heights and peak periods, respectively. Amplification of local
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FIG. 5: (a) Snapshot of surface elevation at t = 40 s. (b) Vertically integrated flux, calculated by integrating the flux from

bottom to z = 0 and averaging from t = 40 s to t = 100 s. (c) Flux velocity normalized with analytical formula of Stokes drift

velocity at z = 0.

minimum and maximum for both kurtosis and skewness can

be achieved by increasing the significant wave height. Con-

firming the experimental result in Trulsen et al. 23 , there is a

tendency that the location of the maximum kurtosis and skew-

ness in surface elevation approaches the edge of the upslope

of the shallower part with decreasing peak period. The local

maximum of kurtosis in surface elevation starts to weaken in

our case with highest non-dimensional depth kph2. However,

the local minimum and maximum of kurtosis and skewness

in horizontal velocity still exist for all cases. There is also a

tendency that the local minimum of the skewness of surface

elevation and the local maximum of the kurtosis of horizontal

velocity coincide at the same location. Furthermore, the max-

imum and minimum of the skewness of surface elevation are

shifted to the direction of wave propagation with increasing

peak period. Finally, we remark that the vertical variation of

the kurtosis of horizontal velocity on top of the shoal is weak-

ened for sufficiently low non-dimensional depth kph2.

C. The effects of upslope length

We investigate the effects of upslope without the presence

of downslope, i.e. the downslope is far enough so that the

effects of upslope can be analyzed independently. Several dif-

ferent upslopes are considered with the same incoming waves.

Figure 10 shows the kurtosis and skewness of surface eleva-

tion and horizontal velocity with different upslope. Near the

edge of the upslope in the shallower area, we observe local

maximum in kurtosis and skewness of surface elevation, and

then it decreases towards new statistical equilibrium. On the

other hand, the kurtosis of horizontal velocity at z =−0.08 m

has a local minimum at the same location as the local maxi-

mum of surface elevation kurtosis and it stabilizes after some

distance. The skewness of horizontal velocity shows similar

behaviour as the skewness of surface elevation. We notice

that the local effects of kurtosis vanish when the length of

upslope is sufficiently large, meanwhile the local effects of

skewness are still present in our mildest case. This observa-

tion has been made in statistical quantities of surface elevation

with Boussinesq model in Gramstad et al. 19 . Furthermore, in

the shallower water regime, the kurtosis of horizontal veloc-

ity at deeper z-level is higher and it also has higher negative

skewness.

D. The effects of downslope length

The results in Section IV A and IV C showed that the local

maximum of kurtosis and the local minimum of skewness in

horizontal velocity occurred due to the presence of a downs-

lope. Now, we vary the downslope in Section IV A with the
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FIG. 6: Upper plot: kurtosis and skewness of surface elevation (blue) and horizontal velocity at z =−0.04 m (red), z =−0.06

m (yellow) and z =−0.08 m (purple) from numerical result. Lower plot: kurtosis and skewness of surface elevation

(experiment: ∗, simulation: blue line) and horizontal velocity at z =−0.048 m (experiment: +, simulation: red line).
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FIG. 7: Vertical variations of kurtosis and skewness of horizontal velocity on upslope area x = 30.8 m (blue), on top of the

shoal x = 32.4 m (red) and on downslope area x = 34 m (yellow) for experimental case.

same incoming waves to study the downslope effect.

Figure 11 shows the kurtosis and skewness of surface ele-

vation and horizontal velocity with different downslope. The

local effects in the downslope area disappear as the length of

downslope increases. Abrupt change of depth from shallower

water to deeper water may lead to non-Gaussian statistics in

horizontal velocity.
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FIG. 8: Kurtosis and skewness of surface elevation (blue) and horizontal velocity at z =−0.04 m (red), z =−0.06 m (yellow)

and z =−0.08 m (purple) for significant wave height Hs = 1.5,2,2.5,3,3.5 cm from top to bottom, respectively.

E. Deep water case

We consider strongly non-Gaussian waves propagating over

a slope in a deeper regime where modulational instability ef-

fect is present. A similar study has been done to investigate

the statistical properties of surface elevation with Nonlinear

Schrödinger wave model by Zeng and Trulsen 22 .

Figure 12 shows the evolution of kurtosis and skewness

over a sloping bottom from non-dimensional depth kph= 4.11

to kph = 1.77. We observe transition from one statistical equi-

librium to another new statistical equilibrium in shallower wa-

ter.

Figure 13 shows the vertical variation of kurtosis and skew-

ness of horizontal velocity. Towards the still water level, the

kurtosis of horizontal velocity is increasing and the magnitude

of skewness is increasing. In shallower water, there is a ten-

dency that the kurtosis of horizontal velocity is increasing near

the bottom and also the horizontal velocity has higher nega-

tive skewness. This observation is consistent with the results

in Section IV C.

V. CONCLUSION

Numerical simulations of long-crested irregular waves

propagating over a non-uniform depth have been performed

using a Monte-Carlo approach to investigate the statistics of

wave kinematics. Irregular waves propagating over a suffi-

ciently shallow shoal have a local maximum of the kurtosis

and skewness of surface elevation near the edge of the up-

slope on the shallower part of the shoal. As pointed out in

the experimental result of Trulsen et al. 23 , the correspond-

ing horizontal velocity has a local maximum of kurtosis on

the downslope area and the local maximum of skewness is

achieved at the same location as the surface elevation. Our

numerical results are in qualitative agreement with the exper-

imental result of Trulsen et al. 23 .

The effects of significant wave height and peak period are

investigated. The local effects of kurtosis and skewness for
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FIG. 9: Kurtosis and skewness of surface elevation (blue) and horizontal velocity at z =−0.04 m (red), z =−0.06 m (yellow)

and z =−0.08 m (purple) for peak period Tp = 0.9,1,1.1,1.2,1.3 s from top to bottom, respectively.

both surface elevation and horizontal velocity can be ampli-

fied by increasing the significant wave height or increasing

the peak period. In other words, this physical phenomenon

only occurs in high sea states in sufficiently shallow water.

The skewness and kurtosis of the surface elevation have lo-

cal maxima due to the upslope. We found that the kurtosis of

the horizontal velocity has a strong vertical variation where

the kurtosis of surface elevation reach its maximum. Mean-

while, the downslope length is responsible for local maximum

of kurtosis in horizontal velocity. All of these local effects can

vanish when the bottom slope becomes milder.

It has previously been shown in Zeng and Trulsen 22 with

Nonlinear Schrödinger model that in a deeper regime with

modulational instability, the slope connects two different sta-

tistical equilibriums of surface elevation. In the transition

region, there is no local maximum of skewness and kurto-

sis. Our results are in agreement with the results in Zeng

and Trulsen 22 . While it has still not been confirmed by ex-

perimental measurements, this is the first verification of their

results by means of a highly nonlinear numerical model. The

statistical properties of horizontal velocity also show the same

behaviour as the surface elevation. Furthermore, the vertical

variation of skewness and kurtosis in horizontal velocity in

shallower water shows that the kurtosis is higher and it has

higher negative skewness near the mean water level and the

bottom.
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FIG. 10: Kurtosis and skewness of surface elevation (blue) and horizontal velocity at z =−0.04 m (red), z =−0.06 m (yellow)

and z =−0.08 m (purple) for different length of upslope.
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