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To my family





Preface

On the face of it, there may seem to be something self-contradictory about
searching for locality in a periodic, infinite system. My years of poking around
this problem has taught me that it is not. If you tread carefully, you’ll find an
extremely rich and enjoyable problem that never cease to provide fresh insight,
new puzzles and amazement. If you stray some few whimsical steps off course,
however, you may find yourself in a deep hole where the walls cave in as you
try to escape. I’ve had the pleasure of visiting both some dark holes and some
illuminating vistas around here, yet it is hard to shake off the feeling of being a
tourist. So if you join me on this tour, let me begin with a friendly warning; I
do not know the way out of all the holes around here. In fact, I’m quite sure
I’m still stuck in some of them. So although the terrain may appear identical in
all directions, as one would perhaps expect in an infinite crystal, we shall stick
to the path we have cleared, take some delight in the sights along the way, and
hopefully arrive safely at our destination; the periodic correlation energy, before
we run out of spirit.

First, in Chapter 1, we’ll review the bigger picture and provide some historical
and theoretical context as well as motivation for the coming discussion. In
Chapter 2 we lay the mathematical foundation that underpins most of this work.
While this chapter may seem trivial, I actually consider it an essential part of
my my research. It greatly simplifies the coming theoretical derivations, and
provide a means for efficient calculation of periodic quantities. In Chapter 3 we
introduce the central problem of this work; the periodic electron many-body
problem, as well as common routes towards solving the problem with a special
focus on locality. Finally, in Chapter 4, we’ll go the final distance, arriving at a
way in which the local MP2 energy can be made computationally feasible for
periodic systems. The two last chapters (5 and 6) features a presentation of the
main parts of the computational implementation, a summary and motivation of
the papers, and some outlooks.

In sum, the first six chapters of this thesis serves as a framing for the three
included papers. These papers are presented in a chronological order.

This thesis is submitted in partial fulfillment of the requirements for the
degree of Philosophiae Doctor at the University of Oslo. The research presented
here was conducted at the Hylleraas Centre for Quantum Molecular Sciences,
and formerly the Centre for Theoretical and Computational Chemistry, both
Centres of Excellence funded by the Research Council of Norway hosted by the
University of Oslo.

The research was supervised by Thomas Bondo Pedersen, and co-supervised
by Trygve Helgaker and Simen Kvaal.

This work has been supported by the Research Council of Norway (RCN)
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through its Centres of Excellence scheme, project number 262695, by the RCN
Research Grant No. 240698, and by the Norwegian Supercomputing Program
NOTUR Grant No. NN4654K.
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Chapter 1

Introduction

1.1 Overview

Figure 1.1: Good luck in bringing a crystal to the computational scaling wall of
electron correlation methods.

The computational scaling wall constitutes a fundamental challenge in
molecular quantum chemistry, with even more constraining consequences for
infinite systems such as crystals. It is likely the main obstacle in our quest for a
universally applicable in-silico model of real-world chemistry on the quantum
level. Conquering this challenge will unquestionably give us the means to make
groundbreaking discoveries in biology, medicine and material science, as well
as chemistry, and it has therefore been the subject of extensive research since
the middle of the last century. The computational complexity encountered is a
direct consequence of the hierarchical way in which we approach the many-body
problem, and is thus an intrinsic property of the equations that arise from
the second quantization formalism. In the molecular case, linear scaling has
been achieved by inferring sparsity in the equations from locality considerations,
leading to a family of approaches commonly referred to as local correlation
methods. Key to these methods is the fact that the amplitude equations in many
cases can be partitioned into weakly intercoupled subspaces, where the coupling
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1. Introduction

can be neglected without significant effects on the results.
The extension of local correlation methods into the realm of infinite systems

has been limited, in part because the conventional way of dealing with these
systems is to apply Born-von Karman boundary conditions and solve the resulting
equations in reciprocal space. In this case, the canonical solution to the Hartree-
Fock equations are found in the form of completely delocalized Bloch-waves.
However, an alternative route is available for insulators. In the localized Wannier-
picture, the orbitals have a finite spatial extent, and the systems are thus in many
ways much more similar to the molecular case. Even here, however, progress
has been slow. One likely explanation for this is that the process of adapting
the molecular formulation into its periodic equivalent is cumbersome, with one
notable challenge being that of utilizing the translational symmetries in the most
efficient way possible.

Several problems takes the spotlight within this context; how do we smoothly
and systematically extend our well proven methods for molecules to periodic and
infinite systems? How can the spaces be chosen and truncated with sufficient
precision and control of the error in the result? Are there bottlenecks in the
calculations that can be identified and overcome with suitable approximations?
These main venues has been the focus of my research, and the results are
presented in this dissertation.

1.2 Brief historical context

Many-body quantum mechanics emerged out of the electrified and creative
atmosphere that permeated particle physics in the 1920s, and its key ideas
and concepts are often attributed to Paul Dirac and his 1927 second-quantized
treatment of fields.[1] Within a short span of time this formalism was extended
to fermionic many-body systems, and approximative methods such as truncated
configuration interaction (CI), Hückel theory and Hartree-Fock (HF) theory were
contrived. Early on, Felix Bloch [2], and Ralph Kronig and William Penney [3]
presented their theories in rapid succession, and the theory thus encompassed
also infinite crystals. Over the period of some few decades, the ingredients for
a complete understanding of the quantum mechanical interactions of electrons
were all put to the table, and organized into a coherent theoretical framework.

The Norwegian physicist Egil Hylleraas took part in the very conception of
this framework. In 1926, the then aspiring young scientist Hylleraas traveled
to Göttingen in order to work on crystallography under the supervision of Max
Born.[4] Upon arrival, Hylleraas did however find that Born’s focus had shifted,
and he soon found himself working on the quantum two-body problem instead.

His method for finding a solution to the ground state of Helium earned him a
place in history as one of the pioneers of quantum chemistry. In Hylleraas’ own
words, his work also sent literally "respectable shock waves" into his immediate
surroundings, as his solution procedure required the use of the presumably
noisy Mercedes Euclid, an early mechanical calculator. [4] For Hylleraas and his
contemporaries, it was clear already in the late 1920s that the equations that

2



Brief historical context

arise from second quantization can not be solved analytically, but rather has
to be computed numerically. While the solution procedure typically consists
of a series of basic additions and multiplications, the sheer number of such
calculations required superseeds by far any reasonable workload for a human.
Even in the modern era, looking back at nearly a century of exponential growth
in available computational resources while we take our baby steps into the age
of quantum computing, the exact solution of the fermionic N-body problem is
far beyond our reach for realistic cases.

The limitations concerning wavefunction methods arise mainly from the
computational scaling, where methods that describe the correlated wavefunction
of electrons typically scales in the range from O(n2

on
2
vn

4
AO) for the second order

Møller-Plesset (MP2) case up to O(nnelAO) in the Full Configuration Interaction
(FCI) case, where no, nv and nAO is the number of occupied, virtual and atomic
orbitals respectively, and nel is the number of electrons. [1] Scientists, who in the
midst of the last century were faced with such poor prospects in application and
scant computational resources, realized that additional approximative techniques
on top of the hierarchical truncation of exited Slater determinants (SDs) were
required in order to push beyond the scaling barriers.

In a paper from 1983[5], Peter Pulay insightfully noted that the canonical
solution to the Hartree-Fock equations could potentially impose an unnecessary
delocalization of the correlation effects in configuration space. In general,
there exists an infinite number of non-canonical solutions, linked to the
canonical solution by a unitary rotation within the occupied and virtual spaces
respectively [6], which distribute the correlation energy differently throughout
configuration space depending on the choice of representation. The problem may
thus be seen as the search for a compact representation, where the equations can
be solved on weakly coupled subspaces instead of the full space, thus reducing the
scaling of the equations towards linearity. A similar effect is especially noteworthy
in the periodic case, where the canonical Hartree-Fock solution subject to Born-
von Karman (BvK) boundary conditions exhibits an exact decoupling in the
correlated treatment due to conservation of crystal momentum.[7]

Pulay pointed out in his 1983 paper that one possible compact representation
could emerge from locality considerations, in effect the spatial extent of the
orbitals in R3. [5] This idea finds its scientific justification in the fact that
physical interactions typically decay with distance, so it is reasonable to expect
a distance based decoupling. At the time, it was known that contributions to
the correlation energy could be cast in terms of occupied pairs [8, 9, 10], but the
delocalized nature of the virtual space still required a computationally expensive
(n4
AO) operation. As they lacked the methodology required to localize the virtual

space, Pulay proposed instead to construct the virtual space by removing the
occupied components from the AO-basis, resulting in a redundant set of local
virtual orbitals commonly called Projected Atomic Orbitals (PAOs). [5] Over the
next few years, Pulay and Svein Sæbø then published together and separately
a series of papers [5, 11, 12, 13], which has formed the basis for what today is
referred to as local correlation methods. The Divide-Expand-Consolidate method
(DEC) [14, 15] is one member of this family, together with cluster-in-molecule

3



1. Introduction

(CIM) [16, 17, 18] and the pair-natural orbital (PNO) approach [19, 20, 21, 22,
23, 24, 25], to name a few.

In order to achieve spatial locality, several optimizable objective functions
have been devised. While Pulay and Sæbø originally employed the PAO basis
for the virtual space, Foster and Boys had already in the 1960s introduced
the so-called Foster-Boys localization[26, 27], which essentially measures and
minimize the sum of variances for a set of orbitals. Edmiston-Ruedenberg
localization [28] was introduced in 1963 and targets more directly the correlation
energy, while Pipek-Mezey localization [29] was introduced in 1989. The wide
range of available measures highlights our ambiguous notion of locality; that the
orbitals are in some sense spatially confined.

Optimization methods have become more elaborate the last four decades.
The PAOs are intrinsically local, but the various other orbital sets are obtained
by optimizing their measure of locality. This can be a computationally costly
and complicated affair for higher dimensional orbital spaces. Early on, one would
perform optimization by means of Jacobi sweeps [30, 31], where all possible pairs
of orbitals was rotated separately and successively until overall convergence was
reached. Today, a wide range of techniques are routinely used in these kinds
of problems, such as for instance gradient methods, line-searches, Newtonian
methods and trust-region methods. [31, 32]

Furthermore, various compression techniques has been devised in order to
compactly represent the orbital spaces, such as the PNOs and orbital-specific
virtual orbitals (OSVs) [33].

We are currently at a stage where sophisticated methods and faster computers
have facilitated the routine usage of local correlation methods for large molecules,
and significant progress in the extension of these methods to periodic systems is
being made. [18, 34, 35] A timely question is thus: what do we expect to gain
with these methods? Why would we be interested in the correlation energy of
something like a crystal? Is it a useful quantity, as some might ask? [36]

Wavefunction methods provide a physically correct description at the
quantum level, given that the Hamiltonian accurately describe the system
in question. While crystal structures may be macroscopic objects, they are
fundamentally governed by quantum-mechanical interactions. They present us
with one of these rare occasions where effects on the quantum level can bubble
up to the surface of our tangible, everyday reality. Periodic systems encompasses
polymers, helix-structures, surfaces and three dimensional crystals, all sources
for rich chemistry pertaining to material science, life science and much of our
surrounding reality.

Density functional theory (DFT) is significantly more efficient than wavefunc-
tion methods, and is today routinely used to simulate crystals. At the same time
DFT lacks a systematic way of improving the exchange-correlation functional
towards the exact result [37], a task usually delegated to the more accurate
coupled-cluster (CC) theory in the molecular case. CC results in the condensed
phase would thus let us ensure the validity of DFT calculations for materials.

It may be hard to predict exactly what kind of beneficial discoveries will be
made with accurate and efficient in-silico models of crystal structures beyond
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Brief historical context

ensuring the quality of DFT results, but it is even harder to argue that there would
be none. The ability to discover through simulation, rather than synthesis, opens
the door for efficient and strategic exploration of phenomena on the electronic
scale in the context of materials. This could be new, targeted medicines, stronger
and lighter materials for space exploration, or even solutions to problems we do
not yet know we have. In a fast-paced reality where global needs may change
quickly and abruptly, it is crucial to stay be ahead of the curve. Machine-learning
methods may be orders of magnitudes faster than wavefunction methods, but at
the same time inherently empirical and in this sense limited to answers inside
of the box. First-principle methods, with the predictive power to produce new,
decisive data and illuminate the unknown and beyond, provides an unmatched
perspective on reality well worth spending our time and resources on.
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Chapter 2

A mathematical framework for
periodic systems

2.1 Overview

The translational symmetries of infinite periodic systems are intrinsic to a class
of matrices called bi-infinite block-Toeplitz (IBT) matrices. [38] When subjected
to the cyclic boundary conditions imposed by the discrete Fourier transformation,
these matrices transform into infinite block-circulant (IBC) matrices. A link
between the direct-space Toeplitz picture and the reciprocal space circulant
picture can be established from the convolution theorem. In this chapter we
will define and derive various algebraic relations and operations pertaining to
these mathematical constructs, in order to more smoothly and compactly derive
equations and expressions for periodic systems later on.

2.2 Infinite Block-Toeplitz matrices

Consider a matrix A with blocks labeled i, j and the following structure:

Aij = A0,j−i := Aj−i, (2.1)

for i, j ∈ Z, implying an infinite number of blocks. From (2.1) it is evident that
all blocks along the diagonal are identical:

A(i+n),(j+n) = A(j+n)−(i+n) = Aj−i = Aij . (2.2)

Such a construct is called an bi-infinite block-Toeplitz (IBT) matrix. [38] A
visualization is provided in Fig. 2.1.

2.3 Transpose of IBT-matrices

We define the blocks in a transposed IBT-matrix AT to be

(AT )ij = (Ai−j)T , (2.3)

so that both the elements within each block and the block-structure itself are
affected. An IBT matrix S is therefore symmetric if

Si−j = (Sj−i)T . (2.4)
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Figure 2.1: The structure of the blocks in the infinite Toeplitz matrix. An
arbitrary block is chosen along the diagonal as a point of reference, and is
referred to as the reference block, here indicated by the highlighted index in the
center of the image. All information on the infinite matrix is contained in a
single column or row, as indicated by the red highlight.

2.4 The IBT matrix-matrix product

Matrix-matrix multiplication for finite matrices is

(AB)ij =
N∑
k=0

AikBkj , (2.5)

where N is the number of columns in A and the number of rows in B (the indices
are given in a row-major order). This may be straightforwardly extended to the
IBT-matrices by inserting 2.1 into 2.5:

(AB)ij =
∞∑

k=−∞
Ak−i ·Bj−k. (2.6)
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It follows that the product of two IBT-matrices is itself an IBT-matrix, since

(AB)(i+n),(j+n) =
∞∑

k=−∞
A(k−n)−iBj−(k−n) = (AB)ij . (2.7)

With this taken into account we may write the matrix product of two IBT-
matrices as

(AB)i,j = (AB)0,j−i ↔
∞∑

k=−∞
Ak−i ·Bj−k =

∞∑
k=−∞

Ak ·B(j−i)−k. (2.8)

Defining j − i := n, we finally find that

(AB)n =
∞∑

k=−∞
Ak ·Bn−k. (2.9)

Considered in light of the result in 2.7, it is clear that the set of blocks (AB)n
for n ∈ Z contain all the unique blocks of the complete matrix-matrix product.

2.5 Truncated IBT-matrices

Summations this far has been over the entirety of Z. If we consider instead
a matrix A with only a finite non-zero bandwidth B(A) := [−N,N ] of blocks
along the diagonal such that

An = 0 for |n| > N (2.10)

the summation index can be limited to a finite set. We shall refer to this kind of
matrix as a truncated IBT-matrix. An illustration is provided in Fig. 2.2.

2.6 The matrix product of truncated IBT-matrices

Considering two truncated IBT-matrices A,B with bandwidths

B(A) = [−N,N ], (2.11)

and
B(B) = [−M,M ], (2.12)

with a finite bandwidth we only need to sum over the non-zero indices in in A:

(AB)n =
N∑

k=−N
Ak ·Bn−k, (2.13)

from which it follows that the bandwidth of the product is

B(AB) = [−M −N,M +N ]. (2.14)
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Figure 2.2: The structure of the truncated BT-matrix, where blocks outside the
bandwidth is zero. In this case B = [−2, 2].

2.7 Discrete Fourier transform of IBT-matrices

For a truncated IBT matrix A with bandwidth B = [−N,N ] we now consider
the discrete, blockwise Fourier transformation for a given m ∈ Z

F{A}m =
N∑

n=−N
e−i(

2π
M )mnAn := Ãm, (2.15)

where M = 2N + 1 is the number of non-zero blocks in A. Due to the periodicity
of the complex exponential we have

Ãm+M = Ãm, (2.16)

10



The discrete Fourier transform matrices

thus in eq. (2.15) we need only to consider cases wherem ∈ B. The corresponding
backward transform is

F−1{Ã}n = 1
M

N∑
m=−N

e−i(
2π
M )mnÃm = An, (2.17)

where the normalization factor in front ensures idempotency such that

An = 1
M

N∑
m=−N

ei(
2π
M )mn

N∑
n′=−N

e−i(
2π
M )mn′An

′
. (2.18)

which can be recomposed into

An =
N∑

n′=N
An
′
( 1
M

N∑
m=−N

ei2π
m
M (n−n′)

)
δn,n′

. (2.19)

The transformed matrix behaves no different:

Ãm =
N∑

m′=−N
Ãm

′
( 1
M

N∑
n=−N

ei2π
n
M (m′−m)

)
δm′,m

. (2.20)

These transformations are generally referred to as the discrete Fourier transform
(2.15) and the inverse discrete Fourier transform (2.17). [39]

2.8 The discrete Fourier transform matrices

A more compact representation of the discrete Fourier transformations can be
given on matrix form

Ãm =
N∑

n=N
WmnAn, (2.21)

where the elements of W includes the normalization

Wmn = 1√
M

(
e−i

2π
M

)mn
. (2.22)

Similarly, the back transform is

An = 1√
M

(W−1)nmÃm, (2.23)

where
(W−1)nm = 1√

M

(
ei

2π
M

)mn
. (2.24)

11



2. A mathematical framework for periodic systems

The relationship in eq. 2.19 and 2.20 can thus be reaffirmed by:

(W−1W )mn = 1
M

∑
k

(
e−i

2π
M

)mk(
ei

2π
M

)kn
= δmn, (2.25)

and as such shown to be unitary, since:

(W−1)nm = (Wnm)∗. (2.26)

2.9 Periodicity in direct space

Note that although the transformation in (2.15) is unitary, it introduces another
type of periodicity in the matrix. For example, where we initially had

AM+n = 0, (2.27)

we will find that after the transformation we have instead

AM+n =
N∑

n′=−N
An
′
( 1
M

N∑
m=−N

ei2π
m
M (M+n−n′)

)
= An. (2.28)

This demonstrate that the discrete Fourier transform does not conserve the
IBT-structure, but instead introduces a new kind of periodicity in the matrix.
We shall refer to the resulting structure as an Infinite Block Circulant (IBC)
matrix.

2.10 Infinite block-circulant matrices

In order to describe the IBC matrices, we define the following (non-standard)
cyclic operator

i � N := (i+N) mod (2N + 1)−N, (2.29)
where mod implies the remainder of integer division. This will produce the
following series:

...,

0 � N = 0,
1 � N = 1,

...,

N � N = N,

N + 1 � N = −N,
...

(2.30)

Using this notation, we define a IBC matrix to have the structure

Aij = A(j−i)�N := An�N . (2.31)

For the more visually inclined reader, the circulant operator can be envisioned
as rotations on a circular disc, as shown in Fig. 2.3, while the matrix structure
is shown in Fig. 2.4
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N

N + 1

. . .

-2

-1
0

1

2

. . .

N 1

N

Figure 2.3: It may be clarifying to imagine the circulant operator as cycling
trough the blocks on a clock-like disc.

2.11 Products with IBC matrices

The product of a truncated IBT matrix A with B(A) = [−N,N ] and an 2N + 1-
periodic IBC matrix B, is itself an IBC matrix with blocks

(AB)nIBC = (AB)n�NIBC =
N∑

k=−N
Ak ·B(n−k)�N . (2.32)

We shall refer to this kind of product as the IBC-product. For n = 0 the
block equates to the IBT-product, but for off-diagonal terms we get additional
contributions from cyclic blocks in B which in the truncated IBT-case would be
zero. For example in the case for N = 2, we would have

(
A−2A−1A0A1A2)


B0 B1 B2 B−2 B−1

B−1 B0 B1 B2 B−2

B−2 B−1 B0 B1 B2

B2 B−2 B−1 B0 B1

B1 B2 B−2 B−1 B0



=


(AB)−2

(AB)−1

(AB)0

(AB)1

(AB)2


IBT

+


A1B2 +A2B1

A2B2

0
A−2B−2

A−2B−1 +A−1B−2


, (2.33)

where IBT denotes the IBT-product of A and B as defined in Eq. 2.13. If both
A|n|>1 = 0 and B|n|>1 = 0, the latter term is zero and the product thus equates
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Figure 2.4: The structure of the IBC-matrix. The periodic region is marked in
red, indicating that it is infinitely repeated throughout the entire matrix.

to the IBT-product. Again, the visually inclined reader may find it useful to
study the provided Fig. 2.5, where the circulant product is envisioned as the
sum over sections on rotating discs.

In general, we find that the IBT product can be expressed as

(AB)nIBT = (AB)nIBC −
k≤|n|∑
k=1

A−sgn(n)(N−k+1)Bn−sgn(n)(N+k), (2.34)

where sgn(n) is the sign of n.
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Figure 2.5: The IBC product can be imagined as the sum over aligned blocks
in two matrices, here visualized by two rings. Summing together products of
the corresponding blocks in the outer and inner rings above would yield the
center diagonal block in the IBC product. For the off-diagonal block n in the
IBC product, one of the rings would have to be rotated n increments before the
blockwise matrix product and summation. Note the opposing sign of the indexes
at each increment.

2.12 The convolution theorem

Consider now the inverse Fourier transform of the element-wise multiplication of
Ã and B̃ in reciprocal space for a given n:

F−1(F (A) ∗F (B))n = 1
M

N∑
m=−N

ei
2π
M mnÃmB̃m, (2.35)

where blockwise multiplication ( ∗ ) implies that

(F{A ·B})k = F{A−1}k ·F{B}k. (2.36)

We can insert the expansion of Ãm and B̃m from Eq. 2.15 to find

F−1(F (A) ∗F (B))n =
N∑

n1=−N

N∑
n2=−N

( 1
M

N∑
m=−N

ei
2π
M m(n−n1−n2)

)
δn−n1�N,n2

An1Bn2 ,

(2.37)
The Kronecker delta is periodic with respect to n− n1 in periods of 2N + 1, so
resolving for this delta results in

F−1(F (A) ∗F (B))n =
N∑

n1=−N
An1Bn−n1�N = (AB)nIBC . (2.38)
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2. A mathematical framework for periodic systems

which is the same as Eq. 2.32.
This result is the well known convolution theorem, which in our context can

be summarized as the fact that the IBC-product can be expressed by a block-wise
product of two IBC matrices in reciprocal space. Mathematically, it is stated as
follows:

F{A ·B} = F{A} ∗F{B}. (2.39)
In our context there is at least two significant consequences of this fact;

first, it means that under careful consideration of the result in Eq. 2.32, the
IBT product can be exactly computed (by padding outer bands with zeros) or
approximated (by assuming the cross-boundary terms to be small) by means
of the highly efficient Fast Fourier Transform (FFT) [40] and level 3 BLAS
routines. [41] Secondly, it shows that blockwise factorizations of the Fourier
transformed matrices carries over to direct space in a well-defined manner which
also can be made equivalent by treatment of the cross-boundary terms. This
includes diagonalization, Cholesky-factorization, singular value decomposition,
inversion and much more. On a more abstract level, it simplifies the linear-
algebra notation, since the lattice-summations are implicitly defined in the
matrix-product itself, and as such facilitates a smooth theoretical transition
between periodic and molecular systems.

2.13 Reciprocal space inversion of IBC-matrices

One practical application of Eq. 2.32 can be made in regards to the inversion of
an IBC matrix. Any invertible IBC matrix A may be inverted by means of a
Fourier transformation followed by blockwise inversion at every k-point, which
in light of Eq. 2.39 reads

F{A−1 ·A} = F{I} = F{A−1} ∗F{A}. (2.40)

Multiplying (F{A}m)−1 from the right on the above gives

F{I}m · (F{A}m)−1 = F{A−1}m. (2.41)

Furthermore, it is clear that the Fourier transform of the IBC identity matrix is
simply identity at every point in k-space

(F (I))m =
∑
n

e−i(
2π
M )mn In = I, (2.42)

which means that the expression simplifies further, so that

(F{A}m)−1 = F{A−1}m. (2.43)

Writing out explicitly the Fourier transform of A, we may thus state the final
result by (∑

n

e−i(
2π
M )mn An

)−1

= F{A−1}m, (2.44)
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Unitary IBT and IBC matrices

which shows that the direct space inverse of a IBC matrix may be found through
a (1) Fourier transform, followed by (2) inversion at every k-point, and finally
(3) an inverse Fourier transform. The full result may be compactly summarized
for a block

(
A−1)n in the inverted IBT-matrix A−1

(
A−1)n = 1

M

∑
m

ei(
2π
M )mnF{A−1}m =

1
M

∑
m

ei(
2π
M )mn

(∑
n′

e−i(
2π
M )mn′ An

′

)−1

.

(2.45)

2.14 Unitary IBT and IBC matrices

The result from Eq. 2.32 can also be used in the construction of unitary periodic
matrices. For an IBC matrix to be unitary it has to satisfy the condition

(U†U)nIBC = δn,0I, (2.46)

where I is the identity matrix. From Eq. 2.35 it is clear that this is equivalent to

1
M

N∑
m=−N

ei
2π
M mnF{U†}mF{U}m = δn,0I. (2.47)

A unitary block Un can be constructed from any equally sized matrix An by
means of a matrix exponential [6]:

Un = exp
(

1
2((An)† −An)

)
=
∞∑
k=0

( 1
2 ((An)† − (An))

)k
k! , (2.48)

where
(
(An)† −An

)0 := I. If we then replace the transformed blocks in Eq. 2.47
with such unitary blocks, we obtain

1
M

N∑
m=−N

ei
2π
M mn(U†)mUm = δn,0I, (2.49)

demonstrating the possibility of constructing a unitary IBC matrix in reciprocal
space.

A unitary IBT matrix is not as straightforward, as it has to satisfy the
condition analogous to Eq. 2.46:

(U†U)nIBT = δn,0I. (2.50)

A special case can however be noted, namely the IBT matrix U0 with blocks

Un = δn,0U
0, (2.51)

where U0 is a unitary block.
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2.15 Triple products

In many cases, we are interested in inner products of the form

(CTMC)m =
∑
k∈Z

(CT )k
∑
k′∈Z

Mk′−kCm−k
′

=
∑
k∈Z

(CT )k(MC)m−k, (2.52)

where only C is truncated, while M is an infinite but decaying BT-matrix. The
summation domain is the infinite Z, but the product can, however, instead be
written

(CTMC)m =
∑
k∈Z

∑
k′∈Z

(CT )kMk′−k+mC−k
′
, (2.53)

so that for a given m, we may limit the summations to only non-zero k′ and k’s
in C. Performing the contractions this way, it is thus possible to ensure that no
more than the required blocks in M are computed in advance (or on-the-fly).
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Chapter 3

Periodic and infinite many-electron
quantum systems

3.1 Overview

The IBT- and IBC-pictures can be used to smoothly extend the familiar and
well-proven methods and concepts from general quantum chemistry into the
periodic and infinite realm. We review some common techniques for dealing
with periodicity in many-body wavefunction methodology, with a focus on local
correlation and locality in such systems. In the following discussion, we shall use
the standard convention where i, j, k, ... denotes occupied orbitals, and a, b, c, ...
signifies virtual orbitals. The indices p, q, r, ... will refer to all orbitals, while
µ, ν, γ, ... represents atomic orbitals.

3.2 The Periodic Hamiltonian

Lattice structures emerge naturally from the electronic many-body problems as
a special condition where the bonding between two or more atoms gives rise to
new sites where the same type of bonding may occur. We commonly call these
systems crystals, and define their periodic dimensionality to be the number of
dimensions along which periodicity occurs. While the interactions responsible for
keeping this structure together occur at the quantum level, the crystal as a whole
can be a macroscopic object; visible to the naked eye and accessible to the touch.
For this reason, the atoms in the bulk of the crystal far outnumbers the ones at
its surface, and the conditions inside the bulk thus closely resembles those of an
infinite and perfectly regular lattice where surface effects are non-existent.

This infinite and perfect Nd-dimensional crystal model can be realised as a set
of atoms repeatedly placed relative to a set of lattice points Rm = Rm, where
m ∈ ZNd are called lattice coordinates and the columns of the Nd by Nd matrix R
are called the lattice vectors. Within the Born-Oppenheimer approximation, we
can define a many-electron spin-free and non-relativistic Hamiltonian operator[6]
for this system as
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Ĥ = −1
2
∑

n∈ZNd

∑
i

∇2
ni −

∑
n∈ZNd

∑
m∈ZNd

∑
A

∑
i

ZA
|ri −Rn − rA + Rm|

+
∑

n∈ZNd

(∑
i

∑
j>i

1
|ri − rj |

+ 1
2

∑
m∈ZNd\n

∑
ij

1
|ri −Rn − rj + Rm|

)

+
∑

n∈ZNd

(∑
A

∑
B>A

ZAZB
|rA − rB |

+ 1
2

∑
m∈ZNd\n

∑
AB

ZAZB
|rA −Rn − rB + Rm|

)
,

(3.1)

where the indices ni,mj refers to electrons i in cell n and j in cell m, A,B
refers to nuclei, and the terms are respectively the kinetic energy, the electron-
nucleus interaction, the electron-electron interaction at m = 0, the electron-
electron interaction for the remaining crystal, the nucleus-nucleus interaction
at m = 0 and nucleus-nucleus interaction for the remaining crystal. Note that
the expression is equivalent to the molecular case when n and m are confined to
simply 0, and decouples to an infinite set of molecular cases when the elements
in the columns of R goes to infinity. The realistic Hamiltonian may in fact
also be recovered by letting n and m be in the actual set of lattice points in
the macroscopic crystal. We will however never actually do the latter, since it
curiously turns out that macroscopically large is much more difficult to deal with
than infinitely large.

3.3 The independent particle model

As for all quantum mechanical systems, the exact solutions of the time-
independent Schrödinger equation can in theory be found by diagonalizing
Ĥ in a complete basis. Such a calculation would however be too computationally
costly for most practical purposes, so quantum chemistry is instead typically
concerned with approximate wavefunctions for the ground state within a subspace
of the Hilbert space spanned by all possible eigenfunctions |Ψ〉 of Ĥ.

Like its molecular counterpart, the periodic Hamiltonian in Eq. 3.1 is a
Hermitian operator and bounded below. We may therefore apply the variational
method [6] where a ground state solution is found by minimizing the energy
of a parameterized trial function Φ(r0, r1, ..., rN ), where ri is the coordinate of
electron i, so that

E(Φ) = 〈Φ|Ĥ|Φ〉
〈Φ|Φ〉 ≥ E0, (3.2)

and E0 is the true ground-state energy of the system.
Although the only technical requirement of this trial function is that it is well

defined in terms of Eq. 3.2, we would like it to account for important properties
of the exact wavefunction such as describing the correct number of electrons,
antisymmetry, size-extensivity and orthogonality. [6] Furthermore, it should
satisfy the system-specific boundary conditions.
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The periodic wavefunction

Another feature of the Hamiltonian operator is that it can be partitioned
into terms involving only single particles and terms involving (in our case) two
particles. In the absence of two-particle terms, the Schrödinger equation would
be separable, and an exact solution could be found within the tensor product
of all the independent-particle Hilbert spaces. We call such a component the
Hartree product:

ΦHartree :=
N∏
p

ϕp(rp) (3.3)

In order to make the Hartree product antisymmetric, we can explicitly include
terms of products in the trial function where the coordinates of the single particles
are permuted with the appropriate sign in such a way that the full series satisfy
the antisymmetry requirement. Such a construct is called a Slater determinant,
and the minimization of the energy of this parameterized determinant under the
condition that the single particle states remain orthogonal is commonly referred
to as the Hartree-Fock method.

The independent particle model is of central importance in quantum chemistry,
since it provides the most common practical starting ground for approximating
the wavefunction for molecular and periodic systems, while it simultaneously
forms the conceptual basis for orbitals.

3.4 The periodic wavefunction

There are many similarities between the periodic Hamiltonian in Eq. 3.1 and
the IBT structure presented in Chapter 2. The interactions as seen relative to a
single cell are the same for every coordinate of the lattice, meaning that the single
particle part of the potential must be invariant with respect to lattice translations.
Hence, electrons associated with any cell should correspond to identical densities
relative to the cell in which they belong. In mathematical terms, the single
particle part of the Hamiltonian commute with lattice translations:

[Ĥ, T̂m] = 0, (3.4)

where T̂mϕ(r) = ϕ(r−Rm). Based on the work of Gaston Floquet [42], Felix
Bloch [2] and subsequently by Ralph Kronig and William Penney[3] pointed out
that this implies that they share a common set of eigenstates, conventionally
named the Bloch functions [43] (BF). Consequently, the eigenstates of a one body
Ĥ can be chosen as the product of a plane wave and a function with the same
periodicity as the lattice. [44, 45] This fact, commonly referred to as Bloch’s
theorem, lets us construct our basis from the eigenstates of the translation
operator:

T̂−mψ(r) = eik·Rmψ(r) (3.5)

where the vectors k are called wave vectors [44] and defines points in a reciprocal
lattice {kn} where for any lattice point Rm there is a kn so that

eikn·Rm = 1. (3.6)
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3. Periodic and infinite many-electron quantum systems

This condition is satisfied whenever kn ·Rm = M2π for any M ∈ Z, and the set
{kn} for M = 1 is sufficient to span the reciprocal lattice. A Bloch function can
within this context be expressed [44]:

ψk = eik·ruk(r), (3.7)

where the function uk(r + Rm) = uk(r) for m ∈ ZNd . It follows that for a finite
set of k’s, any linear combination of functions of the type in Eq. 3.7 will satisfy
the following condition:

ψ(r + RM ·m) = ψ(r), (3.8)

for m ∈ Z3 where the columns of the 3 by 3 matrix RM contains multiples of
the lattice vectors, defining the so-called Born-von Karman supercell. [44] This
property of the periodic wavefunction emerge from truncations in the set {k},
and is commonly referred to as the Born-von Karman boundary condition. [44,
45, 46] It is essentially the same as the one we saw emerge from the discrete
Fourier transform as a structure in the IBC matrices in Chapter 2.

3.5 Periodic Hartree-Fock theory

In a cell-wise finite (but lattice-wise infinite) basis {χm
µ } the Hartree-Fock

Hamiltonian is referred to as the Fock matrix, and takes an IBT form with
elements

Fm
µν = Tm

µν + Zm
µν + Jm

µν + Km
µν . (3.9)

The constituent terms in the above are the kinetic integrals

Tm
µν = −1

2 〈χ
0
µ|∇2|χm

ν 〉, (3.10)

the nuclear integrals

Zm
µν =

∑
n∈ZNd

NA∑
A

〈χ0
µ|

1
|r− rA −Rn|

|χm
ν 〉, (3.11)

where the index A runs over each atom in the cell. We furthermore have the
bi-electronic coulomb term

Jm
µν =

∑
n,n′∈ZNd

NAO,cell∑
γδ

Pn′−n
γδ

(
χ0
µχ

m
ν |χn

γχ
n′
δ

)
, (3.12)

and the exchange term

Km
µν = −1

2
∑

n,n′∈ZNd

NAO,cell∑
γδ

Pn′−n
γδ

(
χ0
µχ

n
γ |χm

ν χ
n′
δ

)
, (3.13)
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where(
χ0
µχ

m
ν |χn

γχ
n′
δ

)
:=
∫∫

χ∗µ(r)χν(r −Rm)χ∗γ(r′ −Rn)χδ(r′ −Rn′)
|r − r′|

dr′dr.

(3.14)
and P is the density matrix constructed from the coefficient matrices Cocc
containing the expansion coefficients for the occupied orbitals

Pm
µν =

(
CoccCT

occ
)m
µν
, (3.15)

where the IBT matrix product (Eq. 2.2) is implied.
The Hartree-Fock equations decouple with respect to wave vectors in

reciprocal space [47], so in order to diagonalize the Fock matrix, it can be
Fourier transformed:

F̃n =
∑

m∈ZNd
e−ikn·RmFm, (3.16)

whereby the following generalized eigenvalue problem is solved separately for
every n:

F̃nC̃n = S̃nC̃nε(n) (3.17)

This decoupling of the equations in reciprocal space greatly alleviates the
computational cost of the optimization, since it reduces the problem of
diagonalizing an infinite matrix to an infinite number of diagonalizations of
finite matrices (of dimension NAO by NAO).

As with the molecular equations, the periodic Hartree-Fock equations are
solved iteratively to reach self-consistency. The Fock matrix has to be constructed
at every iteration, which requires an inverse transform of the density matrix
using interpolation techniques with respect to the mesh in reciprocal space. [43]

This procedure yields the canonical set of Bloch orbitals that diagonalizes
each block in the Fourier transformed Fock matrix, such that we have

F̃n
ij = εni δij , (3.18)

where the set of eigenvalues εni describes the energy band structure of the periodic
system.

3.6 Wannier orbitals

The Bloch functions as presented in Eq. 3.7 may appear unfamiliar from a
quantum chemistry perspective, since we expect them to describe the electronic
wavefunction in the neighbourhood of atoms. They are intrinsically non-local,
non-normalizable in R3 and not much like the more common-place Gaussian
distributions [6] used in molecular calculations. The crystalline orbitals, as linear
combinations of Bloch functions, have matrix elements defined with respect
to Born-von Karman boundary conditions [46] which can be inconvenient in
many quantum chemistry applications. [48] Locality is also essential in order to
achieve linear scaling in post Hartree-Fock methods. [5, 8, 10, 11, 12, 13, 49]
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3. Periodic and infinite many-electron quantum systems

This conceptual gap between the local and infinite picture has in many ways
separated the world of quantum chemistry from the world of material science,
despite they are focused on the same interactions between the same actors, on
similar stages. 1

Efforts to bridge this gap was first undertaken by Gregory Wannier in
1937 [50], by showing that for insulators, it is possible to construct local orbitals as
linear combinations of Bloch-functions by means of an inverse Fourier transform.
A few years later, Per-Olov Löwdin took the opposite approach and constructed
Bloch-functions using a linear combination of non-orthogonal local functions. [46]
The local representation of the periodic orbitals available for insulators is referred
to as Wannier functions [48, 51, 52].

In a Gaussian basis {χm
µ }, where µ is the atomic orbital index and the

functions are positioned relative to Rm, the atomic Bloch functions are[48]

χ̃n
µ(r) :=

∑
m∈ZNd

e−iknRmχm
µ (r), (3.19)

so that an orbital p can be expressed as a linear combination:

ϕ̃kn
p (r) =

NAO∑
µ

C̃n
µpχ̃

n
µ(r), (3.20)

where the matrix C̃ contains the expansion coefficients that can be varied in
order to minimize the energy. The post Hartree-Fock determination of Wannier
orbitals may then in general be expressed

ϕn
p (r) =

∑
n′

∑
µ

(
1√
M

∑
m
ei

2π
M m(n′−n)ŨmC̃m

)
µp

χn′
µ (r) =

∑
n′

∑
µ

Cn′−n
µp χn′

µ (r),

(3.21)
where M is the number of cells in the Born-von Karman supercell and the blocks
in Ũ are unitary matrices that only rotates within the occupied and virtual
space separately. [52] The non-uniqueness of the Wannier orbitals signified by Ũ
is analogous to the non-canonical molecular orbitals, in the sense that as long as
the Brillouin condition [6] is satisfied:

Fn
ia =

(
CTFAOC

)n
ia

= 0, (3.22)

the representation is an equally valid solution to the Hartree-Fock equations as
the canonical one. Note that the matrix product in the above is the IBC-product
as defined in Eq. 2.32.

In addition to potentially2 having the supercell-cyclicity of the Bloch-function,
the Wannier orbitals are translationally orthonormal:∫

Ω
ϕm
p (r)∗ϕm′

q (r)dr =
(
CTSC

)m′−m
pq

= δmm′δpq, (3.23)

1The stages are subject to different boundary conditions.
2Depending on whether or not Born-von Karman boundary conditions or interpolation

techniques are applied.
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where Ω is the volume of the Born-von Karman supercell, S is the IBT overlap
matrix with elements Sm

µν = (0µ|mν) and

ϕm
p (r) := T̂mϕ

0
p(r) = ϕ0

p(r−Rm). (3.24)

The Wannier orbitals can also be determined a priori either by a cluster
embedding [53] or by inclusion of a penalty operator in the Fock-matrix. [54]
Under the assumption that no other effect limits the variational flexibility of such
a representation, we may consider these kind of Wannier orbitals to be equivalent
to the ones representing the infinite crystal, i.e. a fully IBT representation. If
we instead construct the Wannier orbitals as in Eq. 3.21, they are subject to the
same bondary condition as the Bloch-orbitals. The extent to which these two
interpretations agree can be measured by Eq. 3.23; if the IBT-product is applied
in the inner product and the expression holds true, the cyclic Wannier orbitals
are close to equivalent to the infinite case.

With the theory discussed this far, it is clear that there are several paths that
will bring us to the correlation energy of an insulator. Specifically, considering
exclusively the choice of basis and representation, we have four in total; reciprocal
space representations using either a plane wave [55, 56, 57] or local [58, 59, 60,
61, 62] basis, and the Wannier representation using again either plane waves3 or
a local [63, 64, 65, 66, 67, 68, 69, 70] basis. We shall follow the path provided by
the Wannier representation using Gaussian basis functions.

3.7 Locality in periodic systems

Our interest in locality in periodic systems in the current context is that it is a
prerequisite for the application of local correlation methods, which, in turn, may
open the door to linear scaling. The explicit connection will be dealt with in
more detail later, but for now it is sufficient to note that first, we require the
orbitals to at least exhibit some distance decay in order to apply such methods
in the first place. Secondly, a higher degree of locality of the orbital spaces
typically means better performance in the local method. For this reason, we
shall investigate closer how locality can be defined, measured and achieved for
periodic systems.

A Wannier orbital is basically a linear combination of Bloch orbitals. The
molecular concept of locality is usually loosely interpreted as a measure of how
confined a quantity such as an orbital is in R3 space. [71] Hence, a Wannier
orbital subject to Born-von Karman boundary conditions can never truly be
local in the same way we know it for molecular systems unless the Born-von
Karman supercell is infinitely large. If we instead consider locality as a measure
of the degree of spatial confinement within a supercell, we may extend many
well-proven measures from molecular quantum chemistry to the periodic realm
by using the formalism derived in Chapter 2.

3The author could not find any attempts at pursuing this path in the context of wavefunction
methods, but Wannier functions in a plane wave basis in general certainly have their place in
material science. [52]
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3. Periodic and infinite many-electron quantum systems

In order to measure locality of an orbital, we typically analyze its spatial shape
and location in terms of Cartesian moments [71] or basis projections [29]. With
both the Wannier functions and atomic Bloch functions defined in fundamentally
the same Gaussian basis sets, the integrals required to perform such analysis are
the same as in the molecular case. However, a slight complication comes to light
when we realize that the Cartesian moment matrices are neither IBT or IBC,
but rather are explicitly dependent on the lattice, as can be demonstrated with
the first order Cartesian moment:

〈0µ|r̂|0µ〉 = 〈Mµ|r̂|Mµ〉 −RM. (3.25)

In order to generalize the intuitive relation above, and moreover incorporate this
structure into the extension of locality measures to the periodic case, we shall
consider the translation operator T̂ in more detail. We have

T̂Lχα(x) := χα(x− L) := |Lα〉. (3.26)

Its conjugate operator is(
T̂L

)†
= T̂−L → T̂L

(
T̂L

)†
=
(
T̂L

)†
T̂L = 1. (3.27)

The position operator, given by

r̂ = r̂xî+ r̂y ĵ + r̂z k̂, (3.28)

does not commute with lattice translations, as can be seen by considering the
following relation:

r̂T̂L = (r− L)T̂L, (3.29)
hence, we find the commutation relation:[

T̂L, r̂
]

= T̂Lr̂ − r̂T̂L = LT̂L. (3.30)

The perhaps most commonly known measure of locality is the Foster-Boys
function [26, 27], which in the molecular case measures the variance for an orbital
p by:

ffb =
∑
p

(
〈p|r̂2|p〉 − 〈p|r̂|p〉2

)
:=
∑
p

σ2
p. (3.31)

The general way in which the above can be extended to Wannier orbitals may
be illuminated by considering only the first term. If we substitute the orbital p
with a Wannier orbital from Eq. 3.21 (with U chosen to be I), we find

〈0p|r̂2|0p〉 =
∫
R3

(∑
n

∑
µ

Cn
µpχ

n
µ(r)r̂2

∑
m

∑
ν

Cm
νpχ

m
ν (r)

)
dr. (3.32)

With a slight restructuring of the expression, explicit use of the translation
operator (Eq. 3.26) and using the notation χn

µ := |nµ〉, we may cast the above as

〈0p|r̂2|0p〉 =
∑
n,m

∑
µν

Cn
µp〈0µ|T̂−nr̂r̂|mν〉Cm

νp. (3.33)
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We furthermore apply the commutation relation in Eq. 3.30, so that

T̂−nr̂r̂ = (r̂ −Rn)2T̂−n, (3.34)

in order to find that

〈0p|r̂2|0p〉 =
∑
n,m

∑
µν

Cn
µp〈0µ|(r̂ −Rn)2|m− nν〉Cm

νp. (3.35)

Taking into account that r̂2 =
∑
i=x,y,z r̂

2
i , the above can now be refactored into

three terms

〈0p|r̂2|0p〉 =
∑

i=x,y,z

∑
n,m

∑
µν

(
Cn
µp〈0µ|r̂2

i |m− nν〉Cm
νp−

2Rn,iC
n
µp〈0µ|r̂i|m− nν〉Cm

νp+

R2
n,iC

n
µp〈0µ|m− nν〉Cm

νp,
)
,

(3.36)

where we can recognize the IBT structure of the matrix elements being contracted
from the triple products discussed in section 2.15. The full inner product may
therefore be recast in terms of IBT or IBC products4, so that

〈0p|r̂2|0p〉 =
∑

i=x,y,z

(
CTM2

iC− 2Ri �CTMiC + R2
i �CTSC

)0
pp

:= (R2
MO)0

pp,

(3.37)
where

(Ri �A)m := Rm,iAm. (3.38)

and Mi are the cartesian moments provided as IBT-matrices in AO-basis.
By the same logic for the second term in Eq. 3.31, we will find that the

periodic Foster-Boys function can be expressed by

ffb(C) =
∑

i=x,y,z

∑
p

( (
CTM2

iC + 2Ri �CTMiC + R2
i �CTSC

)
−

(CTMiC + Ri �CTSC)2
)0

pp
.

(3.39)

The orbital variance, as present in the Foster-Boys function, is part of a family
of measures of distributive properties which generally may be expressed as powers
of moments [72]. In the general case, we can define a class of measurements on
orbital sets as mth powers of the Xth moment (PXM-m):

fPXM-m =
∑
p

(
〈p| (r̂ − 〈p|r̂|p〉)X |p〉

)m
. (3.40)

4In this case it actually does not make any difference whether the IBT or IBC product is
applied, since we are only interested in the reference cell matrix elements which are exactly
the same in both cases.
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3. Periodic and infinite many-electron quantum systems

In this context, Foster-Boys corresponds to PSM-1 (first power of the second
moment). A motivation for exploring higher powers is that in the context
of optimization, the Foster-Boys function may unintentionally indicate overall
locality at the cost of a single (or a few) orbitals. This could then in turn
compromise the local correlation calculation with excessively large orbital spaces.
The PSM-2 function was therefore devised by Jansik et al. [73] in order to
penalize outliers, so that it is more likely to give proper overall locality in terms
of orbital variance.

Higher order moments measures other distributive properties. The fourth
moment (PFM-m) is of special interest, since it in relation to the second moment
provides a measure of the magnitude of the tails in the set. [72] The complicated
tails of the Wannier functions is a result of the strong demands with respect to
translational orthogonality in periodic systems. The PFM-2 function is

fPFM-2 =
∑
p

(
〈p| (r̂ − 〈p|r̂|p〉)4 |p〉

)2
:=
∑
p

(σ4,pp)2
. (3.41)

Deriving the periodic PFM-2 function follows the same logic we used for the
Foster-Boys function, but due to many terms and higher order moments it is
most accurately done by computer generation. We shall therefore not derive the
PFM-2 expression here, but rather state the result compactly:

σ4(C) =
∑

i=x,y,z

(
Mi4 − 4Mi3Mi + 6Mi2(Mi)2 − 3(Mi)4

)
+

2
(
Mx2My2 + Mx2Mz2 + My2Mz2

)
+

2
(
Mx2(My)2 + Mx2(Mz)2 + My2(Mx)2+

My2(Mz)2 + Mz2(Mx)2 + Mz2(My)2
)
−

4
(
Mx2yMy + Mx2zMz + Mxy2Mx+

Mxz2Mx + My2zMz + Myz2My

)
−

6
(

(Mx)2(My)2 + (Mx)2(Mz)2 + (My)2(Mz)2
)

+

8
(
MxzMxMz + MxyMxMy + MyzMyMz

)
.

(3.42)

The products between the Cartesian moment matrices are here defined to be
elementwise, to be distinguished with parenthesis, so for instance

(Mi)2(Mj)2 = Mi ∗Mi ∗Mj ∗Mj , (3.43)
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and where for brevity we have defined

Mi4 =CTMi4,aoC−
4Ri �CTMi3,aoC+
6R2

i �CTMi2,aoC−
4R3

i �CTMi,aoC+
R4
i �CTSaoC,

(3.44)

Mi3 =CTMi3,aoC−
3Ri �CTMi2,aoC+
3R2

i �CTMi,aoC−
R3
i �CTSaoC,

(3.45)

Mi2 =CTMi2,aoC−
2Ri �CTMi,aoC+
R2
i �CTSaoC,

(3.46)

Mij =CTMij,aoC−
Ri �CTMi,aoC−
Rj �CTMj,aoC+
RiRj �CTSaoC,

(3.47)

Mi2j =CTMi2j,aoC−
2Rj �CTMji,aoC+
R2
j �CTMi,aoC−

Ri �CTMj2,aoC+
2RiRj �CTMj,aoC−
R2
jRi �CTSaoC,

(3.48)
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and

Mi2j2 =CTMi2j2,aoC−
2Ri �CTMij2+
R2
i �CTMj2,aoC−

2Rj �CTMi2j,aoC+
4RiRj �CTMij,aoC−
2R2

iRj �CTMj,aoC+
R2
j �CTMi2,aoC−

2R2
jRi �CTMiC+

R2
iR2

j �CTSaoC.

(3.49)

Locality is in general not unambiguously defined and alternatives outside the
PXM-m form exists. Notably, Pipek-Mezey localization [29] measures locality
based on maximizing the function

Dpp =
∑
A

∑
µ∈A
〈p|P̂µ|p〉

2

, (3.50)

where P̂µ projects the orbital p onto an AO-function µ associated with an atom
A. The Pipek-Mezey function is at its maximum when the orbitals distributes
across fewest possible atoms. By limiting the summation to A is in the reference
cell, the Pipek-Mezey function can easily be extended to periodic systems.

Another, more energetically focused, way of defining locality is the Edmiston-
Ruedenberg function. [28] Here, the objective function is the so called self-repulsion
energy:

ER =
∑
p

〈pp| 1
r̂12
|pp〉, (3.51)

which is a sum over the diagonal terms in the electron repulsion integrals.
For periodic systems, this quantity requires a computationally expensive
O(N4

BvKN
4
AO) transformation, thus presenting a challenge for extending this

localization criterion to infinite systems.

3.8 Optimization techniques

We have seen that locality, in quantum chemical terms, typically is a single scalar
indicative of the degree of spatial confinement for a set of one or more orbitals.
The method in which this scalar is optimized is commonly called localization, and
is generally based on linear optimization techniques. [32] The common objective
for these methods is in our context to determine a unitary matrix U such that
a localization measure f(C ·U), where C are the Wannier coefficients, is at a
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maximum or minimum:

minU∈SU(n) [f(C ·U)] . (3.52)

In the molecular case, SU(n) is the Lie group of n × n unitary matrices with
det(U) = 1 (or SO(n) when complex matrix elements are excluded). In the
periodic case these matrices correspond to the IBT and IBC structures discussed
in section 2.14, and as present in the definition of the Wannier functions in
Eq. (3.21).

For some time historically, optimization of the Foster-Boys, Pipek-Mezey or
Edmiston-Ruedenberg objective functions was performed by means of Jacobi
sweeps. [30, 31] This is a method where the orbitals are rotated pairwise in
a sequential manner with special orthogonal group 2 (SO(2))-matrices, and a
rotation is accepted if it improves the overall locality measure. The approach
is both costly, since it requires the successive rotation of 1

2N(N − 1) pairs
(where N is the number of orbitals), and prone to poor convergence, especially
for the virtual orbitals. [31] Both these problems regarding localization of the
virtual space can be solved by introducing linear optimization techniques such
as approximative Hessians and trust-region methods. [31]

In the context of linear optimization, the function f is referred to as the
objective function, its domain is called state space and a possible choice of U is
called a state. [74] While the scalar value f(C ·U) is conventionally termed the
energy, we shall instead refer to this quantity as the locality to avoid ambiguity.

In order to formulate these methods for periodic systems, we can generalize
the sequential SO(2) Jacobi sweeps to a full parameterized SO(N) rotation in
reciprocal space:

Ũ({θ})m =
N∏
p<q

(
|p〉cos(θm

pq)〈p| − |q〉sin(θm
pq)〈p|+ |p〉sin(θm

pq)〈q|+ |q〉cos(θm
pq)〈q|

)
,

(3.53)
where the parameterization θm

pq corresponds to rotational angles between orbitals
p and q at reciprocal coordinate vector m, with respect to Eq. (3.21).

Two important limitations on these rotations should be imposed: first, we
require that θia = 0 so that the transformation conserves the Brillouin condition.
Secondly, we can ensure real-valued Wannier coefficients by requiring that [48]

(Ũm)† = Ũ−m. (3.54)

In principle, with a parameterization of U it is possible to compute Jacobians
and Hessians of the objective function f(C ·U({θ})) with respect to {θ}, so
that Newton’s method and quasi-Newton methods can be applied. In practice
however, these differentials are generally cumbersome to compute for periodic
measures such as the PFM-2 function, and while simple cases can be handled for
example by means of automatic differentiation [32] or numerical approximations
to the derivatives, we should be open to alternative approaches.

The optimization routine basically constitute a search for an extremum of
the objective function in the state space spanned by all possible Us, in effect all
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3. Periodic and infinite many-electron quantum systems

possible rotations on a hypersphere of dimension N , as illustrated in Fig. 3.1.
A more common parameterization of this space can be expressed with the

Figure 3.1: Localization may be envisioned as a the search for a minimum on
the surface of a hypersphere.

anti-Hermitian κ-matrix [6]:

U(κ) = exp(−
∑
pq

κpqâ
†
pâq) = exp(−

∑
pq

κpqâ
†
pâq), (3.55)

where â and â† are the creation- and annihilation operators, respectively. [6]
Furthermore, the matrices spanning such a state space can be randomly generated
by first constructing an anti-Hermitian matrix

(Xm)† = −Xm, (3.56)

and thereafter using the exponential representation to produce [6]:

Ũm = exp(Xm). (3.57)
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The generation of U in this manner is both efficient and conceptually simple.
In cases where it is computationally cheap to sample points in state space, it
is reasonable to consider stochastic methods as alternatives or preprocessing to
quasi Newton methods.

For this purpose, we have demonstrated that both the PSM-m and PFM-m
objective functions can be optimized for periodic systems using an approach
called simulated annealing. [74, 75] This optimization is performed by sampling
CUU′ in the vicinity of CU, whereby the move is accepted or rejected based
on the change in locality ∆f(U,U′) = f(CUU′) − f(CU) it entails. The
pseudocode for the annealing algorithm is presented in Algorithm 1.

Algorithm 1 Outline of the Annealing algorithm

1: Load initial orbitals C.
2: Define objective function f .
3: Set initial temperature T .
4: Set initial state U = I.
5: Set acceptance probability P0 ∈ (0, 1).
6: Compute energy E = f(C).
7: for a maximum number of iterations do
8: Generate a random unitary rotation of the state Ũ .
9: if f(CUŨ) < f(CU) then
10: Accept and update U = UŨ .
11: else
12: if exp

(
− f(CUŨ)−f(CU)

t

)
> P0 then

13: Accept and update U = UŨ
14: else
15: Pass
16: end if
17: end if
18: Update temperature
19: if converged then
20: Break
21: end if
22: end for

In our periodic implementation of the annealing algorithm, our initial set of
orbitals are already optimized according to the PSM-1 objective function, as
they are obtained from the Wannierization routine available in the Crystal
code [47, 48].

The step size of the incremental rotations can be controlled as follows:
A random matrix A is generated with uniformly distributed elements Aij ∈
(−∆u,∆u), whereby we define

Ũ = exp

(
1
2(AT −A)

)
=
∞∑
n=0

( 1
2 (AT −A)

)n
n! , (3.58)
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where
(
AT −A

)0 := I. The choice of ∆u is thus proportional to the step size
and can serve as a input parameter.

In contrast to certain other stochastic approaches, such as for instance the
Metropolis algorithm [76], the acceptance probability in simulated annealing is
decreased throughout the optimization by introducing a controllable temperature.
The algorithm has a probability of accepting unfavourable changes, which in
more blunt terms may be called "uphill steps". One important effect is that the
algorithm should in principle be able to locate the global extremum, as opposed
to the Newtonian (linear) methods. This is an attractive feature, which may be
even more appreciated by revisiting the PFM-2 function, in Eq. 3.42, knowing
that the annealing algorithm does not require any differentiation of the objective
function.
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Chapter 4

Local correlation methods for
periodic systems

4.1 Overview

In a local basis, the periodic second order Møller-Plesset (MP2) equations
can be solved in an approximative way by inferring sparsity in the electron
repulsion integrals (ERIs) and subsequently in the amplitudes based on sparsity
considerations. In order to circumvent scaling issues due to the AO to MO
transformation of the ERIs, the resolution of identity (RI) approximation [77,
78, 79, 80, 81, 82, 83, 84, 85, 86, 87] can be applied. A global periodic fitting
of the ERIs yields a framework well suited for handling flexible orbital spaces,
as required by the divide-expand-consolidate (DEC) family of local correlation
methods.

4.2 Periodic correlation

The term correlation energy was coined by Per-Olov Löwdin at around 1955 [88]
in order to describe the inter-electronic interactions that are missing from the
independent particle model. The Hartree-Fock approximation includes some
correlation, since the single determinant solution ensures that the probability of
finding two same-spin electrons in the same position is zero. What is missing from
this wavefunction is, however, the effect of the instantaneous repulsive coulomb
interaction for pairs of electrons of opposite spins. [1] In order to account for
electronic correlation following a Hartree-Fock optimization, a range of methods
has been developed on different levels of approximation. Second-order Møller-
Plesset (MP2) perturbation theory is on the very first level of approximation, and
can be considered the first stepping stone within the hierarchy of CC methods.

The ground state energy of a many-body system can be computed as the
sum of the Hartree-Fock energy and the correlation energy

E0 = EHF + Ec. (4.1)

In the CC formalism the correlation energy for a closed-shell molecule can be
expressed as[6]

Ec =
∑
ij

∑
ab

(tabij + tai t
b
j)(2(ia|jb)− (ib|ja)), (4.2)

where i, j refer to occupied orbitals, a, b refer to virtual orbitals, t are the
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4. Local correlation methods for periodic systems

amplitude tensors and the ERIs for real valued orbitals are

(ia|jb) :=
∫ ∫

R3

ϕi(r)ϕa(r)ϕj(r′)ϕb(r′)
|r− r′|

dr′dr. (4.3)

In the canonical MP2 case, we find that tai = 0 and

tabij = (ia|jb)
Fii + Fjj − Faa − Fbb

, (4.4)

where F is the Fock matrix in MO basis. Several steps has to be taken in
order to extend the above to the non-canonical (and possibly non-orthogonal),
periodic case. First, we account for periodicity by including summations over
lattice-indices. As discussed in Chapter 3, it is sufficient to consider the energy
associated with a single cell of the crystal, so the cell-wise energy can be expressed:

∆EMP2 =
∑
J

∑
AB

∑
ij

∑
ab

tAaBb0iJj (2 (0iAa|JjBb)− (0iBb|JjAa)) . (4.5)

The lattice summations in the above runs over the infinite lattice. Secondly, in the
non-canonical basis the Fock-matrix is no longer diagonal, and the amplitudes
has to be determined from a set of equations that can be derived from the
Hylleraas function [12]:

0 = (IiAa|JjBb) +
∑
Cc

tCcBbIiJj FC−A
ac +

∑
Cc

tAaCcIiJj FC−B
bc

−
∑
Kk

tAaBbKkJj F
I−K
ki −

∑
Kk

tAaBbIiKk F
J−K
kj .

(4.6)

Again, the uppercase, bold summation indices run over the entire ZNd lattice.
Finally, we consider the MP2 equations for a non-orthogonal virtual space[12].
In the periodic case, these equations are:

0 = (IiAa|JjBb) +
∑

CcDd
sC−A
ac tCcDdIiJj FB−D

db +
∑

CcDd
FC−A
ac tCcDdIiJj sB−D

db

−
∑
Kk

t̄CcDdKkJj F
K−I
ik −

∑
Kk

t̄CcDdIiKk F
J−K
kj ,

(4.7)

where
t̄AaBbIiJj =

∑
CcDc

SC−A
ac tCcDdIiJj SB−D

db . (4.8)

The translational symmetries are still present in these equations, notably both
the ERIs and the amplitudes satisfy:

tAaBbIiJj = tA−IaB−Ib
0iJ−Ij . (4.9)

Hence, the complete set of amplitudes can be derived from the subset where the
first occupied index is kept fixed to the reference cell. This can be utilized to
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reduce the number of amplitudes explicitly referenced by a solver, but at the
same time introduces a slight complication when contracting over the cell-index
that is chosen to be fixed.

If we for a moment disregard the problem of infinite summations, we find
that the MP2 equations (Eqs. (4.6) and (4.7)) may be iteratively solved with
fixed-point iterations by extracting the diagonal terms from the sums over the
Fock-matrix, as commonly done for CC-equations. [1] At the first iteration, the
amplitudes are then simply

tAaBb0iJj = (0iAa|JjBb)
F 0
ii + F 0

jj − F 0
aa − F 0

bb

. (4.10)

4.3 The local subspace

For localized Wannier orbitals, the ERIs tend exponentially to zero with the
inter-orbital distances R0iAa and RJjBa, and proportional to R−3

0iJj with the
inter-pair distance R0iJj [72, 89, 90], where

RPpQq =
√

(〈ϕPp|r̂|ϕPp〉 − 〈ϕQq|r̂|ϕQq〉)2
. (4.11)

The first decay property can be attributed to the fact that for exponentially
decaying Wannier orbitals, their product orbitals Φ(r)0pRq = ϕ0p(r)ϕQq(r)
tend to zero as the constituents are spatially separated, as illustrated in
Fig. 4.1. The decay in the inter-pair separation R0iJj may be derived from a

1 21 2

1 21 2

1 21 2

Figure 4.1: The product of two Gaussian functions exhibits an exponential decay
as they are spatially separated.

multipole expansion of the ERIs, under the condition that the orbital spaces are
orthogonal. [72]

Distance decay can be used to infer sparsity in the ERIs by introducing
distance cutoffs do and dv in such a way that

(0iAa|JjBb) = 0 for (R0iJj ≤ do) ∨ (R0iAa ≤ dv) ∨ (RJjBb ≤ dv). (4.12)
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4. Local correlation methods for periodic systems

It can be seen from Eq. (4.6) and the initial amplitudes (4.10) that this sparsity
in the ERIs is inherited by the amplitudes. In a local basis, the Fock matrix also
exhibits distance-based decay, so the only way for the amplitudes to cancel out
the first term in the MP2-equations is by having its most significant elements
defined in correspondence to the ERI-tensor.

As such, the local basis brings forth a condition where it becomes possible to
solve the MP2 equations approximately on weakly intercoupled local subspaces,
as opposed to the full (infinite) space. Local correlation methods [5, 8, 10, 11,
12, 13, 49] are concerned with how to best partition, truncate and represent
these local subspaces. In light of this, these methods may in general be seen
as approximations where the total correlation energy is cast as a sum over the
contribution from each subspace Ωk:

Ec ≈
∑
k

∆Ec(Ωk). (4.13)

Linear scaling can thus be achieved with a suitable choice for subspace
partitioning, a process we shall refer to as fragmentation.

We shall use the following concise and general notation in our discussion of
local correlation methods; a local subspace is defined as

Ωk := Vk ∪ Ok, (4.14)

where Vk and Ok are virtual and occupied orbitals in the vicinity of k. Exactly
how location is ascribed to the orbitals may vary, and by omitting the subindex,
V and O shall refer to the full virtual and occupied spaces.

4.4 The Divide-Expand-Consolidate scheme

The Divide-Expand-Consolidate (DEC) scheme was originally devised [14] as
a local correlation method for dealing with large molecules on the level of CC
theory. [72] The scheme is focused on error control, by means of converging
the energies of the local subspaces to a given fragment optimization threshold
(FOT). [14] It is additionally well suited for massive parallelization, if you accept
the additional cost of recomputing the integrals. [91]

In the case of monotonically decreasing magnitudes with respect to distance
in the ERIs, we may expect that the energy contribution from a given subspace
is more or less convergent towards the exact value as we include larger portions
of the ERIs and amplitudes in the vicinity of the given subspace. The main idea
of DEC is to first converge the amplitude equations in subspaces for designated
atomic sites, or atomic fragments, with respect to the size of the subspace, and
then correlate pairs of these subspaces called pair fragments. It is assumed
that the error in the energy attributed to the pair fragments is proportional
to the error in the fragment energies[14, 91], thus an error-control of the total
correlation energy can be imposed.

An atomic fragment P is defined as a set of occupied orbitals OP and a set
of virtual orbitals VP [14] in the vicinity of a given atom. Fragments can be
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The Extended DEC (XDEC) Scheme

partitioned in various ways [91]. While the original DEC-formulation assigns
orbitals to atoms based on Mulliken or Löwdin charges. [14, 15, 92, 93], we may
alternatively simply assign them to fragments based on their orbital centers.
Beginning with the first occupied orbitals, we assign all orbitals within a given
distance to this fragment and then proceed until all orbitals belong to a fragment.

Independently of exactly how the fragments are chosen, we refer to these
subspaces as the amplitude orbital space (AOS) of fragment P :

ΩP,AOS := VP ∪ OP . (4.15)

Within the AOS we define yet another subspace called the energy orbital space
(EOS), where both occupied indices are confined to a unique set of occupied
orbitals that do not appear in any other EOS on other atomic fragments:

ΩP,EOS := VP ∪ O′P where O′P ⊂ OP . (4.16)

If no truncation of the virtual space is made, we can recast the correlation energy
for a closed-shell molecule as[94]

Ecorr =
∑
P

EP +
∑
P>Q

∆EPQ, (4.17)

where the quantity

EP =
∑
ij∈O′

P

∑
ab

tabij (2 (ia|jb)− (ib|ja)) (4.18)

is called the fragment energy for fragment P and

∆EPQ =
∑

i∈O′
P
,j∈O′

Q

∑
ab

tabij (2 (ia|jb)− (ib|ja))

+
∑

j∈O′
P
,i∈O′

Q

∑
ab

tabij (2 (ia|jb)− (ib|ja))
(4.19)

is the pair fragment energy for pair PQ. The corresponding amplitudes for the
fragments and pair fragments can be obtained by solving the MP2 equations on
respectively ΩP,AOS and ΩP,AOS ∪ ΩQ,AOS (for untruncated virtual spaces).

The DEC method can now be summarized as follows: first, the occupied
space is divided into fragments. We then incrementally expand each fragment’s
AOS and solve the equations on the resulting subspace, until the change in
energy in its EOS is below the FOT. Finally, the energies from each fragment
are summed up, and the pair fragments are then computed successively up to a
given cutoff distance.

4.5 The Extended DEC (XDEC) Scheme

Several features of the DEC scheme are appealing from a periodic perspective.
Converged orbital subspaces is a reasonable way of dealing with infinite spaces,
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4. Local correlation methods for periodic systems

and the prospect of parallelisation is essential with respect to performance. The
DEC scheme can be extended to the periodic case by optimizing the fragments
in the reference cell as if they were fragments in a molecule whereby translational
symmetry can be used for pair fragments [15], but in order to fully exploit the
translational symmetry we shall in this section derive the approach used in paper
three of this dissertation.

The occupied space in the reference cell is partitioned into fragments as
follows: first, the Wannier centers are computed according to the procedure
outlined in section 3.7:

r0p = 〈0p|r̂|0p〉. (4.20)
Since translational symmetry dictates the positions throughout the lattice, we
can now compute the inter-orbital distances as

dL
pq = ‖r0p − rLq‖. (4.21)

Beginning with the first occupied orbital i, we then construct a fragment P
by including all occupied orbitals j within a distance afrag, called the fragment
cutoff

O′0P = {ϕ0j}, ∀ d0
ij ≤ afrag. (4.22)

We then repeat the procedure for the next unassigned occupied orbital in the
reference cell, and continue so forth until the whole occupied space of the reference
cell is partitioned into non-overlapping fragments. The procedure is illustrated
for a one dimensional chain of ethylene in Fig. 4.2. The position of each fragment
can be defined to be the position of the first occupied orbital i, so that dL

Pq = dL
iq.
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Figure 4.2: Procedure for partitioning the occupied orbitals in the reference cell
based on distance, here illustrated for one dimensional ethylene. The Wannier
centers are indicated with crosses, "+", and the colored spheres indicate to
which fragment they are associated. In this case,afrag = 2.0 Bohr results in two
fragments.

Next, we assign to each fragment two distance cutoffs do and dv defining its
occupied and virtual spaces, respectively

O0P = {ϕLj}, ∀ dL
ij ≤ do, (4.23)
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and
V0P = {ϕLa}, ∀ dL

ia ≤ dv, (4.24)

so that the initial AOS and EOS for fragment P are

ΩP,AOS := V0P ∪ O0P (4.25)

and
ΩP,EOS := V0P ∪ O′0P . (4.26)

The construction of the virtual space for one dimensional ethylene is illustrated
in Fig. 4.3.
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Figure 4.3: Virtual cutoff distance for one dimensional ethylene. With dv = 3.0
Bohr, a number of virtual orbitals are included in the EOS of fragment 1, as
defined in Fig. 4.2. The virtual orbitals in the EOS are indicated as blue spheres,
while the ones outside are brown. Note that while the illustration only shows the
xy-coordinate, the orbitals are in reality not confined to this plane. Consequently,
one virtual orbital to the right appears to be within the sphere while its offset
in the z-axis places it outside.

We now optimize each fragment separately. This procedure consists of
successively increasing dv and do, solving the MP2 amplitude equations on the
resulting subspace, and computing the energy, as outlined in Algorithm 2. At the
end of this expansive step, we have produced a set of fragments with associated
subspaces and energies as illustrated in Fig. 4.4, and the scene is now set for the
pair fragment calculation.

The pair fragments are uniquely determined by the optimized fragments,
and their energy contributions are assumed to decay with distance. The pair
fragment P0QL has the AOS

ΩiLj,AOS = V0P ∪ VLQ ∪ O0P ∪ OLQ (4.27)

and EOS
ΩP0QL,EOS = V0P ∪ VLQ ∪ O′0P ∪ O′LQ. (4.28)
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Occupied space

Virtual space EOS

Bufferspace / AOS

Occupied space

Virtual space P Q

Bufferspace / AOS

Figure 4.4: Illustration of the fragments (top) and pair fragments (bottom)
in the XDEC fragmentation scheme. Virtual and occupied orbitals inside the
AOS/EOS are colored red an blue respectively.

Algorithm 2 Outline of the Divide-Expand-Consolidate scheme

1: Subdivide occupied space into initial atomic fragments P based on distance
measures.

2: Define initial EOS and AOS for each atomic fragment P
3: for Each atomic fragment do
4: Solve amplitude equations on the AOS
5: Compute the initial atomic fragment energy EP,0.
6: while |EP,new − EP,old| ≥ FOT do
7: Converge energy within FOT with respect to do.
8: Converge energy within FOT with respect to dv.
9: end while
10: Store final domains and energy.
11: end for
12: Compute pair fragment energies.
13: Sum together all energies to yield the final approximate correlation.

Clearly, all pair fragments should have one index fixed in the reference cell when
computing their energy:

∆EP0QL =
∑

i∈O′
P0
,j∈O′

QL

∑
ab∈VP0∪VQL

tabij (2 (ia|jb)− (ib|ja)) +

∑
j∈O′

P0
,i∈O′

QL

∑
ab∈VP0∪VQL

tabij (2 (ia|jb)− (ib|ja)) .
(4.29)

Upon closer inspection with respect to periodicity, we will however find that
the local subspaces for pair fragments with one fragment outside the reference
cell contain translationally redundant amplitudes, as apparent in Eq. 4.10. For
this reason, the spaces that constitute the molecular pair fragments are slightly
more tricky to reconcile with the periodic symmetry than the fragment domains.
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Theses subspaces are subject to translational symmetries, so that for instance

T̂MOLQ = OL+MQ (4.30)

For a pair fragment P0QL where L 6= 0, the pair AOS is the union of the two
constituent fragments AOS’. This space is illustrated in Fig. 4.5. Inside this
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Figure 4.5: A periodic setup for pair fragments, where the color indicates which
fragment each AOS belongs to. Their union is the pair AOS.

space we account for

1. Occupied indices placed both on P0.

2. Occupied indices placed both on QL

3. Occupied indices placed on both P0 and QL.

Recall that in the periodic case, we have fixed the first occupied index of the MP2
equations in the reference cell, since all remaining amplitudes can be derived
from translation. This means that of the three situations above, only the first
is explicitly captured by the periodic amplitudes. For (3), the pair AOS only
explicitly account for amplitudes with the first occupied index on P0 and the
second on QL, not the other way around. To account for case (2) with both
occupied indices on QL, we have to modify the spaces accordingly. This can be
done by constructing a composite AOS:

Ω′iLj,AOS = ΩiLj,AOS ∪ T̂−LΩiLj,AOS , (4.31)

where
T̂−LΩiLj,AOS = V−LP ∪ V0Q ∪ O−LP ∪ O0Q. (4.32)

The resulting space is illustrated in Fig. 4.6.
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Figure 4.6: The periodic pair domain accounting for all amplitudes. The fragment
specific domains may or may not overlap in the cells.

In contrast to molecular DEC, this composite pair subspace naturally results
in potentially larger bufferspaces for the amplitudes originally assumed to be in
the cell outside the reference cell, in addition to a generally larger virtual space
for all the amplitudes. Still, it reduces the dimensionality of the MP2 equations,
so from a periodic perspective it makes sense.

Further consideration may now be made with regards to the remaining pair
fragments. The AOS of P0QL will by construction have some overlap with Q0PL,
and from Fig. 4.6 it is easy to see that the virtual and occupied space pertaining
to the reference cell will be identical in these cases. Since we generally would
like to avoid doing the same calculation more than once, we can construct the
subspace

Ω′iLj,AOS = ΩiLj,AOS ∪ T̂−LΩiLj,AOS ∪ T̂LΩiLj,AOS , (4.33)

as shown in Fig. 4.7. Solving the MP2-equations on this AOS will determine
all amplitudes required to compute the energies ∆EP0QL , ∆EP0Q−L , ∆EQ0PL

and ∆EQ0P−L simultaneously. While we know that ∆EP0QL = ∆EQ0P−L from
translational invariance, the other combination would otherwise have to be
computed separately. In the current XDEC implementation, these spaces can
be determined on input, while the default is Eq. 4.33. The periodic pair energy
may now finally be evaluated according to Eq. 4.19.

4.6 Periodic Fitting

While the local approximation solves the problem of infinite orbital spaces, the
N4

AO scaling limitation discussed by Pulay [5] (see Chapter 3) remains. This is
due to the evaluation of the ERIs, which when fully expanded in the AO basis
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Figure 4.7: The pair domain as defined by default in the XDEC-RI code.

reads

(0iAa|JjBb) =
∑
Kµ

∑
Lν

∑
Mγ

∑
Nδ

CK
µ,iC

L
ν,a(KµLν|MγNδ)CM

γ,jC
N
δ,b. (4.34)

This transformation is especially challenging in three dimensional periodic
systems, where the number of atomic orbitals can become relatively large
depending on the system in question, and the expansion domain of the Wannier
functions.

For molecules, the RI approximation [77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87] is routinely used to speed up calculation of the ERIs, and a few extensions
to the periodic case have been proposed and implemented. [95, 96, 97, 98] It
is sometimes referred to as density fitting. The basic idea is to represent the
product orbitals in the ERIs as linear combinations in a separate basis, called
the auxiliary basis {χK}

|pq) ≈
∑
K

|K)dK,pq := |p̃q), (4.35)

leading to the approximated ERIs

(pq|rs) ≈
∑
KL

dK,pq(K|L)dL,rs, (4.36)

where
(K|L) =

∫∫
χK(r)χL(r′)
|r − r′|

dr′dr. (4.37)

With regards to periodic systems, it makes sense to distinguish between local
and global fitting schemes. Where the global scheme in principle utilizes the
infinite auxiliary basis set for the fitting, a local fitting scheme instead employs
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a suitable subset of the global auxiliary basis, which may even be specific for
each product of orbitals. [95] The transition between these formulations may,
however, be seen as smooth, and from a computational perspective it will at
any rate become necessary to truncate the infinite auxiliary basis in one way or
another.

When a local fitting is performed, it becomes important to properly assess
exactly which auxiliary functions to retain, which requires some knowledge of
the orbital spaces involved. The XDEC approach instead works with flexible
orbital spaces, and for this reason we have devised our RI approximation as a
global fitting.

Let us first assume that the coefficients d have been determined. Analogous
to Eq. (4.35), the periodic product orbitals are then represented by

|0pQq) ≈
∑
NK
|NK)dN

K,0pQq := |0̃pQq) = Φ0pQq, (4.38)

so that the periodic ERIs can be approximated

(0pQq|RrSs) ≈
(
0̃pQq|R̃rSs

)
, (4.39)

The product orbitals are translationally invariant, so from a periodic perspective
it makes sense to define a relative indexing of the Qs and Ss, such that

(0p∆Qq|Rr∆Ss) :=
∫ ∫ Φ0p∆Qq(r)Φ0r∆Ss(r′ − RR)

|r − r′|
drdr′, (4.40)

where S = ∆S+R and of course ∆Q = Q. This allows us to cast the coefficients
as a set of IBT matrices {d∆Q} where the contraction required to obtain the
ERIs may be performed as an IBT or IBC product:

(0pQq|RrSs) ≈
(

0̃pQq|R̃r(S)s
)

= (d∆Q
T Vd∆S)R

pqrs, (4.41)

where V is the Coulomb IBT matrix with elements

VM
KJ := (0K|MJ). (4.42)

Provided that d has a finite bandwidth1, we can use the triple IBT-products
defined in section 2.15 to compute this product without worrying about the
decay properties of V. The challenge then becomes to accurately determine d
globally.

In the molecular case, we know the coefficients d to be the solution to a set
of linear equations

Vd = O, (4.43)
where the Colomb matrix V have elements VJK = (J |K) and the three-index
Coulomb matrix O containing the elements

OJ,pq =
∑
µν

(J |µν)CµpCµq. (4.44)

1See Chapter 2 for details.
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The coefficients may thus be obtained on paper by the inversion of V. In
practice, however, these equations are typically solved either using a linear solver,
pseudoinversion or Cholesky-factorization. [99] The latter case can be expressed

(p̃q|r̃s) =
(
dTVd

)pq
rs

=
(
dTLLTd

)pq
rs
, (4.45)

where
Vd = LLTd = O. (4.46)

By defining LTd := y, which can be determined by means of back-substitution
in the above, we now have simply

(p̃q|r̃s) =
(
dTLLTd

)pq
rs

=
(
yTy

)pq
rs
. (4.47)

The periodic extension of the coefficients d can be derived analogous to
the molecular case by means of the IBT-matrix formulation. The Coulomb
IBT matrix V now has elements as in Eq.(4.42), and the periodic three-index
Coulomb matrix now contains the elements:

(LJ |0pQq) =
∑
Mµ

∑
Nν

(LJ |Mµ(M + N)ν)C−M
µp C−(M+N)+Q

νq , (4.48)

where C are the Wannier coefficients (Eq. 3.21) and the summations in N and
M are over the entire lattice. Note that the lattice summation for ν have been
offset in such a way that if we restrict N to 0 we have simply∑

Mµ

∑
ν

(LJ |MµMν)C−M
µp C−M+Q

νq . (4.49)

Hence, if the summation over N is ordered in terms of increasing distance ‖RN‖,
we may expect an exponential decay in the three-index AO integrals due to the
incremental separation in ‖R0µ,Nν‖. Moreover, in this form the three index AO
integrals can be considered an IBT matrix with elements

(OAO)M
J,µν = (0J |MµMν). (4.50)

The equation we have to solve in order to obtain the periodic fitting coefficients
then becomes ∑

MJ

(NK|MJ)dM
J,0pLq = (NK|0pLq), (4.51)

which is the same as Eq. (4.43). The IBT matrix V may now in theory be
inverted by the procedure described in sec. 2.13, but in doing so we will run into
a number of serious numerical problems. First, for most realistic systems the
distance decay is too slow for any reasonable truncation[95], resulting in a huge
memory demand and poor computational performance. Furthermore, we will
find that premature truncation and insufficiently dense sampling in reciprocal
space may cause close to zero or even negative eigenvalues in F (V)m. From a
computational standpoint, this approach is therefore not especially well-suited
for the XDEC scheme.
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The process of fitting a function in a new basis is commonly done throughout
science. The distinct aspects of the RI-approximation as outlined above are
that we perform the fitting of products of functions using the Coulomb metric.
The more general situation is the basis change of a single function using overlap
metric. By metric, we refer to the operator used in defining the inner product
space of the orbitals, as for instance in Eq. (4.42). In fact, any positive definite
metric may be chosen. [82] While it has been shown, perhaps unsurprisingly,
that the Coulomb metric indeed offers the best fitting metric for the ERIs [100],
it is at the same time a fact that the overlap metric has a much steeper distance
decay. It has therefore been speculated [96, 97, 98] that an intermediate metric,
the so called attenuated coulomb operator [97, 101], could offer a reasonable
compromise in periodic systems. This operator is found by expressing the
Coulomb operator in terms of the error function[101]:

1
r

= lim
ω→0

erfc(ωr)
r

, (4.52)

This operator tends asymptotically to the overlap metric as the attenuation
parameter ω approaches infinity. This makes it possible to choose the metric in
an intermediate range, where a reasonable trade-off between distance decay in
the resulting matrices and accuracy in the results is reached. We shall distinguish
the matrix quantities where the attenuated metric is employed with a tilde, so
that

ṼL
JK = (0J |̃LK). (4.53)

We may now derive the global periodic attenuated RI-scheme simply by first
solving

Ṽd = Õ, (4.54)
and subsequently evaluating Eq. (4.41) as before.

The typical auxiliary basis sets used for density fitting in quantum chemistry
are incomplete, meaning that depending on how well they span the same space
as all possible products of the original Gaussian basis, they will introduce errors
in the ERIs. Considering an error in the fit ε, such that

|0pQq) = |0̃pQq) + ε0pQq, (4.55)

we’ll find that it is possible to constrain the error in the ERIs to second order
by approximating them as

˜(0pQq|RrSs) = (0pQq|R̃rSs) + (0̃pQq|RrSs)− (0̃pQq|R̃rSs) =
(0pQq|RrSs)− (ε0pQq|εRrSs).

(4.56)

This correction, originally introduced by Dunlap [102], is commonly referred to
as robust fitting. Whenever a Coulomb-metric is used, the additional integrals
required to obtain the ERIs in Eq. (4.56) are actually already computed in
construction of the intermediate matrix elements in Eq. (4.48), and the correction
is computationally inexpensive. If we instead employ the attenuated metric,
these integrals will have to be computed separately.
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Chapter 5

The XDEC-RI code

5.1 Overview

The theoretical framework presented in this dissertation has been used to develop
a working code for dealing with periodic correlation calculations. This chapter
gives an overview of its implementation, and details some of the practical aspects
such as screening and numerical thresholds.

In a hyperbolic way, this whole dissertation is about transforming a set of
lattice vectors, atomic positions and charges into a single number; the periodic
electronic correlation energy. However, in the bigger picture, we simultaneously
gain access to a wide range of ab-initio quantum chemistry methods that in
principle can provide properties and potential energy surfaces for these systems
without having to perform the analysis in the lab.

There are currently only a few periodic local correlation codes available for
public use, with perhaps Cryscor , the MP2-extension for Crystal, being the
most prominent. [35, 47, 96, 103, 104, 105, 106] A comparison between Cryscor
and the Xdec-RI code has been made in paper three of this dissertation, and we
have used Cryscor extensively in the testing and verification of all iterations
of the Xdec-RI code.

The Wannier functions used in this work are obtained from Crystal. [47]
They are initially localized according to a Foster-Boys criterion [48], but can be
localized further using PSM-m or PFM-m type objective functions. All integrals
are obtained from Libint [107], except the fourth-order Cartesian moments
which are computed with LSDalton. [108, 109] The Xdec-RI code is mostly
written in Python, with some few extensions in C++. Consistent cross-code
interfacing is achieved with a Python-class called Prism. A class called Tmat
(Toeplitz matrix) facilitates efficient and conceptually simple handling of periodic
matrices and algebra, as presented in Chapter 2. The periodic resolution of
identity approximation is implemented as a module called Pri (Periodic RI),
and is imported in the main program called Xdec-RI. Part of the code can
utilize the mpi4py module [110], and can be run on high performance computing
clusters, although the workload is not yet well balanced. An illustrative overview
of the code is provided in Fig. 5.1

5.2 Two versions of XDEC

There are two different XDEC implementations being discussed in this
dissertation and included papers, to be referred to as Xdec (Extended Divide-
Expand-Consolidate) and Xdec-RI (XDEC-Resolution of Identity). The Xdec
code is presented in the first paper [15] included in this dissertation, and
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5. The XDEC-RI code

CRYSTAL17

XDEC
LIBINT

TMAT

PRI

PRISM

EMP2

input file

Figure 5.1: Illustrative overview of out code setup. Consistency across the
various codes is maintained by a class called PRISM. Integrals for the Xdec-RI
framework is provided by Libint. The module Tmat handles periodic matrix
product, while Pri performs the integral fitting.

was our initial implementation. In its final state, the Xdec code featured
a Cholesky-based RI approximation, but design choices made it fundamentally
irreconcilable with certain periodic features in the integrals and amplitudes. It
furthermore relied on reccurently re-fitting every incrementally changed local
subspace, accounting for more than 90 percent of the computational effort, and a
rediagonalization of the Fock matrix in the local subspace. Building on the same
pipeline for obtaining the Wannier functions, the Xdec-RI code was therefore
developed independently from the original implementation. This chapter deals
mainly with the Xdec-RI code.

5.3 Comments on The Local Approximation

While the general theory regarding the distance based decoupling of the amplitude
equations may provide a complete picture of how a local approximation can be
made, there are choices made on the implementational level that will affect the
energy in various ways. We therefore briefly provide more details pertaining to
the local approximation.

Provided the partitioning of the occupied space and the two distance cutoff
parameters dv and do, a unique subspace is defined according to the procedure
discussed in Chapter 4, in which the amplitudes may be initialized. Upon
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initialization and the subsequent calculation of energy, we require the ERIs for
all combinations of orbitals in the local subspace, in effect:

∆EMP2 =
∑
J

∑
AB

∑
ij

∑
ab

tAaBb0iJj (2 (0iAa|JjBb)− (0iBb|JjAa)) . (5.1)

For a given set of indexes in the amplitude, we require in the above both the
direct- and exchange type ERIs. As discussed in Chapter 3, the global fitting
allows for efficient calculation of the ERIs by means of the IBC product for all
Js:

(0i∆Aa|Jj(J + ∆B)b) ≈ (d∆A
T Vd∆B)J

iajb. (5.2)

The exchange type integrals are however not as easily recovered, since they
typically require another set of fitting coefficients:

(0i(J + ∆B)b|Jj∆Aa) ≈ (d∆B+J
T Vd∆A−J)J

iajb. (5.3)

Due to the exponential decay with distance between the product orbitals, it
is reasonable to assume that optimization of the local subspace will converge
rapidly with the increase in dv. The much slower decay of the ERIs with respect
to the distance R0iJj will however result in subspaces where the exchange type
integrals in Eq. 5.1 are vanishingly small, and yet formally included in our
equations.

Based on this, there are several layers of approximation within the subspace in
the Xdec-RI code. With respect to this issue, the implementation is structured
as follows:

We begin by computing all the fitting coefficients d∆A where R0i∆a ≤ dv.
Next, we initialize all amplitudes according to Eq.4.10, in the local subspace
defined by O and V in Chapter 4. Depending on the subspace definition, we likely
now have easy access to more integrals than we actually require, since for every
product orbital Φ0i∆Aa we have from translational symmetry simultaneously
obtained all ΦJiJ+∆Aa. For a more balanced treatment of the amplitude equation,
we thus have the option of including this "excess" virtual space, which is done
internally in the code by providing the solver with relative_indexing=True.
From our experience with the code we have found this effect to be only minor,
and the code therefore by default runs without these kinds of contributions.

The amplitude equations are then converged according to the input
specifications, and upon convergence the energy is computed. At this point,
if relative_indexing has been activated, we will likely have contributions
to the energy from exchange-type ERIs where the fitting coefficients have
not been computed and are assumed to be zero. If these are explicitly
required, they can be computed on demand in the energy calculation by setting
compute_missing_exchange=True.
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5.4 Modules

5.4.1 PRISM (Interface)

An instance of Prism is initialized using an input-file, either for LSDalton
or Crystal. System data such as lattice parameters, atomic positions and
charges, basis set and so on may thereafter be accessed directly with various
methods of the class. Input-files for Libint or LSDalton with consistent setup
can be generated as strings. Prism will also generate efficiently evaluatable
lambda-functions or analytical sympy-functions [111] for the basis set if requested.
The most important feature of this class is to maintain consistency between the
integrators involved, since different conventions for basis set ordering and lattice
structure are used in Crystal, LSDalton and Libint.

5.4.2 TMAT (Toeplitz algebra)

Most of the algebraic manipulations are performed with the Tmat class, where
the IBT or IBC structure is implicitly assumed in all operations. The periodic
matrices are loaded in a sparse structure where only non-zero blocks are allocated.
The methods in the class can be roughly sorted into three groups. First, there
are methods for retrieving and setting blocks, book-keeping and utilities such
as screening and changing the bandwidth of the matrix. Second, there are
overloaded operators corresponding to commonly used arithmetics such as
addition, subtraction, multiplication and division. The matrix-matrix products
are defined in two methods, where the default dot is an IBT-IBT product,
while the circulantdot is the IBT-IBC product. Third, there is a number
of methods which facilitates the Fast Fourier Transform and its inverse on the
matrices. The Numpy module, backed by level 3 BLAS is extensively used
where possible.

The Tmat class is conceptually useful since many methods from quantum
chemistry can be easily extended to the periodic case with the lattice summations
implicitly imposed on the formulation. Examples are provided in figures 5.2
and 5.3, where Löwdin-orthogonalization is performed on the AO basis to provide
a orthonormalized set of MOs, and a set of projected atomic orbitals (PAOs) [5]
are generated. Furthermore, the class is computationally efficient, since the
most demanding operations are all performed with highly optimized Fast Fourier
Transforms (FFT) in combination with level 3 BLAS routines. [41]

The Tmat class can also "unfold" the periodic symmetry in order to work
on conventional matrices. This process requires the user to provide the row-
coordinates and column-coordinates to unfold relative to the reference cell,
whereby a large, finite block-Toeplitz matrix is returned. This procedure makes
it possible to compare many IBT and IBC operation to large, finite matrices,
where the results should all asymptotically tend to the same in the limit when
the resolution in reciprocal space becomes infinitely dense.
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Figure 5.2: Löwdin orthogonalization of a periodic AO basis performed in a
Jupyter Notebook using the Tmat class. The resulting orbitals are orthogonal
to machine precision under Born von Karman boundary conditions.

5.4.3 Orbital refinery (optimization)

Post processing of the Wannier orbitals prior to the correlation calculation can
be performed in a module named Orbital refinery. Various stochastic localization
procedures is available, mainly the PSM-m and PFM-m objective functions.
In addition, this module features a periodic Pipek-Mezey localization, and
furthermore an experimental differential overlap integral (DOI) [23] optimizer.
It is also possible to minimize the spread of the positions within a set of orbitals,
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Figure 5.3: Construction of periodic projected atomic orbitals (PAOs). [5]

or move them all to the same center.
The annealing algorithm, as presented in Algorithm 1, is a separate module

exclusively called from the orbital refinery.

5.4.4 PRI (Periodic Fitting)

The fitting module consists mainly of two classes; integral_builder_static
and coefficient_fitter_static, and in addition a range of functions for
preparing integrals, processing basis sets, screening and domain size estimation.
The integral builder is the class responsible for providing the ERIs for the main
MP2 correlation calculation. Initialization of integral_builder_static is
done by providing the following input parameters; First, we require two sets of
orbitals, typically the occupied and virtual set for the reference cell. Second,
it requires a set of screening parameters in order to determine the bandwidth.
Finally, we have to provide the RI-fitting basis and the attenuation parameter.

For the sake of reproducibility, we shall elaborate a little further on the
integral screening. If we write out the full AO-expansion for the matrix O, as
presented in Eq. 4.48, we find that it can be reorganised into

(LJ |̃0iAa) =
∑
MµNν

(LJ |̃Mµ(M + N)ν)c−M
µi c−(M+N)+A

νa :=
∑
Nν

Ō−L
JiNνc

−N+A
νa ,

(5.4)
where an intermediate contraction tensor for only the occupied space has been
defined:

Ō−L
JiNν :=

∑
Mµ

(LJ |̃MµNν)c−M
µi . (5.5)
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This is useful, since we may now in the MP2 case compute O only once,
and subsequently include more virtual orbitals as we expand the spaces. The
calculation of Ō is however not without complication since it can potentially
be infinite, so in the PRI-module, these integrals are converged by succesively
computing spherical shells extending outwards from the reference cell until the
contributions fall below certain screening thresholds; ξ0 and ξ1, by default both
set to 10−10. The procedure is provided as pseudocode in Algorithms 3 and 4.
Note that the latest version of this screening is slightly changed from the one
in paper three, since we now truncate relative to the maximum element in the
reference cell.

Algorithm 3 AO screening procedure implemented in the XDEC-RI-LMP2
code

1: Compile a list Ω containing chunks of coordinate vectors {M}R grouped
together into concentric spherical shells in order of increasing radial distance
||RM|| to the reference cell.

2: for {M}R in Ω do
3: Compute all (0J |0µMν)’s for the shell
4: if all | (0J |0Mν) |max ≤ ξ0 (0J |0µ0ν) |max then
5: Break
6: end if
7: Append all Ms to the screened domain Ξ
8: end for
9: Set an initial reasonably large cutoff Rcut
10: for M in Ξ do
11: Compute all cells (NJ |0µMν) within RN ≤ Rcut
12: if any (KboundaryJ |0µMν) ≥ ξ0, where 0.95Rcut < RKboundary ≤ Rcut

then
13: Halt execution, warn/advise user to increase domains.
14: else
15: Append all blocks where (NJ |0µMν) ≥ ξ0 to screening domain ΞM
16: Let Rcut = 1.1RNouter where RNouter corresponds to the outermost

cell in the appended blocks.
17: end if
18: end for

5.4.5 XDEC (MP2 solver)

The code which is called from the command line is the XDEC-RI code,
responsible for solving the equations and producing the MP2 correlation energy.
The main pipeline consists of reading in all required input, such as system
data, coefficients, matrices and input parameters, and thereafter carrying out
the calculation according to the users specification. The default optimization
procedure is a XDEC-calculation with FOT set to 10−3 and attenuation ω = 0.3.

55



5. The XDEC-RI code

Algorithm 4 MO fitting screening procedure implemented in the XDEC-RI-
LMP2 code
1: Set Rtolerance = 10−12

2: Construct a list Ω of cell-indices L in order of increasing distance ||RL|| to
the reference cell.

3: for L in Ω do
4: Compute all ŌL

JNνi
5: if RL-RLprev ≥ Rtolerance and |ŌL

JNνi| ≤ ξ1Ō0
JNνi|max then

6: Break
7: end if
8: Store columns (Nν) and column indices of ŌL

Ji,Nν with max absolute
value above ξ1 for subsequent contraction of virtual coefficients.

9: end for

Initial subspace cutoffs do and dv should be chosen by the user, and by default
the minimum number of orbitals included in each expansive step is set to 6. It
is possible to assign position to orbitals in various ways. By default, the XDEC
code computes orbital centers and assigns position from these. Optionally, it is
possible to assign to nearest atom. A localized virtual orbital may be assigned
to the center of the PAO with which it has maximum overlap.

5.5 Validation

Our first implementation, the Xdec code, was validated by comparing total
MP2 energies for a range of test systems, designed not as realistic systems in
nature, but rather as computationally inexpensive, yet with features that could
reveal errors and weaknesses in the code. These test systems was a chain and a
single-layer surface of Neon, and chains of ethylene, both compared to cryscor,
as presented in paper 1. The final implementation was also validated against
cryscor, only this time we additionally compared pair-specific contributions
as presented in paper three of this dissertation. We also compared across the
Xdec and Xdec-RI codes. We find in general good agreement across the codes,
as presented in paper three of this dissertation.

As a result of the findings in paper two, we did not perform any further
localization of the Wannier orbitals in paper three. The localization routine
was however validated by ensuring that it reproduced exactly the localization
measures for PSM-1 produced by Crystal.
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Chapter 6

Summary and outlook

6.1 Overview

This dissertation illuminates one out of many possible paths towards linearly
scaling correlation methods for periodic systems. While the procedure
demonstratively works, as shown by the validating results in paper three of
this dissertation, new questions has been raised along the way which warrant
further exploration. In this chapter we shall briefly summarize my work on this
project in light of the three papers submitted with the dissertation, with an
additional emphasis on new venues which have been revealed along the way.

Figure 6.1: It still counts, right?

6.2 Research and papers

My first year working on this project was spent on obtaining the reference
state. We originally intended to obtain it ourselves in an a-priori Wannier [112]
procedure in LSDalton [108, 109], but were ultimately unable to reproduce
results from the literature. [53, 113] Consequently, we decided to instead base
our Xdec code on the Wannier functions available from Crystal. [47] The
interfacing of Crystal, LSDalton and Libint [107] was mostly focused on
obtaining the data in a readable form and converting between the various
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conventions used in these codes. We simultaneously started development and
testing of the Xdec code. We first aimed at performing orbital optimization
beyond the Boys localization in Crystal [48] by means of an intermediate PSM-2
localization in LSDalton, but due to instabilities and in order to more fully
exploit the translational symmetry, I ended up developing and implementing the
annealing approach presented in Chapter 3 instead. This procedure is extremely
useful in both prototyping and implementation, since it does not rely on any
derivatives and thus easily accepts any kind of objective function one might
come up with.

We established a collaboration with Lorenzo Maschio from the Theoretical
Chemistry Group at the University of Turin, who is one of the main developers
behind Cryscor. This was extremely useful with regards to validation,
interfacing the codes, and discussing all aspects of our implementations. The
current version of Cryscor is fully integrated into Crystal and employs a
range of different approaches to periodic density fitting, which has been the
outcome of several years of systematic experimentation by the Turin group
and their collaborators. [95] We found a lot of answers and inspiration in their
scholarship.

Our work resulted in the first paper of this dissertation, titled "Di-
vide–Expand–Consolidate Second-Order Møller–Plesset Theory with
Periodic Boundary Conditions". We demonstrated in this paper that the
DEC-approach can be extended to the periodic case with a few modifications.
We showed that the Xdec scheme provides error control by means of the FOT,
and can easily facilitate methods beyond MP2. We furthermore proposed a
method for determining a pair-distance cutoff using cubic spline interpolation on
a subset of the pair-fragment energies. My contributions to this paper was
in the general development of the code, setting up the systems, interfacing the
various frameworks involved, development of the localization and the cluster
extrapolations.

While our original Xdec implementation provided reliable results, it had
serious performance issues with respect to the ERIs. The O(N4

AO)-scaling issue
was originally addressed by reducing the size of the Wannier expansion domains
by means of fitting the Wannier orbitals in a subspace of the AO basis, but
this procedure still yielded extensively large expansion domains. We therefore
concluded that further acceleration such as RI was required. In addition, we
had seen indications that there were features of the PAOs making them more
suitable for local correlation methods than localized virtual orbitals (LVOs).
More specifically, we had seen indications that in actual energy-calculations, the
PAOs managed to recover more energy within the local subspace than the LVOs.
We therefore began implementing them in our own code under the assumption
that this effect was caused by the PAOs being more local than the LVOs. The
locality measures, however, would indicate otherwise.

This counter-intuitive finding resulted in the second paper of this dissertation,
titled "Representation of the virtual space in extended systems – a
correlation energy convergence study". In this paper, we performed a
systematic comparison of energy convergence of PAOs to LVOs, where we
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presented and discussed these results in light of locality considerations. We
furthermore reaffirmed the common practice of using PAOs in LMP2 calculations.
My contribution to this work was to develop the method and implementation
of the various localization schemes, an implementation of the DOI-calculation
for periodic systems, as well as being the lead author and producing the figures.

Simultaneously with our work on the PAOs, we continued work on
implementing the RI-approximation in our original code. While this significantly
improved the performance of our code, we realised that the code was
fundamentally treating many of the quantities involved in a non-periodic manner,
and the adaptation of more translational symmetry proved cumbersome. For
example, the RI-approximation makes no assumption as to the translational
symmetry of the orbital spaces, and the ERIs are discarded after each expansive
step in the fragment optimization. The AO integrals did not incorporate the
translational symmetry, and the amplitude equations were explicitly solved for
redundant amplitudes where both occupied indices was outside the reference
cell. For this reason, we decided to derive all the required expressions using
the IBT-formulation, and thus integrating the translational symmetry in all
calculations where possible. The change was fundamental, and basically required
us to write a completely separate code. This resulted in the current Xdec-RI
code, which is the end-point of this dissertation and the code used in producing
the results in our third paper.

In this third paper, titled "Smooth potential-energy surfaces in
fragmentation-based local correlation methods for periodic systems",
we investigated how local methods may cause discontinuous potential energy
surfaces (PES) for periodic systems. We identified the same mechanisms known to
cause these kinds of problems for molecules in the periodic case, and furthermore
explored how the principle of converging the local subspace can solve this problem.
We performed a theoretical comparison of the DEC-fragmentation scheme to
other locality based decoupling schemes, and demonstrated that the same kind
of convergence can be performed for other fragmentation schemes. We also
presented the attenuated fitting procedure and gave a brief overview of the
IBT-formalism presented in Chapter 2 of this dissertation. My contribution
to this paper was to be the lead author, develop the code and theory required to
perform the calculations and produce most of the figures and analysis.

6.3 Prospects

In summary, the three mentioned papers covers the most essential parts of my
work at CTCC, and later the Hylleraas Centre for Quantum Molecular Sciences.
In my opinion, the attenuated fitting scheme and the Xdec-RI-approach has
some very attractive features that should be developed further. With regards to
this, I would like to conclude by mentioning some future prospects.

We have experienced some difficulties with linear dependencies in the auxiliary
basis that agrees with what has been previously reported for periodic systems. [47,
114, 115, 116, 117, 118] Currently, we have largely disregarded this problem by
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pruning the auxiliary basis sets, but exactly how these dependencies emerge in
periodic systems seems to not be especially well understood in the literature.
First, in the case of MP2-fitting basis sets, it may not be a perfectly reasonable
assumption that the atomic MP2-optimized basis sets are particularly suitable for
periodic systems. As opposed to the molecular case, repeated lattice structures of
AO-functions possess the ability to "span themselves", in the sense that a single
AO function may be perfectly spanned by all its periodic repetitions excluding
itself. Removing it, however, simultaneously removes all its repetitions and may
thus significantly impact the span of the auxiliary basis. This could possibly be
accounted for with a suitable preconditioning, or one could consider optimizing
the basis in order to minimize the condition number [118, 119] of the auxiliary
attenuated coulomb matrix. Preliminary, unpublished results, shows promise in
this regard. Alternatively, one could possibly construct the basis sets using rules
that avoid linear dependencies, but it is somewhat unclear what such rules would
be aside from explicitly including lattice dependence in the basis. [117] If the
problem of linear dependence can be solved, and a more balanced parallelization
of the fitting scheme can be implemented, the Xdec-RI code will likely be
able to perform MP2 calculations on a much wider range of three dimensional
systems.

There is also the prospect of pushing beyond MP2. The framework
and methodology presented in this dissertation can, at least on paper, be
straightforwardly extended to CCSD and beyond. Technically, it is a matter of
adding some extra terms in the iterative MP2 solver, and providing the fitting
module with the additional orbital sets, such as occupied-occupied products
and virtual-virtual products. After the initial intermediate fitting (Eq. 4.48),
the calculation of the ERIs (Eq. 4.41) for a given ∆A and ∆B is normally
about one order of magnitude faster than calculating the fitting coefficients
(Eq. 4.43). Still, the intermediate fitting at the onset of the calculation scales
linearly with the number of orbitals involved, so extending this to include also
the virtual space should not be too difficult. We should however be prepared for
significant changes in computational demands with respect to both performance
and memory usage. A major contribution to the latter will come from the
"ladder"-term, where the contraction involves ERIs with virtual orbitals in all
indices. Several interesting developments from the molecular domain could
potentially be extended to the periodic case in order to reduce these memory
demands, such as systematic reduction of the auxiliary basis [120] or avoiding
storage of the ERIs all together. [121, 122] We will likely find that each approach
originally devised for molecules have both drawbacks and advantages when
applied to periodic systems, as we have seen throughout this entire dissertation.
Basis set reduction may benefit greatly from the presumably high degree of
redundancy in the periodic auxiliary basis. An IBC-based contraction of the ERIs
avoiding intermediate storage could likely utilize a lot of the "excess" integrals
produced on-demand in the contraction.

In sum, the Xdec-RI code should in principle be flexible enough to easily
accommodate most methods originally devised for molecules, and should serve
as a foundation to build upon for future studies.
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ABSTRACT
We present an investigation of the convergence behaviour of the local second-order Møller-Plesset
perturbation theory (MP2) correlation energy toward the canonical result for three insulating crystals
with either projected atomic orbitals (PAOs) or various orthonormal representations of the virtual
orbital space. Echoing recent results for finite molecular systems, we find that significantly fewer
PAOs than localised orthonormal virtual orbitals are required to reproduce the canonical correlation
energy. We find no clear-cut correlation between conventional measures of orbital locality and the
ability of the representation to span the excitation space of local domains. We show that the PAOs of
the reference unit cell span parts of the excitation space that can only be reached with distant local
orthonormal virtual orbitals.
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1. Introduction

Orbital localisation is a powerful tool in molecular
and solid-state quantum chemistry, providing both intu-
itively appealing interpretations and visualisations of
electronic structure [1–3], and opportunities for effi-
cient implementations of correlated theories. Spatially
localised orbitals can be obtained either by a suitably

CONTACT A. S. Hansen a.s.hansen@kjemi.uio.no Hylleraas Centre for QuantumMolecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033 Blindern, Oslo N-0315, Norway

chosen unitary transformation of the inherently delo-
calised canonical Hartree-Fock (HF) or Kohn-Sham
orbitals [4] or directly through a restrained noncanon-
ical self-consistent optimisation [5]. From an algorith-
mic perspective, localised orbitals pave the way for the
implementation of orbital-based embedding/fragment
schemes [6, 7] and for exploiting the short-range char-
acter of electron correlation effects to greatly reduce the

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or
built upon in any way.
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computational complexity of post-HF methods [8–10].
In this work, we will be concerned with the latter aspect.

The concept of ‘localized orbitals’ is not uniquely
defined, however, and different localisation function-
als have been proposed. Among the oldest and most
widely used proposals are the Foster-Boys [11, 12], Pipek-
Mezey [13], and Edmiston-Ruedenberg [14, 15] func-
tionals, which produce localised orbitals that minimise
the orbital spread, maximise the orbital partial Mulliken
charges over as few atoms as possible, and maximise the
Coulomb self-repulsion of the orbitals, respectively. Nei-
ther of these locality measures is directly related to the
electron-correlation problem, i.e. they are not defined
through a quantity that directly enters an expression
for the correlation energy. Consequently, it is far from
obvious which localisation functional leads to the most
efficient general-purpose local-correlation algorithm.

Local electron-correlationmethods rely on at least two
features:

(1) The occupied and virtual orbitals should be confined
within a small volume in space [16], such that the
differential overlap between them decay as rapidly as
possible with distance.

(2) At the same time, the virtual orbitals should be con-
structed in such a way that a very small number of
them is sufficient to accurately represent the excita-
tion space of each pair of occupied orbitals.

The latter has been tackled mainly through the intro-
duction of orbital-specific [17] or pair-specific [18] vir-
tual orbitals. These sets are constructed from an initial set
of localised virtual orbitals by means of first-order esti-
mates of the correlation amplitudes – that is, they are con-
structed directly from features of the electron correlation
effects of the system at hand.

Much effort has been devoted to point (1), albeit
usingmeasures not directly related to electron correlation
effects. It is an open question whether nonorthonormal
local orbitals are preferable to orthonormal ones [19–21].
Relaxing the orthogonality constraint leads to sim-
pler nodal structures, which, in particular, may lead to
smoother and more rapid decay of the tails of the func-
tions. At the same time, however, the resulting set will be
linearly dependent, which one might fear can lead to a
larger number of orbitals required to span a given sub-
space. The most widely-used approach in local correla-
tion theories is to choose an orthonormal set for the occu-
pied space, obtained through localisation of the occupied
HF orbitals, while nonorthogonal, linearly dependent
projected atomic orbitals (PAOs) are used to represent the
virtual manifold. The PAOs are easily computed from the
converged HF density matrix and, historically, the choice

of PAOs as virtual orbital basis has more to do with the
lack of robust algorithms for the localisation of orthonor-
mal virtual orbitals than superior performance in local
correlation treatments.With the robust localisation algo-
rithms developed in recent years by Høyvik, Jørgensen,
and coworkers [4, 22–24], orthonormal virtual-orbital
localisation can be performed reliably and efficiently,
warranting a comparison of the performance of PAOs
versus localised orthonormal virtual orbitals (LVOs) in
local correlation treatments.

Recently,Werner and coworkers [25–27] reported that
PAOs outperform LVOs inmolecular calculations.While
the LVOs are more local than PAOs in terms of orbital
spread, significantly fewer PAOs than LVOs are required
in the excitation domains to recover the same fraction of
the exact correlation energy. The authors did not present
a definitive reason for this somewhat counterintuitive
result, however.

The central role of locality in electron correlation
treatments is evenmore pertinent in 3Dperiodic systems,
where the canonical orbitals are forced by translation
symmetry to be delocalised over the entire infinite solid.
The dense packing of 3D periodic systems enhances
the effectiveness of locality-based screening procedures,
leading to even more pronounced computational savings
than for finite molecular systems.

In this work, we compare the performance of PAOs
and different sets of LVOs for local second-order Møller-
Plesset (MP2) theory of representative insulators: the
covalent diamond crystal, the ionic lithium hydride crys-
tal, and the molecular prussic acid crystal.

2. Theoretical background

The electronic correlation energy of a weakly correlated
system can be written in the coupled-cluster (CC) for-
malism as [28]

Ec =
∑
ij

∑
ab

(tabij − tai t
b
j )(2(ia | jb) − (ib | ja)), (1)

where we have assumed a closed-shell system for sim-
plicity. We use latin letters i, j, k to denote occupied
spatial orbitals and a, b, c to denote virtual spatial
orbitals obtained from a preceedingHF calculation.With
real orbitals, the electron repulsion integrals (ERIs) are
defined as

(ia | jb) =
∫∫

ϕi(r)ϕa(r)ϕj(r′)ϕb(r′)
|r − r′| dr′ dr. (2)

The single- and double-excitation amplitudes, tai and t
ab
ij ,

respectively, are determined from a nonlinear equation
system that, for an n-electron system, may involve up
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to n-tuple excitations, depending on the chosen CC
model. The simplest model is second-order Møller-
Plesset (MP2) theory [28] where the single-excitation
amplitudes vanish due to the Brillouin condition. The
double-excitation amplitudes are obtained from the set
of equations [23]

rabij =
∑
c

(
factcbij + tacij fcb

)
−
∑
k

(
fiktabkj + tabik fkj

)

+ (ia | jb) = 0, (3)

where f is the Fock matrix and all orbitals are assumed
to be orthonormal. Solving the MP2 equations scales
as O(N5) with N a measure of system size such as the
number of atom-centred basis functions used to expand
the occupied and virtual orbitals. The MP2 energy,
Equation (1), and amplitude equations, Equation (3), are
invariant to rotations among occupied and among virtual
orbitals separately. For insulators, this can be exploited
to bring forth significant sparsity in the Fock matrix
and ERIs which, in turn, imply sparsity in the ampli-
tudes. This observation dates back to Pulay [8] and forms
the basis for linear-scaling implementations that today
approach a near-black-box level of sophistication [23, 27,
29–33].

Linear scaling can be achieved as the following sim-
ple argument shows. Given suitably localised occupied
and virtual orbitals, the integral (ia | jb) will be negligi-
ble unless a is centred in the vicinity of i in the sense that
the product ϕi(r)ϕa(r) must be non-vanishing in some
region of space for the integral to be nonzero. A similar
argument applies to j and b, of course. This alone leads
to quadratic scaling of the number of significant ERIs.
Furthermore, multipole expansion of (ia | jb) reveals an
asymptotic decay rate proportional to R−3, where R is a
measure of the distance between i and j, leading to lin-
ear scaling of the number of significant integrals [34, 35].
The amplitudes and the residuals in Equation (3) inherit
the decay property of the integrals, paving the way for
a linear-scaling algorithm. By the same token, it follows
that the correlation-energy contribution from pairs of
occupied orbitals decays asymptotically as R−6, consis-
tent with the decay of London dispersion forces. This
argument can be extended to cover also higher-order CC
models.

The arguments underpinning linear-scaling correla-
tion treatments thus rely heavily on the concept of orbital
locality. As mentioned in the Introduction, this concept
is not uniquely defined and a number of localisation
functionals have been proposed. In this work, we will
consider the central-moment functionals of Høyvik and
Jørgensenalong with their statistics-based measures of
orbital locality [4]. The mth power of the second central

moment (PSM-m) functionals are defined in terms of the
second moment orbital spread of each orbital p,

σ2(p) = 〈p| (r − 〈p|r|p〉)2 |p〉1/2, (4)

as

ξPSM−m =
∑
p

σ2(p)2m, (5)

where the summation over orbitals should be restricted
to either occupied or virtual orbitals to maintain the
Brillouin condition. The PSM-1 functional is identical
to the Foster-Boys functional [36, 37]. Minimising the
PSM-1 functional with respect to unitary rotations of the
(orthonormal) orbitals leads to the set of orbitals with the
smallest possible sum of orbital spreads. In the context of
periodic systems, such orbitals are commonly referred to
as maximally localised Wannier functions [38].

Similarly, the PSM-2 orbitals are computed byminimi-
sing the objective function in Equation (5) with m = 2.
The PSM-2 objective function reduces the spread of the
least local orbitals at the expense of the most local ones.
The motivation behind the PSM-2 functional is the con-
jecture that the least local orbitals in the PSM-1 set lead
to excessive computational effort in a local correlation
treatment [22]. Increasing the value of m does not bring
any further advantages with respect to the least local
orbital(s).

The PSM-m objective functions do not address the
problem of long-range tails of the orbitals. The tail of
orbital p can be measured by the fourth moment orbital
spread σ4:

σ4(p) = 〈p| (r − 〈p|r|p〉)4 |p〉1/4, (6)

and letting this quantity take the role of σ2(p) leads to the
mth power of the fourth central moment (PFM-m) class
of localisation functionals [4, 16]

ξPFM−m =
∑
p

σ4(p)4m. (7)

Minimising the PFM-1 objective function leads to ‘mini-
mally tailed’ orthonormal orbitals and, in analogy with
the PSM-2 case above, heavy-tailed outliers may be
removed by putting m = 2. Following Høyvik and Jør-
gensen [4], we use the tail spread β(p), defined as the
fourth root of the kurtosis,

β(p) = σ4(p)
σ2(p)

, (8)

to measure tail thickness. The more heavy-tailed an
orbital is, the greater the value of its tail spread.
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In this work, we will focus on orthonormal orbitals
obtained by minimising the PSM-1, PSM-2, and PFM-2
objective functions.

The by far most commonly used virtual basis is com-
posed of PAOs [8], which are straightforwardly con-
structed by projecting out the occupied orbitals from the
atomic orbital (AO) basis, so that a normalised PAO |μ̃〉
is given by

|μ̃〉 = Nμ

(
1 −

∑
i

|i〉〈i|
)

|μ〉, (9)

where |μ〉 are the AOs and Nμ = 〈μ|(1 −∑
i |i〉

〈i|)|μ〉−1/2. In this way, a redundant set of orbitals is
obtained, having in principle the same size as the AO
basis. The PAOs inherit a certain degree of locality from
theHF densitymatrix used for the projection and are free
from the delocalisation (tail) effects resulting from the
orthogonality constraint [24].

We are in this work mainly interested in the impact of
the choice of virtual orbitals on the efficiency and accu-
racy of periodic local MP2 calculations. Although the
choice of virtual orbitals can not be entirely decoupled
from the choice of localised occupied orbitals, we will
use the PSM-1 localised occupied orbitals in conjunction
with different sets of either LVOs or PAOs. As proposed
by Pinski et al. [30], we may then characterise the so-
called multiplicative sparsity between the occupied and
virtual sets of orbitals through differential overlap inte-
grals (DOIs). The DOI for an occupied orbital ϕi and a
virtual orbital ϕa is defined as

�ia =
√∫

ϕi(r)2ϕa(r)2 dr. (10)

The DOIs measure the extent to which the occupied
and virtual orbitals have a non-vanishing intersection
in R3 and thus can be used to map the sparsity of
the ERIs, Equation (2), with the chosen virtual orbital
basis.

While the focus of the localising objective functions
and construction procedures is on the spatial distribu-
tion of the orbitals, they are each implicitly assumed
to bring forth a condition where the significant part
of the correlation can be attributed to a subset of the
full amplitude space, determined from locality consid-
erations. Although most modern implementations of
local correlation theories reduce the impact of the initial
choice of virtual basis through further refinements like
orbital-specific virtuals [39] or pair-natural orbitals [30,
32, 33], it is of fundamental importance to compare the
behaviour of PAOs and orthonormal virtual orbitals in
the context of computing the ground-state correlation

energy. It is, however, not trivial to devise a fair com-
parison between different types of orbitals (orthonormal
or non-orthonormal, atom-centred or not), where the
correlation energy is closely related to the number of vir-
tual orbitals used in the calculation. In this work, we
have chosen to treat the excitation space in the following
manner:

(1) For each occupied orbital a list of atomic centres
in its vicinity is compiled, and PAOs centred on
such atoms constitute the initial excitation domain.
This list is built by taking the n atoms closest to
the occupied-orbital centroid, and then rounding
up such that all atoms within the same distance are
included (within a numerical threshold).

(2) Through the orbital-specific virtuals (OSV)method-
ology [39], a set of virtuals is built as a linear com-
bination of the initial set by diagonalising the MP2
pair density matrices Dii corresponding to diagonal
pairs ii in the reference unit cell:

Dii
ab =

∑
c

tacii t
cb
ii (11)

(3) The resulting set of orbitals is trimmed to keep the
error in the total correlation energy within a thresh-
old.

(4) The number of OSVs retained for each domain is
then a function of (i) the size of the original PAO
domain, and (ii) the number of orbitals significantly
contributing to the correlation energy.

(5) Finally, the virtual space of a local pair domain
(which, for diagonal pairs, coincides with the orbital
domain) is transformed into a local orthonor-
mal (LON) space for the pair-domain ampli-
tudes, in which redundant orbitals are discarded
according to a threshold of 10−4 on the overlap
eigenvalue.

While thresholds on the LON redundancy check in
point (5) above are generally tighter in molecular appli-
cations, the closer packing of bulk solids makes the
algorithm more sensitive to linear dependencies and, by
experience, the chosen value is reasonable. Sets of LON
orbitals are constructed in the same manner starting
from each initial set of LVOs (PSM-1, PSM-2, or PFM-
2 LVOs). In this procedure, each LVO is associated with
the atom nearest to its orbital centroid. The convergence
of the local MP2 correlation energy toward the exact
(canonical) result as a function of the average number of
LON orbitals retained in the diagonal domains provides
a measure of the ability of the initial virtual-orbital (PAO
or LVO) set to capture the main correlation effects.
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3. Computational details

We shall considerMP2 energy calculations for three sim-
ple bulk insulators: diamond, LiH, and HCN. These are
chosen as representatives of the different chemical sit-
uations that can be found in a nonmetallic (and non-
magnetic) solid: a purely covalently bonded, a purely
ionic, and a molecular crystal. The systems are also cho-
sen to keep the complexity low enough to facilitate analy-
sis of the orbitals and their effect on correlation energies.

The localised occupied orbitals are obtained from
the Wannierization algorithm [40] implemented in the
Crystal program [41]. This procedure includes a Foster-
Boys localisation [11, 12] that minimises the PSM-1
objective function given in Equation (5). The PAOs are
constructed as in Equation (9) and those with norm
below 10−3 are discarded.

As opposed to many other codes developed for ab
initio studies of solid-state materials, Crystal adopts
atom-centred Gaussian basis sets, making it comparable

with molecular programs – and, in fact, fully equiva-
lent when zero–dimensional periodicity is invoked. A
6-31G∗∗ basis was used for HCN [42, 43], 6-21G∗ for
diamond [44], while a simpler basis set was adopted for
LiH (3-11G∗∗ on H [45], 6-1G∗∗ on Li [46]). Detailed
structures (nuclear coordinates, unit cell parameters) and
technical details regarding the initial HF calculations
are provided in the Appendix. In all cases the experi-
mental lattice parameters have ben adopted. The lattice
constants of the cubic diamond and LiH crystal struc-
tures are 3.56679Å [47] and 4.0834Å [48], respectively,
while those of the tetragonal HCN crystal structure are
a = 4.13Å, b = 4.85Å, and c = 4.34Å [49]. Note that
we use primitive unit cells in all calculations.

The LVO orbitals are generated by the sameWannier-
ization algorithm in Crystal, yielding the PSM-1 LVOs
(see theAppendix formore technical details). The PSM-2
and PFM-2 LVOs are obtained by further optimisation
of the PSM-1 LVOs in a stochastic procedure where only

Figure 1. Convergence of the MP2 correlation energy with respect to the average number of LON orbitals in the diagonal pairs. The
panels from top to bottom show results for bulk diamond, LiH and HCN, respectively, for the PAO and various LVO sets.
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6 A. S. HANSEN ET AL.

unitary transformations amongst the virtual orbitals in
the reference unit cell are permitted. The LVOs associated
with all other unit cells of the crystal are then obtained by
simple translations.

For each representation of the virtual space, we quan-
tify locality by computing second- and fourth moment
orbital spreads, Equations (4) and (6), as well as the
tail spread, Equation (8). Further analysis of sparsity in
the orbital sets is performed by estimating the DOIs,
Equation (10), using theMonte Carlo integration scheme
outlined in appendix II.

Periodic local MP2 calculations are performed with
the Cryscor suite [50–54]. Within the present Cryscor
implementation [54], the initial excitation domains are
constructed by means of the OSV method as outlined in
the previous section with the default number of neigh-
bouring atoms n = 30. This number is incrementally
increased for each of the systems under consideration,
recording the local MP2 correlation energy as a function
of the average number of LON orbitals in the domains
of diagonal pairs. As in Refs. [17, 54], symmetric OSV
pair domains are used in the evaluation of the MP2
correlation energy.

4. Results and discussion

Figure 1 shows the convergence behaviour of the local
MP2 correlation energy with respect to the average size
of the LON space for each set of initial virtual orbitals.
The convergence is strikingly better with PAOs than with
LVOs for all three systems. Across a range of chemi-
cally distinct systems – covalent diamond, ionic LiH and
molecular HCN – we thus observe that the PAOs capture
more of the correlation energy within smaller domains
than the PSM-1, PSM-2, and PFM-2 LVOs.Overall, the
performance of the three LVO sets is equally poor. For
LiH, the PAO set yields an essentially converged corre-
lation energy with an average LON dimension of about
40, whereas roughly twice as many LON orbitals are
required with the LVO sets. For HCN, the LON dimen-
sion required for convergence with the LVO sets is
roughly thrice that of the PAO set. The diamond crystal
is more challenging, also with PAOs, which yield conver-
gence at a LON dimension just below 150, wheras LVOs
require at least about 350 LON orbitals.

As apparent from the locality measures compiled in
Figure 2, the superior convergence of the PAOs can not
be unambiguously attributed to their being more local
or light-tailed than the LVOs.The σ2 data show that the
PAOs are on average the least local choice and, conse-
quently, orbital spreads can not explain the very different
convergence behaviours. This agrees with the observa-
tions for molecules by Krause and Werner [25]. Nor

Figure 2. Second- and fourth moment orbital spreads and tail
spreads for the various sets of virtual orbitals for diamond, LiH, and
HCN. Horizontal lines give the value for each orbital in each set,
while average values are indicated by the horizontal black lines.

can a clear distinction of the PAOs be made from the
σ4 data. While the PAOs do have the smallest aver-
age σ4 for LiH and HCN, they also show the greatest
maximum value for LiH and diamond. In all cases, the
smallest maximum σ4 is observed for the PFM-2 set.
The average β values, on the other hand, are smaller
for the PAOs than for the LVO sets across all three sys-
tems. While this is fully consistent with the observed
correlation-energy convergence behaviour in Figure 1,
we note that the maximum β value is greater for the
PAOs than for the PFM-2 sets for both diamond and LiH.
Judging from the β values alone, one would expect the
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Figure 3. Differential overlap integrals between the occupied
orbitals of the reference unit cell and the PAO and PSM-1 virtual
orbital spaces for diamond (top), LiH (center), and HCN (bottom),
as a function of the inter-orbital distance ria between occupied
orbitals in the reference cell and PAOs or PSM-1 virtual orbitals
throughout the crystal. The graphs show the maximum DOI for
each orbital set above a given distance.

correlation-energy convergence behaviour to be similar
for PAOs and either of the LVO sets in the case of dia-
mond, while the PAOs should be vastly superior to the
LVOs in the case ofHCN.As seen fromFigure 1, however,
the LVO sets struggle even more for diamond than for
HCN and LiH. We thus conclude that neither second
moment spread, fourth moment spread, nor tail spread

can unambiguously explain the observed convergence
behaviour.

An alternative explanation might be that the PAOs
provide greater multiplicative sparsity, translating into
smaller diagonal excitation domains by allowing for
a smaller cutoff distance from each occupied orbital.
According to this hypothesis, the PAOs should show few
important DOIs at short range followed by rapid decay
at longer distances, whereas the LVOs should decay more
slowly with distance. The estimated DOIs for PAOs and
PSM-1 virtual orbitals are plotted in Figure 3. For each
crystal, the overall DOI decay rates are comparable for
both sets of virtual orbitals, although the DOIs of the
PAOs are more scattered with values at each distance
both above and below those of the PSM-1 orbitals. A
DOI cutoff threshold of 10−2, as recommended by Pin-
ski et al. [30], would suggest that about the same or even
more PAOs than PSM-1 orbitals must be included in the
correlation treatment.

Evidently, neither the statistics-based locality mea-
sures nor the DOIs provide a clear-cut explanation of
the more rapid correlation-energy convergence with the
PAOs. Although the LVOs span the same space as the
PAOs when the entire crystal is considered, a distance-
based truncation of the PAOs clearly capturesmore of the
correlation energy. From the viewpoint of the LVOs, this
implies that the PAOs of a given cell must contain com-
ponents that are only present in more distant orbitals in
the orthonormal representation. To investigate this effect,
we expand the PAOs of the reference unit cell, denoted
|0μ̃〉 where 0 indicates that the parent AO |μ〉 is located
in the reference unit cell, in a basis defined by a given set
of LVOs,

|0μ̃〉 =
∑
L

∑
a

|La〉〈La | 0μ̃〉 ≡
∑
L

∑
a

|La〉CL
aμ̃, (12)

where L is a lattice index (including 0, the reference
unit cell). The expansion coefficients can be computed
directly from their definition. In order to measure the
extent to which distant LVOs are represented in the PAO
set of the reference unit cell, we introduce the ‘weight’ of
each virtual orbital |La〉 as the square of the correspond-
ing expansion coefficient,

WL
aμ̃ =

(
CL
aμ̃

)2
. (13)

These weights are plotted in Figure 4 as a function of
the inter-orbital distance rμ̃a between the PAOs in the
reference cell and PSM-1 LVOs throughout the crystal.

Only plots for the PSM-1 set are shown. Essen-
tially identical plots are obtained for the PSM-2 and
PFM-2 sets. While the weights decay quite rapidly, sig-
nificant contributions (WL

aμ̃ � 10−3) may indeed be
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Figure 4. Expansion coefficients squared, Equation (13), of the
PSM-1 virtual orbitals for the reference-cell PAOs as a function
of the distance between the reference cell PAOs and each virtual
orbital for diamond (top panel), LiH (middle panel), and HCN (bot-
tom panel). Green points indicate expansion coefficients that are
required to recover 99.9% of the norm of every single PAO. There
are 26, 11 and 32 such PAOs for diamond, LiH, and HCN, respec-
tively. The most distant orbital that has to be included to capture
the same span is indicated with a vertical green line.

observed between 5 and 10 bohr from the origin of
the reference cell. This is consistent with the observed
correlation-energy convergence behaviour. Furthermore,
it is evident from the vertical lines of Figure 4 that a
distance-based truncation of the LVOs leads to the inclu-
sion of a large number of redundant components, ulti-
mately resulting in inefficient (but still linear-scaling)

calculations of the MP2 correlation energy. Interestingly,
the distribution of the green points suggests that a more
sparse subspace of LVOs may be chosen based on their
importance in spanning the same space as the reference-
cell PAOs.

5. Concluding remarks

Wehave studied the impact of the initial choice of virtual-
orbital basis, PAOs and three different sets of LVOs, on
the convergence of the local MP2 correlation energy
toward the canonical result for three insulating crystals
with qualitatively different chemical bonding situations,
diamond (covalent crystal), LiH (ionic crystal), andHCN
(molecular crystal). Our results confirm recent findings
by Werner and coworkers [25–27] for molecules: the
performance of PAOs is significantly better than LVOs.

This result is somewhat counterintuitive since the
LVOs are generally more local according to second
moment orbital spread data, have thinner tails accord-
ing to fourth moment orbital spread data, and provide
comparable or even greatermultiplicative sparsity in con-
junction with localised orthonormal occupied orbitals
than the PAOs. Although we do observe a certain agree-
ment with tail spread data for the PAOs and LVOs, cor-
rectly indicating superiority of the former, there is no
one-to-one mapping between β values and the observed
convergence behaviour. Inspecting the expansion of the
reference-cell PAOs in the LVO basis, we find that the
PAOs contain surprisingly large components of distant
LVOs. It seems, therefore, that the efficiency of the PAOs
can be traced to their being sufficiently local and linearly
dependent such that by choosing a subset of them based
on the location of the atomic centres of the parent AOs,
we get a greater fraction of the excitation space than we
would have obtained with the LVOs centred in the same
spatial region.
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Appendices

Appendix 1. Geometries

The reader is referred to the Crystal manual [55] for details
regarding the keywords given in the following discussion. All
calculations was performed for 3D periodicity. In all cases
the two-electron integrals was treated exactly (invoked with
keyword NOBIPOLA) when setting up the Fock-matrix.

Diamond was computed with space group 227 and lattice
parameter 3.56679Å. With a standard shift of the origin (IFSO
set to 1), a carbon was placed in rC = (0, 0, 0). The Hartree-
Fock optimisation was performed with SHRINK set to 8 and
an energy tolerance of 10−10. The intergral tolerances was 8 8
8 10 20. For the Wannierization, we used a NEWK of 9.

For LiH we used space group 225 with lattice parameter
4.0834Å. Lithium was placed at rLi = (0, 0, 0) and hydrogen at
rH = ( 12 ,

1
2 ,

1
2 ), both in units given as fractions of the lattice vec-

tors. For theHartree-Fock optimisationwe used a SHRINK fac-
tor of 7 with a convergence tolerance on the energy (TOLDEE)
10−12. Integral tolerances (ITOL) was set to 8 8 8 25 50. For the
Wannierization we used a NEWK of 11.

For HCN we used space group 44 and lattice parame-
ters 4.13Å, 4.85Å, 4.34Å, 90◦, 90◦, and 90◦. The fractional
coordinates of hydrogen, carbon and nitrogen were rH =
(0, 0,−0.2459793977425), rC = (0, 0, 0.003572703972826),
and rN = (0, 0, 0.2701066937697), respectively. For theHartree-
Fock optimisation we used a SHRINK factor of 7 and integral
tolerances of 7 7 7 20 40. The energy tolerance (TOLDEE) was
set to 10−10. The subsequent Wannierization was performed
with NEWK 11.

Appendix 2. DOI estimates

The differential overlap integrals (DOIs) [30] were estimated
usingMonte Carlo (MC) integration [56] within finite volumes
of the full integration domain (R3).

Figure A1. Illustration ofMonte Carlo integrationwithin concen-
tric shells. The density of samples is higher in the centre. The final
integral is estimated by I = ∑Nshells

n=1 In.

Figure A2. Absolute difference of analytical and MC estimates
for the PAO-LVO (Sμa) overlap matrix elements. The elements are
sorted into bins depending on the absolute value of the MC-
estimates, whereby the average errorwithin each bin is calculated
and plotted. The diagonal line shows where the absolute devia-
tion equals theMC-estimate. The intersection between the diago-
nal and theaverage canbeused to identify a lowerboundatwhich
the loss of precision in the MC estimates becomes too severe to
draw any conclusions. This intersection appears well below 10−4

in all three cases.

For each pair of unit cells, the full integration domain
is divided into concentric spherical shells as illustrated in
Figure A1, with their origin situated halfway between the lattice
vectors associated with the relevant cells. The outermost layer
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is placed at 50 Bohr, with its interior divided into 121 shells
uniformly spaced in the radial direction.

The overlap and differential overlap integrals are computed
20 times for all orbitals associated with the two cells using MC
integration with 2000 random samples uniformly distributed
inside every finite volume. The integrals over every volume
are then summed, and the final integrals are estimated as the
average of the 20 separate estimates.

In total, each integrand is sampled in 4.84 × 106 coordi-
nates. The discretisation of the integration domain can be
considered a discrete importance sampling [56], with the con-
sequence of more dense sampling in regions where higher
variance in the integrand is expected. The assumption of the
concentric spherical shells being a reasonable sample distribu-
tion thus relies on the orbitals being localised to their associ-
ated cells, so that the products of orbitals have most of their
significant distribution between the cells.

Confidence in the estimates can be established by (1) assess-
ment of the error in the PAO-LVO overlap matrix, and (2)
assuming that the same error applies to the DOIs due to the
similarities in the integrand with respect to variance. While
we can not directly infer the error in the DOIs from the
error in the PAO-LVO overlaps, it is clear that the regions
with most variance in the integrands coincide in these cases.
Hence, if the sampled coordinates has the ability to reproduce
the overlaps they should be an equally reasonable choice for
the DOIs.

The absolute deviation of the MC estimates of the PAO-
LVO overlap matrix elements is compared to their magnitude
in Figure A2, where we observe a significant loss of relative
accuracy below 10−4 for diamond, and below 10−6 for LiH and
HCN. We thus conclude that the DOI estimates presented in
Figure 3 are reliable.
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Local approximations facilitate the application of post-Hartree–Fock methods in the condensed
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1. Introduction

The theoretical description of electronic interactions at
the quantum level is fundamentally the same for peri-
odic systems as for molecules. Challenges posed by the
computational scaling of correlated wavefunction meth-
ods have, however, proven much more limiting in the
periodic case, and condensed-phase wavefunction-based
results beyond Kohn–Sham density-functional theory
(KS-DFT) [1] or Hartree–Fock (HF) [2] theory remain
fairly uncommon in the literature relative to the molecu-
lar case.

With today’s line-up of efficient and publicly available
coupled-cluster (CC) implementations, it is possible to
perform highly accurate electronic structure calculations
for moderately sized molecules at an affordable compu-
tational cost [3]. While valuable in their own right, such

CONTACT A. S. Hansen a.s.hansen@kjemi.uio.no Department of Chemistry, Hylleraas Centre for QuantumMolecular Sciences, University of Oslo, P.O.
Box 1033 Blindern, Oslo N-0315, Norway .

Supplemental data for this article can be accessed here. https://doi.org/10.1080/00268976.2021.1896046

results are often used to ensure the quality of other less
reliable but more efficient methods, such as KS-DFT or
semi-empirical methods. The results provided by these
implementations would have been unattainable, if not for
several important developments made in the past 2–3
decades, where the computational scaling with respect to
the number of electrons has been reduced towards linear-
ity by means of various approximations. Distance-based
approximations dating back to Pulay and others [4–10]
commonly referred to as local correlation methods have
been essential in this regard.

Notably, we have seen the revival ofMeyer’s pair natu-
ral orbitals (PNO) [11] in the work from Neese [12–16],
followed by Werner [17], where the most significant
part of the virtual orbital space is represented in a
compact manner for each pair of occupied orbitals.

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is
properly cited, and is not altered, transformed, or built upon in any way.
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Simultaneously, extensive research into the decou-
pling of the orbital spaces has been made. Various
approaches for decoupling the CC equations have been
presented in the literature, including the divide-expand-
consolidate (DEC) approach by Jørgensen and cowork-
ers [18–22] and the closely related cluster-in-molecule
(CIM) approach by Li et al. [23,24], and the generalisa-
tion of the Pulay–Sæbø scheme by Werner and cowork-
ers [25], to name a few.

While these methods have greatly reduced the com-
putational cost of molecular CC calculations, their adap-
tation to the periodic case has not been without com-
plications. The natural way of dealing with the elec-
tronic wavefunction in bulk materials is to assume an
infinite periodic extent, which subsequently allows map-
ping the infinite problem onto the finite unit cell by
means of a Fourier transform [26,27]. The solution of
these equations, the Bloch orbitals, are expressed as lin-
ear combinations of delocalised plane waves [28]. As a
consequence, periodic systems are not just simply huge
molecules – they are truly infinite, yet subject to symme-
tries which reduce the computational expense of the cor-
relation treatment. One approach to correlationmethods
in solids thus is to deal with the problem in its canon-
ical form, expanded in either plane waves [29–31] or
localised atomic orbitals such as Gaussian basis func-
tions [32–36]. The connection to the more familiar local
quantum chemical treatment of correlation is, however,
conditioned on the availability of a Wannier representa-
tion of the orbital spaces [37], which is restricted to non-
conducting systems [38–41]. In this representation, each
orbital is no longer uniquely associated with a wave vec-
tor and the decoupling conditions are thus different than
in the Bloch case. Still, the prospect of achieving similar
results as for molecules has motivated a line of research
into the application of these methods on periodic sys-
tems, as documented by the work of Usvyat et al. [42],
Li et al. [43], and ourselves [44,45]. Beyond alleviat-
ing the notable computational challenges of obtaining
the ground-state solution, local correlationmethods may
provide novel pathways towards the calculation of band
gaps, thus providing promising venues for application
and a closer connection to experiment [46,47].

As we gain experience with these methods in the
periodic realm, it becomes increasingly clear that an effi-
cient implementation requires many layers of approxi-
mations, rather than one single principle. This includes
approximate schemes for the electron repulsion integrals
(ERIs) [48–50] and screening, as well as the local approx-
imation itself. While the resolution of the identity (RI)
approximation has been demonstrated to greatly acceler-
ate ERI generation and transformation in local second-
order Møller-Plesset (MP2) theory calculations [51,52],

there are open questions regarding fitting basis sets and
methodology which warrants further studies [50,53].
From new layers of approximations, new input parame-
ters follow, each affecting the final result of the calculation
in various ways. Careful consideration should thus be
taken in order to retain the best possible control of the
error in the result, so it can be suppressed or extrapo-
lated away in a systematic manner. In this work, we focus
on the error due to truncated orbital spaces, with spe-
cial focus on how it impacts potential-energy surfaces
(PESs) at the MP2 level of theory for periodic systems.
This is likely the most significant error present in these
calculations [54–57] and should be treated accordingly.

2. Theory

Within the adiabatic Born–Oppenheimer approxima-
tion, the electronic ground-state energy of a periodic
many-electron system defines the PES as a function of
the parameters describing the lattice and the coordinates
of the atoms associated with one unit cell, the reference
cell, in the lattice. The accuracy of the PES depends on
the level of theory used to calculate the energy, and can
in principle be treated systematically within convergent
hierarchies of wavefunction methods, such as the CC
methods [3]. However, the steep computational scaling
of post-HFmethods combined with the infinite nature of
periodic systems impose severe limitations already at the
level of MP2 theory, which has resulted in a considerable
effort being put into the adaptation of local correlation
methods [4–10] to the periodic case. While these meth-
ods greatly reduce the computational cost of post-HF
calculations, they are known to simultaneously introduce
discontinuities in PESs which can potentially be difficult
to control [54,58].

In order to understand how these discontinuities
emerge in periodic systems, we shall look closer into
how the local energies are computed in the first place.
The periodic Hartree–Fock equations are conventionally
solved in reciprocal space using either a plane-wave basis
or a translational symmetry-adapted local atomic orbital
(AO) basis such as Gaussian AOs. In both cases [59],
the resulting canonical representation of the orbital space
is the completely delocalised and complex-valued Bloch
orbitals [28].

For insulators, it is possible to obtain a non-canonical,
local representation of the orbital space by means of
an inverse Fourier transform and localisation in direct
space [41]. In this picture, the space is spanned by Wan-
nier orbitals ϕLp, where the uppercase, boldfont index
refers to the cell in the periodic structure in which the
orbital p belongs.
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In addition to being local in the sense of having a finite
spatial extent, the Wannier orbitals are translationally
orthogonal to each other [41]:∫

R3
ϕLpϕMqdr = δLMδpq, (1)

and can be real-valued by constraining the localisation
procedure [41].

Post-HF calculations from a non-canonical reference
determinant must account for non-diagonal terms in the
Fock matrix, meaning that, for instance, computing the
MP2 correlation energy is no longer a one-step proce-
dure. Pulay and Sæbø [9], therefore, derived an MP2
formulation from the Hylleraas functional that is inde-
pendent of unitary rotations within the occupied and vir-
tual spaces. In the periodic case, for Wannier functions,
these equations are

0 = (
IiAa|JjBb)+

∑
Cc

tCcBbIiJj fAaCc +
∑
Cc

tAaCcIiJj fBbCc

−
∑
Kk

tAaBbKkJj fKkIi −
∑
Kk

tAaBbIiKk fKkJj. (2)

where f is the Fock matrix, t are the MP2 amplitudes and
the periodic ERIs for real Wannier functions are

(
0iAa|JjBb) := ∫∫

R3

ϕ0i(r)ϕAa(r)ϕJj(r′)ϕBb(r′)
|r − r′| dr′dr.

(3)

The cell summations in Equation (2) run over the full,
infinite lattice. Due to the translational symmetry in the
amplitudes and ERIs, given by

tAaBbIiJj = t(A−I)a(B−I)b
0i(J−I)j , (4)

we may choose to keep the first occupied index fixed in
the reference cell 0without any loss of information. Upon
solving Equation (2) for the amplitudes, the correlation
energy per unit cell can be computed as

�EMP2 =
∑
J

∑
AB

∑
ij

∑
ab

tAaBb0iJj
(
2
(
0iAa|JjBb)

− (
0iBb|JjAa)) . (5)

It is well known that for localised orbitals, the ERIs
tend exponentially to zero with the inter-orbital distances
R0iAa and RJjBa, and proportional to R−3

0iJj with the inter-
pair distance R0iJj [60,61], where

RPpQq =
√(〈ϕPp|r̂|ϕPp〉 − 〈ϕQq|r̂|ϕQq〉

)2. (6)

These decay properties reveal a certain decoupling in the
amplitude equations and form the basis for various local

correlation methods. Linear scaling can be achieved by
partitioning the summations in Equations (2) and (5)
intoweakly coupled subspaces�k, where only the subsets
of occupied and virtual orbitals that significantly affect
the energy of these subspaces are included. After solving
the equations on these fragmented subspaces, the total
correlation energy can finally be approximately expressed
as a sum over the contribution from each:

�EMP2 ≈
∑
k

�EMP2(�k). (7)

The equations are typically solved on slightly larger
domains by inclusion of so-called buffer spaces [18] to
ensure that the energy inside each subspace is properly
converged.

The correlation energy is distributed across the exci-
tation space, and will smoothly flow between configura-
tions following smooth changes in geometry and repre-
sentations of the orbital spaces. Changes in the weakly
coupled local subspaces following the inclusion or exclu-
sion of orbitals depending on distance measures will,
however, inevitably introduce discontinuous changes in
the energy. Consequently, local correlation methods are
prone to yield non-smooth – or fractured – PESs and
careful consideration should thus be put into the algo-
rithms by which these local subspaces are constructed in
order to minimise such effects.

We shall distinguish the fragmentation schemes, i.e.
the principles used to construct the subspaces, from the
various other approximations involved. In terms of frag-
mentation, the challenges associated with fractured PESs
have been addressed in various ways, with the most com-
mon being that of choosing the subspaces sufficiently
large to suppress discontinuities [57]. Other approaches
include freezing the domains close to the equilibrium
geometry [55] or bumping the amplitudes [56]. The
orbital specific virtual (OSV) representation of the vir-
tual space has been of particular interest, as it has been
shown to yield smoother surfaces both for molecules and
periodic systems [57,62–64].

The divide-expand-consolidate (DEC) family of
methods takes a different approach and aims at control-
ling the magnitude of the discontinuities by converging
the energy with respect to changes in the orbital sub-
spaces. The various fragmentation schemes are them-
selves in principle agnostic with respect to the repre-
sentations of the orbital spaces, which for the virtual
space include local virtual orbitals (LVOs), projected
atomic orbitals (PAOs), OSVs and pair natural orbitals
(PNOs) [11–17]. While it is well known that the choice
of virtual representation makes a significant impact on
the energy and thus the PES, it currently remains unclear
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how to determine the suitability of such a representation
without performing the actual energy calculation [45,65].

Positions and locality can be ascribed to a set of
orbitals in a number of ways [45], and the exact definition
of the local subspaces on which the amplitude equa-
tions are solved may therefore differ between various
implementations. Following an “ERI-centric” approach,
we shall infer sparsity in the ERIs directly from distance
considerations,meaning thatwe assume (0iAa|JjBb) = 0
for distances R0iAa, RJjBb and R0iJj above some prede-
termined thresholds. This approach is convenient from
a periodic perspective, since it incorporates the transla-
tional symmetry of the product orbitals that appear in the
bra and ket of the ERIs,

T̂Mϕ0i(r)ϕAa(r) = ϕMi(r)ϕ(A+M)a(r), (8)

where T̂M is the lattice translation operator that offsets
the product orbitals in cellwise increments, such that any
excitation included in the reference cell is also included
in the translated copies.

By defining the elements

EAaBbIiJj := tAaBbIiJj
(
2
(
IiAa|JjBb)− (

IiBb|JjAa)) , (9)

we may express the full MP2 energy per cell more
compactly as

�EMP2 =
∑
i∈O0

∑
Jj∈O

∑
Aa∈V

∑
Bb∈V

EAaBb0iJj , (10)

where the summations are now partitioned in such a way
that the individual orbitals are emphasised rather than
the lattice structure. The summation is still infinite, but
we explicitly denote the full orbital spaces as V and O
(O0 for the reference cell) for the virtual and occupied
spaces, respectively.

In this setting, a fragmentation may be regarded as
a partitioning within the various terms, while the local
approximationmay be regarded as a distance-based trun-
cation of the orbital spaces. Taken together, this forms a
fragmentation scheme, and with the addition of approxi-
mative techniques such as various representations of the
orbital spaces, it can be seen as a local correlation method,
as found in a number of implementations.

The DEC family of methods [18–20] was originally
devised for molecules and has been extended to the
periodic case recently [44]. In the DEC approach, the
amplitude equations are solved within subspaces called
amplitude orbital spaces (AOSs) and the resulting ener-
gies are computed on a smaller subspace of each AOS
called the energy orbital space (EOS). In order to gain
control over the error in these calculations, these spaces
are constructed such that the error in the energy is below
a predefined threshold.

In terms of fragmentation, the DEC approach first
divides the occupied space into fragments, which are
non-overlapping setsP of occupied orbitals in each others
vicinity. The AOS for a fragment is

�k(0P) = O0P ∪ V0P, (11)

where the notationO0P andV0P signifies sets of occupied
and virtual orbitals in the vicinity of P (explicit definition
will follow later). The energy associated with a fragment
is in terms of Equation (7):

�Efrag,MP2
(
�k(0P)

) =
∑
ij∈P

∑
AaBb∈V0P

EAaBb0i0j , (12)

where the summation domain constitutes the EOS of the
fragment. The AOS of a fragment can be determined by
expanding O0P and V0P successively until the change in
energy is below a certain threshold referred to as the
fragment optimisation threshold (FOT). The converged
fragment spaces obtained in the expansive step may then
be used to set up the so-called pair-fragment spaces with
AOSs

�k(0P,Lq) = O0P ∪ V0P ∪ OLQ ∪ VLQ, (13)

onwhich the pair-fragment amplitude equations are then
solved. Finally, the fragment energies can be consolidated
with the pair-fragment energies of successively increasing
inter-pair distance until the energy is converged, where
the pair-fragment energy is

�Epair,MP2
(
�k(0PLQ)

) =
∑
i∈P

∑
j∈Q

∑
AaBb∈V0P∪VLQ

EAaBb0iLj ,

(14)

where again the summation domain is the EOS of the
pair-fragment. In contrast to molecular DEC we have in
the abovemade no distinction between the virtual spaces
used in the AOS and EOS. The AOS does, however, con-
tain buffer orbitals in the form of occupied orbitals used
merely to converge the energy inside the EOS.

The partitioning used to arrive at the sets P can of
course be varied, all the way from no partitioning (P =
O0) to full partitioning (Pi = ϕi). In the latter case,
this closely resembles what is known as the Pulay–Sæbø
approach [7,66], where every unique combination of
occupied orbitals are referred to as pairs. The fragmen-
tation, which has later been generalised by Werner and
coworkers [25,67], has been extended to periodic sys-
tems in the Cryscor program [42,51,57,68–71]. In this
approach, theDEC fragment is referred to as a strong pair,
while the pair fragments are classified into close, weak
or distant pairs depending on the inter-orbital distance
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between the constituent occupied orbitals. In the context
of Equation (7), these subspaces can be expressed as

�k(0iLj) = ϕ0i ∪ V0i ∪ ϕLj ∪ VLj,∀L ∈ Z3, (15)

and the energy of such a subspace is

�EMP2(�k(0iJj)) =
∑

AaBb∈V0i∪VJj

EAaBb0iJj . (16)

The pair-classification scheme is well suited for a multi-
level approach, where the pairs can be treated within var-
ious approximations, ranging from exact MP2 for strong
and close pairs, tomultipole expansion forweak pairs and
Lennard–Jones extrapolation for distant pairs. Its imple-
mentation in Cryscor is currently capable of running
MP2-calculations on systems with more than 100 atoms
per cell. [49]

With the inclusion of the occupied buffer space in the
vicinity of a given fragment (or strong pair), it is tempting
to include the corresponding amplitudes in the energy
calculation since they are likely already close to conver-
gence. This can be done by extending each fragment (or
strong pair) space Pi = ϕi with all pair-fragment spaces
where one of the occupied orbitals pertain to the given
fragment, forming the subspace

�k(0i) = ϕ0i ∪ O0i ∪ V0i, (17)

and computing the energy

�EMP2
(
�k(0i)

) =
∑
Jj∈O0i

∑
AaBb∈V0i

EAaBb0iJj . (18)

This fragmentation corresponds to the periodic cluster-
in-molecule (CIM) method [43], where the constituent
subspaces are referred to as clusters. In CIM, the spaces
are determined by including all orbitals up to a given
distance, typically fixed at 5.5 Å [43].

To summarise, the DEC and Pulay–Sæbø fragmenta-
tion schemes become identical in the case where each
DEC-fragment is comprised of one single occupied
orbital, while the CIM fragmentation differs from the
two others in the sense that the pair-contributions are
always included in each cluster. An illustrative compar-
ison of the three fragmentation schemes is presented in
Figure 1. While the smoothness of the PES in the DEC
approach can in principle be controlled by the FOT, dis-
continuities in the Pulay–Sæbø or CIM scheme are con-
ditioned on the default or user-defined domains being
sufficiently large. As with the incremental scheme DEC
offers a systematic path towards the exact correlation
energy for solids, yet in smaller increments and appli-
cable only to insulators [72,73]. All three fragmentation

schemes may serve as suitable starting points for embed-
ding approaches, where higher-level correlationmethods
designed for molecules can be used to improve upon the
results [74–76].

It thus turns out that by not fully contracting the
energy, but rather solving for the amplitudes within the
local subspace and thereafter storing the elements EAaBb0iJj
in addition to the positions of the orbitals, the energy can
be retrospectively recast as a Pulay–Sæbø-like, CIM-like
orDEC-like result. Furthermore, by computing a range of
such energies for various local truncations of the occu-
pied and virtual subspaces, it becomes possible to gain
insight into how and where discontinuities emerge in the
PES depending on the cutoff parameters. We have imple-
mented this functionality in the current XDEC-code, but
stress that this procedure does not equate to Cryscor or
CIM, since it lacks the many other approximative tech-
niques and orbital space representations that are used in
these implementations.

3. Implementation

The implementation of XDEC presented in this paper
shall be referred to as XDEC-RI (extended DEC with a
resolution of the identity approximation for the ERIs) in
order to distinguish it fromour previous implementation,
XDEC, since there are fundamental differences between
the two.

As with our XDEC implementation [44], the Wan-
nier functions in XDEC-RI are obtained from Crys-
tal [41,71] and the AO integrals from Libint [77]. A
notable change is the fact that the ERIs are now fitted to a
periodic basis using an attenuated Coulomb metric [50].
A global fitting at the onset of the calculation saves com-
putational time, since the ERIs can be easily computed
on demand and reused in the expansive steps of the frag-
ment optimisation. Furthermore, all integrals and orbital
spaces now fully incorporate translational symmetry.

The size of the local subspace is controlled as follows.
Each WF is assigned a position according to its centre.
The occupied orbitals may thereafter be subdivided into
fragments depending on their positions or they may be
kept in separate fragments depending on the user’s pref-
erence. A fragment centre is typically chosen to be the
centre of the first orbital in each fragment. The local sub-
space pertaining to the fragment is then chosen to consist
of all occupied and virtual orbitals inside given radii docc
and dvirt.

In our previous implementation of the XDEC
algorithm [44], we treated fragments and pair-fragments
as finite clusters. Although this, in principle, would allow
for the exploitation of highly optimised molecular algo-
rithms, we here report an implementation that maintains
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Figure 1. Illustration of the various periodic fragmentation schemes under consideration. Virtual and occupied orbitals inside the local
subspaces are coloured red and blue, respectively. CIM differs from the other two in the sense that the energy contributions from ampli-
tudes where i and j are not the same is included in the central cluster of i, here indicated by varying opacity in the occupied orbitals. (a)
A pair in the Pulay–Sæbø fragmentation. (b) A cluster in CIM. (c) A fragment in DEC. (d) A pair fragment in DEC.

full translational symmetry throughout the calculation.
This allows us to circumvent the main bottleneck of
the XDEC algorithm, namely the repeated evaluation
of ERIs, by reusing integrals in the fragment and pair-
fragment calculations. The main disadvantage of this
approach is that the resulting algorithm is no longer
embarrassingly parallel due to the increased amount of
communication between computer nodes.

To support full translational symmetry we have imple-
mented a Python class named TMAT (Toeplitz Matrix),
which is specifically designed to facilitate linear-algebra
operations on bi-infinite block-Toeplitz and block-
Circulant matrices [78] (definitions are given below).

Using local Gaussian basis sets from quantum chem-
istry, translational symmetry manifests itself in

equivalence among blocks of matrix elements of trans-
lationally invariant operators. A typical example is the
infinite overlap matrix, whose elements obey

SM,N
μν = 〈Mμ|Nν〉 = SM+L,N+L

μν . (19)

Matrices with this block structure are called bi-infinite
block Toeplitz (IBT) matrices. Using i, j ∈ Z to denote
row and column block indices, an IBT matrix is defined
by

Aij = Aj−i := Am. (20)
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The matrix product of two IBT matrices A and B is itself
an IBT matrix, since

(AB)(i+n),(j+n) =
∞∑

k=−∞
A(k−n)−iBj−(k−n) = (AB)ij,

(21)

and can thus be compactly expressed as

(AB)mIBT =
∞∑

k=−∞
Ak · Bm−k. (22)

If we assign to A a bandwidth N such that

Am = 0 for |m| > N (23)

we can define a discrete Fourier transformation

F {A}m =
N∑

n=−N
e−i( 2πM )mnAn := Ãm, (24)

and its inverse

F−1{Ã}n = 1
M

N∑
m=−N

e−i( 2πM )mnÃm = An, (25)

whereM = 2N + 1. The discrete Fourier transformation
followed by its inverse introduces a type of periodicity in
the matrices that satisfy the Born–von Karman bound-
ary condition [28], as apparent when considering blocks
outside the bandwidth:

AM+n =
N∑

n′=−N

An′
(

1
M

N∑
m=−N

ei2π
m
M (M+n−n′)

)
= An.

(26)

In order to account for this behaviour, it makes sense to
define a non-standard circulant operator

i � N := (i + N) mod (2N + 1) − N, (27)

where mod implies the remainder of integer division,
producing the following infinite series (in positive incre-
ments of 1):

. . . , N,−N, . . . , 0, . . . , N, −N, . . . ,
(28)

such that the transformation to and from reciprocal space
can be expressed

An =
N∑

n′=−N

An′ ( 1
M

N∑
m=−N

ei2π
m
M (n−n′)

)
δn�N,n′

, (29)

where we explicitly have pointed out the circulant nature
of the series expansion of the Kronecker delta by includ-
ing the circulant operator. A matrix subject to these con-
ditions can be referred to as an infinite block-circulant

(IBC) matrix, defined by

Aij = A(j−i)�N := An�N . (30)

We now consider for given n the inverse Fourier trans-
form of an element-wisemultiplication of two IBTmatri-
ces Ã and B̃ in reciprocal space:

F−1(F (A) ∗ F (B))n = 1
M

N∑
m=−N

ei
2π
M mnÃmB̃m. (31)

Expanding Ã and B̃ in terms of their blocks in direct
space,

F−1(F (A) ∗ F (B))n

=
N∑

n1=−N

N∑
n2=−N

×
(

1
M

N∑
m=−N

ei
2π
M m(n−n1−n2)

)
An1Bn2 , (32)

which by the circulant Kronecker delta can be reduced to
the IBC product

F−1(F (A) ∗ F (B))n =
N∑

n1=−N
An1Bn−n1�N

= (AB)nIBC. (33)

A comparison of Equations (33) and (22) reveals the
relation

(AB)nIBT = (AB)nIBC

−
k≤|n|∑
k=1

A−sgn(n)(N−k+1)Bn−sgn(n)(N+k), (34)

where the superscript IBT indicates the result from
Equation ((22)), thus showing that these products can be
made equivalent in any given bandwidth by padding the
outer layers in thematriceswith zeros so that the last term
in the above is zero.

Equation (33) is basically the familiar convolution
theorem. It provides key insight into the reciprocal
space treatment of infinite systems. In conjunction with
Equation ((34)), it shows that any factorisation in recip-
rocal space carries over to direct space in a well-defined
manner, paving the way for a straightforward imple-
mentation via reciprocal space of widely used linear-
algebra techniques such as singular value decomposition,
Cholesky factorisation, or diagonalisation.

Furthermore, with a periodic definition of the matrix
product there is no need for explicit inclusion of the
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8 A. S. HANSEN ET AL.

lattice-summations in the notation, as they simply follow
from the definition. Most of the familiar tensor notation
in quantum chemistry thus smoothly carries over to the
periodic domain, making the process of extendingmeth-
ods from finite to extended systems conceptually simpler.
By implementing the IBT and IBC matrix structures as
a class in Python, the process of writing a periodic code
much more closely resembles what is typically done for
the molecular case, and the cumbersome process of deal-
ing with summations over lattice vectors is conveniently
dealt with automatically in the background. Efficiency
is ensured by using the Fast Fourier Transform (FFT)
algorithm [79] and level 3 BLAS routines [80], exploit-
ing multi-threaded and architecture-optimised libraries.
This computational efficiency, in conjunction with the
conditions provided by Equation ((33)), is extensively
used in our code.

The calculation of ERIs constitutes the main bot-
tleneck in the XDEC implementation, which requires
re-calculation of integrals for each fragment and pair-
fragment optimisation, including re-calculation in each
optimisation cycle. While embarrassingly parallel [22],
this approach is too costly to be applicable on small and
medium-sized commodity computer clusters. As men-
tioned above, we here exploit full translational symmetry
to enable the reuse of ERIs across fragments and pair-
fragments. Still, the calculation of the ERIs for the MP2
approximation formally scales as N5 with N being the
number of atomic orbitals in the supercell. To accelerate
the ERI generation and to reduce the memory footprint
of the algorithm, we use a periodic adaptation of the
resolution of the identity (RI) approximation [81–91].

In a suitable auxiliary basis {ϕNK}, the product of two
Wannier orbitals ϕ0iAa can be approximated as a linear
combination [42]:

|0iAa) ≈
∑
NK

|NK)dNK,0iAa := |0̃iAa). (35)

The optimal fitting coefficients d are obtained by min-
imising the residual norm in any positive, semidefinite
metric [86],

(0iAa − 0̃iAa|0iAa − 0̃iAa) := (�0iAa|�0iAa), (36)

upon which the residual is orthogonal to the fitting basis,
so that

(NK|�0iAa) = 0. (37)

The latter expression yields a set of fitting equations for
d:

(NK|0iAa) =
∑
MJ

(NK|MJ)dMJ,0iAa. (38)

If we define the infinite block-Toeplitz matrices O and
V with elements O−N

K,0iAa = (NK|0iAa) and VM−N
KJ :=

(NK|MJ), the above relationmay be cast intomatrix form
with a straightforward solution for the coefficients

d = V−1O, (39)

provided the matrix V is nonsingular – i.e. – provided
the auxiliary basis functions constitute a linearly inde-
pendent set in the chosen metric.

A natural choice for metric in Equation (37) is the
Coulomb operator, as this is the metric of the ERIs
themselves. The Coulomb operator, however, decays
slowly with distance (R−1), making it computation-
ally expensive for infinite periodic systems. Noting that
the Coulomb operator is obtained from an attenuated
Coulomb operator expressed in terms of the complemen-
tary error function [92],

1
r

= lim
ω→0

erfc(ωr)
r

, (40)

we may enforce more rapid decay by selecting a small
positive value for the attenuation parameterω. The atten-
uated Coulomb operator maintains characteristics simi-
lar to the true Coulomb operator for small ω, while for
increasingly large values it approaches the overlap met-
ric. As noted by several authors in the past [48,50,51],
this makes it an interesting candidate for fitting metric
in periodic systems. We shall indicate the usage of this
operator with a tilde in the affected matrices. The fit-
ting equations in the attenuated Coulomb metric thus
become

Ṽd̃ = Õ. (41)

Although the matrices involved are in principle infinite,
they exhibit to a certain degree a regular blockwise decay
in the elements with respect to the distance to the ref-
erence cell which can be tuned by ω. The matrices can
therefore be computed up to a given truncation threshold
by incrementally including chunks of blocks in spheri-
cal shells extending outwards from the reference cell (see
Algorithms 1 and 2). We shall use this approach in the
construction of the matrices required. The expression for
the three-index tensor elements can be reorganised as

(LJ |̃0iAa) =
∑

MμNν

(LJ |̃Mμ(M + N)ν)c−M
μi c−(M+N)+A

νa

:=
∑
Nν

Ō−L
JiNνc

−N+A
νa , (42)

where cdenotes the expansion coefficients of theWannier
orbitals in the AO basis, and

Ō−L
JiNν :=

∑
Mμ

(LJ |̃MμNν)c−M
μi , (43)

is an intermediate contraction tensor for the occupied
orbitals.
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There are two attractive features of this fitting scheme
that makes it especially well suited for XDEC. First,
by organising the elements in the intermediate tensor
Ō in the appropriate way, the contraction of any sub-
set of the virtual orbitals may be done efficiently by
means of a matrix product. This is useful for incremen-
tally including larger virtual spaces. Second, the circulant
product makes it possible to simultaneously compute for
all J

(
0iAa|Jj(J + B)b

) ≈
(
0̃iAa| ˜Jj(J + B)b

)
= (d̃

T
0,AVd̃0,B)

J
iajb, (44)

bymeans of the IBCmatrix product in Equation (33). The
final contractions are with the full Coulomb matrix, but
since the attenuated fitting coefficients are only non-zero
on a finite extent of the infinite lattice, we only have to
compute the blocks in V that are required to make the
circulant product consistent with the Toeplitz product
inside the supercell. For simultaneous excitations inside
and outside the supercell (J outside) we can compute the
required extra layers in V on demand.

While the periodic auxiliary basis is infinite, two addi-
tional screening parameters ξ0 and ξ1 ensure a finite
bandwidth of the RI tensors, as outlined in Algorithms 1
and 2. The screening parameters are in effect a trun-
cation threshold on the level of blocks for the three-
index AO integrals and the contracted three-index ten-
sor Ō. Assuming monotonic decay, the screening has
been implemented such that the maximum element
of all blocks outside a spherical volume centred on
the reference cell is below the threshold. This allows
the matrices to be incrementally constructed outwards
from the reference cell until the requested precision is
reached.We finally remark that this fitting approach is not
robust [93]. In order to make it robust, one would have
to compute the corresponding O tensors in Coulomb-
metric, defeating the purpose of using attenuation in
the first place. Our procedure is specifically designed
with flexible orbitals spaces in mind and will likely
benefit from incorporating aspects from other similar
approaches in the future [53,94].

4. Computational details

The systems studied in this work are chosen to be
sufficiently complex for a meaningful analysis, while
small enough to make calculations relatively inexpensive
and keeping the analysis simple. Similarly, focusing on
sources of PES discontinuities rather than onhighly accu-
rate results, we use basis sets relatively far from the basis
set limit.

Algorithm 1 AO screening procedure implemented in
the XDEC-RI-LMP2 code

1: Compile a list � containing chunks of coordi-
nate vectors {M}R grouped together into concentric
spherical shells in order of increasing radial distance
||RM|| to the reference cell.

2: for {M}R in � do
3: Compute all (0J|0μMν)’s for the shell
4: if all | (0J|0μMν) |max ≤ ξ0 then
5: Break
6: end if
7: Append allMs to the screened domain 


8: end for
9: Set an initial reasonably large cutoff Rcut
10: for M in 
 do
11: Compute all cells (NJ|0μMν) within RN ≤ Rcut
12: if any

(
KboundaryJ|0μMν

) ≥ ξ0, where
0.95Rcut < RKboundary ≤ Rcut then

13: Halt execution, warn/advise user to increase
domains.

14: else
15: Append all blockswhere (NJ|0μMν) ≥ ξ0 to

screening domain 
M
16: Let Rcut = 1.1RNouter where RNouter corre-

sponds to the outermost cell in the appended blocks.
17: end if
18: end for

Algorithm 2 MO fitting screening procedure imple-
mented in the XDEC-RI-LMP2 code
1: Set Rtolerance = 10−12

2: Construct a list � of cell-indices L in order of
increasing distance ||RL|| to the reference cell.

3: for L in � do
4: Compute all ŌL,N

Jνp

5: if RL-RLprev ≥ Rtolerance and |ŌL,N
Jνp | ≤ ξ1 then

6: Break
7: end if
8: Store columns (Nν) and column indices of

ŌLJp,Nν with max absolute value above ξ1 for the
subsequent contraction of virtual coefficients.

9: end for

Validation of the implementation, including selection
of the Coulomb attenuation parameter for the RI approx-
imation, is performed using the same three-dimensional
(3D) and one-dimensional (1D) systems of neon atoms,
and the 1D system of ethylene molecules as in Ref. [44].
In addition, we use a 1D system with a unit cell contain-
ing two water molecules arranged as shown in Figure 2.
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10 A. S. HANSEN ET AL.

Figure 2. The 2H2O system, where two water molecules per cell are repeated in a 1D lattice.

We use an experimentally determined internal geome-
try of water [95]. For the fixed geometry calculations, we
use a lattice parameter of approximately 4.8035AA (see
supplementary information for details). In the PES calcu-
lations, we vary the lattice parameter while the O–O–O
angles remain fixed. The water system contains more
significant inter-molecular correlation effects than ethy-
lene, and is thus more interesting with regard to the
exploration of PESs.

Convergence of the MP2 correlation energy with
respect to truncation of the local subspaces is investi-
gated for the water and ethylene systems alongwith water
molecules adsorbed on a LiH (001) surface in the slab
approximation. The geometry of the water adsorption
system is taken from Tsatsoulis et al. [96], with the unit
cell containing eight LiH and one water molecule, as
shown in Figure 3. This system will be referred to as
LiH-H2O.

Finally, the water and LiH-H2O systems are used to
investigate the continuity of PESs. For the LiH-H2O sys-
tem, we start from the equilibrium geometry reported
by Tsatsoulis et al. [96] and vary the distance between
Li and O to generate a one-dimensional cut through
the PES. This system has a lattice parameter of approx-
imately 5.78Å, thus increasing the interaction between
neighbouring water molecules at the surface as com-
pared to systems with lower density. Detailed geometric
data for all systems can be found in the supplementary
information.

We use the Crystal program [71] to compute the HF
reference determinant and to perform the Wannieriza-
tion and Foster-Boys localisation [41] of the occupied
and virtual orbitals separately. In order to converge the
HF reference determinant of LiH-H2O, we use a Fock
matrix mixing of 35% in place of the default value (30%
[97]) used for the other systems. The Brillouin zone
shrinking factor determining the density in reciprocal
space is set to 3 for the LiH-H2O system. This is not
as close to the thermodynamic limit as in Tsatsoulis
et al. [96], but sufficient for our purpose. The remaining
shrinking factors were 9 for neon and 8 for 2H2O and
ethylene.

The 6-31G basis set [98] obtained from the basis set
exchange database [99,100] is used for the 1D ethylene
system. For the hydrogen atoms in the 2H2O and LiH-
H2O systems, we use a valence triple-zeta basis set with

polarisation functions [101], and for Li we use a 6-1G
[102] basis set. The 6-31G basis set for oxygen [103] is
used both in 2H2O and LiH-H2O.

The cc-pVDZ RI fitting basis by Weigend et al. [91]
is used for ethylene and LiH-H2O, while the cc-pVTZ
RI fitting basis [91] is used for neon and 2H2O, both for
XDEC and Cryscor calculations. In order to avoid lin-
ear dependence, exponents less than 0.4 are removed for
LiH-H2O and less than 0.1 for the remaining systems.

We use the frozen-core approximation in the corre-
lation treatment for all cases except 3D neon. The MP2
equations are solved iteratively using fixed point itera-
tions until the residual norm is below a numerical thresh-
old set to 10−10, except for the 2H2O system where it is
determined dynamically from the FOT as 10−3 × FOT.
In the expansive step of the fragment optimisation, we
include by default a minimum of 6 new orbitals in the
local subspace in each iteration. For 3D neon, however,
we include a minimum of 10 new orbitals in order to be
consistent with Ref. [44].

5. Results and discussion

The XDEC-RI implementation differs fundamentally
from our previous work [44], so we first validate
the implementation by comparing fragment and pair-
fragmentMP2 energies for 3D neon, ethylene, and 2H2O
with results obtained with Cryscor [42,51,57,68–71]
and the original XDEC implementation [44]. In all
cases, the occupied space is completely fragmented, i.e.
each occupied orbital defines a fragment. The XDEC-
RI truncation parameters are set to ξ0 = 10−14 and
ξ1 = 10−14, and the attenuation is ω = 0.1 Bohr−1. For
3D neon, we use the XDEC-RI approach for the vir-
tual space, converging each fragment energy to FOT =
10−4 Hartree, while a CIM-like fragmentation is used for
ethylene and 2H2O, where for each occupied orbital the
amplitudes are solved within docc = dvirt = 20 Bohr and
thereafter cast into pairwise energy contributions. The
results, depicted as functions of the pair separation up to
20 Bohr in Figure 4, show excellent agreement across the
implementations.

To gain more insight into the impact of the atten-
uated RI approximation, we present total MP2 ener-
gies for 1D neon in Table 1 for various values of the
attenuation parameter ω, using the CIM result from
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Figure 3. Geometrical setup of the LiH-H2O adsorption system. A sideview is shown on top, while a top-down view is shown below. The
equilibrium geometry was taken from the work of Tsatsoulis et al. [96]

Ref. [43] as reference. With a cc-pVDZ fitting basis [91],
XDEC-parameters of ξ0 = 10−12, ξ1 = 10−12, FOT =
10−6 Hartree and orbital increment 10 [44], we find
fairly good results already at ω = 100.0 Bohr−1. This is
likely due to the fact that most of the significant cor-
relation effects in this system occur internally on the
atoms. The results are numerically the same as CIM for
ω = 0.5 Bohr−1, and we observe no significant change
below this value for this system.

Ideally, we would like the effect of the attenuation to
be minimal in comparison to the ones caused by the

distance cutoffs, so a closer scrutiny of the attenuation
dependence in the energy is warranted. We therefore
compute the CIM-like MP2 energies for ethylene and
3D neon for a range of ω-values, as shown in Figure 5.
Again, we obtain validating results from Cryscor using
the same auxiliary basis with a Coulomb-metric fit,
PAOs for the virtual orbital space and a local excita-
tion domain for all strong pairs which includes all vir-
tual orbitals associated with the 25 nearest neighbour-
ing atoms for ethylene, and 10 nearest neighbours for
neon.
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Figure 4. Validation of pair-fragment energies for (top to bot-
tom) 3Dneon, ethylene and2H2Oby comparison to Cryscor and the
original XDEC implementation. The fragment energy for 3D neon
is not included.

With a cutoff for the local subspace dvirt = 15.0 Bohr
for ethylene and dvirt = 6.0 Bohr for 3D neon, and a
range of docc-values, we find that both cases show the
energy approaching in a smooth fashion the Coulomb-
metric fit as indicated by the Cryscor results when ω

is decreased. The dependence on the attenuation param-
eter is similar to that reported for molecules in the
past [50,104], with a stable region for ω ≤ 0.3 Bohr−1. In
the region from 0.3 Bohr−1 to 10.0 Bohr−1, the energy
changes smoothly before it stabilises not too far from
the values obtained close to the Coulomb-metric fit.

Table 1. Total MP2 energy for 1D neon compared to CIM results
fromWang et al. [43].

Attenuation EMP2 / Hartree

XDEC-RI 100.0 −0.114314
10.0 −0.114319
1.0 −0.114351
0.5 −0.114363
0.1 −0.114363
0.07 −0.114363
0.05 −0.114363

CIM – −0.114363

Variations in the cohesion energy for ethylene follow-
ing changes in attenuation in the region below ω =
0.3 Bohr−1 is found to be less than 1% relative to
796.5 μHa, obtained at ω = 0.05 Bohr−1. In general, the
changes in energy due to attenuation below 0.3 Bohr−1

are fairly small in comparison to the changes in the cutoff
parameter docc, so we conclude that wemay safely choose
ω ≤ 0.3 Bohr−1 in our further examination.

The features of the curves in Figure 5 correspond-
ing to the various distance cutoffs appear more or less
internally unchanged, while they are simply shifted in
energy as the distance cutoff changes. This indicates that
the correlation energy distributes similarly across the
pairs independent of the attenuation parameter, but it
does not decisively tell us whether or not the attenua-
tion could cause artefacts in the PES beyond the ones
we expect from the fragmentation. Since the position
of each orbital remains fixed after the localisation, we
expect abrupt changes in energy to occur at the same
distance cutoffs regardless of the various other parame-
ters used in the approximation. Thus, in order to rule out
such attenuation-related effects in the energy, we com-
pute forω = 0.1 Bohr−1 andω = 0.2 Bohr−1, both safely
within the limit of ω = 0.3 Bohr−1, the CIM-like ener-
gies for 2H2O for a range of cutoffs. This is a slightly
more correlated system, since it features hydrogen bonds
both within and between the cells. In the results, pre-
sented in Figure 6, we find our first indications of abrupt

Figure 5. Dependence of the LMP2 energy on the attenuation parameterω for ethylene (left) and 3D neon (right). For ethylene, we had
dvirt = 15.0 Bohr, while for 3D neon we had dvirt = 6.0 Bohr.
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Figure 6. The XDEC-RIMP2 energy of 2H2O for various distance cutoffs. In the upper panel, docc = 13 Bohr and in the lower panel dvirt =
13 Bohr.

energetic changes, represented by an irregular conver-
gence pattern featuring cliffs and plateaus as the cutoff
parameters are increased in both the virtual and occu-
pied direction. The cliffs in this system are an order of
magnitude larger in the virtual direction, on the order of
10−4 Hartree, as compared to 10−5 Hartree in the occu-
pied direction. Comparing the curves for each ω, we find
that discontinuities along both docc and dvirt remain sta-
tionary when the attenuation parameter is changed. This
suggests that any discontinuities we see here are indepen-
dent of the attenuation parameter for ω ≤ 0.3 Bohr−1,
and are primarily caused by discrete changes in the local
subspace.

A more complete picture of the convergence pattern
can be revealed by varying docc and dvirt simultaneously.
In order to illustrate the theoretical considerations we
have made in regards to discontinuities, we therefore use
our code to compute energies for a range of distance cut-
off parameters for ethylene and 2H2O, shown in Figure 7.
In this way, the local MP2 energy can be shown as a
surface, approaching the exact result as docc and dvirt
becomes large. Both systems again show the expected
non-smooth yet monotonically decreasing energy with

respect to the domain sizes in the form of cliffs and
plateaus across the surface. The abrupt changes occur
at the same distances for one of the cutoff parameters
seemingly independently of the other. This feature sug-
gests that it is possible to converge the energy first with
regards to one cutoff, thereafter the other, in contrast to
repeated successive convergence of these two parameters
conventionally used in DEC methods [19,44].

We have indicated the mean number of occupied or
virtual orbitals per local subspace that are included in
the calculation for some chosen cutoffs, in order to high-
light that the sharp cliffs do not necessarily correspond
to distances at which a large number of orbitals enter the
calculation. Rather, it shows there are certain orbitals that
yield more significant contributions to the local correla-
tion energy, whether it be through direct contributions
or indirect buffer effects. These are scattered throughout
the neighbourhood of the reference cell, not necessarily
ordered by distance.

Large contributions to the energy from close pairs
are clearly present in both cases, while the contributions
in the virtual direction tend to be more evenly spread
out over larger intervals. This latter effect can likely be
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Figure 7. Convergenceof theCIM-like energyof theethylene sys-
tem (top) and a 2H2O systemwith respect to occupied and virtual
cutoff distances. The numbered lines on the surface indicate the
mean number of virtual and occupied orbitals per occupied that
are included per local subspace at a given truncation. Note that
there are energies from several local subspaces superimposed in
these figures, thus the number of orbitals may be fractional. (a)
Ethylene. (b) 2H2O.

explained by the centres of the virtual orbitals being
more arbitrarily dispersed in comparison to the occupied
orbitals who will likely be positioned close to atoms or
bonding sites in the lattice.Within the DEC formalism, it
is customary to assign orbitals to atomic sites by means
of for instance Mulliken or Löwdin charges [18,21,44].
If we instead assign the virtual orbitals to their closest
atomic centres and include all virtual orbitals for all atoms
inside dvirt in the local subspace, we obtain for ethylene
the results shown in Figure 8 in support of this explana-
tion. Here, we see clearly that the energy for the atomic
association features more distinct plateaus and cliffs in

Figure 8. The convergence of the virtual space for ethylene; a
comparison of a setup where orbitals are associated with atoms
and the default orbital-centred approach. We have also included
results where the occupied spacewas partitioned into two groups
based on their nearest neighbour rather than into individual
orbitals. The occupied cutoff is fixed at docc = 15.0 Bohr. As a
reference, Cryscor results for OSV tolerance 10−5 are shown. The
average size of the OSV orbital domains is 26.

the virtual direction as compared to the one where the
orbital centres are used directly. This effect persists inde-
pendently of whether we count distance or number of
virtual orbitals along the x-axis, which further reinforces
the point that the significance of each orbital with respect
to the correlation energy is not simply a function of the
distance.

We see similar irregularities emerge if we allow for
more than one orbital per fragment or cluster, as shown
for ethylene and 2H2O in Figures 8 and 9, respectively.
For ethylene, we here compare the outcome of a CIM-like
MP2 calculation where the occupied space has been sub-
divided into two clusters based on distance as outlined
in the implementational details, to the completely frag-
mented calculation. Similarly, for water, we compare two
clusters to the complete fragmentation. In both cases,
we find slightly sharper cliffs and flatter plateaus for the
clustered approach. The effect is independent of whether
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Figure 9. The convergence of the virtual space for 2H2O; a com-
parison between a setup where the occupied space is fully frag-
mented into individual orbitals and another setup where they are
partitioned into 4 groups based on their nearest neighbours. The
occupied cutoff is fixed at docc = 15.0 Bohr. As a reference, Cryscor
results for OSV tolerance 10−5 are shown.

distance or number of virtual orbitals is used for the x-
axis. When spatially non-coincidental occupied orbitals
are grouped into the same fragment or cluster, a purely
distance-based ordering of the virtual space can result
in a more irregular convergence pattern than that of a
totally fragmented occupied space, likely due to the fact
that being close does not necessarily guarantee strong
coupling to the same virtual subspace.

These results show that the discontinuities are clearly
dependent on the fragmentation, where both the clus-
tering of occupied orbitals and the common practice of
associating the virtual orbitals to atoms may increase the
likelihood of false convergence of the MP2 energy with
respect to dvirt.

We then focus on geometry dependence in the PES
by considering the adsorption of a water molecule on
a surface of LiH, as shown in Figure 3. We keep the
internal geometry of H2O fixed, while its distance per-
pendicular to the surface is varied between −1 to 2 Bohr
relative to its equilibrium. The equilibrium geometry is
taken from Ref. [96], where the water molecule has been
relaxed at the LiH surface at the KS-DFT level with the

Figure 10. The MP2 energy as a function of the local subspace
definition for a displacement of H2O from equilibrium perpendic-
ular to the surface of�zH2O = −1.115 Bohr (above) and�zH2O =
1.871 Bohr (below). As the water molecule approach the sur-
face, the energy decreases and the sharp discontinuities becomes
smeared out – or eroded – resulting in a more smooth conver-
gence pattern.

Perdew–Burke–Ernzerhof (PBE) XC functional [105].
We let ω = 0.15 Bohr−1.

As expected, varying the geometry results in signif-
icant changes in the convergence pattern, as shown in
Figure 10. The position of the orbitals in the LiH sur-
face moves as the water molecule approaches the surface,
resulting in a type of erosion of the sharp cliffs and
plateaus. Also, the MP2 energy is generally decreased
when water comes close as the interactions with the sur-
face intensifies. In Figure 11, we show the effect of various
choices for distance truncations of the local subspace.

Discontinuities are visible even for the largest sub-
space, and upon inspection, they are found to be on the
order of 10−4 Hartree. More discontinuities emerge for
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Figure 11. MP2 energy (left) and MP2 + reference energy (right) for the LiH-H2O surface. The x-axis shows the displacement of the
watermolecule relative to the relaxed geometry perpendicular to the surface. The distance truncation of the local subspace is in this case
dcut = docc = dvirt.

the smaller domains. We can observe at least two dis-
continuities at approximately −0.1 and 0.3 Bohr which
persists across the various cutoffs. The one at−0.1 Bohr is
positioned awkwardly close to the minimum of the total
energy, highlighting exactly how these kinds of effects can
influence the results. In this case, the minimum of the
potential curve is shifted slightly towards negative�zH2O
due to the presence of a discontinuity.

The MP2 adsorption energy is computed using a sim-
ilar definition as in Refs [96], where only inter H2O-
surface pairs up to our maximum cutoff threshold are
included in the energy. In terms of the energy expression
in Equation (9), this corresponds to

Eads,MP2 = 2
∑
i∈�0

∑
j∈O\�0

∑
ab∈V

Eabij , (45)

where �0 signifies the set of occupied orbitals situated at
the H2O molecule in the reference cell.

From the convergence pattern of the MP2 adsorp-
tion energy at equilibrium (�zH2O = 0 Bohr), shown in
Figure 12, we can clearly see a step-like pattern for pairs
at distances below 8 Bohr where significant contributions
to the energy are present. These significant contributions
can be attributed to surface-molecule pairs close to the
water molecule, as to be expected with localised orbitals.
An unexpected effect is, however, present in the virtual
cutoff, where sharp cliffs are present beyond distances
dvirt ≥ 8 Bohr.

The effect on the convergence pattern from the mov-
ing water molecule is shown in Figure 13. Also here we
can identify the step-like pattern for close pairs, and the
more distant contributions from the virtual space. The
movement of the water molecule reveals a distinction
between these effects; while the discontinuities in the
occupied direction move along with the geometry, the
virtual discontinuities appear to remain stationary. The

Figure 12. MP2 adsorption energy in Hartrees ( LiH-H2O surface-
molecule pairs within cutoff distances specified) as a function
of the distance truncation parameters at equilibrium (�zH2O =
0 Bohr).

distance at which they occur is just below the lattice
parameter (10.91 Bohr) and suggests that these contribu-
tions may be attributed to virtual orbitals at neighbour-
ing water molecules, or similarly virtual orbitals at the
corresponding Li- or H-atoms in neighbouring cells.

When compared to Figure 12, we find that these dis-
tant contributions from the virtual space persist also for
small occupied cutoffs, meaning that the distant virtual
orbitals are significant even when both occupied orbitals
are close to the origin. This could be an effect pertaining
to the LVO representation of the virtual space, but fur-
ther studies are required in order to determine whether
or not it would be resolved by replacing them with PAOs
or OSVs.

The DEC approach of converging the domains can in
principle be applied to any of the fragmentation schemes
under consideration. In order to demonstrate this, we
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Figure 13. MP2 adsorption energy in Hartrees (LiH-H2O surface
– molecule pairs within cutoff distances specified) as a function
of the distance truncation parameters in the occupied direction
when dvirt is at its maximum value (top) and similarly as a func-
tion of dvirt when docc is at its maximum value (bottom). The y axis
shows the vertical offset from equilibrium of the water molecule.

finally investigate the relationship between the magni-
tude of the discontinuities and the FOT in the 2H2O-
system by converging the CIM-like MP2 energy succes-
sively in the virtual and occupied directions as described
in Ref. [44]. We increase the spaces by a minimum of
6 orbitals per expansive step. As the lattice parameter is
altered, one H2O molecule is moved such that the bond
angles are preserved. The results are shown in Figure 14.
We finally find that the magnitude of the discontinuities
appears to be proportional to the FOT, which confirms
that the discontinuities indeed can be systematically sup-
pressed in this manner.

6. Concluding remarks

Discontinuities are inherently present in periodic PESs
produced with local correlation methods. The overall
source of these discontinuities is discrete changes in the
orbital spaces, and as long as the spaces are chosen suffi-
ciently large these problemsmay be insignificant. Exactly

Figure 14. Adaptive CIM approach for a chain of H2O (two
molecules per cell). The figure demonstrates that discontinuities
can be systematically suppressed for a CIM-based fragmentation
scheme by converging the energy of each cluster analogous to
what is done in XDEC.

what constitutes sufficiently large is, however, system
dependent and difficult to determine in a black boxman-
ner. The DEC approach of converging the energies of
each subspace can in principle provide control of the
magnitude of the discontinuities for most fragmentation
schemes, but the practical complications due to the irreg-
ular convergence behaviour represent a challenge. Ideally,
one would like every new set of orbitals that enters the
subspace to yield an energy contribution smaller than the
preceding ones. Our results confirm as expected that this
is not the situation for the purely distance-based selec-
tion of the WFs, but that in large enough increments the
overall behaviour is convergent.

The convergence behaviour is dependent on several
fragmentation-specific choices that are easy to control.
Notably, the risk of false convergence can be reduced
by choosing more fine-grained fragmentation and avoid
coincidental position definitions. Furthermore, the bal-
anced treatment of the virtual space of the Pulay–Sæbø
pairs and DEC pair fragments is natural to include in
periodic systems, for example by means of OSVs [57] or
a global fitting scheme, and may further reduce the risk
of discontinuities from the virtual cutoff.

In order to converge the local subspace, efficient han-
dling of the integrals is crucial. Such efficiency can be
achieved with a global fitting scheme as demonstrated
in this work. While the initial partial contraction of the
occupied space is computationally demanding, the sub-
sequent contraction of virtual spaces and calculation of
integrals is relatively cheap, and the intermediate con-
traction tensor contains all the required information to
obtain all ERIs for the crystal.
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