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Abstract: Understanding of vegetation dynamics is essential for addressing the 

potential threats of terrestrial ecosystem. In recent years, the vegetation coverage of 

the Yangtze River basin (YRB) has increased significantly, yet how about the spatio-

temporal variations and potential driving meteorological factors of carbon use 

efficiency (CUE) under the context of global warming are still not clear. In this study, 

MODIS-based public-domain data during 2000–2015 was used to analyze these 

aspects in the YRB, a large river basin with powerful ecological functions in China. 

Spatio-temporal variations of CUE in different sub-basins and land cover types were 

investigated and the correlations with potential driving meteorological factors were 

examined. Results of this study revealed that CUE in the YRB had strong spatio-

temporal variability and varied remarkably in different land cover types. For the 
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whole YRB, average CUE of vegetated land was 0.519, while the long-term change 

trend of CUE was obscure. Along the rising altitude, CUE generally showed an 

increasing trend until the altitude of 3900m and then followed by a decreasing trend. 

CUE of grasslands was generally higher than that of croplands, and then forest lands. 

The inter-annual variation of CUE in the YRB is likely to be driven by precipitation 

as a strong positive partial correlation between the inter-annual variability of CUE 

and precipitation was observed in most of sub-basins and land cover types in the 

YRB. The influence of temperature and relative humidity is also outstanding in 

certain regions and land cover types. Our findings are useful from the view point of 

carbon cycle and reasonable land cover management under the context of global 

warming. 

Keywords: Carbon use efficiency; Climate variability; MODIS; Altitude; Land cover 

type; Precipitation 

Introduction 

Terrestrial ecosystem is considered to be a major carbon sink in the global carbon 

cycle (Zhao and Running 2010). Gross primary production (GPP), Net primary 

production (NPP) and respiration are three basic components of carbon cycle. 

Among which, Gross primary production (GPP) represents the capacity of the plants 

in an ecosystem to capture energy and carbon. Net primary production (NPP), the 

reduction of GPP after autotrophic respiration, is the net carbon stored as new plant 

material in an ecosystem (Zhang et al. 2009). Carbon use efficiency (CUE), defined 

as the ratio of NPP to GPP, represents a convenient way to analyze the Carbon 

allocation at the stand level at ecosystem scale (Chambers et al. 2004). As an 

important ecological parameter in regional and global carbon cycle research, CUE 

not only reflects the ability of vegetation in transferring carbon from the atmosphere 

to the terrestrial biomass and the potential of carbon sequestration, but also 

determines the impact of respiration on vegetation productivity (Ryan et al. 1997; 

DeLucia et al. 2007; Manzoni et al. 2012). In terrestrial carbon cycle modeling, small 

changes of CUE can cause significant changes in carbon budget evaluation results. 

Examining the variability of CUE is thus important for climate change and CO2 

emissions studies (Chen et al. 2013). In the context of global warming, the response 

of terrestrial ecosystem to climate change is the key issue of the International 

Geosphere-Biosphere Program (IGBP) (Bradford and Crowther 2013; Chen et al. 

2018, 2019). Scientific understanding of the change characteristics of vegetation 

CUE and potential influencing factors is of great significance to accurately assess 

ecosystem status of carbon source or sink and predict regional carbon budget under 

global change and human disturbance. 

Vegetation dynamics of terrestrial ecosystem are influenced by many factors 

such as climatic change, land-use change, ecological engineering, and urbanization 

in different regions (Qu et al. 2018; Jiang et al. 2020). Study revealed that 

temperature has a positive influence on vegetation coverage in China (Yu and Hu 



 

2013), while the relationship between precipitation and vegetation growth varied 

depends on the wetness of the area (Xu et al. 2014). In recent years, researches on 

vegetation CUE under different environmental regimes and global change scenarios 

have received increasing attention (e.g., Metcalfe et al. 2010; Zhu 2013; Khalifa et al. 

2018). Geographically, Piao et al. (2010) pointed out that CUE increases with 

altitude. Climatically, Zhang et al. (2009) revealed that the CUE exhibited a 

decreasing trend along enhanced precipitation when it was less than 2300 mm year-

1 and a static trend when the annual precipitation was over 2300 mm. The CUE 

showed a decreasing trend along temperature when it was between -20°C and -10°C, 

and showed an increasing trend along rising temperature when it was between -10°C 

and 20°C. Zhang et al. (2014b) revealed a decreasing trend of CUE of global 

terrestrial ecosystem during 2000-2009, which was strongly controlled by 

temperature and precipitation. Different terrestrial ecosystems differ in their 

responses to external environment and CUE shows significant spatio-temporal 

variability (Kwon and Larsen, 2013; Zhang et al. 2014b). CUE varied with ecosystem 

types, being the highest in wetlands and lowest in grassland, and CUE decreased with 

latitude with the lowest CUE in tropics, and the highest CUE in higher latitude 

regions (Tang et al. 2019). Campioli et al. (2011) revealed that CUE of leaves and 

wood significantly correlated with environmental condition. In addition, soil 

nutrition and management may also have influences on CUE. For example, plants 

grown on the barren soil, and under low temperature and drought conditions, may 

have larger changes in CUE than plants grown under near-optimal conditions (van 

Iersel 2003). Forest managements such as irrigation, fertilization, and selective 

logging can also affect ecosystem CUE (e.g., Giardina et al. 2003). Due to the 

complexity of driving mechanism of CUE, investigation on the dynamics and 

potential influencing factors of CUE is quite necessary to achieve a better land cover 

management. 

In recent years, the measurement of carbon fluxes between the ecosystem and 

the atmosphere based on eddy covariance flux tower has been widely applied (e.g., 

Chen et al. 2018; Rambal et al. 2012). Although, the accuracy of flux tower 

observation is high, the limitation of the quantity and spatial distribution of flux 

tower hinders the analysis of carbon flux dynamics at regional or global scales 

(Khalifa et al. 2018). Fortunately, satellite remote sensing based public-domain data 

sources provide continuous spatial observation of environmental variables on a large 

scale (e.g., NDVI, biomass, soil moisture, etc.). Among which, the high spatio-

temporal resolution MODIS primary productivity product (MOD17) based on the 

TERRA polar orbiting Environment Satellite is the most popular one. The MOD17 is 

part of the NASA Earth Observation System (EOS) program and is the first satellite-

driven dataset to monitor vegetation productivity on global scale. The goal of the 

MOD17 MODIS project is to provide continuous estimates of GPP/NPP across 

Earth’s entire vegetated land surface (Heinsch et al. 2003). Outputs of MOD17 

GPP/NPP are very useful in natural resource and land management, global carbon 

cycle analysis, ecosystem function assessment and environmental change 

monitoring. With the MOD17 data, the variability of primary productivity as well as 



 

CUE of different land cover types and their association with climate conditions can 

be detected (e.g., Khalifa et al. 2018; Chen 2019).  

The Yangtze River Basin (YRB) located in 90°13′–122°19′E, 24°27′–35°54′N, is 

one of the most important large river basins in the world (Figure 1a). It covers an 

area of 180×104 km2, accounting for 18.75% of the land territory of China. Because 

of its rich natural resources, numerous tributaries and lakes, the Yangtze River feeds 

the south of China and forms an important modern economic Belt of some 3000 km 

from the East to the West. The YRB is a unique and complete natural ecosystem with 

powerful functions in water and soil conservation, biology breeding, oxygen release 

and carbon sequestration, and environmental purification. However, due to the 

effects of global climate change and rapid development of social economy, the 

ecological environment problems in the YRB have become increasingly prominent, 

such as the degradation of surface vegetation, the aggravation of soil erosion, the 

continuous environmental pollution and the reduction of biodiversity (e.g., Li et al. 

2001; Cui et al. 2008). "Eco-environment first" and "green development" are the 

latest national formulating strategies for the construction of the Yangtze River 

Economic Belt and the development of YRB (Du 2016). In recent years, the 

vegetation coverage of the YRB has increased significantly (e.g. Qu et al. 2018; Cui et 

al. 2019), yet how about the spatio-temporal variations and potential driving 

meteorological factors of carbon use efficiency (CUE) under the context of global 

warming are still not clear. 

This study attempts to examine the spatio-temporal patterns of CUE change in 

the YRB and how they are affected by the ongoing climate change. Specifically, the 

objectives of this study are: (1) to investigate the spatio-temporal variations of 

vegetation CUE in the YRB; (2) to examine the difference of CUE between different 

land cover types; and (3) to reveal the relative effects of major meteorological factors 

on the change of CUE in different regions and land cover types. The results of this 

study will contribute to better understand the dependence of the vegetation CUE on 

climates, as well as the carbon sink function of ecosystem in the YRB under the 

context of increasing levels of atmospheric CO2 concentrations and climate change. 

Also, the results are essential to the promotion of reasonable land cover management 

and ecological resources utilization in the YRB. 

1 Material and Methods 

1.1 Study area 

The Yangtze River is the largest river in China and the third longest river in the world. 

The river originates from the Tanggula Snow Mountains of the Qinghai-Tibet Plateau 

and flows about 6300 km eastwards to the East China Sea. The terrain of the basin 

is high in the west and low in the east, with a total drop of about 6000 m from the 

source of the river to the estuary. There are many types of landforms in the YRB, 

among which mountains, plateaus and hills account for 84.7%, plains account for 

11.3%, rivers, lakes and other waters account for 4% (Figure 1b). 



 

Climatically, the YRB belongs to the subtropical monsoon region of East Asia. 

According the observations applied in the study, the calculated mean annual 

temperature of the YRB is about 14.5°C and mean annual precipitation is about 1100 

mm. However, due to great differences in landscape topography and the distance to 

sea across the YRB, mean annual temperature and precipitation in the basin vary 

remarkably between -5.2°C–21.5°C, and 288.7–2311.4 mm, respectively. Specific 

differences of mean annual climate conditions in the sub-basins are shown in Table 

1. Among the major land cover types, woodland (WL), wet cropland (WC) and dry 

cropland (DC) are the top three in percentage of area (Figure 1c). 

 

Figure 1 Basic geographical characteristics of the Yangtze River Basin: (a) distribution of land cover types, 
secondary water resources areas and meteorological stations across the Yangtze River basin; (b) the location and 
DEM of the Yangtze River Basin; and (c) area percentage of different land cover types.  

Abbreviations for sub-basins: JSJ-1, Jinsha River sub-basin above Shigu; JSJ-2, Jinsha River sub-basin 
below Shigu; MTJ, Mintuo River sub-basin; JLJ, Jialing River sub-basin; WJ, Wujiang River sub-basin; UM, 
Yibin-Yichang section of the Yangtze River mainstream; DL, Dongting Lake sub-basin; HJ, Hanjiang River sub-
basin; PL, Poyang Lake sub-basin; MM, Yichang-Hukou section of the Yangtze River mainstream; LM, Lower 
Yangtze River mainstream Interval; TL, Taihu Lake sub-basin. 

 

According to the Chinese national water resources management regionalization, 

the whole YRB is divided into 12 secondary water resources areas: Jinsha River sub-

basin above Shigu (JSJ-1), Jinsha River sub-basin below Shigu (JSJ-2), Mintuo River 

sub-basin (MTJ), Jialing River sub-basin (JLJ), Wujiang River sub-basin (WJ), 

Yibin-Yichang section of the Yangtze River mainstream (UM), Dongting Lake sub-

basin (DL). Hanjiang River sub-basin (HJ), Poyang Lake sub-basin (PL), Yichang-



 

Hukou section of the Yangtze River mainstream (MM), Lower Yangtze River 

mainstream Interval (LM) and the Taihu Lake sub-basin (TL) (Figure 1a). In the 

following analysis, the spatial difference of CUE and its response to climate variables 

were specifically examined according to this hydrological subdivision. 

 
Table 1 Basic climate conditions and carbon use efficiency (CUE) related variables in the Yangtze River 

Basin (YRB) 

Sub-basin 
Area 

(×104km2) 

Mean Precipitation 
(mm) 

Mean 
Temperature (°C) 

Mean 
CUE 

CUE Std 
Dev 

Spatial 
Cv 

Trend of 
CUE (β) 

Secondary 

water 

resources 

area 

JSJ-1 21.42 451.7 2.8 0.650 0.041 0.066 0.0012 
JSJ-2 28.78 799.8 11.6 0.637 0.040 0.063 -0.0001 
MTJ 16.30 979.5 11.9 0.634 0.034 0.053 0.0001 
JLJ 15.98 999.1 17.0 0.566 0.071 0.124 0.0004 
WJ 8.79 1068.7 15.4 0.536 0.060 0.110 -0.0010 
UM 9.30 1060.3 17.4 0.519 0.079 0.150 -0.0001 
DL 26.28 1374.9 17.2 0.459 0.078 0.167 -0.0009 
HJ 15.90 898.2 14.7 0.436 0.108 0.244 -0.0005 
PL 16.22 1665.3 18.3 0.438 0.097 0.214 -0.0011 
MM 8.97 1279.7 16.6 0.456 0.081 0.175 0.0006 
LM 8.46 1283.8 16.2 0.466 0.085 0.178 0.0019** 
TL 3.69 1197.3 16.9 0.526 0.062 0.115 0.0035*** 

The whole YRB 180.09 1049.8 14.0 0.519 0.123 0.216 0.0000 
Notes: Cv, Coefficient of Variation; ** and *** indicate p<0.05 and p<0.01 significance level, respectively. The 
abbreviations for sub-basins refer to Figure 1. 

1.2 Available data  

1.2.1 MODIS GPP and NPP products 

Annual GPP and NPP of the Yangtze River basin from 2000 to 2015 were 

downloaded from NTSG MOD17 v55 dataset which provided by the Numerical 

Terradynamic Simulation Group, University of Montana 

(http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/). The dataset contains continuous 

global monitoring of primary productivity from 2000 to 2015 with a spatial 

resolution of 1 km and a temporal resolution of 8-day, monthly, and annual intervals. 

Updates are provided on an annual basis. With comparison to the NASA/USGS 

LPDAAC 8-day and annual v5 product, NTSG MOD17 v55 contains the following two 

improvements: temporal infilling of cloud-contaminated pixels and a consistent 

forcing meteorology (NCEP/NCAR Reanalysis II). Details of version 55 

improvements can be found in Zhao and Running (2010) and Zhao et al. (2005). 

The accuracy and applicability of MOD17 products were evaluated from a flux 

tower of Qianyanzhou Ecosystem Observation station in the YRB in this study. The 

Qianyanzhou flux tower (115°03′29.2″E, 26°44′29.1″N), a member of ChinaFLUX, 

is located in the south hilly area of the Poyang Lake sub-basin (Figure 1a). The flux 

tower is surrounded by planted forest with a coverage > 90%. The observed GPP 

from flux tower at time scales of daily, monthly and yearly during 2003-2010 was 

opened for public research (http://www.cnern.org.cn/). We extracted the MOD17 GPP 

values from one pixel where the flux tower was installed, although this may introduce 

errors for the comparison owing to different spatial resolutions. The comparison of 

MOD17 GPP with flux tower delivered GPP indicates that correlation coefficient of 

http://www.ntsg.umt.edu/default.php
http://www.ntsg.umt.edu/default.php
http://files.ntsg.umt.edu/data/NTSG_Products/MOD17/
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod17a3
http://climatedataguide.ucar.edu/reanalysis/ncep-reanalysis-r2
http://www.cnern.org.cn/


 

annual GPP is 0.77 (P < 0.05) and the fluctuation of monthly GPP is highly 

consistent. The MOD 17 data slightly under-estimates GPP with comparison to the 

measured result of flux tower. These results are consistent with previous studies (e.g., 

Zhao et al. 2005; Turner et al. 2006). This deviation of NTSG MODIS GPP products 

probably come from the influences of some factors in the calculation algorithm. This 

is also the reason why so many scholars have been working hard to make continuous 

improvement to the MODIS NPP/GPP products. 

1.2.2 DEM and Land cover data 

Digital Elevation Model (DEM) and land cover data of the YRB were derived from 

Resource and Environment Data Cloud Platform of the Chinese Academy of Sciences 

(http://www.resdc.cn) (Figure 1). Spatial resolution of both the data is 1 km. The 

land cover data of the YRB were extracted from remote sensing monitoring of land 

cover in China in 2010. According to the sub-category classification of LUCC, there 

are 10 land cover types including Wet cropland (WC), Dry cropland (DC), Woodland 

(WL), Sparse woodland (SW), Shrubland (SL), Other woodland (OW), High-covered 

grassland (HG), Middle-covered grassland (MG), Low-covered grassland (LG), 

Other land cover (OL) can be obtained in the basin (Figure 1a). It should be noted 

that the surface of “Other land cover (OL)” is not vegetated, including waters and 

barren lands where no biomass were considered in these land cover types. 

1.2.3 Meteorological data 

Monthly meteorological data from 152 weather stations inside the YRB (see in Figure 

1a) were obtained from National Climate Centre of China Meteorological 

Administration (CMA) (http://data.cma.cn/). The data include monthly pan 

evaporation (ET), precipitation (P), temperature (T), relative humidity (RH), 

sunshine duration (SD) and wind speed (WS), among others during the period 

2000–2015. All the climate variables provided by CMA had gone through a standard 

quality control process before delivery. According to these observations, yearly data 

of P and ET were aggregated from monthly data, while yearly data of the other 

meteorological variables (T, RH, SD and WS) were averaged from monthly data. 

1.3 Methodology 

According to the objectives, research scheme of this study was designed like this: 

Firstly, we calculated annual CUE series of the YRB from 2000 to 2015 based on the 

obtained NTSG MODIS GPP/ NPP products. Secondly, we calculated linear trend of 

annual CUE by applying the Sen’s slope method at each pixel across the YRB. At 

basin scale of the secondary water resources subdivision, the significance of change 

trend and the degree of CUE variability in time and space was further examined by 

the Mann-Kandell test and the statistic Coefficient of Variation, respectively. Thirdly, 

based on the land cover data of the YRB, the changes of CUE in different land cover 

types were analyzed. Finally, main driving meteorological factors to the annual 

variations of CUE in different sub-basins and different land cover types in the YRB 

http://data.cma.cn/


 

were examined by using the Spearman partial correlation analysis. Details of 

relevant methods are described as follows:  

 (1) In this study, carbon use efficiency (CUE) of land vegetation is defined as 

the ratio of NPP to GPP: 

CUE = NPP/GPP,                             (1) 

where NPP and GPP are the vegetation Net Primary Productivity and Gross Primary 

Productivity, respectively. Both the variables are derived from the NTSG MOD17 v55 

dataset. The unit of both the NPP and GPP is gC/m2, while CUE is dimensionless. 

(2) The Sen’s slope (Sen 1968), also known as the “Nonparametric linear 

regression slope”, was applied to estimate the linear trend. As an alternative to the 

standard linear regression slope, the Sen’s slope is the most popular nonparametric 

technique in the earth sciences (meteorology, hydrology, ecology, climatology). It is 

a method that is insensitive to outliers. It can be significantly more accurate than 

simple linear regression for skewed and heteroskedastic data, and competes well 

against simple least squares even for normally distributed data. The formula for 

Sen’s slope is given as: 

𝛽 = 𝑚𝑒𝑑𝑖𝑎𝑛(
𝑥𝑗−𝑥𝑖

𝑡𝑗−𝑡𝑖
)        1< i< j<n,                   (2) 

where β is the linear change trend; i and j are time variables, 𝑥𝑖  and 𝑥𝑗  are the 

sequential data values in the CUE time series. A positive value of β indicates an 

increasing trend, and a negative value of β indicates a decreasing trend. 

(3) The significance of the long-term change trend of CUE was further examined 

by the Mann-Kandell (MK) test. The MK test is a rank-based non-parametric method 

which has been widely applied for trend detecting in hydro-climatic time series due 

to its robustness against the influence of abnormal data and especially its reliability 

for biased variables (e.g., Chen et al. 2007; Yin et al. 2016). According to the method, 

the null hypothesis of no trend is rejected if standardized statistics |Z|≥1.64, 

|Z|≥1.96 and |Z|≥2.32 at 0.1, 0.05 and 0.01 significance levels, respectively.  

(4) Coefficient of Variation (Cv) is a statistical measure of the dispersion of data 

points in a data series around the mean. Cv represents the ratio of the standard 

deviation to the mean, and it is a useful statistic for comparing the degree of variation 

from one data series to another. We use Cv to examine the degree of spatial and 

temporal variability of CUE in the YRB.  

(5) In multivariate correlation analysis, the relationships between different 

variables are very complex. They may be affected by more than one variable. Simple 

linear correlation coefficient cannot truly reflect the essential relationship between 

two variables. Partial correlation analysis, also known as net correlation analysis, is 

used to analyze the linear correlation between two variables under the condition of 

controlling the linear influence of other variables (Ye et al. 2018). In this study, 

Spearman partial correlation coefficient was calculated to analyze the influence of 

major climatic factors on the change of vegetation CUE. Specifically, when we 

performed the calculation of partial correlation coefficient between CUE and a 

certain climate variable, for example CUE and precipitation, other climate variables 

https://www.investopedia.com/terms/v/variability.asp


 

such as ET, RH, SD and WS were regarded as control variables in the analysis. The 

significance of the partial correlation was further examined by the two-sided t-test. 

2 Results 

2.1 Spatial distribution of CUE across the basin 

From visual inspection in Figure 2, it is clear that CUE in the YRB shows obvious 

spatial difference from east to west. CUE is generally high in the west and low in the 

east and middle of the YRB. Statistics indicate that the average CUE of vegetated 

land of the whole YRB was 0.519 with maximum value of 0.749 and minimum value 

of 0.016 during the study period. The sub-plot in the lower left corner of Figure 2 

further indicates that CUE in 68% area of the YRB was ranged in 0.5–0.7, and 26% 

area was ranged in 0.3–0.5. This result indicates that in most area of the YRB, 

surface vegetation has relatively high efficiency in transferring productivity into 

biomass stored in the ecosystem. For the secondary water resources areas, the basic 

statistical characteristics of CUE related variables are listed in Table 1. Results 

indicate that the multi-year averages of CUE of the sub-basins were ranged in 0.436–

0.650. Mean annual CUE of the top three sub-basins are JSJ-1 (0.650), JSJ-2 (0.637) 

and MTJ (0.634). The HJ and PL sub-basins have the lowest CUE, and the values 

were 0.436 and 0.438. Values of CUE of TL and LM in the lower YRB were a little 

higher than that in the middle YRB. In addition, according to the value of Cv, it can 

be concluded that CUE in the HJ and PL sub-basins has the strongest spatial 

variability, while CUE in the MTJ sub-basin has the smallest spatial variability.  

 

Figure 2 Spatial distribution of the average annual carbon use efficiency (CUE) across the Yangtze River basin 
(YRB). The abbreviations for sub-basins refer to Figure 1. 

 

Figure 3 displays the variation characteristics of GPP, NPP and CUE in the YRB 

along altitude. It is noted from the figure that both the GPP and NPP show the similar 

pattern with rising altitude. Both fluctuate and peak at 2300 m a.m.s.l. and after that 

decrease rapidly. When the altitude is over 5000 m a.m.s.l., both the GPP and NPP 

have dropped below 80gC/m2. However, as the ratio of the two variables, the 



 

variation of CUE is much complex. CUE fluctuates greatly below 800 m a.m.s.l. along 

rising altitude with a decreasing trend below 300 m a.m.s.l., an increasing trend 

between 300 and 500 m a.m.s.l. and then followed by a decreasing trend between 

500 and 800 m. From the altitude of 800 m, CUE begins to increase steadily with 

rising altitude, and peaks at 3900 m a.m.s.l. However, the increasing slope is 

relatively larger between 1200 m and 2800 m a.m.s.l., and then the increasing slope 

decreases obviously. Above 3900 m a.m.s.l., CUE begins to decrease with rising 

altitude. In contrary to the former stage, the decreasing slope is relatively smaller 

between 3900 m and 4600 m a.m.s.l., and then the decreasing slope increases 

obviously.  

 

Figure 3 Variations of Gross primary production (GPP), Net primary production (NPP), carbon use efficiency 
(CUE) and area percentage along rising altitude in the Yangtze River basin (YRB).  

2.2 Inter-annual variation of CUE across the basin 

Figure 4 shows the spatial distribution of linear change rate (β) of CUE in the YRB 

during 2000~2015. Result from the figure indicates that major increasing regions of 

CUE are concentrated in the lower YRB of LM and TL sub-basins, the upper reaches 

of HJ sub-basin and the central of MTJ sub-basin. In contrast, the decreasing regions 

of CUE are mainly concentrated in the southern parts of the YRB, especially in DL 

and PL sub-basins. Statistical result in the lower left sub-plot in Figure 4 indicates 

that change rate of CUE across the YRB presents a normal distribution characteristic. 

The areas of CUE increase and decrease are basically half to half. Linear change rates 

of more than 80% area were ranged in -0.003–0.003 gC·m-2·a-1. 

 
Figure 4 Spatial pattern of change trend of carbon use efficiency (CUE) over the Yangtze River basin (YRB) 
during 2000~2015. The abbreviations for sub-basins refer to Figure 1. 



 

 

For different secondary water resource areas, it can be seen from Figure 5a that 

inter-annual variations of the CUE are much different. CUE of the LM sub-basin 

shows the greatest temporal variability, followed by HJ sub-basin and TL sub-basin. 

CUE of the JSJ-2 sub-basin shows the smallest temporal variability in the YRB 

(Figure 5b). Overall, CUE of the sub-basins of JSJ-1, MTJ, JLJ, MM, LM and TL 

shows an increasing trend during the study period, while the other sub-basins show 

a decreasing trend. However, only the increasing trend of CUE in the LM and TL 

sub-basins reached 0.05 significance level (Figure 5c).  

  

Figure 5 Inter-annual variation of carbon use efficiency (CUE) in different sub-basins in the Yangtze River basin 
(YRB): (a) annual fluctuation processes of CUE; (b) temporal variability of CUE and (c) significance test of the 
change rate. The abbreviations for sub-basins refer to Figure 1. 

 

2.3 Changes of CUE in different land cover types 
As shown in Figure 6, CUE varied remarkable in different land cover types. Overall, 

CUE of grasslands is higher than that of croplands, and then forest lands. 

Specifically, the land cover type of LG has the highest CUE (0.621), followed by MG 

(0.580), DC (0.546), HG (0.544), SW (0.532), WC (0.515), SL (0.503), OW (0.502) 

and WL (0.477). Inter-annual variation of the CUE of different land cover types 

shows high consistency except for the LG. As shown in Figure 7a, CUE of most land 

cover types experienced a decreasing trend during 2000–2011 and reached the 

lowest in 2011. In the following several years, CUE of most land cover types turned 

to increase. According to the calculated Cv, CUE of the WL shows the largest 

temporal variability, followed by WC and SL. CUE of the MG shows the smallest 

temporal variability (Figure 7b). During the study period, values of CUE of WC, HG 

and LG show an increasing trend, while the other six land cover types show a 

decreasing trend. Further test indicated that the linear trend of CUE of all land cover 

types was not significant at 0.05 significance level (Figure 7c).  



 

 

Figure 6 Mean and standard deviation of carbon use efficiency (CUE) for different land cover types in the 
Yangtze River basin (YRB). Abbreviations for land cover types: WC, wet cropland; DC, dry cropland; WL, 
woodland; SW, sparse woodland; SL, shrubland; OW, Other woodland; HG, high-covered grassland; MG, 
middle-covered grassland; LG, low-covered grassland. 

 

   

Figure 7 Inter-annual variation of carbon use efficiency (CUE) for different land cover types in the Yangtze River 
basin (YRB): (a) annual fluctuation processes of CUE; (b) temporal variability of CUE and (c) significance test of 
the change rate. Abbreviations for land cover types: WC, wet cropland; DC, dry cropland; WL, woodland; SW, 
sparse woodland; SL, shrubland; OW, Other woodland; HG, high-covered grassland; MG, middle-covered 
grassland; LG, low-covered grassland. 

 

2.4 Partial correlation with meteorological driving factors 

Climate condition is an important environmental factor that affects the variation of 

CUE of terrestrial ecosystem. In this paper, six variables including ET, P, RH, SD, 

WS and T were selected as the potential meteorological driving factors of CUE in the 

YRB. Statistic result indicated that mean values of the six variables are 974 mm, 1050 

mm, 67%, 4.03 h, 1.57 m/s and 14.05°C during the study period 2000–2015. Linear 

trends (β) of the six variables are 11.8 mm/a (p<0.01), 0.73 mm/a, -0.002/a 

(p<0.05), -0.009 h/a, 0.008 m/s·a (p<0.01) and 0.007 °C/a, respectively. However, 

the basic characteristics of the six meteorological variables are quite different among 

the sub-basins. 



 

Table 2 lists the partial correlation coefficients between inter-annual variability 

of CUE and major meteorological factors in different regions of the YRB. The partial 

correlation coefficients above 0.1 significance level are shown in bold fonts. The 

result from the table indicated that annual CUE in half of the sub-basins, such as 

MTJ, JLJ, UM, PL, MM and LM, has little correlation with all the meteorological 

factors. Annual CUE in the other half sub-basins was greatly affected by certain 

meteorological factor, showing a high partial correlation coefficient. For example, 

temperature (T) showed a positive high partial correlation with CUE in the JSJ-1 

sub-basin (p<0.01). Pan evaporation (ET) showed a negative high partial correlation 

with CUE in the JSJ-2 sub-basin (p<0.1). Precipitation (P) showed a positive high 

partial correlation with CUE in the sub-basins of WJ, DL, HJ and TL (p<0.1). There 

was also some special case in the WJ sub-basin where annual CUE showed positive 

high partial correlation with precipitation (P) and temperature (T), and negative 

high partial correlation can also be found for the relative humidity (RH) and wind 

speed (WS). For the whole YRB, annual CUE was mainly affected by precipitation as 

a significant positive partial correlation (p<0.01) can be observed between them. 

Besides, the effect of other meteorological factors was obscure. 

Table 2 Partial correlation coefficients between annual carbon use efficiency (CUE) and major meteorological 
factors during 2000–2015 in different regions of the Yangtze River Basin (YRB) 

Sub-basin 
Meteorological factors 

ET P RH SD WS T 

Secondary 

water 

resources 

area 

JSJ-1 -0.294 0.439 0.417 0.488 -0.07 0.754*** 
JSJ-2 -0.560* -0.010 0.353 0.015 0.088 0.114 
MTJ -0.161 0.139 0.184 -0.252 -0.068 0.291 
JLJ -0.093 0.101 0.357 -0.316 -0.129 0.231 
WJ 0.168 0.649** -0.683** -0.118 -0.631** 0.632** 
UM -0.076 0.287 0.290 0.009 -0.211 0.241 
DL 0.192 0.572* 0.017 0.233 -0.325 0.260 
HJ -0.275 0.529* 0.438 0.348 0.138 -0.103 
PL 0.158 0.380 0.148 0.317 0.010 -0.031 
MM -0.179 0.343 0.415 0.326 0.106 0.132 
LM 0.346 0.498 0.126 0.200 -0.224 -0.218 
TL -0.139 0.581* -0.211 0.084 -0.057 -0.148 

The whole YRB 180.09 0.111 0.752*** -0.276 0.217 -0.316 

Notes: *, **, *** indicate ρ<0.1, ρ<0.05, and ρ<0.01 significance level, respectively. The abbreviations for sub-basins 
refer to Figure 1. Abbreviations for meteorological factors: ET, pan evaporation (mm); P, precipitation (mm); RH, 
relative humidity (%); SD, sunshine duration (h); WS, wind speed (m/s); T, temperature (°C). 

 

For different land cover types, the partial correlation coefficients between annual 

CUE and major meteorological factors were also calculated. As listed in Table 3, 

significant positive partial correlation (p<0.05) between CUE and precipitation can 

be found in most of the land cover types, such as WC, WL, SW, SL, OW and HG. 

Relatively high but not significant positive partial correlation between CUE and 

precipitation can also be found in the DC and MG land cover types. However, for the 

land cover type of LG, the effect of relative humidity (RH) was most important for 

annual variation of CUE. A significant negative partial correlation was found for the 

two variables (p<0.05). In addition to the above, the partial correlation of CUE and 

the other meteorological factors were not obvious in all the land cover types. 

Table 3 Partial correlation coefficients between annual carbon use efficiency (CUE) and major meteorological 
factors in different Land Cover Types (LCT) in the Yangtze River basin (YRB) 



 

LCT 
Meteorological factors 

ET P RH SD WS T 
WC 0.105 0.644** -0.032 0.346 0.041 -0.026 
DC -0.068 0.492 0.197 0.219 -0.264 0.157 
WL 0.360 0.780*** -0.356 0.145 -0.318 0.188 
SW 0.050 0.682** -0.054 0.073 -0.384 0.357 
SL 0.108 0.684** -0.100 0.269 -0.312 0.187 
OW 0.362 0.748*** -0.363 0.197 -0.434 0.340 
HG -0.072 0.643** -0.177 0.144 0.009 -0.220 
MG 0.049 0.404 -0.185 -0.140 -0.179 0.159 
LG 0.091 0.299 -0.607** -0.374 0.494 0.428 

Notes: ** and *** indicate ρ<0.05 and ρ<0.01 significance level, respectively. The abbreviations for land cover 
types refer to Figure 6. The abbreviations for meteorological factors refer to Table 2. 

3 Discussion 

Previously, some of the earliest studies held the conception that CUE of land 

vegetation in different environments equals to a constant value of 0.5 (e.g., Ryan et 

al. 1997; Gifford 2003; DeLucia et al. 2007). However, most of the recent studies 

revealed that CUE has strong spatio-temporal variability (e.g., Zhang et al. 2009; 

Piao et al. 2010; Khalifa et al. 2018; Tang et al. 2019). The result of our investigation 

confirms to this view point. In fact, CUE should not be considered as a constant value 

since the driving processes of photosynthesis and respiration are nonlinearly 

governed by different environmental drivers (Khalifa et al. 2018). Knowledge of the 

spatial pattern of CUE and how it is related to local geographical, topographic and 

climatic factors is critical for understanding carbon cycling of regional or global 

ecosystems and its response to climate change (DeLucia et al. 2007; Zhang et al. 

2009). 

It is known that plant growth depends on local water and energy conditions. 

Previously, Xu et al. (2016) found that vegetation was particularly sensitive to 

climate change in the arid regions of China due to low precipitation and relatively 

high evapotranspiration. In the YRB, Qu et al. (2018) revealed that temperature is a 

controlling factor determining the vegetation greenness, while the response of 

vegetation to precipitation is relatively lower because of the abundant water. These 

researches demonstrate that temperature and precipitation are the two essential 

meteorological factors for plant growth although their relative effects may vary in 

different regions. The spatial difference of CUE in the YRB and its variation along 

altitude are the results of such direct meteorological factors of temperature and 

precipitation, among others. However, specific influence mechanism of temperature 

and precipitation on CUE under different environment are quite complex. The 

changes of temperature will affect the ratio of photosynthesis and respiration, thus 

affecting the CUE (Giardina et al. 2003). Available water is important for plants 

growth, the decrease of precipitation may lead to the increase of plants total 

respiration, GPP, as well as respiration of leaves and roots (Metcalfe et al. 2010). 

Whereas, redundant precipitation can affect other critical environmental factors for 

plant growth, such as radiation input, nutrient leaching or soil oxygen (Schuur et al. 

2001). Due to these reasons, CUE is normally higher in the environments 

characterized by a shortage of precipitation and lower temperature relative to wet 



 

and warm environments (Teskey et al. 1995). Climatically, the east and middle 

regions of YRB are relatively wet and warm, and so CUE values in these regions are 

commonly lower. The climate becomes dryer and colder in the west parts of YRB due 

to distance from sea and increasing altitude, and so CUE increased accordingly.  

Along the rising altitude, many studies have shown an overall increasing trend 

of CUE on regional scale (e.g., Piao et al. 2010). However, our investigation indicates 

that CUE didn’t increase all the time in the YRB, but peaked at some 3900 m a.m.s.l. 

Previously, Zhang et al. (2009) also pointed out that CUE follows a globally 

increasing trend along rising altitude while decreasing trend can be found in a 

certain altitude range of 3600–4750 m a.m.s.l. According to the rising altitude, both 

the temperature and precipitation in the YRB show a decreasing trend (Figure 8). It 

should be noted that the decrease in precipitation along altitude is more affected by 

the increasing distance from sea and direction of moisture inflow in a large region. 

The corresponding temperature and precipitation to the peak value of CUE at 3900 

m a.m.s.l are 8.26℃ and 720 mm, respectively. In consideration of the changes of 

temperature, precipitation and CUE along rising altitude, our investigation may 

imply that the increasing CUE along rising altitude below 3900 m was mainly 

affected by the decreasing precipitation in the YRB, while the decreasing CUE along 

rising altitude above 3900 m a.m.s.l was more affected by the decreasing 

temperature. In addition, the large fluctuation of CUE below 800 m a.m.s.l obviously 

deviated from the effect of precipitation and temperature, which is possibly affected 

by the different combination of land cover types below this altitude. The slight 

variation of CUE between the altitudes of 2800 and 4600 m a.m.s.l may indicate that 

CUE was not sensitive to the corresponding environmental precipitation and 

temperature at these areas.  

 

Figure 8 Variations of precipitation, temperature and carbon use efficiency (CUE) along rising altitude in the 
Yangtze River basin (YRB). 

 
This study further confirms that the CUE is variable for different land cover types 

although the variation of the CUE is not always consistent among studies (Zhang et 

al. 2009; Kwon and Larsen 2013). In the YRB, CUE of different land cover types 

ranges in 0.477–0.621. CUE of grasslands is generally higher, followed by croplands 

and forest lands. This result is highly consistent with previous studies. Major reasons 

may lie in the different vegetation structure, physiological characteristics and age 



 

(Zhu 2013). For example, due to higher hydraulic resistance in their stems and 

branches, tall trees have lower specific rates of photosynthesis and lower 

productivity with reference to the sparse vegetation (Hubbard et al. 1999). Zhang et 

al. (2009) also revealed that CUE of dense vegetation is generally lower than that of 

sparse vegetation, and the CUE of forest was lower than that of shrub and grassland. 

Due to this reason, CUE of the four sub-category forest lands in the YRB is 

SW>SL>OW>WL in descending order. In addition, with comparison to natural 

vegetation, the cultivated crops generally have higher CUE (Amthor 1989). This is 

probably correlated to the status of soil nutrient under human management. 

Observational experiment from Bowen. (2007) showed that CUE of Pinus radiate 

increased with the increase supply of soil nitrogen and phosphorus nutrition. CUE 

was 0.42 under low nutrition supply while 0.51 under high nutrition supply, 

indicating that plant respiration would consume a large proportion of carbon 

assimilation products in poor soil environment. Giardina et al. (2003) also observed 

that the CUE of planted forest of Eucalyptus saligna with fertilization was 0.53, 

which is slightly higher than that of the sample without fertilization (0.51). In the 

YRB, intensive planting of dry cropland is common. In order to increase yield of 

seasonal economic crops, more and more fertilizer is applied to the farmland (Xie et 

al. 2018). That is why CUE of the croplands, especially the land cover type of DC was 

relatively high. 

Temporally, the evolution of CUE in the YRB varied in different sub-basins and 

different land cover types. CUE of the grasslands has the smallest temporal 

variability, and then croplands and forest lands. Due to this reason, CUE of the 

upstream sub-basins with more area of grassland in the YRB has smaller temporal 

variability, while CUE of the middle-lower sub-basins with less area of grassland has 

bigger temporal variability (see in Figure 6). In terms of long-term trend, CUE of the 

whole YRB has changed little during the study period 2000–2015. Previously, Zhang 

et al. (2014b) revealed a decreasing trend of CUE of global terrestrial ecosystem 

during 2000–2009. They attributed this temporal dynamic of CUE to the effects of 

temperature and precipitation: increased temperature lowered the CUE, while 

increased precipitation led to a higher CUE. Khalifa et al. (2018) showed an 

insignificant correlation between the variations in CUE and precipitation in 

Ethiopia, however, they concluded that the inter-annual variation of CUE is likely to 

be driven by a drought of time scale of three months. Our investigation shows a 

significant positive partial correlation between the annual variations of CUE and 

precipitation for most sub-basins and land cover types in the YRB. This may suggest 

that the change of precipitation in the YRB is the most critical meteorological factor 

that affecting the annual variation of CUE, although the influence of temperature 

and relative humidity is also outstanding in certain regions and land cover types. 

Other meteorological variables, such as ET, RH and WS would found to have less 

influence than precipitation and air temperature on plant growth in the study region. 

Recent work from Chen (2019) also revealed that the increase of annual precipitation 

was the main factor driving the increasing forest CUE in Northeast China during 

2000–2015.  



 

It should be mentioned that some limitations were existed. In this study, we used 

only one scenario of land cover data of 2010 to identify the changes of CUE in 

different land cover types. Theoretically, it is not reliable to compare the CUE value 

in different years by using the land cover data of the same year, since land cover in 

the YRB has been changed during the period 2000-2015 due to climate change and 

human activities. According to recent research from Cheng et al. (2017), total area of 

changed land use in the YRB from 2000 to 2010 was about 16162 km2, which account 

for 0.9% area of the whole YRB. Therefore, this small change of land use in the YRB, 

to a large extent, will not affect the results of this study. In addition, previous studies 

have revealed that vegetation dynamics in the YRB also affected by increasing human 

activities, such as ecological restoration and urbanization (Zhang et al. 2014a; Qu et 

al. 2018). However, this paper focused on the investigation of meteorological driving 

factors on the change of CUE in the YRB, the impacts of human activities were not 

involved and leave for future studies. 

4 Conclusions 

In this study, we investigated spatio-temporal variations in MODIS-based vegetation 

carbon use efficiency and potential driving meteorological factors in the YRB during 

2000–2015. Several findings can be obtained as follows: 

(1) Spatially, CUE is generally high in the west and low in the east and middle of 

the YRB. The average CUE of vegetated land of the whole YRB was 0.519. Along the 

rising altitude, CUE generally shows an increasing trend until the altitude of 3900 m 

and then followed by a decreasing trend. In addition, CUE fluctuates greatly below 

800 m while varied slightly between 2800 m and 4600 m. Temporally, although the 

long-term change trend of CUE of the YRB was obscure, CUE in the LM and TL sub-

basins of the lower YRB showed a significant increasing trend during the study 

period. 

(2) CUE varied remarkably in different land cover types. Generally, CUE of 

grassland is higher than that of cropland, and then forest land. Annual variations of 

the CUE of different land cover types show high consistence except for the LG. CUE 

of the WL shows the largest temporal variability, while MG shows the smallest 

temporal variability. During the study period, CUE change trends of all the land 

cover types were not significant. 

(3) There is a strong positive partial correlation between the inter-annual 

variability of CUE and precipitation in most of sub-basins and land cover types in 

the YRB. This suggests that the change of precipitation in the YRB is the most critical 

meteorological factor that affecting the inter-annual variation of CUE.  

Generally, the results of the current study confirm that CUE has strong spatio-

temporal variability and varied remarkably in different land cover types. Inter-

annual variation of CUE is highly correlated with certain critical meteorological 

factor. It is anticipated that climate will continue to change in the future under the 

context of increasing levels of atmospheric CO2, how about the impact of climate 

change on the carbon sequestration capacity of land cover types as sinks for 



 

atmospheric carbon deserves attention. In addition, the YRB is expected undergoing 

large-scale land use change and ecological restoration due to climate change and 

socioeconomic development, more researches on the subsequent eco-environmental 

impacts are required in order to provide scientific basis to support the sustainable 

management. 
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