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Abstract
We apply supervised machine learning algorithms to simulated and experi-
mental beta decay spectroscopy data produced at the Facility for Rare Isotope
Beams (FRIB) at Michigan State University. Leveraging the ability to gener-
ate arbitrary amounts of labelled data with perfect knowledge of information
could be extremely useful in reducing the need for human labelling of expo-
nentially growing experimental datasets. We find that for simulated data a
Convolutional Neural Network-based architecture is highly successful in the
classification of events across all the prepared datasets, reaching F1 scores up
to 0.97. Classification of experimental data was not successful, regardless of
model performance on simulated data. This may be partly explained by a
difference in total intensity between simulated and experimental data. We
observe a trend across all models and training data, that when classifying ex-
perimental decay events, most all event classified as single are in the lower
regime of total intensities. A similar trend if shown in simulated single decays
where all pixel intensities are scaled up.

We successfully trained models to predict positions of origin for simu-
lated single decay events, with R2 scores of 0.99 and above for all simulated
datasets, and sub-pixel precision. However, we were unable to predict posi-
tions of origin for simulated double decay events with any degree of precision.
We found the same problem for energy prediction, which was also sensitive
to the modifications in the data. A likely cause of this sensitivity may be the
strong correlation between energy and total pixel intensity in detector images,
and the modifications effectively acting as removal of information.

Without true positions for experimental data to directly test the models
against, making any strong conclusions for these results is hard. Proper verifi-
cation of performance will have to wait until researchers can test the predicted
positions on source data from the experiment. However, we find that the po-
sitions predicted seem within reasonable limits, compared with what is seen
in simulated data.

For energy predictions on experimental decays, preliminary comparisons
with experimental calibration constants indicate that the predictions are not
good on experimental decays. The working theory is that the simulated train-
ing data predicts too many photons per unit energy, resulting in the knowl-
edge from simulated data not being transferable to the experimental domain.
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In this thesis, we approach the problem arising from copious amounts of un-
labeled data generated in nuclear physics experiments. Modelling the world
around us to predict behaviour and increase our understanding is a key con-
cept in physics, and science as a whole. Simulating physical processes of-
ten lay the groundwork for verifying theory, and designing experiments. For
many branches of physics, and especially nuclear physics, there has been an
exponential growth in data generated from experiments. This brings several
challenges, the most immediate of which may be "how do we process it all?".
If there are multiple types of reactions occurring in an experiment, how can
we separate them when there are billions of events? In the later years, ma-
chine learning algorithms have gained popularity for accomplishing this task,
alleviating the need for humans to sift through vast amounts of data by hand.
Machine learning has already been used in a wide variety of applications, such
as at CERN [2], and the Active-Target Time Projection Chamber (AT-TPC) at
the National Superconducting Cyclotron Laboratory at Michigan State Univer-
sity [3]. In this thesis, we explore the leveraging of simulated experiments to
train machine learning models and subsequently apply them to data gathered
from real-world experiments.
In simulations, we have complete knowledge of every parameter. The energy
of a decay, the exact positions of the ion where the decay originated, the exact
time of the decay are all examples of knowledge we have about simulations.
For experimental data, these details are what we seek to learn in order to verify
and improve our model of the physical universe, and they are not necessarily
directly measurable. Traditional methods of analysis may be computationally
expensive to run, especially considering the amounts of data these methods
must churn through, with repeated calculations for every sample. With ma-
chine learning algorithms we can front-load all these computations, training
them to perform the task of extracting our desired information based on simu-
lations. If our simulations capture crucial attributes of the real data, we may be
able to approximate even values that would be notoriously difficult to measure
or infer from data alone. Another avenue is determining the types of reactions
or events that occur in experimental data. This is of particular interest in this
specific case, as there is currently no methods other than the human eye to
separate events into their respective categories.
We investigate the possibility of carrying out three different tasks. Classifi-
cation, prediction of event energy, and prediction of positions of origin. We
introduce the fundamental concepts for machine learning theory, our meth-
ods and implementation, and present results of carrying our these tasks on
simulated and experimental data.
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In this thesis we explore the use of supervised learning on simulated and
experimental nuclear physics data. To build a foundation for the following dis-
cussion, we introduce the fundamental concepts underpinning the advanced
machine learning techniques of today.

We note that the following chapter follows closely the work of Morten
Hjorth-Jensen[4], Mehta et. al[5], Goodfellow et. al[6], and the University
of Stanfords course CS231n[1].

2.1 Linear Regression

Suppose you have a data set L consisting of the data XL = {(yi, xi), i =
0 . . . n − 1}. Each point is associated with a scalar target yi, and a vector x
containing values for p input features. Assuming the target variable yi is lin-
ear in the inputs, it can be written as a linear function of the features, given
by

yi = w0xi,0 + w1xi,1 + ... + wp−1xi,p−1 + εi, (2.1)

where w = (w0, w1, . . . , wp−1)
T is a vector of length p containing unknown

values, and ε are the errors in our estimate. This gives us a system of linear
equations, which can be written in matrix form as

y = Xw + ε, (2.2)

where

X =


x0,0 x0,1 x0,2 ... x0,p−1
x1,0 x1,1 x1,2 ... x1,p−1
x2,0 x2,1 x2,2 ... x2,p−1

...
...

... . . . ...
xn−1,0 xn−1,1 xn−1,2 ... xn−1,p−1

 (2.3)

The unknown values w are commonly referred to as weights in machine learn-
ing literature. To find the best possible weights w we want a suitable quantity
to optimize - a cost function, C (also referred to as an objective function). An
example of such a function is the squared error - or the Euclidian vector norm,
defined as

L2(x) = ||x||2 =
(
∑ x2

i

) 1
2 . (2.4)

From this we define the cost function

C = ||ŷ− y||22. (2.5)

In machine learning, it is most common to cast the optimization as a minimiza-
tion problem ("minimize the cost"). Our task is then to find an approximation

ŷ = Xw (2.6)
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which minimizes this cost function. To find the minimum we need a differen-
tiation. To simplify that process, we rewrite the cost function on matrix form

C = ||ŷ− y||22,

C = (ŷ− Xw)T(ŷ− Xw).

To minimize we take the derivative with respect to the weights w, and find the
minima by setting the derivative equal to zero

∇wC = ∇w(ŷ− Xw)T(ŷ− Xw), (2.7)

= −2XTŷ + 2XTXw, (2.8)

0 = −2XTŷ + 2XTXw, (2.9)

XTŷ = XTXw, (2.10)

w = (XTX)−1XTŷ. (2.11)

This requires matrix XTX to be invertible to get the solution [7].
The residuals ε are given by

ε = y− ŷ = y− Xw,

and with
XT (y− Xw) = 0,

we have
XTε = XT (y− Xw) = 0,

meaning that the solution for w is the one which minimizes the residuals. This
method of regression is known as Ordinary Least Squares.

2.2 Over- and underfitting

In machine learning, when fitting a model to a data set the goal is nearly al-
ways to predict values or classify samples from regions of data the model has
not seen. This is not a simple task, especially taking into consideration that
data is rarely, if ever, noiseless. When extrapolating to unseen regions we
must take steps to ensure the model complexity is appropriate - we want it
to fit the signal, not the noise. First off - what do the terms "overfit" and "un-
derfit" mean? An overfit model will typically perform well during the fitting
procedure, but when presented with data outside the fitted region its perfor-
mance decreases considerably. An underfit model lacks the expressive power
to capture core signal variations in the data. Mehta et. al [5] demonstrates this
concept through polynomial regression.
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In machine learning literature and practice, you will encounter the concept
of splitting the available data into two - training data and test data. We fit,
or ’train’ the model on the training data, and then assess the performance of
the model on the test data. This practice lets us evaluate whether the model
is overfitting to unseen data by comparing performance on the training data
and test data.

2.3 The Bias-Variance Tradeoff

Considering the same dataset L consisting of the data, let us assume that the
true data is generated from a noisy model

y = f (x) + ε,

where ε is normally distributed with mean zero and standard deviation σ2.
In our derivation of the ordinary least squares method we defined an ap-

proximation (2.6) to the function f in terms of the weights w and the input
matrix X which together define our model, that is ŷ = Xw.

Thereafter we found the parameters w by optimizing the means squared
error via the so-called cost function

C(X, w) =
1
n

n−1

∑
i=0

(yi − ŷi)
2 = E

[
(y− ŷ)2

]
.

We can rewrite this as

E
[
(y− ŷ)2

]
=

1
n ∑

i
( fi −E [ŷ])2 +

1
n ∑

i
(ŷi −E [ŷ])2 + σ2.

The three terms represent the square of the bias of the learning method,
which can be thought of as the error caused by the simplifying assumptions
built into the method. The second term represents the variance of the chosen
model and finally the last terms is variance of the error ε.

For the derivation of this equation, we refer to the work of Mehta et. al [5].

2.4 Regularization

With the computing resources available today, increasing model complexity
to deal with underfitting is usually a simple task. However, this computa-
tional freedom has led to overfitting being the common challenge to overcome.
The no free lunch theorem for machine learning [8] states that, averaged over
all possible data-generating distributions, every classification algorithm has
the same error rate when classifying previously unobserved points. In other
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words,in some sense, no machine learning algorithm is universally any better
than anyother. The most sophisticated algorithm we can design has the same
average performance (over all possible tasks) as merely predicting that every
point belongs to the same class. Fortunately, this holds only when we average
over all possible data-generating distributions[6]. This means that we do not
seek a universally optimal classifier for all problems. Rather, for each learning
problem we face, we can use knowledge of the problem to build a set of pref-
erences into the learning algorithm, such that the algorithm becomes better
suited to the specific problem.

As an example, we can modify the cost function for linear regression with
the inclusion of weight decay. Instead of minimizing only the mean squared
error, as defined in equation 2.5, we minimize a sum of the MSE and a criterion
that expresses a preference for the weights to have smaller squared L2 norm.
This takes the form

C(w) = MSE + λwTw, (2.12)

where λ is a value that controls the strength of our preference for smaller
weights, chosen ahead of training. λ is often referred to as a hyperparameter.
When λ = 0, there is no preference, and the cost function becomes the regular
MSE. As λ increases it forces the weights to become smaller. Minimization of
the cost function when λ > 0 results in weights that make a tradeoff between
fitting the training data and being small[6]. We will come back to the concept
of regularization in the context of deep learning later in the chapter.

2.5 Logistic Regression

Differently to the task in linear regression, or regression problems as a whole,
classification problems are concerned with outcomes taking the form of dis-
crete variables. The descrete variable could be a category, and the task at hand
might be to determine whether an images is of a dog or a cat. In this case
the category can take one of two value - we have a binary outcome. One of
the most basic examples of a classifier algorithm is logistic regression, and it
serves as a stepping stone towards neural networks and deep learning. Taking
its name from the task itself, the categories are typically called classes, which
we will use going forward.

We consider the case where the dependent variables, also called the re-
sponses or the outcomes, yi are discrete and only take values from k = 0, . . . , K−
1 (K classes).

The goal is to predict the output classes from the inputs X ∈ Rn×p made of
n samples, each of which carries p features or predictors. The primary goal is
to identify the classes to which new unseen samples belong.

Let us specialize to the case of two classes only, with outputs yi = 0 and
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yi = 1. Our outcomes could represent the status of a credit card user that could
default or not on her/his credit card debt. That is

yi =

[
0 no
1 yes

]
. (2.13)

The perceptron is an example of a "hard classification" model. We will en-
counter this model when we discuss neural networks as well. Each datapoint
is deterministically assigned to a category (i.e yi = 0 or yi = 1). In many cases,
it is favorable to have a "soft" classifier that outputs the probability of a given
category rather than a single value. For example, given xi, the classifier out-
puts the probability of being in a category k. Logistic regression is the most
common example of a soft classifier. In logistic regression, the probability that
a data point xi belongs to a category yi = {0, 1} is given by the logit function
(or Sigmoid) which is meant to represent the likelihood of a given event,

σ(x) =
1

1 + e−x =
ex

1 + ex . (2.14)

Note that 1− σ(x) = σ(−x).
We assume now that we have two classes with yi either 0 or 1. Furthermore we
assume also that we have only two parameters w in our fitting of the Sigmoid
function, that is we define probabilities

σ(yi = 1|xi, w) =
exp(w0 + w1xi)

1 + exp(w0 + w1xi)
,

σ(yi = 0|xi, w) = 1− σ(yi = 1|xi, w),

where w are the weights we wish to extract from data, in our case w0 and w1.
Note that we used

σ(yi = 0|xi, w) = 1− σ(yi = 1|xi, w). (2.15)

In order to define the total likelihood for all possible outcomes from a
dataset D = {(yi, xi)}, with the binary labels yi ∈ {0, 1} and where the data
points are drawn independently, we use what is commonly referred to as the
"Maximum Likelihood Estimation". We aim thus at maximizing the probabil-
ity of seeing the observed data. We can then approximate the likelihood in
terms of the product of the individual probabilities of a specific outcome yi.
That is

P(D|w) =
n

∏
i=1

[σ(yi = 1|xi, w)]yi [1− σ(yi = 1|xi, w))]1−yi



Section 2.5 Logistic Regression 13

from which we obtain the log-likelihood and our cost function.

C(w) =
n

∑
i=1

(yi log σ(yi = 1|xi, w) + (1− yi) log [1− σ(yi = 1|xi, w))]) .

(2.16)
Reordering the logarithms, we can rewrite the cost function as

C(w) =
n

∑
i=1

(yi(w0 + w1xi)− log(1 + exp(w0 + w1xi))) . (2.17)

The maximum likelihood estimator is defined as the set of parameters that
maximize the log-likelihood where we maximize with respect to w. Since the
cost (error) function is just the negative log-likelihood, for logistic regression
we have that

C(w) = −
n

∑
i=1

(yi(w0 + w1xi)− log(1 + exp(w0 + w1xi))) . (2.18)

This equation is known in statistics as the cross entropy. Finally, we note that
just as in the example of linear regression, we often supplement the cross-
entropy with additional regularization terms, usually L1 and L2 regulariza-
tion.

The cross entropy is a convex function of the weights w, therefore any local
minimizer is a global minimizer. Minimizing this cost function with respect to
the two parameters w0 and w1 we obtain

∂C(w)

∂w0
= −

n

∑
i=1

(
yi −

exp(w0 + w1xi)

1 + exp(w0 + w1xi)

)
, (2.19)

and
∂C(w)

∂w1
= −

n

∑
i=1

(
yixi − xi

exp(w0 + w1xi)

1 + exp(w0 + w1xi)

)
. (2.20)

Let us now define a vector y with n elements yi, an n × p matrix X which
contains the xi values and a vector σ of fitted probabilities σ(yi|xi, w). We can
rewrite the first derivative of the cost function in a more compact form

∂C(w)

∂w
= −XT (y− σ) . (2.21)

If we in addition define a diagonal matrix W with elements
σ(yi|xi, w)(1− σ(yi|xi, w), we can obtain a compact expression of the second
derivative as

∂2C(w)

∂w∂wT = XTWX. (2.22)
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Within a binary classification problem, we can easily expand our model to
include multiple predictors. Our ratio between likelihoods is then with p pre-
dictors

log(
σ(wx)

1− σ(wx)
) = w0 + w1x1 + w2x2 + · · ·+ wpxp. (2.23)

Here we defined x = [1, x1, x2, . . . , xp] and w = [w0, w1, . . . , wp] leading to

σ(wx) =
exp(w0 + w1x1 + w2x2 + · · ·+ wpxp)

1 + exp(w0 + w1x1 + w2x2 + · · ·+ wpxp)
. (2.24)

Next we look at methods for minimizing these functions.

2.6 Gradient Descent

Finding the minima or maxima of a functions is a well-known process, perhaps
especially so in physics. In machine learning most, if not all, cost optimization
problems are cast as minimization problems, and we will do the same here.

The basic idea of gradient descent is that a function F(x), x ≡ (x1, . . . , xn),
decreases fastest if one goes from x in the direction of the negative gradient
−∇F(x). It can be shown that if

xk+1 = xk − γk∇F(xk),

with γk > 0, then for γk small enough, F(xk+1) ≤ F(xk). This means that for
a sufficiently small γk we are always moving towards smaller function values,
i.e a minimum. The first point, x0, is an initial guess for the minimum. It could
be chosen at random, or you could exploit some prior knowledge if available.
The parameter γk is often referred to as step length or learning rate. We will be
using the latter term in this thesis.

Ideally the sequence xkk=0 converges to a global minimum of the function
F. We do not generally know if the minimum we find is local or global, unless
we have the special case where F is a convex function. In this case all local
minima are global minima, and gradient descent can converge to the global
solution. However, gradient descent is sensitive to the choice of learning rate
γk. As mentioned above F(xk+1) ≤ F(xk) is only guaranteed for sufficiently
small γk. If the learning rate is too small the method will converge slowly. If it
is too large we can experience erratic behaviour.

2.6.1 Stochastic Gradient Descent

The stochastic gradient descent (SGD) method address some of the shortcom-
ings of the normal gradient descent method by introducing randomness. The
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cost function we wish to optimize can almost always be expressed as a sum
over n data points {xi}n

i=1.

C(w) =
n

∑
i=1

ci(xiw) (2.25)

Which gives us the ability to find the gradient as a sum over i gradients

∇wC(w) =
n

∑
i
∇wci(xiw) (2.26)

Stochasticity/randomness is included by only taking the gradient on a subset
of data called minibatches. Let the size of each minibatch be denoted M. Given
a set of n datapoints, this gives us n/M minibatches, which we will denote Bk,
with k = 1, . . . , n/M.

Now, the procedure for calculating the gradient is now an approximation.
Instead of summing over all data points, we sum over the data points in one
minibatch, chosen at random each gradient step. This means that one gradient
step is now given by

wj+1 = wj − γj

n

∑
i∈Bk

∇wci(xi, w) (2.27)

where k is chosen at random with equal probability from [1, n/M]. Iterating
over the number of minibatches is commonly referred to as an epoch. When
training a model it is typical to choose the number of epochs and then iterate
over the number of minibatches each epoch. There are two important gains
from this introduced stochasticity.

• Decreased chance that our optimization scheme gets stuck in a local min-
ima.

• If the size of each minibatch is small relative to the number of datapoints,
the computation of the gradient is much cheaper.

2.6.2 adam

Optimization of the training process has been a focus in the machine learning
community. Introduced by Kingma and Lei Ba [9], adam has become the de-
fault choice of optimizer for a large number of machine learning applications.
The algorithm keeps track of two moving averages; the average of the gradi-
ent (mt) and the squared gradient (vt). Related to these two quantities are two
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hyperparameters, β1, β2 ∈ [0, 1), which control the exponential decay rates of
these moving averages. The moments are described mathematically as

mt = β1mt−1 + (1− β1)gt (2.28)

vt = β2vt−1 + (1− β : 2)g2
t (2.29)

where gt is the gradient w.r.t the objective function at timestep t. In the paper,
the authors also describe a problem with the initializing the moving averages
as vectors of 0’s - it leads to moment estimates that are biased towards zero,
especially during the initial timesteps, and with small decay rates (βs close to
1). They do, however, provide a simple countermeasure to this bias, leading
to the bias-currected moment estimates given by

m̂t =
mt

1− βt
1

(2.30)

v̂t =
vt

1− βt
2

(2.31)

where βt
i reads as βi to the power t. The final parameter update is given by

xn+1 = xn − γ
m̂t

v̂t + ε
(2.32)

where γ is the learning rate and ε is added to avoid divide by zero for small
gradient values. The authors propose default settings for the hyperparame-
ters, which are β1 = 0.9, β2 = 0.999, γ1 = 10−3, and ε = 10−8. These are the
values used for every model trained in this thesis, unless otherwise is specifi-
cally indicated.

2.7 Neural Networks

Artificial neural networks (ANN) are computational systems that can learn to
perform tasks by considering examples, generally without being programmed
with any task-specific rules. It is supposed to mimic a biological system,
wherein neurons interact by sending signals in the form of mathematical func-
tions between layers. All layers can contain an arbitrary number of neurons,
and each connection is represented by a weight variable. The field of artificial
neural networks has a long history of development, and is closely connected
with the advancement of computer science and computers in general.

In natural sciences, ANNs have already found numerous applications. In
statistical physics, they have been applied to detect phase transitions in 2D
Ising and Potts models, lattice gauge theories, and different phases of poly-
mers, or solving the Navier-Stokes equation in weather forecasting. Deep
learning has also found interesting applications in quantum and nuclear physics.
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The applications are not limited to the natural sciences. There is a plethora
of applications in essentially all disciplines, from the humanities to life science
and medicine.

2.7.1 Artificial Neurons

A model of artificial neurons was first developed by McCulloch and Pitts in
1943 [10] to study signal processing in the brain and has later been refined
by others. The general idea is to mimic neural networks in the human brain,
which is composed of billions of neurons that communicate with each other
by sending electrical signals. Each neuron accumulates its incoming signals,
which must exceed an activation threshold to yield an output. If the thresh-
old is not overcome, the neuron remains inactive, i.e. has zero output. This
behaviour inspired a simple mathematical model for an artificial neuron.

y = f

(
n

∑
i=1

wixi

)
= f (z) (2.33)

Here, the output y of the neuron is the value of its activation function,
which receives as input a weighted sum of signals xi, . . . , xn received by n
other neurons. Neurons are often referred to as "nodes" or "units" in machine
learning literature, and we will use these interchangeably in the following sec-
tions.

2.7.2 The Feed Forward Neural Network

A network of only one neuron such as the one described above is typically
referred to as a perceptron. The simplest network structure contains a sin-
gle layer of N such nodes, and is most often called a single-layer perceptron.
Adding additional layers of nodes, so-called hidden layers, results in a type
of feed-forward neural network (FFNN), typically referred to as a Multilayer
Perceptron (MLP) (see figure 2.1). The example is also a fully connected net-
work, as every node in a layer is connected to every node in the next. The
name "feed-forward" stems from the fact that information flows in only one
direction: forward through the layers. First, for each node i in the first hidden
layer, we calculate a weighted sum z1

i of the input coordinates xj,

z1
i =

M

∑
j=1

w1
ijxj + b1

i (2.34)

Here bi is the bias which is needed in case of zero activation weights or inputs.
How to fix the biases and the weights will be discussed below. The value of
z1

i is the argument to the activation function fi of each node i, The variable M



18 Theory Chapter 2
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Figure 2.1: An example of a simple, feed-forward neural network architec-
ture. Each input xi is fed to each node in the hidden layer, where the value of
the activation function f (z) is calculated and passed on to the output layer.
In this case the output layer consists of only one node.

stands for all possible inputs to a given node i in the first layer. We define the
output y1

i of all neurons in layer 1 as

y1
i = f (z1

i ) = f

(
M

∑
j=1

w1
ijxj + b1

i

)
(2.35)

where we assume that all nodes in the same layer have identical activation
functions, hence the notation f . In general, we could assume in the more gen-
eral case that different layers have different activation functions. In this case
we would identify these functions with a superscript l for the l-th layer,

yl
i = f l(ul

i) = f l

(
Nl−1

∑
j=1

wl
ijy

l−1
j + bl

i

)
(2.36)

where Nl is the number of nodes in layer l. When the output of all the nodes
in the first hidden layer are computed, the values of the subsequent layer can
be calculated and so forth until the output is obtained.

The output of neuron i in layer 2 is thus,

y2
i = f 2

(
N

∑
j=1

w2
ijy

1
j + b2

i

)
(2.37)

= f 2

[
N

∑
j=1

w2
ij f 1

(
M

∑
k=1

w1
jkxk + b1

j

)
+ b2

i

]
(2.38)
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where we have substituted y1
k with the inputs xk. Finally, the ANN output

reads

y3
i = f 3

(
N

∑
j=1

w3
ijy

2
j + b3

i

)
(2.39)

= f3

[
∑

j
w3

ij f 2

(
∑
k

w2
jk f 1

(
∑
m

w1
kmxm + b1

k

)
+ b2

j

)
+ b3

1

]
(2.40)

We can generalize this expression to an MLP with l hidden layers. The
complete functional form is,

yl+1
i = f l+1

[
Nl

∑
j=1

w3
ij f l

(
Nl−1

∑
k=1

wl−1
jk

(
. . . f 1

(
N0

∑
n=1

w1
mnxn + b1

m

)
. . .

)
+ b2

k

)
+ b3

1

]
(2.41)

which illustrates a basic property of MLPs: The only independent variables
are the input values xn. This confirms that an MLP, despite its quite convoluted
mathematical form, is nothing more than an analytic function, specifically a
mapping of real-valued vectors x ∈ Rn → y ∈ Rm.

Furthermore, the flexibility and universality of an MLP can be illustrated
by realizing that the expression is essentially a nested sum of scaled activation
functions of the form

f (x) = c1 f (c2x + c3) + c4 (2.42)

where the parameters ci are weights and biases. By adjusting these param-
eters, the activation functions can be shifted up and down or left and right,
change slope or be rescaled which is the key to the flexibility of a neural net-
work.

We will now introduce a more convenient notation for the activations in
an ANN. We can represent the biases and activations as layer-wise column
vectors bl and yl, so that the i-th element of each vector is the bias bl

i and
activation yl

i of node i in layer l respectively.
We have that W l is an Nl−1 × Nl matrix, while bl and yl are Nl × 1 column

vectors. With this notation, the sum becomes a matrix-vector multiplication,
and we can write the equation for the activations of hidden layer 2 (assuming
three nodes for simplicity) as

y2 = f2(W2y1 + b2) = f2

 w2
11 w2

12 w2
13

w2
21 w2

22 w2
23

w2
31 w2

32 w2
33

 ·
 y1

1
y1

2
y1

3

+

 b2
1

b2
2

b2
3

 . (2.43)
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The activation of node i in layer 2 is

y2
i = f2

(
w2

i1y1
1 + w2

i2y1
2 + w2

i3y1
3 + b2

i

)
= f2

(
3

∑
j=1

w2
ijy

1
j + b2

i

)
. (2.44)

This is not just a convenient and compact notation, but also a useful and
intuitive way to think about MLPs: The output is calculated by a series of
matrix-vector multiplications and vector additions that are used as input to
the activation functions. For each operation W lyl−1 we move forward one
layer.

2.7.3 Activation Functions

Other than its connectivity, the choice of which activation function(s) to em-
ploy is one of the defining properties of a neural network. Not just any func-
tion will do, however, and there are several restrictions imposed on any appli-
cable function. An activation function for an FFNN must be

• Non-constant

• Bounded

• Monotonically-increasing

• Continuous

As linear functions are not bounded, the second requirement exludes this en-
tire family of functions. The output of a neural network with linear activation
functions would be nothing more than a linear function of the inputs. We need
to introduce some form of non-linearity to be able to fit non-linear functions.
The most common examples of such functions are the logistic sigmoid as seen
previously in equation 2.14, and the hyperbolic tangent

f (x) = tanh(x) =
ex − e−x

ex + e−x . (2.45)

In addition to meeting the requirements, these functions also have derivatives
that are relatively cheap to compute. The sigmoid’s derivative is

∂σ(x)
∂x

= σ(x)(1− σ(x)), (2.46)

and the hyperbolic tangents is

∂tanh(x)
∂x

= 1− tanh2(x) (2.47)
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However, the sigmoid functions suffer from saturating gradients. This occurs
when the functions value changes little to nothing with changes in the value
of x. This has lead to a continuous search for alternatives, and one of the
most popular activation functions to day is the Rectified Linear Unit (ReLU).
The function, made especially popular after the success of Krizhevsky et al.
[11], takes the following form

ReLU(x) = f (x) =

{
x, if x > 0
0, otherwise.

(2.48)

This function is certainly monotonic, and we can approximate its derivative
with the Heaviside step-function, denoted H(x) on the following form

H(x) = f ′(x) =

{
1, if x > 0
0, otherwise.

(2.49)

2.7.4 Backpropagation

As we have seen now in a feed-forward network, we can express the final
output of our network in terms of basic matrix-vector multiplications. The
unknown quantities are our weights wij and we need to find an algorithm for
changing them so that our errors are as small as possible. This leads us to the
famous backpropagation algorithm [12].

The questions we want to ask are how do changes in the biases and the
weights in our network change the cost function and how can we use the final
output to modify the weights? To derive these equations let us start with a
plain regression problem and define our cost function

C(W) =
1
2

n

∑
i=1

(ŷi − yi)
2 ,

where the yi’s are our n targets (the values we want to reproduce), while
the outputs of the network after having propagated all inputs x̂ are given by
yi. Below we will demonstrate how the basic equations arising from the back-
propagation algorithm can be modified to study classification problems with
K classes.

With our definition of the targets y, the outputs of the network ŷ and the
inputs x we define now the activation zl

j of node j of the l-th layer as a function
of the bias, the weights which add up from the previous layer l − 1 and the
outputs al−1 from the previous layer as

zl
j =

Ml−1

∑
i=1

wl
ija

l−1
i + bl

j,
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where bl
k are the biases from layer l. Here Ml−1 represents the total number

of nodes of layer l − 1. We can rewrite this in a more compact form as the
matrix-vector products we discussed earlier,

zl =
(

W l
)T

al−1 + bl.

With the activation values zl we can in turn define the output of layer l as
al = f (zl) where f is our activation function. In the examples here we will
use the sigmoid function discussed in our logistic regression lectures. We will
also use the same activation function f for all layers and their nodes. It means
we have

al
j = f (zl

j) =
1

1 + e−(z
l
j)

.

From the definition of the activation zl
j we have

∂zl
j

∂wl
ij
= al−1

i ,

and
∂zl

j

∂al−1
i

= wl
ji.

With our definition of the activation function we have that (note that this func-
tion depends only on zl

j)

∂al
j

∂zl
j
= al

j(1− al
j) = f (zl

j)(1− f (zl
j)).

With these definitions we can now compute the derivative of the cost function
in terms of the weights. Let us specialize to the output layer l = L. Our cost
function is

C(W L) =
1
2

n

∑
i=1

(ŷi − yi)
2 =

1
2

n

∑
i=1

(
aL

i − yi

)2
,

The derivative of this function with respect to the weights is

∂C(W L)

∂wL
jk

=
(

aL
j − tj

) ∂aL
j

∂wL
jk

,

The last partial derivative can easily be computed and reads (by applying the
chain rule)

∂aL
j

∂wL
jk
=

∂aL
j

∂zL
j

∂zL
j

∂wL
jk
= aL

j (1− aL
j )aL−1

k ,
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We have thus
∂C(W L)

∂wL
jk

=
(

aL
j − tj

)
aL

j (1− aL
j )aL−1

k ,

Defining

δL
j = aL

j (1− aL
j )
(

aL
j − tj

)
= f ′(zL

j )
∂C

∂(aL
j )

,

and using the Hadamard product of two vectors we can write this as

δL = f ′(zL) ◦ ∂C
∂(aL)

. (2.50)

This is an important expression. The second term on the right-hand side mea-
sures how fast the cost function is changing as a function of the jth output
activation. If, for example, the cost function doesn’t depend much on a partic-
ular output node j, then δL

j will be small, which is what we would expect. The
first term on the right measures how fast the activation function f is changing
at a given activation value zL

j .
Notice that everything in the above equations is easily computed. In partic-
ular, we compute zL

j while computing the behaviour of the network, and it
is only a small additional overhead to compute f ′(zL

j ). The exact form of the
derivative with respect to the output depends on the form of the cost function.
However, provided the cost function is known there should be little trouble in
calculating

∂C
∂(aL

j )

With the definition of δL
j we have a more compact definition of the derivative

of the cost function in terms of the weights, namely

∂C(ŴL)

∂wL
jk

= δL
j aL−1

k . (2.51)

It is now possible to rewrite our previous equation for δL
j (2.50) as

δL
j =

∂C
∂zL

j
=

∂C
∂aL

j

∂aL
j

∂zL
j

, (2.52)

which can also be interpreted as the partial derivative of the cost function with
respect to the biases bL

j , namely
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δL
j =

∂C
∂bL

j

∂bL
j

∂zL
j
=

∂C
∂bL

j
,

That is, the error δL
j is exactly equal to the rate of change of the cost function

as a function of the bias.
We now have three equations that are essential for the computations of the

derivatives of the cost function at the output layer. These equations are needed
to start the algorithm and they are

∂C(W L)

∂wL
jk

= δL
j aL−1

k , (2.53)

and

δL
j = f ′(zL

j )
∂C
∂aL

j
, (2.54)

and

δL
j =

∂C
∂bL

j
, (2.55)

A consequence of the above equations is that when the activation aL−1
k is small,

the gradient term, that is the derivative of the cost function with respect to
the weights, will also tend to be small. From this we gather that the weight
changes (or "learns") slowly when we minimize the weights via gradient de-
scent.

Another feature is that when the activation function (in this case sigmoid),
is rather flat when we move towards its limit values 0 and 1. In these cases,
the derivatives of the activation function will also be close to zero, meaning
again that the gradients will be small and the network learns slowly again.
We need a fourth equation and we are set. We are going to propagate back-
wards to determine the weights and biases. To do so we need to represent the
error in the layer before the final one L− 1 in terms of the errors in the final
output layer. Replacing the final layer L with a general layer l, we have

δl
j =

∂C
∂zl

j
.

We want to express this in terms of the equations for layer l + 1. Using the
chain rule and summing over all k entries we have

δl
j = ∑

k

∂C
∂zl+1

k

∂zl+1
k

∂zl
j

= ∑
k

δl+1
k

∂zl+1
k

∂zl
j

,
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and recalling that

zl+1
j =

Ml

∑
i=1

wl+1
ij al

i + bl+1
j ,

with Ml being the number of nodes in layer l, we arrive at

δl
j = ∑

k
δl+1

k wl+1
kj f ′(zl

j), (2.56)

The four equations provide us with a way of computing the gradient of the
cost function.

First, we set up the input data x and the activations z1 of the input layer
and compute the activation function and the pertinent outputs a1.

Secondly, we perform the feed-forward until we reach the output layer and
compute all zl of the input layer and compute the activation function and the
pertinent outputs al for l = 2, 3, . . . , L. Next we compute the ouput error δL

by computing all

δL
j = f ′(zL

j )
∂C
∂aL

j
.

Then we compute the back propagate error for each l = L− 1, L− 2, . . . , 2 as

δl
j = ∑

k
δl+1

k wl+1
kj f ′(zl

j).

Finally, we update the weights and the biases using gradient descent for each
l = L− 1, L− 2, . . . , 2 and update the weights and biases according to the rules

wl
jk ←= wl

jk − ηδl
j a

l−1
k ,

bl
j ← bl

j − η
∂C
∂bl

j
= bl

j − ηδl
j ,

The parameter η is the learning parameter discussed in connection with the
gradient descent methods.

2.7.5 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) share quite a few similarities with
ordinary neural networks, and all the concepts developed for neural networks
so far still apply. The difference is that CNNs assume the inputs to be images.

A problem with regular neural networks is that they scale poorly to large
images. As an example, consider an image of size 32× 32× 3 (32 wide, 32 high,
3 color channels), so a single fully-connected neuron in a first hidden layer
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Figure 2.2: A CNN arranges its neurons in three dimensions (width, height,
depth), as visualized in one of the layers. Every layer of a CNN transforms
the 3D input volume to a 3D output volume of neuron activations. In this
example, the red input layer holds the image, so its width and height would
be the dimensions of the image, and the depth would be 3 (Red, Green, Blue
channels). Image borrowed from CS231n’s github page [1] on CNNs

of a regular Neural Network would have 32× 32× 3 = 3072 weights. This
amount still seems manageable, but clearly this fully-connected structure does
not scale to larger images. For example, an image of more respectable size,
say 200× 200× 3, would lead to neurons that have 200× 200× 3 = 120, 000
weights. Adding several such neurons then quickly increases the number of
parameters, which in turn increases the risk of overfitting.
CNNs take advantage of the fact that the input consists of images and they
constrain the architecture in a more sensible way. In particular, unlike a regu-
lar NN, the layers of a CNN have neurons arranged in 3 dimensions: width,
height, depth. (Note that the word depth here refers to the third dimension
of an activation volume, not to the depth of a full NN, which can refer to the
total number of layers in a network.) The above example of an image with an
input volume of activations has dimensions 32× 32× 3 (width, height, depth
respectively). See figure 2.2 for an illustration.

The neurons in a layer will only be connected to a small region of the layer
before it, instead of all of the neurons in a fully-connected manner. Moreover,
the final output layer could for this specific image have dimensions 1× 1× 10,
because by the end of the CNN architecture we will reduce the full image into
a single vector of class scores, arranged along the depth dimension.
A simple CNN is a sequence of layers, and every layer of a CNN transforms
one volume of activations to another through a differentiable function. We use
three main types of layers to build CNN architectures: Convolutional Layer,
Pooling Layer, and Dense (fully connected, exactly as seen in regular Neural
Networks). We will stack these layers to form a full CNN architecture.
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A simple CNN for image classification could have the architecture:

• INPUT (32 × 32 × 3) will hold the raw pixel values of the image, in
this case an image of width 32, height 32, and with three color channels
R,G,B.

• CONV (convolutional )layer will compute the output of neurons that are
connected to local regions in the input, each computing a dot product
between their weights and a small region they are connected to in the
input volume. This may result in volume such as [32× 32× 12] if we
decided to use 12 filters.

• RELU layer will apply an elementwise activation function, such as the
max(0, x) thresholding at zero. This leaves the size of the volume un-
changed ([32× 32× 12]).

• POOL (pooling) layer will perform a downsampling operation along the
spatial dimensions (width, height), resulting in volume such as [16 ×
16× 12].

• DENSE (i.e. fully-connected) layer will compute the class scores, result-
ing in volume of size [1× 1× 10], where each of the 10 numbers corre-
spond to a class score, such as among the 10 categories of the MNIST
images we considered above . As with ordinary Neural Networks and
as the name implies, each neuron in this layer will be connected to all the
numbers in the previous volume.

CNNs transform the original image layer by layer from the original pixel val-
ues to the final class scores. Observe that some layers contain parameters and
other don’t. In particular, the CNN layers perform transformations that are
a function of not only the activations in the input volume, but also of the
parameters (the weights and biases of the neurons). On the other hand, the
RELU/POOL layers will implement a fixed function. The parameters in the
CONV/FC layers will be trained with gradient descent so that the class scores
that the CNN computes are consistent with the labels in the training set for
each image.
For a more in-depth breakdown of convolutional neural networks, we refer to
Stanford’s excellent course CS231n, and their text on CNNs [1].

2.8 Performance metrics

In this thesis, we use Scikit-Learn’s [13] implementations of the metrics out-
lined in this section. To go further into the backround for the chosen metrics,
we need to establish four quantities that appear in most, if not all discussion
of the topic. These are
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• True positive (TP) - Double event classified as double event

• True negative (TN) - Single event classified as single event

• False positive (FP) - Single event classified as double event

• False negative (FN) - Double event classified as single event

Which type of event is "positive" and "negative" is an arbitrary choice. From
these terms we can define some properties of a classifier. Sensitivity (or True
positive rate (TPR), or recall) measures the fraction of positive samples in the
data that are correctly classified as positive.

sensitivity =
number of true positives

number of true positives + number of false negatives
=

TP
TP + FN

Specificity (or True negative rate (TNR)) measures the fraction of negative
samples in the data that are correctly classified as negative.

specificity =
number of true negatives

number of true negatives + number of false positives
=

TN
TN + FP

Precision (or Positive preditive value (PPV)) measures the fraction of samples
classified as positive that are correctly classified.

precision =
number of true positives

number of true positives + number of false positives
=

TP
TP + FP

2.8.1 Accuracy

The accuracy is a well known measure of performance, but not always a good
one. It’s simply the fraction of all samples that were correctly classified. Using
the terms above we have

accuracy =
TP + TN

TP + TN + FP + FN
.

A common challenge in classification is imbalanced data, in which a large
amount of the labeled data belongs to just one or a few of the classes. For
binary classification, if 90% of the data belongs to one of the classes, then the
classifier is likely to end up placing every single input in that class, as it will
bring its accuracy to 90%. Technically, this accuracy is correct, but it’s not very
useful since the decision isn’t at all affected by the features in the input. Accu-
racy alone isn’t a good enough measure of performance to reveal this.
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2.8.2 Confusion Matrix

A confusion matrix is an n by n matrix containing correct classifications on
the diagonal, and false positives and negatives in the off-diagonal elements.
An example of such a matrix could be the following table: In the table above

Predicted Cat Predicted Dog Predicted Rabbit
True Cat 5 3 0
True Dog 2 3 1

True Rabbit 0 2 11

Table 2.1: Confusion matrix for an example classification where the classes
are Cat, Dog and Rabbit. Correct classifications in bold.

(2.1), the diagonal elements i = j are the correct classifications, while the other
elements correspond to cases where the model predicted class j but should’ve
predicted class i. The confusion matrix thus gives information about false pos-
itives and false negatives, in addition to classification accuracy. This is very
useful in cases where for example false positives can be readily ignored or fil-
tered later, but false negatives may have severe consequences. An example of
this could be detection of cancer, in which a false positive can be ruled out from
further testing, while a false negative may lead to a patient being sent home
when actually needing help. For a more in-depth look at confusion matrices
we recommend Fawcett[14].

2.8.3 F1-Score

The F1 score is a also a measure of accuracy of the model, but it accounts for
more than regular accuracy. It is defined as

F1 = 2 · precision · recall
precision + recall

=
TP

TP + 1
2(FP + FN)

,

which is the harmonic mean of precision and recall. Why is this better than
accuracy? By including both precision and recall, you are combining two met-
rics that both tell you something about how good the model is at classifying
your "positive" class.

2.8.4 R2 score

The R2 score ("R squared") or coefficient of determination is widely used in
statistical modeling with the purpose of predicting future outcomes or testing
of hypotheses. It measures how well the observed outcomes are replicated by
the model, based on the proportion of total variation of outcomes explained
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by the model [15]. The score can be negative, and can at most be 1.0, which is
to say that 100% of the variability in the inputs is accounted for.

2.9 Experimental Background

The experiment, which is the topic of analysis in this thesis, was conducted at
the facility for rare isotope beams (FRIB) located on the Michigan State Uni-
versity (MSU) campus. As the name implies, the FRIB offers researchers the
ability to study isotopes far from stability. These isotopes are short-lived, and
not normally occurring. Applications of the studies conducted at the FRIB in-
clude furthering the understanding of nuclear structure, nuclear astrophysics,
and have applications in medicine and industry. Summarized, a few key goals
nuclear physics aims to achieve are

• Comprehensive and predictive model of atomic nuclei

– Evolving structure of atomic nuclei as a function of protons and
neutrons from first principles

• Understanding the origin of the elements

– Explosive nucleosynthesis

• Use of atomic nuclei to test fundamental symmetries

• Search for new applications of isotopes and solutions to societal prob-
lems

Before we delve deeper into the experiment, we outline the nomenclature and
terms used. A nucleus Y has Z protons and N neutrons with a mass of A =
Z + N. This is written as A

ZYN. For a given nucleus there may be several

• Isotopes - nuclei with the same number of protons, but varying number
of neutrons

• Isotones - nuclei with the same number of neutrons, but varying number
of protons

• Isobars - nuclei with the same number of nucleons A

There are several types of decays that can occur within nuclei. Among them
we find:

• Beta decay - β

• Photon decay - γ
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• Alpha decay - α (4He)

• Proton/Neutron decay

• Gamma ray

• Internal conversion electron

This experiment focuses on beta decay, photon decay and internal conversion.
Decays can also occur as chains of decays before a nucleus reaches a stable
state. When measuring decay spectroscopy, there are three primary pieces of
information that we are interested in:

• energy - gives an idea of the energy difference between the initial and
final state for decays with characteristic energies.

• half-lives - what is the time between when a state was populated and
when it was depopulated?

• branching ratios - when there is a choice of final states, we want to know
which states are preferentially populated.

For these experiments, the focus is neutron-rich nuclei. Some conventions and
units used in the experiments are

• Time - can range between picoseconds (10−12s) to years.

– t1/2 - half-life

– λ - decay constants

– τ - lifetime

• Energy - electron Vol (eV) - the energy needed to move an electron across
a potential difference of one volt.

• Branching ratios - given as the percentage chance of the state reaching
each of the possible final states.

Beta Decay

The majority of nuclei decay through beta decay. There are three types:

β− : A
ZZN → A

Z+1YN−1 + e− + ν + Qβ (2.57)

β+ : A
ZZN → A

Z−1YN+1 + e+ + ν + Qβ (2.58)

EC : A
ZZN + e− → A

Z−1YN+1 + ν̄ + Qβ (2.59)

where EC is Electron Capture. These three decays either turn protons into
neutrons, or vice versa. In every case there are neutrinos (ν) being emitted.
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Gamma-ray decay

Decay by photon emission, where a nucleus in some excited state Jπ
i with en-

ergy Ei decays to a lower energy state Jπ
f with energy E f , through the emission

of a photon with energy Eγ. Each state J is characterized by a specific spin and
parity. Gamma-rays must carry away at least one unit of angular momentum,
L, to accomplish such a transition. The amount of angular momentum able to
be carried away is bounded according to

|Ji − J f | ≤ L ≤ Ji + J f (2.60)

Tyically the lowest possible L dominates. We can also characterize these tran-
sitions in terms of their electric or magnetic character, given by

∆π(EL) = (−1)L (2.61)

∆π(ML) = (−1)L+1 (2.62)

Gamma ray decay leads to a characteristic energy representative of the differ-
ence between the initial and final state. We want to measure transition rates.
States always have the potential to decay either through photon or electron
emission. Electron emission dominates at higher Zs and lower energies, but is
in principle always a possibility.

Internal Conversion

The internal conversion process competes with gamma decay. Electromag-
netic interactions between the nucleus and an atomic electron leads to the
atomic electron being ejected from the atom. This happens without the emis-
sion of gamma rays. The energy of the emitted electron can be calculated, and
is given by

EIC = Etransition − Eelectron binding energy (2.63)

This will give a quantized set of possible energies, as the emitted electron can
come from different shells in the atom.

2.9.1 Experiment

Small, inorganic CeBr3 (Cerium Bromide) scintillator. The detector itself is
abobut 3mm thick and a few cm in dimension perpendicular to the beam. Ac-
cellerated ions are stopped in the scintillator (implanted). The central detector
observes ions and decays, of which decays can be any one of gamma rays, beta
decay electrons, or internal conversion electrons.

• The detector is constructed as a 16x16 grid of what we will refer to as
pixels. Note that the scintillator itself is not pixellated, but the Position-
Sensitive Photomultiplier Tube (PSPMT) is.
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• Ions identified event-by-event are implanted in the detector. Position
(which pixel) and arrival time are recorded for all implanted ions.

• Some characteristic time later a decay is detected. Position and time of
decays are recorded.

• Decays are correlated to ions using spatial and temporal information

• Time scales

– Beta decay: 10−3s

– Gamma decay: 10−15 to 10−3s

• Gamma rays coincident with decays are then associated with the decay
of a particular ion

The ability to correlate decays to specific ions is dependent on the rate of ions
implanted. Electrons are typically on the order of a few MeV. Because you
need a fairly large amount of material to completely stop an electron with
energies of 5-10MeV, what is actually detected is the energy left in the detector
by the electron as it passes through.

2.9.2 Data

Examples of detector images generated by both simulations and experiments
are shown in figure 2.3. For both types of data we have selected examples of
single events, and double events that would be considered ’easy’ and ’hard’
to label correctly by eye. This difficulty of labelling or ’classifying’ is expected
to increase as the separation distance between the events decreases. This is es-
pecially apparent in the simulated examples, where the ’hard’ or ’close’ dou-
ble events are near indistinguishable from the single event. Simulated data is
generated using GEANT4 [16], and contains two million simulated single and
double events, balanced at a 50/50 ratio. Positions of origin are uniformly dis-
tributed in the detector image, and event energies are uniformly distributed
between 0 to 1MeV. Pixel intensities range from 0 to 10000.

The experimental data is taken from a recent beta-decay experiment. This
data differs from the simulated data in some ways:

• The positions of events in the detector images are expected to follow a
more gaussian distribution rather than the uniform distribution. This is
due to the nature of the experiment and how the particle beam is formed.

• Energy fluctuations in the scintillator makes experimental data look more
’noisy’ than simulated data.
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Figure 2.3: Sample images from simulated and experimental datasets. The
top row contains simulated samples and the bottom row contains experimen-
tal samples. The labeling as "easy" and "hard" double events is based on ex-
perience from hand-labeling, and theoretical expectations.

• The ratio of single events to double events is not expected to be balanced.
Rather, we expect to see a much larger amount of single events than dou-
ble events.

• Some pixels in the experimental detector images will be set to zero if that
pixel exhibits erratic behaviour. For some specific pixels this is true for
the entire dataset. These pixels are the entire rows 0 and 15, plus pixel
(13,3).

In our analysis of experimental data, we use two datasets. One set of 260147
decay events from a beta-decay experiments, and one set of 100000 decay
events where we have two additional energy-related attributes available. These
are DDAS[17]-energies and fit-energies. Both are measured using the PSPMT
dynode signal. The DDAS energy is the energy provided by the onboard sig-
nal processing algorithms of the DDAS system. It is determined from the dig-
itized detector signal using a trapezoidal filter. The fit energy is determined
offline by analyzing digitized detector signals. The detector signal is modelled
using a constant baseline plus a logistic rise convoluted with an exponential
decay. This model signal is fit to the recorded pulse using standard nonlinear
regression methods, and the fit energy is given by the amplitude of the best fit
to the recorded detector signal.

The relationship between the arbitrary energy values determined by DDAS
or the fitting and real energies define a set of calibration parameters which can
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be compared to calibration parameters determined using source data. Ideally,
the calibration parameters determined using machine learning models and the
calibration parameters determined using source data should be the same or
similar.

2.9.3 Simulated datasets

To explore the effect of some properties found in the experimental data, we
make three simulated datasets. The first (a) without any modifications. The
second (b) is designed to monitor the effects occurrences of ’dead’ pixels in
experimental data may have on model performance. When a pixel is unre-
sponsive or displays otherwise erratic behaviour, the value of that pixel is set
to zero in the given detector image. For some select pixels, this is the case
for the entire dataset. The pixels are the entire top and bottom rows, and the
pixel located at (13,3) when viewing an image as a 16x16 x,y-grid. The third
dataset (c) is designed to monitor any possible bias imposed on the models
when trained on a balanced dataset. As mentioned above, the expectation is
that experimental data largely consists of single decays, with double decays
being much more of a rarity. When training a model on a balanced dataset, we
may impose a bias towards predicting a somewhat balanced amount of each
class. Intentionally reducing the presence of one class in the dataset may pro-
vide some insight into whether or not this happens. In this case, we attempt to
approximate the experimental data by reducing the presence of double decays
to only 5% of the total number of decays.
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The programming language chosen for implementing experiments per-
formed in this thesis is Python. Python has quickly grown to become one
of the most popular languages overall, and especially in the machine learning
community. Together with its extensive amount of available libraries, it allows
for fast prototyping of solutions, and excellent readability. For machine learn-
ing purposes there are several libraries commonly used in the natural sciences.
The code developed for data processing and analysis in the thesis is available
in two GitHub repositories:

• https://github.com/geirtul/master_analysis contains scripts and note-
books used in analysis of the data, as well as trained models and experi-
ment logs.

• https://github.com/geirtul/master_scripts contains an installable python
module with data import scripts and various helper functions used by
the analysis repository.

Additionally, for a briefer overview and introduction to analysis of beta-decay
data using machine learning we have made a smaller example repository avail-
able at https://github.com/geirtul/event_classification_example. The choice
to use a version control system such as GitHub stems from one of science’s
fundamental principles - reproducibility. The code is freely available for any-
one to inspect and use.

3.1 TensorFlow

The TensorFlow[18] library is developed by Google, and is one of the most
used libraries for machine learning in Python. It allows for designing complex
learning algorithms efficiently, and also includes the Keras API[19], allowing
easy-to-follow implementations of standard architectures and pipelines. Us-
ing this API, with TensorFlow as the backend framework, we build and train
all models in this thesis.

3.2 Building and training a model

Building a machine learning model using TensorFlow and Keras is a straight-
forward process. By utilizing the Sequential class, we can stack the desired lay-
ers with given properties, and TensorFlow takes care of the rest.

impor t numpy as np
from t e n s o r f l ow . k e r a s . models impor t S e q u e n t i a l
from t e n s o r f l ow . k e r a s . l a y e r s impor t Dense , I npu tLay e r
from s k l e a r n . mode l_se l e c t i on impor t t r a i n_ t e s t_ s p l i t

https://github.com/geirtul/master_analysis
https://github.com/geirtul/master_scripts
https://github.com/geirtul/event_classification_example
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from s k l e a r n . me t r i c s impor t accuracy_score , f1_score
from he l p e r_ f un c t i o n s impor t normal ize_image_data

# Load images and l a b e l s .
DATA_PATH = " . . / data /"
images = np . l oad (DATA_PATH+" image s_t r a i n i ng . npy" )
l a b e l s = np . l oad (DATA_PATH+" l a b e l s_ t r a i n i n g . npy" )

# Dense l a y e r r e q u i r e s one� d imen s i o n a l i n p u t s .
images = images . r e shape ( images . shape [ 0 ] , 256)

# S p l i t data i n t o t r a i n i n g and v a l i d a t i o n
x_idx = np . a range ( images . shape [ 0 ] )
t r a i n_ idx , va l_idx , not_used1 , not_used2 = t r a i n_ t e s t_ s p l i t (

x_idx , x_idx , t e s t_ s i z e = 0.25
)

# I n i t i a l i z e the S e q u e n t i a l model
model = S equ e n t i a l ( )
# Add Inpu t l a y e r
model . add ( I npu tLay e r ( input_shape=( images . shape [ 1 ] , ) ) )
# Add h idden l a y e r
model . add ( Dense (64 , a c t i v a t i o n=' r e l u ' ) )
# Add output l a y e r .
model . add ( Dense (1 , a c t i v a t i o n=' s i gmo id ' ) )

# F i n a l l y , comp i l e the model and p r i n t a summary .
# Loss f u n c t i o n and o p t im i z e r i s s e t du r i n g c omp i l a t i o n .
model . comp i l e (

l o s s=' b i n a r y_c r o s s e n t r op y ' ,
o p t im i z e r='adam ' ,
me t r i c s =[ ' a c cu racy ' ]

)
model . summary ( )

# Set pa ramete r s f o r t r a i n i n g
epochs = 20
batch_s i ze = 32
# The v a l i d a t i o n_da t a keywork e xp e c t s a ' t u p l e ' ( val_x , val_y )
# so we make one on the f l y
h i s t o r y = model . f i t (

x=normal ize_image_data ( images [ t r a i n_ i d x ] ) ,
y=l a b e l s [ t r a i n_ i d x ] ,
v a l i d a t i o n_da t a=(normal ize_image_data ( images [ va l_ idx ] ) ,

l a b e l s [ va l_ idx ] ) ,
epochs=epochs ,
ba tch_s i ze=batch_s ize ,

)

# P r e d i c t on the v a l i d a t i o n s e t
pred = model . p r e d i c t ( [ normal ize_image_data ( images [ va l_ idx ] ) ] )
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# Conver t s i gmo id v a l u e s from p r e d i c t i o n to i n t e g e r s so i t
works w i th the f u n c t i o n .

r e s u l t = pred > 0 .5

# Ca l c u l a t e the f 1 s c o r e f o r e v a l u a t i o n
f1 = f1_score ( l a b e l s [ va l_ idx ] , r e s u l t )

Listing 3.1: End-to-end example of building, training, and evaluating a
model.

An end-to-end example of how to build, train and evaluate a model using a
small sample of simulated data is shown in 3.1.

3.3 Pretrained network and feature extraction

A common strategy when working with representation- or transfer learning,
is to use a pretrained model. State-of-the-art (SOTA) models typically require
enormous hardware resources and considerable time to train, but simply pass-
ing inputs through them without any backpropagation does not. They are
trained on millions of inputs, and we seek to exploit their ability to generalize.
The SOTA models serve as feature extractors, and we train our own, more spe-
cialized models to make predictions from the extracted features. Many such
models are available through the Keras API, and we have used parts of VGG16
[20] as part of this feature extraction. The steps involved are as follows:

• Initialize a Sequential model like shown in 3.1.

• Add an InputLayer suited to our inputs to the model. In our case this is (16,
16, 3) because VGG16 is trained on RGB images. Our images only have
one channel, but we can create ’pseudo-channels’ by concatenating our
images along the last axis.

• Loop over layers in the pretrained VGG16 model, adding them one by
one to our Sequential model until the maximum number of layers have
been added. Due to MaxPooling2D layers, which cut the size of the inputs
to the next layer in half, the number of layers we can use is lower than
the number of layers in the full VGG16 model.

• Set each extracted layer’s trainable attribute to False. We don’t want to
adjust weights in this large, complex network.

• Add a Flatten layer, which creates a one-dimensional vector of the ex-
tracted features.

• Add a desired number of Dense layers to build a top-level network which
will take the extracted features as input.
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We are essentially treating the SOTA model’s layers as a good initialization for
our final model.

3.4 Data separation

Separating our data into two sets with no overlap allows us to make an es-
timate of our models’ performance in the real world, on so-called ’out-of-
sample’ data. This relates closely to the concepts of over- and underfitting.
Neither the models, nor ourselves, will see the split off dataset until all op-
timization and training is completed. This way, leakage of information from
what should be the out-of-sample dataset is prevented, and a better perfor-
mance estimate is reached. In this thesis we use three terms for datasets -
training, validation, and test. The test set is the data which is hidden away
until we have done all we can to optimize our models. The training data is the
rest, which when split into K folds for cross-validation serves as K− 1 folds of
training data, and 1 fold as vaildation data.
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The first task we face is whether or not we can use machine learning algo-
rithms to separate two types of events in a simulated nuclear physics dataset.
This being possible is the minimum requirement a model must meet if we are
to apply it to experimental data. We present the results of training five differ-
ent models on three simulated datasets, as described in section 2.9.2). Perfor-
mance is measured using the F1 score and confusion matrix. The models range
from the simple logistic regressor, to a deeper CNN architecture with multiple
layers. Additionally, we include a model based on VGG16, as outlined in sec-
tion ??, fine-tuned on simulated data. Somewhat separate from classification,
our second objective is predicting positions of origin and energies associated
with events in the dataset. We follow the same strategy as for classification,
with the logistic model replaced by a linear regressor. The same minimum
requirement is valid for regression - models trained on simulated data must
be able to make reasonable predictions. By ’reasonable’ we mean ’better than
random guessing’. For this task the performance is measured using the R2
score. The variability in results is estimated using a K-fold cross-validation
approach, with K = 5 [21]. As a quick recap, the three simulated datasets
mentioned are:

a) No changes.

b) Select pixels set to zero throughout the dataset.

c) Select pixels set to zero throughout the data, and an imbalanced number
of single and double decays (reduced amount of double decays).

The machine learning experiments conducted in this thesis were performed
using the AI-Hub computational cluster at the University of Oslo. This re-
source consists of three machines with four RTX 2080 Nvidia GPU’s (graphics
processing unit) each. These cards have 10GB of memory available for the
allocation of models.

4.1 Preliminary analysis

We begin by looking into the simulated data, more specifically looking for
correlations in the energies and pixel intensities. Note that these results are
generated using dataset (a). In figure 4.1 we show the correlation matrix for
simulated single and double decays. For single decays, there is a strong cor-
relation between the energy of the event, the sum of intensities in an image,
and also between the event energy and the intensity of the highest intensity
pixel. The correlation matrix for double events shows similar results. The
same, strong correlation is found for E1 + E2 in double decays as for E1 in
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Figure 4.1: Correlation matrices for simulated data, separated into single and
double decays. E1 and E2 are the energies corresponding to event 1 and
event 2 in simulated data. For single events there is no event 2. Sum(image)
is the sum of all intensities per image in the dataset. HIP is short for Highest
Intensity Pixel value.

single decays. That is, the total energy in an event is strongly correlated with
the total intensity of pixels in the image.
Next, we investigate some directly comparable quantities shared by simulated
and experimental data. The distributions of total intensity and highest inten-
sity pixels in images are shown in figure 4.2. To relate these distributions more
closely to the models themselves, the distributions are generated after normal-
ization of the images. As such, these distributions are what the models ’see’.
Looking to the top left in figure 4.2 there are a fairly large amount of experi-
mental decays with higher total intensity than what is present in the simulated
data. In the bottom left plot, it is also clear that there is a point where simu-
lated single and double decays no longer overlap in total intensities. For the
right-hand plots of highest intensity values, there is no such clear difference
between the datasets. To provide another point of view for this difference, we
plot the total intensity in images as a function of the highest intensity in the
images. The plot is shown in figure 4.3, along with linear fits to the data. There
is a clear difference between the datasets in that the experimental data has a
higher total intensity. We will come back to these results as we review model
performance on experimental data.
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Figure 4.2: Distributions of total pixel intensities and highest intensities in
experimental and simulated decays. Top row compares experimental decays
and all simulated decays. The bottom row shows the same distributions, but
with simulated decays split into single and double events. The calculations
are done post normalization, so the maximum possible intensity is 1.0.
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in the same image, for both experimental and simulated decays. Linear fits
give slopes of aexperimental = 36.05 and asimulated = 11.69.
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4.2 Classification

4.2.1 Classification on simulated data

In table 4.1 the performance of each model is reported through the estimated
F1-score, for each of the datasets. As a benchmark for transfer learning, we
are including a model based on a state of the art pretrained network[20], as
outlined in section 3.3. In in figure 4.4, we show the confusion matrix for pre-
diction on test set data for all the models, including normalized values for
each event type. . The F1-scores show decreasing performance for most mod-
els when applying modifications to the unmodified simulated dataset. When
training on an intentionally imbalanced dataset the models without CNN ar-
chitectures show a steep decrease in performance. Considering the confusion
matrix we see that the logistic regressor and dense network suffer from pre-
dicting mostly every sample to be single events. Looking back to the F1-scores
again, there is not a significant increase in performance between the CNN
and the Custom model on unmodified data, but the custom model performs
strongly across all datasets, with a low amount of misclassified events relative
to the other models. Again looking at the confusion matrices (figure 4.4), Dou-
ble decays are more often misclassified as single than the opposite. Next, we
apply the ’classifiers’ to experimental data.

4.2.2 Classification on experimental data

Classification of experimental data poses a different set of challenges when it
comes to evaluating our results. We currently only have a small number of
events that are hand labelled as double events, which may be used as a form
of verification. As mentioned in section 2.9, we expect the number of double
events in the experimental data to be much lower than single events. Inspect-

Table 4.1: Test set F1-scores for classification of simulated datausing multiple
models. Models are trained on a) unmodified data, b) data where specific
pixels are set to zero to mimic ’dead’ pixels in experimental data, and c) same
as b) and imbalanced to mimic experimental data. Error estimates are the
standard deviation in results from k-fold cross-validation with K = 5 folds.

Logistic Dense CNN Pretrained Custom

F1-score (a) 0.738
±7.528× 10−3

0.84
±3.837× 10−2

0.917
±1.475× 10−2

0.97
±4.348× 10−1

0.969
±2.374× 10−2

F1-score (b) 0.733
±2.298× 10−3

0.732
±7.453× 10−2

0.796
±2.310× 10−2

0.966
±3.070× 10−3

0.932
±7.587× 10−3

F1-score (c) 0.294
±8.437× 10−2

0.302
±8.949× 10−2

0.831
±1.535× 10−2

0.928
±3.948× 10−2

0.968
±1.238× 10−1
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Figure 4.4: Confusion matrices for each model trained on simulated data. For
each model and dataset, the number of events and ratio of each event type
are given. a) unmodified data. b) select pixels set to zero. c) Same as in b)
with the intentionally imbalanced.
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Table 4.2: Decay event classification on experimental data, with models
trained on: a) unmodified data, b) data where specific pixels are set to zero to
mimic ’dead’ pixels in experimental data, and c) same as b) and imbalanced
to mimic experimental data. The numbers are shown as the normalized ratio
of predicted event type, with the actual amount of events predicted of that
type below.

Single (a) Double (a) Single (b) Double (b) Single (c) Double (c)

Logistic 0.367
95 565

0.633
164 582

0.375
97 629

0.625
162 518

0.537
139 578

0.463
120 569

Dense 0.357
92 920

0.643
167 227

0.375
97 498

0.625
162 649

0.536
139 405

0.464
120 742

CNN 0.240
62 359

0.760
197 788

0.213
55 512

0.787
204 635

0.226
58 870

0.774
201 277

Pretrained 0.207
53 837

0.793
206 310

0.186
48 449

0.814
211 698

0.225
58 534

0.775
201 613

Custom 0.078
20 219

0.922
239 928

0.069
17 859

0.931
242 288

0.113
29 441

0.887
230 706

ing the ratio of predicted singles to predicted doubles can then be an initial
indication of how a model is performing. It is, however, not conclusive. Cor-
rectly classified hand labelled events are another indication, but is also not
conclusive. In table 4.2, the ratios of predicted singles to predicted doubles are
presented for each model trained on each dataset. The actual number of pre-
dictions for each class are included below the ratios. Overall there is a strong
preference for classifying events as double decays. This makes the validation
using hand labelled doubles in table 4.3 somewhat moot, since it is hard to
attribute these ’correct’ classifications to the models’ ability to recognize the
double decays. As the number of events is large, manual inspection of each
predicted class is not feasible. In figure 4.5 we show the fraction of predicted
single events in experimental data as a function of total intensity in each im-
age. Regardless of which simulated dataset a model is trained on, the majority
of single events are predicted at low total intensites. The only exception to this
is the Dense model trained on dataset c. Keep in mind, however, that the total
intensities for experimental data span from 0 to 18 (see figure 4.2). To further
prod this apparent trend, we perform a simple test using the Custom model
trained on dataset b. For a set of single events for which we know the model
has good performance, we multiply the image intensities with a scaling factor
from 0-10. The aim is to see the effect of increasing total intensity in images on
the classification accuracy. The result is shown in figure 4.6. From this figure,
there is a clear trend towards a lower fraction of events correctly classified as
single decays when the intensities in images increases. Note that at a scaling
factor of 4 the total intensities in the simulated images approach the highest
total intensities in the experimental decay data.
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Table 4.3: Decay event classification on 17 labeled samples of experimental
data. The 17 samples are all labeled as double events. Models are trained on
simulated data with a varying degree of modification: a) unmodified data, b)
data where specific pixels are set to zero to mimic ’dead’ pixels in experimen-
tal data, and c) same as b) and imbalanced to mimic experimental data. The
numbers are shown as the normalized ratio of predicted event type, with the
actual amount of events predicted of that type below.

Single (a) Double (a) Single (b) Double (b) Single (c) Double (c)

Logistic 0.000
0

1.000
17

0.000
0

1.000
17

0.000
0

1.000
17

Dense 0.000
0

1.000
17

0.000
0

1.000
17

0.000
0

1.000
17

CNN 1.000
17

0.000
0

0.000
0

1.000
17

0.235
4

0.765
13

Pretrained 0.000
0

1.000
17

0.000
0

1.000
17

0.000
0

1.000
17

Custom 0.000
0

1.000
17

0.000
0

1.000
17

0.000
0

1.000
17
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Figure 4.5: Fraction of predicted singles as a function of total intensity in
images, for each model trained on simulated data. a) unmodified data. b)
select pixels set to zero. c) Same as in b) with the intentionally imbalanced.
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Figure 4.6: Fraction of simulated single events correctly classified as a func-
tion of scaling factor used to increase the total intensity in simulated decays.
In the title of each plot is the dataset the models were trained on. The dataset
used for prediction is dataset a.

4.3 Regression

Assuming data has already been classified, we aim to predict the energy of the
decays and their position of origin. Because there is a travel distance between
the ejection site and the point the energy is deposited, the positions aren’t nec-
essarily the locations of the highest-intensity pixels in the detector images. Our
hypothesis is then that there are sufficient structures and spacial relationships
in the detector images to allow a model to determine these positions. Note that
for regression the models are trained on single or double events exclusively. A
consequence of this is that for dataset c the set of single events is identical to
that of set b, causing near-identical results between these two sets.

4.3.1 Position of origin

In table 4.4 we present the R2-scores for all models trained on simulated data.
All but the simple linear regressor perform excellently. Notably, there is lit-
tle decrease in R2 scores when modifying the training data (datasets b and c).
In table 4.5 we show the mean errors in mm. Here we do see a decrease in
performance from added modification to training data. The pretrained model
sticks out as the more stable of the architectures, and is overall the highest per-
forming model. All the CNN architectures predict with sub-pixel accuracy. In
the case of regression on double events, none of the models accurately predict
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Table 4.4: Test set R2-scores for regression of positions of origin on simu-
lated data, with models trained on data with: a) no modifications, b) specific
pixels set to zero to mimic experimental data, and c) imbalanced dataset in
addition to modifications in b) to further mimic experimental data. Error es-
timates are the standard deviation in results from validation data in k-fold
cross-validation with K = 5 folds.

Linear Dense CNN Pretrained Custom

Single (a) 0.8
±2.889× 10−3

0.988
±7.007× 10−4

0.997
±9.207× 10−4

0.997
±2.229× 10−1

0.999
±1.366× 10−4

Single (b) 0.781
±2.749× 10−3

0.982
±1.406× 10−3

0.98
±1.110× 10−3

0.997
±4.513× 10−4

0.995
±9.603× 10−4

Single (c) 0.781
±2.749× 10−3

0.982
±1.424× 10−3

0.98
±1.080× 10−3

0.997
±4.932× 10−4

0.993
±1.639× 10−3

Double (a) 0.37
±3.766× 10−3

0.456
±5.601× 10−3

0.471
±1.603× 10−3

0.29
±1.552× 10−1

0.493
±3.467× 10−4

Double (b) 0.364
±6.815× 10−4

0.458
±3.431× 10−3

0.435
±1.835× 10−3

0.289
±1.550× 10−1

0.489
±2.865× 10−4

Double (c) 0.357
±7.768× 10−3

0.417
±9.456× 10−3

0.442
±2.507× 10−3

−0.924
±8.452× 10−1

0.478
±4.187× 10−3

Table 4.5: Test set mean error converted to mm for regression of positions
of origin on simulated data, with models trained on data with: a) no mod-
ifications, b) specific pixels set to zero to mimic experimental data, and c)
imbalanced dataset in addition to modifications in b) to further mimic ex-
perimental data. Error estimates are the standard deviation in results from
validation data in k-fold cross-validation with K = 5 folds.

Linear Dense CNN Pretrained Custom

Single (a) [mm] 5.68
±6.427× 10−1

1.36
±3.382× 10−1

0.699
±3.843× 10−1

0.676
±5.990

0.378
±1.477× 10−1

Single (b) [mm] 5.95
±6.824× 10−1

1.7
±4.791× 10−1

1.81
±4.221× 10−1

0.707
±2.694× 10−1

0.904
±3.938× 10−1

Single (c) [mm] 5.95
±6.824× 10−1

1.7
±4.820× 10−1

1.79
±4.164× 10−1

0.723
±2.817× 10−1

1.03
±5.147× 10−1

Double (a) [mm] 10.1
±7.746× 10−1

9.37
±9.506× 10−1

9.25
±5.069× 10−1

10.7
±5.002

9.05
±3.342× 10−1

Double (b) [mm] 10.1
±3.748× 10−1

9.36
±7.344× 10−1

9.55
±5.014× 10−1

10.7
±4.999

9.09
±2.491× 10−1

Double (c) [mm] 10.2
±1.299

9.7
±1.345

9.49
±8.811× 10−1

17.6
±1.171× 101

9.18
±1.033
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Table 4.6: Mean distances of predicted position of origin on experimental
decays to the center of highest intensity pixel (HIP).Models trained on data
with: a) no modifications, b) specific pixels set to zero to mimic experimental
data, and c) imbalanced dataset in addition to modifications in b) to further
mimic experimental data.

Mean distance [mm] Standard Deviation [mm]

LinReg (a) 17.61 9.19
Dense (a) 16.89 13.06
CNN (a) 12.53 7.98
Pretrained (a) 4.59 3.31
Custom (a) 3.88 3.04
LinReg (b) 17.49 8.93
Dense (b) 13.80 10.40
CNN (b) 12.49 8.73
Pretrained (b) 4.80 2.99
Custom (b) 3.50 3.02
LinReg (c) 17.49 8.93
Dense (c) 13.79 10.40
CNN (c) 12.40 8.71
Pretrained (c) 4.66 2.94
Custom (c) 3.48 2.91

positions of origins for both events. The models predict positions on average
9 mm off, which is roughly equal to three pixel-widths. In the absence of true
positions for experimental decays, we rely on other ways to estimate how re-
gression models perform. In figure 4.7 we look at how the predicted positions
are distributed around the highest intensity pixel in each experimental decay
event. As a comparison, we plot the same distribution using true values for
positions in simulated single decay events. We can see that the distributions
overlap quite well up until their respective peaks. Predictions on experimental
decays have a wider distribution than the target data, but as we’ve seen in the
classification results this difference in distributions is not a unique case.

4.3.2 Energy

In table 4.7 we show the R2-scores for all models trained on simulated data.
Performance when predicting single energies is across the board lower than
what we saw for positions of origin. On unmodified data, the models are to
a large degree able to predict energies, with R2-scores of 0.93 and above. For
the modified datasets the CNN suffers greatly and isn’t able to account for
variances in the data at all. Other models see a less severe effect. In general,
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Figure 4.7: Distribution of distances between predicted positions of origin
and the highest intensity pixel(HIP) in the corresponding images. The model
was a custom cnn architecture, trained on dataset c. The simulated single
decay distribution is generated with the true potitions of the events, not pre-
dicted ones.

the degree of explained variance is considerably reduced when ’dead’ pixels
are introduced. The same effect is seen in the mean errors shown in table 4.8.
With no modifications to the training data, the custom model predicts energies
with an error of 0.07MeV, with the other models close behind. For modified
data and double events the error is doubled or more.

Due to the poor performance of models trained on simulated double events,
and the expected low frequency of double events in the experimental data, we
only apply models trained on simulated single events. From figure 4.1, we
know that total image intensity and energy are closely correlated for simulated
data, and from R2 scores shown in table 4.7 that goodness of fit decreases with
added ’dead’ pixels. Without true values for energies in experimental data,
we show in figure 4.8 the related quantities for experimental decays. Total
image intensity decreases with increasing number of pixels with value zero,
as expected. The predicted energy follows this same trend very closely. The
’peaks’ in the plots correspond to events where there are a fairly large amount
of ’dead’ pixels, but the decay was registered in a region of the detector with
few such pixels. We also calculate the correlation coefficients between total
image intensity and predicted energy for all models applied to experimental
data. For all models, the correlation coefficients range from 0.95 to 0.999.
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Table 4.7: Test set R2-scores for regression of energies on simulated data, with
models trained on data with: a) no modifications, b) specific pixels set to zero
to mimic experimental data, and c) imbalanced dataset in addition to mod-
ifications in b) to further mimic experimental data. Error estimates are the
standard deviation in results from validation data in k-fold cross-validation
with K = 5 folds.

Linear Dense CNN Pretrained Custom

Single (a) 0.932
±3.334× 10−2

0.934
±3.623× 10−2

0.937
±4.088× 10−2

0.926
±3.761× 10−2

0.944
±2.997× 10−2

Single (b) 0.768
±2.459× 10−2

0.745
±2.222× 10−2

0.48
±2.575× 10−2

0.781
±1.948× 10−2

0.752
±3.167× 10−2

Single (c) 0.768
±2.459× 10−2

0.745
±2.223× 10−2

0.432
±2.522× 10−2

0.781
±1.955× 10−2

0.724
±2.956× 10−2

Double (a) 0.49
±3.349× 10−2

0.49
±3.084× 10−2

0.488
±4.130× 10−2

0.489
±3.138× 10−2

0.491
±3.618× 10−2

Double (b) 0.485
±3.157× 10−3

0.487
±2.347× 10−3

0.478
±7.096× 10−3

0.489
±4.508× 10−3

0.464
±3.659× 10−3

Double (c) 0.434
±4.611× 10−2

0.422
±4.583× 10−2

0.446
±4.554× 10−2

0.417
±3.868× 10−2

0.401
±4.802× 10−2

Table 4.8: Test set mean error converted to mm for regression of energies
on simulated data, with models trained on data with: a) no modifications,
b) specific pixels set to zero to mimic experimental data, and c) imbalanced
dataset in addition to modifications in b) to further mimic experimental data.
Error estimates are the standard deviation in results from validation data in
k-fold cross-validation with K = 5 folds.

Linear Dense CNN Pretrained Custom

Single (a) [MeV] 0.0756
±5.276× 10−2

0.0742
±5.499× 10−2

0.0725
±5.841× 10−2

0.0789
±5.603× 10−2

0.0683
±5.001× 10−2

Single (b) [MeV] 0.139
±4.519× 10−2

0.146
±4.296× 10−2

0.209
±4.624× 10−2

0.135
±4.021× 10−2

0.144
±5.129× 10−2

Single (c) [MeV] 0.139
±4.519× 10−2

0.146
±4.296× 10−2

0.218
±4.576× 10−2

0.135
±4.029× 10−2

0.152
±4.955× 10−2

Double (a) [MeV] 0.206
±5.286× 10−2

0.206
±5.074× 10−2

0.207
±5.862× 10−2

0.207
±5.116× 10−2

0.206
±5.496× 10−2

Double (b) [MeV] 0.207
±1.613× 10−2

0.207
±1.421× 10−2

0.209
±2.393× 10−2

0.207
±1.992× 10−2

0.212
±1.684× 10−2

Double (c) [MeV] 0.217
±6.176× 10−2

0.22
±6.157× 10−2

0.215
±6.134× 10−2

0.221
±5.645× 10−2

0.223
±6.307× 10−2
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Figure 4.8: Top: Total image intensities as a function of number of pixels
with intensity zero in images. Bottom: Predicted energy for experimental
decays events as a function of number of pixels with intensity zero in images.
The model used for predictions is the Custom architecture model trained on
dataset b.



58 Results Chapter 4

Table 4.9: Slopes from 1st order polynomial fit of predicted energies vs.
DDAS energies and predicted energies vs. fit energies. a, b, and c specify
which simulated dataset the models were trained on. Keep in mind that all
these models were trained exclusively on single decay events, thus making
dataset b and c identical in which samples models are trained on.

Linear Dense CNN Pretrained Custom

aDDAS (a) 9.12× 10−5 8.90× 10−5 9.30× 10−5 3.63× 10−5 8.80× 10−5

aDDAS (b) 8.40× 10−5 8.16× 10−5 8.47× 10−5 3.20× 10−5 6.40× 10−5

aDDAS (c) 8.40× 10−5 8.15× 10−5 8.53× 10−5 3.20× 10−5 1.02× 10−4

a f it (a) 2.75× 10−4 2.69× 10−4 2.81× 10−4 1.10× 10−4 2.66× 10−4

a f it (b) 2.53× 10−4 2.46× 10−4 2.55× 10−4 9.64× 10−5 1.93× 10−4

a f it (c) 2.53× 10−4 2.46× 10−4 2.57× 10−4 9.64× 10−5 3.07× 10−4

By fitting straight lines,

Predicted energy = aDDAS × EDDAS + b (4.1)
Predicted energy = afit × E f it + b (4.2)

we can compare the slopes aDDAS and afit with calibration constants (see sec-
tion 2.9.2) to determine if our models are predicting reasonable energies. The
slopes from fitting a 1st order polynomial to the data are shown in table 4.9.
Overall most models show similar slopes within training on the same dataset.
The pretrained model, however, shows lower slopes in all cases.
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5.1 Classification

With the goal of classifying experimental decay data, we set a minimum re-
quirement of first showing that machine learning algorithms can classify sim-
ulated decay events. From the F1 scores shown in table 4.1 we can see that
classification of simulated events is possible. There is a clear performance gap
between CNN-based architectures and the logistic regressor and dense neural
network. This gap may be expected, as CNN’s are specifically designed for
machine learning involving images. Of the CNN architechtures, the deeper
architectures (Custom (7), Pretrained (8)), show less decrease in performance
when trained on datasets with ’dead’ pixels and imbalanced representation of
classes. When training models on an imbalanced dataset these deeper models
also appear less prone to simply classify most of events as one class. In figure
4.4 we can see that this is the case for the logistic and dense models.

With the ability to classify simulated events as either single or double decays,
we then applied the models trained on simulated data to experimental data.
Lacking true labels for experimental data, we look to other expecations, such
as the fraction of events predicted as single and double decays, shown in table
4.2. Our expectation is that there is a much larger amount of single decays
present in experimental data than double decays. In light of this expectation,
the models’ performance is not very good. The models performing best on
simulated data predict up to 90% or more of the experimental decays to be
double decays. This is also the case for models trained on dataset c (imbal-
anced). In figure 4.2 we saw that there is a difference in total intensity between
simulated decays and experimental decays. The experimental decays range
higher in total intensity, and in figure 4.3 we also see that a higher maximum
intensity in an experimental event corresponds to a higher total intensity than
for simulated events. Additionally, the fraction of predicted single events as a
function of total intensity in images which we show in figure 4.5, indicate that
most single events are predicted for low total intensities in images. In fact,
single events are predicted almost exclusively in the region of total intensity
where single events are distributed in simulated data. We also concider the
trend of decreased fraction of correctly classified single decays in simulated
data, presented in figure 4.6. Together, this difference between simulated and
experimental data may partially explain why a lot of events are classified as
double decays.
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5.2 Regression

5.2.1 Positions of origin

With the R2 scores shown in table 4.4, and mean errors from table 4.8, pre-
diction of positions of origin seems highly successful for simulated single de-
cays. The portion of explained has low variance with added modifications to
the training data, although the mean error increases with added ’dead’ pixels.
This is to some degree to be expected, as this also degrades the information
in the image. In spite of these modifications, models are still able to predict
positions of origin with sub-pixel width accuracy for all simulated datasets.
Without access to something akin to true positions for experimental decays,
properly determining performance is not currently possible. Viewing the dis-
tributions of distances from the highest intensity pixel in figure 4.7 indicates at
least that models predict reasonable positions. This distribution must be taken
with a grain of salt, however. When the number of ’dead’ pixels in images in-
crease, the likelihood of the model seeing the ’true’ highest intensity pixel de-
creases. That is, with increasing numbers of ’dead’ pixels, the probability that
the model is not predicting the position of the actual origin increases. Consid-
ering the mean distances and their standard deviations shown in table 4.6, it
is clear that overall the pretrained and custom models outclass the others in
this task. Note, however, the standard deviations in the mean distances from
the highest intensity pixel are almost the size of the mean, indicating wider
distributions.

5.2.2 Energy

Based on scores shown in table 4.7 and mean error from 4.8, prediction of ener-
gies from simulated events is indeed possible. With the energy being strongly
correlated with total intensity in the detector images, we expect the introduc-
tion of ’dead’ pixels to have a greater impact on energy prediction than for
positions, and based on the R2 scores (table 4.7) this seems to be the case. This
sensitivity to ’dead’ pixels may be detrimental to prediction on experimental
data. In figure 4.8 we see that the predicted energies on experimental decays
vs number of ’dead’ pixels closely follows the trend of total image intensity.
This likely indicates that the strong correlation between total image intensity
and energy found in simulated data is preserved through to predicted energies
on experimental decays. This also means that when the number of pixels with
value zero increases, it is crucial to know whether that is because of no de-
tected energy or erratic behaviour. Otherwise you cannot determine whether
the prediction is that of the event itself, or simply a function of the sum of the
inputs. With the sharp decrease in explained variance seen in the R2-scores,
energy prediction for experimental decays using models trained on simulated
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data is likely not particularly successful in this case. This is further supported
by the calculated slopes (’calibration constants’) based on predicted energies
shown in table 4.9. A current working hypothesis is that the simulation data
used to train the models probably predicted too many photons per unit en-
ergy. This would partly explain good predicted energies for simulated data
and poor predicted energies for the real data compared with calibration pa-
rameters based on source data.
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In this thesis, we have applied supervised machine learning algorithms to
simulated and experimental nuclear physics data. With the goal of leverag-
ing the exact knowledge of properties in simulations to extract vital patterns
and representations, we trained models to classify simulated decay events as
either ’single’ or ’double’, and to predict the energy and positions of origin
for events. To determine the effects of some properties of the experimental
data, we prepared additional simulated datasets where we incorporated these
properties. They were so-called ’dead’ pixels in specific locations, and imbal-
anced class distribution. We found that for simulated data a Convolutional
Neural Network-based architecture is highly successful in the classification of
events across all the prepared datasets, with F1 scores up to 0.97. This is not
the case for the ’simpler’ logistic and dense models, which suffer from the in-
cluded properties in the datasets. Classification on experimental data was not
found to be successful, regardless of model performance on simulated data.
The models overall predict half or more of the events (up to 90%) to be dou-
ble event. This may be partly explained by a difference in total intensity, or
deposited energy, between simulated and experimental data. We observe a
trend across all models and training data, that when classifying experimental
decay events, most all event classified as single are in the lower regime of total
intensities. We observe the same trend if we classify simulated data where all
pixel intensities are scaled up.

We successfully trained models to predict positions of origin for simu-
lated single decay events, with R2 scores of 0.99 and above for all simulated
datasets. However, we were unable to predict positions of origin for simu-
lated double decay events with any degree of precision. We found the same
problem when predicting energies, and energy prediction was also sensitive
to the modifications in the data. A likely cause of this sensitivity may be the
strong correlation between energy and total pixel intensity in detector images,
and the modifications effectively acting as removal of information.

Without true positions for experimental data to directly test the models
against, making any strong conclusions for these results is hard. Proper verifi-
cation of performance will have to wait until researchers can test the predicted
positions on source data from the experiment. However, we find that the po-
sitions predicted seem within reasonable limits, compared with what is seen
in simulated data. There is a risk that when the number of ’dead’ pixels in a
detector image increases, the positions predicted may not be positions of the
event itself, rather a position based on the remaining information in the image.

We found similar results when predicting energies for experimental de-
cays. Preliminary comparisons with experimental calibration constants indi-
cate that the predictions are not good on experimental decays. The working
theory is that the simulated training data predicts too many photons per unit
energy, resulting in the knowledge from simulated data not being transferable
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to the experimental domain.

6.1 Future work

From the results found in this thesis, there may be grounds to adjust simu-
lations based on experimental data, or post-process the simulated datasets to
better represent the experiment. Another option could be to invest in hand
labelling an experimental dataset which can be used to tune the models used
in this thesis. This could also allow for estimating upper and lower bounds
for the Receiver Operating Characteristic [22], which we have not used in this
thesis. As the effect of pixels being set to zero value is detrimental to energy
predictions, in particular, efforts might be made to assess the magnitude of the
effect, and whether or not it could be reasonable to approximate pixel values.
It may be worth looking into more traditional 2D peak-finding algorithms for
extracting ’obvious’ double events in space. This could greatly speed up the
process of generating a labeled experimental dataset.
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.1 Model architectures

Here we show the base architectures for all models used in this thesis. All
layers except final output layers use the ReLU activation function. The output
layers depend on the task, as follows:

• Classification - Output uses the sigmoid function.

• Regression - Output has a linear activation.

Additionally, the final output layers for regression differ from those used in
classification.

• Positions of origin, single events - Dense(2)

• Positions of origin, double events - Dense(4)

• Energy, single events - Dense(1)

• Energy, double events - Dense(2)

We also note that the compilation of models is different between these tasks.
The compile code for models in classification is listed in listing 1, and for re-
gression in listing 2. We include this as the loss function is defined at compile
time for Sequential models.

model . comp i l e (
o p t im i z e r='adam ' ,
l o s s=' b i n a r y_c r o s s e n t r op y ' ,
me t r i c s =[ ' a c cu racy ' ]

)

Listing 1: Code for compiling classification models.

model . comp i l e (
o p t im i z e r='adam ' ,
l o s s='mse ' ,

)

Listing 2: Code for compiling regression models.

Model : " s e q u e n t i a l "
_________________________________________________________________
Layer ( type ) Output Shape Param #
=================================================================
dense ( Dense ) (None , 1) 257
=================================================================
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Tota l params : 257
T r a i n a b l e params : 257
Non� t r a i n a b l e params : 0

Listing 3: Summary of the linear regression model architecture for regression.

Model : " s e q u e n t i a l "
_________________________________________________________________
Layer ( type ) Output Shape Param #
=================================================================
dense ( Dense ) (None , 1) 257
=================================================================
Tota l params : 257
T r a i n a b l e params : 257
Non� t r a i n a b l e params : 0

Listing 4: Summary of the logistic model architecture for classification.

Model : " s e q u e n t i a l "
_________________________________________________________________
Layer ( type ) Output Shape Param #
=================================================================
dense ( Dense ) (None , 8) 2056
_________________________________________________________________
dense_1 ( Dense ) (None , 1) 9
=================================================================
Tota l params : 2 ,065
T r a i n a b l e params : 2 ,065
Non� t r a i n a b l e params : 0
_________________________________________________________________

Listing 5: Summary of the dense model architecture for classification.

Model : " s e q u e n t i a l "
_________________________________________________________________
Layer ( type ) Output Shape Param #
=================================================================
conv2d (Conv2D) (None , 16 , 16 , 8) 80
_________________________________________________________________
f l a t t e n ( F l a t t e n ) (None , 2048) 0
_________________________________________________________________
dense ( Dense ) (None , 1) 2049
=================================================================
Tota l params : 2 ,129
T r a i n a b l e params : 2 ,129
Non� t r a i n a b l e params : 0

Listing 6: Summary of the CNN model architecture for classification.
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Model : " s e q u e n t i a l "
_________________________________________________________________
Layer ( type ) Output Shape Param #
=================================================================
conv2d (Conv2D) (None , 16 , 16 , 32) 320
_________________________________________________________________
conv2d_1 (Conv2D) (None , 16 , 16 , 64) 18496
_________________________________________________________________
max_pooling2d (MaxPooling2D ) (None , 8 , 8 , 64) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None , 8 , 8 , 64) 36928
_________________________________________________________________
conv2d_3 (Conv2D) (None , 8 , 8 , 64) 36928
_________________________________________________________________
f l a t t e n ( F l a t t e n ) (None , 4096) 0
_________________________________________________________________
dense ( Dense ) (None , 128) 524416
_________________________________________________________________
dense_1 ( Dense ) (None , 1) 129
=================================================================
Tota l params : 617 ,217
T r a i n a b l e params : 617 ,217
Non� t r a i n a b l e params : 0

Listing 7: Summary of the custom model architecture for classification.

Model : " s equen t i a l_1 "
_________________________________________________________________
Layer ( type ) Output Shape Param #
=================================================================
block1_conv1 (Conv2D) (None , 16 , 16 , 64) 1792
_________________________________________________________________
block1_conv2 (Conv2D) (None , 16 , 16 , 64) 36928
_________________________________________________________________
block1_poo l (MaxPooling2D ) (None , 8 , 8 , 64) 0
_________________________________________________________________
block2_conv1 (Conv2D) (None , 8 , 8 , 128) 73856
_________________________________________________________________
block2_conv2 (Conv2D) (None , 8 , 8 , 128) 147584
_________________________________________________________________
block2_poo l (MaxPooling2D ) (None , 4 , 4 , 128) 0
_________________________________________________________________
block3_conv1 (Conv2D) (None , 4 , 4 , 256) 295168
_________________________________________________________________
block3_conv2 (Conv2D) (None , 4 , 4 , 256) 590080
_________________________________________________________________
block3_conv3 (Conv2D) (None , 4 , 4 , 256) 590080
_________________________________________________________________
block3_poo l (MaxPooling2D ) (None , 2 , 2 , 256) 0
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_________________________________________________________________
block4_conv1 (Conv2D) (None , 2 , 2 , 512) 1180160
_________________________________________________________________
block4_conv2 (Conv2D) (None , 2 , 2 , 512) 2359808
_________________________________________________________________
block4_conv3 (Conv2D) (None , 2 , 2 , 512) 2359808
_________________________________________________________________
block4_poo l (MaxPooling2D ) (None , 1 , 1 , 512) 0
_________________________________________________________________
block5_conv1 (Conv2D) (None , 1 , 1 , 512) 2359808
_________________________________________________________________
block5_conv2 (Conv2D) (None , 1 , 1 , 512) 2359808
_________________________________________________________________
block5_conv3 (Conv2D) (None , 1 , 1 , 512) 2359808
_________________________________________________________________
f l a t t e n_1 ( F l a t t e n ) (None , 512) 0
_________________________________________________________________
dense ( Dense ) (None , 10) 5130
_________________________________________________________________
dense_1 ( Dense ) (None , 1) 11
=================================================================
Tota l params : 14 ,719 ,829
T r a i n a b l e params : 14 ,719 ,829
Non� t r a i n a b l e params : 0

Listing 8: Summary of the pretrained model architecture for classification.
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