
Abstract

One of the most active research topics in physics at the moment is the nature of dark matter (DM).
Many current theories provide viable candidates for DM most notably in the form of weakly in-
teracting massive particles (WIMPs). One such theory is universal extra dimensions (UED) which
provides the so-called lightest Kaluza-Klein particle (LKP) as a stable particle. In the simplest the-
ory of UED, minimal UED, the first Kaluza-Klein excitation of the photon takes the role of the LKP
and is in fact a typical WIMP. In this thesis the direct detection cross sections of the KK-photon
are calculated. This was done by implementing the direct detection part of the UED module in
DarkSUSY, a FORTRAN package for calculating DM observables. The cross sections were found
to satisfy the experimental bounds for values of the LKP mass above 450 GeV.
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1 Introduction

The dark matter problem is one of the largest open problems in physics as of today. The standard
model of particle physics can only account for less than 25 % of the matter content of the universe.
The rest must be attributed to some new form of matter called ”dark matter” (DM). As of today the
general consensus among physicists is that DM is explained by introducing some new particle(s)
in addition to the standard model particles. The most promising DM candidates are weakly inter-
acting massive particles (WIMPs) which naturally occur in several different theories proposed to
solve problems unrelated to DM.

One example of a theory which predicts a WIMP as a possible solution to the DM problem
is universal extra dimensions (UED). UED postulates the existence of one (or more) extra dimen-
sion(s) which all standard model particles can freely propagate in. In order to explain why this
extra dimension has not been discovered yet it has to be compacted on a sufficiently small scale.
As the standard model particles are allowed to propagate in the extra dimension they will have a
momentum component which is not seen by a 3D observer, which must be interpreted as an extra
mass term. Thus every standard model particle will be accompanied by a ”tower” of Kaluza-Klein
(KK-)particles which are identical to in all regards except the mass. By the symmetries of the extra
dimension the lightest KK-particle (LKP) is stable, and a viable candidate for DM.

The goal of this thesis has been to calculate the the elastic scattering cross sections between
the DM candidate being the KK-photon, in order to check whether UED is or will excluded as a
solution to the DM problem by current or future direct detection experiments. the so-called direct
detection experiments look for events where DM has scattered of atomic nuclei in order to probe
the elastic scattering cross section with nuclei. In general direct detection experiments have placed
strict bounds on the parameter space of WIMPs. These cross sections have been calculated before,
however recently new contributions to the radiative corrections in minimal UED have calculated
by Freitas et. al. [23]. As the new corrections may have a large impact on the cross sections it
is important to include them. Furthermore the impact of the gluon content of the nucleon has
for the first time been given the appropriate treatment. The cross sections have been calculated
numerically by implementing the expressions found here in DarkSUSY [14].

The outline of this thesis is as follows chapter 2 introduces the most important extra dimen-
sional concepts and the field content of UED. It is assumed the reader has some familiarity with
quantum field theory and electroweak symmetry breaking. Chapter 3 motivates the existence of
DM and the validity of the KK-photon as a DM candidate. This is done by giving a brief overview
of some experimental evidence as well as a justification of the KK-photon as the DM candidate.
Finally it will give a brief introduction to direct detection experiments. Chapter 4 presents the
calculation of the effective four-point couplings needed for the elastic scattering cross section.
Chapter 5 presents the cross sections found using DarkSUSY. This includes the cross sections in
minnial UED as well as a phenomenological approach where the masses of KK-quarks are treated
as free parameters. Chapter 6 will compare the results to the current and projected experimental
bounds from the XENON collaborrations [9].

2 Universal extra dimensions

The idea of including one or more extra dimension (ED) in addition to the three spacial and one
temporal we are used to was first studied in the early 20-th century by Nordström, Kaluza and
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Klein [33] [35], in an attempt to unify gravity and electromagnetism. The fact no ED has been
detected tells us they must be so small the energies associated with them are too large to be de-
tected by current experiments. These bounds will depend on the nature of the ED and which fields
are allowed to propagate there. If only gravity is affected by the extra dimension this the upper
bound on this dimension is 218µm [29]. If instead all fields are allowed tho propagate in the fifth
dimension the bound is at R−1 > 1.4 TeV based on LHC searches [11].

2.1 Kaluza-Klein theory

In 1921 Kaluza [33] proposed a purely classical 5 Dimensional version of Einstein’s theory of gen-
eral relativity. Uppercase latin indices M, N = 0, 1, 2, 3, 5 will here denote the 5 space-time dimen-
sions while the regular 4 space-time dimes ions will be denoted by the usual µ, ν = 0, 1, 2, 3 and
lowercase latin indices i, j = 1, 2, 3 being used for 3 spacial dimensions. The 5D metric

gMN = (gµν + χ2 Aµ Aν χ2 Aµ

χ2 Aν χ2 ) (1)

contains the 4D metric gµν as well as a 4-vector Aµ, which can be associated with the electro-
magnetic vector-potential and a scalar χ. Kaluza also introduced what he called the ”cylinder
condition”: all derivatives of the 5D metric with respect to the 5th coordinate can be neglected.

With this ansatz the 5D versions of Einstein’s equations reduced to the 4D Einstein’s equations
and Maxwell’s equation and an equation for the scalar field χ. In 1926 Klein suggested compactifi-
cation on as an explanation for the cylinder condition [35]. The idea of compactification on a circle
S1 can be realized by making the 5th dimension closed and periodic. This can be visualised as the
surface of a cylinder where the height should be considered as the uncompactified dimensions, in
this case the 4 regular space-time dimension, and the circumference should be considered as the
compactified dimension. If the radius of this cylinder is small enough it will from a distance look
one dimensional, but up close it will clearly be 2 dimensional.

Let us consider a scalar field φ(xµ, y) which is allowed to propagate in 5D. We take the 5th
dimension to be compactified on a scale R by imposing the condition

y ∼ y + 2πR , (2)

This gives every field periodic boundary conditions allowing the Fourier decomposition in of any
field the y-direction.

φ(x, y) = 1√
2πR

∑
n

φ(n)(x)e−i n
R y (3)

The 5D field φ satisfies the 5D Klein-Gordon (K-G) equation in flat space-time

(2(5) +m2)φ = (2(4) − ∂2
y +m2)∑

n
φ(n)(x)e−i n

R y = 0 , (4)

This gives the condition on the Fourier components φ(n)(x)

(2(4) + ( n
R
)2 +m2)φ(n)(x) = 0 . (5)

the Fourier components satisfies the K-G equation in 4D with a mass m2
n = m2 + n2

R2 . Therefore a
particle propagating in 5D with mass m is equivalent to an infinite ”tower” of Kaluza-Klein (KK)
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particles with mass mn in the effective 4D theory. A similar treatment of fermionic fields gives a
tower of particles with mass mn = m + n

R
The appearance of this tower of massive states can also be understood qualitatively as follows.

A particle propagating in 5D will have a ”5-momentum” pM which consists of the 4-momentum in
the 4 regular dimensions pµ and the momentum in the fifth dimension py. From the perspective of
the effective 4D theory we do not see this momentum py however it’s contribution to the (kinetic)
energy of the particle is simply understood as a mass.

If the y-direction is translationally invariant, that is a coordinate transformation along the y-
direction does not affect the physics, we know from Noether’s theorem that the momentum in the
y-direction should be conserved which in the 4D theory means the KK-number n is conserved.

2.2 Orbifold compactification

The simplest approach to a compactified ED-theory, described in the previous section has two ma-
jor problems. The first problem being that it predicts additional massless scalar degrees of freedom
which have not been observed experimentally, as the 5th component of the 5D vectorfields trans-
form as scalars under 4D Lorentz transformations. The second problem is that chiral fermions can
not exist in an odd number of dimensions.

One solution to both problems is to compactify on an orbifold (S1/Z2) instead of a circle. Which
has a mirror-symmetry under orbifold projection y → −y. Together with Eq.(2) this gives a total
symmetry:

y ∼ 2πR − y , (6)

The orbifold can be understood as a line segment [0, πR] where traveling straight along this line
segment one would bounce back upon reaching one of the orbifold fixed points (edges).

Under orbifold projections fields transform either even PZ2 φ(x, y) = φ(x,−y) or odd PZ2 φ(x, y) =
−φ(x,−y) as such their respective Fourier decompositions are:

φeven(x, y) = 1√
2πR

φ
(0)
even(x) + 1√

πR
∑
n

φ
(n)
even(x) cos(

ny
R

) (7)

φodd(x, y) = 1√
πR
∑
n

φ
(n)
odd(x) sin(

ny
R

) (8)

As only even fields have zero-modes we can get rid of the additional light scalars by demanding
they transform odd under orbifold transformations.

This compactification scheme does not fully preserve translational symmetry in the y-direction,
however there is still a symmetry under translations by πR which give rise to the conserved quan-
tity KK-parity given by (−1)n where n is the KK-number. This follows from the Fourier expansion
as:

cos(
n(y +πR)

R
) = (−1)n cos(

ny
R

) , (9)

sin(
n(y +πR)

R
) = (−1)n sin(

ny
R

) , (10)

This means any interaction between a particle with KK-number 1 and a particle with KK-number
0, a standard model (SM) particle, needs to result in one particle with KK-number 1. As a result
the Lightest KK-particle (LKP), that is the lightest particle with n = 1 , is stable.
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2.3 The standard model in 5D

The model of universal extra dimensions (UED) [4] is essentially the higher dimensional version
of the standard model.

As in the SM the Lagrangian, before electro-weak symmetry breaking, can be constructed by
adding all terms allowed by Lorentz invariance and local gauge invariance under the SM gauge
group

GSM = SU(3) × SU(2)L ×U(1)Y . (11)

As the Lagrangian is a local function only sensitive to the local geometry, not the topology, the
only difference between the 4D standard model and the standard model in our UED scenario is
the number of (space-like) coordinates. We can therefore state the Lagrangian

L̂ = −1
4

Fr
MN FrMN + iψ̄ /Dψ +ψiλijψj + h.c.+ ∣DMφ∣2 −V(φ) . (12)

In order to preserve gauge invariance under GSM we need to introduce the covariant derivative

DM = ∂M − iĝsGa
Mta − iĝAb

Mtb − iYĝYBM . (13)

In order to study the low energy regime of a UED-theory, it is convenient to express it as
an effective 4D theory. This is done by integrating out the 5th dimension with the help of the
expansions Eq. 7 and 8 and then identifying the zero-modes as the SM fields. One finds the
effective 4D gauge couplings, i.e. the ones we measure, related to the 5D ones by

g =
ĝ

√
2πR

. (14)

As the 4D couplings are dimensionless, the 5D coupling have mass dimension − 1
2 , hence the

theory is non-renormalizable and should be considered as an effective theory only valid up to
some cutoff Λ.

2.4 Radiative corrections

Radiative corrections appear in perturbative theories as corrections to masses and couplings. Ra-
diative mass corrections arise from higher order corrections to two-point correlation functions.
These are calculated by adding all possible diagrams with one incoming and one outgoing parti-
cle. To leading order the two point correlation functions is just the Feynman propagator.

The sum over all such diagrams evaluates to

⟨Ω∣φ(p)φ(p) ∣Ω⟩ = i
p2 −m2

0 − M2(p2)
, (15)

where m0 is the bare mass of the particle and M(p2) is calculated from the diagrams. Specifically
−iM2(p2) is the sum of all one-particle-irreducible insertions into the propagator [39]. Therefore
the higher order corrections to the two-point correlation function can be realized by using a mass
m2(p2) = m2

0 + M2(p2) in the propagator when computing diagrams, as any experiment measures
the full process not just the leading approximation we have to identify m as the mass we measure.
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Figure 1: (Taken from [23]) mass specurum at R−1 = 1 TeV and ΛR = 20 without (left) and with
(right) finite corrections

In UED mass corrections to the compactification mass term can be split into two contributions:
bulk corrections and boundary corrections. One way of isolating the corrections due to the EDs
is by subtracting every (formally infinite) diagram in the compactified theory from the equivalent
diagram in the uncompactified 4D theory [23]. All divergences present in the (renormailizable) 4D
theory will then cancel and leave a well defined mass shift δm2 which is purely due to the extra
dimension.

The compactification on S1 does not break Lorentz invariance locally, but globally which gives
rise to bulk corrections. These corrections are due to diagrams with an internal loop winding
around the extra dimension. The corrections are finite and well defined as the loops can not be
smaller than the extra dimension.

Boundary corrections are a consequence of orbifolding, as translational invariance is broken at
the boundary of the orbifold which introduces new terms in the Lagrangian localized at the bound-
ary. In order to obtain these corrections one must calculate the relevant loop diagrams using modi-
fied propagators obtained by writing the field in terms of an unconstrained field [25]. These correc-

tions are log divergent as the loop diagrams involve integrals of the form ∫
d4q

(2π)4
1

(q2−m2
1)((q−p)2−m2

2)
.

One way of addressing this divergence is by introducing a cut-off scale Λ above which the theory
should not be considered valid. This means the previously infinite term is replaced by ln(Λ). This
introduces a dependence on Λ to the radiative corrections and in turn the masses.

In minimal UED (mUED) KK-number is assumed to be be approximately conserved which
means divergent boundary terms are negligible. MUED is completely described by 2 free param-
eters R and Λ which makes the theory appealing from a phenomenological standpoint. For more
general UED cases however the boundary terms might violate conservation of KK-number. In
these cases the radiative corrections would be different from the mUED case and might depend
on other parameters. As such a more phenomenological approach of taking the radiative correc-
tions themselves, or equivalently the masses, as free parameters.
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In 2018 Freitas, Kong and Wiegand published an article [23] where the finite corrections in
mUED were calculated. Before this only terms proportional to ln(ΛR) were computed [17]. In or-
der to avoid regimes where the theory becomes non-penetrative the cutoff ΛR is typically assumed
to be in the range 20-50[12]. In this range the logarithms are small enough that non-logarithmic
contributions may be significant. As the mass contribution originating from compactification n

R
is significantly larger than any electroweak mass all KK-modes will be approximately degenerate,
with the exception of the top-quark. Radiative mass corrections help lifting this degeneracy and
are therefore phenomenologically important.

2.5 Gauge fields

As the gauge fields of the standard model are all massless before electro-weak symmetry breaking
the first 4 components Aµ need to have zero-modes, hence they must transform even. It then
follows from gauge invarinace

Aµ(x, y) = Aµ(x,−y) ∼ Aµ(x, y) + ∂µθ(x, y) . (16)

The gauge-functions θ must transform even, thus ∂yθ(x, y) transforms odd which means A5 must
transform odd. This is also needed as the zero mode of A5 transforms as a scalar under 4D Lorentz
transformations and thus would appear as a light scalar, which is not observed.

The kinetic 5D Lagrangian for a gauge-field reads:

L̂guage = −
1
4

Fr
MN FrMN , (17)

with U(1) field strength tensor:
FMN = ∂MBN − ∂N BM , (18)

or SU(2) field strength tensor:

Fr
MN = ∂M Ar

N − ∂N Ar
M + ĝεrst As

M At
N . (19)

In order to get the 4D theory we need to integrate out the internal degrees of freedom. This can
be easily done by inserting the appropriate expansion, based on the above discussion of odd/even
components these are:

Aµ(x, y) = 1√
2πR

A(0)
µ (x) +

∞

∑
n=1

1√
πR

A(n)
µ (x) cos(

ny
R

) ,

A5(x, y) =
∞

∑
n=1

1√
πR

A(n)
µ (x) sin(

ny
R

) . (20)

For a U(1) gauge field the kinetic part of the Lagrangian then becomes:

Lguage = ∫
2πR

0
dy − 1

4
(∂M AN − ∂N AM)(∂M AN − ∂N AM)

= −1
4

∞

∑
n=0

(∂µ A(n)
ν − ∂ν A(n)

µ )(∂µ A(n)ν − ∂ν A(n)µ)
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− 1
4

∞

∑
n=1

(∂µ A(n)
5 + n

R
A(n)

µ )(∂µ A(n)5 − n
R

A(n)µ) , (21)

this result also holds for the kinetic terms of other gauge fields.
A massless vector in 5D has 3 degrees of freedom, which is the same as a 4D massive vector.

Meaning that there are no degrees of freedom left for the scalar A5 which means that it should
not be considered a physical field. This can also be seen by the fact they can be removed from
the Lagrangian by the gauge fixing condition θ = −R

n A5 in eq.16. We can therefore interpret it as
the Goldstone Boson that’s eaten by the KK-modes to give them the mass-term. This gives us a
mechanism of giving a gauge-field a mass-term which is independent of the Higgs mechanism.

2.6 Fermions

Before specializing to 5D UED lets look at spinors in d dimensions. As in the 4D case the Dirac
matrices are defined by the Clifford algebra:

{ΓM, ΓN} = 2gMN . (22)

In the case where d is even we can use 2
d
2 × 2

d
2 matrices constructed from the matrices in d − 2

dimensions [40].
For odd d take the Dirac matrices in dimension d − 1 and add

Γ = i
d−1

2 Γ0Γ1...Γd−2 . (23)

We now have a set of d Dirac matrices which can be used to construct a set of matrices:

ΣMN = i
4
[ΓM, ΓN] , (24)

which satisfy the Lorentz algebra:

[ΣMN , ΣRS] = i(gNRΣMS − gMRΣNS + gMSΣNR − gNSΣMS) . (25)

The Dirac representation is then the vector space spanned by spinors s = (s0, s1, ..., s
⌊

d
2 ⌋
) where sa

are the eigenvalues of

Sa = Γa+Γa− − 1
2

, (26)

where the raising and lowering operators are defined as

Γ0± = i
2
(±Γ0 + Γ1) , (27)

Γa± = i
2
(Γ2a ± iΓ2a+1) for a = 1, 2, .., ⌊d

2
⌋ .

In odd dimensions this representation is an irreducible (2
d−1

2 -dim) representation of the Lorentz
algebra. However in even dimensions there exists a matrix defined by Eq.23 which (anti-) com-
mutes with every (ΓM) ΣMN , hence eigenvectors of Γ with different eigenvalues do not mix under
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Lorentz-transformations. The (2
d
2 -dim) Dirac representation can be reduced to two distinct (2

d
2−1-

dim) Weyl representations which only act on the subspace corresponding to the chirality Γs = ±s.
We can construct projection operators:

PR/L = 1
2
(1± Γ) , (28)

which allows us to project out chiral states PR/Lψ = ψR/L.
Let us now specialize to 5D where we can take the usual 4D Dirac matrices and add the usual

chirality operator
γ5 = iγ0γ1γ2γ3 , (29)

as the fifth Dirac matrix. Strictly speaking we should use Γ5 = iγ5 as 22 implies (Γ5)2 = −1 where as
the usual 4D chirality operator squares to 1. From now on Γ will denote a 5D Dirac matrices where
as γ will denote a 4D ones if the distinction is necessary. Under 5D Lorentz transformations right-
and left-handed spinors will mix as the chirality operator is part of the Lorentz algebra. Under 4D
Lorentz transformation however they do not mix and we may therefore assign different orbifold
transformations to them and recover the SM at zero mode level where we have a singlet ψs and a
doublet ψd of definite chirality states:

ψd =
1√

2πR
ψ
(0)
dL + 1√

πR

∞

∑
n=1

(ψ
(n)
dL cos(

ny
R

) +ψ
(n)
sR sin(

ny
R

)) ,

ψs =
1√

2πR
ψ
(0)
sR + 1√

πR

∞

∑
n=1

(ψ
(n)
sR cos(

ny
R

) +ψ
(n)
dL sin(

ny
R

)) . (30)

We can now integrate out the 5th dimension just like we did for gauge fields. Including a mass
term from the electro-weak symmetry-breaking which will be discussed in the next section we get:

L f ermion = ∫
2πR

0
dyiψ̄dΓMDMψd + iψ̄sΓMDMψs −mEW(ψ̄dψs + ψ̄sψd)

= ψ̄(0)(i /D −mEW)ψ(0) +
∞

∑
n=1

ξ̄
(n)
s (i /D −mn)ξ

(n)
s +

∞

∑
n=1

ξ̄
(n)
d (i /D −mn)ξ

(n)
d , (31)

where the fermion states have been redefined in terms of the mass eigenstates which are

ξd = ψ
(n)
d cos(α(n)) +ψ

(n)
s sin(α(n)) ,

ξs = −ψ
(n)
s γ5 cos(α(n)) +ψ

(n)
d γ5 sin(α(n)) , (32)

with mixing angle

tan(2α) = 2mEW

2 n
R + δms + δmd

. (33)
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2.7 The Higgs mechanism

From the principle of gauge invariance it follows that no gauge boson or fermion can have an
explicit mass term. As SM particles do indeed have a mass we need some way of generating
a mass-term without violating gauge invarince. This is achived by the electroweak symmetry
breaking.

The Higgs field is a complex SU(2)-doublet

φ = 1√
2
(χ2 + iχ1

H − iχ3) . (34)

The 5D Higgs Lagrangian is given as:

L̂higgs = (DMφ)†(DMφ) −V(φ) , (35)

with a potential
V(φ) = −µ2φ†φ + λ(φ†φ)2 . (36)

This potential has a minimum at ∣φ∣ = v =
√

µ2

λ , which should therefore be considered the true
vacuum of the theory. We therefor making the replacement H → H + v, which introduces mass
terms for gauge bosons.

In order to cancel cross-terms mixing scalar and vector fields we add gauge-fixing terms to the
Lagrangian[13]

L̂gauge f ix = −
1
2
∑

i
(G i)2 − 1

2
(GY)2 , (37)

G i = 1√
ξ
(∂µ Ai

µ − ξ(−mwχi + ∂5 Ai
5)) ,

GY = 1√
ξ
(∂µBµ − ξ(swmwZχ3 + ∂5B5)) . (38)

The mass eigenstates will then be the 5D version of the usual vectors of the Glashow-Weinberg-
Salam theory

WM = 1√
2
(A1

M ∓ iA2
M) ,

AM = sin(θ̂w)A3
M + cos(θ̂w)BM ,

ZM = cos(θ̂w)A3
M − sin(θ̂w)BM , (39)

With the weak mixing angel given by

sin(θ̂w) =
ĝY√

ĝ2
Y + ĝ2

, cos(θ̂w) =
ĝ

√
ĝ2

Y + ĝ2
. (40)

Finally we can integrate out the 5th dimension, and find that the mixing angle at higher KK-
level is given by:
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tan(2θ
(n)
w ) =

v2gYg
1
2 v2(g2

Y − g2) + 2δm2
B(n)

− 2δm2
A3(n)

. (41)

Typically 2δm2
B(n)

− 2δm2
A3(n) ≫ v2(g2

Y − g2) meaning that the mixing angles for higher modes will
be significantly smaller than the SM mixing angles which implies that the KK-photon is well ap-
proximated by B(1)

The mass eigenstates of scalars given by:

a(n)
0 = n

RM(n)
Z

χ3(n) + mz

M(n)
Z

Z(n)
5

G(n)
0 = mz

M(n)
Z

χ3(n) − n

RM(n)
Z

Z(n)
5

a(n)
±

= n

RM(n)
W

χ±(n) + mW

M(n)
W

W±(n)
5

G(n)
±

= mW

M(n)
W

χ±(n) − n

RM(n)
W

W±(n)
5 (42)

Where mz/w is the mass given by electroweak symmetry breaking in the standard model and

M(n)
Z/W =

√
n2

R2 +m2
Z/W .

The Goldstone bosons A(n)
5 , G(n)

0 and G(n)
±

can all be removed by adopting unitary gauge ξ →
∞

Before electroweak symmetry breaking at zero-mode level we have 4 massless vectors Ai
µ, Bµ

each with 2 degrees of freedom (d.o.f) and one complex scalar SU(2)-doublet φ with 4 d.o.f. After
electroweak symmetry breaking at zero-mode level we have 3 massive vectors each with 3 d.o.f, 1
massless vector γµ with 2 d.o.f and one real scalar H with 1 d.o.f. This gives 12 d.o.f in total both
before and after symmetry breaking.

At the higher KK-levels there are 2 distinct mechanisms for generating masses, the KK-mechanism
itself, explained in section 2.2, and electroweak symmetry breaking. Before electroweak symme-
try breaking we have 4 massless vectors Ai(n)

µ , B(n)
µ each with 2 d.o.f, 4 massless scalars Ai(n)

5 , B(n)
5

each contributing 1 d.o.f and 1 complex scalar φ(n) with 4 d.o.f. The use of the term mass less
is justified here as one should consider the 5-th component of the vector as the Goldstone boson
giving mass to the vector. As such if we were to consider them massive, which would mean they
each have 3 d.o.f, we should not count the fifth components as physical d.o.f.

After electroweak symmetry breaking we have 4 scalars a(n)
0 , a(n)

±
, H(n) each with 1 d.o.f and 4

massive vectors each with 3 d.o.f. Both before and after electroweak symmetry breaking we have
a total of 16 d.o.f.

All SM- fermions except the neutrinos are massive. In order to generate a fermion mass term
we need to include a gauge invariant term which couples the relevant fermion to the Higgs field.
The only possible such term is

L̂Yukawa = −λ̂D(ψ̄U
d , ψ̄D

d ) ⋅ φψD
s − λ̂U(ψ̄U

d , ψ̄D
d ) ⋅ φψU

s + h.c. (43)
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The U/D index denoting the weak isospin of the fermion, up-type quarks and neutrinos having
T3 = + 1

2 and down-type quarks and charged leptons having T3 = − 1
2 . Preforming the same shift

H → H + v we find the fermion mass mEW = λv
√

2
.

3 Dark matter

One of the great successes of cosmology was that by measuring the cosmic microwave background
(CMB) we determine exactly what the universe is made of. The latest such measurements was
done by the Planck collaboration [2]. Finally we could answer the question: ”what is the universe
made of?” the answer turns out to be: for the most part we don’t know. About 68% of the energy
content is due a contribution called dark energy, which is well modeled by Einsteins cosmological
constant however the origin of this contribution is a mystery. Luminous matter, i.e. the visible
matter in stars, galaxies and such make up less than 1 % and baryonic matter, i.e. the matter in the
standard model, makes up about 4%. This leaves the last 27% which must be made of some form
of matter arising from yet unknown physics referred to as dark matter (DM). The most accepted
solution as of today is to introduce some new particle(s) in addition to the standard model.

3.1 Experimental evidence for Dark Matter

The CMB gives the most precise measurement of DM of ΩCDMh2 ≈ 0.120± 0.001 [2]. ΩCDM = ρCDM
ρcrit

is the ration between the energy density of cold DM and the critical density, the density required
for a flat universe. While the CMB is the most precise measurement of the DM density it is not the
only evidence of DM some other are:

Rotation curves

According to Newtonian mechanics a star at distance r from the center of the galaxy should be

orbiting with a velocity v(r) =
√

GM(r)
r where M(r) is the mass enclosed by the orbit. In 1970 [46]

Rubin and Ford found the velocities of stars in the Andromeda galaxy to be constant for large r
which suggests that the mass density of the galaxy scales as ρ(r) ∝ r−2. This does not agree with
the density of luminous matter suggesting that there must be DM present. Similar measurements
of other galaxies have also indicated dark matter dominates (almost) all galaxies.

Structure formation

Dark matter is also needed to explain the formation of large scale structures. These structures
were formed from density perturbations in the early universe, regions with slight over-densities
would attract more matter gravitationally causing the over-density to grow. This effect would
be counteracted by radiation and the expansion of the universe. DM however is not affected by
radiation and thus would only have to overcome the expansion of the universe for over-densities
to grow [18].
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Gravitational lensing

One of the consequences of general relativity is that light is deflected by the gravitational field, the
deflection angle is larger in stronger fields. In order to explain the impact galaxies and clusters
have on lensing DM must be introduced [36]. By measuring the distortion of objects in the night
sky independent evidence for DM has been discovered at all scales.

3.2 Weakly interacting massive particles and relic density

The most promising candidates for dark matter are weakly interacting massive particles (WIMPs).
These are particles with mass 100 GeV-O(TeV) which as the name suggest interact weakly. WIMPs
appear in many extensions to the SM, such as supersymmetry and UED. The main reason why
WIMPs are so promising is ”the WIMP miracle”.

If we take all DM to consist of WIMPs the abundance can be explained by thermal freeze-out.
In the early universe WIMPs and SM particles existed in thermal equilibrium. However as the
universe cooled the expansion rate became significantly larger than the interaction rate and the
WIMP density became approximately constant in the comoving frame. This gives a method for
predicting the density left over from the early univerese, the relic density, of a given WIMP.

The time evolution of the number density n of DM or any other particle is given by the Boltz-
mann equation [19]:

dn
dt

+ 3Hn = − ⟨σv⟩ (n2 − n2
eq) (44)

Where the term involving the Hubble parameter H accounts for dilution due to the expansion
of the universe. ⟨σv⟩ denotes the thermal average over the annihilation cross section times the
relative velocities of the particles. For a non-relativistic particle the equilibrium density is given
by the Maxwell-Boltzmann distribution:

neq = g(mT
2π

)
3
2 e−

m
T . (45)

If there does not exist any other particles with a mass close to the DM candidate a good estimate
for the relic density today is given by[31]:

ΩCDMh2 ∼ 3 ⋅ 10−27cm3s−1

⟨σv⟩
, (46)

where h is the Hubble constant in units of 100 kms−1Mpc−1 .

The annihilation cross section of a WIMP can be estimated as σv ∼ g4

m2
χ

, g being the SU(2)

coupling constant. Based on this we can use the measured relic density to estimate what mass
gives the right relic density which turns out to be in the range 100 GeV-O(TeV) which is already
the natural mass range for WIMPs. The WIMP miracle refers to the fact that WIMPs predicted
by theories attempting to solve unrelated problems accidentally predicted a relic density which
agreed well with the observed DM density.

If however the DM candidate is accompanied by other particles with a similar mass, like for
example in UED, one has to consider the effect of co-annihilations, which may give large correc-
tions to Eq.46. Co-annihilations are processes where the DM candidate annihilates with another
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Figure 2: Schematic diagrams relevant for direct and indirect detection

particle leaving only SM particles. The Boltzmann equation ??

dn
dt

+ 3Hn = −∑
i,j

⟨σijv⟩ (ninj − neq
i neq

j ) , (47)

where the sum runs over all dark sector particles.
A more detailed look at the relic density calculation as-well as the relic density of The LKP is

given in [30].

3.3 Constraints on DM

The most common solution to the dark matter problem is to attribute the extra matter density to
some undiscovered particles which interact gravitationally and possibly weakly with other par-
ticle. Any such particle must be acompanied by an explaintion of why this particle is not yet
detected by LHC searches or direct/indirect detection experiments. Indirect detection experi-
ments look for possible products of DM-DM annihilation, primarily photon and neutrinos. As
the expected flux should be proportional to the DM density squared we expect some otherwise
unexplained particle production from places DM accumulate such as the galactic center. Direct
detection looks for scattering events of atomic nuclei. Direct detection will be discussed in this
section. A schematic description of direct detection, indirect detection and collider searches is
given in in figure ??

The DM particle is expected to be stable, non-relativistic, non-baryonic and dark. The particle
has to be stable, or at least have a lifetime comparable to the age of the universe as it must still
be present. Simulations of structure formation suggest that DM must be non-relativistic particles
in order to explain the existence of large scale structures such as galaxies and clusters[18]. The
Planck collaborations [2] found that less than 5% of the energy of the universe consists of baryonic
matter, however dark matter makes up around 30% of the energy density, therefore most dark
matter must be non-baryonic. Astronomicaly dark means it is electrically neutral, i.e. it does not
interact with any kind of radiation as this would be detectable.

3.3.1 Direct detection

Direct detection experiments attempt to probe DM by looking for scattering events of atomic nu-
clei. If DM does indeed consist of WIMPs one would expect some non-zero, although usually
small, cross section with nucleons and by extension atomic nuclei. Therefore a large sufficiently
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isolated container filled with atomic nuclei will only interact with DM and will either detect the
DM or place an upper bound on the nucleon-DM cross section. The best current bounds come from
the XENON1T experiment which utilized a ton scale tank of liquid xenon [9] which gives an up-
per bound on the spin-independent DM-nucleon elastic cross section at 10−45cm2 for DM masses
at TeV scales. The spin-dependent cross sections however the upper bound is at 2 ⋅ 10−40cm2 at the
same DM mass scales [3]. For sufficiently heavy nuclei the spin-independent cross section is in-
creased with a factor A2 A being the mass number of the nucleus (number of protons+neutrons).
This enhancement is due to the fact the even if the DM-nucleon cross section is small there are alot
of nucleons to interact with. The cross sections for each nucleon add cohently hence thi efecti is
called coherent enhancement [10]. For the spin dependent cross sections the no such enhancement
happens as the spins are not aligned. This section is based on [16] and [48].

The event rate per unit detector mass is given by

dR
d∣q∣2

=
ρ

mNmχ
∫

∞

vmin

dσ

d∣q∣2
v f (v)dv , (48)

ρ being the DM massdensity, v is the relative velocity of the nucleon and DM particle, f(v) is the
velocity distribution of DM relative to the detector, qµ the transferred momentum which is related
to the recoil energy of the nucleus by Er = ∣q∣2/2mN . Meaning that 48 can be rewritten as

dR
dEr

=
ρ

mχ

dσ

d∣q∣2 ∫
∞

vmin
v f (v)dv . (49)

The cross section gets contributions from both spin-dependent and spin-independent interactions

dσ

d∣q∣2
= ( dσ

d∣q∣2
)

SD
+( dσ

d∣q∣2
)

SI
. (50)

The spin-(in)dependent cross section is given by

( dσ

d∣q∣2
)

SI/SD
=

σ
SI/SD
0

4µ2v2 F2(∣q∣2) , (51)

µ = mχ M
mχ+M being the reduced mass of the DM nucleus system and F2(∣q∣) being the form factor

which can be understood as the Fourier transform of the nuclear density distribution. The only
particle physics input is the cross section evaluated at q=0 σ0 which has to be understood by the
the fundamental interactions between DM and quarks and gluons.

In order to calculate rates for different nuclei it is convenient to derive the effective four-point
coupling constants for the nucleon-nucleon-DM-DM vertex In order to calculate these one must
first compute every quark/gluon elastic scattering matrix element, splitting up the spin dependent
and spin independent contributions. These matrix elements must be evaluated between the initial
and final states, i.e. the nucleon state. Finally all these contributions are added together such that
we have 4 effective couplings: one spin dependent and one spin independent for every nucleon.

The full nucleon-DM scattering process is then entirely captured by the following diagram:

p/n

χ

p/n

χ

16



The spin-independent DM-nuclei cross sectoion will then be given by

σSI
0 = 1

π
( M

mχ + M
)2(Z fp + (A − Z) fn)2 , (52)

M being the nucleus mass, Z the atomic number and A the mass number, and fN the nucleon
couplings.

The spin-dependent cross section is given by

σSD
0 = 1

π
( M

mχ + M
)2 8

3
(J + 1)

J
(⟨Sp⟩ ap + ⟨Sn⟩ an)2 , (53)

⟨SN⟩ = ⟨A∣SN ∣A⟩ being the expectation-value of total spin of the relevant nucleon in the nu-
cleus, and J the spin of the nucleus. The next section will cover the calculation of the effective
four-point coupling with the KK-photon in detail.

The full set of non-relativistic operators is given in [22]. The terms that depend on the velocities
involved are subdominant, as the DM-velocities are small [34], and as such will not be considered
here.

3.4 UED dark matter

The lightest KK-particle, the LKP, is one example of a WIMP, based on current collider bounds it
has a mass larger than 1.4 TeV [11], which is in the appropriate range for a WIMP.

Conservation of KK-parity ensures that the LKP is stable as discussed in section 2.2. Ignoring
radiative corrections it is clear that the KK-photon is the LKP, and in mUED this is still true after
including radiatve corrections [23]. The KK-photon is a good DM-candidate as it is electrically
neutral, non-baryonic, stable and non-relativistic. By virtue of being a typical WIMP it is expected
to provide the appropriate relic density. When all co-annihilitions are included the theory gives
the right relic density in the parameter region R−1 = 1300 − 1500GeV with ΛR = 20 [8] without
finite corrections, for ΛR = 50 the upper bound is pushed up to 1600 GeV. When finite corrections
are included the upper bounds are estimated to be 1660 GeV and 1785 GeV with ΛR = 20 and
ΛR = 50 respectively [30].

Previous calculations of the KK-photon nucleon elastic cross sections [48] [28] [27], which were
all done without finite corrections, have found that they are not excluded by direct detection exper-
iments. Out of all these the largest spin independent proton-LKP cross section on the parameter
region allowed by the relic density was given in [28] 3 ⋅ 10−46 cm2 around 1300 GeV, compared
to the current bounds from direct detection experiments of 10−45 cm2 these are all within the
upper bound. The largest spin-dependent cross section at the same compactification scale was
4 ⋅ 10−44 cm2 while the upper bound is 10−40 cm2. However the cross sections may change signifi-
cantly when finite corrections are included. The cross sections including finite corrections will be
presented in section 5.

4 Direct detection of the Kaluza-Klein photon

One of the goals of this thesis was to calculate the elastic scattering cross section for the first KK-
mode of the photon with nucleons and atomic nuclei, in order to investigate whether it is a viable
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candidate for DM based on current and projected direct detection bounds. This was done by
implementing effective four-point couplings in the UED module in the DarkSUSY package [14].
DarkSUSY already contains routines for computing elastic scattering cross sections from the effec-
tive four-point couplings as well as providing all necessary couplings and masses.

This section presents the calculation of the effective four-point couplings. The first part is ded-
icated to setting up the calculation by giving the effective Lagrangian and relevant definitions and
present the calculation of the quark and gluon contributions . The final part describes DarkSUSY
and the newly direct detection part of the UED module.

4.1 Effective Lagrangian

We want to describe the elastic scattering of DM and nucleons as an effective theory involving
only 3 particles, the DM-particle and the proton and neutron. As nucleons are composite particles
consisting of quarks and gluons their interactions will at leading order be given by a sum over
interactions with a single constituent weighted by the relative amount of said constituent in the
nucleon. Therefore the first step is to express an effective theory, or equivalently write down a
Lagrangian, of elastic scattering of DM with quarks and gluons.

As both the LKP and nucleus are non-relativistic particles any operators suppressed by he
velocity of either particle can be neglected leaving the effective interaction Lagrangian derived by
Hissano et al. [28]

Leff
q = fq A(1)µ A(1)

µ (q̄mqq + q̄i /Dq) +
dq

mA(1)
εµνρσ A(1)µi∂ν A(1)ρ q̄γσγ5q +

gq

m2
A(1)

i∂µ A(1)ρi∂ν A(1)
ρ O

q
µν ,

(54)
The first term can be simplified by the Dirac equation q̄i /Dq = q̄mqq The second term here is spin-
dependent as in 4D the helicity, the spin along the direction of motion of a particle, is the same as
the chirality, the eigenvalue of γ5. The gluon contribution can be model by the Lagrangian

Leff
g = fg A(1)µ A(1)

µ Ga
µνGaµν +

gG

m2
A(1)

A(1)ρi∂µi∂ν A(1)
ρ O

g
µν , (55)

where Ga
µν is the gluon field strength tensor and Og/q

µν is the twist-2 operator defined as:

Oq
µν =

1
2

iq̄(Dµγν +Dνγµ −
1
2

gµν /D)q , (56)

Og
µν = Gaρ

µ Ga
ρν +

1
4

gµνGaαβGa
αβ , (57)

the twist of an operator is defined as mass dimension minus the spin.
Scattering amplitudes are given by the matrix element of the effective Lagrangian evaluated

between the initial and final states. As the quarks and gluons that are of interest to direct detection
are all in nucleon states as a constituent of a nucleon we only care about quark and gluon operators
evaluated in nucleon states. Demoting the on-shell nucleon state as ∣N⟩ (N = n, p).

⟨N∣ q̄q ∣N⟩ = mN

mq
fTq , (58)

⟨N∣ Ga
µνGaµν ∣N⟩ = − 8π

9αs
mN fTG , (59)
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where the quark contribution fTq/G is calculated in [41] using lattice QCD, for q = u, d these
will not be the same for protons and neutrons. As the quark mass appears in the denominator we
need to keep terms linear in mq when computing the quark scattering diagrams.

Although the gluon-DM cross section do not receive any tree-level contribution the fact that
the expression contains a factor 1

αs
[? ] means the contribution from 1-loop diagrams will be of the

same order as the contribution from tree-level diagrams. This is not the case for the twist-2 which
is loop-suppressed and will therefore be ignored.

The twist-2 operators evaluate to:

⟨N∣Oq
µν ∣N⟩ = 1

mN
(pµ pν −m2

N
1
4

gµν)(q(2) + q̄(2)) , (60)

⟨N∣Og
µν ∣N⟩ = 1

mN
(pµ pν −m2

N
1
4

gµν)G(2) , (61)

G(2), q(2) and q̄(2) being the second moment of the PDFs for gluons, quarks and anti-quarks
respectively. Defined as

G(2) = ∫
1

0
dxx fg(x) , (62)

q(2) + q̄(2) = ∫
1

0
dxx( fq(x) + fq̄(x)) , (63)

which can be understood as the fraction x of of the total momentum of the nucleon carried by the
relevant particle.

The spin-dependent term is evaluated as

⟨N∣ q̄γµγ5q ∣N⟩ = 2sµ∆qN , (64)

sµ being the spin of the nucleon and qN being the spin contribution of the relevant quark ob-
tained from [1]

Now we can finally express the spin-independet effective couplings fN by using relating the
scattering amplitude in the effective theory consisting of DM and nucleons and the effective theory
with a single vertex to the same amplitude in the described by Eq. 54 and 55.

MSI = −iεµ(pin
γ(1)

)εµ(pout
γ(1)

) fN = −i ⟨N∣ LSIeff
q +LSIeff

g ∣N⟩ . (65)

Preforming a Fourier transform, factoring out the polarization vectors ε and taking the non-
relativistic limit pµ

γ(1)
, pµ

N = (mγ(1) , 0), (mN , 0) we find

fN

mN
= ∑

q=u,d,s
fq fTq + ∑

q=u,d,s,c,b

3
4

gq(q(2) + q̄(2)) − 8π

9αs
fG fTG . (66)

For the spin-dependent coupling we use the same argument

MSD = −iεµ0ρσεµ(pin
γ(1)

)ερ(pout
γ(1)

)sσaN = −i ⟨N∣ LSDeff
q ∣N⟩ , (67)

and find the effecitve coupling:
aN = ∑

q=u,d,s
dq∆qN . (68)
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The coefficients fq, fg, dqandgg are extracted from the scattering amplitudes of DM with quarks
and gluons respectively as they are low energy effective couplings. This is done by computing the
q/g −DM → q/g −DM matrix element in the limit where the no energy is exchanged.

4.1.1 Quark contribution

The following diagrams diagrams contribute to the quark-DM elastic scattering cross section:

q

γ(1)

q

γ(1)

q

γ(1)

q

γ(1)

q

γ(1)

q

γ(1)

Figure 3: Diagrams contributing to qγ(1) → qγ(1)

These diagrams have 4 external momenta, however as we are intersted in the q2 = 0 limit, the
limit where no energy is exchanged the incoming and outgoing DM momenta will be equal. As
there are two external vectors the matrix element will be given by

M= εµ(pin
γ(1)

)ε∗ν (pout
γ(1)

)Mµν , (69)

εµ being the KK-photon polarization vector.
The Higgs exchange diagram evaluates to

Mµν
h = igγ(1)γ(1)hλq

gµν

m2
h

q̄q . (70)

The exchanged KK-quarks can be either a singlet or a doublet. We also need to distinguish
between the diagrams were the external quarks are right- and left-handed. This means each of
the diagrams involving a KK-quark are actually 4 diagrams, although the DM-qR − q(1)

d coupling
and DM-qL − q(1)

s coupling are suppressed. These diagrams are still included in the numerical
implementation. It is worth noting that this suppression is not as strong for top-quarks, however
the top-quark content in nucleons is so small that it has no impact here.

The KK-quark exchange diagrams evaluate to

Mµν

R/L = −ig2
γ(1)q(1)s/dqR/L

q̄R/L

⎛
⎜⎜
⎝

γµ
/pq − /pγ(1)

+m
q(1)s/d

(pq − pγ(1))2 −m2
q(1)s/d

γν + γν
/pγ(1)

+ /pq +m
q(1)s/d

(pγ(1) + pq)2 −m2
q(1)s/d

γµ
⎞
⎟⎟
⎠

qR/L . (71)

Focusing just on the numerator we have 4 distinct Dirac bi-linears

q̄PL/Rγµ /pγνPR/Lq = q̄γµ /pγνPR/LPR/Lq = q̄γµ /pγνPR/Lq ,
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q̄PL/RγµγνPR/Lq = q̄γµγνPL/RPR/Lq = 0 ,

the other two are related by exchange of indices. This leaves the following matrix element

Mµν

R/L = −ig2
γ(1)q(1)q(

pqσ − pγ(1)σ

(pq − pγ(1))2 −m2
q(1)

q̄γµγσγνPR/Lq +
pγ(1)σ + pqσ

(pγ(1) + pq)2 −m2
q(1)

q̄γνγσγµPR/Lq . (72)

This matrix element can conveniently be written as

Mµν

qR/L = −ig2
γ(1)q(1)q(cσ(q̄γνγσγµ + γµγσγνq) + dσ(q̄γνγσγµ − γµγσγνq)) . (73)

This decomposition is convenient as the first term is spin independent and the second term
contains all the spin-dependence as demonstrated shortly. The coefficients were found to be

cσ = −
(m2

γ(1)
−mq(1)

2)pσ
q + 2mqmγ(1) pσ

γ(1)

(mγ(1)
2 + 2mqmγ(1) −mq(1)

2)(mγ(1)
2 − 2mqmγ(1) −mq(1)

2)
, (74)

dσ = −
(m2

γ(1)
−m2

q(1)
)pσ

γ(1)
+ 2mqmγ(1) pσ

q

(mγ(1)
2 − 2mqmγ(1) −m2

q(1)
)(m2

γ(1)
+ 2mqmγ(1) −m2

q(1)
)

. (75)

When evaluating contraction of momenta the on-shell condition pµ pµ = m2 and the contraction
pµ

g pkgaµ = mqmγ(1) was used. The second one can be justified as by the fact the KK-photon is
non-relativistic.

Using basic Dirac algebra we can rewrite the bilinear in first term in 73 as

q̄γνγσγµq + (µ↔ ν) = 2q̄(gµσγν + gνσγµ − gµνγσ)q . (76)

Looking at the index structure of cσ we should look at the contraction:

pqσ2q̄(gµσγν + gνσγµ − gµνγσ)q = 2q̄(pµ
q γν + pν

qγµ − gµν /pq)q = 4Õqµν − gµν q̄ /pqq , (77)

pγ(1)σ2q̄(gµσγν + gνσγµ − gµνγσ)q = 2q̄(pµ

γ(1)
γν + pν

γ(1)
γµ − gµν /pγ(1)

)q , (78)

The terms proportional to pµ

γ(1)
and pν

γ(1)
can be dropped as εµ(pγ(1))pµ

γ(1)
= 0. Taking the

non-relativistic limit by fixing pγ(1)µ = (mγ(1) , 0) and using the fact that q̄ /pqq = mq q̄q by the Dirac
equation we get the scalar contribution to the spin independent martix element

Mµν
sq =Mµν

sqR +M
µν
sqR +M

µν
h = igγ(1)q(1)q

2
(mγ(1)

2 −mq(1)
2)(4Oqµν −mqgµν q̄q) +mq4mγ(1)

2gµν q̄q

(mγ(1)
2 − 2mqmγ(1) −mq(1)

2)(mγ(1)
2 + 2mqmγ(1) −mq(1)

2)

+ igγ(1)γ(1)hλq
gµν

mh2 q̄q .

(79)

We have therefore determined 2 of the necessary coefficients from Eq. 54
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gq = −g2
γ(1)q(1)q

4(m2
γ(1)

−m2
q(1)

)

(m2
γ(1)

− 2mqmγ(1) −m2
q(1)

)(m2
γ(1)

+ 2mqmγ(1) −m2
q(1)

)
,

and

fq = −g2
γ(1)q(1)q

(3m2
γ(1)

+m2
q(1)

)

(m2
γ(1)

+ 2mqmγ(1) −m2
q(1)

)(m2
γ(1)

+ 2mqmγ(1) −m2
q(1)

)
+

λqgγ(1)γ(1)h

mqm2
h

.

For the second term in Eq. 73 we use the Chisholm identity to write the spin dependent matrix
element as:

Mµν
spin = dσ q̄γνγσγµ − γµγσγνq = dσ q̄2iεµνσργ5γρq ,

which allows us to recognize the coefficient dq in the nonrelativistic limit:

dq = −ig2
γ(1)q(1)q

mγ(1)(m2
γ(1)

−m2
q(1)

)

4(m2
γ(1)

+ 2mqmγ(1) −m2
q(1)

)(m2
γ(1)

+ 2mqmγ(1) −m2
q(1)

)
.

4.1.2 Gluon contribution

The gluon-DM elastic scattering process gets contribution from the following diagrams:

ρ

µ

σ

ν

g

γ(1)

g

γ(1)

ρ

µ

σ

ν

ρ

µ

σ

ν

ρ

µ

σ

ν

Figure 4: Diagrams contibuting to gγ(1) elasitc scattering

The first diagram is suppressed due to the Yukawa coupling which is proportional to mq .
Unlike the quark contribution there is no cancellation of this quark mass.

The amplitude is given by

M= εµ(pγ(1))εν(pγ(1))ερ(pg)εσ(pg)Mµνρσ . (80)

The fermion loops give rise traces over gamma matrices from vertices and fermion propaga-
tors. The two gluon vertices in each diagram only contain a vector coupling and only contributes
one gamma matrix. On the other hand the (KK-photon)-(KK-quark)-(SM-quark) vertices does not
treat right handed and left handed quarks equally and thus contributes γλPR/L with distinct cou-
plings. It is convenient to reformulate the left- and right-handed couplings as a vector coupling
and an axial-vector coupling. This specific vertex, which can be obtained from the Feynmann rules
given in [13], can be rewritten as:
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gγ(1)q(1)dqγλ = (T3g cos α1sw +Ydgy cos α1cw)γλ 1
2(1− γ5) + cwYsgy sin αγλ 1

2(1+ γ5)
= (T3g cos α1sw +Ydgy cos α1cw + cwYsgy sin α 1

2)γcλ
w + (−T3g cos α1sw −Ydgy cos α1cwYsgy sin α)γλγ5

= gvγλ + gaγλγ5 . (81)

The shorthand sw = sin(θ(1)), cw = cos(θ(1)) is used here. The vertex rule for a the singlet KK-
quark, KK-photon, SM-quark vertex is obtained by exchanging sin(α1) and cos(α1), and changing
the overall sign.

The full trace over the whole fermion loop can then be split in two, one trace containing no γ5s,
the vector contribution, and one containing 2, the axial vector contribution. Any trace involving
one γ5 will evaluate to 0.

Let us look at just the contribution to the over all trace starting with the gamma matrecies
introduced by the vertex involving the initial KK-photon γµ (γµγ5) and the vertex involving the
final KK-photon γν (γνγ5). Ignoring SM quark masses the first 2 box-diagrams give a vector
contribution Tr(...γµ/qγν...) and an axial-vector contribution

Tr(...γµγ5/qγνγ5...) = Tr(...γµγ5γ5/qγν...) = Tr(...γµ/qγν...) . (82)

While the propagator between the relevant couplings in the first case is /q +mq(1) the trace in-
volving the mass term contains 7 gamma matrices and as such evaluate to 0. Thus the vector
contribution and axial-vector contribution from the first 2 box diagrams are equal.

For the last box diagram a similar argument shows that the axial-vector contribution is related
to the vector contribution by the replacement m2

q(1)
→ −m2

q(1)

This distinction allows the matrix element to be written as

Mµνσρ = −iαs
2
9
(g2

vM
µνσρ
v + g2

aM
µνσρ
a ) , (83)

whereMµνσρ
v (Mµνσρ

a ) contains the (axial-)vector contribution. The factor 2
9 is a group theory

factor arising from the fact the gluon vertecies involve an SU(3)-generator [53].
Both the KK-photon and gluon polarization vectors satisfy the condition εµ(pg)pµ

g = εµ(pγ(1))pµ

γ(1)
=

0.In addition the gluons being mass less are also transverse in space εi(pg)pi
g = 0. Combining the

two conditions for gluon polarization vectors εµ(pg)pµ
g = ε0(pg)p0

g + εi(pg)pi
g = ε0(pg)p0

g = 0 we
see that ε0(pg) = 0. In the non-relativistic limit pγ(1) = (mγ(1) , 0) we therefore have an the condi-
tion: εµ(pg)pµ

γ(1)
= 0. This means any term with an index carried by a KK-photon momentum will

not contribute to the scattering amplitude. This means we can decompose the Lorentz-structure
of the polarization tensor as:

Mµνσρ

v/a = −
B6v/a

m2
γ(1)

pµ
g pν

ggσρ +C1v/agµνgσρ +C2v/agµσgνρ +C3v/agµρgνσ , (84)

where C1v/a = − 1
2 B1v/a, C3v/a = C2v/a = B2v/a .

The coefficients B6 , B2v/a and B1v/a are calculated in appendix A using the Passarino-Veltmann
[42] Reduction scheme by making slight modifications to the program used in [37]. This program
used Lerg [50] for calculating the annihilation cross section of two KK-hypercharge bosons to
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photons which uses box diagrams related to the ones used here by crossing-symmetry. The minus
sign is due to exchanging an outgoing momentum for an incoming one, so that all momenta can
be considered as incoming when computing the diagrams.

Combining Eq. 83 and 84 the full matrix element for gluon-DM scattering is given by summing
the vector and axial vector contributions:

Mµνσρ = −iαs
2
9
(g2

v)(−
B6v

m2
γ(1)

pµ
g pν

ggσρ +C1vgµνgσρ +C2vgµσgνρ +C3vgµρgνσ) + (v → a) . (85)

We now have to identify the Fourier transform of the term

Ga
ρσGaρσ = (∂

[ρGa
σ] − gs f abcGb

ρGc
σ)2 , (86)

making use of the identities εµ(pg)pµ
g = 0 and pµ

g pgµ = 0 we find that:

Mµνσρ = −iαsg2
v(−

B6

m2
γ(1)

Õgµνgρσ + (C1v −
B6vm2

N

4m2
γ(1)

)gµνgρσ) + (v → a) . (87)

Comparing this expression to the effective Lagrangian 55 we can the read of the relevant effec-
tive coupling:

fgm2
γ(1)

= αs(g2
v(C1v −

B6vm2
N

4m2
γ(1)

) + g2
a(C1a −

B6am2
N

4m2
γ(1)

)) . (88)

4.2 DarkSUSY

DarkSUSY [14] is FORTRAN package used for numerical calculations of among other things di-
rect and indirect detection rates and relic densities for several different dark matter candidates.
DarkSUSY consist of a core library which contains all model independent routines and particle
modules which contain the model-specific routines. As of writing this thesis DarkSUSY contains a
module for the minimal supersymmetric standard model, the Silveria-Zee model, a generic WIMP
model, a generic model for decaying dark matter, a dark sector model with velocity dependent
self-interactions and the as of yet unpublished UED module. An important part of this thesis has
been implementing the direct detection routines in the UED module.

In order to calculate something using DarkSUSY the user has to supply a main program that
specifies model parameters, in the case of mUED these are R−1andΛ, and set up the relevant
particle module. When the module is set up the user can make use of several routines in the
core library which returns the desired observable(s), for direct detection these could for example
be the scattering cross section with some nucleus or the recoil-rates for a specified experimental
setup. The only model-specific input needed by the direct detection routines in the core library
are the effective four-point couplings which are supplied by the routine dsddgpgn in the relevant
particle module. As such the effective couplings derived in the previous section were implemented
making use of the fact that all relevant masses and couplings, including radiative corrections were
already part of the UED module [30].
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4.2.1 The direct detection routines

The direct detection part of the UED module currently contains 6 subroutines/functions. The sub-
routine dsddgpgn returns the effective four-point couplings and makes calls to the others. The
subroutines/functions dsdd qsi, dsdd twist2, dsdd gluon and dsdd sd takes as an input one SM-
quark and one KK-quark and returns the relevant parameters f h

q , f q
q , gq, fg and dq for the specified

quark and KK-quark. In order to calculate the full effective fourpoint couplings dsddgpgn im-
plements Eq. 66 by looping over all the quarks which are summed over by, note that the gluon
contribuntion requires a sum over all quarks flavours. This includes one call for the singlet and
one for the doublet KK-quark. The subroutine dsddboxcoeffs is only called within dsdd gloun
and takes the KK-quark as input and returns the Passarino-Veltmann coefficents cacluated in Ap-
pendix A.

5 Results

The effective four point coupling fp
m

γ(1)
is given by 66.

The scalar quark contribution fq to the spin-independent effective coupling gets contributions
from the Higgs exchange diagram and the KK-quark exchange diagrams labeled with a super-
script. The Higgs exchange contribution is:

f h
q = −mW

g
(gY cos(θ(1)) − g sin(θ(1)))2 λq

mqm2
h

(89)

The KK-photon, KK-photon, SM-higgs vertex which has been explicitly included here is given in
[30]. The only UED parameter that enters here is the weak mixing angle θ

(1)
w defined in 41. For

the mass corrections we have δm(n) ∝ n
R [23] meaning that the mixing angle for higher excitation

will be small. I fact within the allowed parameter space sin2(θ
(1)
w ) < 10−3, hence this contribution

is only weakly dependant on the compactification scale.
The KK-quark exchange contribution is:

f q
q = −g2

γ(1)qq(1)

3m2
γ(1)

+m2
q(1)

(m2
γ(1)

−m2
q(1)

)2
(90)

Where the coupling gγ(1)qq(1) defined in 4.1.2 is kept implicit in the interest of keeping the expres-
sion compact.

The spin independent quark-DM effective coupling also get a a quark-twist-2 contribution:

gq = −g2
γ(1)qq(1)

4
(m2

γ(1)
−m2

q(1)
)

(91)

The gluon contribution to the spin independent cross section was found to be:

fg = (g2
vC1v + g2

aC1a + (g2
v + g2

a)
B6m2

n

m2
γ(1)

) αs

9(4π)m2
γ(1)

(92)
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where C1v, C1aandB6 are Passarino-Veltmann coefficients explicitly given in Appendix A, the
evaluation of these loop-diagrams does indeed constitute one of the main results of this thesis.

The spin dependent proton-LKP cross section are given by:

σSD =
µ2

π
∑
s,d
∑

q=u,d,s

⎛
⎜
⎝

gγ(1)q(1)q∆qp

4(m2
γ(1)

−m2
q(1)s/d

)

⎞
⎟
⎠

2

(93)

where the first sum runs over singlet and doublet KK-quark.

5.1 Comparison with earlier results

The effective 4-point couplings and proton-DM elastic cross sections have previously been cal-
culated by Hisano et al. [28], as this is an independent calculation to the ones preformed here
it provides an important crosscheck of the numerical implementation. They calculated the cross
sections using the radiative corrections from Cheng et al. [17], approximated the LKP by the hyper-
charge boson B(1)

µ and for the spin dependent cross section assumed SM masses were negligible
and all KK-masses except the LKP were degenerate using the splitting between the LKP and the
other KK-particles as a free parameter. These results gave a good correspondence as shown in
figure 5 and 6 which shows a comparison between [28] and the results obtained in this thesis as
implemented in DarkSUSY in this limit.

The B(1) − B(1) − H(0) vertex factors used by Hissano et. al. differ from the one used in Dark-
SUSY by a factor of 2. The DarkSUSY coupling does however agrees with other sources [48], [13].
In figure 5 the vertex has for the purpose of comparison been set to the value given by Hissano et.
al. [28].

The XENON1T bounds [9] are indicated in figure 5. As XENON1T has not registered any signal
we know that the DM-proton cross section must be too small to be detected, hence the sensitivity
of the experiment gives us an upper bound.
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Figure 5: Comparison of the spin-independent cross section obtained in this thesis as implimented
in DarkSUSY and Hissano et al [28] The 90% confidence bound from the Xenon1T experiment [9]
is also shown

Figure 6: Comparison of the spin-dependent cross section obtained in this thesis as implimented
in DarkSUSY and Hissano et al [28]
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5.2 mUED cross sections

In figure 7 the spin-independent cross sections calculated in mUED using the full radiative cor-
rection are shown for different choices of Λ. Choosing a larger cutoff relaxes the mass degen-
eracy through radiative correction thereby reducing the cross section as all contributions except

f h
q defined in Eq. 89 are inversely proportional to the mass splitting ∆q =

m
q(1)

−m
γ(1)

m
γ(1)

. For larger

R−1 the choice of Λ is less important as f h
q dominates this regime. To show this behavior explicitly

figure 8 shows each contribution to fp where Λ = 20R−1.
The spin-independent and spin-dependent cross section are given in figure 7 and 9 respectively.

In both the spin independent and spin-dependent case a larger cutoff decreases the cross section
by relaxing the degeneracy. However this effect is fairly consistent across all values of R−1 with
the ratio σΛ=50

σΛ=20
ranging from 0.69 to 0.63 when R−1 is varied from 200 to 2000 GeV.

At the lower bound on R−1 = 1400GeV from LHC searches [11] the spin independent cross
section takes values 4.1 ⋅ 10−47 and 4.0 ⋅ 10−47cm2 for Λ = 20

R and Λ = 50
R respectively. The spin-

dependent cross sections at this bound was found to be 6.3 ⋅ 10−44 and 4.0 ⋅ 10−44cm2.
For larger R−1 we find a significantly smaller spin-independent cross section than Hissano et.

al. [28]. Their cross sections do not include finite corrections and approximate the LKP by the
KK-hypercharge boson B(1) . Based on the effect introducing finite corrections have on the cross
sections, which will be discussed shortly, and the fact the mixing angle Eq. 41 should be small for
large R−1 we should expect better agreement for R−1 . The opposite seems to be the case here.
For large R−1 we expect this to be explained by the Higgs contribution alone. This discrepancy is
likely due to the B(1) − B(1) − H(0) vertex factors as discussed in the previous section.

The spin-dependant cross sections obtained here are slightly smaller than Hissano et. al. This
difference is actually smaller than the difference than the difference between spin-dependent cross
section with and without finite corrections found here, as presented in the next section. For small
R−1 the difference is likely due to the fact they used B(1) as the LKP whereas the results obtained
here used the KK-photon. The reduction in the cross section due to finite corrections is somewhat
offset by the fact ΛR = 20 does not exactly correspond to ∆q = 0.2.
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Figure 7: Spin-independent cross sections for ΛR = 5, 20, 50 obtain in this thesis as implemented
in DarkSUSY compared to the results obtained by Hissano [28] with ΛR = 20 and the Xenon1T
bound [9]. The vertical dashed black line indicates the LHC bound [11]

Figure 8: Contributions to the effective coupling fp
m

γ(1)
defined in 66 at ΛR = 20. The different

contributions correspond to the exchange of a single SM Higgs boson ( f h
q )89, the scalar quark

contribution ( f q
q ) 90, the quark twist-2 contribution (gq ) 91 and the gluon contribution ( fg )92

respectively
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Figure 9: Spin-dependent cross sections for ΛR = 5, 20, 50 obtain in this thesis as implemented

in DarkSUSY compared to the results obtained by Hissano [28] with ∆q =
m

q(1)
−m

γ(1)

m
γ(1)

= 0.2 witch

approximatly corresponds to ΛR = 20. The vertical dashed black line inicates the LHC bound [11]

5.3 nonminimal effects

Figure 10 shows the spin independent cross sections of the KK-photon with the proton. Here

the mass splitting ∆q =
m

q(1)
−m

γ(1)

m
γ(1)

has been varied from 0.01 to 0.5 for all quarks excluding the

top-quarks simultaneously. The cross section is enhanced as the KK-quarks and the KK-photon
become degenerate.

As the degeneracy is lifted, i.e ∆q is increased, the cross sections saturate as f h
q does not depend

on ∆q whereas the other contributions decrease. Therefore when ∆q is sufficiently large f h
q is the

only relevant contribution. This saturation happens faster for larger R−1 as f h
q is more dominant

in this regime, for R−1 > O(TeV) this happens before the mUED values of 0.2-0.25.
The spin-dependent cross sections are shown in figure 11 we again see that increasing the

mass splitting decreases the cross sections for the same reasons as in the spin-independent case.
However the spin-dependant cross sections have a consistent behavior as the compactification
scale changes and do not saturate.
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Figure 10: Spin-independent cross section with a proton in the degeneracy ∆q =
m

q(1)
−m

γ(1)

m
γ(1)

, R−1

plane where the degeneracy was fixed for all quarks except the top-quark which were kept at the
mUED value which are shown as dotted lines for reference

Figure 11: Spin-dependent cross section with a proton in the degeneracy ∆q =
m

q(1)
−m

γ(1)

m
γ(1)

, R−1

plhane were the degeneracy was fixed for all quarks except the top-quark which were kept at the
mUED value which are shown as dotted lines for reference31



Figure 12: Spin-independent cross section with a proton in the degeneracy ∆q =
m

q(1)
−m

γ(1)

m
γ(1)

, R−1

plane were the degeneracy was fixed for the down-quark(filled lines) or up-quark(dashed lines)
while all others kept mUED values which are shown as dotted lines for reference

When we instead fix the mass of one KK-quark figure 12, keeping all others at the mUED value,
we again find the cross sections are enhanced for values of small values of ∆q, the enhancement
is not as strong as in figure 10. For values of ∆q above 0.1 the cross sections again become in-
dependent of ∆q, however the cross sections tend towards larger values than in figure 10, as the
contribution from the exchange of the KK-quarks whose masses are not varied are still signifi-
cant. The difference however is smaller for larger R−1 with the 10−46cm2 contours being almost
identical for ∆q larger than the mUED value regardless of whether we fixed the mass one or all
KK-quarks.

For values of ∆u/d/s/c/b > 0.1, the choice of which quark mass to vary made no appreciable
difference, as the dominant contribution in this regime f h

q is identical for all quarks, recall that

mq =
λqv
√

2
.

For values smaller than 0.1 we see that the contours are slightly steeper for the up-quarks than
the down-quarks. In this regime the scalar quark contribution ( f q

q ) 90, the twist-2 contribution
(gq ) 91 and the gluon contribution ( fg ) 92 arising from the exchange of (or loop containing) the
relevant KK-quark is expected to dominate.

The only difference between the up-quark and down-quark contribution in this regime is the
vertex gγ(1)q(1)s/dq, for doublet KK-quarks this factor is almost identical for up-quarks and down-

quarks, for singlet quarks however the vertex involving an up quark is larger than the one in-
volving a down-quark by almost a factor of 2. Therefore the cross sections increase slightly faster
when ∆u is increases than when compared to the case when ∆d is increased as the term that be-
comes dominant is larger.
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5.4 Effect of finite corrections

Here we compare the cross sections calculated using only mass correction proportional to ln( Λ
R−1 )

which were calculated in [17] and the cross sections calculated using mass correction from [23]
which include finite corrections. As the finite corrections were calculated recently, this is the first
time the direct detection cross section have been calculated. Figures 13 and 14 show the spin-
independent and spin-dependent cross sections respectively with and without finite corrections
with Λ = 20

R .
The most important impact of finite corrections is that they increase the mass of KK-quarks

and thus the mass splitting of the KK-quarks and KK-photons.
Both spin-dependent and spin-independent cross section are reduced when the finite correc-

tions are added. The spin-dependent cross sections by a fairly constant overall factor
For the spin-independent cross section finite corrections are less important for large R−1 , as

f h
q which does not depend on the KK-masses, dominates in this region.

In order to make this clearer figure 15 shows the ratio between the cross sections calculated
using only logarithmic contributions to the radiative correction as calculated by [17](σold) and the
cross section including the finite corrections from (σnew) [23].

Including the radiative correction reduces the spin dependent cross sections by up to 40 % .
In the spin-dependant case the finite contributions cause a 20% decrease around R−1 = 1 TeV, but
are less important for as R−1 is increased to the point where the finite correction do not make a
difference above 3 TeV.

In general the finite corrections are more important for smaller cutoffs as the mass correction as
the logarithmic term proportional to ln(ΛR) which the new and old corrections have in common
will obviously be smaller. Therefore adding the same finite contribution will therefore not have as
large of an impact on the cross sections.
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Figure 13: Comparision of the spin-independent cross sections calculated using radiative correc-
tion from [17] (Old corrections) and [23] (New Corrections) respectively and ΛR = 20

Figure 14: Comparision of the spin-dependent cross sections calculated using radiative correction
from [17] (Old corrections) and [23] (New Corrections) respectively and ΛR = 20
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Figure 15: The ratio between the cross sections calculated using radiative correction from [23]
(σnew) and [17] (σold) for the spin-independent (SI) and spin-dependent (SD) cross sections

6 Discussion

6.1 The (m)UED parameter space

6.1.1 MUED parameters

In mUED there are only two free parameters the compactification scale R and the cut-off Λ. The
compactification scale defines the size of the extra dimension, as discused in section 2.1. Making
the extra dimension smaller means larger masses for KK-modes as well as larger mass splittings
due to radiative corrections. As such The compactification scale is phenomenologically important
and has a significant impact on direct detection. The standard model is non-renormailizable in
higher dimensions. This means UED must be interpreted as an effective theory which is only
valid up to a cut-off. In order to avoid regimes where the theory is strongly interacting one usually
takes ΛR < 50 [12]. It has also been estimated that no new physics should appear before ΛR ≈ 20
[5]. Radiative corrections depend on the cut-off meaning that it affects the masses of the theory
and hence is phenomenologically significant. The radiative corrections to the KK-photon mass are
small and hence the KK-photon mass is well approximated by R−1 .

Comparing the results found here with the limits from the Xenon-1T experiments [9] we find
the spin dependent cross section are smaller than the 90 % confidence level for all values of
R−1 > 300 GeV. In general the spin-dependent bounds are significantly weaker than the spin
independent ones. The spin independent cross sections evade this bound for values of R−1 >
450 GeV for ΛR = 20 and R−1 > 420 GeV for ΛR = 50. As discussed briefly in the last section the
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B(1) − B(1) − H(0) vertex used by Hissano et. al. [28] does not agree with the one given in other
sources [48] [13], the latter being the related to the γ(1) −γ(1) −H(0) vertex used here. If we naively
use the vertex from Hissano et. al. without worrying about the difference between B(1) and the
photon we can estimate that the direct detection bound may be pushed up to R−1 > 550 GeV. The
bound will in practice be smaller than this as the KK-photon vertex is slightly smaller than the
B(1) vertex.

It has been estimated that mUED predicts the correct relic density in the range 1600 < R−1 <
1660 GeV with the full set of radiative corrections when ΛR = 20 and 1630 < R−1 < 1785 GeV [30].
This region of the parameter space is comfortably within the direct detection bounds.

6.1.2 Non-minimal theories

Non-minimal UED covers a large class of theories described by terms in the Lagrangian localized
at the boundaries. For phenomenological purposes the whole class of non-minimal theories can
be studied by treating the mass and couplings of every KK-particle as a free parameter. The most
distinguishing feature of UED is the pseudo-degenerate spectrum of new particles. As such one
would expect the mass splitting, i.e. the difference between the mass of the LKP and some other
KK-particle, would be a parameter of interest.

While mUED unambiguously produces the KK-photon as the LKP, this is not necessarily the
case in non-minimal theories. Here the LKP is assumed to be the KK-photon. Another candidate
of interest would be the KK-neutrino. However direct detection seem to exclude this candidate
as the lower bound on the WIMP mass would be around 50 TeV which does not seem to agree
with the relic density calculation [48]. As the only KK-mass appearing in the cross sections are

KK-quark masses the only mass splitting of interest will be ∆q =
m

q(1)
−m

γ(1)

m
γ(1)

q being any quark.

The spin dependent cross sections are within the experimental bounds for all values of ∆q so
long as R−1 > 1 TeV. For the spin independent cross sections we found that increasing ∆q above the
mUED value reduces the cross sections for in the regimes where the KK-quark-exchange and gluon
contributions dominate R−1 < O(TeV), but tend to saturate to a value close to the mUED cross
section in the regime where the Higgs exchange dominates R−1 > O(TeV), as this contribution does
not depend on any UED parameter except the KK-photon mass and weak mixing angle. When
∆q is decreased below the mUED values for all KK-quarks except top-quark the cross sections
increase, this gives us a lower bound of ∆q = 0.025 at the LHC bound decreasing to ∆q = 0.015 at
R−1 = 1800 GeV. If instead we vary only one quark mass while keeping all others at the mUED
value we find a similar effect.

Hence the mUED results for direct detection are robust and hold for any non-minimal exten-
sion unless said extension predicts a very small mass splitting compared to mUED.

6.2 Prospect of future detection

The next planed extension of the XENON1T experiment XENONnT is set to probe spin indepen-
dent cross section as small as 2 ⋅ 10−47 cm2 [47] for WIMP-masses of 1 TeV. If we naively extrapo-
late this bound to larger WIMP masses we find the XENONnT may be able to probe mUED up to
R−1 ≈ 1400 GeV. While this is a significant improvement from the XENON1T bound the improve-
ment over the current LHC bounds [11] of R−1 > 1400 GeV is marginal at best. Furthermore it will
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not probe the region of mUED parameter-space favoured by the relic density. The mUED cross sec-
tions are however large enough to be detected by future experiments with higher sensitivity than
XENONnT as they are larger than the neutrino floor up to approximately R−1 ≈ 2500 GeV. The
neutrino floor refers to the fact that a sufficiently sensitive direct detection experiment will pick
up signals from neutrinos interacting with the nuclei, and as such will have a hard challenge in
subtracting the background [49]. As such all of the parameter space favoured by the relic density
can in principle be tested by future direct detection experiments.

7 Conclusions

The goal of this thesis was to evaluate the direct detection cross section for the KK-photon and
nucleons by calculating the relevant effective four-point couplings and implement them in Dark-
SUSY. These cross section were evaluated using the most recent radiative corrections [23] and the
full leading order calculation of the gluon contribution.

The inclusion of the new radiative corrections reduces the cross sections significantly in regions
where R−1 < O(TeV) which significantly reduces the lower bound on R−1 . With the help of the
radiative corrections the lower bound on mUED is pushed down to R−1 > 450 GeV. For non-
minimal UED the same results hold unless the theory is made more degenerate by significantly
reducing the quark masses. MUED, and by extension a large class of non-minimal theories, is
still a viable solution to the dark matter problem and is not excluded by current direct detection
bounds. The mUED cross section are in actually small enough that the KK-photon will likely
evade detection by the upcoming XENONnT [47] experiment.
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A Passarino-Veltmann reduction

When computing loop diagrams one has to integrate over a product of all propagators contain a
loop momentum. As the box diagrams here contain 4 propagators these integrals will be of the
form:

D0; Dµ; Dµν; Dµνσ; Dµνσρ(p2
1, p2

2, p2
3, m1, m2, m3, m4) (94)

= ∫
d4q
iπ2

1; qµ; qµqν; qµqνqσ; qµqνqσqρ

(q2 −m2
1)((q + p1)2 −m2

2)((q + p1 + p2)2 −m2
3)((q + p1 + p2 + p3)2 −m2

4)

These integrals can be be reduced to scalar integrals, that is integrals without Lorentz indices
[42] which have been calculated [52]. This approach called the Passarino-Veltmann reduction
scheme [42] only works when the external momenta involved are independent, which is not the
case as the two KK-photon momenta are equal. We therefore use an extended version of the
Passarino-Veltmann reduction scheme implemented in LERG [50]. A similar approach was used
for calculating the annihilation cross section of two KK-hypercharge bosons to two photons in [37],
in fact the code used here is a modification of their program.

Focusing just on the denominator we can do a partial fraction decomposition to rewrite the
four-point function in 94 as a combination of three-point functions

C0; Cµ; Cµν; Cµνσ; Cµνσρ(p2
1, p2

2, (p1+ p2)2, m1, m2, m3) = ∫
d4q
iπ2

1; qµ; qµqν; qµqνqσ; qµqνqσqρ

(q2 −m2
1)((q + p1)2 −m2

2)((q + p1 + p2)2 −m2
3)

(95)
By being clever about the decomposition we can write the four-point functions which depend

on momenta which are not independent in terms of a three or four three-point functions which
depend on a set of independent momenta.

The necessary coefficients for calculating the cross sections can be separated into two different
contributions the vector contribution and the pseudo-vector contribution. The vector contribution
was found to be:

B1v = ( 16
(η + 1)

+
16ωg

3mγ(1)(η + 1)
)B0(4, 0, 0) − (

16(2η + 1)
(η − 1)

+
8(13η + 2)

3mγ(1)(η − 1)
)B0(4, η, η) (96)

−(
18η4 + 22η3 − 4η2 + 8η − 128

3(η2 − 1)
+

4(−15η4 − 13η3 + 10η2 − 4η + 24)ωg

3mγ(1)(η2 − 1)
)B0(1+ 2

ωg

mγ(1)
, 0, η)

+(
18η4 + 22η3 + 46η2 + 56η − 20

3(η2 − 1)
−

4(15η4 + 48η3 − 9η2 + 18η − 28)ωg

3mγ(1)(η2 − 1)
)B0(0, η, η)

+(
32η(η + 2)
(η − 1)

+
16η(4+ η)ωg

mγ(1)(η − 1)
)C0(4, 0, 0, η, η, η) + 32

η − 1
C0(1, 0, 1+ 2

ωg

mγ(1)
, 0, η, η)

+
2(−226− 72η − 75η2 + 42η3 + 27η4)

9(η2 − 1)
−

4(−20+ 18η − 9η2 + 48η3 + 45η4)ωg

9mγ(1)(η2 − 1)
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B2v = ( 40
3(η + 1)

+
8ωg

mγ(1)(η + 1)
)B0(4, 0, 0) − (

20(η + 2)
3(η − 1)

+
8(η + 1)ωg

mγ(1)(η − 1)
)B0(4, η, η)) (97)

−(
4(3η4 + 5η3 + η − 25)

3(η2 − 1)
−

8(3η4 − η3 + 2η2 + 5η − 11)ω

3mγ(1)(η2 − 1)
)B0(1+ 2

ωg

mγ(1)
, 0, η)

+(
4(3η4 + 5η3 + 5η2 + 9η − 8)

3(η2 − 1)
−

8(3η4 − η3 − η2 − η − 14)ωg

3mγ(1)(η2 − 1)
)B0(0, η, η)

+(
8η(η + 4)

η − 1
+

32ηωg

mγ(1)(η − 1)
)C0(4, 0, 0, η, η, η)−

8η

η − 1
C0(1, 0, 1+2

ωg

mγ(1)
, 0, η, η)−

64ωg

3mγ(1)(η2 − 1)
−

4(1+ 30η + 2η2 + 3η3)
3η(η2 − 1)

+
4(−1− 39η − 6η3 + 5η4 + 3η5)

3η(η2 − 1)
−

8(−1+ 6η − η2 − η3 + η4)ω

3mγ(1)(η2 − 1)

¨
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B6 = ( 28
3(η + 1)

+
4ωg

mγ(1)(η + 1)
)B0(4, 0, 0) − (

28+ 26η

3(η − 1)
+

(13η + 4)ω

mγ(1)(η − 1)
)B0(4, η, η) (98)

−(
2(−44+ 28η − 2η2 − 13η3 + 9η4)

3(η2 − 1)
−

4(−24+ 28η − 10η2 − 11η3 + 15η4)ω

3mγ(1)(η2 − 1)
B(1+ 2

ωg

mγ(1)
, 0, η)

+(
18η4 − 26η3 + 22η2 + 90η − 40

3(η2 − 1)
−

60η4 − 44η3 + 118η2 + 22η − 108)ωg

3mγ(1)(η2 − 1)
)B0(0, η, η)

+
4η(η + 8)

η − 1
+)

12η(η + 4)ωg

mγ(1)(η − 1)
C0(4, 0, 0, η, η, η) − 16C0(1, 0, 1+ 2

ωg

mγ(1)
, 0, η, η)

+
(2(−178+ 63η − 12η2 − 30η3 + 27η4)

9(η2 − 1)
−

2(−22+ 57η − 9η2 − 16η3 + 30η4)ωg

3(η2 − 1)mγ(1)

The pseudovector contribution was found to be:

B1a = B1v − 32η((1− 2
ω

mγ(1)
)(B0(1+ 2

ω

mγ(1)
, 0, η) − B0(0, η, η) − 1) (99)

B2a = B2v + 32η((1− 2
ω

mγ(1)
)(B0(1+ 2

ω

mγ(1)
, 0, η) − B0(0, η, η) − 1) (100)

where η = mkq2

m2
γ(1)

.

The two-point and three-point are all given in Bergstöm et. al. [37] except B0(1 + 2ωg
m

γ(1)
, 0, η)

and C0(1, 0, 1+ 2ωg
m

γ(1)
, 0, η, η) These were found to be:

B0(1+
2ωg

mγ(1)
, 0, η) = −

(2+ 4 ωg
M ) − η ln(η) + (η − 1+ 2 ωg

M ) ln(η − 1− 2 ωg
M )

1+ 2 ωg
M

(101)

C0(1, 0, 1+ 2
ωg

mγ(1)
, 0, η, η) = ∫

d4q
(2π)4

1
q2((q + p)2 +m2

q(1)
)((q + p + p3)2 +m2

q(1)
)

(102)

= ∫
d4q

(2π)4
1

(q2 +m2
q(1)

)(q + p2
3 +m2

q(1)
)(q − p)2

= ∫
1

0
dx∫

x

0
dy(2y(ω+ x+ xω)+(1+2ω)x2+ x(η+1+2ω)− iε)−1

(103)
where ω = ωg

m
γ(1)

In the last step using 5.2 from ’t Hooft Veltman [52] with

a = 1+ 2ω b = 0 c = 2+ 2ω d = η + 1+ 2ω e = 2ω f = −iε (104)
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C0(1, 0, 1+ 2
ωg

M
, 0, η, η) = −∫

1

0
dx

ln(x + x2
(1+2ω)+x(1+η+2ω)−iε

2(xω+x+ω)
) − ln( x2

(1+2ω)+x(1+η+2ω)−iε
2(xω+x+ω)

)

2(xω + x +ω)
(105)

= ∫
1

0
dx

ln( x2
(1+2ω)+x(1+η+2ω)+2x(xω+x+ω)−iε

x2(1+2ω)+x(1+η+2ω)−iε )

2(xω + x +ω)

= ∫
1

0
dx

ln( (3+4ω)x+(1+η+4ω)

(1+2ω)x+(1+η+2ω)
)

2(xω + x +ω)
(106)

= ∫
1

0
dx

ln((3+ 4ω)x + (1+ η + 4ω)) − ln(x(1+ 2ω) + (1+ η + 2ω))
2(xω + x +ω)

(107)

to frist order in ωg
m

γ(1)

≈ 1
2
(− ln(3) ln(1+ η) − ln( −1

1+ η
) ln(2+ η) + ln(3) ln(4+ η) + ln( −1

1+ η
)− Li2(

2+ η

1+ η
) + Li2(

4+ η

1+ η
)

(108)

ωg

2mγ(1)
(−4 ln(3)

1+ η
+ 8 ln(3)

4+ η
+

2 ln(−η − 1)
1+ η

−
(4+ 7η) ln( −3

1+η )
(1+ η)(4+ η)

−
4 ln( −1

1+η )
2+ η

+
8 ln( −1

1+η )
4+ η

) (109)

ωg

2mγ(1)
(
(2+ 3η) ln( −1

1+η )
(1+ η)(2+ η)

+ ln(1+ η)(2
3
+ ln(3))+ ln(2+ η)(ln( −1

1+ η
)+

η

1+ η
−2)+ ln(4+ η)(4

3
+

η

1+ η
)

(110)

ωg

2mγ(1)
(− ln(3) + ln( −1

1+ η
)

ln( −3
1+η ) + ln( −1

1+η ) − 4

1+ η
+ Li2(

2+ η

1+ η
) − Li2(

4+ η

1+ η
)) (111)

where the Spence function or dilogarithm is defined as:

Li2(z) = −∫
1

0
dx

ln(1− zx)
x

=
∞

∑
k=1

zk

k2 (112)
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