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Abstract 9 

The changing climate and reservoir storage have a far-reaching influence on the 10 

nonstationarity in flood peaks worldwide, but the quantification of the relative 11 

contribution of each covariate (i.e., climate and reservoir storage) is fundamentally 12 

challenging especially under the time-varying mechanisms in statistical properties. 13 

This study proposed an integrated flood frequency analysis for assessing the impacts 14 

of changing climate and reservoir storage on the nonstationarity in flood peaks and 15 

flood risks worldwide. The 32 major river catchments covering more than 60% of 16 

hydro-meteorological observation stations and 70% of reservoir storage worldwide 17 

constituted the case study. The proposed three-faceted approach was explored 18 

systematically through: modeling the nonstationarity in global flood peaks, 19 

identifying the contribution of changing climate and reservoir storage to the 20 

nonstationarity of flood peaks, and quantifying the change in flood risks under the 21 

nonstationary condition. The findings pointed out that global flood trends varied from 22 

increasing +19.3%/decade to decreasing –31.6%/decade. Taking the stationary flood 23 

frequency analysis as the benchmark, the comparative results revealed that the flood 24 

risk in 5 rivers under the nonstationary condition in response to warming climate 25 

significantly increased (1% → 5%) over the historical period whereas the flood risk 26 

in 7 rivers in response to increasing reservoir storage largely reduced (1% → 0.5%). 27 

Despite the spatiotemporal heterogeneity of observations, the changes in flood peaks 28 

evaluated here were explicitly in lined with the changing climate and reservoir storage, 29 

supporting the demand for considering the nonstationarity of flood peaks and risks in 30 



3 

social infrastructure planning and designing as well as water management.  31 

Keywords: Climate change; Reservoir regulation; Nonstationarity; Flood risk; Water 32 

management 33 

 34 

Nomenclature 35 

Abbreviations 36 

DOR              Degree of Regulation 37 

EASM             East Asian Summer Monsoon 38 

FAO               Food and Agriculture Organization  39 

GAMLSS          Generalized Additive Models for Location, Scale and Shape parameters 40 

GRDC             Global Runoff Data Centre 41 

GSOD             Global Summary of the Day 42 

PI-PW             Partial Information and Partial Weights 43 

PIC               Partial Information Correlation 44 

PMI               Partial Mutual Information 45 

RI                Reservoir Index 46 

SASM             South Asian Summer Monsoon 47 

MI                Mutual Information 48 

NASA             National Aeronautics and Space Administration 49 

WCD             World Commission on Dams 50 

WWF             World Wildlife Fund 51 

Indices 52 

t                 index of time  53 

h                 index of anthropogenic covariates, from 1 to H 54 

i                 index of covariates, from 0 to I 55 

j                 index of reservoirs, from 1 to J 56 

l                 index of climate covariates, from 1 to L 57 

m                index of dimensions in conditional vector Z, from 1 to M 58 

n                index of sample observations, from 1 to N 59 

k                index of neighbors permissible, from 1 to K 60 

Parameters 61 

H                number of anthropogenic covariates 62 

I                 number of covariates 63 

J                 number of reservoirs 64 

K                number of neighbors permissible 65 

L                number of climate covariates 66 

M                number of dimensions in conditional vector Z 67 

N                number of sample observations 68 

Variables 69 

                  catchment area controlled by j-th reservoir 70 
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                  catchment area controlled by streamflow observation station 71 

                  reservoir conservation pool of j-th reservoir 72 

                  contribution of climate covariate Z 73 

                  contribution of anthropogenic covariate P 74 

D                design life of infrastructure 75 

                 degree of regulation corresponding to j-th reservoir 76 

                 degree of regulation corresponding to all reservoirs 77 

                   density probability function in R software 78 

                  number of observations whose distance from the covariate set Z 79 

                   time-varying distribution function of flood peaks (  ) at t-th time 80 

                   log link function 81 

P                 potential covariate (e.g., reservoir index) to the system response 82 

                   probability function 83 

                   estimated PIC ranging between [0, 1] 84 

                  n-th sample observation of variable P 85 

                   cummulative distribution function in R software 86 

                   quantile function in R software 87 

                    random number generator in R software 88 

                  measure of spread for m-th dimension 89 

T                 return period corresponding to design life 90 

Tmin               minimal value of temperature 91 

Tmean              mean value of temperature 92 

Tmax               maximal value of temperature 93 

                  flood control capacity of j-th reservoir 94 

                  total flood control capacity of all reservoirs 95 

                  average annual runoff (inflow) of j-th reservoir 96 

                  total average annual runoff of a river 97 

X                 system response (i.e., time-varying moment) 98 

                   k-th observation of system response X 99 

                  n-th sample observation of system response X 100 

  
                 i-th covariate at t-th time 101 

                  random variable following the distribution    102 

                  observation value of flood peaks (  ) 103 

Z                 climate factor consisting of precipitation and temperature 104 

                  climate covariate vector without the m-th covariate 105 

                  n-th sample observation of vector Z 106 

                  vector of distribution parameters accounting for location and scale 107 

                  constant in log link function for location 108 

                  constant in log link function for scale 109 

  
                 time-varying parameter account for location with i-th covariate 110 

  
                 time-varying parameter account for scale with i-th covariate 111 

                  measure of contribution of m-th covariate    112 

                   contribution of l-th climate covariate    113 

                   contribution of h-th anthropogenic covariate    114 



5 

                  distance of conditional vector Z 115 

                   time-varying parameter vector at t-th time 116 

                  shape parameter in three-parameter distribution taken as a constant 117 

                 location parameter in the distribution of flood peaks 118 

                 scale parameter in the distribution of flood peaks 119 

                 shape parameter in the distribution of flood peaks 120 

 121 

1. Introduction 122 

Flood frequency analysis is one of the cornerstones in infrastructure projects’ 123 

planning, design and management. The key assumption for conventional approaches 124 

to flood frequency analysis is that meteorological and hydrological datasets for use 125 

are independent and stationary while exhibiting respective identical distributions over 126 

time. Nevertheless, the validity of the stationarity assumption has already been 127 

disputed because climate change and anthropogenic activities (Aissia et al., 2014; 128 

Cheng and AghaKouchak, 2014; Schaller et al., 2016; Arheimer et al., 2017) have 129 

altered the statistical characteristics of hydrological process (Ashraf et al., 2018; 130 

Sarhadi et al., 2018). Infrastructure design projects using conventional methods based 131 

on the assumption of stationarity may not provide the water levels assumed for flood 132 

protection, water supply or hydropower generation over the design life since the 133 

nonstationarity would cause uncertainty and changes in the return period of a 134 

designed streamflow event (Forzieri et al., 2018). Consequently, in a changing 135 

environment, more in-depth researches are required to explicitly account for the 136 

nonstationarity in flood peaks. This research is expected to address an issue of topical 137 

interest, supporting societies to adapt to changing conditions in consideration of 138 

climate- and human-induced changes in flood peaks and risks (Montanari et al., 139 
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2013).  140 

The scientific reason for exploring the flood risk of existing infrastructures and 141 

the need of using innovative approaches in support of designing future infrastructures 142 

are illustrated in Fig. 1. For the increasing flood trends, a design discharge    has a 143 

return period    under the stationary condition but corresponds to a much smaller 144 

return period    under the nonstationary condition (Fig. 1(A)). For the same return 145 

period   , its corresponding design discharge is much larger under the nonstationary 146 

condition (   ) than under the stationary condition (  ) (Fig. 1(B)). The relationship 147 

between flood risk (%), design life (D) and return period (T) can be formulated as 148 

             
 

 
 
 

. It shows that for a given return period T and the design life 149 

D, the flood risk is much larger under the nonstationary condition than under the 150 

stationary condition (Fig. 1(C)). In consequence, an infrastructure built for protecting 151 

a 100-year discharge under the stationary condition may only be possible to protect a 152 

20-year discharge in the nonstationary condition under intensive climate and 153 

anthropogenic changes (Fig. 1(D)). Due to the assumption of the stationarity, for the 154 

increasing flood trends, design flood values would be underestimated, possibly raising 155 

future flood damages or dam failure risks (Fig. 1(D)). In contrast, for the decreasing 156 

flood trends, design flood values would be overestimated, potentially exerting 157 

unnecessary high costs on flood protection (Fig. 1(E)).  158 
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159 
Fig. 1 Theoretical relationship under various scenarios. A-B. Relationship between flood and 160 

return period. C. Risk, design life and return period. D. Protection level compared between 161 

stationary and nonstationary conditions under increasing flood trends. E. Protection level 162 

compared between stationary and nonstationary conditions under decreasing flood trends.  163 

 164 

This study is highly motivated by the global concern raised in recent years, that is, 165 

the frequency and intensity of flood events in consequence of climatic and 166 

anthropogenic changes (Milly et al., 2005; Mishra et al., 2012; Li et al., 2015) as well 167 

as drying antecedent conditions (Jones et al., 2010; Sharma et al., 2018) will bring 168 

damages to hydraulic infrastructures (Lins and Cohn, 2011; Hui et al., 2018). In 169 

general, infrastructures (e.g. dams, roads, sewers and stormwater drainage systems) 170 

were mostly designed using conventional methods based on the assumption of 171 
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stationarity (Strupczewski et al., 2001; Milly et al., 2008). Given the observed 172 

increase of extreme events of precipitation, temperature and streamflow, the flood 173 

frequency analysis should be improved to account for climatic and anthropogenic 174 

changes, especially for hydraulic engineering and urban infrastructure design (Son et 175 

al., 2017; Ouarda and Charron, 2018; Sun et al., 2018). Haddeland et al. (2014) 176 

assessed the impacts of climate change, dams and water withdrawals on the 177 

hydrological cycle, global water resources and water supply and demand. Zhou et al. 178 

(2016) found that global reservoir capacity can induce 10%-70% variations of global 179 

surface water storage and the seasonal reservoir variations can be equal to the sum of 180 

snowmelt and soil moisture storage in several river catchments. Wasko and Sharma 181 

(2017) argued that increases in precipitation at higher temperatures and decreases in 182 

drying antecedent conditions correspond to increases in streamflow, which are closely 183 

associated with the sizes of catchments. Huss and Hock (2018) evaluated the impacts 184 

of global glacier decline on global glacier runoff for 56 large-scale glacierized 185 

catchments up to 2100. Yin et al. (2018) examined the sensitivity of the 99th 186 

percentile of precipitation and streamflow with temperature and concluded that storm 187 

runoff with a flash flooding mechanism would increase due to climatic and 188 

anthropogenic changes. Wasko et al. (2019) argued that decreases in drying 189 

antecedent conditions rather than increases in temperature would induce increased 190 

flooding. Worldwide climate and reservoir storage changes retreat and contribute to 191 

hydrological cycle changes, which raises major concerns over the global flood change. 192 

However global-scale assessments of the changing climate and reservoir storage as 193 
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well as the resulting nonstationarity in flood peaks are rare.  194 

The combination of climate and reservoir storage changes is imposing sharper 195 

and even long-running changes upon the nonstationarity of floods in the world’s 196 

major rivers (Barichivich et al., 2018; Musselman et al., 2018; Willner et al., 2018). 197 

Therefore, quantifying the probability of floods that has changed over time is critical 198 

to risk management under a nonstationary condition as well as the understanding of 199 

historical impacts of global warming and reservoir storage changes on the flood 200 

nonstationarity. Hirabayashi et al. (2019) projected climate changes on flood risks at a 201 

global scale. Güneralp et al. (2015) offered a changing global pattern of flood and 202 

drought frequency under a warmer climate in the future. Best (2019) provided a 203 

global impact assessment of anthropogenic stressors on the world’s 32 major rivers. 204 

From the perspective of a nonstationary climate, Sarhadi et al. (2018) quantified the 205 

spatial and temporal co-occurrence of climate stresses at a global scale. The 206 

aforementioned studies on the world’s major rivers adopted only the temporal variable 207 

to model the parameters of the time-varying distribution for floods, yet they did not 208 

employ climatic and anthropogenic covariates of precipitation and temperature 209 

(climatic factors) as well as reservoir index (anthropogenic factor) to model the 210 

nonstationarity of flood peaks. These covariates would be more contributive to 211 

modeling the nonstationarity of flood peaks as compared with the temporal covariate, 212 

because they would quantify causal-physical mechanisms of flood nonstationarity 213 

(Liang et al., 2018; Xiong et al., 2018; Su et al., 2019; Yu et al., 2019).  214 

Both the changing climate and reservoir storage are expected to have an impact 215 
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on the nonstationarity of flood peaks; however, no consistent large-scale climate 216 

change and reservoir regulation signals in flood peak observations have been 217 

determined as yet due to the spatiotemporal distribution of limited 218 

hydrometeorological monitoring stations and reservoirs. According to the literature on 219 

the consistent changes (e.g., trend patterns) in flood peaks caused by global climate 220 

change, atmospheric blocking and reservoir regulation, the research gaps are 221 

described as follows. First, what are the patterns of flood peaks in the major rivers of 222 

the world? And what are the contributions of the changing climate and reservoir 223 

storage to the nonstationarity of flood peaks worldwide? Second, how to quantify the 224 

flood risk changes induced by the nonstationarity of floods in major rivers?  225 

The goal of this study is to quantify the responses of the nonstationarity in flood 226 

peaks worldwide and flood risks to the changing climate and reservoir storage. The 227 

exploration was concentrated on three main foci. Firstly, the trend and the 228 

nonstationarity of flood peaks in each major river were detected and modeled by 229 

using the Generalized Additive Models for Location, Scale and Shape parameters 230 

(GAMLSS) method. Secondly, the contribution of multidecadal changes in climate 231 

and reservoir storage to the nonstationarity of flood peaks was identified by using the 232 

Partial Information and Partial Weights (PI-PW) method. Finally, the changes in flood 233 

risks under the nonstationary condition was quantified by using the time-varying 234 

distribution function. The 32 major river catchments covering more than 60% of 235 

hydro-meteorological observation stations and 70% of reservoir storage of the world 236 

constituted the case study.  237 
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The innovative nature of this study lies in proposing an integrated frequency 238 

analysis for the first time to quantify the multidecadal changes in climate and 239 

reservoir storage for assessing flood risks associated with the nonstationarity in flood 240 

peaks worldwide. The rest of this study was organized as below. Section 2 described 241 

data acquisition as well as data quality control. Section 3 introduced the methods used, 242 

including the GAMLSS method, the PI-PM method and the flood risk analysis. 243 

Section 4 showed the results of the methods employed to assess the nonstationarity in 244 

flood peaks and risks worldwide. Section 5 gave the conclusion.  245 

 246 

2. Study area and materials 247 

2.1. Study area and data acquisition 248 

Fig. 2 illustrates the map of the world’s 32 major rivers listed in order of drainage 249 

basin area as well as their principal climatic and anthropogenic factors. “Major” is 250 

specified as a river that possesses a large basin area (> 0.164 million km
2
), a high 251 

mean annual streamflow (> 2,400 m
3
/s) and a long length (>1,400 km) (Lehner et al., 252 

2011; Best, 2019). This study adopted the numbers assigned to global top 32 rivers by 253 

the World Commission on Dams (WCD) according to basin size, mean annual 254 

streamflow and river length (Lehner and Grill, 2013; Lehner, 2013). Several 255 

reservoirs/dams were built along major rivers during the past century. A total of 6862 256 

reservoirs, each with its storage capacity exceeding 10 million m
3
, were investigated 257 

in this study.  258 
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 259 

Fig. 2 Map of the world’s 32 major rivers and the prelimary statistics of these river 260 

catchments. A. Map of the world’s 32 major rivers. B. Flood peak over each catchment during 261 
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1931-2017. C. Accumulated annual precipitation (or annual precipitation total) over each 262 

catchment during 1931-2017. D. Annual average temperature over each catchment during 263 

1931-2017. E. Reservoir capacity over each catchment up to 2017. F. Mean annual water 264 

availability over each catchment during 1931-2017. An inverse distance weighted method 265 

was used to convert gridded (1º × 1º) precipitation and temperature values into an average 266 

value over each catchment.  267 

 268 

The world’s major rivers are the cradles of human culture and civilization, 269 

supporting huge populations and diverse ecosystems (Najibi et al., 2018). The major 270 

rivers are mostly transboundary and play a key role in boosting regional 271 

collaborations yet ameliorating cross-boundary frictions. Being credited to the merits 272 

in nature, major rivers possess large water and hydropower resources in the world. 273 

The world’s major rivers created tremendous societal benefits through food 274 

production, hydroelectricity generation and trade route development (Gernaat et al., 275 

2017; Haer et al., 2020). However, flood events often cause significant losses of life 276 

and property in the basins of the world’s major rivers (Tanoue et al., 2016; Paprotny et 277 

al., 2018; Hudson et al., 2019). Flood control and sustainable development of water 278 

resources under the changing environment is of vital importance globally, especially 279 

for countries whose prosperities are largely dependent on flood-level control and 280 

water-use efficiency (Dottori et al., 2018; De Koning et al., 2019; Krueger et al., 281 

2019). Hence, it is interesting and important to conduct an impact assessment of the 282 

changing climate and reservoir storage on the nonstationarity of flood peaks and risks 283 

for the world’s 32 major rivers. 284 

Precipitation and air temperature (near-surface) datasets were extracted from the 285 

Global Summary of the Day (GSOD) datasets at a daily scale for the period of 286 

1931-2017 and at a spatial scale of an 1º × 1º grid box, including 26592 gauging 287 
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stations worldwide. Daily streamflow data for the period of 1931-2017 were extracted 288 

from the Global Runoff Data Centre (GRDC) datasets, covering 9543 observation 289 

stations and 225 river basins over the world (Fig. 3). Data of dams and reservoirs 290 

constructed during 1931-2017 in the world were obtained from the National 291 

Aeronautics and Space Administration (NASA), covering 6862 reservoirs/dams with a 292 

total storage capacity of approximately 6197 billion m
3
 accounting for more than 75 % 293 

of the global storage capacity (Fig. 4). This study also used dam and reservoir data 294 

extracted from the Food and Agriculture Organization (FAO) for the same period. 295 

More details on the datasets used in this study can be found in the sources of the 296 

GRDC dataset (WWF, 2019; GRDC, 2020), the source of the GSOD dataset 297 

(https://resources.data.gov/) and the global dam and reservoir data (Lehner et al., 298 

2011). 299 

GSOD datasets are accessible on the website of the National Climate Data Center 300 

(https://catalog.data.gov/dataset/global-surface-summary-of-the-day-gsod). GRDC 301 

datasets are accessible on the website of the Global Runoff Data Centre 302 

(http://www.bafg.de/ GRDC/EN/Home/homepage_node.html). Dam and reservoir 303 

data are accessible on the websites of the NASA Earth Observing System Data and 304 

Information System (http://sedac.ciesin.columbia.edu/data/set/grand-v1-dams-rev01) 305 

and the FAO of the United Nations 306 

(http://www.fao.org/nr/water/aquastat/dams/index.stm).  307 

https://resources.data.gov/
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 308 

Fig. 3 Distribution of streamflow and meteorological observation stations. A. Observation 309 

stations in the globe. B. Observation stations located in the basins of 32 major rivers. Global 310 

discharge data were extracted from the GRDC datasets. Meteorological data were extracted 311 

from the GSOD datasets.  312 
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313 

Fig. 4 Distribution of reservoirs/dams. A. Reservoirs/dams in the globe. B. Reservoirs/dams 314 

located in the basins of 32 major rivers. Reservoirs/dams data were extracted from the NASA 315 

Earth Observing System Data and Information System datasets and the FAO of the United 316 

Nations datasets.  317 

 318 

2.2.Data quality control 319 

All daily streamflow datasets used in this study are the observed datasets for 320 

preserving the characteristics of data affected by the changing climate and 321 

hydro-infrastructures (i.e., reservoir storage). During data pre-processing, this study 322 
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conducted a quality control test. For each observation station, this study first 323 

prescreened temperature and precipitation data to identify obviously false data, for 324 

example, negative precipitation or Tmax < Tmean (or Tmin > Tmean), where Tmin, Tmean and 325 

Tmax are the minimal, mean and maximal values of temperature. All reservoirs are 326 

included herein, with a total storage capacity of more than 0.01 billion m
3
.  327 

An inverse distance weighted method was used to convert gridded (1º × 1º) 328 

precipitation and temperature values into an average value over each catchment. The 329 

Kendall’s tau correlation analysis was performed to identify the precipitation and 330 

temperature metrics the most important in explaining the variability of flood peaks. 331 

The daily precipitation (temperature) converted into the accumulated annual 332 

precipitation (annual average temperature) displayed a higher Kendall’s tau 333 

correlation with flood peaks than the precipitation (temperature) at daily, monthly and 334 

seasonal scales. In this study, the accumulated annual precipitation and the annual 335 

average temperature of each catchment were considered as covariates. Additional 336 

details on regional flood frequency regarding the correlation analysis between flood 337 

peaks and precipitation and temperature at different time scales (daily, monthly, 338 

seasonal and annual) can be found in Villarini et al. (2009, 2011 and 2014), Vogel et al. 339 

(2011), Yan et al. (2017), Serago and Vogel (2018), Sharma et al. (2018), and Blöschl 340 

et al (2020).  341 

The degree of regulation (DOR) index is introduced as a key component of studies 342 

on flow regulation driven by reservoir operation (Nilsson et al., 2005).  343 

                                             (1a) 344 
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                                    (1b) 345 

where   ,     and     denote the reservoir conservation pool, the average annual 346 

runoff (inflow) of the j-th reservoir and the total average annual runoff of a river, 347 

respectively.      and      are the degrees of regulation corresponding to the 348 

j-th reservoir and all reservoirs, respectively. It is noted that: first,     < 2 % 349 

(without regulation); second, 2 % ≤     < 8 % (seasonal regulation); third, 8 % 350 

≤     < 20 % (incomplete annual regulation); fourth, 20 % ≤     < 30 % 351 

(annual regulation); and fifth,     ≥ 30 % (multi-year regulation). In the same 352 

sense here this study refers to rivers with a     ≥ 2 % as“affected”rivers (Lehner 353 

et al., 2011).  354 

 355 

3. Methods 356 

The kernel framework of the integrated flood frequency analysis proposed in this 357 

study is illustrated in Fig. 5, involving three main parts. First, the time-varying 358 

distribution of flood peaks was modeled by using the GAMLSS method (Fig. 5(A)). 359 

Then, the contribution of climatic and anthropogenic drivers to the nonstationarity of 360 

flood peaks was identified by using the PI-PM method (Fig. 5(B)). Last, the changes 361 

in flood risks under the nonstationary condition were quantified by using the 362 

time-varying distribution function (Fig. 5(C)), as compared with those of the 363 

stationary condition. The methods used in this study were briefly introduced as 364 

follows.  365 
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 366 

Fig. 5 Framework of the integrated flood frequency analysis proposed in this study. A. The 367 

Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS) method 368 

for modeling the nonstationarity. B. The Partial Information and Partial Weights (PI-PW) 369 

method for identifying the contribution. C. The Time-varying distribution function for flood 370 

risk analysis.  371 

 372 

3.1. Generalized Additive Models for Location, Scale and Shape parameters 373 

(GAMLSS) 374 

Stationarity is defined as processes whose statistical properties such as the mean and 375 

variance are constant over time. In contrast, nonstationarity can simply be defined as 376 

processes that are not stationary but have statistical properties (e.g., mean and 377 
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variance) that are deterministic functions of time (or covariates) (Koutsoyiannis, 2006; 378 

Milly et al., 2008; Lins and Cohn, 2011). The GAMLSS method proposed by
 
Rigby 379 

and Stasinopoulos (2005) is used to model the nonstationarity of flood peaks by 380 

calculating the time-varying moments in the distribution. Consider the 381 

spatio-temporal heterogeneity of global flood patterns, eight probability distributions 382 

(Chebana et al., 2013; Gottschalk et al., 2013) are employed to fit the distributions of 383 

the flood peaks in this study (Table 1).  384 

 385 

Table 1 Summary of distribution functions for fitting flood peaks. 386 

Distribution 

function 
Probability distribution function (pdf) Range Parameters* 

Weibull          
     

  
      

 

 
 
 

      
    

    

Gumbel          
 

 
     

     

 
      

     

 
   

    

    

        

    

Gamma          
 

         

                      

       
     

    

    

Logistic 

         
 

 
      

     

 
  

         
     

 
  

  

 

    

    

        

    

Normal          
 

    
     

      

   
  

    

    

        

    

Lognormal          
 

    

 

 
     

        

   
      

    

    

Generalised 

Extreme Value 

           
 

 
     

   

 
  

        

           
   

 
  

    

  

    

    

        

    

        

Pearson 

type III 

           
 

            
 
   

   
 

 

  
 

 
  

  

       
   

   
 

 

  
   

   

   
 

 

  

   

    

    

* ,   and   are the location, scale and shape parameters in the distribution of flood peaks.  387 

 388 
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When implementing the GAMLSS method, two-parameter distributions are 389 

commonly used to develop nonstationary models. The two-parameter distributions are 390 

less complicated. If the parameters of the distribution are best modeled by physical 391 

covariates, it is less likely that higher-order distributions are needed to explain the 392 

variability of flood peaks (Villarini et al., 2009 and 2011). Referring to Jiang et al. 393 

(2015) and Xiong et al. (2015a), only the location and scale parameters are considered 394 

as the time-varying parameters, where the shape parameter is taken as a constant.  395 

     
           

 
     

                       (2a) 396 

     
           

 
     

                       (2b) 397 

where      is the log link function that recognizes the series of flood peaks may be 398 

skewed.      
    

   is the vector of distribution parameters accounting for location 399 

and scale, where   
           

  and   
           

  (i =1, 2, …, I). I is the 400 

number of covariates (i.e. explanatory variables).   
  is the i-th covariate at the t-th 401 

time.  402 

In this study the accumulated annual precipitation and annual average 403 

temperature (climate covariates) as well as Reservoir Index (RI, anthropogenic 404 

covariate) are adopted as the covariates. An improved RI corresponding to each 405 

observation station is employed as the anthropogenic covariate described as follows. 406 

     
  

  
   

    
  

  
                            (3) 407 

where    and    are the catchment areas controlled by the j-th reservoir and the 408 

observation station, respectively.    and    are the flood control capacity of the j-th 409 

reservoir and the total flood control capacity of all reservoirs in the observation 410 
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station, respectively.   is the number of reservoirs.  411 

The above-mentioned computations regarding the GAMLSS method were 412 

conducted in R (https://www.r-project.org/) by using the freely available GAMLSS 413 

package (D. M. Stasinopoulos et al. Instructions on how to use the GAMLSS package 414 

in R second edition, January.11.2008, available at http://www.gamlss.org).  415 

3.2. Partial Information and Partial Weights (PI-PW) 416 

The PI-PW method (Sharma and Mehrotra, 2014) provides higher flexibility and 417 

reliability in identifying predictors (independent variables or covariates) and 418 

quantifying their relative contributions without making assumptions about model 419 

structure or representation, in comparison to classical Mutual Information (MI) 420 

(Fraser and Swinney, 1986) and Partial Mutual Information (PMI) (Sharma, 2000). 421 

The PI-PW method that can quantify both linear and nonlinear correlations among 422 

multiple variables has been widely used in model input selection and contribution 423 

analysis in meteorological and environmental domains (Sharma et al., 2016). 424 

Therefore, the PI-PW method is adopted to account for the relative contribution of 425 

each covariate (climate or reservoir storage) to the nonstationarity in flood peaks, 426 

where the time-varying moments in Eq. (2), instead of flood peaks, are regarded as 427 

the system response variables. In other words, if the time-varying moments in Eq. (2) 428 

are taken as the system response, the PI-PW method will aim at identifying the 429 

contributions of three covariates to the nonstationarity of flood peaks. If flood peaks 430 

are taken as the system response, the PI-PW method will aim at identifying the 431 

contributions of three covariates to flood peaks. The former is different from the latter. 432 
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The implementation procedures of PI-PW for quantifying the relative contribution of 433 

each covariate to the nonstationarity of flood peaks consist of the following four steps.  434 

Step 1: Calculate the value of Partial Information Correlation (PIC) between the 435 

dependent variable (i.e. each time-varying moment in Eq. (2)) and independent 436 

variables (i.e. climate and reservoir index covariates in Eq. (2)) using the following 437 

equation.  438 

           
 

 
      

                  

                       
 

 

   
       (4a) 439 

                                              (4b) 440 

where            is the estimated PI between variables (X,P) given the pre-existing 441 

covariate set Z, where Z is the climate factor consisting of the accumulated annual 442 

precipitation and the annual average temperature of each catchment, X is the response 443 

(i.e., time-varying moment in Eq. (2)), and P is the potential covariate (e.g., reservoir 444 

index) to the response.            ,             and                    are the 445 

conditional marginal probability function estimates of X and P and the conditional 446 

joint probability function estimate of X and P given the pre-existing covariate set Z, 447 

respectively. (        ), n=1, 2, …, N, are the sample observations of (X,P,Z).      448 

is the estimated PIC ranging between [0, 1].  449 

Step 2: Estimate the response X using a k-nearest-neighbor regression formulation. 450 

The weighted Euclidean distance is the most commonly used distance to identify 451 

neighbors to the covariate vector Z and is formulated below.  452 

  
    

           

  
 
 

 
                            (5) 453 
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where    is the distance of the conditional vector Z with M dimension, given the 454 

n-th data point    with M dimension.    is the measure of spread (e.g., standard 455 

deviation) for the m-th dimension.    is the measure of importance (i.e., 456 

contribution) of the m-th covariate   .  457 

And then the k-nearest neighbor conditional bootstrap and the regression 458 

estimator for estimating the response X are described below.  459 

        
 
  
 

  
    
  

 
                             (6a) 460 

        
  

  
 

  
    
  

 
                             (6b) 461 

where        and        are the cumulative conditional probability distribution 462 

and the conditional expectation of X given the pre-existing covariate set Z, 463 

respectively.    is the number of observations whose distance from the covariate set 464 

Z is less than or equal to the distance to   .    is the k-th observation of the variable 465 

X. The variable k ranges from 1 to K, and K is the maximal number of neighbors 466 

permissible. Additional details on the k-nearest neighbor conditional bootstrap (Eq. 467 

(6a)) and the regression estimator (Eq. (6b)) can be found in Lall and Sharma (1996).  468 

Step 3: Compute the value of PW. Sharma and Mehrotra (2014) introduced an 469 

estimate of    in Eq. (5) by using the PIC metric in Eq. (4). The relationship 470 

between PW and PIC is formulated below.  471 

                

        

         

                       (7) 472 
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where       is the climate covariate vector without the m-th covariate, and         
 473 

and          
 are the scaled conditional spread of residuals. More details on Steps 474 

1-3 can be found in Sharma et al. (2016).  475 

Step 4: Identify the contribution of covariates (climate Z and reservoir index P) to the 476 

nonstationarity (response X) in flood peaks by combining the time-varying moments 477 

in Eq. (2). The nonstationarity can simply be defined as processes whose statistical 478 

properties (e.g., mean and variance) are deterministic functions of covariates in Eq. 479 

(2). Hence, the contribution of each covariate can be calculated below.  480 

          
 
                                  (8a) 481 

          
 
                                 (8b) 482 

where    and    are the contributions of climate covariate Z and anthropogenic 483 

covariate P to the time-varying moment (i.e., system response), respectively. When 484 

the location and scale parameters are both time-varying moments (Eq. 2(a) and 2(b)), 485 

the value of    (or   ) is the average contribution. For an observation station the 486 

value of    or    is the point contribution whereas for a whole catchment the value 487 

of    or    is the average contribution over the catchment. In this study, the values 488 

of L and H are equal to two (accumulated annual precipitation and annual average 489 

temperature) and one (reservoir index), respectively.        and        are the 490 

contributions of the l-th climate covariate    and the h-th anthropogenic covariate 491 

  , respectively.  492 

The above-mentioned computations with respect to the PI-PW method were 493 

conducted in R (https://www.r-project.org/) using the open-source R-software 494 



26 

NPRED (Sharma et al., 2016). The code of the NPRED package is available at 495 

http://hydrology.unsw.edu.au/download/software/NPRED.  496 

3.3. Time-varying distribution function for flood risk analysis 497 

After ascertaining the drivers and cause analysis for the nonstationarity of flood peaks, 498 

the next step is to quantify the flood risk changes associated with nonstationary 499 

conditions. According to the time-varying characteristic expressed in Eq. (2), the 500 

time-varying distribution function of flood peaks can be formulated below.  501 

                                          (9a) 502 

      
    

            
    

     
                  (9b) 503 

where    is the time-varying distribution function of flood peaks (  ) at the t-th time. 504 

For the two-parameter distribution the parameter vector    consists of the location 505 

(  
 ) and scale (  

 ) parameters (i =1, 2, …, I) whereas for the three-parameter 506 

distribution the parameter vector    consists of the location (  
 ), scale (  

 ) and 507 

shape (  ) parameters.  508 

 And then, the time-varying distribution function is employed to calculate the 509 

flood risk for each catchment and the flood risk is formulated below.  510 

                                       (10) 511 

where      is the probability function.   and   are the random variable following 512 

the distribution    and the observation value of flood peaks, respectively. 513 

Furthermore, the flood risk under the stationary condition (all parameters in the 514 

distribution of flood peaks are constant) is taken as the benchmark to conduct the 515 

comparative analysis.  516 
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 The probability and risk computations were conducted in R 517 

(https://www.r-project.org/) by using the cumulative distribution function (    ), 518 

density probability function (    ), random number generator (    ), quantile function 519 

(    ), etc.  520 

 521 

4. Results and discussion 522 

This study centered on quantifying the nonstationarity of flood peaks and risks 523 

induced by the changing climate and reservoir storage in the basins of the world’s 32 524 

major rivers. The results and findings were presented and elaborated in three 525 

perspectives: the changing flood peaks worldwide (Section 4.1); the contribution of 526 

the changing climate and reservoir storage to the nonstationarity of flood peaks 527 

(Section 4.2); and the flood risk analysis under the changing climate and reservoir 528 

storage together with summarization (Section 4.3), shown as follows.  529 

4.1. Changing flood peaks worldwide 530 

A clear regional pattern (Fig. 6) in the trends of flood peaks across the basins of 32 531 

major rivers was revealed based on our datasets using the Mann-Kendall 532 

nonparametric trend test. In comparison to the average value of flood peaks over the 533 

first time segment (1931-1960, baseline), regional flood trends changed from 534 

+19.3%/decade to –31.6%/decade (Fig. 6).  535 

The spatial patterns of flood trends were classified into three groups. In the group 536 

containing the northern portion of North America, the central portion of South 537 

America, southern Africa and western Asia (Group (a) in Fig. 6(A)), about 67% of 538 
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observation stations exhibited increasing trends in flood peaks and the local mean of 539 

flood peaks increased 9.4% per decade. In the group containing mid-southern Europe, 540 

Russia and China (Group (b) in Fig. 6(B)), around 78% of observation stations 541 

displayed declining trends in flood peaks and the local mean of flood peaks decreased 542 

12.7% per decade. In the central portion of North America (Group (c) in Fig. 6(B)), 543 

about 71% of observation stations showed decreasing trends in flood peaks and the 544 

local mean of flood peaks decreased 6.9% per decade. Stepping from the second time 545 

segment (1961-1990, Fig. 6(A)) into the third time segment (1991-2017, Fig. 6(B)), 546 

both the increasing trends in Group (a) and the decreasing trends in Group (b) became 547 

more significant while the decreasing trends in Group (c) became weaker. As for the 548 

other major rivers, the trends of flood peaks at observation stations were less 549 

noticeable.  550 

To be different from the previous researches (Wasko and Sharma, 2017; Yin et al., 551 

2018), this study concentrated on ascertaining the trends of flood peaks directly, rather 552 

than on identifying the trends of flood peak scaling with extreme temperature. Do et 553 

al. (2017) analysed the trends in flood peaks using the GRDC datasets and found that 554 

the trends are more consistent at a continental scope, with downward trends for plenty 555 

of observation stations in western North America, the southern portion of South 556 

America, western Europe and Australia, whereas with upward trends for a large 557 

number of stations in eastern Europe, eastern North America, eastern South America 558 

and southern Africa. In this study, it is interesting to find that the flood peaks of the 559 

downward trends are prone to be larger as the catchment size and reservoir storage 560 
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increase. From a global perspective, there are more observation stations with 561 

considerable declining trends in flood peaks than with considerable ascending trends 562 

based on the GRDC datasets investigated.  563 

 564 

 565 
Fig. 6 Observed regional trends of flood peaks corresponding to the streamflow stations in the 566 

basins of the 32 major rivers during two periods (1961-1990 and 1991-2017), in comparison 567 

to the mean value of flood peaks over 1931-1960 (baseline). A. Trend of flood peaks during 568 

1961-1990 using the Mann-Kendall nonparametric trend test. B. Trend of flood peaks during 569 

1991-2017 using the Mann-Kendall nonparametric trend test. The white colour indicates 570 

stations with insufficient data or trends appearing insignificant at a significance level of 0.05.  571 

 572 

 In this study, 32 observation stations were specified to clarify these changes (Fig. 573 
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7). The consistency between the nonstationarity of flood peaks and three covariates of 574 

accumulated annual precipitation, annual average temperature and reservoir index was 575 

identified by using the GAMLSS method (see Section 3.1 in Methods). The flood 576 

peaks underwent two kinds (increasing & decreasing) of trend changes (Fig. 7(B)). In 577 

general, 81% (26/32) of the 32 major rivers shown significant nonstationarity in flood 578 

peaks. For the largely increasing ones (e.g. Amazon River, Fig. 7(A)), at least one 579 

substantial increase (+10%≤Δ<+30%) was found, where Δ was defined as the relative 580 

change of the average value of flood peaks over the period (1961-1990 or 1991-2017) 581 

in comparison to the average value of flood peaks over 1931-1960 (baseline). For the 582 

moderately increasing ones, two moderate upwards (+5%≤Δ<+10%) occurred. For 583 

the slightly increasing ones, at most one moderate plunge (Δ≤+5%) was found during 584 

the two periods. While for the strongly decreasing ones (e.g. Mississippi River, Fig. 585 

7(A)), at least one strongly decreasing trend (Δ≤–30%) occurred. For the largely 586 

decreasing ones (e.g. Yenisey River, Fig. 7(A)), at least one substantial drop 587 

(–30%<Δ≤–10%) was found. For the moderately decreasing ones, two moderate 588 

plunges (–10%<Δ≤–5%) occurred. For the slightly decreasing ones, at most one 589 

moderate plunge was found during the two periods.  590 

 591 
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 592 

Fig. 7 Historical changes of flood peaks corresponding to the world’s 32 major rivers (the 593 

observation stations) during two periods (1961-1990 and 1991-2017) under the 594 
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nonstationarity with the precipitation, temperature and reservoir index as covariates, in 595 

comparison to the mean flood peaks over 1931-1960 (baseline). A. Historical changes of 596 

flood peaks with the estimated interval between 25% and 75% quantiles. B. Overall trend of 597 

flood peaks during 1961-2017 using the Mann-Kendall nonparametric trend test at a 598 

significance level of 0.05. Δ is defined as the relative change of the average value of flood 599 

peaks over the period (1961-2017) in comparison to the average value of flood peaks over 600 

1931-1960 (baseline).  601 

 602 

4.2. Contribution of the changing climate and reservoir storage to the nonstationarity 603 

of flood peaks 604 

And then, the PI-PW method was employed to further calculate the contribution of 605 

each covariate to the nonstationarity in flood peaks, where the time-varying moments 606 

in Eq. (2) were taken as the system response variables while the accumulated annual 607 

precipitation, annual average temperature and reservoir index were regarded as 608 

covariates. For each catchment the value of    or    is the areal average 609 

contribution (see Section 3.2 in Methods). To explain the contribution of the changing 610 

climate and reservoir storage to the nonstationarity in flood peaks, this study paid 611 

special attention to three hotspots (regions (a), (b) and (c) in Fig. 8), owing to their 612 

significant and similar flood trends.  613 

As compared with the other parts of North America, only the northern portion of 614 

North America in region (a) of Fig. 8 showed the raise in flood peaks corresponding 615 

to the increasing trend of the accumulated annual precipitation (Fig. S1), since 616 

snowmelt was closely associated with the flood formation. The datasets pointed out 617 

that the annual average temperature had a strong increase with > 0.7℃/decade (Fig. S2) 618 

while flood peaks in winter increased, reflecting earlier spring thaw and increasing 619 

snowmelt. In the northern South America of region (a) in Fig. 8, floods were mainly 620 
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attributed to the summer rains and saturant soil moisture. The increasing summer 621 

precipitation plus soil moisture would make the scale and amount of flood peaks 622 

larger. Floods in the northern South America were in line with the increase in the 623 

accumulated annual precipitation (11.7%/decade during 1961-2017, Fig. S1), leading 624 

to the increase in the local mean of flood peaks. In the western Asia of region (a) in 625 

Fig. 8, the increase in the accumulated annual precipitation was closely associated 626 

with the atmospheric blocking raised meanwhile the declining pressure. For region (a), 627 

the contribution of climate change to the nonstationarity in flood peaks was 628 

significantly larger than that of reservoir regulation (Fig. 8). Hence, climate change 629 

had a dominant contribution to the nonstationarity in flood peaks of the major rivers 630 

in region (a).  631 

 632 

633 

Fig. 8 Contribution of the changing climate and reservoir storage to the nonstationarity of 634 

flood peaks in the world’s 32 major rivers during three periods (T1: 1931-1960, T2: 635 

1961-1990; and T3: 1991-2017).  636 
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 637 

In the mid-southern Europe and Russia of region (b) in Fig. 8, a plunging trend of 638 

the accumulated annual precipitation covered 7 major rivers. Both the subtropical jet 639 

and the storm tracks in the mid-southern Europe moved toward the north (Blöschl et 640 

al., 2017; Hall and Blöschl, 2018; Mangini et al., 2018), resulting in a decrease in the 641 

accumulated annual precipitation (Fig. S1) and an increase in temperature associated 642 

with evapotranspiration (Frolova et al., 2017; Hodgkins et al., 2017; Blöschl et al., 643 

2019), where the soil moisture would decrease notably, as much as -6.2%/decade. 644 

Particularly a noticeable accumulated annual precipitation decline occurred in Russia 645 

(Fig. S1), which was resulted from the decrease in the specific humidity. Furthermore, 646 

these rivers experienced a substantial increase in the number of reservoirs (Fig. S3) 647 

and the Degrees of Regulation (DOR, Fig. S4). The significant nonstationarity in 648 

flood peaks would easily appear in these major rivers, along which mega 649 

reservoirs/dams were put into flood control operation.  650 

In China of region (b) in Fig. 8, the East Asian Summer Monsoon (EASM) 651 

flowing south-westward or south-eastward transported water vapour to East Asia and 652 

thus affecting the increase of precipitation in China. Previous studies (Winsemius et 653 

al., 2016; Wu et al., 2018) revealed that a significant contribution of the EASM than 654 

the South Asian Summer Monsoon (SASM) to the increase in precipitation 655 

throughout China, by around of +7.6% per decade (Fig. S1). The role (covariate) that 656 

dominated the contribution to the nonstationarity in flood peaks gradually shifted 657 

from climate change (1931-1960) to reservoir regulation (1991-2017) in 3 major 658 
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rivers of China (region (b), Fig. 8).  659 

In the central portion of North America of region (c) in Fig. 8, positive trends 660 

were found in the Mississippi River basin of the United States and the Columbia 661 

River basin of Canada. Both basins displayed considerable cooling trends (Fig. S2). 662 

Such cooling phenomena would be owing to intensive agricultural and land 663 

management activities (Yin et al., 2018). Observational and modelling studies 664 

demonstrated that agricultural and irrigation intensifications had the ability to 665 

decrease surface temperatures by increasing evapotranspiration (Mallakpour and 666 

Villarini, 2015; Schilling et al., 2015; Gao et al., 2019). Due to the sharp 667 

cooling/climate change, the Mississippi River and the Columbia River exhibited 668 

gradual upward trends of the accumulated annual precipitation between 1961 and 669 

2017, by around +6.9% and +5.8% per decade respectively (Fig. S1). However, it is 670 

easy to find that the reservoir regulation had a dominant contribution to the 671 

nonstationarity in flood peaks of 2 major rivers in the central portion of North 672 

America (Fig. 8).  673 

4.3. Flood risk analysis under the changing climate and reservoir storage 674 

The time-varying distribution function was employed to quantify the flood risk under 675 

the nonstationary condition, where the flood risk analysis under the stationary 676 

condition served as the benchmark (see Section 3.3 in Methods). Taking the designed 677 

flood value with P(X ≥ x) = 1 % for example (Fig. 9), the increases in flood risks 678 

corresponding to 13 major rivers (40% = 13/32, colored in red) would be expected to 679 

increase the odds that these river basins experienced flood events simultaneously in 680 
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consequence of increases in precipitation. Flood risks corresponding to 19 major 681 

rivers (60% = 19/32, colored in blue) would be expected to decrease because these 682 

river basins either had a large number of reservoirs/dams or experienced decreases in 683 

precipitation. Flood risks of 5 major rivers witnessed an increase from 0.01 (Return 684 

period = 100 years) to 0.05 (Return period = 20 years), whereas the flood risk of 7 685 

major rivers witnessed a decrease from 0.01 (Return period = 100 years) to 0.005 686 

(Return period = 200 years). It is easy to find that flood risks decreased sharply in the 687 

rivers (e.g. Mississippi, Yangtze and Columbia) whose reservoirs/dams were 688 

constructed with large flood control capacities, but flood risks increased dramatically 689 

in the rivers (e.g. Amazon, Ob-Irsytch and St. Lawrence) that underwent increasing 690 

precipitation and reservoirs/dams built here had small flood control capacities. The 691 

emergence of the changing climate and reservoir storage signals during 1961-2017 692 

was particularly prominent according to the historical changes in flood risks. The 693 

results demonstrated that the difference in flood risk was statistically significant for 694 

32 major rivers in the three periods.  695 
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696 

Fig. 9 Changes in flood risks in the world’s 32 major rivers during three periods (1931-1960, 697 

1961-1990, & 1991-2017). A. Flood risks under the nonstationary condition. B. Changes in 698 

flood risks between nonstationary and stationary conditions (P(X ≥ x) = 1 %). 699 

 In sum, the integrated frequency analysis methodology proposed in this study 700 

aimed at exploring the multidecadal changes in climate and reservoir storage for 701 

assessing the nonstationarity in flood peaks and risks worldwide. The results 702 

demonstrated that the proposed method not only can adequately identify the 703 

contribution of climatic and anthropogenic factors to the nonstationarity in flood 704 

peaks but also can effectively quantify the changes in flood risks by modeling the 705 

time-varying characteristics in the distribution of flood peaks. This study opens up 706 

new perspectives on expanding current knowledge of the nonstationary flood 707 

frequency analysis while bringing novel statistical tools to the analysis of hydroevents 708 

for improving policy and construction recommendations by collaborating original 709 

thinking and scientific renewal.  710 
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 711 

5. Conclusions 712 

This study conducted a holistic assessment of the changing climate and reservoir 713 

storage on the nonstationarity of flood peaks and risks worldwide by an integrated 714 

frequency analysis approach. For the flood risk analysis, the stationary frequency 715 

analysis served as the benchmark. The main conclusions were drawn as follows.  716 

The spatial patterns of flood trends were explicitly classified into three groups. 717 

Regional average flood peaks changed from +19.3%/decade to –31.6%/decade during 718 

1961-2017, as compared with the average flood peaks over the baseline period of 719 

1931-1960. The declining trends of flood peaks tended to be larger as the catchment 720 

size and reservoir storage increase. From a global standpoint, there are more 721 

observation stations with significant decreasing trends in flood peaks than with 722 

significant increasing trends over the datasets investigated.  723 

Regarding the contribution to the nonstationarity of flood peaks, the largest 724 

increase in flood risks were generally associated with the largest increase in warm 725 

year probabilities whereas the largest decrease in flood risks were generally associated 726 

with the largest increase in the flood control capacity of reservoirs/dams. The strong 727 

responses implied that reservoir regulation and global warming had significant 728 

impacts on the nonstationarity of flood peaks and risks. Among the 32 major rivers, 729 

the risks of flooding from 5 rivers significantly increased (1%→5%) under the 730 

nonstationary condition in response to warming climate while the risks of flooding 731 

from 7 rivers largely reduced (1%→0.5%) under the nonstationary condition in 732 
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response to reservoirs/dams regulation, as compared to those under the stationary 733 

condition over the historical period.  734 

The identification and quantification of the nonstationarity in flood peaks and 735 

risks highlighted the benefits of the nonstationary frequency analysis to social 736 

infrastructure planning and designing as well as water resources management in the 737 

best interest of social sustainability. Nonstationarity of flood peaks may also arise due 738 

to small interventions or extractions at various places in one basin. Each of these 739 

interventions or extractions may be small, but their cumulative impact could be 740 

significant. Future research could be centered on quantifying the impacts of 741 

large-scale atmospheric and oceanic mechanisms, oscillations, land-surface changes 742 

and irrigation intensifications on the nonstationarity of flood peaks and risks, given 743 

that more climatic and anthropogenic changes would affect river systems. 744 
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