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Abstract The streamflow drought hazard can be characterized in a variety of ways, including using
different indices. Traditionally, percentile‐based indices, such as Q95 (the flow exceeded 95% of time),
have been used by the hydrological community. Recently, the use of anomaly indices such as the
Standardized Streamflow Index (SSI), a probability index‐based approach adopted from the climatological
community, has increased in popularity. The SSI can be calculated based on various (non)parametric
methods. Up to now, there is no consensus which method to use. This study aims to raise awareness how the
inherent sensitivity of the SSI to the used method influences derived drought characteristics. We
compared SSI time series computed with seven different probability distributions and two fitting methods as
well as with different nonparametric methods for 369 rivers across Europe. Results showed that SSI time
series and associated drought characteristics are indeed sensitive to the method of choice. A resampling
experiment demonstrated the sensitivity of the parametric SSI to properties of both the low and high end of
the sample. Such sensitivities might hinder a fair comparison of drought in space and time and highlight
the need for a clear recommendation which method to use. We could recommend overall suitable methods,
for example, from the parametric approaches, the Tweedie distribution has several advantageous
properties such as a low rejection rate (2%) and a lower bound at zero. However, the most suitable method
depends on the used evaluation criteria. Rather, we stress that shown approach‐specific sensitivities and
uncertainties should be carefully considered.

1. Introduction
1.1. Drought Definition and Identification

Droughts pose a threat in virtually all climate zones around the world (Mishra & Singh, 2010). They can be
defined as a “sustained and regionally extensive occurrence of below average natural water availability”
(Tallaksen & Van Lanen, 2004), where the average depends on the location and time of the year. Drought
is thus not to be confused with aridity, which refers to permanently dry conditions (Wilhite, 1992). In addi-
tion, streamflow droughts are distinct from low flows, which are commonly considered as a seasonally re‐
occurring feature (e.g., Smakhtin, 2001). Deviations from the normal situation are often characterized by
drought indices that express the anomaly of a given hydroclimatological variable with respect to a reference
period. Such drought indices are also used in drought monitoring and early warning systems to depict
regions at drought risk. Furthermore, hydrometeorological drought indices are used to compare the charac-
teristics of historical drought events over time (e.g., Vicente‐Serrano et al., 2014), between regions (e.g.,
Andreadis et al., 2005; Ionita et al., 2017; Sheffield et al., 2009) or across climates (e.g., Van Loon et al., 2014).

Hydrometeorological drought indices express anomalies in different ways. They can be defined based on
absolute values or deviations, for example, the percentage deviation from a predefined threshold, such as
annual average precipitation, streamflow, or any other variable. Alternatively, they can be defined in a rela-
tive way, expressing drought severity based on percentiles or ranks of historical data, for example, the
streamflow drought monitoring application of USGS WaterWatch (https://waterwatch.usgs.gov). There
are different ways to express these relative drought indices. Options include the use of empirical percentiles
of the variable of interest or the use of standardized drought indices. Empirical percentiles, such as
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streamflow percentiles, express the variable as a historical non‐exceedance frequency within a certain per-
iod, whereas standardized drought indices, such as the Standardized Precipitation Index (SPI; McKee
et al., 1993), express the variable as a non‐exceedance probability. In the latter case, the variable is trans-
ferred to the probability space by fitting a parametric or nonparametric probability distribution to the vari-
able of interest and then transforming the derived probabilities of the variable to the Standard Normal
distribution with an assumed mean of zero and standard deviation of one. The probability of
non‐exceedance of a certain quantity of the variable of interest is then reflected by the number of standard
deviations from zero. For example, a value of −1 indicates one standard deviation below zero, which has a
corresponding non‐exceedance probability of around 15.9%, whereas a value of −2 indicates two standard
deviations below zero and has a corresponding non‐exceedance probability of around 2.3%.

The use of standardized drought indices has increased in popularity over the past decades (Bachmair
et al., 2016), initiated by the development of the well‐known SPI (McKee et al., 1993). The SPI, a standar-
dized anomaly index solely based on aggregated precipitation, is currently the most commonly used index
in drought monitoring and early warning systems around the world (Bachmair et al., 2016). The popularity
of the SPI is related to the fact that it allows for a fair and consistent comparison of drought over space and
time as compared with using absolute values, for example, precipitation in millimeter. One limitation of the
SPI is that it only looks at anomalies in precipitation and thus ignores other meteorological variables and
processes that are important in controlling the terrestrial water balance, such as evapotranspiration and
snowmelt and accumulation. Recent research efforts have focused on including these processes in
similar standardized meteorological drought indices, including the Standardized Precipitation and
Evapotranspiration Index (SPEI, Vicente‐Serrano et al., 2010) and the Standardized Melt and Rainfall
Index (SMRI, Staudinger et al., 2014). The concept of standardizing drought indices has recently also become
popular within the hydrological community for hydrological variables such as runoff (e.g., Shukla &
Wood, 2008) and streamflow (e.g., Vicente‐Serrano et al., 2012).

All indices described in the previous paragraphs can be calculated for different, user‐preferred, accumulation
periods, normally given in months. For standardized meteorological indices, such as the SPI, accumulation
periods longer than 1 month are often used as a proxy to reflect longer‐termmemory within the hydrological
cycle. For example, soil moisture deficits, important for, for example, agriculture, might be related tometeor-
ological deficits of a fewmonths (or shorter). On the other hand, streamflow deficits in catchments with large
groundwater stores are related to long‐term meteorological deficits of typically 12 or more months (e.g.,
Barker et al., 2016). Time series of soil moisture or streamflow already implicitly incorporate such time lags
in precipitation as any value reflects what happened in a certain time window prior to the time of interest,
where this time window represents thememory of the system. In such cases, the accumulation period should
be chosen similar to the original or smoothed time series, which is rarely longer than 1 month.

The Standardized Streamflow Index (SSI) is used to characterize anomalies in observed streamflow (e.g.,
Modarres, 2007; Svensson et al., 2017; Vicente‐Serrano et al., 2012; Zaidman et al., 2002). Hence, The SSI
is not to be confused with the Standardized Runoff Index (SRI), which is used to reflect anomalies in mod-
eled runoff per unit area (Shukla &Wood, 2008). The SSI is often calculated for a monthly accumulation per-
iod; however, some studies use longer accumulation periods, for example, 3–12 months, to track the
cumulative water deficit over the hydrological year (e.g., Nalbantis & Tsakiris, 2009). According to a survey
by Bachmair et al. (2016), the SSI is currently used operationally in some drought monitoring and early
warning systems. Further, it has been named as a trigger in drought plans in Chile (Núñez et al., 2014).
The SSI is the only recommended drought index for streamflow drought monitoring and early warning in
the current version of the Handbook of Drought Indicators and Indices (WMO & GWP, 2016). Besides the
use of the SSI for monitoring streamflow droughts, the SSI has been used to define characteristics of stream-
flow drought events in various studies (e.g., Barker et al., 2016; Lorenzo‐Lacruz et al., 2010; Van Oel
et al., 2018). The threshold level method, originally designed to be applied on raw streamflow data
(Zelenhasić & Salvai, 1987), has been applied to SSI time series using a given SSI value as threshold (e.g.,
−0.84 corresponding to the commonly used 20 percentile threshold). Accordingly, drought characteristics,
such as duration (the time the SSI time series is below the threshold), deficit volume (summed difference
between SSI time series and threshold over the duration of a drought event), the number of SSI occurrences
below a certain threshold, or monthly minimum SSI, can be derived.
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1.2. Computation of the SSI

Nowadays, it is relatively easy to compute a standardized drought index given the availability of several soft-
ware packages. However, accurate computation of the SSI, and any other standardized drought index,
involves several additional steps beyond applying such a software package (Tallaksen & Van
Lanen, 2004). First, a (set of) sample(s) needs to be chosen, including the selection of catchments, the period
over which the sample should be standardized (observation period), and the period that serves as reference
for this standardization (reference period). When deriving the SSI in a parametric way, the parameters of the
population distribution, of which the sample is assumed to be a random subset, can be estimated by fitting a
representative parametric distribution to the sample data. Accordingly, a parameter estimation method (or
fitting method) as well as a parametric distribution need to be selected. In the case of a regional data set, it is
important to choose the same reference period and preferably the same distribution and fitting method to
allow a consistent comparison across catchments.

Three used fitting methods to derive the parametric SSI are product moments, L‐moments (Lmom,
Hosking, 1990) and maximum likelihood estimation (MLE). Each fitting method has its own advantages
and disadvantages (Tallaksen & Van Lanen, 2004). The Lmom method is less sensitive to outliers than the
product moment method (Tallaksen & Van Lanen, 2004). TheMLE approach is themost theoretically sound
and flexible distribution fitting method (Stagge et al., 2015; Tallaksen & Van Lanen, 2004), but it is less
stable; that is, a solution cannot always be found. Furthermore, MLE can be computationally demanding.
A combination of the MLE and Lmom approach was applied by Stagge et al. (2015) to combine the flexibility
of the MLE approach with the robustness of the Lmom approach. In this case, the distribution properties
derived with the Lmom approach are used as starting values for estimating the distribution properties using
MLE. All the three above fitting methods have been applied for the SSI, for example, the Lmommethod for a
set of catchments in Spain (Vicente‐Serrano et al., 2012), the MLEmethod for several case studies around the
world (e.g., Van Oel et al., 2018; Wen et al., 2011; Zhang et al., 2014), and the combined MLE and Lmom
approach for catchments in the United Kingdom (Svensson et al., 2017).

The choice of distribution to derive the parametric SSI, ranging from simple and robust two‐parameter dis-
tributions to more complex, but flexible three‐ and four‐parameter distribution (e.g., Svensson et al., 2017),
should be justified by rigorous testing of which distribution fits the sample well, or which distribution has
the lowest rejection rate for a set of samples. Several goodness of fit tests exist to identify the best fitting or
least rejected distributions (e.g., Tallaksen & Van Lanen, 2004) and different studies have used different
tests. Vicente‐Serrano et al. (2012) tested six different three‐parameter probability distributions to compute
the SSI for a set of rivers across the Iberian Peninsula. They conclude that, if one had to choose one, the
Generalized Extreme Value (GEV) or Generalized Logistic distribution was most suitable, one reason being
that the observed number of extreme events showed the highest agreement with respect to the expected
occurrence of extreme events. In other words, the derived SSI exhibits the characteristics expected from a
probabilistic index. However, they recommend using the best fitting distribution for each catchment or
calendar month, which might result in the use of different probability distributions. Svensson et al. (2017)
tested a variety of two‐, three‐, and four‐parameter distributions to fit to streamflow data for a river data
set from the United Kingdom. They found that the rejection rate was generally lower for the three‐ and
four‐parameter probability distributions, which can be expected given their higher flexibility. However,
commonly used three‐parameter distributions, such as the Pearson‐III or GEV distribution, are not bounded
at zero, resulting in occasional probabilities of unrealistic negative streamflow values. To overcome these
problems, they suggested using the Tweedie distribution, which has a lower bound at zero.

An alternative, but less often used, approach to derive standardized drought indices, is the use of a nonpara-
metric method. Different nonparametric methods have been used in drought literature, including the trans-
formation of plotting positions (PP) to the StandardNormal distribution (Farahmand&AghaKouchak, 2015)
or the use of kernel density estimation (KDE, Vidal et al., 2010). PP are rank‐based and thereby flexible to
directly describe any sample at hand independent of its properties. Accordingly, PP can be used without test-
ing the goodness of fit (Farahmand &AghaKouchak, 2015). Many different PP formulas exist, of which those
of Weibull and Gringorten have been used to derive standardized drought indices (e.g., Farahmand &
AghaKouchak, 2015; Soľáková et al., 2014). In addition, empirical PP, that is, the non‐exceedance frequency
of the flow duration curve, are commonly used in threshold‐level based drought identification methods.
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Further remarks on the suitability of these (and other) PP formulas for data stemming from different types of
population distributions can be found in, for example, Cunnane (1978). KDE is a nonparametric smoothing
procedure (Wilks, 2011), where smoothing refers to the estimation of a “smoothed” continuous density func-
tion for the sample at hand (as opposed to the histogram). The kernel density function, which can be used as
estimate of the population distribution, is derived by summing up a set of single kernels drawn around each
individual observation. As kernels are directly drawn around each observation, KDE is able to deal withmore
complex, for example, multimodal, distributions. KDE requires several methodological choices, including
the selection of the kernel shape (e.g., Gaussian, rectangular, etc.) and an estimation of the kernel bandwidth,
where the choice of bandwidth or bandwidth estimation method often has the largest effect on the estimated
kernel density function (Wilks, 2011). Only a few studies have used KDE to derive standardized drought
indices (including Kumar et al., 2016; Samaniego et al., 2012; Vergni et al., 2017; Vidal et al., 2010), of which
only the study of Vidal et al. (2010) considered streamflow. The latter studies all used Gaussian‐shaped ker-
nels, of which the bandwidths were either estimated using unbiased cross validation (ucv; numerical optimi-
zation of the bandwidth via cross validation) or plug‐in selectors (referring to the plugging in of estimates into
the bandwidth estimation formula).

1.3. Limitations of the SSI

The use of the SSI has several limitations, especially when applied in a large‐scale setting with diverse
streamflow regimes. When using a parametric approach, there is seldom a parametric probability distribu-
tion that fits all monthly streamflow samples equally well; for example, sample properties of streamflow
in January might be very different from those of August, and sample properties of a highly variable snow
dominated streamflow regime might be very different from those of a stable groundwater‐fed streamflow
regime. Therefore, there is no universally recommended distribution and different studies use different, best
fitting or least often rejected, distributions for their study catchment(s). One option is to use the best fitting
parametric probability distribution for each calendar month and catchment (in the case of a regional assess-
ment), as recommended by Vicente‐Serrano et al. (2012). However, this might cause discrepancies in space
and time because of distributional differences, potentially hindering a fair comparison between studies,
catchments, and calendar months. Another option is to have the same, least often rejected, distribution
for the entire data set as it assures that the properties of the parametric distribution are the same for each
catchment and calendar month. However, limiting to one distribution might result in SSI values derived
from poorly fitting distributions for some catchments and calendar months. Nonparametric approaches offer
more flexibility, for example, PP directly describe the ranking of the sample at hand and KDE is based on
kernels drawn around each individual observation. However, PP can be more susceptible to sampling uncer-
tainty, especially in the tails of the distribution (e.g., Folland & Anderson, 2002), whereas KDE can be prone
to over‐ or under‐smoothing. Further, the above‐described KDE approaches and especially PP are less suita-
ble to assign probabilities to flows beyond the range spanned by the observations.

Even if there was a common agreement about the most suitable method to derive the SSI, there are inherited
uncertainties due to the often relatively short sample and choice of reference period (i.e., the sample proper-
ties; Hong et al., 2015; Núñez et al., 2014). The properties of the probability distribution are sensitive to the
sample data set (it being a single site or a regional data set) and whether it captures the natural variability of
the time series; for example, it might stem from a rather wet or dry period or a period with extreme floods or
droughts.

1.4. Aim and Outline

With the increasing popularity of the use of standardized probability indices, such as the SSI, for both
drought research and drought monitoring and early warning, there is the need to raise awareness of how
the characteristics of the SSI as well as the various methodological choices needed to compute the SSI affect
the properties of SSI time series and drought characteristics derived from these time series. A thorough ana-
lysis of the sensitivity of the SSI, focusing on the most often used parametric approach, to the choice of prob-
ability distribution, fitting method as well as the sample properties and related uncertainties, is required.
This involves:

• testing the sensitivity of the parametric SSI to the probability distribution, fitting method, and sample
properties, both in the low and high end of the sample, and
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• evaluating the implications for drought monitoring, reflected by differences in the exceedance of trigger
levels, and drought characterization, reflected by differences in drought characteristics derived from
SSI time series.

An overall assessment of the SSI benefits from the consideration of nonparametric methods. Therefore, we
further compare the properties of the nonparametric SSI with those of the parametric SSI and discuss impli-
cations for drought monitoring and research. Finally, we discuss the applicability of the SSI obtained using
both parametric and nonparametric methods as compared to empirical percentiles. Here, we specifically
interpret empirical percentiles as indices describing the historical non‐exceedance frequency within a cer-
tain period as opposed to the non‐exceedance probability given by the SSI. This discussion reveals some
points for consideration when choosing one approach over the other.

2. Data and Methods
2.1. Streamflow Data

Streamflow data stem from two different sources: (1) a case study, the river Dreisam (station Ebnet), and (2)
a series of catchments across Europe with near‐natural flow from the European Water Archive (EWA; Stahl
et al., 2010). All data were analyzed in the same manner. The river Dreisam is located in southwestern
Germany, whereas EWA catchments cover different climatic regions across Europe and reflect a variety of
streamflow regimes (Figure 1). For all rivers, continuous (no gaps) daily streamflow series were accumulated
into monthly average streamflow records covering the 40‐year period 1970 to 2009 for the river Dreisam and
1965 to 2004 for rivers from the EWA. These two periods were also used as reference periods for the SSI com-
putation. The number of zero‐flow occurrences in the two data sets was limited; monthly average flow of the
river Dreisam was above zero for all months and only six out of the 4,416 monthly flow series from the EWA
(12 months times 368 catchments) had 1 month with zero flow. Thus, our results are not representative of
arid regions or intermittent streams, for which other distributions or drought identification approaches
may be more suited (an example of an approach to deal with zero values is presented in Stagge et al., 2015).

2.2. Parametric SSI Calculation

Parametric SSI time series were calculated by fitting a set of parametric probability distributions to stream-
flow samples for all catchments and months (12 monthly streamflow samples for each catchment). The

Figure 1. Location of gauging stations from the European Water Archive rivers (black dots) and the case study
river Dreisam (red diamond).
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properties of the fitted parametric distributions for each calendar month were then used to transfer
monthly streamflow values of the given calendar month to the probability space and finally to the
Standard Normal distribution or SSI values (similar to the approach first described in McKee
et al., 1993). In this study, seven probability distributions were considered, namely, the (1) Normal, (2)
Log‐normal, (3) Gamma, (4) Pearson‐III, (5) GEV, (6) Generalized Logistic (Genlog), and (7) Tweedie
distribution. Of these distributions, the Normal, Log‐normal, and Gamma distribution have two
parameters, whereas the remaining four distributions are three‐parameter distributions. Only the Log‐
normal, Gamma, and Tweedie distributions are bounded below at zero. The distributions were selected
based on their previous use for SSI calculation. The probability density functions of these distributions
are given in, for example, Stagge et al. (2015) and Svensson et al. (2017). For the first six distributions,
this study used two common approaches to estimate the parameters: the Lmom approach and the
combined MLE and Lmom approach (Stagge et al., 2015), in the following referred to as just MLE for
simplicity. The parameters of the Tweedie distribution were estimated following the approach described
in Svensson et al. (2017). It partly deviates from the MLE approach, as the Tweedie distribution only has
a closed form for some special cases. All other cases require numerical parameter estimation methods
and the Lmom method could not be used to derive starting values for MLE. Instead, the numerical
estimates of the parameters of the Tweedie distribution were used as starting values for MLE.

In total, 13 different parametric SSI time series were derived (two probability distribution fitting methods
and seven parametric distributions for each catchment and calendar month). The parameters of the
Tweedie distribution could only be estimated using MLE. Similar to Stagge et al. (2015), we placed a lower
limit on SSI values; values smaller than −3 are associated with a non‐exceedance probability of ≈0.14% or a
theoretical return period that exceeds 741 years (Table 1) and were retained at −3 due to the increasing
uncertainty for these lower values (Stagge et al., 2016). The Shapiro‐Wilk test (Shapiro & Wilk, 1965) was
used to test if the calculated SSI for each catchment and calendar month followed the expected Normal dis-
tribution (using a test criterion of p < 0.05, similar to, e.g., Svensson et al., 2017). SSI series for certain catch-
ments or calendar months were not considered for further analyses for p values lower than 0.05, unless
specifically mentioned. Note that passing this test does not mean the data follow the Normal distribution
perfectly; it only means that the null hypothesis of the Shapiro‐Wilk test that the data follow the Normal dis-
tribution cannot be rejected.

The SSI was also calculated for bootstrapped streamflow samples (resampling with replacement), illustrating
the sensitivity to sample properties and related uncertainties for the SSI. Two different resampling strategies
were used:

1. full resampling (with replacement), where the parameters of the population distribution were estimated
from 40 random samples of the original sample (n = 40), and

2. partial resampling, where the parameters of the population distribution were estimated from fixed below
normal flow values (10 lowest values of the original sample) and 30 random samples of the 30 highest
values of the original sample (with replacement).

Each resampling procedure was repeated 1,000 times. The parameters of the monthly flow distribution
were derived for each subsample. These parameters of the resampled time series were then used to calcu-
late the SSI for the original (not resampled) time series, that is, using the parameters of the resampled
monthly flow distribution to estimate the non‐exceedance probability (or SSI) of the original

Table 1
SSI Values, Corresponding Expected Non‐Exceedance Frequency (in Percent and Number of Events for a 40‐Year Sample)
and the Theoretical Return Period

SSI value
Expected non‐exceedance

frequency (percent)
Expected non‐exceedance

frequency for a 40‐year sample
Theoretical return period

(years, rounded)

−0.68 25 10 4
−0.84 20 8 5
−1.28 10 4 10
−1.96 2.5 1 40
−3 0.14 0 741
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observations. The spread in SSI for below normal flow derived from the distribution parameters of the fully
resampled samples (SSIfull.res) indicates the uncertainty of the SSI. The spread in SSI values derived from
the distribution parameters of the partially resampled samples (SSIpartial.res) shows the sensitivity of the SSI
for below normal flow to changes in the normal‐ and high‐end flow range.

2.3. Evaluation and Sensitivity of the Parametric SSI

The parametric SSI was evaluated based on its suitability to express the streamflow drought hazard in a prob-
abilistic way. Two criteria were used:

1. goodness of fit according to the rejection rate and p value of the Shapiro‐Wilk test and
2. whether the expected spread in minimum SSI values matches the observed spread.

With the first criterion, we aim to assess how well different parametric distributions fit the considered
streamflow samples and thus result in SSI time series that closely resemble the expected Standard Normal
distribution. With the second criterion, we aim to investigate whether the derived SSI time series exhibit
the expected behavior from a probabilistic index. Given the probabilistic nature of the SSI, it can be expected
that low SSI values occur for a certain percentage of samples, especially when considering a large set of sam-
ples. For instance, a binomial distribution can be used to calculate that an SSI value of−2.5 (return period of
161 years) or worse in a sample of length 40 has an occurrence probability of around 22% and is therefore
expected to appear in 22% of the samples. In a similar way, the expected spread in minimum SSI, for exam-
ple, the values that are expected to appear in 5–95% of the samples, can be derived.

The sensitivity of the parametric SSI to the used method was derived by comparing the spread among result-
ing SSI time series computed with

1. the same probability distribution, but with two different fitting methods;
2. the same fitting method, but with different probability distributions;
3. the same probability distribution and fitting method, across catchments and calendar months; and
4. different samples, that is, resampled SSI time series (SSIfull.res and SSIpartial.res) to test the influence of

sample properties.

For simplicity, we hereafter use the term “spread in SSI” when referring to spread in SSI for below normal
flow anomalies, that is, in the dry range.

2.4. Implications for Drought Monitoring and Characterization

The number of SSI values below a given threshold was compared for the set of monthly parametric SSI time
series obtained using different probability distributions, fitting methods, and samples. We used similar
thresholds (TH) as in the streamflow drought monitoring application of the USGS WaterWatch (https://
waterwatch.usgs.gov). This classification scheme is based on streamflow percentile categories “low” (defined
in this study to be less than the 2.5th percentile), “much below normal” (below the 10th percentile), and
“below normal” (below the 25th percentile), which correspond to SSI values of −1.96 (TH1), −1.28 (TH2),
and −0.68 (TH3), respectively. The theoretical return period and expected historical non‐exceedance fre-
quency of these (and other) thresholds is presented in Table 1.

We further compared drought event characteristics—duration and (average) deficit volume—for SSIs
derived with different parametric methods. For this comparison, SSIs calculated for each calendar month
separately were merged to create continuous monthly time series from which drought event characteristics
were extracted. We used an SSI threshold level of −0.84, which corresponds to the 20th percentile threshold
(Table 1), commonly used for streamflow drought analyses (e.g., Andreadis et al., 2005). The spread in
drought characteristics derived from the set of SSI time series were assessed according to whether there were
systematic differences in catchment average deficit volume, or not (referred to as unsystematic differences).
Spearman's rank correlation coefficient (Von Storch & Zwiers, 1999) was used as a measure of unsystematic
differences (high = low degree of unsystematic differences, low = high degree of unsystematic differences).

2.5. Comparison With the Nonparametric SSI

Nonparametric SSI time series were derived using either PP of each monthly flow sample or KDE. We con-
sidered three different PP formulas based on their use in previous drought studies: Weibull (Equation 1),
Gringorten (Equation 2), and empirical (Equation 3).
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rank mð Þ= nþ 1ð Þ (1)

rank m − 0:44ð Þ= nþ 0:12ð Þ (2)

rank mð Þ=n (3)

where rank(m) refers to the rank of each individual observation in the sample and n to the sample size; in
this study, n = 40 (for an overview of different PP, see e.g., Cunnane, 1978). In case of ties in the sample,
the average rank was assigned to the tied values; for example, when the two lowest values were the same,
they were both assigned a rank of 1.5. The non‐exceedance probabilities obtained using PP were trans-
formed to the Standard Normal distribution in a similar way as was done for the parametric SSI
(section 2.2).

KDE was done using a Gaussian kernel and two different bandwidth estimation methods used in pre-
vious studies to derive standardized drought indices: ucv and the direct plug‐in method (Sheather &
Jones, 1991; Venables & Ripley, 2002). KDE was applied on both original and ln‐transformed stream-
flow samples, where an ln‐transformation was applied to better handle often skewed monthly flow
samples as well as to limit the assignment of probabilities to negative flow values. The integral of the
derived kernel density functions was used to estimate non‐exceedance probabilities of observed
flow values, which were then transformed to the standard normal distribution. Next to the
above‐described KDE methods, there is a plethora of options to modify KDE by using, for example, dif-
ferent (adaptive) bandwidth estimation methods or different methods to impose a lower bound at zero.
Here we limit our study to a few of the KDE options that have been considered in previous drought
studies. A more thorough testing of the wide range of different KDE options that exist is beyond the
scope of this study.

The nonparametric SSI was evaluated against the same criteria as the parametric SSI, that is, according to
the goodness of fit and whether the derived minimum SSI values exhibit the spread expected from a prob-
abilistic drought index (section 2.3). In addition, we derived the uncertainties of the nonparametric SSI
derived with empirical PP and associated drought characteristics. Amore comprehensive sensitivity analysis
to the used nonparametric method, similar to the sensitivity analyses of the more often used parametric SSI,
is outside the scope of the current study.

2.6. Empirical Streamflow Percentiles

We further calculated empirical streamflow percentiles, which express flow anomalies as the historical
non‐exceedance frequency within a given time period and not as a re‐occurrence probability. The calcula-
tion of empirical streamflow percentiles is similar to the calculation of empirical PP (Equation 3), although
their interpretation is notably different from the interpretation of the SSI. For instance, the interpretation
that the flow in the current month of July was not exceeded for 20% of time in the past 40 years (empirical
percentiles) is notably different from the interpretation that the flow in the current month of July has a
non‐exceedance probability of 20% (SSI).

3. Results
3.1. Evaluating the Parametric SSI

The fraction of parametric SSI time series rejected according to the Shapiro‐Wilk test (p < 0.05) varied
among probability distributions and distribution fitting methods (Figure 2a). As expected, time series cal-
culated with less flexible two‐parameter distributions were rejected more often than those calculated
with three‐parameter distributions. Of the three two‐parameter distributions, the (symmetric) Normal
distribution (not bounded at zero) shows the highest rejection rate (80% for both fitting methods), fol-
lowed by the Gamma distribution (30% for Lmom and 29% for MLE) and the Log‐normal distribution
(17% for both methods). For SSI time series calculated with a three‐parameter distribution, the
Pearson‐III distribution has a rejection rate of 24% using the Lmom approach and 7% using the MLE
approach. Lowest rejection rates among parametric SSI time series were found for SSI time series derived
based on the GEV distribution (5% for Lmom and 2% for MLE), Genlog distribution (9% for Lmom and
3% for MLE), and Tweedie distribution (2%). The general lower rejection rates of the MLE, as compared
to the Lmom approach, are partially offset by the number of cases for which MLE did not converge to a

10.1029/2019WR026315Water Resources Research

TIJDEMAN ET AL. 8 of 25



solution for some distributions (not shown). The percentage of non‐convergence was highest for the
Pearson‐III distribution (6%), notably lower for the GEV distribution (0.5%) and well below 0.5% for
all other distributions.

Figure 3 shows the most suitable parametric distribution (derived with MLE) for all catchments of the EWA
according to the rejection rate and p value of the Shapiro‐Wilk test. A joint evaluation of the goodness of fit of
all 12 flow samples of each catchment, based on the lowest number of rejected months and highest average p
values (in case of ties in the lowest number of rejected months), reveals that the Tweedie distribution is over-
all most suitable for a large proportion of catchments, followed by the GEV, Genlog, and Pearson‐III distri-
butions (Figure 3a). The considered two‐parameter distributions (Normal, Log‐normal, and Gamma) were
never labeled most suitable according to the overall assessment. A separate evaluation for each calendar
month and catchment confirms that the Tweedie distribution is most suitable for a considerable proportion
of the catchments across all calendar months (Figure 3b). However, a notable increase in variability is seen
in the distribution of the most suitable parametric method when each calendar month is considered sepa-
rately, and especially other three‐parameter distributions were more often labeled as most suitable.

Figure 3. The best fitting distribution (using MLE) across catchments according to the rejection rate and p value
of the Shapiro‐Wilk test. Panel (a) shows the least often rejected distribution with the highest p value as a fraction (in
percent) of catchments and (b) shows the distribution with the highest p value as a fraction of catchments for each
calendar month.

Figure 2. Rejection rate (across catchments and months) of different parametric (a) and nonparametric (b) SSI
time series according to the Shapiro‐Wilk test (p < 0.05).
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Figure 4a shows the spread in minimum parametric SSI values across all monthly flow samples of the EWA
catchments (in total >4,400 samples). A certain spread in minimum SSI values can be expected, given the
large number of considered samples and the probabilistic nature of the SSI. This expected spread resembles
most closely the SSI derived with the two‐parameter Log‐normal distribution (both MLE and Lmom). Some
SSIs have a median minimum SSI value that is close to the expected median but have a lower than expected
spread. This is the case for the parametric SSI derived with the GEV, Genlog, and Tweedie distributions
(MLE). Compared to these distributions (MLE), the minimum SSI values derived with the GEV and
Genlog distribution (Lmom) show a larger spread that more closely resembles the expected spread, but also
a median that differs more from the expected median. Minimum SSI values from some other parametric dis-
tributions tend to either overestimate (Normal, Gamma) or underestimate (Pearson‐III, especially when
derived using MLE) minimum SSI values.

3.2. Sensitivity of the Parametric SSI

Figures 5a and 5c display the left tail of the cumulative parametric probability distribution functions fitted to
average monthly streamflow as well as the empirical streamflow percentiles for the river Dreisam for the
month July. The empirical distribution exhibits a typical stepwise feature; that is, flow for the lowest three
percentile values is distinctly different from flow at higher percentile values. There is a clear spread among
cumulative probability distributions and fitting methods, and none of the distributions matches the empiri-
cal data (sample) distribution particularly well. The spread is largest among the cumulative parametric prob-
ability functions when computed with the Lmom approach. This larger spread in distribution functions
propagates to a larger spread in estimated SSI values of the lowest observed monthly flow (Figures 5b and
5d). Minimum SSI values range between −1.8 and −2.5 for the non‐rejected probability distributions fitted
with the Lmom approach and between −2 and −2.6 for the non‐rejected distributions fitted with the MLE
approach. Subsequently, this implies that the lowest threshold (TH1)may ormay not be exceeded depending
on a given combination of distribution and fitting method.

Figure 6 summarizes the spread (90% range) in non‐rejected SSI values computed with the same probability
distribution and fitting method across all catchments and calendar months. Although this spread is
expected, given the probabilistic nature of the SSI (Figure 4, section 3.1), it might also be an aspect of stan-
dardized drought indices some end users are not aware of, as it contradicts in some way with “comparability
in space and time.” In general, the spread is largest for the lowest streamflow percentiles. For these lowest

Figure 4. The spread in minimum SSI values (across all catchments and months) derived with different parametric
(a) and nonparametric (b) approaches. Box: quantiles 25, 50, and 75. End of whiskers: quantiles 5 and 95. The expected
spread is given for the same quantiles in red. Both rejected and non‐rejected SSIs are considered.
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streamflow percentiles, SSI values range between −3 to −1.4 among catchments and calendar months. The
spread in SSI further reveals that the same percentile value for different catchments and calendar months
will be classified differently according to a given threshold level.

In Figures 7a, 7b, 7d, and 7e, the sensitivity in parametric SSI time series to the sample properties is shown
for both the full and the partial resampling experiment. For brevity reasons, the results of the resampling
experiments are only shown for the case study river Dreisam (July) using the two parametric distributions
that were least often rejected (GEV and Tweedie, both estimated with the MLE approach). The 90% uncer-
tainty range of the cumulative distribution function and associated range in SSIfull.res is relatively wide (light
blue band). Thus, whether or not the SSI falls below a certain threshold as well as how extreme river flow
drought conditions are classified will vary due to sample uncertainty. For example, the lowest three events
can be characterized as events with a very low non‐exceedance probability (SSI <−2.5) as well as events that
are less extreme (SSI > −2). As expected, the range in SSI is narrower for the partial resampling experiment
(SSIpartial.res, dark blue band) as compared with the full resampling experiment (SSIfull.res). The smaller
spread in SSIpartial.res for the Tweedie distribution as compared to the GEV distribution implies that the prob-
ability of below normal flow is less affected by changes in normal and above normal flow for the sample at
hand.

3.3. Evaluation of Implications for Drought Monitoring and Characterization

Figure 8 shows the number of times the parametric SSI fell below a certain threshold for the river Dreisam
for SSI time series fitted with the seven probability distributions and two fitting methods. Note that not all
derived occurrences below the threshold are shown because not all probability distributions resulted in
non‐rejected SSI time series for all calendar months. The number of occurrences below the threshold varies
among probability distribution and fitting method, however, depicting also a clear seasonal pattern. There

Figure 5. (a, c) Different cumulative probability distribution functions fitted to monthly average streamflow of the river Dreisam (July) computed with the
Lmom (a) and MLE (c) fitting method. Dashed black line (a, b) visualizes the transformation from a monthly streamflow value to its corresponding SSI value
according to the Normal distribution (Lmom). Empirical probabilities and their 90% uncertainty range are shown in brown. Corresponding minimum SSI values
are shown in (b, d) where solid symbols show minimum SSI values derived from non‐rejected SSI time series and open symbols values from rejected
SSI time series (Shapiro‐Wilk test: p < 0.05).
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Figure 6. Spread in (non‐rejected) SSI values computed based on seven probability distributions—Normal (a, g), Log‐normal (b, h), Gamma (c, i), Pearson‐III (d,
j), GEV (e, k), Genlog (f, l), and Tweedie (m)—and two fitting methods—Lmom (a, f) and MLE (g, m)—across all catchments and calendar months.
The median (triangle) and 90% range (box) are shown for different empirical streamflow percentiles. Colors of the box indicate whether the SSI is below a certain
threshold (i.e., TH1, TH2, and TH3, section 2.5.1).
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are relatively few cases where SSI time series for a given month agree on the number of below threshold
events. This number varies between 0 and 2 for TH1, between 1 and 7 for TH2, and between 7 and 14 for
TH3. The number of, for example, below TH3 events is unevenly distributed over the year and is
generally higher (above the expected historical non‐exceedance frequency of 25%) in February, March,
April, and November and lower (below the expected historical non‐exceedance frequency) in summer.
The spread in SSI values observed for catchments across Europe (shown in Figure 6) reveals that a similar
variation in the number of occurrences below a certain threshold also exists within the entire European
streamflow data set.

Figure 9 presents the non‐rejected SSI time series of the river Dreisam fitted with different parametric prob-
ability distributions and fitting methods for the 2003 drought event. This drought event had the same dura-
tion (4 months) according to the SSI derived for all shown distributions. However, the deficit volume varied
among SSI time series. For instance, the deficit volume of SSI time series computed with the Log‐normal dis-
tribution (Lmom) is almost twice as high as the deficit volume of SSI time series computed with the Genlog
distribution (Lmom).

Figure 10 presents the spread in average deficit volume derived from continuous parametric SSI time series
of all EWA records without any rejected SSIs (colored symbols) as well as from SSI time series where at least
1 month contained a rejected SSI (gray symbols) according to different distributions and fittingmethods. The
diagonal of Figure 10 reveals the spread between fitting methods (Lmom and MLE) for the same probability
distribution. Systematic differences between fitting methods are visible for the GEV and Genlog distribution;
that is, average deficit volume is higher when computed with the MLE approach. Systematic differences
were not found for any of the other distributions, with the exception of the rejected time series of the
Pearson‐III distribution. In general, high rank correlations were observed, indicating limited unsystematic
differences between fitting methods.

Figure 7. (a–c) The 90% range in the low end of the cumulative distribution of mean monthly flow for the river Dreisam (July) for three selected
distributions—GEV (a), Tweedie (b), and empirical (c)—and (d–f) corresponding 90% ranges in SSI values. Ranges are derived based on full resampling
(light blue) and partial resampling (dark blue).
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Figure 8. Seasonal variation in the number of times the SSI fell below a certain threshold for the river Dreisam derived from SSI time series computed with
(a) the Lmom approach and (b) the MLE approach using different parametric probability distributions.

Figure 9. SSI time series for the drought of 2003 for the river Dreisam computed for different distributions and
fitting methods: Lmom (a) and MLE (b).
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The plots above (Lmom) and below (MLE) the diagonal in Figure 10 present differences in average deficit
volumes derived from SSI time series computed with different probability distributions, but the same fitting
method. In general, there is a better agreement in deficit volume when it is derived from SSI time series

Figure 10. Sensitivity in average deficit volume derived from SSI time series to the used probability distribution and fitting method. Differences in average deficit
volume among distributions are shown for both Lmom (plots above the diagonal) and MLE (plots below the diagonal). Differences between fitting methods
(same distribution) are shown on the diagonal (y‐axis = average deficit volume MLE, x‐axis = average deficit volume Lmom). Colored points indicate that average
deficit volume was derived from SSI time series with 12 non‐rejected months; gray points indicate 1 or more months with rejected SSI time series; SSI of the
rejected month(s) were included in the calculation of average deficit volume. Average deficit volume of SSI time series that contain one or more months in which
MLE could not converge to a solution are not shown. Numbers in legend show Spearman's rank correlation coefficient for both the subsets with and without
rejected SSIs (colored accordingly).
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without rejected months. Overall, lower average deficit volumes were found for the Normal distribution
(although no cases exist where all calendar months had a non‐rejected SSI distribution according to the
Shapiro‐Wilk test). The Gamma distribution revealed systematically lower average deficit volumes
compared with the Log‐normal distribution (both Lmom and MLE). Average deficit volume derived from
time series computed with these two two‐parameter probability distributions (Log‐normal and Gamma)
was distinctly different from those derived from SSI time series computed with any of the considered
three‐parameter probability distributions. These differences in average deficit volume were rather
unsystematic, sometimes lower for one distribution and sometimes higher, as is also indicated by the
lower Spearman's rank correlation coefficients, particularly when the SSI time series are computed with
the Lmom approach. Average deficit volume from SSI time series derived with three‐parameter
distributions shows a strong agreement.

A similar spread in drought characteristics derived from resampled parametric SSI time series was found
(Figures 11a, 11b, 11d, and 11e). For brevity reasons, this spread is only shown for the case study river
Dreisam and the two distributions and fitting method that best described the data (GEV and Tweedie esti-
mated with MLE). In general, there is a relatively large spread in both the number of occurrences below a
certain threshold (Figures 11a and 11b) as well as in SSI time series (Figures 11d and 11e) and thus the asso-
ciated drought characteristics such as deficit volume derived from those time series. The spread in SSIfull.res
is a measure of the uncertainty related to the sample properties. Accordingly, there will be a spread in
drought characteristics. For instance, the SSI falls below TH3 between 4 and 16 times and also the deficit
volume of the 2003 drought event varies clearly (Figures 11d and 11e). As expected, a smaller spread in

Figure 11. The 90% range in (a–c) the number of occurrences below the threshold (TH3) for the river Dreisam and (d–f) SSI time series of the river Dreisam
in the year 2003. Ranges are derived from the resampled monthly flow samples; full resampling (light blue) and partial resampling (dark blue). Shown are results
for the parametric SSI derived from the GEV (a, d) and Tweedie (b, e) distributions and the nonparametric SSI derived from empirical plotting positions (c, f).
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drought characteristics was found for the partially resampled SSI records (SSIpartial.res). Still, a sensitivity is
seen in the below normal flow to changes in normal and above normal flows for the SSI derived from a para-
metric probability distribution (dark blue range in Figures 11a, 11b, 11d, and 11e).

3.4. Comparison With Nonparametric Approaches

The suitability of the nonparametric SSI was evaluated according to the goodness of fit and whether or not it
exhibits the spread in minimum SSI values expected from a probabilistic index. For the nonparametric SSI,
generally low rejection rates were found (Figure 2b), especially when compared to the rejection rates of some
of the less suitable parametric distributions (Figure 2a). The nonparametric SSI derived from PP was never
rejected, which is expected as PP directly describe the sample at hand. The nonparametric SSI derived with
KDEwas rejected for a small part of the samples when based on untransformed data, whereas KDE based on
ln‐transformed data did not result in any rejected SSI series. On the other hand, the expected (spread in)
minimum SSI values is notably underestimated by the considered nonparametric approaches (Figure 4b).
The nonparametric SSI derived from PP shows a median minimum SSI value that is close to the expected
median. However, no spread in minimum SSI values was observed. Minimum SSI values derived with
KDE show some spread but overestimate the expected occurrence of low minimum SSI values, especially
when KDE was applied on untransformed data.

The uncertainty of the nonparametric SSI was exemplified for the case study river Dreisam using the empiri-
cal PP method (Figures 7 and 11). When doing so, it should first be noted that the empirical distribution
function (Figure 7c) is notably different from the two shown continuous distributions (GEV and Tweedie,
Figures 7a and 7b) because of its stepwise shape and lack of information beyond the range spanned by the
observations. A further notable difference between Figure 7c and Figures 7a and 7b are the larger uncer-
tainty bounds in the left tail of the empirical percentile distribution. These larger uncertainties propagate
to larger uncertainties in nonparametric SSI values derived from empirical PP (Figure 7f) as well as to larger
uncertainties in drought characteristics derived from nonparametric SSI time series based on PP (Figures 11c
and 11f). On the other hand, changes in normal and above normal sample properties, that is, the partial
resampling experiment, do not propagate to uncertainties in the left tail of the empirical distribution func-
tion and the nonparametric SSI for below normal flow derived from empirical PP (Figure 7f). These normal‐
to high‐end sample properties further do not have an effect on the derived drought characteristics
(Figures 11c and 11f).

4. Discussion
4.1. SSI as a Probabilistic Drought Hazard Indicator

In this study, SSI time series were derived by fitting multiple candidate parametric probability distributions
to monthly streamflow data using two fitting methods. Their performance was evaluated with respect to
different criteria and moreover compared with nonparametric approaches based on PP and KDE. The main
purpose of applying the SSI in drought studies is (i) to make streamflow time series comparable over
space and time by standardizing often highly non‐normal sample distributions for a given reference period
and (ii) to allow estimating the re‐occurrence probability of the below normal anomalies and extreme values
in the tail of the distribution, where most SSI computation approaches enable extrapolation beyond the
range spanned by the observations. Comparability over space and time can also be achieved using empirical
streamflow percentiles that express anomalies as a historical non‐exceedance frequency within a given per-
iod. The additional value of the SSI over empirical percentiles is that it transfers streamflow observations
into probabilities based on the hypothesis that the variable of interest follows a specific distribution. The lat-
ter can provide valuable information for, for example, drought planning andmanagement, but requires com-
munication of the limitations and related uncertainties. In addition, if monthly flow is expressed as a
non‐exceedance probability, certain assumptions apply, including that the flow sample needs to be an inde-
pendent and identically distributed random variable and that the distribution chosen satisfactory represents
the monthly flow population.

Whether the chosen distribution can provide a satisfactory representation of the monthly flow population
across the whole flow range is questionable. For example, for the case study river Dreisam, there is a clear
mismatch between the empirical percentiles (sample) and the fitted parametric distributions, partly because
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of the stepwise shape in the left tail of the distribution (Figure 5)—a common issue in low flow series. Part of
the reason for this mismatch is related to the sample uncertainty; that is, the sample is not completely repre-
sentative of the population. Furthermore, there are uncertainties associated with the empirical percentiles,
being particularly high for the lowest/highest observed value (Figures 5, 7, and 11). However, the stepwise fea-
ture might also be part of the flow population. Hypothetical reasons could be that the lowest streamflow
values are generated by other processes, such as base flow, whereas higher flow values might comprise a com-
bination of baseflow and event flow. Another potential reason is that flow might cease from some tributaries
during drought causing a step change in the flow behavior. In such cases, the considered parametric distribu-
tions might not be capable of capturing the complex mixture of processes in the left tail of the distribution. If
the latter is the case, nonparametric approaches might give a better estimate of the tail of the population dis-
tribution. For instance, PP would directly describe the lowest three observations, whereas KDE would draw
kernels around them. Alternatively, a mixed parametric distribution might be able to better reflect the step-
wise shape in the left tail, but would also be less robust andmore complex in its derivation asmore parameters
need to be estimated based on a rather limited data set. To conclude, we can only hypothesize about whether
the stepwise feature is an element of the population distribution or not, and therefore, we do not know which
approaches are more suitable to derive the SSI for this case. The latter stresses the importance of considering
the uncertainty bounds; that is, althoughmost parametric distributions do not directly describe such stepwise
features, the observations will likely fall within their uncertainty bounds (e.g., Figure 7).

Whether monthly streamflow data are identically distributed is questionable as well. There are all kinds of
possible non‐stationarities in the streamflow record due to, for example, climate change, such as an increase
in (potential) evaporation (e.g., Dai, 2011), or land cover changes, such as urbanization (e.g., Eng et al., 2013)
or glacier retreat (e.g., Van Tiel et al., 2018). In addition, direct human influences (such as groundwater
abstraction or reservoir operation) can greatly modify the flow record and are susceptible to changes over
time (e.g., Tijdeman et al., 2018), the latter not being a problem for the considered EWA catchments with
near‐natural flow in this study. Nevertheless, the above‐described non‐stationarities hinder a fair assign-
ment of probabilities to streamflow, as flow values sampled in the past might not be representative for the
current flow population.

4.2. Sensitivity to Parametric Probability Distributions and Fitting Methods

Based on a large European data set of monthly streamflow, this study revealed a sensitivity of the parametric
SSI to both the probability distribution and fitting method. A similar sensitivity of the SSI to the choice of
probability distribution was already shown in various previous studies, for example, for a set of streamflow
records across the Iberian Peninsula by Vicente‐Serrano et al. (2012) and across the United Kingdom by
Svensson et al. (2017). The largest differences were found among SSI time series derived from
two‐parameter distributions as well as when comparing SSI time series of two‐parameter distributions with
those of three‐parameter distributions. The SSI time series of the considered three‐parameter distributions
(besides Pearson‐III) showed more similarity, mostly because these distributions often provided a good
representation of the sample at hand. Our study further revealed differences in SSI time series computed
with the same probability distribution, but using different distribution fitting methods, as also reported for
the SPEI by Stagge et al. (2016).

The sensitivity of the SSI to the choice of distribution and fitting method has consequences for the applica-
tion of the SSI for drought monitoring and early warning. Specifically, the number of occurrences below a
given threshold will vary depending on the used distribution and fitting method (Figures 6 and 8). These dis-
crepancies, if unaware of, can cause confusion if they are used as thresholds (triggers) in drought manage-
ment plans or to portray the severity of drought conditions. The sensitivity of the SSI to the distribution
and fitting method also has consequences for drought research aiming to characterize drought events; that
is, using a different distributionmight give a different account to the severity of historic drought events. Both
systematic and unsystematic differences in drought deficit volume were found among drought characteris-
tics derived from SSI time series computed with different distributions and fitting methods (Figure 10).
Systematic differences are the least problematic for a comparison across catchments or climates, as another
probability distribution or fitting method would likely give the same ranking of average deficit volume. More
problematic are unsystematic differences, as the conclusion whether a catchment has higher or lower aver-
age deficit volumes than another catchment will depend on the method used.
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4.3. Discrepancies Over Space and Time

The spread in SSI time series (across catchments and months) calculated with the same probability distribu-
tion and fitting method (Figure 6) is expected given the probabilistic nature of the SSI (section 3.1, Figure 4).
At the same time, this spread complicates the interpretation and communication of the drought situation.
For example, if unaware of, one might not expect that the lowest monthly flow value for some catchments
or calendar months has an SSI value of −3 (non‐exceedance probability of around 0.14%), whereas for other
catchments and calendar months, the lowest average flow value has an SSI of −1.6 (or a non‐exceedance
probability of around 5.5%).

The spread found in SSI between catchments and calendar months further has implications for, for example,
(large‐scale) consistency in drought monitoring; that is, given thresholds (triggers) are passed more often for
some catchments and calendar months (Figures 6 and 8). For example, if unaware of, one might not expect
that for the Dreisam, the SSI falls below the 25th percentile threshold around 30% of time in March and 20%
of time in August. A similar spread in the number of occurrences below the threshold between stations and
climatic regions for the SPI in Texas led Quiring (2009) to suggest a set of objective thresholds based on
empirical precipitation percentiles, that is, an SPI threshold between −1.5 and −1.64 depending on the cli-
matic region, to match with the fixed (or predefined) percentile thresholds. By using the non‐exceedance fre-
quency directly as a threshold and a reference period that matches the observation period—instead of the
SPI—the issues related to the spread in the historical number of occurrences below the threshold between
stations and calendar months might have been avoided. However, it should be noted that the latter is only
true if the reference period is equal to the observation period; that is, empirical percentiles are used to make
inferences about the sample. A larger variability in the number of below threshold occurrences is expected
when the empirical percentile distribution is used to make inferences about the flow population, for exam-
ple, for observations outside of the reference period. This is confirmed by the often larger uncertainty bounds
around (drought characteristics derived from) empirical streamflow percentiles (Figures 7 and 11).

4.4. Impact of Sample Properties and Uncertainty

The spread in resampled parametric SSI time series (full and partial) and drought characteristics derived
from these resampled SSI time series (Figures 7 and 11) reveals relatively large uncertainty bounds.
Similar uncertainties caused by sample differences were found in studies that investigated the impact of
record length, reference period, and sample properties on the SSI (e.g., Hong et al., 2015; Núñez et al., 2014).
Although the uncertainty in estimating SSI values is high, particularly for the lowest values, quantifying this
uncertainty provides important information about the representativeness of the sample at hand as well as
valuable, additional information for decision makers.

The partial resampling experiment demonstrated the degree to which the SSI for below normal flow anoma-
lies is dependent on the properties of the (above) normal range of the sample. Although inherent in the nat-
ure of parametric statistical models, the fact that drought is getting more or less severe if normal and high
flow magnitudes change raises several questions regarding comparability and communication, similar to
the comment on flood frequency analysis made by Klemeš (2000). The dependency between normal and
high flowmagnitude and the SSI for below normal anomalies might further challenge drought research that
aims to relate differences in drought characteristics across catchments to natural and human influences (e.
g., Van Oel et al., 2018) or research that aims to compare the characteristics of SSI records derived from
observations with those derived from simulations (e.g., Lai et al., 2019). Differences in SSI time series, or
drought characteristics derived from those SSI time series, are not solely related to lower flows as the occur-
rence of more extreme flood events or human interventions that target high flow (such as flood control) can
also modify the SSI and drought characteristics derived from those SSI records. The dependency between
high flow magnitude and the SSI for low flow also challenges the assessment of changes in drought under
future climate change (given that a new reference period is used to assess future drought conditions). The
potential intensification of the hydrological cycle in some regions could result in more extreme wet and
dry conditions, both affecting the probability and SSI for below normal flow. Accordingly, it is essential to
evaluate the sensitivity to any changes in the flow regime when using the SSI.

Finally, it is worth noticing that bootstrap uncertainty ranges would be lower for longer records. However,
considering longer record lengths could come at the cost of having a less representative sample as
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catchments might have substantially changed over time. Further, the considered 40‐year period in this study
is comparable in length to the period used in numerous previous drought studies.

4.5. Comparison With the Nonparametric SSI

From a goodness of fit perspective, the nonparametric SSI often performs better than the parametric SSI.
Only a small percentage of nonparametric SSI time series derived using KDE on untransformed data were
rejected, whereas none of the other considered nonparametric approaches resulted in any rejected SSI series.
However, a drawback of the nonparametric SSI is that it (severely) underestimates the expected occurrence
of low SSI values. Theminimum SSI value derived using PP is bounded and directly related to the considered
number of observations (Equations 1–3). A similar lower bound is apparent for minimum SSI values derived
using KDE, as at least part of the kernel drawn around the lowest observation contributes to the cumulative
probability of the lowest observation (50% in case of a symmetric kernel). However, most of the time, more
individual kernels contribute partly to the probability density function below the lowest observation, espe-
cially for the often positively skewed monthly flow distributions. This can inflate the left tail of the probabil-
ity density function, especially when using untransformed data, increasing the magnitude of low
(minimum) SSI values (Figure 4).

Although not directly shown, nonparametric SSI time series, and drought characteristics derived from those
SSI time series, are sensitive to the used nonparametric method and can be variable over space and time.
With regard to differences between methods, systematic differences are present among the nonparametric
SSI derived with different PP formulas, purely because of differences in their definition (Equations 1–3).
Figure 4 further suggests substantial differences among the nonparametric SSI derived with KDE based
on either original or transformed data as well as differences among SSI time series derived with either PP
or KDE. Discrepancies in space and time are also occurring for the nonparametric SSI derived with KDE
(Figure 4). On the other hand, in the absence of ties in the sample and in the case that the reference period
is equal to the observation period, the nonparametric SSI derived from PP would not show any discrepancies
in space and time.

The nonparametric SSI derived from PP is associated with a relatively high uncertainty, especially for the
extreme anomalies (see Figures 5, 7, and 11). On the other hand, the nonparametric SSI derived from PP
for below normal flow is not sensitive to changes in the normal‐ or high‐end of the sample. In the current
study, we did not consider the uncertainty in the nonparametric SSI derived from KDE. The latter is done
in Vergni et al. (2017) for the SPI and SPEI derived for a station in Italy, where generally smaller uncertain-
ties were found when using KDE as compared to using a parametric approach. Nonetheless, the nonpara-
metric SSI for below normal flow derived with the considered KDE methods in this study would be
sensitive to changes in the normal‐ and high‐end of the flow sample, as the bandwidth estimation is affected
by properties of the entire flow range.

4.6. Streamflow Measurement Accuracy

Streamflow measurements are commonly derived from the stage‐discharge relationship (rating curve).
Uncertainties in the rating curve are typically high for both the high and the low flow end of the curve,
due to, for example, measurement challenges. Measurement errors in both the high and low end of the flow
spectrum affect the observations and thus the derivation of the parametric SSI, which again influence the use
of the SSI as a drought index (below normal flow values). The nonparametric SSI derived from PP, on the
other hand, is less affected by systematic errors in absolute values of flow magnitude, as it solely depends
on the ranks of streamflow. An impact of measurement errors will only be observed if they imply a change
in the order (ranks) of values. Furthermore, the nonparametric SSI values for below normal flow derived
from PP are independent of the quantity of high flow magnitude, eliminating the potential impacts of mea-
surement inaccuracies during high flow on the severity (probability) of below normal flow anomalies. The
latter is not the case for the considered nonparametric SSI derived with KDE in this study (section 4.5).

4.7. Which Method to Use?

Today, it is relatively easy to derive an SSI time series, given that probability distribution fitting steps are
automated in various software packages. For example, the Handbook of Drought Indicators and Indices
from the World Meteorological Organization (WMO & GWP, 2016) recommends the use of the “SPI pro-
gram” to compute the SSI. Notably, the latter handbook notes the main strength of the SSI as being “easy
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to calculate” because it only requires running the “SPI program” of the National Drought Mitigation Centre,
which uses by default the two‐parameter Gamma distribution. Such recommendations are problematic, as
accurate computation of the SSI requires a thorough investigation of, for example, the most suitable prob-
ability distribution for the variable at hand. The Gamma distribution has been found to be the most suited
distribution for precipitation (SPI) in several studies (as confirmed in e.g., Stagge et al., 2015, for Europe
as a whole). However, finding a regionally appropriate distribution for streamflow across different hydrocli-
matic regions and catchments is considered more challenging, and recent studies, including ours, suggest
that the latter Gamma distribution is not appropriate. Accordingly, there is a need to raise awareness to
the use of existing software—in this case developed for derivation of the SPI—to other variables and condi-
tions without awareness of its assumptions and limitations. Further, clear recommendations on how to
derive the SSI and its uncertainties as well as user‐friendly guidance tools are required. Unfortunately, a
clear recommendation how to derive the SSI is far from straightforward, as it depends partly on the used eva-
luation criteria including the goodness of fit, whether the SSI exhibits the expected characteristics of a prob-
abilistic index, and the uncertainty.

From a goodness of fit perspective, nonparametric approaches are as expected more suitable, especially
PP, as these approaches directly describe the sample at hand (Figure 2). Parametric approaches are based
on sample statistics but do not directly describe each individual observation and therefore often have
lower goodness of fit scores and higher rejection rates. However, the low rejection rates of especially
the Tweedie, GEV, and Genlog distributions for the EWA data set suggest that these distributions are par-
ticularly suitable to derive the SSI (Figure 2), which is in line with findings of previous studies (e.g.,
Svensson et al., 2017; Vicente‐Serrano et al., 2012). In addition, the general low rejection rates of the lat-
ter distributions suggest that using a best fitting distribution approach (as suggested in Vicente‐Serrano
et al., 2012) might not be needed, at least not for our set of samples. This would avoid any differences
across SSI time series related to differences in distributional properties. From a goodness of fit perspec-
tive, the less flexible two‐parameter distributions were more often rejected and therefore deemed less
suitable.

From a probabilistic perspective, the SSI derived with the Log‐normal distribution most accurately matches
the (expected spread in) minimum SSI values (Figure 4). The SSI derived with other parametric distributions
show either an overestimation or underestimation in (the spread of) minimum SSI values, where the over-
estimation or underestimation in minimum SSI values is generally less severe for the GEV, Genlog, and
Tweedie distributions. On the other hand, the overestimation or underestimation is more severe for the
two‐parameter Normal and Gamma distribution and especially for the three‐parameter Pearson‐III distribu-
tion. The considered nonparametric approaches (severely) underestimate themagnitude and spread inmini-
mum SSI values and are therefore less suitable to estimate probabilities of flow beyond the range spanned by
the observations. This is an important drawback of the latter nonparametric approaches, as an advantage of
probabilistic drought information is that it can be used to estimate probabilities of more extreme events,
which, together with their uncertainties, can provide valuable information for, for example, drought plan-
ning and management.

From an uncertainty perspective, we showed that the parametric SSI derived with the GEV and Tweedie dis-
tribution generally had narrower uncertainty bounds as compared to the nonparametric SSI derived from
empirical PP. On the other hand, the nonparametric SSI derived from PP for below normal flow anomalies
is not sensitive to changes in the normal or high end of the sample. Overall, whether or not selecting the
most suitable distribution based on low uncertainty bounds is a good selection criterion alone is question-
able. Rather, it may be more important to select an appropriate population distribution and quantify the
uncertainty.

When jointly considering all above evaluation criteria, one could argue that the parametric SSI derived with
the Tweedie, GEV, or Genlog distribution are among the most suitable candidates. The parametric SSI
derived with these distributions rarely performs best for any of the individual evaluation criteria but most
importantly never performs badly either. A specific advantageous property of the Tweedie distribution is
its lower bound at zero. However, using the latter distribution comes at the cost of higher computational
demands. In the end, the potential user should carefully consider the performance of the considered meth-
ods using different evaluation criteria and decide which of those is most important for the desired
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application. After choosing a method, the user should remain aware of the approach‐specific strengths, lim-
itations, and uncertainties and their impact on the derived results.

As a last consideration, we argue that, despite the benefit of probabilistic drought information as discussed
above, it might not always be necessary to express the monthly streamflow drought hazard (SSI) in a prob-
abilistic way, especially when considering the related assumptions, sensitivities, and uncertainties associated
with its derivation. For some applications, for example, those where the key interest is to have anomaly
information that is comparable over space and time, the use of empirical percentiles (section 2.6) expressing
flow as a historical non‐exceedance frequency in a given period might be preferred. For these applications,
the simplicity, both computational and communication wise, are considered an asset, including (1) no
assumptions associated with probabilities, (2) flexibility to describe any sample, (3) the insensitivity of
empirical percentiles to flow magnitude (in the high end of the flow sample), and (4) the ease of calculation
and interpretation (with regard to the last point, see also Shukla et al., 2011; Steinemann, 2014). However, it
is important to stress that the use of empirical percentiles also requires consideration of their limitations and
uncertainties. Even though there are no uncertainties associated to probability assumptions, there are still
inherent uncertainties related to the used reference period; that is, percentiles only reveal sample statistics.
Using percentiles to derive properties of the monthly flow population, for example, a certain drought thresh-
old, is more uncertain. Finally, the fact that percentile rankings can be used without considering probability
assumptions related to stationarity (section 4.1) does not imply that non‐stationarities cannot be problematic
in empirical streamflow percentile time series, as they can still cause a disconnect between the drought
hazard and drought impact signal (Tijdeman et al., 2018).

5. Conclusion

Based on a diverse data set of (perennial) streamflow records across Europe, this study demonstrated the
parametric SSI time series' sensitivity to the choice of probability distribution, fitting method, catchment,
calendar month, and sample properties. It was revealed that SSI time series as well as drought characteristics
derived from those time series, such as the number of below threshold occurrences or the deficit volume, var-
ied considerably among the different methods. Further, the presented dependency of the SSI to both the low‐
and high‐end sample properties shows the underlying uncertainties in SSI time series.

This sensitivity of the SSI to the used method and sample properties has implications for the use of the SSI in
drought monitoring and early warning systems as well as in drought research, as major discrepancies found
will give a rather different interpretation of a given drought. In particular, the discrepancy in the number of
below threshold events among different (non)parametric methods is unwanted for drought monitoring and
early warning applications as it could falsely initiate (or miss) triggers for actions in drought plans.
Furthermore, systematic—and especially unsystematic—differences in drought deficit volumes between
SSI time series computed with different probability distributions and fitting methods are unwanted in com-
parative drought research, as conclusions drawn from these studies might change depending on the method
used. The dependency of the SSI (probabilities) for below normal flows to the normal and above normal end
of the sample is potentially challenging to convey to users and decision makers. This dependency might
further challenge drought research that aims to attribute differences in drought characteristics between
catchments or periods, as these might not necessarily be solely related to differences in flow magnitude of
dry anomalies. Overall, these sensitivities should be carefully evaluated when using the SSI in either drought
monitoring and early warning applications or drought research.

Our results further confirm findings of previous studies that not all parametric distributions are equally sui-
ted to derive the SSI, one reason being that not all distributions are flexible enough to describe the flow popu-
lation. With that regard, the use of nonparametric approaches, such as PP or KDE, can be attractive as these
are flexible and directly describe the sample at hand. However, we exemplify that the nonparametric SSI
derived from empirical PP has larger uncertainty bounds. We further show that the nonparametric SSI does
not resemble the spread andmagnitude of minimum SSI values expected from a probabilistic index. This can
be a drawback, as quantification of these rarer events might be of particular interest for drought planning
and management, especially when communicated together with the uncertainties.

Given the differences among the considered (non)parametric approaches and their varying performance
according to different evaluation criteria, it was not straightforward to provide a clear recommendation
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which method to use to derive the SSI. Nevertheless, an overall assessment of different evaluation criteria
suggests the parametric SSI derived with the Tweedie, GEV, or Genlog distribution to be suitable candidates
for the considered data set in this study, especially when taking into account the uncertainties. However, this
should not be seen as a recommendation to use these distributions by default in future studies. Thorough
testing of the suitability of the chosen method for the river flow data at hand remains of critical importance,
in particular in case of a local case study where a good fit to a single time series is vital.

Both the SSI (parametric and nonparametric) and empirical streamflow percentiles are comparable over
space and time. The advantage of the SSI over empirical flow percentiles is that it expresses flow as a
non‐exceedance probability, thereby allowing extrapolation beyond the period of record, rather than a his-
torical non‐exceedance frequency limited by a given time period. However, the additional value of expres-
sing flow as a non‐exceedance probability comes with various limitations and uncertainties that should be
carefully considered. Probabilistic information and its uncertainty provide valuable information for stake-
holders and decision makers, especially when it comes to planning for design extreme events, such as the
100‐year event. Still, the use of empirical percentiles might be preferred in some cases where it is sufficient
to express the streamflow situation as a historical non‐exceedance frequency within a given period.

Data Availability Statement

Streamflow data from the European Water Archive (EWA) can be obtained (upon request) from the Global
Runoff Data Centre (https://www.bafg.de/GRDC/EN/04_spcldtbss/42_EWA/ewa.html). Streamflow data
from the case study river Dreisam were acquired from the regional state office for the environment of the
federal state Baden‐Württemberg (https://www.lubw.badenwuerttemberg.de). Parametric drought index
time series derived in this study can be downloaded from the HeiDATA repository (https://doi.org/
10.11588/data/PFDJI1). All analyses were carried out with the open‐source software R (https://www.r‐pro-
ject.org/), partially using the packages “lmomco,” “tweedie,” “evd,” and “SCI.”
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