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Abstract

We investigate polynomial endomorphisms of graph C*-algebras and Leavitt
path algebras. To this end, we define and analyze the coding graph corresponding
to each such an endomorphism. We find an if and only if condition for the endo-
morphism to restrict to an automorphism of the diagonal MASA, which is stated
in terms of synchronization of a certain labelling on the coding graph. We show
that the dynamics induced this way on the space of infinite paths (the spectrum
of the MASA) is generated by an asynchronous transducer.
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1 Introduction

The aim of this paper is to study a class of endomorphisms of both graph C*-algebras
and Leavitt path algebras. To describe the class and motivate why we study it, we
recall some history. In [14] Cuntz studied unital endomorphisms of the Cuntz algebras
0,, and showed that there is a one-to-one correspondence between unitaries in O,, and
unital endomorphisms of O,,. Namely, each unitary v € U(O,,) in O, gives rise to a
unital endomorphism A, of O,, such A,(S;) = uS; on the generators Sy,..., S, of O,.
Trying to understand all endomorphisms of O,, seems an impossible task. So instead,
Cuntz’ result has been used in the following way: Consider some subclass of particularly
nice unitaries of O,, and then investigate the endomorphisms they induce. Some of the
crucial questions arising in this context are: Is the endomorphism an automorphism on
the entire algebra? Does it restrict to an automorphisms on the diagonal? What is the
corresponding classical dynamics on the Cantor set? Since all unital endomorphisms of
O,, are injective, the automorphism questions simplify to asking if the endomorphism is
onto the appropriate sets.

In this spirit, a study of endomorphisms coming from permutation unitaries in the
UHF-core is carried out in [13], and in [10] endomorphisms coming from so-called polyno-
mial unitaries are consider. There are a variety of applications, see for instance [8], [19],
and [21]. A unitary in O,, is called polynomial if it can be written as a sum of words in
the generators S; and their adjoints S7. These unitaries form a group, which in the case
of Oy is naturally isomorphic to the Thompson group V', [25]. The relationship between
Thompson’s group and Cuntz algebras has led to striking applications, for example see
[17]. In the present paper, we are particularly interested in the relation between poly-
nomial endomorphisms and classical dynamical systems they induce on the spectrum of
the diagonal MASA. Since invertibility of such a map can be determined algorithmically
through analysis of the action of the endomorphim on words of certain finite length, see
[10] and Theorem 5.5 below, it is reasonable to expect that these classical systems may
be understood via transducers, [16] and [6], and this in fact we show in Theorem 6.7
below. Now, every polynomial endomorphism of O, restricts to an endomorphism of
the Thompson group V. Thus our present paper complements nicely the results of the
monumental work [7], where automorphism groups of the Higman-Thompson groups
are identified with certain groups of homeomorphisms of the Cantor set determined by
bi-synchronizing transducers.

In this paper, we go beyond Cuntz algebras and investigate endomorphisms of both
graph C*-algebras and Leavitt path algebras. Graph C*-algebras are a wide reaching
generalization of the Cuntz algebras. The generalization happened stepwise, but the first
definitions covering all the graphs we will consider appeared in [22]. See the excelent
monograph [26] for a thorough introduction to the theory. Cuntz’s idea of relating
unitary endomorphisms and unitaries also works in the generality of graph C*-algebras
([11]), and so again we can study the endomorphisms given by nice unitaries. In [5], a
study of the permutative endomorphisms of graph C*-algebras is carried out.

In this paper, we will look at polynomial endomorphisms of graph C*-algebras. We
begin by observing that the constructions in [11, 14] are of an entirely algebraic nature.



Therefore we carry out our investigation in the purely algebraic setting of of Leavitt path
algebras, introduced in [1, 3], as this costs very little but gives new results. Following
the ideas of [5] we start with a polynomial unitary uy; € Lz(FE) and its associated
endomorphisms A 7, and build from it the coding graph E ;. This a finite directed graph
with multiple labellings. We have three main applications of the coding graph: we show
how to use the coding graph to easily read of A 7(S,) for any path o (Lemma 3.3); we give
an if and only if condition for A s to restrict to an automorphism of the diagonal in terms
of the coding graph (Theorem 5.5); when A restricts to an automorphism it induces
a self homeomorphism 1 of the infinite path space E°°, we modify the coding graph
to build an asynchronous transducer (see [16] and [6]) that describes the action of v
(Section 6). In Remark 5.10, it is discussed how the results of the paper are constructive
in the sense that they give an algorithm for checking whether a given endomorphism
restricts to an automorphism of the diagonal.

Our condition for restricting to an automorphism on the diagonal is fully parallel
to the criterion found in [5] for permutative endomorphisms. Unfortunately we cannot
present a criterion for invertibility of a polynomial endomorphism on the entire graph
algebra. However, we believe that coding graphs provide the correct language in which
such a criterion perhaps may be phrased. A belief backed up by the otherwise great
explanative power of the coding graph.

In the case of permutative automorphisms of the diagonal, the action they induce
on the infinite path space is quite well understood and eventually commutes with the
shift. The asynchronous transducer we build to implement the action of a polynomial
automorphisms of the diagonal cannot be described that way, since the action may not
be eventually commuting with the shift. Hence we get new dynamical phenomena.

We end the paper with a section showing concrete examples of our constructions.

2 Preliminaries

2.1 Finite directed graphs and their algebras

Let E = (EY, E',r,s) be a directed (multi)graph with finite sets of vertices EY and edges
E', respectively. Let r,s: E* — E be the range and source maps, respectively. A path
p of length || = k is a sequence p1 = piypia . . . pu of k edges p1; such that r(u;) = s(pj41)
for j =1,...,k — 1. For two paths u,r we write u < v to denote that p is an initial
segment of v. We view the vertices as paths of length 0. The set of all paths of length
k is denoted E*, and E* is the collection of all finite paths. The range and the source
maps naturally extend to maps r,s: E* — E°. A vertex is called a sink if it emits no
edges and a source if it receives no edges. By a cycle we mean a path p of non-zero
length such that r(u) = s(u). A cycle p = pq ... g has an exit if there is a j such that
s(p;) emits at least two distinct edges. Throughout this paper we make the following
standing assumption.

Standing Assumption. All graphs E we consider are finite, without sinks or sources,
and such that every cycle has an exit.



To each such a graph we can associate a C*-algebra.

Definition 2.1 (See [22]). The C*-algebra C*(E) corresponding to a graph E is the
universal C*-algebra generated by mutually orthogonal projections p,, v € E°, and partial
isometries s, e € E', subject to the following relations:

(GCA1) stse = pye) for all e € E', and,

(GCA2) p, = Z Sess for allv € E°.

s(e)=v

We warn readers that there are two competing conventions for the definition of C*(E).
We use the opposite convention to that of Raeburn’s monograph [26].

For a path p = py ..., we denote by s, = s,, ---s,, the corresponding partial
isometry in C*(E). Each s, is non-zero and has the domain projection p,,. For
convenience, we agree to write s, = p, for a v € E°, and sy = 1. The C*-algebra
C*(E) equals the closed span of {s,s | u,v € E*}. Note that s,s}, # 0 if and only if
r() = r(v).

The range projections p,, = s,s, of all partial isometries s, mutually commute and
generate the diagonal subalgebra De-(gy of C*(E). We set

Dé*(E) = span{p, | |u| =k}, forkeN.

Then De-(py coincides with the norm closure of | J;-, Dg*( p)- 1f £ does not contain
sinks and all cycles have exits (and this is what we always assume in the present paper)
then De-(p) is a MASA (maximal abelian subalgebra) in C*(E), [18, Theorem 5.2].

There exists a strongly continuous action «y of the circle group U(1) on C*(E), called
the gauge action, such that ~.(s.) = zs. and 7.(p,) = p, for all e € E', v € E° and
z € U(1) C C. The fixed-point algebra C*(E)” for the gauge action is an AF-algebra,
denoted Fe- gy and called the core AF-subalgebra of C*(E). It is the closed span of
{8,595 | pv € E* |u| = |v|}. For k € N, we denote by }"g*(E) the linear span of
{8,585 | w,v € E*, |u| = |v| = k}. Then Fex(py coincides with the norm closure of
Uil 7 é’*(E)'

For any unital commutative ring R, we can also associate an R-algebra to the graph
E.

Definition 2.2 ([30, Definitions 2.4 and 3.4]). Let R be a commutative ring with unit
and let E be a graph. The Leavitt path algebra Lgr(E) of E over R is the universal
R-algebra generated by pairwise orthogonal idempotents {P, | v € E°} and elements

{S., S | e € E'} satisfying
(LPA1) S:S; =0, if e # f,
(LPA2) StS. =r(e),

(LPA3) Pye)Se = Se = SePr(e),



(LPA4) S:Ps(e) = SZ = PT(e)S:, and,

(LPAS) Py =3 i1 SeS2-

ecs—1

We will view Lgr(FE) as a *-algebra, where the involution extends the map S, — S.
If R is a subring of C that is closed under conjugation, we will take the involution to be
conjugate linear, in all other cases we take it to be linear.

It is customary in the Leavitt path algebra literature to simply denote the element
Se by e. This blurs the distinction between edges in E and elements in Lg(E), but
has the advantage that important details are not hiding in subscripts. Since we will
need to differentiate between the paths in the graph, the elements of the Leavitt path
algebra, and the elements of the graph C*-algebra we use the S, notation. To help
distinguish between the Leavitt path algebra and the graph C*-algebras we will use
upper case letters for Leavitt path algebra related objects and lower case letters for
the graph C*-algebra related objects. But only when this does not conflict with well
established notation. For instance we still use De+(g) for the diagonal of C*(E).

We follow the same labeling conventions for Leavitt path algebras as we did for graph
C*-algebras. So for a path p = g ... g, we write S, for the product S, ---5,,. Each
S, is non-zero and has the domain projection P,(,). For convenience, we agree to write
S, = P, for av € E° and Sy = 1. Further, we recall that Lr(E) = spang{s,s’ | u,v €
E*}. Note that S,5; # 0 if and only if 7(11) = r(v). All these facts are in [30].

For each pp € E* we let P, = 5,5, which we call the range projection of x following
C*-algebra conventions. It is indeed a projection, i.e. P, = Py = Pﬁ. The range
projections of all S, mutually commute and generate the diagonal subalgebra Dy, (g).
We set

DER(E) = span{ P, | |u| =k}, for keN.

Then Dr 5 = Ui D’ZR( ) If £ does not contain sinks and all cycles have exits (and

this is what we always assume in the present paper) then Dy, (g is a maximal abelian
subalgebra (MASA) in Lr(E) whenever R is an integral domain [2, Lemma 2.1].

Remark 2.3. In the above, we have taken the generators and relations point of view on
graph C*-algebras and Leavitt path algebras. Originally graph C*-algebras were defined
in terms of groupoids, [23], and recently a groupoid picture for Leavitt path algebras
has also emerged, [9, 28]. It has often proved the case that some questions are answered
more easily with generators and relations and some with groupoids. We shall stay clear
of graph groupoids in the present paper, but mention them for completeness.

We recall that all Leavitt path algebras are Z-graded, with the vertex projections
being homogeneous of degree 0 and elements of the from S,S; being homogeneous of
degree |u| — |v|. We denote the set of O-graded elements by Fp,(g). Then Fi (g is the
span of {S,S} | p,v € E*, |u| = |v|}. For k € N, we denote by FIER(E) the linear span
of {S,S} | p,v € E*, |u| =|v| = k}. Then Fg coincides with [ J;, F]ZR(E)'

The behavior of a Leavitt path algebra does to some degree depend on the ring of
coefficients. This dependence is more subtle than it may appear at first, with many
foundational results only assuming that the coefficients form a field. While we will not
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limit ourselves to fields, we will instead insist on integral domains with characteristic
0, and our main interests are Z and C. We note that as a consequence of the graded
uniqueness theorem Lz(E) embeds naturally into C*(E) (see [20, Lemma 3.4] and also
[29, Theorem 7.3]) and Lz(F) whenever R has characteristic 0 (see [30, Proposition
3.4 and Theorem 5.3]). The embedding simply maps generators to generators and we
will often suppress it. We have two main uses of these embeddings: We can work in
Lz(E) when asking questions about C*(E) that are just about sums and products of
generators. This gives us the advantage of more concrete elements. Alternatively, we can
move problems from Lz(FE) into C*(E) where there is more stucture to work with, such
as positivity. To use these embeddings we impose the following standing assumption.

Standing Assumption. All rings R, as in Definition 2.2, we consider will be assumed
to be integral domains of characteristic 0.

In fact, in almost all cases the ring will be Z.

Definition 2.4. Let E be a graph. A finite collection of paths {p;}~; C E* is called a
partition of a vertex v if

> 5,85 =Py, in Ly(E).
=1

For a path v € E*, a finite collection of paths {vp;}~, C E* is called a partition of v
if {p:} is a partition of r(v). In both cases, max{|u;|} is said to be the length of the
partition.

We note that a collection of paths {y;}", € E* form a partition if and only if

Zsmszi = py, in C*(E),
i=1

which happens if and only if
> 8,8, =P, in Lp(E),
i=1

for some unital commutative ring R of characteristic 0.

Remark 2.5. We defined the notion of a partition by using the Leavitt path algebra,
but really it is entirely a graph concept. For each av € E* we define the cylinder set of
« as

Z(a)={ye E¥ [a <1},

with the convention that if « is a path of length 0, i.e. a vertex, then Z(«) is the set
of all path that start at . One can show that a collection of paths {u;}"; C E* is a
partition of a vertex v if and only if the sets Z(u;) are pairwise disjoint and their union
is Z(v).



2.2 Endomorphisms determined by unitaries

Cuntz’s classical approach to endomorphisms of O, [14], has recently been extended to
graph C*-algebras in [5] and [11]. Many of these concepts can be transported almost
verbatim to the setting of Leavitt path algebras, we do so below.

For any unital x-algebra A we let U(A) denote the collection of unitaries (elements
u for which wu* = 1 = u*u). We denote by Ug the collection of all those unitaries in
Lz(E) which commute with all vertex projections P,, v € E°. That is,

Us = U((DY 1) N La(E)). )

If u € Up then uS,, e € E', their adjoints S*u*, and the projections P,, v € E°,
satisfy conditions (LPA1)-(LAP5). Thus, by the universality of Lz(F), there exists a
unital *-homomorphism A, : Lz(E) — Lz(E) such that!

Ay(S.) = uS, and A,(P,) =P,, forec E',v € E (2)

The mapping v — A, establishes a bijective correspondence between Ug and the
semigroup of those unital *-endomorphisms of Lz(E) which fix all P,, v € E°. Indeed,
if ¥ is a x-endomorphism that fixes all the P, and we put

u=y W(S.)S;,

ecE!l

then & = A,,.

Since all cycles in the graphs we consider have exits, the Cuntz-Krieger uniqueness
theorem ([30, Theorem 6.5]) implies that all endomorphisms A, are automatically in-
jective. We say that A, is invertible if A, is an automorphism of Lz(F). That is, when
it is also surjective.

There is a natural extension of A, to an endomorphism of either C*(E), which
we shall call \,, or Lr(FE), given simply by reading equation (2) as taking place in
either C*(E) or Lgr(FE). Le. by viewing Lz(FE) as sitting inside C*(E) or Lg(F). In
that viewpoint the following lemma simply records the fact that Lz(F) contains the
generators of C*(F) and Lg(E).

Lemma 2.6. Suppose we are given u € Ug. If A, is onto Lyz(E), then A, is onto C*(E)
and when we view A, an an endomorphism of Lr(E) it is also onto.

We cannot prove that this implication can be reversed in general, i.e. it may well be
possible that A, is onto but A, is not. However, many previous proofs have established
that A, is onto in effect by showing that A, is onto. If we restrict our attention to the
diagonal subalgebra the implication can be reversed.

Lemma 2.7. Suppose we are given u € Ug. The restriction Au|DLZ(E) is onto Dr, (g if

and only if Au|pew @5 onto De=(p).

(E)

!The reader should be aware that in some papers (e.g. in [14]) a different convention is used, namely

Ay (Se) = u*S,




Proof. As above the forward implication follows from the fact the Dy, g generates
Dc+(g). For the other implication, we note that all projections in De«(gy live in Dy, ()
and that )\, maps projections to projections, so A,(Dr,(g)) contains all projections in
Dy, (k). The result now follows from the fact that Dy, (g is generated by its projections.

m

We also consider an algebraic version of the shift map, introduced in [15], given by

O(z) = Z SexSr, x € Lz(F). (3)

ecEl

The shift is a unital map. The graph C*-algebra version is completely positive but we
do not know of a natural algebraic version of that property. We note that the shift is an
injective *-homomorphism when restricted to the relative commutant (D%Z( g) N Lz(E)
and that it globally preserves Ug, Fr,p) and Dr,(g).

For k£ > 1 we denote

up = ud(u) - - - 1 (u). (4)
For each u € Ug and all e € E'* we have S,u = ®(u)S., and thus

Au(S,S5) = wS,uSiu, (5)

for any two paths u,v € E*.

In the present paper, we will be particularly concerned with a special class Sg of
unitaries in Ug, see [11], which we now define. Consider a finite subset J C E* x E*
such that s(u) = s(v) and r(u) = r(v) for all (u,v) € J. We put

ug = Y _ S.S;. (6)

(mv)eg

Note that the same element may admit many different presentations in the form uy; =
ugz with J # J’'. Choosing a convenient presentation will play an important role in
what follows. Let Jy = {u € E* | Jv € E* such that (u,v) € J} and similarly let
Jo ={v € E* | 3p € E* such that (u,v) € J}. Note that uy is unitary if and only if

Y P=1=> 7. (7)

neJ1 veJ2

Then Sg is defined as the collection of all such unitary elements u 7. Assume uy €
Sg. Then the endomorphisms A, , and A, will be denoted by A and A7, respectively.
Also, if o € J; then there is a unique v € J; such that (u,v) € J, we write J, = (u, ).
We will often write this element (y, ) in the form (u, ex) with e € E' and k € E* U {0}
such that v = ek.

The following simple lemma follows immediately from the definition of a unitary
ug € Sg, so we omit its proof but record it for future reference.



Lemma 2.8. Let us € Sg. If v is a prefix of p € J1, then Ji contains a partition of
v. If v is a prefix of p € Jo, then Jy contains a partition of v.

Since each unitary uy; € Sp normalizes the diagonal MASA De«(g) of C*(E), it
follows that A7 (Dc«(g)) C De(g), [11]. Hence we must also have that A;(Dp,g) C
Dy, (g)- For Az to be an automorphism of Lz(F) it is then necessary that A7 restricts
to an automorphism of Dy, (g (which happens precisely when A7(Dp,(g)) = Dr,(k)-
However, it is entirely possible that A7 (Dc«(g)) = De=(py but Ay & Aut(C*(F)). Lots
of concrete examples of this kind were given for the case of Oy in [13, Section 5], and
for other Cuntz algebras in [12]. Example 7.3, given at the end of this paper, is also of
this kind.

3 Coding graphs

Definition 3.1. Let uy € Sg. We define a labeled graph (E7,Ly), called the coding
graph of uz, with the vertex set and the edge set as follows:

EY =J,
EL = A{[(1, e111), (p2, e212)] | S5 Sy, # 0, (p1, e101), (12, e2v2) € T}

The source map, the range map, and the labeling L 7: E‘ly — Lz(FE) are defined as:

s ([(p1, e1n), (p2, €a1)]) = (p1, €1011),
rg([(p1, e1n), (pa, earn)]) = (p2, earr),
L7 ([(p1, e1rn), (2, earn)]) = S5, Sy,

We note that S; S,, # 0 implies s(v1) = s(pu2). Since uy € Sg, we also have
r(e1) = s(v1) and s(ug) = s(ez), Consequently, r(e;) = s(e2). We also note that in fact

L7(EL) C{Sa|lae€ E*}yU{P, |ve E}U{SL|ac E*}.

In illustrations, a vertex (u,ev) € EY will be represented by the following box:

or
jz v po|r(e)

if |v| > 1 or v = (), respectively.

Example 3.2. Consider the unitary element u = 5155, + 59155, 4+ 52257 of the Leavitt
algebra Loz, given by the graph consisting of one vertex denoted () and two edges
denoted 1 and 2, respectively. If we put J = {(1,22), (21,21),(22,1)} then u = us The



coding graph of u; looks as follows:

2 S 2
1 2 ) 21 1
Sl SQ 521
1 e .
i P \ 22
We will use the shorthand notation
(p1, e1v1) = (Mk, exVk) (8)

to denote a path w in graph E7 with consecutive edges w; = [(1;, €;v5), (fj+1, €j41Vi+1)],
for j =1,2,...,k — 1. The labelling £ extends to a map Ls: E*% — Lz(FE) so that if
w € E% is as in (8) then

Lg(w)=Lg(wr) - Lg(wr-1).

If the path w consists of a single vertex (u, ev), then we put L (w) = P,(,). Furthermore,
we define two maps £, and £,, both from E% to {S, | « € E*} U{P, | v € E°}, so that
ES(W) = SMU
L. (w)=2S,,.

We also define a map £: E; — E* by
E(w) =ereq... 6.

That is, £(w) is a list of e from all the vertices w visits. Note that this mean that if
w has length &, then £(w) has length k£ + 1. Thus if we have two paths w and ¢ with
r(w) = s(§), then it is not the case that £(w) = E(w)E(E) since on the right hand side
the e of the vertex r(w) appears both at the end of £(w) and at the start of £(&).

The following lemma illustrates the usefulness of coding graphs for dealing with
endomorphisms and essentially motivates the very definition of a coding graph.

Lemma 3.3. Let us € Sp and let o« € E*. Then

Aj(Sa) = Z Lo(w)Lg(w)L(w)*

E(w)=a
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Proof. If |a] = 1 and thus « consits of a single edge e, then £(w) = e if and only if
w € EY% and w = (p, ev). Hence

Ag(Se) =ugSe= > SuPuSi= > Lw)Llsw)Ll(w)".

0
(:U'ue”)eEj

If |a| =k > 2 and oo = ejes. .. e, then we have

As(Sa)= D o > (SuSh) - (SuSh,)

(p1,e1v1)€EY (1rservi) EEY

= Y Y Su(ShSL) e (Sh,Su)S,
(H1,81V1)€Ef)7 (1, ekuk)eE%

= Ls(w)Lg(w)Lp(w)" O
E(w)=a

Corollary 3.4. Let u € J,. Given a 0 € E*, consider the (possibly empty) collection
of all paths {A;} in E% with s7(A;) = J, and E(A;) = 6. Then

P,A7(S5) = ZSﬁJ A"

Let n € E}7 be an edge in the coding graph F;. We define its degree as follows:

] if Lg(n) = Sa,
deg(n) = 0 if L7(n) € D,
—laf if Ly(n) = 55

We say that a path in E; is positive, non-negative, negative or non-positive, when
the degrees of all of its edges are positive, non-negative, negative or non-positive, re-
spectively. A zero path consists entirely of edges with degree 0.

Lemma 3.5. Let J, € EY%. Then the following holds.
(1) If the vertex J,, emits a non-positive edge then it emits no other edges.

(11) If the vertex J, emits a positive edge then for each edge [J,, Js| it emits there is
a path o € E* such that Ly ([J,, J5]) = Sa, and the collection of all these paths
constitutes a partition of r(u).

Proof. Ad (i). Let S} = S;S,, = Ls([(n,ev), ], ], and suppose that [(u,ev), J,,] is
another edge emitted by J,. Then 0 # SJS,, = S75,,5,, Sy, Thus P, P, # 0,
contradicting (7).

Ad (ii). Let Js,, j = 1,...,m, be the ranges of all edges emitted by vertex J, = (u, ev).
Since J, emits a positive edge, part (i) of this lemma implies that all edges [J,, Js,] are
positive. Thus, there exist paths «; € E* such that S;Ss, = S,;. Thus §; = va;, and
hence {a; | 7 =1,...,m} constitutes a partition of 7(x) = r(v) by Lemma 2.8. O
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Corollary 3.6. The labeled graph (Ez,L7) is right-resolving. That is, none of its
vertices emits two distinct edges with the same label L.

Corollary 3.7. A cycle in graph (E7,L7) has no exits if and only if it is non-positive.
The following corollary of Lemma 3.5 will be needed later in Section 5.

Corollary 3.8. Let ay € E* with o € Jy. For an arbitrarily large inetger | € N there
exist paths Ay, ..., Ay € EY with s7(A;) = Jo, |Lg(Ai)| > 1, and L7(A;) = Sy, with

{w;} € E* such that
Py =D P

4 Splitting

If uy is a permutative unitary, that is if uy € Sg N Fr,(g), then its coding graph takes
a particularly simple form. Namely, the £ label of each edge in E\17 is Sy for some
f € E'. 1t is largely due to this fact that permutative endomorphisms are relatively
easier to analyze, as was done in [5, 11, 13]. Unfortunately, a general coding graph E
may contain a variety of positive and negative edges. Dealing with such graphs and
thus analyzing the corresponding endomorphisms is substantially more involved. To
alleviate this problem, in the present section we discuss a procedure called splitting for
rewriting a unitary uy in such a way that the corresponding coding graph either has
only non-negative edges, or else admits a non-positive cycle. In the former case, dealing
with the coding graph F; becomes much easier, see section 5 below. In the latter case,
endomorphism A 7 does not restrict to an automorphism of D Lysy» S€€ Lemma 5.1 below.
Hence Ay cannot restrict to an automorphism of De-(py (Lemma 2.7).

Definition 4.1. Let us be a unitary in Sg and let E 5 be its coding graph. The splitting
of Eg at vertex (p,ev) € EY is the coding graph E gz, where

I = (T \A(w.ev)}) U{(uf.evf) | f € EY, s(f) = r(n)}-

Note that u s = uy, so that every splitting of F; constitutes another coding graph
for the same unitary uy;. We will only perform splittings at vertices which emit only
positive edges, and from now on this is always assumed.

If n = [(1o,eoto), (1, €11)] is a negative edge in EY and there is a zero path
(1, e1v1) = (ug, exvk), possibly of length 0, such that its range (u, exvx) emits only
positive edges, then edge n will be called final negative. The vertex (ug,exvy) will be
called the destination of n and denoted d(n). The length of the zero path emitted by a
final negative edge n will be called height of n and denoted hz(n).

Consider a splitting described in Definition 4.1. Edges between vertices different
from (u,ev) are unaffected by the splitting. New edges in graph E ;. created by the
splitting may be described as follows.
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(SE1) If the graph E; contains an edge n = [(u,ev), (9, g7v)] with u # §, then there
is exactly one f € E', s(f) = r(u), such that the graph E; contains an edge

n' = [(uf,evf), (4, g7)]. We have deg(n’) = deg(n) — 1.

(SE2) If the graph E; contains an edge n = [(u,ev), (i, ev)], then there is exactly
one f € E' s(f) = r(p), such that the graph E; contains an edge 7, =
[(1f,evf), (ub,evb)] for each b € E', s(b) = r(n). We have deg(n;) = deg(n).

(SE3) If the graph E; contains a non-negative edge n = [(9, g7), (i, ev)] with pu #
d, then for each f € E', s(f) = r(u), the graph Ej contains an edge 7, =

[(6, 97), (uf,evf)]. We have deg(n;) = deg(n) + 1.

(SE4) If the graph E 7 contains a negative edge n = [(0, g7y), (i, ev)] with p # §, then
there is exactly one f € E', s(f) = r(u), such that the graph £ contains an
edge ' = [(0, 97), (uf,evf)]. We have deg(n’) = deg(n) + 1. The edge ' € E,
will be called the descendant of the edge n € E;.

We are now going to describe the splitting algorithm for transforming coding graphs.
Definition 4.2. Let us € Sg. If the graph (E7,L7) either

(i) contains a non-positive cycle, or

(i) all its edges are non-negative

then the algorithm ends. Otherwise, perform a splitting at the destination of a final
negative edge with the lowest height.

If a splitting is performed at the destination of a final negative edge n then this edge
will be called active. Note that there may be more than one active edge.
Applicability of the splitting algorithm is justified by the following theorem.

Theorem 4.3. For each uy € Sg, the splitting algorithm described in Definition 4.2
terminates after finitely many steps.

Proof. We assume that the graph (E7, £7) contains some negative edges and does not
contain non-positive cycles. It follows immediately from (ES1)-(SE4) that splitting does
not increase the number of negative edges. Thus, it suffices to show that sufficiently
many splittings will eventually decrease this number. For this to happen, we must show
that a sufficiently long sequence of splittings will create a final negative edge with height
0 and degree —1.

Now, if the graph E; contains a final negative edge with height 0, then the splitting
will be performed at such a vertex (there may be more than one), and will result in
increasing the degree of each of the active edges with height 0. Thus, eventually, one of
these edges will have degree —1.

On the other hand, suppose that heights of all final negative edges are positive. It
follows from (SE1)-(SE4) that final negative edges in E’, will remain so in EY, after
one application of splitting. The heights of active edges will decrease by 1, while the
heights of inactive ones will remain unchanged. Thus, after a sufficiently long sequence
of splittings, there will be created a final negative edge with height 0. [
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5 Automorphisms of the diagonal MASA

Lemma 5.1. Let uy € Sg. If its coding graph E; contains a non-positive cycle then
the endomorphism A7 does not restrict to an automorphism of the diagonal. That is,
Ay (DL, k) is a proper subset of Dy, gy and consequently Ay ¢ Aut(Lz(E)).

Proof. Let (p1,e1v1) = (ux, exvx) be a non-positive cycle. We denote it 7, and for
each r = 2,...,k we denote the initial subpath (pq,ei1v1) = (pr, €,v) of n by n,. By
Corollary 3.7, the cycle n has no exit. By Lemma 3.3, for each o € E* we have

PuAg(Sa) = Z P Ls(w)Lg(w)Ly(w)".

E(w)=a

If this sum is non-zero then Ly(w) = py, and hence s(w) = (p1,e1r1). Thus w =
n...nn,. for some r, with initial subpath 7...n consisting of the cycle n repeated m
times (possibly m = 0). Consequently, P, A7(Dr,(g)) is the closed span of elements of
the form

S}uEJ(n)m‘cJ(777“)‘cr(nr)*ﬁr(nr)ﬁj(nT>*£J(n)*mS:1 :

Since the cycle 7 is non-positive, each such an element is either 0 or equal to P, . Thus
BuAg(Dryp)) = CP,, and Ay (Dryw)) # Drys)- -

Taking into account Theorem 4.3 and Lemma 5.1 above, we may from now on restrict
our attention to those uy; € Sg whose corresponding coding graphs F 7 have only non-
negative edges and contain no non-positive cycles. In this setting we get some
nice extra properties of the coding graph.

Lemma 5.2. Let uy € Sg. If the coding graph E 7 has only non-negative edges, then
Eg is left-resolving in the E-label. That is, if w,& € E% are such that £(w) = E(§) and
r(w) =r(&), then w = ¢&.

Proof. Let

S R = h nd s(&) =
@) = =0 s = d s(g)

fo

M2\V2

Since E7 does not have multiple edges, it suffices to prove that s(w) = s(£), which will
follow if fivn = forn. Let f = f1. From E(w) = £(&) we get that f; = fo. From the
fact that the edge w exist and that all edges in £ are non-negative we get that vy < pu.
Similarly v < u. Therefore we have that either 14 < 5 or v < 4. So either fiy < fio
or fvy < fry. Since uy € Sg this is only possible if fiv) = fun = fous. O

Note that the left-resolving property extends to path. That is, if w and & are paths
with E(w) = £(§) and r(w) = 7(§), then w = £. To see this, one first observes that
left-resolving implies that the final edges of w and ¢ must agree, and then one simply
works backward through the path.

The following strengthening of Lemma 3.5, comes simply by noticing that Lemma
3.5 applies to all vertices in the case of no negative edges.
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Lemma 5.3. Let uy € Sgp. We assume that the coding graph E 7 has only non-negative
edges and does not contain any non-positive cycles. For any vertex J, € E% and any
[ € N, we have that

{Lr(w) |we ES s(w) = J,}

is a partition of r(u).

We now define a property of the coding graph that will turn out to be equivalent to
A, restricting to an automorphism of the diagonal.

Definition 5.4. We say that the labeled graph (E7,E) is left-synchronizing (with delay
m) if there exists an m € N such that for any two paths wi,ws € E of length m if
E(wy) = E(ws) then s(wy) = s(ws).

We first show that a left-synchronizing coding graph implies that the endomorphism
restricts to an isomorphism on Dy, ). A similar criterion for endomorphisms of the
Cuntz algebras O,, has been found earlier in [10].

Theorem 5.5. Letus € Sg. We assume that the coding graph E 5 has only non-negative
edges and does not contain any non-positive cycles. If the labeled graph (E7,E) is left-
synchronizing then the endomorphism Ayz: Lz(E) — Lz(E) restricts to automorphism
Of the MASA DLZ(E)-

Proof. Assume that graph (E7,€) is left-synchronizing with delay [. In order to show
that A J|DLZ(E> is an automorphism of Dy, g), we must show that all projections P,
@ € E*, are in the range of AJ|'DLZ(E). It suffices to do this for all paths p of length
exceeding an arbitrary fixed integer, since every projection in Dy, gy may be written as
a sum of such projections P,.

Now, consider a path p € E* that is sufficiently long to have a prefix p, € 71,
and let p1s € E™ be the unique path such that p = pyus. By Corollary 3.8, the vertex
Jy, € Bz emits paths {A;} C E7% such that £7(A;) = Sy, and P,y = >, P.,. We put
Ji = rg(A;). Let {;;} be the collection of £-labels of paths in £ of length [ and source
J;. Left-synchronization of the graph (E7, &) implies that every path with £-label 7;;
must have J; as its source. For each «;; there may be more than one path with £-label
7ij, but then the £ s-labels uniquely identified such paths (Lemma 3.6).

Let R;j,, be the collection of all £ -labels of all paths with £-label 7;;. By Lemma
3.5, the ranges of R;j, yield a partition of P,(,,). Let Jij, € E% be the range of the
unique path with the double -L s-label [v;;, Rijm]. Note that Jijn, # Jijm for m # m/,
since the coding graph ls left-resolving in the £-label (Lemma 5.2). Furthermore, since
the graph (E7, &) is both left-resolving and left-synchronizing, every path with £-label
E(A;)vi; must have S, ., as a prefix of its £ label. We denote by Kjj,, the £,-label of

15



the unique path with the double label [v;;, R;jm|. By Lemma 3.3, we now get

Aj (Z Sg S’YZ] S’t ) = Sﬂpsﬂ
=5, (Z Sur Rijm B S5

=P,

17]7m7m

Z7]7m

S(Z Su: Rijm

K} Kijm R

igm

)

The following picture illustrates the above process for a single ;.

P

To prove that the coding graph being left-synchronizing is also a necessary condition
we record some more consequences of £; being left resolving in the £-label.

Lemma 5.6. Let uy € Sg. We assume that the coding graph E 7 has only non-negative
edges and does not contain any non-positive cycles. If E7 is not left-synchronizing in

[%‘j’ Rz’jm]

[€(A0); Sy

[%‘j, Rijm’]

Jijm

Jijm’

/S,

igm' M w;

) S;s S:P

the E-label, then there exists two distinct cycles in E% with the same E-label.

Proof. As in (3) = (2) in the proof of [5, Lemma 3.10].

The following Lemma is just a minor variation on Lemma 5.2.

Lemma 5.7. Let uy € Sg. We assume that the coding graph E 5 has only non-negative

edges and does not contain any non-positive cycles. Suppose that w,§ € E% and £(w) =
E(). Then L. (w)*L,(§) # 0 if and only if w = &. Furthermore, for any path v € E%

we have

Lg(V)Lr(V) Lr(v) = Lg(y

Proof. Let

€1

r(w) =

,U/l‘Vl

).

€2

and 7r(¢) =

Mz\Vz

Since £(w) = £(), we see that e; = eg. For simplicity put e = e;. We have

L)L) #0 <= 11 <1poriy <y

<= ev] <X eVp O ey < ey

< eV = €l
— r(w) =7(8)
— w=¢.
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Where the last equivalence follows since E 7 is left-resolving.
It suffices to prove the final claim of the lemma under the assumption that ~ is an
edge. So suppose 7 is an edge with

s(v) = e and  r(y) =

€2
M2 ‘ vy

Then L,(v) = Sy, and Ls(v) = S, S,,. Hence
,CT(’)/)*,CT(’)/) = S:QSVQ = PT(VQ) = Pr(uz)-

Therefore
EJ(PY)ﬁT(V)*ﬁr(V) = S:1S,U«2P'f’(#2) = 8:15u2 = ‘63(7) L

Theorem 5.8. Letus € Sgp. We assume that the coding graph E 7 has only non-negative
edges and does not contain any non-positive cycles. If E7 is not left-synchronizing in
the & label, then Ay does not restrict to an isomorphism of Dy, ().

Proof. By Lemma 5.6 there exists two distinct cycles 3, 8" € E% with £(8) = £(8').
Since E7 is left-resolving in the &£-label (Lemma 5.2) 8 and (' have distinct ranges.
Le. there exists distinct vertices J,, J,, € EY such that s(5) = r(8) = J, and s(f') =
r(8') = J. We claim that P, is not in the image of A .

Suppose, for contradiction, that P, is in the image of A;. Since Ay maps Dy, ()
into Dy, k), this means there exists a finite set of paths {a;} such that

P, =AMy (Z S5, )

Since E has no sinks or sources, we can assume that all the a; have the same length, [
say. Using lemmas 3.3 and 5.7 we compute.

Py=Ag (Z Sa.Sa, ) = ZAJ<SOZ2‘>A\7<SZ¢>

= S LWL L @) | | Y L)L) L)

7 E(w)=ay E(&)=ay

_ S L)L @)L @) L€ L () La(E)

i \E(w)=ai=E(¢)

= D Liw)Ls(w)Ly(w) Lo(w)"

i E(w)=a;

We will use this equation to first establish that there exists some k such that oy, < E(3)>°
Then we will leverage that to get a contradiction.
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Multiplying Equation (9) by P, we then get (as in Lemma 3.4) the following

P,=PF;
=> | D BLiwLsw)Ly(w) L(w)"
i E(w)=a;
=Y | X L@@l @) L)
BV
=S| 2| 2 Lol@ls) | | S,
i E(w)=a;
s(w)= Ju

=S| Y. Lo@Lyw)|S;

E(w)e{ai}

s(w)=Jp,

Therefore {£7(w) | s(w) = J, and €(w) = a; for some 7} is a partition of P,. Compar-
ing with Lemma 5.3 this tells us that any path w € E'; with s(w) = J, must have
E(w) = o for some i. In particular there exists a k such that oy, < £(3)>

Multiplying equation (9) by P, and computing as above we get

0=P,P,

=2 Zﬁ W)Ly (W) Lyw)

S(W) Ju
Since we are working in a Leavitt path algebra over Z there is no cancellation in this
sum, so it can only be 0 if there does not exist a path w with s(w) = J, and £(w) = a;.
However, as we saw above there exists a k such that aj < £(8)>* = £(5)*°, so there
exists a path § < (4')*° such that £(§) = ay and s(§) = J. ]

We summarize our results and use Lemma 2.7 to translate them into the language
of C*-algebras.

Corollary 5.9. Let us € Sg.
1. If the coding graph E; contains a non-positive cycle then the endomorphism Az

does not restrict to an automorphism of the diagonal.

2. Suppose the coding graph E 7 has only non-negative edges and does not contain any
non-positive cycles. The labeled graph (E7,E) is left-synchronizing if and only if
the endomorphism Agz: Lz(E) — Lz(E) restricts to automorphism of the MASA
DLZ(E)'
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3. If the coding graph E 7 contains a non-positive cycle then the endomorphism Az
does not restrict to an automorphism of the diagonal.

4. Suppose the coding graph E 7 has only non-negative edges and does not contain any
non-positive cycles. The labeled graph (E7,E) is left-synchronizing if and only if
the endomorphism \7: C*(E) — C*(E) restricts to automorphism of the MASA

Remark 5.10. It is worth noting that for both graph algebras and Leavitt path al-
gebras, the results presented above give a constructive way to determine whether a
given polynomial automorphism restricts to an automorphism of the diagonal MASA.
Theorem 4.3 shows that the splitting algorithm applied to the coding graph of the en-
domorphism will terminate in finitely many steps. If this results in a non-positive cycle,
we are done. If not, then we need to determine whether the resulting coding graph is
left-synchronizing in the £-label. Since we may consider the £-label as an edge label on
the coding graph, this is equivalent to asking whether the sofic shift presented by this
labeled graph is in fact a shift of finite type. By [24, Thm. 3.4.17] this question can be
answered by checking a well defined number of paths. Hence, the question of whether
the endomorphism restricts to an automorphism can be answered algorithmically. Fur-
thermore, it is shown in [4] how the last question can be answered more effectively.
Hence, the results of this paper pave the way for a systematic computational investiga-
tion and classification of polynomial endomorphisms similar to the one carried out for
permutative endomorphisms in [5].

We end this section by taking a small step towards the goal of establishing when
A, is onto, otherwise not discussed in the present paper. Consider a path a € E*, by
Lemma 3.3 we can compute A,(S,) as

Au(Sa) = Y Lo(W)La(w)Ly(w)".

E(w)=a

The purpose of the next three lemmas is to show that if A, restricts to in isomorphism of
the diagonal and the coding graph has no non-negative edges, then in fact each summand
is in the image of A,,.

We record the following lemma mostly to fix notation.

Lemma 5.11. Let uy € Sg be written

n
ug =Y 8,55
=1

Assume that the coding graph E 7 has only non-negative edges and does not contain any
non-positive cycles. For each path w € E% there is a k and a path v € E* such that

Li(w)=2S5,, and Lz(w)=s,.
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Lemma 5.12. Let uy € Sg be written

n
ug = 8,55
=1

Assume that the coding graph E 7 has only non-negative edges and does not contain any
non-positive cycles.
Let w,§ € E7 be paths of the same length, and write

Ls(w)Lg(w) = Su,S,,
£3(§)£J(€) = SMZS57

for Lk € {1,2,...,n} and paths ~v,6 € E*. If .y < o then w =&

Proof. We prove the claim by induction on the length m = |w| = |y|. If m = 0 then
L7(w), L7(€) are vertex projections, so vy and 0 are both vertices. Hence our assumption
becomes that ux < ;. By equation (7) this is only possible if & = [, so we get

w=J, =J, =§

Suppose now m > 0 and that the claim is proved for pairs of paths of length less than
m. Since E s only has non-negative edges we can find paths v;,0; € E*, i =1,2,...,m
such that £ (w;) = S, and L7(&;) = Ss,. Note that v =172+ Ym and § = 6102 - - Oy
By assumption puxy < 6, appealing again to equation (7) we see that this is only
possible if k = [ and v < §. Consequently s(w) = J,, = s(§). From Lemma 3.5 we get
that either .J, emits only a single edge, or the £ labels of the edges out of J, form
a partition of r(u). In the former case we clearly have w; = &;. In the latter case we
denote the labels {Saj },; and note that v, = a, and 01 = o, for some a,b. Since o; £
for any i # j and v < 0 we must have that a = b. Therefore v, = §; and both w; and
& are equal to the unique edge out of J, with £ label S,,. We have now established
that we always have w; = &. Thus the paths W’ = wows - - w,, and & = &&3- -+ &, have
the same source, say J,,, so

LWL (W) = Su, Svarsermms
ES(§/>‘CJ(€/> = SﬂhS£2§3"'£m7

and ppYey3 c Ym < pr&2&s - - &m. By the induction hypothesis we conclude that w’ = ¢£'.
Therefore
w=ww =&& =£. O

Lemma 5.13. Let us; € Sg. Assume that the coding graph E; has only non-negative
edges and does not contain any non-positive cycles. Assume further that A, restricts to
an isomorphism of Dy, k). For all § € £ we have

L(§)Ls(6)Lr(E)" € Im(Ay).
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Proof. Let wy,ws, . ..,w, be an enumeration of the paths in F 7 with £ label £(¢). From
Lemma 3.3 we get that

m

Au(See) = > Lolwi) Ly (wi) Lo(w;)*

i=1
Since E 7 only has non-negative edges we can find paths 71, ¥s, ..., Vm such that
Ly(wi)Lg(wi) = S,

Since paths with the same & label have the same length it follows from Lemma 5.12
that for no pair ¢, 7, ¢ # 7, is 7; < 7;. Therefore

P%S%:{ov P4

Suppose & = wy, then

L(§)L7 (L&) = Py Lo(wr) Ly (wi)Lr(wr)”
=D PuLo(wi) L (wi) £r(wi)’

=1

6 Action on the path space and transducers

Throughout this section, we fix a unitary uy; € Sg such that the coding graph E;
only has non-negative edges and does not contain any non-positive cycles. Furthermore,
the coding graph E; should be left-synchronizing (see Definition 5.4). Under these
assumptions it follows from Corollary 5.9 that A, restricts to an automorphism of D¢ ().
Since De+(g) = C(E>), Gelfand duality implies that A, induces a self homeomorphism
on E* denoted \;. Here E*> denotes the space of one-sided infinite paths on E. The
purpose of this section is to use the coding graph E; to describe the action of (A¥)~1.
(Why the inverse of A\:? Because Gelfand duality is contravariant). To ease notation,
we put ¥, = (A\5)7L

To get started, we first give a description of the action v, and recall the definition
of a transducer from [6, 16]. The following Lemma 6.1 follows immediately from the
construction of the isomorphisms De-«(gy = C'(£°), so that a path o € £ is identified
with the character of D« (g) which maps a projection P, to 1 or 0 depending on if 1 is
an initial word of a or not.

Lemma 6.1. Suppose o, 3 € E*. The following are equivalent:
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1. (o) = .
2. For alln € N there exists m € N such that

D1 o Mu(Payas--am ) 7 0-
3. For alln € N there exists m € N such that
Sgﬁzmﬁn)‘u(salazmam) 7é 0.

Definition 6.2. A transducer is a 5-tuple (A, B, S, s, T) where
1. A, B are finite alphabets for input and output, respectively,
2. S is a finite set of states,
3. sg € S is the initial state, and
4. 7: S X A — S x B* is the transition function.

Note that we allow the input and outupt alphabets to differ, in contrast to [6]. Given
a transducer T' = (A, B, S, so, 7) and an infinite word o € A* we recursively define a
state sequence (s;)2, and an output sequence (5;)2, by

(Si: ﬁi) = T(Szel, Oéi)-

The output word of T" on « is the concatenation 8 = (3135 ---. This will be written as
a[T]5.

Now, we turn to construction of a transducer which induces action ¢, on the infinite
path space E*°. We do so by composing two transducers with distinct inputs—outputs,
related to the two graphs F and E ;. At the heart of this construction lies the observation
that under the hypothesis of Theorem 5.5 the infinite path spaces E* and E% may be
canonically identified. For the sake of greater clarity, we break the proof Theorem 6.7
into several natural steps, given below as lemmas 6.3-6.6.

Lemma 6.3. Suppose E; is left-synchronizing with delay m and let v € E™*2 be given.
Ifw, € e E?H and

Ew) =My Ymi2 = E(),
then wy = 7.

Proof. Define paths

/ "
W =Wy Wy, W =Wz " " Wni,

§=86& &n =866 &

Note that £(w') = £(¢’) and E(w”) = £(£"). From synchronization we get that s(w) =
s(w") = s(&) = s(§) and s(w”) = s(¢”). Since E7 has no multiple edges we must have
that both w; and & is the unique edge in E; from s(w) to s(w”). O
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Lemma 6.4. Suppose that E 7 is left-synchronizing with delay m, and let « € E*°. Then
there exists a unique w € EY such that £(w) = a. Moreover, there exists a transducer
T with input alphabet E' and output alphabet EY, such that o|T)w.

Proof. By injectivity of A\, and Lemma 3.3, there exists an w with £(w) = . By Lemma
6.3, such an w is unique.

From Lemma 6.3 we see that there exists a map ¢: E™? — EY such that for any
B € E™? and any ¢ € ET with £(€) = 8 we have & = ¢(8). We can extend ¢ to
(EY)™*2 by setting ¢(8) = 0 for any word 8 € (E')™*2 which is not a path. Define a
sliding block code ®: £~ — EF by

Q(7) = A2 Ymr2)P(V2y3 - Ymg3) o

By construction, we have ®(a) = w. To complete the proof we observe that every sliding
block code can be implemented by a transducer, see for instance [27, Figure 2.3] and
the surrounding discussion therein. O]

Lemma 6.5. There exists a transducer T' with input alphabet E}7 and output alphabet
E' such that if we input w € EZ then the output is

K2
where s, = Ls(w) and s,, = Lg(w;), 1=1,2,....

Proof. The state space of our transducer will be £, and a special symbol sy, which is
the initial state. The transition function 7 is defined as follows: From the initial state
we move to the state of the first letter we read, and we write £, label. In symbols:

7(s0,€) = (e, ), where s, = Ls(s(e)).

From any non-initial state, we still move to the state of the letter we read, but we now
write the £ label of the state we are leaving. In symbols

7(e, f) = (f,7), where s, = Ls(e).
T has the desired property by construction. O

Lemma 6.6. If « € E* and w € EF is the unique path with £(w) = o (as in Lemma
6.4), then

Yula) = pny2-- -,
where s, = Ls(w) and s,, = Lg(w;), 1 =1,2,....

Proof. Suppose that E is left-synchronizing with delay k. To ease notation, we put
B = py1y2 - -+ and write 0, = 6102 - - - 6, for any path § (possibly infinite) which begins
with 6105 ---9,,. By Lemma 6.1, it suffices to show that for all n € N there exists an
m € N such that

Au(Sapny) = SppyT-
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This is equivalent to showing that for all n € N there exists an m € N such that

Au(Sapn) = Suma-yn -

It is this last claim we will establish.
Let n € N be given. From Lemma 3.3 we get for all m € N that

w(Sag) = Z Ly( L.(&)"
E(©)=apm

Let m = k+1+n. Then it follows from Lemma 6.3 that if £ is a path with £(§) = oy
then &) = wy,). Consequently

Au<saw>= Z £s<£>£y<£>£7«<£>*
Z L
E(&)=cm)

= L) Ly(wm) Y, LalGunburaEm)La(§)

E(&)=cm)

= 5.5y1y2--An L - [

n])£3<€n+1€n+2 “&m )‘CT‘(&)*

Theorem 6.7. There exists a transducer T with input and output alphabet E' such that
for all a € E* we have
alT), ().

Proof. 1t is described in [16, Section 3.2] how the composition of two transducers is again
a transducer, and that if a[S]b and b[S']c then a[S’ o S]c. Let T be the composition
of the transducers from lemmas 6.4 and 6.5. Then it follows from Lemma 6.6 that

a[T]gu(a). =

Remark 6.8. If we have a unitary u s with left-synchronizing (delay m) coding graph
us and we want to describe the action of 1, then the proof of Lemma 6.6 gives us a
recipe. First, as in Lemma 6.4, find a map ¢: £ — E’ with the property that for
all w € E7"" we have ¢(£(w)) = wi. Then define two maps S, L: EY — E* by

S(w) = p, where L, (w) = s,
L(w) = v, where L7(w) = s.,.

Then for any o € E* we have
Uula) = S(Pp(araz - amia)) L(d(aras - - - apya) ) L(P(aoas - - - nys)) -
Alternatively, we can define K: E* — E* by

K(a) = L(¢p(arag - - - cipya) ) K (g - - - ),

and then
Yula) = S(d(aras - aumi2)) K ()
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7 Examples

In examples 7.1 and 7.2 below, we work with the Leavitt path algebra L, 7 corresponding
to the Cuntz algebra O,, i.e. the Leavitt path algebra of a graph consisting of one vertex,
denoted (), and two edges, denoted 1 and 2, respectively.

Example 7.1. Consider a unitary
u = 51157 + S1255, + 5255,
in L,z and the corresponding inner automorphism Ad(u) = Aye+). We have
u®(u*) = P11 + S12551 + S11215715 + 5215515 + S1122575 + Pao.

The coding graph (E 7, L) of this representation of the unitary u®(u*) is shown in the
figure below.

1 S 1 S 2
Sl 22 2 S2
111 ] 11 1122 2 22 | 2

S1

Sor S 51 Sy

1 S

1121] 12 5 12 | 11 Sp 21 | 12

Omne can easily check that the labeled graph (E7, &) is left-synchronizing. Thus A,
restricts to an automorphism of the diagonal MASA Dy, gy, by Theorem 5.5.

Example 7.2. The unitary
u = Py + 811ST21 + 5121»5';1 + Py

gives rise to an outer automorphism of order two of C*(E), [10, Formula (10)]. The
corresponding coding graph is shown below.

1 S 1
S -
121 1 11 | 21

S
Sa 2 S| |5
1 Sék 2
S,
122 | 22 S19 2 0
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Since this coding graph contains negative edges incoming to the vertex (2, 2), we perform
splitting at this vertex. The resulting coding graph (E7, L) of this new representation

of the unitary u, shown below, contains only non-negative edges.

Sy ; 51
121 1 11 | 21
Sh
521 S@
2
522
21
SQQ Sl
1
122 | 22 So 22 | 2

S2

The labeled graph (E 7, £) is left-synchronizing and thus A, restricts to an automorphism

of the diagonal MASA Dy, (g, by Theorem 5.5.

We now follow Remark 6.8 to describe .
synchronizing with delay 2, and hence an £-label of length 4 will uniquely determine
the first edge in any path. There are 2* = 16 length 4 paths in E. The table below
shows what each of these gets mapped to under ¢, So¢ and Lo¢. Recall that [J191, J11]
denotes the horizontal edge at the top of the graph.

First we note that (E7,&) is left-

E* [0) So¢p Log
1111 | [o1, Jia] 121 21
1112 [Jlgl, Jlgl] 121 21
1121 | [Jior, Ju] 121 1
1122 | [Jior, Jizo] 121 22
1211 | [, Jor] 11 0
1212 | [, o] 11 0
1221 [J122, ng] 122 0
1222 | [Jiagy Jor] 122 00
9111 | [Jor, Jiza] 21 21
2112 | [Jor, Jiza] 21 21
2121 | [Jor, Ju] 21 1
2122 | [Jo1, J122] 21 22
92211 | [Jog, ] 22 1
9212 | [Jog, o] 22 1
9901 | [Jag, Joo] 22 2
9922 | [Jag, Joo] 22 2
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So if we for instance consider the path a = (112)* = 112112112112112---, then
there are only three possible length four subpaths, namely 1121, 1211, and 2112. So the
relevant information in the above table reduces to.

E4 ‘ So¢p Log
1121 | 121 1
1211 | 11 0
2112 21 21

We can now compute

Pu((112)) = (S0 ¢)(1121) (((L 0 ¢)(1121))((L 0 ¢)(1211))((L 0 ¢)(2112)))*
= 121((1)(0)(21))> = 121(121)> = (121)>.

Similarly

Pu((121)%) = (5 0 ¢)(1211) (L 0 ¢)(1211))((L 0 ¢)(2112))((L 0 ¢)(1121)))™
= 11((0)(21)(1))™ = 11(211)™ = (112)*.

As it should be, since 9, has order 2.

Example 7.3. In this example, we work with another Leavitt path algebra, given by
the following graph F'. It should be noted that the corresponding graph Leavitt path
algebra is again isomorphic to Lg 7.

€9
€1 w
€3

The generating partial isometries corresponding to the three edges will be denoted 57,
Sy and S3, respectively. We consider a unitary

u = SHST + 5125; + SQS;l + 535§2,

whose coding graph (F7, L) is shown below.

s €1 Sis €2
11
€ié1 v €1€2 | w

Si Sy S, Sy

€3 €3

€9 €1 Pw €3 €9
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The labeled graph (Fl7, &) is left-synchronizing, and thus Ay € Aut(Dp,r)). However,

Ay

Q Aut(Lz(F)) Indeed, we have Aj<51> = Sn, AJ(SQ) = 812 and Aj(Sg) =

S257 4+ 5355, Thus A7 maps all three generators to elements that are homogeneous of
degree 2. Hence the image of A will be in the span of homogeneous elements of even
degree, which is a proper subalgebra of Lz(F'). The same conclusion holds at the level
of the graph C*-algebra.
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